
Unscrambling Address Lines

Andrei Broder∗ Michael Mitzenmacher∗ Laurent Moll∗

Abstract
A writer leaves a message in a write-once memory accessible
via address lines. Before the intended recipient has a chance
to get the message, the address lines are permuted by an
adversary. We provide a simple, nearly optimal algorithm for
the reader and writer to communicate over such a channel.

This problem arose in the context of FPGA hardware

design. Our algorithm has been implemented and is part of

the design tool suite in use within Compaq.

1 Introduction
Consider the following problem regarding the transmis-
sion of a message between a writer and a reader facing
an adversary. The writer stores logical zeroes and ones
in a table of size 2n stored in consecutive locations in
a write-once memory. The memory is accessed through
n one bit address lines. After the writing is complete,
an adversary permutes the address lines. For example,
for n = 4 there are sixteen memory locations: if the
address lines are set to 0010, before the adversary acts,
the memory returns the value stored in location 2. If
the adversary permutes the second and third address
line, the memory sees a request for location 0100 and
returns the value stored in location 4.

The reader does not know the permutation used by
the adversary, but can read all the memory locations.
The reader’s goal is to discover how the address lines
were permuted, and, in addition, to obtain a message
from the writer. Assuming the reader and writer
establish a protocol ahead of time, how many bits can
they communicate? More practically, what is a good
protocol?

This problem arose in the context of Field-
Programmable Gate Arrays (FPGAs) hardware design.
An FPGA is a simple reconfigurable hardware device.
The first commercial FPGA was introduced in 1986 [1].
For a large part of today’s FPGAs, their basic logical
element is equivalent to a look-up table [4]. The usual
tools for FPGA design lay out a circuit on these logical
elements, routing the wiring as appropriate. In par-
ticular, one tool currently in use permutes the address
lines as appropriate to improve the wiring layout. This

∗Compaq Systems Research Center, Palo Alto, California.
E-mail: {broder,michaelm,moll}@pa.dec.com

process is perfectly reasonable if the FPGA programmer
want to use the design as a “black box.” However, if the
FPGA programmer wants to patch the design, an effec-
tive means of determining this permutation is necessary.
The number of memory locations in the table dedicated
to this end should be as low as possible, so that the rest
of the table can be used for other purposes. (Because of
the layered structure of the complex software used for
wiring layout, keeping track of the permutation through
the layers is not feasible.)

We describe a brute-force approach to the problem,
as well as a simple algorithmic solution.

2 Brute force: table look-up

For any specific n, the problem can be solved by brute
force. We divide all possible settings of table-content
bits into equivalence classes; two settings are equivalent
if and only if the first yields the same memory output as
the second via some address lines permutation. We then
count the number of equivalence classes with n! distinct
members. If Cn is the number of such classes, then the
writer can effectively transmit any value in the range
[0 . . . Cn−1] in such a way that the reader can determine
the value plus the permutation used by the adversary.
This is accomplished by establishing one representative
member from each of the Cn equivalence classes, and
sending one of these Cn representatives. The value
from [0 . . . Cn − 1] is determined by the reader from
the class of the read memory bits; the permutation is
similarly determined by which of the n! permutations of
the representative appears in the memory. Essentially,
then, one can reduce the problem to a large table look-
up.

In practice, however, this approach appears infea-
sible for all but the smallest values of n, as there are
22n

possible ways to set the memory. Using a brute
force table-look up approach rapidly becomes infeasible
in terms of memory utilization and preprocessing. The
first few values of Cn are 2, 4, 16, 1792, 34339072, . . .. We
have not determined a closed form for Cn; this remains
an open problem.

In a similar vein, we might ask how many values
Dn can be passed if we do not care whether the reader
learns the adversarial permutation. In this case, all the

1



2

equivalence classes (and not just those with n! members)
count, as each class determines a possible value from
[0 . . .Dn − 1]. The first few values in this case are
2, 12, 80, 3984, 37333248, . . .. A closed form for Dn also
remains an open problem. We note that neither Cn or
Dn appear as sequences in the famous Sloane’s list [2, 3].

3 An algorithmic solution

We have devised a simple algorithmic solution which
requires at most n log2 n memory probes to determine
the permutation, and uses only n log2 n of the 2n bits of
the memory. These are both within a 1 + o(1) factor of
optimal, since on average (a) it takes at least log2(n!)
memory probes to determine the permutation; and (b)
the writer cannot transmit more than 2n − log2(n!) bits
of information if the writer has to specify a permutation
as well. (Note that if the reader does not need to
determine the permutation, then our algorithm still
works, but we can no longer claim that it is within an
1 + o(1) factor of optimal. Finding non-trivial bounds
for this case remains open.)

We establish the appropriate notation. Initially, we
assume that the number of address lines is n = 2r

for some r. We label the memory locations by n-
dimensional {0, 1} vectors. Originally the writer assigns
bit values f(x) ∈ {0, 1} to the vectors (locations)
x ∈ {0, 1}n. We denote the permutation chosen by
the adversary as π and view it as a permutation of the
numbers 0 to n−1. We use π̂ to represent the action of π
on vectors in the natural way: for example, if there are
4 address lines, and π(0) = 0, π(1) = 2, π(2) = 1, and
π(3) = 3, then π̂(x) = π̂(x3x2x1x0) = x3x1x2x0. The
values returned by the memory, after the adversary’s
evil deed, are denoted by g(x), where g(x) = f(π̂(x)).

The reader learns the permutation π after r rounds.
For each round the reader reads the value of g(x) in n
distinct locations. These locations are independent of π
and different from round to round. As we explain, be-
fore the permutation, the writer sets only the locations
that eventually will be read. Hence n log2 n values in
the table are stored and read by our algorithm and the
other locations are available for message transmission.
We maintain the following invariant: after round k, for
each line i, we know π(i) modulo 2k. Note that this in-
variant is trivially true before round 1. We call this the
bit-by-bit approach. To simplify exposition, we describe
the writing and the reading round by round, although
in fact the writer does all the writing before the reading
begins.

For the first round (round 1), the writer sets f(x)
to be 1 for all unit vectors x = ei for odd i, and 0 for all
unit vectors x = ei for even i. The reader sets exactly
one line j to 1 and all the others to 0. The memory

returns 1 if and only if π(j) = 1, that is, j is mapped to
an odd-numbered line.

Similarly, for round k, let the values of z range over
[0 . . . 2k−1]. The writer sets f(x) for all x with a 1 in all
positions xi with i = z − 1 mod 2k, exactly one 1 in one
of the n/2k positions xi with i = z mod 2k (call this
position j), and 0’s elsewhere. Note that there are n
possibilities for x corresponding to the n possible values
for j. The writer sets f(x) to 1 if (j − z)/2k is odd and
to 0 otherwise.

The reader, given the information gathered in prior
rounds, can determine the permuted position of each
line modulo 2k. Hence it can compute all x such that
π̂(x) has π̂(x)i = 1 in all positions with i = z−1 mod 2k,
π̂(x) has exactly one 1 in one of the n/2k positions π̂(x)i

with i = z mod 2k. Let j be the index of this particular
position within x. That is, the reader can determine
how to set the address bits to read values g(x) = f(π̂(x))
precisely for the x’s that the writer has defined for this
round. Again, these reads determine for each j whether
the (k + 1)’st bit from the right of π(j) is 0 or 1. Our
invariant is maintained, and hence only n · r = n log2 n
values are set and read in the memory.

Minor improvements can be made. For example,
the reader need not read n values each round, but only
n−1 values, since the nth value to be read is determined
by the other n − 1.

When n = 2r + a, where 0 < a < 2r, we use an
(r + 1)’st round for locations which are not determined
by the first r bits from the right. The same argument
shows that the total number of memory locations that
need to be set and read is at most n · r + 2a =
nblog2 nc + 2a.

4 Acknowledgement

We wish to thank Mike Burrows, who computed the
computable terms of the Cn and Dn sequences.

References

[1] W. S. Carter & Al., A user programmable reconfig-
urable logic array, in Proceedings of the IEEE 1986
Custom Integrated Circuits Conference., May 1986,
pp. 233–235.

[2] N. J. A. Sloane, Sloane’s on-line encyclope-
dia of integer sequences. Available on-line via
http://www.research.att.com/∼njas/sequences/ .

[3] , A Handbook of Integer Sequences, Academic
Press, 1973.

[4] The programmable logic data book 1998. Xilinx
Inc., San Jose, CA, 1998. Available on line via
http://www.xilinx.com/partinfo/databook.htm .


