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Abstract

We present a combinatorial proof of a recurrence that occurs in the sequence enu-
merating square permutations. We then generalize this result to a class of sequences,
which we classify with. Finally, we explore the cause of this shared trait by analyzing
the expotential genereating functions of these sequences.

1 Square Permutations

The permutations on n elements form the symmetric group of order n!, called Sn. One inter-
esting question is, which permutations can be written as the square of other permutations?
We would like to characterize the set

An = {π : π = σ2, σ ∈ Sn}.

Any permutation can be written as a product of disjoint cycles.

Definition 1 (Cycle Type). The list of the lengths of the cycles of a permutation π is
called the cycle type.

For example, the cycle type of π = (5 4 1)(7)(8 2 6)(9 3) is {3, 3, 2, 1}.

We can determine the cycle length of π2 by composing the squares of all the cycles of π:

1. Odd cycles, when squared, turn into odd cycles of the same length, but with their
elements permuted:

(1 2 3 4 5 6 7)2 = (1 3 5 7 2 4 6)

2. Even cycles, when squared, split up into two cycles of half the length:

(1 2 3 4 5 6 7 8)2 = (1 3 5 7)(2 4 6 8)
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These facts are immediately apparent if we draw the graphs of even and odd permutations.
We will present an example to illustrate the process of squaring a permutation:

((1 2 3 4 5)(6 7)(8 9 10 11)(12 13)(14))2 = (1 3 5 2 4)(6)(7)(8 10)(9 11)(12)(13)(14)

Each cycle in a square must be generated by one of the above processes. So, in a square
permutation, all even cycles must appear in pairs. There are no constraints on odd cycles or
their distributions. We can also calculate the square roots of permutations when they fall in
this form (although square roots are usually not unique).

2 The Problem

How many square permutations are there in Sn? A 1974 article by Blum explores this
problem [1]. Although there appears to be no simple closed form, we can find an exponential
generating function for this sequence. Let an be the number of elements of Sn which are
squares. The exponential generating function is

∑
n≥0

an
xn

n!
=

√
1 + x

1 − x

∏
k≥1

cosh
x2k

2k
.

The first few terms of the sequence is listed below, and the ratio between each successive
a2k and a2k+1:

i ai ai/ai−1

0 1
1 1 1
2 1
3 3 3
4 12
5 60 5
6 270
7 1890 7
8 14280
9 128520 9

10 1096200
11 12058200 11

One property of this sequence is the recurrence

a2n+1 = (2n + 1)a2n

which governs the relationship between any even term and the next term. Analyzing the
expoential generating function gives the result after some algebra. However, it gives no
insight into the combinatorial structure of the problem. We now present a proof with a
combinatorial bijection.
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3 A Combinatorial Interpretation

We will prove this identity using a combinatorial argument and strong induction.

In order to prove the identity combinatorially, we will construct a map.

Definition 2 (Square Permutations). Let Ak be the set of k-element square permutations.

Definition 3 (Permutations with Inserts). Let Ω2n+1 be a set of permutations of 2n+1
elements, generated by inserting the last element 2n + 1 into the elements of A2n in every
possible location, with the following rules:

1. The last element may be spliced into any existing cycle at any location.

2. Or, we can insert the element as its own new 1-cycle (i.e. insert it into what was before
an imaginary 0-cycle).

The set Ω2n+1 has size (2n + 1)|A2n|, because we can insert before any element (2n
insertion positions per permutation). or we can insert outside any cycle (one additional
insertion position per permutation). If we can biject the set onto A2n+1 then we will establish
the recurrence. We define refinements of Ω and A as follows:

1. Let Ωk(x) be the set of permutations in which the last element, k, was inserted into a
cycle of length x (that is, now k appears in a cycle of length x + 1. Define the count
analagously, ωk(x) = |Ωk(x)|.

2. Let Ak(x) be the set of permutations in which the last element, k, appears in a cycle
of length x. Also define the count analagously, ak(x) = |Ak(x)|.

Before we prove the recurrence, we will define a property which will let us generalize our
result.

Property 1 (Odd Cycle Invariance). Let X be a set of permutations, and Xn be the
elements of X which have size n. We will say that X is Odd Cycle Invariant if inserting a
disjoint odd cycle of length l into a member of Ak produces an element of Ak+l, and removing
an odd cycle of length l from a member of Ak produces an element of Ak−l.

That is to say, a set X has this property if adding or removing odd cycles doesn’t affect
whether a permutation belongs in X. Notice that the set of square permutations is Odd
Cycle Invariant. In addition, quite trivially, the set of permutations with odd cycles only
also has this property.

Theorem 1 (Recurrence of Square Permutations). If an = |An| is the number of
permutations in X which have size n, and X is Odd Cycle Invariant then

a2n+1 = (2n + 1)a2n.

In particular, the number of square permutations follows this recurrence.
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Proof. We will show these three correspondences by strong induction on n:

ω2n+1(0) = a2n+1(1) (1)

ω2n+1(2k + 1) = a2n+1(2k + 3) (k ≥ 0) (2)∑
k

ω2n+1(2k) =
∑

k

a2n+1(2k) (k > 0) (3)

First Part. Recall that the elements of Ω2n+1(0) are those permutations where (2n + 1)
was inserted into an empty cycle, i.e., it became a new 1-cycle. So, every member of Ω2n+1(0)
is a member of A2n+1, and, in fact, a member of A2n+1(1), by definition. We biject elements
onto themselves, so obviously the two sets are counted by the same number.

Second Part. Here we assume the strong induction hypothesis, namely that the recurrence
is true for all previous values. We look at a permutation π ∈ Ω2n+1(2k +1) and its preimage
π′ ∈ a2n, and consider the cycle which contains the last element (it is of length 2k + 2). We
have

(
2n

2k+1

)
(2k + 1)! ways to choose the remainder of the cycle. Furthermore, by Odd Cycle

Invariance, the remainder of π′, and thus the remainder of π, are members of A2n−2k−1 (i.e.,
they are square). We can permute them in a2n−2k−1 ways. In all, we can select(

2n

2k + 1

)
(2k + 1)! a2n−2k−1

distinct members of Ω2n+1(2k + 1), and this number is equal to (2n + 1)a2n(2k + 1).

Now let us count A2n+1(2k + 3), the number of square permutations of 2n + 1 elements in
which the largest element appears in a cycle of length 2k + 3. We can choose the remaining
elements of this cycle in

(
2n

2k+2

)
(2k + 2)! ways, and we can permute the rest of the elements

into a square (because of Odd Cycle Invariance) of length 2n− 2k − 2. The total number is

a2n+1(2k + 3) =

(
2n

2k + 2

)
(2k + 2)! a2n−2k−2

=
(2n)!

(2k + 2)!(2n − 2k − 2)!
(2k + 2)!

a2n−2k−1

2n − 2k − 1

=
(2n)!

(2n − 2k − 1)!
a2n−2k−1

=
(2n)!

(2k + 1)!(2n − 2k − 1)!
(2k + 1)!a2n−2k−1

=

(
2n

2k + 1

)
(2k + 1)!a2n−2k−1

= |Ω2n+1(2k + 1)|
= (2n + 1)a2n(2k + 1),

and this part of the bijection is complete.
If the set we are counting has only elements with odd cycles, then the first two cases complete
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the proof (the third only governs inserting into even cycles). In particular, we have shown
the result for the set of all permutations with odd cycles, called B. This comes into use
later. A quick glance at the first few elements of bn = |Bn| follows:

i bi bi/bi−1

0 1
1 1 1
2 1
3 3 3
4 9
5 45 5
6 225
7 1575 7
8 11025
9 99225 9

We will use this recurrence of bn in the third part of the proof for the general case when
the set contains even cycles.

Third Part. Suppose that we have now inserted into an even cycle. We consider the
permutation as a product of even and odd cycles. Although ω2n+1(2k) = a2n+1(2k) for each
value of k (this is a stronger refinement of our result), we will use a different refinement of
a in our proof for convenience. That is to say, we will consider all the cases where the last
element is spliced into an even cycle inside a square permutation of size 2n. This set has
cardinality ∑

k

|Ω2n+1(2k)|.

We will then biject this set onto the set of square permutations of size 2n + 1 in which the
largest element appears in an even cycle. This set has cardinality∑

k

|A2n+1(2k)| =
∑

k

a2n+1(2k).

Suppose that the number of permutations containing only paired even cycles (that is, the
number of square permutations with only even cycles) and of length 2m is given by C2m.
Consider all the members of Ω2n+1(2k) but remove the most recently inserted element. What
we have left is just a member of A2n (square permutations) which contains some even cycles.
Let 2f be the total length of the even cycles which remain, and consider the squares which
contain exactly 2f elements in even cycles, for some fixed f . Call this set A∗

2n(2f). This is
just another, different, refinement of A.

The number of such squares is C2n times the number of choices we can make for the
permutation of the rest of the cycles. Since we have pulled out all the even cycles only the
odd ones remain. Let bn be the number of ways to permute k elements into odd cycles only.
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Then

|A∗
2n(2f)| =

(
2n

2f

)
C2fb2n−2f

and when we reinsert the last element, we have

2f

(
2n

2f

)
C2fb2n−2f

choices.
Now we count the elements on the other side. We can choose 2f−1 elements (in addition

to the largest element) to go inside our even cycles, and then C2f ways to permute them.
We can permute the remaining elements into odd cycles in b2n−2f+1 ways. So the number of
permutations of this type is (

2n

2f − 1

)
C2fb2n−2f+1.

These two quantities are equal after (We exploit the recurrence on bn, that is, b2n−2f+1 =
(2n − 2f + 1)b2n−2f .) When we sum over all f , the proof is complete.

This completes a purely combinatorial proof of the recurrence with an inductive bijection.
For the simpler case of analyzing bn, the sequence enumerating permutations with only
odd cycles, [3] gives a complicated iterative bijective algorithm. A similar approach could
probably also be used to solve this problem.

4 Patterns

In the proof of the recurrence, we have never used the fact that even cycles came in pairs.
Somehow, there was a fundamental independence of the odd cycles from even cycles. The
heart of this fact lies in the recurrence b2n(2n + 1) = b2n+1. In fact, we propose that this
recurrence is satisfied by any sequence which is Odd Cycle Invariant.

A few examples follow, all of which are Odd Cycle Invariant. The ith term of each column
is the number of permutations of total length i and following the given property:

1. rn = Number of permutations of length n.

2. sn = Number of permutations where the sum of the lengths of the even cycles is 6.

3. tn = Number of permutations where all even cycles have the same length.

4. un = Number of permutations where all even cycles take one of two possible lengths l
and k, and at least one such cycle with each length exist.

5. vn = Number of permutations where even cycles can only have length up to 4.
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i ri si ti ui vi

0 1 0 0 0 1
1 1 0 0 0 1
2 2 0 1 0 2
3 6 0 3 0 6
4 24 0 15 0 24
5 120 0 75 0 120
6 720 225 405 90 600
7 5040 1575 2835 630 4200
8 40320 6300 22155 7140 28560
9 362880 56700 199395 64260 257040

And it is evident that all of these sequences follow our recurrence. For any of these cases,
we can use the same proof as outlined above, replacing Cn with an appropriate squence.

5 Generating Functions

We now present the standard generating function proof, from [2], for the square permutation
sequence. From here, we see from another angle the reason why this recurrence occurs.

Definition 4 (Cycle Indicator). For any permutation π, let us define the cycle indicator
monomial to be

C(π) =
∏
p∈π

xp

as p ranges over all the cycle lengths of π, counting multiplicities.

For example,
C((1, 4, 5)(2, 3, 6)(7)) = x1x

2
3.

Now let Zn(x1, x2, . . . , xn) be the polynomial attained by summing the cycle indicator over
all permutations of length n:

Zn(x1, x2, . . . , xn) =
∑

π∈Sn

C(π).

For example,
Z3(x1, x2, x3) = x3

1 + 3x1x2 + 2x3
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because among the permutations of three elements, there are one of type (1, 1, 1), three of
type (2, 1) and one of type (3). It turns out the exponential generating function of Zn is

∞∑
n=0

Zn(x1, x2, . . . , xn)
tn

n!
= exp

(
∞∑

n=1

xn
tn

n

)
.

= exp

(
x1

t

1

)
exp

(
x2

t2

2

)
exp

(
x3

t3

3

)
· · ·

=

(
∞∑

n=0

xn
1 t

n

n!

)(
∞∑

n=0

xn
2 t

2n

2nn!

)(
∞∑

n=0

xn
3 t

3n

3nn!

)
· · · .

This generating function contributes one term for each permutation. What we would
really like to do is count one only for permutations which contain an even number of cycles
for every even cycle length. To do this for a given cycle length, we define the operator

Enf(x1, x2, . . . , xn, . . . ) =
1

2
(f(x1, x2, . . . , xn, . . . ) + f(x1, x2, . . . ,−xn, . . . )).

Any term which contains xn to an odd power will be eliminated, because it is an odd
function of xn. All other terms are unchanged. The exponential generating function we want
is given by ∑

an
tn

n!
= E2 E4 E6 · · · exp

(
x1

t

1

)
exp

(
x2

t2

2

)
exp

(
x3

t3

3

)
· · ·

when the right-hand side is evaluated at xi = 1 for all i. Since each operator is actually
associated with only one factor in the product, we have∑

an
tn

n!
= exp

(
x1

t

1

)(
E2 exp

(
x2

t2

2

))
exp

(
x3

t3

3

)(
E4 exp

(
x4

t4

4

))
· · ·

= exp

(
x1

t

1

)
exp

(
x3

t

3

)
· · · cosh

(
x2

t2

2

)
cosh

(
x4

t4

4

)
· · ·

We then evaluate at xi:∑
an

tn

n!
= exp

(
t + t3/3 + t5/5 + · · ·

)∏
k≥1

cosh
x2k

2k

Consider the sum t + t3/3 + t5/5 + · · · . It is a power series which we can evaluate:

t + t3/3 + t5/5 + · · · = (t + t2/2 + t3/3 + t4/4 + t5/5 + · · · ) − (t2/2 + t4/4 + t6/6 + · · · )

= − log (1 − t) − 1

2
(− log (1 − t2))

= log

√
1 + t

1 − t
.

Plugging back into the original expression, we have∑
n≥0

an
tn

n!
=

√
1 + t

1 − t

∏
k≥1

cosh
x2k

2k
.
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The desired recursion is a direct consequence of the generating function’s composition.
However, we can generalize this proof to count other sequences. We start with the generating
function for all permutations pn:∑

n≥0

pn
tn

n!
=
∏
k≥1

exp

(
xk

tk

k

)
.

There exists some operator E which transforms the left side into
∑

n ≥ 0sn
xn

n!
, which is

the generating function of our sequence. We apply E to both sides, and now we get∑
n≥0

Sn
tn

n!
= E

(∏
k≥1

exp

(
xk

tk

k

))
.

However, we know that

E

(∏
k≥1

exp

(
xk

tk

k

))
= exp

(
x2i+1

t2i+1

2i + 1

)
E

( ∏
k≥1, k 6=2i+1

exp

(
xk

tk

k

))
.

by our property.
We then pull out all such terms, and we have:∑

n≥0

Sn
tn

n!
=
∏
i≥1

exp

(
x2i+1

t2i+1

2i + 1

)
E

(∏
i≥1

exp

(
x2i

t2i

2i

))
.

As we have shown before, we can convert the product of the terms involving odd powers

to
√

1+t
1−t

, and get: ∑
n≥0

Sn
tn

n!
=

√
1 + t

1 − t
E

(∏
i≥1

exp

(
x2i

t2i

2i

))
.

Now, we see an interesting property. We notice that G(t)/(1 + t) is an even function.
Therefore, we have G(t)/(1 + t) = G(−t)/(1 − t). We equate the coefficients of t2n+1:

s2n+1
t2n+1

(2n + 1)!
− s2n

t2n+1

(2n)!
= s2n+1

−t2n+1

(2n + 1)!
+ s2n

t2n+1

(2n)!

2s2n+1
t2n+1

(2n + 1)!
= 2s2n

t2n+1

(2n)!

s2n+1 = s2n(2n + 1)

which is our recurrence.

6 Conclusion

This interesting method of combinatorics may have a more general application, though at
the moment it seems difficult to quantify. We have shown that a certain recurrence satisfied
by certain sequences can reoccur in more complex sequences. It is also possible that such
recurrences share an inate pattern. Classification of these recurring recurrences may be of
future research interest.
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