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Abstract

It is known that in the Tower of Hanoi graphs there are at most two different shortest
paths between any fixed pair of vertices. A formula is given that counts, for a given
vertex v, the number of vertices u such that there are two shortest u,v-paths. The
formula is expressed in terms of Stern’s diatomic sequence b(n) (n > 0) and implies
that only for vertices of degree two this number is zero. Plane embeddings of the
Tower of Hanoi graphs are also presented that provide an explicit description of
b(n) as the number of elements of the sets of vertices of the Tower of Hanoi graphs
intersected by certain lines in the plane.
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1 Introduction

It is fascinating that the Tower of Hanoi (TH) still attracts the interest of mathematicians
120 years after its invention by the French number theorist Edouard Lucas (1842-1891).
This stems from the rich inherent mathematical structure of the problem which can be
described as follows. Three vertical pegs hold a certain number of discs of mutually
different diameters in such a way that no larger disc lies on a smaller one (divine rule).
A state obeying this divine rule is called regular. The topmost disc on a peg may be
moved to the top on another peg, provided that the divine rule is obeyed, i.e. if this
move leads from one regular state to another. In the original setting, all discs lie on
the same peg (this is a perfect state of the puzzle), and the task is to transfer them (in
the least possible number of moves) to a preassigned other peg. In trying to solve this
problem, called Problem 0 of the TH, one finds oneself readily in a situation where one
still has the goal in mind, but has lost the track from the initial configuration. Problem 1
is therefore to get from an arbitrary regular state to a perfect one. But then one can,
of course, also ask for a shortest path from a regular to another regular state, which is
called Problem 2. (This latter problem seems not to have been posed explicitly before
1976; cf. [33].)

For Problem 1, including Problem 0, it can easily be shown that the largest disc
moves at most once in a shortest path and that therefore, by induction, the shortest
path is uniquely determined (cf. [9, Theorem 3]). The assumption that the largest disc
moves only once also in the case of Problem 2, and therefore the uniqueness of the
shortest path, can be found in literature as late as about ten years ago, cf. [35]. On
the other hand, it was pointed out in the psychological literature by Klahr already in
1978 that uniqueness of the shortest path does not hold in some cases (cf. [15, p. 209]).
He shows this by looking at what is now called the Hanoi graph for three pegs (cf. [15,
Figure 7.3]). The latter was named so by Lu [24], but introduced much earlier by Scorer,
Grundy and Smith [31]. Hanoi graphs are an efficient mathematical model for the TH:
if the pegs are labelled 1, 2 and 3 and if n € N is the number if discs, the regular
states form the set of vertices {1,2,3}", and an edge is a legal move of one disc; here a
regular state is represented by r =ry...7, € {1,2,3}" with r; being the peg where disc
i (numbered from small to large) is currently lying. These graphs H,, can be constructed
recursively: H; is the complete graph on three vertices, and the step from n to n + 1
can be taken from Figure 1 which shows Hs.
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Figure 1: The Hanoi graph Hy



Clearly, solutions to instances of Problem 2 correspond to shortest paths between the
corresponding vertices in H,,. Already Hy shows non-uniqueness of shortest paths by
looking, e.g., at the pair (21, 12), so it is quite surprising that this fact had been over-
looked for such a long time. The two distinct optimal solutions differ by the number of
moves of the largest disc and in fact, by recourse to the graph Hj, Stone [36] remarked
in 1982 that in some cases the optimal solution requires two moves of the largest disc
(cf. also [16, p. 139]). A complete theory of Problem 2 was finally given by Lu [24], Hinz
[9, Section 1.3.0] and van Zanten [38]. However, the decision problem, if given a pair
of states the largest disc moves once or twice in a shortest path or if both alternatives
are optimal, had not been solved in a satisfactory way. Of course, it can be done by
calculating and comparing the lengths of both paths (cf. [11, Section 2.2]), but a recent
result of Romik [30] shows that one can do much better: the decision can be made by
a finite automaton after looking at the positions of only the 63/38 largest pairs of discs
on the average.

The relations between the TH, the Sierpinski triangle and Pascal’s arithmetical tri-
angle have been investigated in [10, 27, 35] with the astonishing conclusion that the
average distance on the Sierpinski gasket is 466/885 [6, 14]. Other recent results on
Hanoi graphs show that they are hamiltonian (cf. [17, Proposition 3], [13, Theorem 1])
and deal with planarity [13, Theorem 2] and error correcting codes [7, 18, 20].

The goal of the present paper is to take a closer look at those pairs of states where
the optimal solution is not unique. In Section 3 we present (Theorems 3.5 and 3.8)
a formula for the number of states connected to a fixed state by two optimal paths.
The formula in particular implies that only for perfect states this number is zero. Our
approach essentially uses labelings introduced in [17] for a two parametric generalization
of the Hanoi graphs. It is appealing that our enumerative results are expressed by means
of Stern’s diatomic sequence. (The relations between the TH and the so-called Stern-
Brocot array became evident from the work by Parisse [26, Proposition 1 of Section
2]), cf. also [12].) Moreover, for any non-negative integer n, we establish an explicit
bijection between the hyperbinary representations of n, and a certain set of vertices of
the Sierpinski graphs. These results are complemented by a geometrical interpretation
of Hanoi graphs in Section 4. More specifically, we construct plane embeddings of the
graphs H, in which the sets of vertices corresponding to the terms of Stern’s diatomic
sequence lie on parallel lines. This result may be viewed as a more precise rephrasing of
Carlitz’s results on Stern’s diatomic sequence and the binary Pascal triangle [4, 5].

2 Preliminaries

In this section we introduce the key concepts needed in our approach—the abovemen-
tioned labelings of Sierpinski graphs and Stern’s diatomic sequence.

Graphs S(n,k) were introduced in [17] as a two parametric generalization of the
Hanoi graphs and named Sierpiriski graphs in [18]. Their introduction was motivated
by topological studies of certain generalizations of the Sierpinski gasket [22, 23, 25]. For
our purposes we recall that for any n € N, the graph S, := S(n,3) is isomorphic to the



graph H,, (cf. [17, Theorem 2]) and is defined as follows. Its vertices are all strings of
length n over the alphabet {1,2,3}, vertices u = ujus...u, and v = vjvy...v, being
adjacent if and only if there exists an index h € {1,2,...,n} such that
(i) ug=wv,fort=1,...,h—1;
(ii) up # vn;
(iii) u; =wvp and vy = up, fort =h+1,...,n.

The graph Sy, together with the introduced labeling, is drawn in Fig. 2.
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Figure 2: The Sierpinski graph S4 and its labeling

The vertices of Sy, labeled 4i... 1, for ¢« = 1,2, 3, will be called ezxtreme vertices of S,
(for obvious reasons—see Fig. 2). Note that the extreme vertices of S,, are precisely the
vertices of degree 2. Moreover, these vertices correspond to the perfect states of the TH

with n disks.
Let
L i # 7,
Pi,j:{ 0; i =j.
(The symbol p typographically resembles Kronecker’s delta symbol put upside down.)
Set in addition ,
Pliiscjm = PidiPigs -+ Pijm

where the right-hand side term is a binary number, rhos representing its digits. The



following result given in [38] (and extended in [17] to all Sierpinski graphs S(n,k)) will
be used in the sequel.

Proposition 2.1 Let ujus...u, be a vertexr of Sy,. Then

.. S\ 7
d(urug .. U, % 1) = Pyluy -

|

Stern’s diatomic sequence b(n) is defined recursively by b(0) = 0, b(1) = 1, b(2n) =
b(n) and b(2n + 1) = b(n) + b(n + 1), for n > 1. This sequence is A002487 in Sloane’s
online database of integer sequences [32].

Motivated by an idea of Eisenstein [8, p. 710], Stern [34, p. 194] considered an array,
each row of which is constructed by mediation from the previous oune, starting from two
initial values p and ¢. This so-called Stern-Brocot array (p,q)n, n € Ny (cf. [2]), in the
special case p = 1 = ¢, was later named Stern’s Diatomic Series by Lehmer [19]. De
Rham [29] seems to have been the first to extract the one-dimensional sequence b(n)
from this array (or rather the one with “atoms” p = 0 and ¢ = 1). (Unfortunately,
there is a misprint in the recurrence relation for b in [29, p. 95].) The connection
between the two is that the nth row of Stern’s diatomic series consists of the block of
terms b(2"),b(2" +1),...,b(2" ") of what we call Stern’s diatomic sequence. Among the
many other mathematicians in several different areas of mathematics, who later studied
properties of this sequence, let us just mention Carlitz [4, 5] and Lind [21]. A particularly
rich source of information on the history of the sequence and of new results is [37]. We
just add here that this sequence has been shown to be 2-regular (cf. [1, Example 7]) and
represents the 3rd binary partition function (cf. [28, Theorem 5.2]).

A hyperbinary representation of a non-negative integer n is a representation of n
as a sum of powers of 2, each power being used at most twice. We will employ the
notation (aiay...an); to describe the hyperbinary representation )", a;2™ 7 a; €
{0,1,2}. Let H(n) denote the set of all hyperbinary representations of n, where any
two representations of the same integer differing only in zeros on the left-hand side are
identified. For instance, (1)) is the same representation of 1 as (01)fy. It is well-known,
cf. [3], that b(n) counts the number of hyperbinary representations of n — 1. In fact, it
is not difficult to see that this is indeed the case: the recursive formulas are established
by noting that when z = (a1a2. .. am)p] is odd, then a,, must be 1, and if z is even, a,
may be 0 or 2, but not 1. Hence:

Theorem 2.2 For any n € N, b(n) = |[H(n —1)|. O

For an n digit binary number b = biby...by, b € {0,1}, we will write b for the
complementary binary number, that is, b = b1by ... b,, where b; = 1 — b;. For instance,
if b = 0001101, then b = 1110010. Clearly, b + b = 2" — 1, which we state as a lemma

for further reference.

Lemma 2.3 Let b be an n digit binary number. Then b+b=2" — 1. O



3 Stern’s diatomic sequence and Hanoi graphs

In [17, Theorem 6] it has been shown that in Sierpinski graphs S(n, k) there are at most
two shortest paths between any two vertices of S(n, k), so in particular this holds for
the graphs S, and H, (cf. also [9, Theorem 4]). We are going to study those pairs of
vertices in S,, for which two different shortest paths indeed exist. For v € .S, set

X(v) ={v' €8, | there exist two shortest v,v" — paths}.

(Here and throughout, v € G stands for v € V(G) for a graph G.)
For ¢« = 1,2,3 let S}, be the subgraph of S, induced by the vertices of the form
1UU3 . .. Uy. For a vertex v = vivous...v, of S, and 7 # j we also set

dij (U) = PZ - P52U3...Un )

V203 ...Un,

that is, if v € S¥ (note that k is uniquely determined by v), then, since S¥ is obviously
isomorphic to S, 1,

dij(v) = d(vovs ... vy, 1% ... %) —d(vovs ... vy, 55 ... 7);

cf. Fig. 3. Note that d;;j(v) < 2"~! —1; cf. [24, Lemma 2].
We wish to determine, for a given vertex v, the size of X (v) and give an explicit
description of it. For this purpose we prove the following lemma.

Lemma 3.1 Let v € S, and {i,5,k} = {1,2,3} such that djz(v) > 0. Then

{U'EX(U) ‘ v'gész}: {’UIES%

dig,(v') = 2" — djk(v)} :
Moreover, if dji(v) = 0, then these sets are empty.

Proof. Let v' € S, with £ := v] # i and such that there are two shortest v, v'-paths.
The length of the shortest v, v'-path that contains the edge (if... ¢, 4i...1) is by Propo-
sition 2.1
’ .
PU2’03...’Un +1+ ,Pzzzéug

!
s Uy )

while the shortest path through the edges (im...m,mi...i) and (mf...4,¢m...m)
with {i,4,m} = {1,2,3} is of length

-1
,Pzrjrglvy,...vn + 1 + (271, - 1) + 1 + ,chr’;ué

LU
Since the above two lengths are equal, we have
Pi __ pm _ 2n—1 o (73‘ —pm )
vhvl...ul, vhvh.vl, T V2V3...Un V2V3...Un )

in other words, d;,,(v') = 2" 1 — dy, (v).
Suppose £ = k, so that m = j. Then d;;(v') = 2"t —dy;(v) = 2" 1 + djp(v) > 2" 1,
which contradicts d;;(v’) < 2"~ — 1. Therefore £ = j and m = k, hence v € S, and



11...1 12..2 2]...1 22..2

Figure 3: The meaning of the functions d;;

dir,(v') = 2"t — dj,(v). This proves that the left-hand side set is included in the right-
hand side set. The other inclusion is obtained by reversing the order of the argument
from the first paragraph of the proof.

Suppose that djz(v) = 0. Then d;x(v') = 2"7!, which contradicts the fact that
dix(v') < 2"~ — 1. Hence the set {v' € X(v) | v' ¢ S’} is empty. O

In order to write down an explicit description of the set X (v), we introduce the
following notation. For n € N, k € {0,...,n} and v € S,,, let v*¥ = vy ... v} (€ S}) and
% = vpyi1...vn (€ Sp_p). Here we consider v° to be the empty string. Furthermore,
we define mappings ¢ and d as follows. For an arbitrary string z let first(z) be the first
symbol of z, that is, if x = x125. .. 2, then first(z) = 1. Now, for any n > 1 and any

v € Sy, let ¢ and j be such that {¢, 7, first(v)} = {1,2,3}. Then set

d(v) = |dij(v)] .

Since |d;;(v)| = |d;i(v)], the function d is well-defined. For a vertex v € S,, and o =
V41 - - - Uy we consider d(7%) as a mapping on V(S,_x). Note that first(7%) = vpy1. We



also set

'i; dij(v) > 0,
tv) =19 7; dji(v) >0,
0; dij(v) =0.

Applying Lemma 3.1 to successive depths in S, we arrive at:

Theorem 3.2 Let v be a vertex of S,,. Then

n—2

X(v) = U {uESn

k=0

u = o 0@ T, d(@k) + d(@) = Qn—k—l} .
O

Note that whenever £(T*) = 0, the string v* £(7*) @**! does not represent a vertex
of S, and hence it does not belong to X (v) in accordance with Lemma 3.1 (that is,
£(v*) = 0 means d;;(v*) = 0, and by Lemma 3.1 it implies X (v*) = 0). In addition, as
soon as (%) = 0 for some k, we also have £(7*) = 0 for all s > k.

The following lemma will establish the relation between hyperbinary representations
and the vertices of Sierpinski graphs.

Lemma 3.3 Let k € Z with |k| < 2" and z,y € {1,2,3}, z # y. Then there is a
bijection between the set

H(2n —1- |k|) = {(a1a2 .. .an)m ‘ ZaiZ"’i = 2” —1- |I€|} )
1=1
and the set
Ax,y(k) ={veS, | P —P!=k}.

Proof. Using the symmetries of S, we may without loss of generality assume = 1 and
y = 2. Note that if (a1az...an ) = 2" —1—|k| with a; # 0, then 2" —1 > 2" —1— |k| >
a12™1 > 2m=1 From this it follows that 2 > 2™~1 +1 > 2™~! hence n > m — 1 and
finally n» > m. This remark justifies our use of hyperbinary numbers of fixed length n.
Of course, in (ajas. .. an)[g] one or more digits a;, as,... may equal 0.

Again by symmetry, we may assume k < 0. The bijection from H(2" — 1 + k) to
Aj 2(k) will be given by (ajasy. .. an)[g] = v = V0. ..0, With

Obviously, v € S,,. We claim that v € Ay (k). For this purpose we compute

PI]I- = Xn:pl,’viQTlii == Z 2”77: = Z 2”72_1_ Z 27177;
i=1

i:a; £0 ta; =1 tia; =2



and N
PE=) 2= Y
1=1 i:ai:2

Combining these two equalities we get

n
1=1

iia; =1 iia; =2

By Lemma 2.3, we have P2 = 2" — 1 — P2, whence P! — P2 = k and the claim is proved.

To complete the proof we need to establish bijectivity of the mapping. As it is
obviously injective, it remains to show surjectivity. So let v = viva...v, € A1 2(k), that
is, Pl — P2 = k. Then set

0; V; = 1,
a; = ]-a v = 37
2; V; = 2.

Clearly, (ajas. .. an)[z] can be viewed as a hyperbinary representation of some number,
which is obviously mapped to v, and, moreover, using Lemma 2.3 again,

Xn:aZani — (Z 2n7i+ Z 2nz> + Z 21172'
=1

ia; =1 tia; =2 B:a; =2

= Pi+PI=2"—1+Pl—Pi=2"—1+k,
which completes the argument. O

In Fig. 4, the sets A 2(k), k = —15,—14,...,14,15 are given as the intersections of
V(S4) and the corresponding vertical lines. Since in the definition of these sets only the
intrinsic metric of S, has been used, it is quite unusual to observe such regularity with
respect to the geometry /metric of the plane in which our copy of Sy is embedded. We
will show later (in Theorem 4.1) that this behaviour is not accidental.

By Theorem 2.2, Lemma 3.3 may be rephrased as follows: for |k| < 2™: |A, (k)| =
b(2" — |k|). On the other hand, since H, is isomorphic to Sy, we have |Ay (k)| = 2, (k)
with the functions z,, defined in [9, p. 305] by

zn(k) ={re Hy, | d(r,1...1) —=d(r,2...2) = k}|.

So we also have
VneNy Vk e Ny, k <2": b(k) = 2z, (2" — k). (1)

This relationship has an interesting consequence: putting p = 2" — k with 2" < k <
2"F1 into the three-term recursion relation of [9, Lemma 2.0)], namely

Zn1(p) = 20 (2" = 1) 4 20 (1) + 20(2° + ),

we arrive at
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3331 3332

3312 3321
3133 3233

3131 3132 3231 3232
3113 3123 3213 3223
3111 3222
3112 3121 3122 3211 3212 3221
1333 2333
1331 /332 2331 2332
1313 1323 2313 2323
1311 1322 2311 2322
1312 1321 2312 2321
133 1233 2133 2233
131 1132 1231 1232 2131 2132 2231 2232

1113 1123 1213 1223 2113 2123 2213 2223

11 1112 1121 1122 1211 1212 1221 1222 2111 2112 2121 2122 2211 2212 2221 2222

k -15-14-13-12-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 101112131415
2" |k 12 3 45 67 8 9101112131415161514131211109 8 7 6 5 4 3 2 1

Figure 4: The sets Ay (k) in Sy, k = —15,—-14,...,0,...,14,15

Proposition 3.4 Vne Ny Vk € {2" +1,...,2"" 1} 1 b(k) = b(2" L — k) + b(k —27). O

Together with the two “atoms” b(0) = 0 and b(1) = 1, this can be chosen as an alternative
and more symmetric definition of Stern’s diatomic sequence.

Fig. 4 shows that the number of vertices of Sy belonging to the first 16 lines from the
left are indeed 1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1, i.e. b(1),b(2),...,b(16). In connection
with the abovementioned relation between the Hanoi graphs and (the odd entries in)
Pascal’s triangle, we refer to [10, Proposition 2].

Here is our main result.
Theorem 3.5 Let v be any vertex of Sy,. Then [{u € X (v) | u1 # v1}| = b(d(v)).

Proof. By symmetry we may assume that v; = 1 and dog(v) > 0. If do3(v) = 0, then
by Lemma 3.1, |[{u € X (v) | u1 # v1}| = |0] =0 = b(0).

10



If dog(v) > 0, applying Lemma 3.1 again, one gets

{ue X(v) |um #un} = {v'eX(v)[v ¢S}
= {Ul | v e S?L, d13(’0,) = 277'—1 — d23(v)}
= {UI | v’ € ST2L’ Pg’zué vl T Pz}’zvgvg = dgg(’l}) - 2n—1} .

Uy

Hence by Lemma 3.3,

{u € X() |ur #vi}[ = [H2"" =1+ (des(v) —2"7))]
= [H(daz(v) —1)|
= [H(d(v) = DI,
which completes the argument by Theorem 2.2. O

Corollary 3.6 If v is any vertex of Sy, that is not extreme, then
{ue X() |uy #vi1} #0.
In particular, X (v) # 0.

Proof. Let v be a vertex of S'; note that i is uniquely determined. Now, select j, k,
such that {4,7,k} = {1,2,3}. Since v # 4i...4, it follows that d;jz(v) # 0. Namely,
Proposition 2.1 implies that if d;;(v) = 0, then p;,, = pgo, for any £ =1,2,...,n. Then
vy = 1 for any £ (if vy = j or vy = k, then one of these p’s is 0, and the other 1). By
Theorem 3.5, it follows that |[{u € X (v) | u1 # v1}| > b(d(v)) = b(|d;x(v)|) > 0, hence
{u e X() | up v} #0. ]

This has an interesting interpretation in the TH.

Corollary 3.7 The perfect states of the Tower of Hanoi are the only reqular states s
such that for any other regular state t there is a unique shortest sequence of moves
transforming s to t.

Proof. Oune direction follows from Corollary 3.6 because extreme vertices correspond to
perfect states. The other direction is a consequence of [9, Theorem 3]. O

Applying 3.5 to successive depths in S,,, we arrive at:

Theorem 3.8 Letv € S,,. Then

11



As a final remark let us ask for the total number x,, of pairs of vertices in S, 11 that
are linked by two shortest paths. To start with those ordered pairs where in the model
of the TH the largest disc (number n + 1) i¢s moved during the transfer, we have to sum
the right-hand side in the formula of Theorem 3.5 for all six possible ordered pairs (3, )
with 7,7 € {1,2,3}, i # j, and all v as in the assumption of that theorem. The latter
amounts to summing b(x) over all possible values p of djj, namely from 1 to 2" — 1,
multiplied by the number of vertices with d;;(v) = p, which is Az ()| = b(2" — ). So,
making use of (?77), we get

2" —1
6 > b(w)b(2" — ) =6 > zu(2" — 1) za(p),
p=1 neN

which has been calculated in [9, Proposition 6i] to be equal to 6 (0% — ©™) /v/17 with
O = (5 + \/ﬁ) /2. Finally, if we want to take into account those pairs where the
largest disc is at rest, observing that there are three choices where it can lie, and keeping
on performing these steps, we arrive at

6 n—1 o o
Ty — ﬁkz_osk (@_*_k—@ik)

- 3 {ont (VIT+1) —2.3m VIT+ 077! (VIT-1)},
Vv,

the first few values being 0, 6, 48, 282, 1476, 7302, 35016, 164850, 767340, 3546366,

16315248, 74837802 for Sy to Sy,

4 Some special embeddings of graphs S, into R?

In this section we are going to show that it is not accidental that the sets A, ,(k) are
related to the lines in the plane in the way observed on Figure 4. Of course, an arbitrary
embedding of S, into the plane will not work, hence we first define specific embeddings
that will be used. These embeddings will provide an explicit description of b(:) as the
order of a set of vertices of S, intersected by a specific line in the plane.

The embeddings f, : V(S,) — R? of the graphs S, into the plane R? will be
defined inductively such that f,(11...1) = (=2" + 1,0), f,(22...2) = (2" — 1,0), and
fn(33...3) = (0,(2" — 1)yp) will hold for any n. We use the fixed positive number
yo in this construction in order to avoid writing v/3, which would appear if we would
restrict ourselves to equilateral triangles. Moreover, the notation also points out that
while proving results about Ay (k) only the axial symmetry with respect to the y-axis
will be needed.

The indices in f,, will be used only during the inductive construction—Ilater we will
use f for all of these functions.

The function f; : V(S;) — R2, defined by f1(1) = (=1,0), f1(2) = (1,0), and
f1(3) = (0,y0), is obviously an appropriate embedding of S; = K3, see Fig. 5.

12



y

13)
0.y

J) 1)
(-1,0) (1,0)

Figure 5: S7 embedded in R? as f1(S7)

Suppose that the embedding f,, : V(S,) — R?, satisfying f,(11...1) = (—=2"+1,0),
fn(22...2) = (2" —1,0), and f,(33...3) = (0, (2" — 1)yp), is given, see Fig. 6.

y

13..3)
(0,(2-1)y,)

fl...1) f2..2)
(-2"+1,0) (2"-1,0)

Figure 6: S,, embedded in R? as f,(S,)

Clearly, V(S,41) is the disjoint union of V(S ), V(S2,,) and V(S2,,), where
each of these sets induces a subgraph isomorphic to .S,,. We shall thus define f,, ;1 as f,
followed by a translation, chosen differently for each of these sets.

Let t(4p) : R? — R? be the following translation:

tap) (2, y) = (a,0) + (z,9).
Since t(,Qnyo)(—Qn + 1,0 ) ( gn+1 + 1,0), t(2n’0)(2n _ 1,0) _ (2n+1 _ 1’0)’ and
£(0,2n90) (0, (2" — 1)yo) = (0, (2" — 1)y), we define

t—onoy(fulut, .. un)); i=1,
fr1(i,ur, .. un) = t(2”,0)(fn(ula ceeyUn)); 1 =2,
t(0,2"y0)(fn(u1a cUn)); =3

By the choice of translations we have f, 1(11...1) = (=2""1 +1,0), f,11(22...2) =
(27t —1,0), and fry1(3...3) = (0,(2""1 — 1)yo. Also, it is easily calculated that for
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any 1 # j, fant1(ij...7) is as shown on Fig. 7. Note in addition that f,11(11...1),
frns1(13...3), fus1(3L...1), and f,+1(33...3) are collinear and so are f,1(22...2),

Sn1(23...3), far1(32...2), and fny1(33...3). Finally, fny1(Spi1), fus1(S24), and
fn+1(S;°; +1) are pairwise disjoint, and positioned in the plane as shown on Fig. 7.

y

f6..3).
0,(2""-1)y,)

£(32...2)
(2"-1,2"y,)
1(23..3)
(2",(2"-1)y,)

f31...1)
(-2'+1,2"y,)
1(13..3)
-2".(2"-1)yy)

£S,5) 1S,5)

fl...1) f12..2)1f21...1) 12..2)
-2""'+1,0) (-1,0)  (1,0) (2""-1,0)

Figure 7: S,;1 embedded in R? as f,.1(S,11)

For the next theorem we introduce the lines ¢, as £, = {k} xR. Recall that in Lemma
3.3 we have introduced the sets Ay ,(k) as those vertices of S, for which P¥ — P{ = k.
In the next result we consider A; »(k) as a set in f(S,,).

Theorem 4.1 For any n and any k,
Arp(k) = f(Sp) N Ly,
where Ay 2(k) = {f(v) | v € Sy, P} —P2 =k}

Proof. Note that the sets on both sides of the equation may be empty. In fact, from
geometric properties of f(S5,) and the lines ¢ (as well from Lemma 3.3) it follows that
the sets will be simultaneously empty precisely when |k| > 2".

The assertion is clear for n = 1, c¢f. Fig. 5. Suppose now that the statement holds
for S, n > 1.

14



In order to distinguish the sets Aj (k) defined in S,, and those defined in S, 11, we
will denote them by AT, (k), in the former, and by A?El(k), in the latter case. Then,
since for any u € .S,,,

ds, ., (lu,11... 1) —ds, ., (14,22...2) = ds, (u,1...1) — ds, (u,2...2) — 2",

we infer that 1u € A”H(k) if and only if u € A} ,(k+2"). Using this fact, the definition
of the embeddings f, and the way how translations act on the family of lines ¢, we can
compute as follows:

v e ATSH (k) N F(Shp) t g ) (v) € AT 5(k +27)

(_2n70)

t gm0y (0) € f(Sn) N bz

v € t(_on 0)(f(Sn) N Llgy2n)

v € t(_on 0)(f(Sn)) Nt_an 0)(Ler2n)
Ve f( n+1) N gk

tot e

Hence we have shown that

ATSH(R) N f(Spi1) = f(Sni) Nl (2)
The proof of

ATSHR) N f(Sni1) = F(Sain) N (3)
is analogous. To prove that

ATEHR) N F(Sni1) = F(Snin) Nl (4)

holds as well, note first that for any v € S,
ds, ., (3u,11...1) —ds, ., (3u,22...2) = dg, (u,1...1) — dsg, (u,2...2).
In other words, 3u € A”H(k) if and only if u € A} ,(k). Now we have:

vEAE N F(Sh) & Ll (t) € Alalh)
= t(02ny0()€f( )mek
& v € tg2nye) (f(Sn) N L)
& V€ to2ny) (f(Sn)) Nto,2nye) (Uk)
< vE f( n—l—l) N &g

Combining (2), (3), and (4), we can conclude the proof as follows:

AR () = Afy (k)0 f(Sn)
= A0 (f(S0) VS (Sh00) U 1 (S50)
= (AT W N F(s)) U (AT ) N F(S2,0)) U (ATE ) N £(S540))
= (f(Sper) k) U (f(Shi1) N o) U (f(S3+1)ﬂ£k)
= (f(51+1)uf( +1)Uf n+1))m€k

= f(Sn+1) N 4.
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We have formulated Theorem 4.1 for Aq o(k), but from the symmetry it is clear that
an analogous conclusion holds for any A, ,(k) with = # y.

Corollary 4.2 For anyn and any 1 =1,2,...,2",
b(i) = |f(Sn) N¥li—on].

Proof. Let ¢+ — 2" = k. Then k is in the range —2" + 1 < k < 0, hence Lemma 3.3 is
applicable. By Lemma 3.3, b(i) = |H(i — 1)| = |H(2" — 1 + k)| = |A12(k)|. But then it
follows by Theorem 4.1 that |A; o(k)| = |f(Sn) NLk| = |f(Sn) N&i—on|. O

This can be seen on Fig. 4, where the intersections of Sy with the lines =z = k,
k= —15,—14,...,0 have b(1), b(2), ...b(16) points, respectively. Note that this copy of
Sy is already realized as an f(S4).
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