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1. Introduction

Consider the wheel graph Wn of n
�

1 vertices.

� W10

The number cn of spanning trees in Wn can be computed by distinguishing the number of edges of the spanning tree
incident to the central vertex of the wheel, and counting the spanning forests of the necklace graph remaining from the
spanning tree in Wn after removing the central vertex. This was carried out in [My, p. 469–470]. The resulting sequence
is 1 5 16 45 121 ����� and can be expressed by the Lucas numbers Ln given by L1

� 2, L2
� 1 and Ln

� Ln � 1
�

Ln � 2 for
n � 2; the relation is cn

� L2n � 2. Another occurrence of this sequence is in [Re] as the number of certain unimodular
matrices. See also [My2] and [Sl, sequence 004146].

An alternative expression of cn (whose equivalence to the above one can be shown by elementary generating series
arguments, for example) is

cn
� F2n

�
2

n � 1

∑
i 	 1

F2i 
 (1)

�
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with Fi denoting the Fibonacci numbers (defined by F1
� 1, F2

� 1 and Fn
� Fn � 1

�
Fn � 2 for n � 2).

A closer look on the numbers cn reveals that for odd n, cn is a square. Although there have been, in particular recently,
many related results, e. g. [Ch, DF, Du, Du2, Es, MD, Mr], I did not find an explicit statement of this observation.
Nonetheless, it is suggestive that this phenomenon should not be the result of an accidental coincidence, and indeed a
combinatorial explanation of it is possible by writing down the explicit formula for Ln

Ln
�
�

1
���

5
2 � n � 1

�
�

1 �
�

5
2 � n � 1

� (2)

However, the same phenomenon occurs with (the odd index members of) some closely related sequences like

c �n � cn
�

F2
n

�
2F2n and c � �n � cn

�
4F2

n
�

4F2n 
 (3)

where it is less straightforward to come by.

The aim of this paper is, inter alia, to give an explanation of this phenomenon in terms of knot theory (showing how
to find further such sequences and prove their squareness in a much easier and more elegant way than via the naive
arithmetical approach). It turns out, that the numbers cn occur as determinants of some (alternating 3-braid) knots and
links.

If ∆ L denotes the (1-variable) Alexander polynomial of a link L � � S3 [Al], then det � L � �
		 ∆ L � � 1 � 		 is the order of
the homology group H1 � DL � (over � ) of the double branched DL cover of S3 over L (or 0 if this group is infinite) and
carries the name “determinant” because of its expression (up to sign) as the determinant of a Seifert [Ro, p. 213] or
Goeritz [GL] matrix. This group carries much interesting information on the link (in particular unknotting number
estimates [We], sliceness [Ro] and chirality information [HK, St]).

In [St4] we initiated the investigation of the question how much the coefficients of the various link polynomials can
grow on knots and links of given number of crossings, and showed how via the Kauffman bracket [Ka2] the problem
for the Jones polynomial is equivalent to this of the determinant. We also found that the maximum will be realized by
alternating knots/links. The quest for better estimates of this maximum and the properties of the links attaining it led
to consider the above mentioned 3-braid links, for which the determinant could be calculated by the method of Krebes
[Kr], giving the sequence cn, and the squareness property is a consequence of work of Hartley and Kawauchi [HK].

Another, although unrelated, occurence of wheels in knot theory is explored in [BGRT].

2. The determinant of alternating diagrams

Via the relation ∆ � � 1 � � V � � 1 � to the Jones polynomial (see [J2, � 12]) the determinant provides a bridge between
the classical Alexander polynomial and its modern successors [BLM, H, Ka, J], whose nature is rather combinatorial,
and it is one of the little topologically understandable information encoded in these invariants. On the other hand, this
opens combinatorial approaches for calculating the determinant.

One such approach, which is particularly nice for alternating diagrams, was given by Krebes [Kr] using the Kauffman
bracket/state model for the Jones polynomial.

If D is an alternating link diagram, then consider D̂ �� 2 , the (image of) the associated immersed plane curve(s). Then
det � D � is equal to the number of ways to splice the crossings (self-intersections) of D̂

� � or 


so that the resulting collection of disjoint circles has only one component.

In [St4], we showed via the skein relation for the Jones polynomial that for a diagram D of c � D � crossings		 V � D � 		 1 : � ∑
2k ��� 		��V � D ��� tk

		�� 3c � D � � 1 �

Some experiments reveiled that this bound is not particularly sharp.

The first observation towards an improvement is that using Krebes’s approach, we have
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Lemma 2.1 With the above notation, 		 V � D � 		 1 � 2c � D � � 1 �

Proof. Let D � be the alternating diagram obtained from D by changing crossings. Then by Kauffman’s bracket, we
have �

V � D � � � det � D � �
If we resolve any c � D � � � 1 crossings in D � in some arbitrary way, then for the last one there is at most one splitting so
as the circle picture to have only one component, so that the result follows. �
Although this lemma already gives a sensible improvement of the previous estimate, we can push it even a little further.

Theorem 2.1

1) There exists a constant C � 0 such that for any link diagram D of c � D � crossings

det � D � � C � δc � D � 
 (4)

where δ � 1 � 83929 is the inverse of

δ � 1 � �
1
3 �

2

3 � 17
�

3
�

33 � 1 � 3
� � 17

�
3
�

33 � 1 � 3

3
� 0 � 543689 


the real positive zero of f � x � � x3 �
x2 �

x � 1.

2) If D is an arborescent diagram, then
det � D � � Fc � D ��� 1 
 (5)

and the inequality is sharp (that is, there are relevant diagrams for which equality holds).

Proof. We start by the second part. Let

da
n : � max 	 det � D � : D arborescent of n crossings 


An arborescent diagram always has a clusp

whose resolution preserves arborescency. When splicing one of the crossings in the clusp, one of the two resulting
diagrams has a kink, so that only one of the splicing of the second crossing can give a circle picture with only one
component.

Thus
da

n � da
n � 1

�
da

n � 2 


which, together with the trivial correctness for c � D � � 1 
 2 by induction establishes the inequality (5). The other
inequality follows from considering the rational links Ln

� C � 1 
 1 
 ����� 
 1� �� �
n times

� (here we use Conway’s notation [Co]). To

see that det � Ln � � Fn � 1 is an easy calculation with iterated fractions.

The argument for the first part is analogous. Let1

d∞
n : � max 	 det � D � : D link diagram of n crossings 


Then either D has a clusp, or a triangle

(6)

1The strange superscript is used for conformity with notation which will be introduced later.
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Then the above argument modifies to show that

d∞
n � d∞

n � 1
�

d∞
n � 2

�
d∞

n � 3 � n � 2 � 
 (7)

and thus d∞
n can be estimated by (properly scaled) Tribonacci numbers. �

Remark 2.1

1) We have the explicit expression

Fn
� 1�

5

� �
1
���

5
2 � n

�

�
1 �

�
5

2 � n �

 (8)

so that for arborescent diagrams (4) holds with the smaller base
�

5
�

1
2

� 1 � 61803 instead of δ � 1 � 83929.

2) The constant C in (4), the way that it comes from the Tribonacci number estimate, can be certainly effectively
calculated, but it does not appear appropriate to do so. The standard way is to apply partial fraction decompo-
sition to the generating (rational) function, obtaining a rather nasty expression involving the real and imaginary
parts of the zeros of the denominator polynomial, which in the case of a cubic are alredy messy enough. More-
over, C can be successively improved by noting that (7) will hardly be sharp in general. Writing down the first
values of d∞

n we get
n 0 1 2 3 4 5 6

d∞
n 1 1 2 3 5 8 16

We see that (7) is sharp for n � 6, but not for n � 6 (because a diagram of n � 6 crossings has a clusp, so that
we have the simplified recursion d∞

n � d∞
n � 1

�
d∞

n � 2), and it will certainly not be for high n. Thus one can start
the iteration on the right of (7) with higher and higher values of n and smaller initial data, obtaining a sequence
of constants C with decreasing numerical value but increasing arithmetical complexity . . . However, it is worth
remarking that, because of connected sums, in every case C � 1 must do the job.

Again it appears appropriate to make an experiment how good the bound is compared to the actual values of dn. In
[St4, � 3] we replaced c � D � by spanV � D � � 1 giving an inelucidative picture dominated by non-alternating knots. Thus
here we consider only alternating knots and link of given crossing number.

For what follows it will be helpful to make some definitions.

Definition 2.1 Let S �� . Then define

dS
n

� max 	 det � D � : n � D ��� S 
 c � D � � n 
 


where n � D � is the number of components of D, and let KS
n be a link attaining the maximum. Set K i

n : � K � i �n and

di
n : � d � i �n , K∞

n : � K 	n , d∞
n : � d 	n , Kn : � K1

n , dn : � d1
n .

This definition already contains a question.

Question 2.1 Is KS
n unique for all S and n?

In all special cases I checked it was so. However, it is not clear in general. For what follows let us avoid any possible
ambiguity by choosing one fixed maximizing link for each n and S. In any case we point out the following important
fact remarked in [St4].

Theorem 2.2 KS
n is alternating for each n and S.
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ncr kid det

fibered

cluspf

flypef achir

invert σ

albraid

bind

3 1 3 ✔ ✔ ✔ 2 ✔ 2
4 1 5 ✔ ✔

���
� ✔ 0 ✔ 3

5 2 7 ✔ ✔ 2 3
6 3 13 ✔ ✔

���
� ✔ 0 ✔ 3

7 7 21 ✔ ✔ 0 ✔ 4
8 18 45 ✔ ✔ ✔

���
� ✔ 0 ✔ 3

9 40 75 ✔ ✔ ✔ ✔ 2 ✔ 4
10 123 121 ✔ ✔ ✔

���
� ✔ 0 ✔ 3

11 266 209 ✔ ✔ ✔ ✔ 0 ✔ 4
12 868 377 ✔ ✔ ✔ � 0 5
13 3478 663 ✔ ✔ ✔ ✔ 2 ✔ 4
14 17895 1145 ✔ ✔ ✔ � 0 ✔ 5
15 82477 2037 ✔ ✔ ✔ ✔ 0 ✔ 4
16 361172 3581 ✔ ✔ ✔ � 0 ✔ 5

(9)

Table 1: The knots Kn for n � 16 and some of their data (from left to right): crossing
number, knot identifier, determinant, fiberedness, clusp-freeness, flype-freeness, achirality,
invertibility, signature, existence of alternating braid representation, braid index.

As tabulation (up to crossing numbers sufficing to give some more concrete picture) are available only for knots, we
made a more serious calculation only for S � 	 1 
 . The knots Kn for n � 16 reveal many similarities and are listed in
table 1, together with the indication of (lack of) some specific properties and, beside their determinants dn, some other
classical invariants (the genera are not included because their behaviour will later be clarified). The last 6 knots, which
are not given in Rolfsen’s tables [Ro, appendix], are drawn on figure 1. They are numbered according to the tables in
[HT].

The meaning of the properties “flype-free” and “clusp-free” is as follows (for the definition of flypes, see [MT]).

Definition 2.2 A knot or link is called flype-free, if there is no essential flype applicable on its alternating diagram,
that is, by [MT], it has only one alternating diagram (modulo moves in S2).

Definition 2.3 A knot or link is called clusp-free, if there is no (possibly trivial) sequence of flypes making any of its
alternating diagrams to have a clusp.

The table reveals some striking coincidences and leads to some (more or less justifiable) conjectures (we defer the
discussion of the braid index to the end of the paper, because braids will be considered in more detail subsequently).

Conjecture 2.1

1) Kn is fibered for n �� 5.

2) Kn is clusp-free for n � 8

3) Kn is flype-free for n �� 7.

4) Kn is invertible for odd n and � achiral for even n.

5) σ � Kn � � 	 � 2 
 0 
 2 
 .

6) Kn is (the closure of) an alternating braid except for n � 5 
 12.
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11266 12868 133478

1417895 1582477 16361172

Figure 1: The knots of 11 to 16 crossings with maximal determinant.

7) Kn is prime.

8) Kn is unique.

Although sufficient experimental data is not available for links, it appears that similar phenomena occur there as well.
In the following we start the investigation of such phenomena – flype-freeness, clusp-freeness and primality, and give
some relations between properties of dn and such of Kn. The most unconditional statement in this regard we can prove
is

Theorem 2.3 Let S � 	 1 
 or S � ∞. Then KS
n is clusp-free for infinitely many values of n. In fact, every interval� x 
 x

�
81 � contains at least one such n.

The proof of this fact initiates from some weaker properties of Kn following from such of dn.

Proposition 2.1

a) If dn � max � 3dn � 2 
 dn � 1
�

2dn � 3 � , then Kn is clusp-free.

b) If for S � 	 1 
 or S � ∞ we have dS
n � dS

l dS
n � l for any 1 � l � n � 1, then KS

n is prime.

c) If for S � ∞ we have dS
n � 3dS

l dS
n � l � 1 for any 1 � l � n � 2, then KS

n is flype-free.

d) If for S � ∞, dS
n � min � 3dS

n � 2 
 d
S
n � 1

�
2dS

n � 3 � , then KS
n is clusp-free.

Proof.
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a) Assume Kn has a clusp, i.e.

Kn
� T

Then splicing of the one crossings in the clusp gives a knot and a 2 component link.

T T

� a � � b �
(10)

Case 1. (a) is the knot and (b) is the (2 component) link. Then (a) contributes at most dn � 2 to dn and (b) has a
mixed crossing (unless it is split in which case it has zero determinant), whose two splicings give again knots,
so the contribution is at most 2dn � 2.

Case 2. (b) is the knot and (a) is the link. Then (b) contributes � dn � 1 and (a) contributes after splicing a mixed
crossing � 2dn � 3.

b) This is straightforward from the multiplicativity of the determinant under connected sum and the result of
Menasco [Me].

c) Assume that Kn is not flype-free, in particular a diagram of K � Kn is of the form

UT (11)

with c � T � 
 c � U � � 1. Let the two possible closures of a tangle be denoted as follows:

T � T T � T �

With this notation (11) can be written as
K � 1 
 T 
 U 


where ‘1’ is the 1-tangle and the comma operator denotes tangle sum in the Conway [Co] sense. Then by
Krebes’ calculus [Kr] for his invariant Kr we have

det � Kn �
�

� Kr � 1 
 T 
 U � �
�

1
1
�
�

det � T �
det � �T � � � det � U �

det � �U �
so that comparing the numerators we obtain

dn
� det � Kn � � � � det � T � � det � �T � � � det � �U � � det � �T � det � U � � 3dn � l � 1dl 


with l � c � T � . Here
�

is the “fraction” addition in ��� � � � p 
 q ��� � � p 
�� q � .
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d) Use the inequality dS
n � dS

n � 1
�

dS
n � 2 following from the clusp and

dS
n � 1 � 2dS

n � 2 


following from splicing any arbitrary crossing in an n � 1 crossing link diagram. �
We now come to the proof of theorem 2.3.

Proof of theorem 2.3. First let S � ∞. We use an indirect argument. Assume that K∞
n had a clusp for almost all n.

Then proposition 2.1.d) shows that � C :

d∞
n � C �

� �
5
�

1
2 � n

�

Thus it suffices to exhibit links Ln of n crossings with limsup
n � ∞

det � Ln � ��� 5 � 1
2 � � n � ∞. For this take the iterated

connected sum of some knot K with det � K � �
���

5 � 1
2 � c � K �

with itself. One such knot is K � 133478 with det � 663,

while
���

5 � 1
2 � 13 � 521.

Now let S � 	 1 
 . If for almost all n the knot Kn had a clusp, then

dn � max � 3dn � 2 
 dn � 1
�

2dn � 3 �
coming from proposition 2.1.a) shows dn � C � � 3

n
(the zero of 2x3 �

x � 1 on � 0 
 ∞ � close to 1� 2 is higher than 1��� 3,
so that the higher rate of growth comes from the first alternative in the maximum).

Thus again we need to show that there exist knots Kn with c � Kn � � n and

limsup
n � ∞

n
�

det � Kn � �
�

3 �

By taking again Kn
� #nK it suffices to find some K with det � K � � �

3
c � K �

. This, unfortunately, is not the case for
knots of � 16 crossings, and we need to look at more complicated examples. Luckily, however, the determinant can
be computed via the Seifert matrix in polynomial time. A package for this using braid representations was written by
S. Orevkov for MATHEMATICATM [Wo]. Using it I found the closed 81 crossing alternating 10-string braid

K � �
� � σ1σ3σ5σ7σ9σ � 1

2 σ � 1
4 σ � 1

6 σ � 1
8 � 9 � 


where det � K � � 24743382596536452489, and hence µK : � det � K � � 3 � c � K ��� 2 � 1 � 17503. �
D. Zagier remarked that the inequality da � b � dadb implies that lim

n � ∞
n� dn exists and that

lim
n � ∞

n
�

dn
� sup

K

c 	 K 
� det � K � 

where the supremum is taken over all (alternating) knots K. Thus we have

Corollary 2.1 �
3 � 81� 24743382596536452489 � 1 � 7355032 � lim

n � ∞
n� dn � δ . �

We should also point out that the lower bound
�

3 is of no special importance – in can be successively improved by
calculating the determinant of appropriate more and more complicated knots.

Question 2.2 Is lim
n � ∞

n� dn
� δ ?
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Remark 2.2 If we have a knot K of k crossings with µK � 1 and know dn for n � k, then we can obtain an explicit
(upper) estimate depending on ε � 0 of the smallest number n0 with n� dn � �

3
� ε for any n � n0, which – if

sufficiently small – can be used to prove the clusp-freeness of Kn for almost all n. There is little hope to be able to
proceed this way, though. Indeed µK � 1 occurs only for rather complicated knots, and it does not seem feasible to
calculate dn for n larger than about 20. For example, for

K � �
� � σ1σ3σ5σ7σ9σ � 1

2 σ � 1
4 σ � 1

6 σ � 1
8 � 7 � 


we have µK
� 0 � 98 ����� , although it already has crossing number 63.

Another property of the Ki follows from the work we have done in [St5], which rewards us with an easy proof of a
growth statement for the genera g � Kn � of the Kn.

Theorem 2.4 g � Kn � � ∞.

Proof. By [St5, theorem 3.1], det � K � grows only polynomially in c � K � for alternating knots K of fixed genus. �
3. Recursive sequences and alternating braids

Originally the examples K8
� 818 and K10

� 10123 suggested to consider for the proof of theorem 2.3 for S � 1 closer

the sequence of alternating 3-braids �� σ1σ � 1
2 � k. Although these braids closely fail in giving the desired examples, they

can be used to give an estimate for arbitrary alternating 3-braids and establish the connection to the (modified) Lucas
numbers mentioned in the introduction.

Lemma 3.1 det � �� σ1σ � 1
2 � k � � ck.

Proof. Consider the 2 uppermost crossings of � σ1σ � 1
2 � k, the ones from the last factor in the power.

Splicing the uppermost one as gives the rational knot C � 1 
 1 
 ����� 
 1� �  �
2k � 1

� , whose determinant as we mentioned is F2n.

Splicing the uppermost crossing as and the second uppermost one as gives, after deleting the kink from the

lowermost crossing, a rational link C � 1 
 1 
 ����� 
 1� �� �
2k � 3

� with determinant F2k � 2. Finally, splicing both crossings as gives

� σ1σ � 1
2 � k � 1, and then the result follows by induction from (1). �

Corollary 3.1 If β is an alternating 3-braid, then det � β̂ � � � �
5 � 1
2 � c � β̂ �

, with the inequality in general sharp up to an

additive constant.
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Proof. Use that any β � B3, except for the ones in the lemma, have a clusp. Splicing one of the crossings in the
clusp, we obtain a 3-braid with one crossing less and a rational knot. The contribution of the rational knot of c � β̂ � � 2
crossings to det � β̂ � is estimated by theorem 2.1.2) to

1�
5

�
2�

5
�

1 � �
� �

5
�

1
2 � c � β̂ �

�
C (12)

for some fixed constant C, and this of the braid by induction on c � β̂ � by�
2�

5
�

1 � �
� �

5
�

1
2 � c � β̂ �

�

But
2�

5
�

1
� 1�

5

�
2�

5
�

1 � � 2�
5
� 1 
 (13)

so starting the induction for c � β̂ � large enough to gobble the C in (12) by the strict inequality in (13) and checking the
initial cases directly, one is done. �
The links of the form �� σ1σ � 1

2 � k are not new. They have been considered for a while, notably in [JP] (at least in the
knot case 3 � k). There it was observed that for odd k (for which the knots are also called “turks head knots”), the braid

�� σ1σ � 1
2 � k is of the form ββ, where β is obtained from β � Bn by the map σ � 1

i �� σ � 1
n � i, and hence �� σ1σ � 1

2 � k is strongly
�

achiral, i. e., admits an embedding into � 3 fixed by the (orientation-reversing) involution � x 
 y 
 z � �� � � x 
�� y 
�� z � ,
such that this involution additionally preserves the orientation of the knot/link. By the result of [HK] (stated and
proved only for knots but true by the same argument also for links1), such knots/links have as Alexander module a
double A

�
A, so that in particular the Alexander polynomial, and hence the determinant is a square. (Long [Lo] has

stronger shown that such knots are algebraically slice.) This, together with lemma 3.1, shows the statement alluded to
in the introduction.

Theorem 3.1 ck is a square number for k odd (hence so is the number of spanning trees in wheel graphs with an odd
number of spokes or the by 2 decreased Lucas number Ln with n � 2 mod 4). �
The fact that the odd index number knots are still at least achiral (in the usual, weak, sense), shows that by [St] cn

for n even is at least the sum of two squares. Unfortunately, contrarily to the result obtained for the odd index parity,
there seems no tool available to examine effectively the even index number case. However, the test of the prime
decomposition of cn leads to conjecture even more, namely that these numbers are of the form cn

� 5a2
n for n even,

and this can be indeed confirmed from the explicit formula for Ln (2). (This observation seems to fit into a more
general pattern conjecturally described at the end of this note.)

On the other hand, for odd k it is clear that now a similar procedure can be applied to more general braids. For
example applying the argument to ββ with β � σ1 � σ1σ � 1

2 � k and β � σ2
1 � σ1σ � 1

2 � k gives the property for c �n and c � �n in
(3). Considering ββ � � σl

1σ � l
2 � k gives a more general version of theorem 3.1.

Theorem 3.2 Let b0
� 0, b1

� 1 and bn
� bn � 2

�
lbn � 1. Then

l
�

2
k � 1

∑
i 	 1

b2i
�

b2k �
is a square for k odd. �
Considering 5-braids may give similar, however, less pleasant statements of this kind.

On the other hand, arithmetic results can have some knot theoretic consequences.
1except in the case, when the Alexander module is not completely torsion, which is, however, trivial, as then the Alexander polynomial vanishes
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Corollary 3.2 Any rational knot C � 1 
 1 
 ����� 
 1 � (“twist plat knot” [Ju]) is not algebraically slice.

Proof. Use the result of [Ch] that no odd Fibonacci number � 1 is a square. �
Remark 3.1

1) Of course the same argument shows that C � 1 
 1 
 ����� 
 1 � is not strongly
�

achiral, but this follows more generally
for any rational knot from the result of Hartley-Kawauchi as the 2-branched cover homology group H1 � DK � is
cyclic (and non-trivial), and hence not a double.

2) A similar property could be shown for the rational knots C � 3 
 1 
 ����� 
 1 � from the result on the Lucas numbers.

3) The knot-theoretic counterpart of the non-squareness of ck for even k is true also by different arguments. It was
remarked in [St3] how the work of Murasugi [Mu] on the Alexander polynomial of periodic knots implies that
the Alexander polynomial of any non-trivial knot (and analogously, link), which is the closure of the square of
some braid (here � σ1σ � 1

2 � k � 2), is not a square, so that the knot is not strongly
�

achiral (although it is weakly
�

achiral).

The 3-braids are the initial and most elegant member of a picture for more general braids that we describe now by a
theorem on the rate of growth of the determinant of braids of given strand number.

Theorem 3.3 If βi � Bn are alternating braids of fixed strand number.

1) Then λ � βi � : � limsup
n � ∞

c 	 βi 
�
det � �βi � � δ .

2) Moreover, if βi
� βi are powers of some fixed braid β, then λβ : � λ � βi � is an algebraic number of degree � Cn,

where Cn
� 1

n � 1 � 2n
n � is the n-th Catalan number.

Proof.

1) This is clearly a consequence of corollary 2.1.

2) Let βi be n-strand braids and SDn be the Kauffman algebra of [Ka, definition 3.5] with the special parameter
A � i � �

� 1 (so that a separate loop trivializes). It can be shown (see [Ka, theorem 4.3]) that SDn is (freely?)
generated by the Cn loop-free diagrams connecting a pair of n

�
n points on bottom and on top by n lines. The

dimension of SDn is therefore (at most) Cn. For example for n � 3 we have the following 5 elements:


 
 
 
 � (14)

The multiplication is given by stacking up and eventual killing of the resulting diagram if it has a loop. For
example � � 2 � 0 �

Let φβ be the linear operator

SDn � x
φβ� � � x

k

∏
j 	 1
� 1 �

si j � � SDn

with

si
�

i i � 1
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associated to β �
k

∏
j 	 1

σ � � 1 � i j

i j
� Bn.

It can be decomposed (at least over � ) into Eigenvalues λi and Jordan box spaces Vi. Fix a Jordan basis of
φβ (as it has integer coefficients in some rational basis of DSn, the Jordan basis can be chosen to lie in some
degree � Cn extension of � ) and let λ �1 
 ����� 
 λ �l be the Eigenvalues λi of φβ of maximal norm, whose Vi are not
completely killed by the � -linear extension of the map

DSn � T � � � det

��
T �� � � ��

Consider the Jordan decomposition of Id � 1 � DSn

�
l

∑
i 	 1

x �i �
x 
 x �i � Vλ �i � i0 : x �i0 �� 0 �

Then x �i contributes to det � �βn �
dimVλ �i
∑
j 	 1

a jPj � n � λ � ni
for some a j ��� (the coefficients of x �i in the Jordan basis of Vλ �i) and Pj � n ����� � n � with degPj � dimVλ � j .
Thus

det � �βn � � l �
∑
j 	 1

P̃j � n � λ � ni (15)

for some 1 � l � � l and 0 �� P̃j � x � �	� � n � (discard possible P̃j
� 0) with degP̃j � l

max
j 	 1

dimVλ � j . If we show now

limsup
n

�
det � �βn � �

�
λ �i � 


we are through, as λ �i is the root of a polynomial with rational coefficients of degree Cn.

If l � � 1 the claim is straightforward from (15) and for l � � 1 this follows from the lemma below by rescaling.

Lemma 3.2 Let λ1 
 ����� 
 λl � l � 1 � be distinct unit norm complex numbers and 	 a j 
 n 
 ∞
n 	 1 for j � 1 
 ����� 
 l be sequences

with
�
a j 
 n �

� ε � j 
 n and
a j 
 n � 1

a j 
 n � � � � �n � ∞ 1 �

Then the sequence sn : �
l

∑
j 	 1

a j 
 nλn
j does not converge (in particular, not to 0).

Proof. Assume sn � s for some s ��� . If

Mn : �

��
1 ����� 1

a1 � n � 1
a1 � n λ1 �����

al � n � 1
al � n λl

a1 � n � 2
a1 � n λ2

1 �����
al � n � 2

al � n λ2
l

...
. . .

...
a1 � n � l � 1

a1 � n λl � 1
1 ����� al � n � l � 1

al � n λl � 1
l

��������� 


then

Mn

�� a1 
 nλn
1

...
al 
 nλn

l

� �� � � �� s
...
s

� �� 
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0 0 0 1 0

0 0 1 0 1

0 1 0 0 1

1 0 0 0 0

0 1 1 0 0

Table 2: The table for the pairing ����� 3.

and Mn converge to a Vandermonde matrix, which is not singular, so that
� �
M � 1

n

� �
is bounded.

Therefore, in particular
� � a1 
 nλn

1 
 ����� 
 al 
 nλn
l � : n � n0 � must lie in some ε � -ball for n0 large enough. But

�
a j 
 n �

� ε
shows that these components stay outside of some neighborhood of the origin, and

ai 
 n � 1λn � 1
i

ai 
 nλn
i

� � λi �� 1

for some i gives a contradiction for ε � small enough. �
This completes the proof of theorem 3.3. �
4. Some more problems

As the paper attempts the investigation of a relatively new subject, it is not surprising that it opens many more questions
than it can answer. Hoping to whet the interest in further investigations, we conclude by mentioning some of these
problems.

The combination of both statements in theorem 3.3 also suggests that if λ is an Eigenvalue of φβ for some β, then�
λ
� � δc � β � . Although a dominating Eigenvalue of φβ may have a Jordan space killed by taking the determinant of the

usual braid closure, there will often be a (linear combination of) other closure(s) under which not the whole Jordan
space is killed (and then for these exotic closures the same argument will apply). The problem is whether indeed one
can always find such a closure.

Question 4.1 Define a pairing (or binary quadratic form) on DSn by

�
T1 
 T2 �

n

�
	���
��

1 if T
2

T 1

has one loop

0 else

Is � 
 � n non-degenerate?

Corollary 4.1 If � 
 � n is non-degenerate, then any Eigenvalue λ of φβ for any β � Bn has
�
λ
� � δc � β � . �

Example 4.1 � 
 � 3 is given by the table 2 which shows � 
 � 3 to be non-degenerate. This is by computer check also
true for n � 4 ����� 10. It is also an easy exercise to see that � T1 
 � � �� 0 if T1 is a single diagram, as one can always find
a diagram T2 with �T1T2

��� . However, the argument does not extend in an easy way to arbitrary linear combinations
of diagrams.
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A further problem is that apparently the estimates in theorem 3.3.1) and those of the Eigenvalues of φβ are not sharp.
This is related to the following conjecture:

Conjecture 4.1 Only finitely many Kn have the same braid index b � Kn � , or alternatively, liminf
n � ∞

b � Kn � � ∞.

Unfortunately, solving this conjecture appears to require unimaginable effort at the present state of the art. We should,
however, give some rough heuristical motivation for it (although it is far from a rigorous proof).

The reason is that the diagrams
�
βi for braids βi of fixed strand number have either clusps or triangle regions (6) with

bounded (minimal) distance � k � kl between two among them, kl depending only on the strand number l of the βi

(see [St2]; the distance is here the minimal number of intersections of a path from the one region to the other with the
plane curve of the diagram).

This means that, even in the case there is no clusp, the sequence of crossings to splice can be chosen so that we splice
the corners of a triangle, so that even in the case of

� �
after k steps we obtain a clusp. (This requires to show that there are paths of bounded length between triangles going
only through quadrangles.) Therefore, letting

�
dn : � max 	 det � D � : D is an n crossing diagram obtained by splicing crossings in a l-braid diagram 


and applying �
dn � �

dn � 1
� �

dn � 2
� �

dn � 3

recursively on each summand on the right, in depth k of the recursion we can in fact use the simpler formula
�
dn � ��

dn � � 1
� �

dn � � 2.

Thus if Tn denote the Tribonacci numbers,
�
dn � d̃n for a linearly recurrent sequence d̃n with

d̃n
�

k

∑
i 	 1

aid̃n � i 


and Tn
�

k

∑
i 	 1

a �iTn � i such that 0 � ai � a �i and ai � a �i for at least one i. Writing down the generating series of Tn and d̃n,

the denominator polynomials are f � x � � k

∑
i 	 1

aix
i � 1 and f1 � x � � k

∑
i 	 1

a �ixi � 1 resp. On the positive real line, f and f1

have unique zeros z f and z f1 , which are the unique zeros of minimal norm for these functions (use ai 
 a �i � 0 and apply
triangle inequality).

Now z � 1
f1

� limsup
n � ∞

n� Tn
� δ and z � 1

f
� limsup

n � ∞

n
�

d̃n show the result because f1 � x � � f � x � for x � 0, so that z f � z f1 .

Thus there will be a sequence 	 δl 
 with δl � δl � 1 � δ and δl � δ such that ‘δ’ in theorem 3.3.1) can be replaced by
‘δl’ for l-strand braids 	 βi 
 . This would imply the conjecture, under the (again strong and hard to verify) assumption
that the answer to question 2.2 is positive.

We conclude by the remark that, by writing out the endomorphisms φβ as matrices, for appropriate β we obtain
squareness properties for some linear combinations of entries of such matrices.

Example 4.2 Consider the matrix

A �

�� 1 18 18 24 12
0 13 0 18 0
0 0 25 0 18
0 18 0 25 0
0 0 18 0 13

� ����� �
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Then, writing Ak � � a � k �i 
 j � 5
i 
 j 	 1, we have that a � 2k � 1 �

1 
 4 �
a � 2k � 1 �

1 
 5 is always a square. This follows again from [HK], as AT

represents the endomorphism φβ for β � σ1σ � 2
2 σ1σ � 1

2 σ2
1σ � 1

2 in the basis (14) of DS3. Interestingly again a � 2k �
1 
 4 �

a � 2k �
1 
 5

is always of the form 10x2, although there is no knot-theoretical explanation of this fact.

The last example, together with some further experiments, leads to the following conjecture.

Conjecture 4.2 If β � � B3 is an alternating braid, and β � β � β � , then φβ Jordan-decomposes over the quadratic number

field � � � d � (or at least over � � � d 
 i � ), where d � det � �β2 � , and

�
det ���β2k � � d � � for all k � 0.

As TLn has an antiautomorphism (turn around by 180
�
), for β � β � β � , φβ is conjugate to its inverse, so that the

characteristic polynomial χ � φβ � of φβ is self-conjugate, i.e., χ � φβ � � x � �� χ � φβ � � x � 1 � (where
�� denotes equality up to

units in � � x 
 x � 1� ). However, χ � φβ � turns out to have (at least in all cases calculated in an experiment) some unexpected
properties.

For 3-braids the polynomial χ � φβ � had the form � x � 1 � P � x � 2 with a quadratic polynomial P, and in fact φβ decomposes
into Id1

� φ �β � φ �β (where Id1 is the 1-dimensional identity map) under a certain, but not plausible, choice of basis.

For 5-braids χ � φβ � � � x � 1 � 6P1 � x � 5P2 � x � 4 with P1 
 2 being self-conjugate polynomials of degree 4 with alternating
coefficients ( � Pi � x j � � Pi � x j � 1 � 0 for 0 � j � 4), which additionally seem related, as always �P1 � x � �P2 � x2

� �
2. For

example, for
β � � σ � 1

3 σ4σ � 1
1 σ2σ4σ � 1

1 σ � 1
3 σ2σ4σ � 1

3

(and β � β � β � ) we have

χ � φβ � � � x � 1 � 6 � 1 � 26166x
�

2297755x2 � 26166x3 �
x4 � 5 � 1 � 1533x

�
26168x2 � 1533x

�
x4 � 4 �

It is interesting to see what phenomena occur for more strands, but for 7-braids the dimension of TL7 is 429, and this
renders experiments rather difficult.

These phenomena motivate and merit some further investigations in the future.

Acknowledgements. I would like to thank to G. Cornelissen, K. Rebman and especially to D. Zagier for some helpful
remarks and discussions.
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