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Beyond Ghor there was a city. All its inhabitants were blind. A
king with his entourage arrived near by. He brought his army and
camped in the desert. He had a mighty elephant, which he used in
attack and to increase the people’s awe.

The populace became anxious to see the elephant, and some
sightless ones from among this blind community ran to find it. As
they did not even know the form or shape of the elephant they groped
sightlessly, gathering information by touching some part of it. Fach
thought he knew something, because he could feel a part.

When they returned to their fellow-citizens, eager groups clustered
around them. Fach of these was anxious to learn the truth from
those who were themselves astray. They asked about the form, the
shape of the elephant, and they listened to all they were told.

The man whose hand had reached an ear was asked about the
elephant’s nature. He said: “It is a large, rough thing, wide and
broad, like a rug.”

And the one who had felt the trunk said: “I have the real facts
about it. It is like a straight and hollow pipe, awful and destructive.”

The man who had felt its feet and legs said: “It is mighty and
firm, like a pillar.”

Mualana Jalaluddin Rumi (13th century) (from [34])

Abstract

The main theme of this article is that counting orbits of an infinite
permutation group on finite subsets or tuples is very closely related to
combinatorial enumeration; this point of view ties together various dis-
parate “stories”.



1 Two-graphs and even graphs

The first story originated with Neil Sloane, when he was compiling the first
edition of his dictionary of integer sequences [35]. He observed that certain
counting sequences appeared to agree.

The first sequence enumerates even graphs, those in which any vertex has
even valency (so that the graph is a disjoint union of Eulerian graphs). These
graphs were enumerated by Robinson [29] and Liskovec [18].

The second sequence counts switching classes of graphs. If T' is a graph on
the vertex set X, and Y is a subset of X, the result of switching I' with respect
to Y is obtained by deleting all edges between Y and its complement, putting in
all edges between Y and its complement which didn’t exist before, and leaving
the rest unaltered. Switching is an equivalence relation on the graphs with
vertex set X; the equivalence classes are called switching classes. This concept
was introduced by Seidel [30] for studying strongly regular graphs.

The final sequence counts two-graphs. A {wo-graph on a set X consists
of a set T of triples or 3-element subsets of X with the property that any 4-
element subset of 7 contains an even number of elements of 7. Two-graphs
were introduced by G. Higman in a construction of Conway’s third sporadic
group. The theory has been developed in many directions: Seidel has written
several surveys [31], [33], [32]. They also link several themes in combinatorics,
including equiangular lines in Euclidean space, and double covers of complete
graphs.

It was already known that switching classes and two-graphs are equinumer-
ous. There is a map from graphs on the set X to two-graphs on X, as follows:
the triples of the two-graph are all 3-sets which contain an odd number of edges
of the graph. Every two-graph is obtained in this way, and graphs I'; and I's
give the same two-graph if and only if they lie in the same switching class. So
there 1s a natural bijection from switching classes to two-graphs.

It was also known that switching classes and even graphs on an odd number
of vertices are equinumerous. (Any switching class on an odd number of ver-
tices contains a unique even graph, obtained by taking any graph in the class
and switching with respect to the set of vertices of odd degree.) But no such
correspondence exists if the number of vertices is even. Mallows and Sloane [21]
proved that the numbers were equal by deriving a formula for the number of
switching classes and observing that it coincides with the Robinson—Liskovec
formula for the number of even graphs.

The “right” explanation [6] actually shows that the classes are dual. Let X
be a set of n points, and V the set of all graphs on the vertex set X. Each
graph can be represented by a binary vector of length n(n — 1)/2 whose ones
give the positions of the edges. So V' is a vector space over GF(2) of dimension
n(n —1)/2. The addition in V' corresponds to taking the symmetric difference
of the edge sets of the two graphs. We consider two subsets of V:



e U, the set of complete bipartite graphs;
o WV, the set of even graphs.

It is easy to see that U is a subspace of V', spanned by the stars. Now a graph
is even if and only if it is orthogonal to all stars; so W = U+, and W is also a
subspace.

The cosets of U in V are precisely the switching classes of graphs. So V/U
is the set of switching classes. Since W = U+, this quotient V/U is isomorphic
to the dual space W* of W, not just as vector space, but as module for the
symmetric group on X. Now a group acting on a finite vector space has equally
many orbits on the space and on its dual, by Brauer’s lemma [4]; and the
orbits of the symmetric group are the isomorphism classes. So the numbers of
switching classes and even graphs are equal.

Recently, T noticed another feature, which may be related in some way to
this duality. As noted above, an even graph is the disjoint union of Eulerian
graphs. A similar-looking decomposition holds for two-graphs. We define a
relation ~ on the point set of a two-graph by the rule that  ~ y if and only if
either z = y or no triple contains  and y. From the definition of a two-graph,
it is easy to see that this is an equivalence relation, and is even a congruence,
that is, membership of a triple in T 1s unaffected if we replace some of its points
by equivalent ones. Thus, a two-graph is described by a partition of X, with no
structure on the parts of the partition, and the structure of a reduced two-graph
(one in which all ~-classes are singletons) on the set of parts. (By contrast,
for even graphs, we have an Eulerian graph on each part of the partition, and
no structure on the set of parts; this is, in some vague sense, “dual” to the
preceding.)

The numbers of Eulerian graphs and of reduced two-graphs on n points agree
for n < 4 but differ for n = 5.

2 Groups and counting

Let G be a permutation group on a set Q. Usually € will be infinite. The
group ( is said to be oligomorphic if the number of orbits of G on the set of
n-subsets of €2 is finite for every positive integer n. (More about the derivation
of this term below.) So every finite permutation group is oligomorphic. If G is
oligomorphic, we let f,, (G) (or just f,, if the group is clear) denote the number
of orbits of (G on n-sets.

Design theorists will recognise this set-up. Suppose that we want to con-
struct a ¢-design on Q with block size & admitting the group G. Let T3,...,T,
be the orbits on t-sets, and K1, ..., Ky the orbits on k-sets, where a = f;, b = f5.
Now we build a collapsed incidence matrix M = (m;;) of size a x b, where m;;
1s the number of k-sets in the jth orbit which contain a fixed t-set from the ith
orbit. Now the game is to select a subset of the columns of M such that the



submatrix has constant row sums; then the union of the corresponding orbits is
the block set of the design.

This doesn’t work if € is infinite, since the numbers m;; may be infinite.
However, collapsing the matrix the other way does make sense: let P = (p;;),
where p;; is the number of ¢-sets in the ¢th orbit which are contained in a fixed
k-set from the jth orbit. We will return to this later; but, unfortunately, I have
nothing more to say about constructing designs!

The concept which links this kind of orbit counting to combinatorial enu-
meration is that of a homogeneous relational structure. A relational structure
X on € consists of a number of relations on X of various arities. Thus, many of
our favourite structures (graphs, digraphs, tournaments, total or partial orders,
two-graphs) are relational. An induced substructure of a relational structure
on a subset of Q is obtained by simply taking the restrictions of all the rela-
tions to this subset. Now X is homogeneous if every isomorphism between finite
substructures of X can be extended to an automorphism of X.

The classical example of a homogeneous structure is the rational numbers
@ as ordered set. Given any two n-sets of rationals, arranged in increasing
order as a; < as < --- < a, and by < by < --- < b,, there is a unique
isomorphism between the substructures, taking a; to b; for i = 1,...,n. This
can be extended to an order-preserving map on all the rationals by “filling in”
the intervals (a;, a;41) with linear maps, and translating the two ends suitably.

Based on this example, Fraissé [13] gave a necessary and sufficient condition
for a class C of finite structures to be all the finite substructures of a countable
homogeneous structure. I will give only a brief description of Fraissé’s condition
here (it is discussed in detail in [7]). Tt is required that C is closed under iso-
morphism; closed under taking induced substructures; contains only countably
many structures up to isomorphism; and has the amalgamation property (which
asserts that, given two structures Bi, Bo € C with a common substructure A,
there is a structure C € C in which By and B can both be embedded, so that
their intersection is at least A). The first three conditions are usually obvious,
but the amalgamation property may require more effort to verify. Many famil-
iar classes of finite structures (graphs, tournaments, posets, triangle-free graphs,
two-graphs, . .. ) satisfy the condition, and many others (bipartite graphs, trees,

..) can be made to satisfy it after small modification. For example, graphs
with a fixed bipartition satisfy Fraissé’s conditions.

Now let X be a homogeneous structure, and C the class of its finite substruc-
tures. If G is the automorphism group of X, then G-orbits on n-sets correspond
to isomorphism classes of n-element structures in C (unlabelled substructures of
X). Moreover, given any permutation group on a countable set, it is possible to
construct a structure on which the group acts “homogeneously”. So the problem
of calculating the numbers f,(G) for oligomorphic groups G is identical to that
of enumerating unlabelled structures in a class satisfying Fraissé’s condition (a
Fraissé class, T will say for short).

The term “oligomorphic” is derived from “few shapes”, and is chosen to



express this relationship between the group orbits and the isomorphism classes
of structures (“shapes”) in a class with only finitely many of any given finite
size (“few”).

3 An inequality and a Ramsey problem

Because of the connection described in the last section, any general result on
orbit numbers for oligomorphic groups is a metatheorem about enumerating
structures in Fraissé classes. The most basic result of this kind is that the
numbers f,, are non-decreasing: f, < foy1.

This was proved for finite permutation groups by Livingstone and Wag-
ner [19], using character theory of the symmetric group. This result can be
translated into a proof using Block’s lemma together with the fact that the re-
duced incidence matrices defined in the last section have full rank provided that
|2] > t + k. As mentioned there, the matrix P is meaningful even when 2 is
infinite, and can be shown to have full rank, from which the inequality can be
deduced (takingt =n, k =n+1).

A second, completely different proof was found by Pouzet [25], based on
Ramsey’s Theorem. The essential ingredient can be stated as a Ramsey theorem
as follows:

Theorem 3.1 Suppose that t < k, and let the t-subsets of the infinite set Q) be
partitioned into finitely many classes T; (1 < i < a), all non-empty. For any k-
set U, let p;(U) denote the number of t-subsets of U in the class T;. Let P = (pi;)
be the matriz whose columns are the distinct vectors (p1(U), ..., pa(U))T which
occur. Then, after re-ordering rows and columns if necessary, the matric P
is upper triangular with non-zero diagonal (that is, p;; = 0 for i > j, while

pii 70).

Like all good Ramsey theorems, this one has a finite version as well: it holds
if Q is sufficiently large in terms of ¢, &k, a. Here the proof gives “sufficiently
large” as a vast, iterated Ramsey number; yet there is some evidence that the
result holds for sets of quite modest size. Nobody knows the true value of this
Ramsey function.

Note that the fact that the rows of P are linearly independent is a simple
consequence of the Ramsey theorem, and the inequality follows directly. (We
take the classes of {-sets to be the orbits of G. Now two k-sets giving rise to
different columns lie in different orbits, so fi 1s at least equal to the number of
distinct columns, which is at least the number f; of rows.)

Macpherson, in [20] and other papers, has proved some powerful results
about the rate of growth of the sequence (f,,(G)). For example, if GG is primitive
(that is, preserves no non-trivial equivalence relation), then either f,(G) =1
for all n, or the sequence grows at least exponentially.



4 Direct and wreath products

Next we turn to two methods of constructing new groups from old. If our
groups are automorphism groups of homogeneous structures, then these two
constructions translate into operations on the finite substructures, and hence
on the sequences enumerating them. These operations are quite general, and do
not depend on having a group around. (This point is the heart of the philosophy
of these notes. In fact, a combinatorial setting more general than group orbits
has been developed by A. Joyal [16] and his school, under the name species.
This is very close in spirit to what I am doing here.)

The operations on sequences can often be expressed concisely in terms of
their generating functions. Accordingly, if G is oligomorphic, we let

=3 fulG)"
n=0

(Note that fo(G) = 1, since there is a unique empty set.)

First, let’s have a couple of groups to feed into the constructions. Let S de-
note the symmetric group on an infinite set, and A the group of order-preserving
permutations of the rational numbers. Then f,(S) = f,,(A) = 1 for all n. (This
is clear for S, and follows for A from our proof of the homogeneity of Q.) Hence
fs(t) = fa(t) = 1/(1 —t). The Fraissé class corresponding to S consists of
finite sets without any additional structure; that for A consists of finite totally
ordered sets. In each case, there is just one object of each size n.

Let H be a permutation group on a set I', and K a permutation group on
A. The direct product H x K (the set of all ordered pairs (h, k) with A € H and
k € K, with pointwise operations) acts on the disjoint union of the sets T' and
A, where the first component of a pair acts on I' and the second component
acts on A. Now a finite subset of I'U A has the form I'g U Ag, where I'g and Ag
are finite subsets of I' and A respectively; two such sets lie in the same orbit
of H x K if and only if their intersections with I' lie in the same H-orbit, and
similarly for A and K. So the sequence (f,,(H x K)) is the convolution of the

sequences (f, (H)) and (f,,(K)):
folH x K) Zfl ) fr—i (K),

and the generating functions simply multiply: fpxx = fgfx. Note that the
terms of the sequence (f,, (H x S)) are the partial sums of the sequence (f,, (H)).

More importantly, we see that a structure in the Fraissé class for H x K 1s
just the disjoint union of structures for H and K. So the direct product of per-
mutation groups corresponds to the disjoint union of combinatorial structures.
For example, the objects in the Fraissé class for S x S can be taken to be finite
sets whose elements are coloured red and blue; and f, (S x S) = n+ 1, since an
n-set can contain 0,1,2,...,n blue elements.



Figure 1: T x A as a covering of A

There 1s another well-known permutation action of the direct product, on the
Cartesian product of the sets T' and A: the pair (h, k) maps (v,9) to (vh,dk).
(This is the product action of H x K.) If H and K are oligomorphic, then so is
H x K in this action. However, the number of orbits on n-sets is not uniquely
determined by the corresponding numbers for H and K. (Ezercise: check that,
in the product action, fo(S x S) = 3, while fo(A x A) = 4.) There are some
very interesting questions here, but I won’t say any more about this.

The other construction is the wreath product of permutation groups. It is
convenient to build up the action first. The group G = H Wr K acts on the
set I' x A; but the factors should not be regarded as having the same status.
Rather, think of T'x A as the disjoint union of |A| copies of T', each copy indexed
by a point of A, as in Figure 1. (Formally, the copy T's of T' indexed by ¢ is
{(v,d) : v € T}.) In topological terms, we regard T' x A as a covering of A
whose fibres are the sets I's, each isomorphic to I'.

The base group B of the wreath product consists of all permutations built
from |Al independently chosen elements of H, each acting on the corresponding
fibre. Tt is a cartesian product of |A| copies of H. The top group T is the group
K, permuting the fibres by acting on their indices according to its given action
on A. The wreath product is now the product BT. (In group-theoretic terms,
B is normalised by T and BNT = 1, so the wreath product is the semi-direct
product of B by T.)

What do the orbits of H Wr K on n-sets look like? Each n-set is partitioned
by 1ts intersections with the fibres; these intersections can be independently
permuted to any other sets in the same fibre by the base group. However, the
way in which the set of parts of the partition is permuted by the top group is
less easy to describe.

Suppose that H and K are automorphism groups of homogeneous struc-
tures. Then an n-element structure in the Fraissé class for H Wr K consists of
a partition of the point set, together with independently chosen structures from
the Fraissé class for H on each part of the partition, and a structure from the
Fraissé class for K on the set of parts.

This combinatorial “composition”, as with the disjoint union for the direct
product, is meaningful even if there are no groups around. Consider the example
in the first section. The class of even graphs i1s the composition of the class of



Eulerian graphs with the Fraissé class for S; while the class of two-graphs is the
composition of the Fraissé class for S with the class of reduced two-graphs. (If
there were homogeneous structures for the relevant classes, with automorphism
groups Bven, Fulerian, TwoGr and RedTwoGr, then we would have

Even ~ Eulerian Wr S, TwolGr ~ S Wr RedT'woG'r,

where ~ means that the orbit counting sequences (f,) are the same. (Unfortu-
nately, the homogeneous structure exists only in the case of two-graphs.) These
relations express formally the puzzle at the end of the first section.

It turns out that the sequence (f,(H Wr K)) is not determined by the cor-
responding sequences for H and K. We need the sequence (f,(H)) and more
detailed information about KA. Later, I will describe what information we ac-
tually need. Here, I will describe the situation in two particularly important
examples. We have

SHwes(t) = H(l —ti)_f’(H) = exp Z % ’
i=1 =1
while :
fHWrA(t) = m

These relations also describe the counting functions for the compositions of
classes of structures with S or A.

I will take the viewpoint that, with any oligomorphic group K, there is
associated an operator (which T also denote by K') on integer sequences, so that

(fn(H WrK)) = K(fa(H)).

If convenient, the operator can be taken to act on generating functions. So, for
example, if the sequence f counts connected graphs of some type (e.g. Eulerian
graphs), then Sf counts disjoint unions of such graphs (e.g. even graphs), while
Af also describes disjoint unions but where there is a total order on the set of
components. Bernstein and Sloane [3] refer to the operators S and A as EULER
and INVERT respectively.

There 1s also a product action of the wreath product, on the set of functions
from A to I'. It is not oligomorphic unless H is oligomorphic and K 1s a finite
permutation group (that is, A is finite). As in the case of the direct product, I
will not consider this action.

5 N-free graphs and posets

In an experiment involving a number of nuisance factors with discrete levels, the
statistician needs to allow for the fact that each nuisance factor may contribute



experiment

months houses
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Figure 2: An experiment

houses
® months
sheep

Figure 3: A poset

to the variance of responses. The relationship among these factors therefore
needs to be clarified before the experiment can be designed (that is, before the
assignment of treatments to experimental units can be decided). Here is an
example. Suppose that we are testing various treatments on sheep. The sheep
are kept in a number of houses for a number of months (a month being the
period of one treatment). A single experimental unit is a sheep for a month,
or a sheep-month. The relevant nuisance factors (apart from trivial ones) are
houses, sheep, house-months, and months, which are partially ordered as shown
in Figure 2.

This poset 1s a distributive lattice, and hence is representable as the lattice
of ancestral sets (up-sets) in a simpler poset, formed by sheep, houses, and
months, as in Figure 3.

In statistical terminology, sheep are nested (1) in houses, since there is no
relation between the fifth sheep (say) in different houses. On the other hand,
houses and months are crossed, since both “same house” and “same month”
are potentially significant. In general, crossing two posets consists of taking
their disjoint union, and nesting them to taking their ordered sum (where one
is above the other). Statisticians had worked out rules for dealing with nesting
and crossing and their iterates [23], but it turns out that a similar analysis can



Figure 4: N

be developed for nuisance factors based on any poset (a poset block structure,
see Speed and Bailey [36]).

Poset block structures give a large class of imprimitive association schemes
whose P and () matrices can be calculated exactly. Moreover, they are homo-
geneous (assuming the poset is finite; the association scheme may be finite or
infinite). But my concern here is the question, posed by Bailey [1]: How typ-
ical are structures obtained by nesting and crossing? In particular, how many
posets are obtained in this way, and how does this number compare to the total
number of posets?

The symbol N will denote the graph or the poset which is shown in Figure 4.
A graph or poset is called N-free if it doesn’t contain N as an induced substruc-
ture. The class of N-free graphs has been studied in many contexts, under many
different names. I summarise the main facts.

e The complement of an N-free graph is N-free.

e An N-free graph with more than one vertex is connected if and only if its
complement is disconnected.

e The class of N-free graphs is the smallest class containing the one-vertex
graph and closed under complementation and disjoint union.

e The edges of an N-free graph can be oriented to form an N-free poset.

e A poset is N-free if and only if it can be built from the one-element poset
by nesting and crossing.

We see that, for n > 1, the numbers of connected and disconnected N-free
graphs on n vertices are equal. Let a be the sequence enumerating connected
N-free graphs. Then we have

a; =1, (Sa), = 2a, forn > 1.

10



This gives a recurrence relation for a,, since (Sa), is equal to a, plus terms
involving a; for ¢ < n; so the numbers are easily calculated. It is not an easy
recurrence to solve, but it can be shown that the sequence grows exponentially.
The number a,, is a lower bound for the number of N-free posets.

We “bracket” the number of N-free posets as follows. An N-free biposet is a
set supporting two posets, which are complementary (in the sense that any two
distinct points are comparable in exactly one of the posets) and both N-free.
Any N-free graph and its complement can be oriented to form an N-free biposet.
(Erercise: show that, if we set # < y when this relation holds in either poset
of an N-free biposet, the result is a total order.) Given the order 1 < --- < m
and biposets By, ..., By, we can combine them to get a new biposet B whose
diconnected poset is the disjoint union of the connected posets of the B; and
whose connected poset is the ordered sum of the disconnected posets of the B;.
Hence, if b is the sequence enumerating N-free biposets for which the first poset
1s connected, then the total number of N-free biposets i1s 2b,, for n > 1, and we
have

b =1, (Ab), = 2b, forn > 1.

This also gives a recurrence which implies that b, grows exponentially. This
recurrence can be solved explicitly: if b(¢) is the generating function, and u(t) =

b(t) — 1 (so that u(0) = 0), we have
1/(1—u)=142u—t,

giving u = (14t —+/1 — 6t + ¢2). The Binomial Theorem now gives a formula
for the coefficients. The function u has a singularity at t = 3 — 24/2, so this is
its radius of convergence, and the exponential constant is 3 + 2/2.

Now let ¢ and d be the sequences enumerating connected and disconnected
N-free posets, where we use the strange convention that ¢; = d; = 1. This
case is a curious mixture of the two preceding. Since any disconnected N-free
poset is a disjoint union of connected ones, and any connected N-free poset (on
more than one element) an ordered sum of disconnected ones, we get the mutual
recurrence

cr=di =1, (Se)n = (Ad)p, = en +d,,  forn > 1.

This enables the sequences to be calculated. They grow exponentially, with
exponential constant approximately 4.62 (see Cameron [10] for more precise
asymptotics). If e(t) and d(t) are the generating functions of the sequences,
then

1 - iy—cy
ct) +d(t)—t—1= W_Hu_t) .
i=1
In any case, we have more than enough information to answer the motivating
question. Since there are roughly on”/4 posets altogether (indeed, this many
two-level posets), only a vanishingly small proportion of them are obtained by
nesting and crossing.

11



6 Algebraic interlude

There i1s a graded algebra which can be constructed from a permutation group,
such that the dimensions of its homogeneous components are the numbers of
orbits of the group on n-sets. Its algebraic structure can give a bit more insight
into the combinatorics of the orbits.

For any infinite set €, let V,, denote the set of all functions from (2) (the set
of n-element subsets of ) to your favourite field of characteristic zero (which I
will take to be the rational numbers here). Each V], is a rational vector space,
and Vp has dimension 1 (there is only one empty set). Now let

Ao
n=0

be the direct sum of these spaces. We define a multiplication on A by the rule
that, for any f € Vi, ¢ € Vi, the product fg is the function in Vj4; defined by

fo(M)= " F(K)g(M\K)

Ke(%)

for any (k+1)-set M. This makes A a commutative, associative, graded algebra
over Q. (Tt is in fact the reduced incidence algebra of the poset of finite subsets
of £, but this fact plays no role here. I also remark that Glynn [14] has made use
of a similar algebra, where the supports of the k-set and I-set to which f and g
are applied in defining the product are not required to be disjoint. This algebra
has very different properties. Glynn uses it to study reconstruction problems.)

An element of V,, is called a homogeneous element of degree n in the algebra
A. (This has no connection with our earlier usage of the word “homogeneous”.)
A particular homogeneous element of degree 1 is the constant function e with
value 1. Multiplication by e induces a linear map from V,, to V41 for each n;
this map is represented by the matrix P of Section 2, and Theorem 3.1 implies
that it is a non-zero-divisor.

Now let G be a permutation group on €2. Then G acts on each space V,,, by
permuting the arguments of the functions. Let V. be the space of functions in
Vi, fixed by (. Since a function is fixed by G if and only if it is constant on the
orbits of G, we have

if GG 1s oligomorphic. Furthermore, we define

A% = i Ve
n=0

to be the set of fixed points of G in A. If G fixes two functions, it fixes their
product; so A% is a subalgebra of A. For oligomorphic groups G, we see that

12



the generating function f(t) is the Poincaré series of A“. In particular, if S is
the symmetric group on €, then A% is the polynomial algebra in one variable
over @, the generator being the element e defined above.

If G is oligomorphic, then V. is spanned by the characteristic functions
of the G-orbits on n-sets; each orbit corresponds to an isomorphism type of
n-element structures in the Fraissé class of G. According to our philosophy,
it is possible to define an analogous algebra for more general classes of finite
structures. I leave it as an exercise to write out the precise definition of this
algebra.

We now consider the structure of A% when G is a direct or wreath product.
The direct product is straightforward: we have

Wreath products are more difficult, but there are results in some special
cases. First, let G = SWr K. If K is a finite permutation group on a set of size
n, then it can be represented as a group of n x n matrices (using permutation
matrices corresponding to the elements of K). Such a linear group K has a
ring 7(K) of invariants, the polynomial functions on Q" fixed by K. It turns
out that A°Wr& is isomorphic to I(K). In particular, the generating function
Fswr k() is the Molien series [22] of the linear group K. If K is the symmetric
group S, then, by Newton’s Theorem, I(K) is a polynomial ring generated by
the elementary symmetric functions, which have degrees 1,2, ... n; and we have

n

fswes, (1) = H(1 — )7L

i=1

There is a completely different situation in which we can guarantee that A%
is a polynomial ring generated by homogeneous elements. Suppose that G is
the automorphism group of a homogeneous structure, whose Fraissé class has
a “good notion of connectedness”. (I will not define this precisely. It holds
for graphs, etc. In general, what is required is that every structure can be
uniquely expressed as the disjoint union of connected structures, and that given
an arbitrary structure and a partition of its points, the structure “contains” (as
a substructure) the disjoint union of the induced substructures on its parts.)
Then it can be shown that A% is a polynomial algebra. Its generators are in
one-to-one correspondence with the connected structures.

Now another interpretation of the S-transform is that, if a sequence f enu-
merates the number of polynomial generators of given degree in a polynomial
algebra, then the nth term of Sf is the degree of the nth homogeneous compon-
ent of the algebra. So the relation between connected and arbitrary structures
is exactly mirrored in the algebra.

A special case occurs for the group H WrS. Recall that a structure in the
Fraissé class of this group consists of a set with a partition, having a structure
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in the Fraissé class of H on each part of the partition. Taking the connected
structures as those with just one part, we have a “good notion of connectedness”;
so AHWrS is a polynomial algebra with f,(H) generators of degree n for each
n. Note that the structure of A¥ WS does not depend on the detailed structure
of AH | only on its Poincaré series.

I end this section with a puzzle. There is a countable homogeneous two-
graph, since finite two-graphs form a Fraissé class. Let G be its automorphism
group, and consider AY. Is it a polynomial algebra? The answer is not known.
If it is, then the number of polynomial generators of degree n is equal to the
number of Fulerian graphs on n vertices. Also, how do reduced two-graphs fit
into the picture?

The general pattern of this puzzle is a group G for which the sequence
(an) = ST1(fn(G)) has a natural combinatorial interpretation; we want to know
whether A% is a polynomial algebra with generators enumerated by (ay).

Here is an example where this approach succeeded, and connected the theory
here with a very different part of mathematics. Let ¢ be a positive integer. It
i1s known that there is a partition of the set of rational numbers into ¢ disjoint
dense subsets Si,...,5,, and that any two such partitions are related by an
order-preserving permutation. Let (G(g) be the group of permutations of Q
which preserve the order and the subsets S, ..., 5;. An orbit of G(¢) on n-sets
is specified by the word #; ...z, in the alphabet A = {1,... ¢}, where z; is the
index of the set containing the i*® point of the n-set (in the order induced by
Q). Every word of length n is realised; so f,, (G(q)) = ¢".

Now A%(9) ig the algebra spanned by the set A* of all words in the alphabet
A; multiplication of two words is given by the sum of all words obtained by
“shuffling” them together. For example, using {a,b} instead of {1,2} for the
alphabet, we have

(ab) - (aab) = abaab + 3aabab + 6aaabb.

This is the shuffle algebra, which arises in the theory of free Lie algebras (see
Reutenauer [28]). It was proved by Radford [26] that the shuffle algebra on a
given alphabet is a polynomial algebra generated by the Lyndon words. In order
to explain these, we assume that the alphabet A is totally ordered, and take
the lexicographic order on the words. Now a Lyndon word is a word which is
smaller (in this order) than any proper cyclic shift of itself; that is, w is a Lyndon
word if, whenever w = xy is a proper factorisation, we have w < yx. Now the
combinatorial assertions required for Radford’s theorem are the following:

(a) any word has a unique expression as a concatenation wyws ...wy, where
wi, ..., w, are Lyndon words and wy > wq > ... > wy;

(b) of all the words which can be obtained by shuffling Lyndon words wy, . .., w,
together, the lexicographically greatest is the concatenation in non-increasing
order.
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Now we take the “connected” words to be the Lyndon words, and the relation
of “involvement” to be lexicographic order reversed; and this result fits into the
previous formalism.

Note that the number of Lyndon words of length n is % Zd|n u(d)q”/d, where
1 18 the Mobius function. This is a well-known expression, which also counts
(among other things) the number of monic irreducible polynomials of degree n
over the finite field of order ¢, if ¢ is a prime power. But that is another story
(see Bailey et al. [2]).

7 Reconstruction

The algebraic considerations of the last section are also related to the vertex
reconstruction conjecture for graphs. Viewed in this way, we have a reconstruc-
tion problem for the age of any oligomorphic group. The details differ greatly
from one class to another.

Let G be the automorphism group of the random graph, so that the Fraissé
class of GG is the class of all finite graphs. We can regard the vector space V,
as having a basis which consists of the isomorphism types of n-vertex graphs.
Let T}, n—1 be the linear map from V;, to V,,_1 which takes each n-vertex graph
to the sum of its (n — 1)-vertex induced subgraphs. Then T, ,_1 is the map
represented by the matrix M of Section 2; its dual is the map 7;,_1 », from V,,_;
to V}, induced by multiplication by the element e of the preceding section, with
matrix P as in Section 2.

Now two n-vertex graphs are hypomorphic if they have the same deck of
vertex-deleted subgraphs; that is, if their images under 7, ,_; are equal. So if
X and Y are hypomorphic, then X — Y € ker(T, ,—1). Moreover, for any X
and Y, if aX 4 bY € ker(T}, ,—1), with ab # 0, then b = —q, and X and Y are
hypomorphic.

So the vertex reconstruction conjecture for graphs can be stated in the form:
For n > 2, the kernel of T, ,_1 has minimum weight greater than 2. (The
minimum weight of a subspace, as in coding theory, i1s the smallest number of
non-zero coordinates of a non-zero vector in that subspace.)

We could thus ask the question: What is the minimum weight of ker(T,, n—1)?
For example, a trivial upper bound for the minimum weight is 1 + n/2 if n is
even. For, if X, ; is the graph with n vertices and % disjoint edges, then

<Xn,0a Xn,la cey Xn,n/2>Tn,n—1 g <Xn—1,0a Xn—l,la cey Xn—l,n/2—1>~

So some non-zero element in (X, o, ..., Xn,n/2> belongs to the kernel of 15, ,,_1.
This can surely be improved; but is the minimum weight bounded by an absolute
constant?

We can generalise further, and ask: What is the minimum weight of ker (T}, 1)
for m < n? (We define T, ,, to be the linear map taking an n-vertex graph to
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the sum of its m-vertex subgraphs.) Since

Tn,lﬂ,m = (n B m) Tn,m

{—m

for m < | < n, the minimum weight of ker(7,, ,,) decreases as m decreases. Is

there an absolute constant k such that ker(T, n_r) has minimum weight 2 for
all n?

Two further generalisations suggest themselves. First, what happens if we
work instead over a field of non-zero characteristic p (such as the integers mod
p)? If p divides n, then ker(7}, ,_1) has minimum weight 1: any graph with all
its vertex-deleted subgraphs isomorphic belongs to the kernel (for example, any
vertex-transitive graph).

Second, these questions can be posed for other Fraissé (or more general)
classes of structures. As an example, consider strings of length n over a binary
alphabet {a,b}. As earlier, we consider these as sets with a total order whose
elements are partitioned into two distinguished subsets. So a substructure is a
(not necessarily consecutive) substring. The class of such strings is the Fraissé
class of the group G(2) of order-preserving permutations of (@ which fix two
complementary dense subsets.

Now T, ,, maps a string to the sum of its m-element substrings, counted
with multiplicities. Call two strings u and v m-equivalent if they have the same
image; that is, if each string of length m has the same multiplicity in v and v.
(This can be extended to strings of length less than m by defining such a string
to be m-equivalent only to itself.) For example, the strings X = abbbaab and
Y = baabbba of length 7 are 3-equivalent, since 77 3 maps both X and Y to

aaa + 3aab + 6aba + 6abb + 3baa + 6bab + 6bba + 4bbb.

Now the obvious question 1s: What s the smallest n, as a function of m, for
which there are two m-equivalent binary strings of length n? The answer is not
known, and the known upper and lower bounds are very far apart. John Dixon
[11] proved a result characterising m-equivalence in purely algebraic terms. He
showed that two strings are m-equivalent if and only if, when regarded as words
in the generators of the free nilpotent group of class m, they are equal.

The edge reconstruction conjecture for graphs can be fitted into this form-
alism to some extent as well. Let G be the symmetric group on an infinite set
(say ), in its induced action on the set = @) of 2-element subsets of IN.
Now an n-element member of the Fraissé class of G consists of a graph with n
edges (in other words, an n-vertex graph which is a line graph, in a specified
way: so the triangle counts twice, according as it 1s the line graph of a triangle
or of a star). The edge-reconstruction conjecture asserts that ker(7), ,_1) has
minimum weight greater than 2 in this class, provided that n > 3. Questions

like those posed earlier for vertex-reconstruction can now be asked.
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There are further links between edge-reconstruction and finite permutation
groups; but that is another story.

8 Cycle index

Now we come to the rule for calculating the sequence operator corresponding
to any oligomorphic group. We will also see how to count orbits on ordered
n-tuples of distinct elements (which amounts to the same thing as enumerating
labelled structures in the Fraissé class of the group).

We begin with a little Pélya theory. Let € be a finite set of size n. For any

permutation g of Q, we define the cycle index z(g) of g to be 5?1(9)522(9) . ~5f{‘(g),
where s1, 82, ..., 8, are independent indeterminates, and ¢;(g) is the number of

cycles of length ¢ in the cycle decomposition of g. If (G is a permutation group
on 2, the cycle index of (G is the average of the cycle indices of its elements:

The role of the cycle index in enumeration problems is well-known.

Clearly it is impossible to define the cycle index of an infinite group by any-
thing like this formula; so we adopt a different approach. Let GG be oligomorphic.
Choose representatives for the orbits of (G on finite subsets of 2. For each such
representative A, let H(A) be the group induced on A by its setwise stabiliser
in G. Now define the modified cycle index Z(G) of G to be

2(G) =Y _Z(H(A)),

where the sum is over the orbit representatives. This 1s meaningful, since by
assumption there are only finitely many orbits of size n, and hence a monomial
of weight n occurs only finitely many times in the sum (where the weight of
§7's52 - - 8% is defined to be ¢1 + 2¢5 + - - + ney).

This procedure is meaningful for finite groups G, but it gives nothing new:
in fact, for a finite group G, Z(G) is obtained from Z((G) by the substitution
replacing s; by s; + 1 for all ¢. (For experts in Pélya theory, this is an exercise.)

I now list three pairs of facts about the modified cycle index: first, its values
for the groups S and A; second, its behaviour under taking direct and wreath
products; and third, a couple of interesting specialisations of it. First, another
definition. If G is oligomorphic on Q, we let F,,(G) be the number of G-orbits
on n-tuples of distinct elements of 2. The finiteness of this number for all n 1s
equivalent to the oligomorphy of (G; indeed, we have
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for all n. If G is the automorphism group of a homogeneous relational structure
X, then Fj,(G) is the number of labelled n-element structures in the Fraissé class
(that is, the number of structures on the set {1,2,...,n} which are embeddable
in X). As standard in enumeration theory, we describe the sequence (F,) by
an exponential generating function given by

) ) = exp 27‘7

1
1—81.

o 7(A) =

e Z(H x K)=Z(H)Z(K).

. Z(H Wr K) is obtained from Z(K) by substituting Z(H)(si, Saiy..) — 1
for s;, fori =1,2,....

e fz(1) is obtained from Z(G) by substituting ¢* for s; for i = 1,2, .. ..

e Fg(t) is obtained from Z(G) by substituting ¢ for s; and 0 for s; for
i=2,3. ..

It follows from the direct product rule and the two specialisations that, as
well as faxx () = fu(t)fx(t), we also have Fryux(t) = Fg(t)Fk(t). But,
because these are exponential generating functions, the convolution rule for
sequences 1s a little different, namely

Fo(H x K) = ; (Z) Fu(H)Fy_p(K).

This is the so-called exponential convolution.

The fifth of the six points gives us the rule for calculating the sequence
(fn(H Wr K)) from (fn(H)): frwek(t) is obtained from Z(K) by substituting
fu() — 1 for s;, for i = 1,2,.... We see that the information about K we
require is its modified cycle index. Accordingly, for any oligomorphic group K,
we can define an operator K on sequences by using this rule, so that

K(fo(H)) = (fo(H Wr K)).

In a similar way, wreath products define operators on the sequences (F, (H)).
These operators are much easier to work with, since they are just given by
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substitution in the exponential generating functions, after first removing the
constant term:

Frwek () = F(Fy(t) —1).

The most famous case of this occurs when H is the symmetric group 5.
We have Fg(t) = exp(t), and Fswrx(t) = Fr(exp(t) — 1). In particular,
Fswrs(t) = exp(exp(t) — 1), the exponential generating function for the se-
quence of Bell numbers. (The nth Bell number counts partitions of an n-set,
that is, Fraissé structures for the group SWrS.) This operation has another
interpretation. If F7((G) denotes the number of orbits of G on all n-tuples (of
not necessarily distinct elements), then we have

Fr(G) = Fp(SWr @),
as can be seen by replacing identical points of A in an n-tuple (where G acts
on A) by distinct points of the fibre over that point. Furthermore, this relation
is equivalent to

FI(@) =3 5(n k) F(0),

where S(n, k) is the Stirling number of the second kind, the number of partitions
of an n-set into & parts. The operator on sequences given by the above formula
is called STIRLING by Bernstein and Sloane [3].

“Dual” to this operator, in some sense, is the operator which maps (F, (G))
to (F,(GWrS)), given by Fawr s(t) = exp(Fg(t) — 1). This operator, referred
to as EXP in [3], maps the sequence enumerating labelled connected structures
in some class to arbitrary labelled structures in the class; the same job that S
(or EULER) does for the unlabelled structures. Explicitly, it is given by the

recurremnce
n

n—1
An =" (k ~ 1)ckAn_k,

k=1

where (Cy) = (Fn(G)) counts connected objects and (A,)
counts arbitrary ones.

(Fn(GWrS))

9 A product identity

This section contains a proof of the identity
ot/ (1=t) — H(1 _ tn)—¢(n)/n’
n=1

where ¢ is Euler’s totient function. We need another example of an oligomorphic
group.
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Let C' be the group of all permutations preserving the cyclic order on the
complex roots of unity. (The cyclic order is a ternary relation R which holds for
(z,y, z) when the points are visited in this order starting at « and proceeding in
an anticlockwise sense around the circle; so, if R(x,y, z) holds, then R(y, z, #)
holds but R(z,z,y) doesn’t.) The group C' is transitive, and the stabiliser of
a point preserves a linear order on the remaining points; so the stabiliser is
isomorphic to A. Using this fact, or by showing that the relational structure is
homogeneous (much as we did for A earlier), we see that C has just one orbit
on n-sets for every n > 0, and the stabiliser of an n-set induces on it the cyclic
group Cy, of order n.

Now (), contains ¢(d) elements of order d for each divisor d of n; and each
of these elements has n/d cycles of length d. So we have

Z(C) 1+Z qu sy
o

I
|M8

©-
&\

3

¢>(d)
d

=1

= 1- log(1 — sq).
d

Since fp(C) =1 for all n, we have fe(t) = 1/(1 —t) = 14+1t/(1 —t). Hence

1-1—

Mg

d)/d)log(1 — t%).
d:l

Now subtracting 1 from each side, taking the exponential, and replacing the
dummy variable d by n gives the result.

Note that, having worked out Z(C’), we can write down the sequence operator
corresponding to € in terms of its action on generating functions:

enim=1-3 " iogz - 7))

Having added C' to our repertoire, it is interesting to consider the group
C'WrS. A member of the Fraissé class for it consists of a set carrying a parti-
tion with a circular order on each part. This is precisely the specification of a
permutation, decomposed into disjoint cycles. So the group C' Wr S’ “represents”
permutations.

The numbers of permutations and of total orders on an n-set are both equal
to n!. So there should be some relation between C WrS and A. However,
the bijection between linear orders and permutations is not a “natural” one:
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we must first choose a distinguished order A, and then any other order is a
permutation of A.

We know already that Z(A) = 1/(1 — s1). A straightforward calculation,
using the value of Z(C) found above, shows that Z(C WrS) =[], (1 —s,)"".
These two expressions are different; but, to compute the e.g.f. for the number
of labelled structures, we substitute ¢ for s; and 0 for s, (n > 1); the results
are the same, as they should be:

FA(t) = chrg(t) = (1 —t)_l.

10 Stirling numbers

We already saw that Stirling numbers are involved with the formalism of wreath
products. It is possible to define and generalise them using this philosophy.

I begin with a brief course on Stirling numbers. The Stirling number of the
first kind, S(n, k), is the number of partitions of an n-set into k parts. We see
immediately that the sum Y_;_, S(n, k) = B(n) (the Bell number) is the total
number of partitions of an n-set, which we recognise as F,,(S Wr S).

The unsigned Stirling number of the second kind, s(n, k), is the number of
permutations of an n-set with k disjoint cycles. Thus we have Y ;_, s(n, k) =
nl = Fy(A). Tt is more useful to re-interpret this in the light of the remarks in
the last section. A permutation with k cycles is given by a partition into k parts
with a cyclic order on each part; and we have >, _, s(n, k) = F,(C Wr S).

This immediately suggests a generalisation. Let G be any oligomorphic
permutation group. We define the generalised Stirling number S[G](n, k) to
be the number of partitions of an n-set into k parts, with a member of the
Fraissé class for G on each part. Thus we have > ;_, S[G](n, k) = F,,(G Wr S).
In this notation, the “classical” Stirling numbers are S(n, k) = S[S](n, k) and
s(n, k) = S[C](n, k).

It is clear that the generalised Stirling numbers S[G](n, k) are determined
by the numbers F,,(G). This can be expressed most concisely in terms of the
exponential generating functions:

> S[G)(n, k)t™ fnt = (Fa(t) — 1)F /K.
n==k
From this, the equation Fgwys(t) = exp(Fg(t) — 1) is obtained by summing

over k.

The generalised Stirling numbers have a composition property:

> S[G)(n, H)S[H](, k) = S[GWr H](n, k).
=k
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For consider S[G](n,)S[H](l,k). This counts pairs consisting of a partition
of {1,...,n} into [ parts with a G-structure on each part, and a partition of
the set of parts into k parts with an H-structure on each part. (Here “G-
structure” is short for “member of the Fraissé class of G”.) Viewed otherwise,
we have a partition of {1,... n} into k parts, each part carrying a partition into
“subparts” with a G-structure on each subpart and an H-structure on the set
of subparts (in other words, a G Wr H-structure), subject to the condition that
there are [ subparts altogether. Summing over [ removes the final condition and
yields S[G Wr H](n, k).

This result can be expressed more compactly in matrix form. Let T[G] be the
triangular array of generalised Stirling numbers associated with G, the infinite
lower triangular mtrix with (n, k) entry S[G](n, k). Then we have

T[GIT[H] = T[G Wr H].

For example, T[S] and T[C] are the arrays of classical Stirling numbers; and we
have

T[C)T[S) = T[C Wt S] = T[A].

The numbers S[A](n, k) are the Lah numbers L(n, k), sometimes called
“Stirling numbers of the third kind”: see Lah [17], Bridgeman [5]. Unlike the

classical Stirling numbers, there is a closed formula for the Lah numbers:

ok =G () =500

This can be shown by using the formula

> Ln k)t /nt = ( )/k'

n>k

and computing the coefficient of {” on the right-hand side.

In a similar manner, it can be shown that
ZS (n, k)F(H) = Fn(GWr H).

This property generalises the STIRLING transform we met earlier.

There is another remarkable property of classical Stirling and Lah numbers.
Let S*[G](n, k) = (=1)"~*S[G](n, k) be the signed generalised Stirling numbers,
and let T*[(G] be the corresponding triangular array. Then

> S(n, 1) (=1)! 7 s k) = b,
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or in other words

T[S1T*[Cl = 1.
It follows that also T[C]T*[S] = I and T[A]T*[A] = I. T do not know whether

this inversion relation has analogues for other groups.

11 Stabilisers and derivatives

We’ve seen that the group-theoretic operations of direct and wreath product
“correspond” to multiplication and composition of formal power series. It is
possible to interpret differentiation in similar terms. In this section, I assume
that the permutation group G is transitive on 2, though it is possible to formu-
late the results more generally.

The stabiliser G, of the point oo € Q is the subgroup of G consisting of the
permutations which fix «. We consider it as a permutation group on Q\ {«a}.
Now we have 5

Z(Go) = 8—512((;).

It follows that d
Fa (t) = —Fg(t).
ca(t) = 3 la(t)

(In fact, it is easy to see this directly. Differentiating an exponential generating
function corresponds to shifting the terms of the sequence one place to the left,
so the preceding equation says

Fn(GOC) = Fn+1(G)'

The correspondence between orbits of G, on n-tuples and of G on (n+1)-tuples
can be described thus: take an orbit of GG on (n + 1)-tuples, select all the tuples
which begin with «, and delete « from them.)

On the other hand, the sequence (f,(G4)) is not determined by (f,(G)).

The Fraissé class for G, is obtained from that for G by distinguishing a
point  in each finite substructure and deleting . (This is not the same as just
deleting a point, since it leaves a shadow, the extra structure obtained when z
was distinguished. For example, if the objects in the Fraissé class are graphs,
then by distinguishing and deleting & we specify a subset of the remaining
vertices, those which were joined to x.) In view of the effect on the generating
function, I will denote this operation on Fraissé classes by J.

Two-graphs provide an example (see Seidel [31]). If # is a point of the two-
graph (X, T), there is a unique graph in the corresponding switching class with
the property that z is an isolated vertex. Thus, if Gr and TwoGr denote the
classes of graphs and two-graphs, we have

Gr = 0TwoGr.
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In combinatorial terms, it is more natural to leave the point & in, obtaining
a “rooted” structure. This is easily handled: adding the fixed point back in
corresponds to taking the direct product of G with the trivial group acting on
a single point, whose modified cycle index is 1 4 5.

Having defined derivatives, we can consider differential equations. For ex-
ample, is there a group G for which G, = G x G7 For such a group, the
function F' = Fg satisfies I/ = F?, F(0) = 1, with solution F(¢) = (1 —¢)7L.
Thus F,(G) = n!. This sequence is the same as the one realised by the group
A. Indeed, the stabiliser of 0 in A has two orbits, the positive and the negative
rationals; each orbit, as ordered set, 1s isomorphic to @@, and Ay induces all
order-preserving permutations on each. So indeed G = A satisfies the original
equation. (The fact that 04 = A x A, where A is the class of finite total orders,
can be regarded as the basis for the recursive QUICKSORT algorithm [15] for
sorting a list: select an element 0, partition the list into elements before and
after 0, and sort these two sublists.)

The group G = C'Wr S also satisfies F,(G) = n!, corresponding combinator-
1ally to the fact that any permutation can be decomposed into a disjoint union
of cycles. This group, like A itself, satisfies the related equation G, = A x G.

What about the differential equation G, = G Wr G? It can be shown that
no such group exists. Nevertheless, we obtain an interesting integer sequence
(Fp (@) for such a non-existent group. With f(t) = Fg(t) — 1, we have

Fy=1+5(/@),  f(0)=0,

somewhat reminiscent of the Feigenbaum—Cvitanovié equation

g(t) = —ag(g(t/a))

(Feigenbaum [12]). The unique power series solution does not converge in any
neighbourhood of 0. Is the a combinatorial interpretation of the coefficients (a
class of structures enumerated by them)? The first few terms of the sequence

are 1,2, 7, 37, 269, 2535, 29738, 421790, 7076459, ... .

12 The probability of connectedness

According to Cayley’s Theorem, the number of labelled trees on n points is
n"~2. It is a surprising fact, proved by Rényi [27] in 1959, that the number of
labelled forests on n points is asymptotic to en® =2, where ¢ = /e; that is, the
probability that a random forest on {1,2,...,n} is connected tends to 1/+/e as
n — oo. (I am grateful to Dominic Welsh for this reference.) Moreover, for
labelled forests of rooted trees, the limiting probability of connectedness is 1/e.

In terms of our earlier notation, if Cj, = n"~2 and (A,) is the sequence
obtained by applying the operator EXP to (C},), then lim, e 4,/C, = Ve.
And, if we put C,, = n"~! instead, the limit is e.
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One could ask more generally: for which classes of structures (with a notion
of connectedness) is it true that the probability of connectedness for a labelled
or unlabelled structure tends to a limit strictly between zero and one? A class of
examples is provided by the N-free graphs. As we saw, exactly half of the N-free
graphs on n points are connected if n > 1, and this is true for labelled or un-
labelled structures, since complementation gives a bijection between connected
and disconnected structures. Furthermore, it can be shown that the probability
that a (labelled or unlabelled) N-free poset is connected tends to the golden
ratio as the number of points tends to infinity (see [10]).

In the unlabelled case, it is easy to handle rooted trees, since the number of
forests of rooted trees on n vertices is equal to the number of rooted trees on n+1
vertices. (Take a new root, and join it to all the old roots.) Since these numbers
grow exponentially with constant 2.95576... [24], the limiting probability of
connectedness is the reciprocal of this number, namely 0.33832.... It appears
that exponential growth for the number of n-element unlabelled structures is
necessary for the probability of connectedness to be strictly between 0 and 1,
though I cannot prove such a precise result.

In terms of groups, the question becomes: for which oligomorphic groups GG
is it true that either limy,_, oo (G Wr S)/F, (G), or limy 0 fir (G W S)/ fir (G),
exists and is finite and greater than 17 Having formulated the question in this
way, it immediately generalises. We can replace the group S by any oligomorphic
group, take the wreath product in either order, or use direct product instead of
wreath product. For more on this, see [10].

13 Two-graphs revisited

The last story, like the first, is about two-graphs, and is taken from Cameron [9],
which contains all references for this section (and is available electronically).

There 1s a simple construction for two-graphs from trees, as follows. Let T'
be a tree with edge set 2. Now let T consist of all triples of edges which do not
lie on a path in the tree (those for which the paths connecting them in the tree
form a subtree containing a trivalent vertex). It is easily verified that (Q2,7)
is a two-graph (by considering the four possible configurations of four edges).
These two-graphs arose in the work of Tsaranov [37] on a class of groups related
to Coxeter groups. Which two-graphs are produced by the construction?

The pentagon and heragon two-graphs refer to the two-graphs associated,
as in the first section, with the switching classes of the pentagon and hexagon
graphs respectively. In [8], T proved that a two-graph arises from a tree by the
construction described if and only if it doesn’t contain either the pentagon or
the hexagon two-graph as an induced substructure. Moreover, non-isomorphic
trees give rise to non-isomorphic two-graphs. This solves the counting problem
for unlabelled pentagon- and hexagon-free two-graphs: the number on n points
is equal to the number of trees with n edges, calculated by Otter [24].
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However, there 1s a further difficulty associated with counting the labelled
pentagon- and hexagon-free two-graphs. For example, a path with n edges can
have its edges labelled in n!/2 different ways, but all of these give rise to the
null two-graph (the two-graph with no triples).

The solution to the problem comes by showing that the two-graph obtained
from a tree T' is reduced (in the sense of the first section) if and only if the tree
is series-reduced, that is, has no vertices of valency 2. So we should first count
the series-reduced edge-labelled trees. The number of these with n edges turns
out to be

= %nz_:l(—l)j <n+ 1) (n j_ 1)j!(n+ | -t

7=0 J

for n > 2, with z; = 1. Then the number of labelled pentagon- and hexagon-free
two-graphs is given by the STIRLING transform

ZS(n,k’)xk.
k=1

We have a language to describe this behaviour. We can associate a sequence
operator with a class of objects even if it is not the Fraissé class associated
with some group: define the “modified cycle index” to be the sum of the cycle
indices of the automorphism groups of the unlabelled structures in the class,
and then use the same formalism as described earlier. Now series-reduced trees
(counted by edges) and reduced pentagon- and hexagon-free two-graphs have
the same modified cycle index, because of the correspondence, and hence define
the same sequence operator. If we denote this class by SRT, then the class of
all pentagon- and hexagon-free two-graphs corresponds to S Wr SRT, and the
class of all trees to AWr SRT apart from a slight mismatch for paths. (The
edges on a path have two possible orders which cannot be distinguished, but
which are counted twice by A Wr SRT'.)

The class of pentagon-free two-graphs (those containing no induced pentagon)
is also interesting. It is closely connected with the class of N-free graphs; in fact,
the operator 9, applied to the class of pentagon-free two-graphs, gives the class
of N-free graphs (like the relation between two-graphs and graphs). Tts members
can also be represented by trees (in a different way); and it can be enumerated
by techniques similar to those described. This is also found in [8], [9].

End note

Jalaluddin Rumi was one of the leading Sufi poets. The story of the blind
people and the elephant is common to several other religious traditions, includ-
ing Quakers and Buddhists.
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