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Beyond Ghor there was a city� All its inhabitants were blind� A

king with his entourage arrived near by� He brought his army and

camped in the desert� He had a mighty elephant� which he used in

attack and to increase the people�s awe�

The populace became anxious to see the elephant� and some

sightless ones from among this blind community ran to �nd it� As

they did not even know the form or shape of the elephant they groped

sightlessly� gathering information by touching some part of it� Each

thought he knew something� because he could feel a part�

When they returned to their fellow�citizens� eager groups clustered

around them� Each of these was anxious to learn the truth from

those who were themselves astray� They asked about the form� the

shape of the elephant� and they listened to all they were told�

The man whose hand had reached an ear was asked about the

elephant�s nature� He said� �It is a large� rough thing� wide and

broad� like a rug��

And the one who had felt the trunk said� �I have the real facts

about it� It is like a straight and hollow pipe� awful and destructive��

The man who had felt its feet and legs said� �It is mighty and

�rm� like a pillar��

Mualana Jalaluddin Rumi ���th century� �from �����

Abstract

The main theme of this article is that counting orbits of an in�nite

permutation group on �nite subsets or tuples is very closely related to

combinatorial enumeration� this point of view ties together various dis�

parate �stories��
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� Two�graphs and even graphs

The �rst story originated with Neil Sloane	 when he was compiling the �rst
edition of his dictionary of integer sequences ��
�� He observed that certain
counting sequences appeared to agree�

The �rst sequence enumerates even graphs	 those in which any vertex has
even valency �so that the graph is a disjoint union of Eulerian graphs�� These
graphs were enumerated by Robinson ���� and Liskovec ��
��

The second sequence counts switching classes of graphs� If � is a graph on
the vertex set X	 and Y is a subset of X	 the result of switching � with respect
to Y is obtained by deleting all edges between Y and its complement	 putting in
all edges between Y and its complement which didn�t exist before	 and leaving
the rest unaltered� Switching is an equivalence relation on the graphs with
vertex set X� the equivalence classes are called switching classes� This concept
was introduced by Seidel ���� for studying strongly regular graphs�

The �nal sequence counts two�graphs� A two�graph on a set X consists
of a set T of triples or ��element subsets of X with the property that any ��
element subset of T contains an even number of elements of T � Two�graphs
were introduced by G� Higman in a construction of Conway�s third sporadic
group� The theory has been developed in many directions� Seidel has written
several surveys ����	 ����	 ����� They also link several themes in combinatorics	
including equiangular lines in Euclidean space	 and double covers of complete
graphs�

It was already known that switching classes and two�graphs are equinumer�
ous� There is a map from graphs on the set X to two�graphs on X	 as follows�
the triples of the two�graph are all ��sets which contain an odd number of edges
of the graph� Every two�graph is obtained in this way	 and graphs �� and ��
give the same two�graph if and only if they lie in the same switching class� So
there is a natural bijection from switching classes to two�graphs�

It was also known that switching classes and even graphs on an odd number
of vertices are equinumerous� �Any switching class on an odd number of ver�
tices contains a unique even graph	 obtained by taking any graph in the class
and switching with respect to the set of vertices of odd degree�� But no such
correspondence exists if the number of vertices is even� Mallows and Sloane ����
proved that the numbers were equal by deriving a formula for the number of
switching classes and observing that it coincides with the Robinson�Liskovec
formula for the number of even graphs�

The �right� explanation ��� actually shows that the classes are dual� Let X
be a set of n points	 and V the set of all graphs on the vertex set X� Each
graph can be represented by a binary vector of length n�n � ���� whose ones
give the positions of the edges� So V is a vector space over GF��� of dimension
n�n� ����� The addition in V corresponds to taking the symmetric di�erence
of the edge sets of the two graphs� We consider two subsets of V �
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� U 	 the set of complete bipartite graphs�

� W 	 the set of even graphs�

It is easy to see that U is a subspace of V 	 spanned by the stars� Now a graph
is even if and only if it is orthogonal to all stars� so W � U�	 and W is also a
subspace�

The cosets of U in V are precisely the switching classes of graphs� So V�U
is the set of switching classes� Since W � U�	 this quotient V�U is isomorphic
to the dual space W � of W 	 not just as vector space	 but as module for the
symmetric group on X� Now a group acting on a �nite vector space has equally
many orbits on the space and on its dual	 by Brauer�s lemma ���� and the
orbits of the symmetric group are the isomorphism classes� So the numbers of
switching classes and even graphs are equal�

Recently	 I noticed another feature	 which may be related in some way to
this duality� As noted above	 an even graph is the disjoint union of Eulerian
graphs� A similar�looking decomposition holds for two�graphs� We de�ne a
relation � on the point set of a two�graph by the rule that x � y if and only if
either x � y or no triple contains x and y� From the de�nition of a two�graph	
it is easy to see that this is an equivalence relation	 and is even a congruence	
that is	 membership of a triple in T is una�ected if we replace some of its points
by equivalent ones� Thus	 a two�graph is described by a partition of X	 with no
structure on the parts of the partition	 and the structure of a reduced two�graph
�one in which all ��classes are singletons� on the set of parts� �By contrast	
for even graphs	 we have an Eulerian graph on each part of the partition	 and
no structure on the set of parts� this is	 in some vague sense	 �dual� to the
preceding��

The numbers of Eulerian graphs and of reduced two�graphs on n points agree
for n � � but di�er for n � 
�

� Groups and counting

Let G be a permutation group on a set �� Usually � will be in�nite� The
group G is said to be oligomorphic if the number of orbits of G on the set of
n�subsets of � is �nite for every positive integer n� �More about the derivation
of this term below�� So every �nite permutation group is oligomorphic� If G is
oligomorphic	 we let fn�G� �or just fn	 if the group is clear� denote the number
of orbits of G on n�sets�

Design theorists will recognise this set�up� Suppose that we want to con�
struct a t�design on � with block size k admitting the group G� Let T�� � � � � Ta
be the orbits on t�sets	 andK�� � � � �Kb the orbits on k�sets	 where a � ft	 b � fk�
Now we build a collapsed incidence matrix M � �mij� of size a � b	 where mij

is the number of k�sets in the jth orbit which contain a �xed t�set from the ith
orbit� Now the game is to select a subset of the columns of M such that the
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submatrix has constant row sums� then the union of the corresponding orbits is
the block set of the design�

This doesn�t work if � is in�nite	 since the numbers mij may be in�nite�
However	 collapsing the matrix the other way does make sense� let P � �pij�	
where pij is the number of t�sets in the ith orbit which are contained in a �xed
k�set from the jth orbit� We will return to this later� but	 unfortunately	 I have
nothing more to say about constructing designs�

The concept which links this kind of orbit counting to combinatorial enu�
meration is that of a homogeneous relational structure� A relational structure
X on � consists of a number of relations on X of various arities� Thus	 many of
our favourite structures �graphs	 digraphs	 tournaments	 total or partial orders	
two�graphs� are relational� An induced substructure of a relational structure
on a subset of � is obtained by simply taking the restrictions of all the rela�
tions to this subset� Now X is homogeneous if every isomorphism between �nite
substructures of X can be extended to an automorphism of X�

The classical example of a homogeneous structure is the rational numbers
Q as ordered set� Given any two n�sets of rationals	 arranged in increasing
order as a� � a� � � � � � an and b� � b� � � � � � bn	 there is a unique
isomorphism between the substructures	 taking ai to bi for i � �� � � � � n� This
can be extended to an order�preserving map on all the rationals by ��lling in�
the intervals �ai� ai��� with linear maps	 and translating the two ends suitably�

Based on this example	 Fra��ss�e ���� gave a necessary and su�cient condition
for a class C of �nite structures to be all the �nite substructures of a countable
homogeneous structure� I will give only a brief description of Fra��ss�e�s condition
here �it is discussed in detail in � ��� It is required that C is closed under iso�
morphism� closed under taking induced substructures� contains only countably
many structures up to isomorphism� and has the amalgamation property �which
asserts that	 given two structures B�� B� � C with a common substructure A	
there is a structure C � C in which B� and B� can both be embedded	 so that
their intersection is at least A�� The �rst three conditions are usually obvious	
but the amalgamation property may require more e�ort to verify� Many famil�
iar classes of �nite structures �graphs	 tournaments	 posets	 triangle�free graphs	
two�graphs	 � � � � satisfy the condition	 and many others �bipartite graphs	 trees	
� � � � can be made to satisfy it after small modi�cation� For example	 graphs
with a �xed bipartition satisfy Fra��ss�e�s conditions�

Now let X be a homogeneous structure	 and C the class of its �nite substruc�
tures� If G is the automorphism group of X	 then G�orbits on n�sets correspond
to isomorphism classes of n�element structures in C �unlabelled substructures of
X�� Moreover	 given any permutation group on a countable set	 it is possible to
construct a structure on which the group acts �homogeneously�� So the problem
of calculating the numbers fn�G� for oligomorphic groups G is identical to that
of enumerating unlabelled structures in a class satisfying Fra��ss�e�s condition �a
Fra��ss�e class	 I will say for short��

The term �oligomorphic� is derived from �few shapes�	 and is chosen to
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express this relationship between the group orbits and the isomorphism classes
of structures ��shapes�� in a class with only �nitely many of any given �nite
size ��few���

� An inequality and a Ramsey problem

Because of the connection described in the last section	 any general result on
orbit numbers for oligomorphic groups is a metatheorem about enumerating
structures in Fra��ss�e classes� The most basic result of this kind is that the
numbers fn are non�decreasing� fn � fn���

This was proved for �nite permutation groups by Livingstone and Wag�
ner ����	 using character theory of the symmetric group� This result can be
translated into a proof using Block�s lemma together with the fact that the re�
duced incidence matrices de�ned in the last section have full rank provided that
j�j � t ! k� As mentioned there	 the matrix P is meaningful even when � is
in�nite	 and can be shown to have full rank	 from which the inequality can be
deduced �taking t � n	 k � n! ���

A second	 completely di�erent proof was found by Pouzet ��
�	 based on
Ramsey�s Theorem� The essential ingredient can be stated as a Ramsey theorem
as follows�

Theorem ��� Suppose that t � k� and let the t�subsets of the in�nite set � be
partitioned into �nitely many classes Ti �� � i � a�� all non�empty� For any k�
set U � let pi�U � denote the number of t�subsets of U in the class Ti� Let P � �pij�
be the matrix whose columns are the distinct vectors �p��U �� � � � � pa�U ��� which
occur� Then� after re�ordering rows and columns if necessary� the matrix P
is upper triangular with non�zero diagonal �that is� pij � � for i � j� while
pii �� ���

Like all good Ramsey theorems	 this one has a �nite version as well� it holds
if � is su�ciently large in terms of t� k� a� Here the proof gives �su�ciently
large� as a vast	 iterated Ramsey number� yet there is some evidence that the
result holds for sets of quite modest size� Nobody knows the true value of this
Ramsey function�

Note that the fact that the rows of P are linearly independent is a simple
consequence of the Ramsey theorem	 and the inequality follows directly� �We
take the classes of t�sets to be the orbits of G� Now two k�sets giving rise to
di�erent columns lie in di�erent orbits	 so fk is at least equal to the number of
distinct columns	 which is at least the number ft of rows��

Macpherson	 in ���� and other papers	 has proved some powerful results
about the rate of growth of the sequence �fn�G��� For example	 if G is primitive
�that is	 preserves no non�trivial equivalence relation�	 then either fn�G� � �
for all n	 or the sequence grows at least exponentially�






� Direct and wreath products

Next we turn to two methods of constructing new groups from old� If our
groups are automorphism groups of homogeneous structures	 then these two
constructions translate into operations on the �nite substructures	 and hence
on the sequences enumerating them� These operations are quite general	 and do
not depend on having a group around� �This point is the heart of the philosophy
of these notes� In fact	 a combinatorial setting more general than group orbits
has been developed by A� Joyal ���� and his school	 under the name species�
This is very close in spirit to what I am doing here��

The operations on sequences can often be expressed concisely in terms of
their generating functions� Accordingly	 if G is oligomorphic	 we let

fG�t� �
�X
n��

fn�G�tn�

�Note that f��G� � �	 since there is a unique empty set��
First	 let�s have a couple of groups to feed into the constructions� Let S de�

note the symmetric group on an in�nite set	 and A the group of order�preserving
permutations of the rational numbers� Then fn�S� � fn�A� � � for all n� �This
is clear for S	 and follows for A from our proof of the homogeneity of Q�� Hence
fS�t� � fA�t� � ���� � t�� The Fra��ss�e class corresponding to S consists of
�nite sets without any additional structure� that for A consists of �nite totally
ordered sets� In each case	 there is just one object of each size n�

Let H be a permutation group on a set �	 and K a permutation group on
"� The direct product H�K �the set of all ordered pairs �h� k� with h � H and
k � K	 with pointwise operations� acts on the disjoint union of the sets � and
"	 where the �rst component of a pair acts on � and the second component
acts on "� Now a �nite subset of �	" has the form ��	"�	 where �� and "�

are �nite subsets of � and " respectively� two such sets lie in the same orbit
of H �K if and only if their intersections with � lie in the same H�orbit	 and
similarly for " and K� So the sequence �fn�H �K�� is the convolution of the
sequences �fn�H�� and �fn�K���

fn�H �K� �
nX
i��

fi�H�fn�i�K��

and the generating functions simply multiply� fH�K � fHfK � Note that the
terms of the sequence �fn�H�S�� are the partial sums of the sequence �fn�H���

More importantly	 we see that a structure in the Fra��ss�e class for H �K is
just the disjoint union of structures for H and K� So the direct product of per�
mutation groups corresponds to the disjoint union of combinatorial structures�
For example	 the objects in the Fra��ss�e class for S � S can be taken to be �nite
sets whose elements are coloured red and blue� and fn�S � S� � n! �	 since an
n�set can contain �� �� �� � � � � n blue elements�
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Figure �� ��" as a covering of "

There is another well�known permutation action of the direct product	 on the
Cartesian product of the sets � and "� the pair �h� k� maps ��� �� to ��h� �k��
�This is the product action of H �K�� If H and K are oligomorphic	 then so is
H �K in this action� However	 the number of orbits on n�sets is not uniquely
determined by the corresponding numbers for H and K� �Exercise	 check that	
in the product action	 f��S � S� � �	 while f��A � A� � ��� There are some
very interesting questions here	 but I won�t say any more about this�

The other construction is the wreath product of permutation groups� It is
convenient to build up the action �rst� The group G � HWrK acts on the
set � � "� but the factors should not be regarded as having the same status�
Rather	 think of ��" as the disjoint union of j"j copies of �	 each copy indexed
by a point of "	 as in Figure �� �Formally	 the copy �� of � indexed by � is
f��� �� � � � �g�� In topological terms	 we regard � � " as a covering of "
whose �bres are the sets ��	 each isomorphic to ��

The base group B of the wreath product consists of all permutations built
from j"j independently chosen elements of H	 each acting on the corresponding
�bre� It is a cartesian product of j"j copies of H� The top group T is the group
K	 permuting the �bres by acting on their indices according to its given action
on "� The wreath product is now the product BT � �In group�theoretic terms	
B is normalised by T and B 
 T � �	 so the wreath product is the semi�direct
product of B by T ��

What do the orbits of HWrK on n�sets look like# Each n�set is partitioned
by its intersections with the �bres� these intersections can be independently
permuted to any other sets in the same �bre by the base group� However	 the
way in which the set of parts of the partition is permuted by the top group is
less easy to describe�

Suppose that H and K are automorphism groups of homogeneous struc�
tures� Then an n�element structure in the Fra��ss�e class for HWrK consists of
a partition of the point set	 together with independently chosen structures from
the Fra��ss�e class for H on each part of the partition	 and a structure from the
Fra��ss�e class for K on the set of parts�

This combinatorial �composition�	 as with the disjoint union for the direct
product	 is meaningful even if there are no groups around� Consider the example
in the �rst section� The class of even graphs is the composition of the class of

 



Eulerian graphs with the Fra��ss�e class for S� while the class of two�graphs is the
composition of the Fra��ss�e class for S with the class of reduced two�graphs� �If
there were homogeneous structures for the relevant classes	 with automorphism
groups Even	 Eulerian	 TwoGr and RedTwoGr	 then we would have

Even � EulerianWrS� TwoGr � SWrRedTwoGr�

where � means that the orbit counting sequences �fn� are the same� �Unfortu�
nately	 the homogeneous structure exists only in the case of two�graphs�� These
relations express formally the puzzle at the end of the �rst section�

It turns out that the sequence �fn�HWrK�� is not determined by the cor�
responding sequences for H and K� We need the sequence �fn�H�� and more
detailed information about K� Later	 I will describe what information we ac�
tually need� Here	 I will describe the situation in two particularly important
examples� We have

fHWrS�t� �
�Y
i��

��� ti��fi�H� � exp

�
� �X
j��

fH �tj� � �

j

�
A �

while

fHWrA�t� �
�

�� fH �t�
�

These relations also describe the counting functions for the compositions of
classes of structures with S or A�

I will take the viewpoint that	 with any oligomorphic group K	 there is
associated an operator �which I also denote by K� on integer sequences	 so that

�fn�HWrK�� � K�fn�H���

If convenient	 the operator can be taken to act on generating functions� So	 for
example	 if the sequence f counts connected graphs of some type �e�g� Eulerian
graphs�	 then Sf counts disjoint unions of such graphs �e�g� even graphs�	 while
Af also describes disjoint unions but where there is a total order on the set of
components� Bernstein and Sloane ��� refer to the operators S and A as EULER
and INVERT respectively�

There is also a product action of the wreath product	 on the set of functions
from " to �� It is not oligomorphic unless H is oligomorphic and K is a �nite
permutation group �that is	 " is �nite�� As in the case of the direct product	 I
will not consider this action�

� N�free graphs and posets

In an experiment involving a number of nuisance factors with discrete levels	 the
statistician needs to allow for the fact that each nuisance factor may contribute
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to the variance of responses� The relationship among these factors therefore
needs to be clari�ed before the experiment can be designed �that is	 before the
assignment of treatments to experimental units can be decided�� Here is an
example� Suppose that we are testing various treatments on sheep� The sheep
are kept in a number of houses for a number of months �a month being the
period of one treatment�� A single experimental unit is a sheep for a month	
or a sheep�month� The relevant nuisance factors �apart from trivial ones� are
houses	 sheep	 house�months	 and months	 which are partially ordered as shown
in Figure ��

This poset is a distributive lattice	 and hence is representable as the lattice
of ancestral sets �up�sets� in a simpler poset	 formed by sheep	 houses	 and
months	 as in Figure ��

In statistical terminology	 sheep are nested ��� in houses	 since there is no
relation between the �fth sheep �say� in di�erent houses� On the other hand	
houses and months are crossed	 since both �same house� and �same month�
are potentially signi�cant� In general	 crossing two posets consists of taking
their disjoint union	 and nesting them to taking their ordered sum �where one
is above the other�� Statisticians had worked out rules for dealing with nesting
and crossing and their iterates ����	 but it turns out that a similar analysis can
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be developed for nuisance factors based on any poset �a poset block structure	
see Speed and Bailey ������

Poset block structures give a large class of imprimitive association schemes
whose P and Q matrices can be calculated exactly� Moreover	 they are homo�
geneous �assuming the poset is �nite� the association scheme may be �nite or
in�nite�� But my concern here is the question	 posed by Bailey ���� How typ�
ical are structures obtained by nesting and crossing# In particular	 how many
posets are obtained in this way	 and how does this number compare to the total
number of posets#

The symbol N will denote the graph or the poset which is shown in Figure ��
A graph or poset is called N�free if it doesn�t contain N as an induced substruc�
ture� The class of N�free graphs has been studied in many contexts	 under many
di�erent names� I summarise the main facts�

� The complement of an N�free graph is N�free�

� An N�free graph with more than one vertex is connected if and only if its
complement is disconnected�

� The class of N�free graphs is the smallest class containing the one�vertex
graph and closed under complementation and disjoint union�

� The edges of an N�free graph can be oriented to form an N�free poset�

� A poset is N�free if and only if it can be built from the one�element poset
by nesting and crossing�

We see that	 for n � �	 the numbers of connected and disconnected N�free
graphs on n vertices are equal� Let a be the sequence enumerating connected
N�free graphs� Then we have

a� � �� �Sa�n � �an for n � ��
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This gives a recurrence relation for an	 since �Sa�n is equal to an plus terms
involving ai for i � n� so the numbers are easily calculated� It is not an easy
recurrence to solve	 but it can be shown that the sequence grows exponentially�
The number an is a lower bound for the number of N�free posets�

We �bracket� the number of N�free posets as follows� An N�free biposet is a
set supporting two posets	 which are complementary �in the sense that any two
distinct points are comparable in exactly one of the posets� and both N�free�
Any N�free graph and its complement can be oriented to form an N�free biposet�
�Exercise	 show that	 if we set x � y when this relation holds in either poset
of an N�free biposet	 the result is a total order�� Given the order � � � � � � m
and biposets B�	 � � � 	 Bm	 we can combine them to get a new biposet B whose
diconnected poset is the disjoint union of the connected posets of the Bi and
whose connected poset is the ordered sum of the disconnected posets of the Bi�
Hence	 if b is the sequence enumerating N�free biposets for which the �rst poset
is connected	 then the total number of N�free biposets is �bn for n � �	 and we
have

b� � �� �Ab�n � �bn for n � ��

This also gives a recurrence which implies that bn grows exponentially� This
recurrence can be solved explicitly� if b�t� is the generating function	 and u�t� �
b�t�� � �so that u��� � ��	 we have

����� u� � � ! �u� t�

giving u � �
���! t�p�� �t! t��� The Binomial Theorem now gives a formula

for the coe�cients� The function u has a singularity at t � �� �
p
�	 so this is

its radius of convergence	 and the exponential constant is � ! �
p
��

Now let c and d be the sequences enumerating connected and disconnected
N�free posets	 where we use the strange convention that c� � d� � �� This
case is a curious mixture of the two preceding� Since any disconnected N�free
poset is a disjoint union of connected ones	 and any connected N�free poset �on
more than one element� an ordered sum of disconnected ones	 we get the mutual
recurrence

c� � d� � �� �Sc�n � �Ad�n � cn ! dn for n � ��

This enables the sequences to be calculated� They grow exponentially	 with
exponential constant approximately ���� �see Cameron ���� for more precise
asymptotics�� If c�t� and d�t� are the generating functions of the sequences	
then

c�t� ! d�t�� t� � �
�

�� d�t�
�

�Y
i��

��� ti��ci �

In any case	 we have more than enough information to answer the motivating
question� Since there are roughly �n

��� posets altogether �indeed	 this many
two�level posets�	 only a vanishingly small proportion of them are obtained by
nesting and crossing�
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� Algebraic interlude

There is a graded algebra which can be constructed from a permutation group	
such that the dimensions of its homogeneous components are the numbers of
orbits of the group on n�sets� Its algebraic structure can give a bit more insight
into the combinatorics of the orbits�

For any in�nite set �	 let Vn denote the set of all functions from
��
n

�
�the set

of n�element subsets of �� to your favourite �eld of characteristic zero �which I
will take to be the rational numbers here�� Each Vn is a rational vector space	
and V� has dimension � �there is only one empty set�� Now let

A �
�M
n��

Vn

be the direct sum of these spaces� We de�ne a multiplication on A by the rule
that	 for any f � Vk	 g � Vl	 the product fg is the function in Vk�l de�ned by

fg�M � �
X

K��Mk �

f�K�g�M nK�

for any �k! l��set M � This makes A a commutative	 associative	 graded algebra
over Q� �It is in fact the reduced incidence algebra of the poset of �nite subsets
of �	 but this fact plays no role here� I also remark that Glynn ���� has made use
of a similar algebra	 where the supports of the k�set and l�set to which f and g
are applied in de�ning the product are not required to be disjoint� This algebra
has very di�erent properties� Glynn uses it to study reconstruction problems��

An element of Vn is called a homogeneous element of degree n in the algebra
A� �This has no connection with our earlier usage of the word �homogeneous���
A particular homogeneous element of degree � is the constant function e with
value �� Multiplication by e induces a linear map from Vn to Vn�� for each n�
this map is represented by the matrix P of Section �	 and Theorem ��� implies
that it is a non�zero�divisor�

Now let G be a permutation group on �� Then G acts on each space Vn	 by
permuting the arguments of the functions� Let V G

n be the space of functions in
Vn �xed by G� Since a function is �xed by G if and only if it is constant on the
orbits of G	 we have

dim�V G
n � � fn�G�

if G is oligomorphic� Furthermore	 we de�ne

AG �
�X
n��

V G
n

to be the set of �xed points of G in A� If G �xes two functions	 it �xes their
product� so AG is a subalgebra of A� For oligomorphic groups G	 we see that
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the generating function fG�t� is the Poincar�e series of AG� In particular	 if S is
the symmetric group on �	 then AS is the polynomial algebra in one variable
over Q	 the generator being the element e de�ned above�

If G is oligomorphic	 then V G
n is spanned by the characteristic functions

of the G�orbits on n�sets� each orbit corresponds to an isomorphism type of
n�element structures in the Fra��ss�e class of G� According to our philosophy	
it is possible to de�ne an analogous algebra for more general classes of �nite
structures� I leave it as an exercise to write out the precise de�nition of this
algebra�

We now consider the structure of AG when G is a direct or wreath product�
The direct product is straightforward� we have

AH�K � AH �QAK �

Wreath products are more di�cult	 but there are results in some special
cases� First	 let G � SWrK� If K is a �nite permutation group on a set of size
n	 then it can be represented as a group of n� n matrices �using permutation
matrices corresponding to the elements of K�� Such a linear group K has a
ring I�K� of invariants	 the polynomial functions on Qn �xed by K� It turns
out that ASWrK is isomorphic to I�K�� In particular	 the generating function
fSWrK�t� is the Molien series ���� of the linear group K� If K is the symmetric
group Sn then	 by Newton�s Theorem	 I�K� is a polynomial ring generated by
the elementary symmetric functions	 which have degrees �� �� � � � � n� and we have

fSWrSn �t� �
nY
i��

��� ti����

There is a completely di�erent situation in which we can guarantee that AG

is a polynomial ring generated by homogeneous elements� Suppose that G is
the automorphism group of a homogeneous structure	 whose Fra��ss�e class has
a �good notion of connectedness�� �I will not de�ne this precisely� It holds
for graphs	 etc� In general	 what is required is that every structure can be
uniquely expressed as the disjoint union of connected structures	 and that given
an arbitrary structure and a partition of its points	 the structure �contains� �as
a substructure� the disjoint union of the induced substructures on its parts��
Then it can be shown that AG is a polynomial algebra� Its generators are in
one�to�one correspondence with the connected structures�

Now another interpretation of the S�transform is that	 if a sequence f enu�
merates the number of polynomial generators of given degree in a polynomial
algebra	 then the nth term of Sf is the degree of the nth homogeneous compon�
ent of the algebra� So the relation between connected and arbitrary structures
is exactly mirrored in the algebra�

A special case occurs for the group HWrS� Recall that a structure in the
Fra��ss�e class of this group consists of a set with a partition	 having a structure
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in the Fra��ss�e class of H on each part of the partition� Taking the connected
structures as those with just one part	 we have a �good notion of connectedness��
so AHWr S is a polynomial algebra with fn�H� generators of degree n for each
n� Note that the structure of AHWrS does not depend on the detailed structure
of AH 	 only on its Poincar�e series�

I end this section with a puzzle� There is a countable homogeneous two�
graph	 since �nite two�graphs form a Fra��ss�e class� Let G be its automorphism
group	 and consider AG� Is it a polynomial algebra# The answer is not known�
If it is	 then the number of polynomial generators of degree n is equal to the
number of Eulerian graphs on n vertices� Also	 how do reduced two�graphs �t
into the picture#

The general pattern of this puzzle is a group G for which the sequence
�an� � S���fn�G�� has a natural combinatorial interpretation� we want to know
whether AG is a polynomial algebra with generators enumerated by �an��

Here is an example where this approach succeeded	 and connected the theory
here with a very di�erent part of mathematics� Let q be a positive integer� It
is known that there is a partition of the set of rational numbers into q disjoint
dense subsets S�� � � � � Sq 	 and that any two such partitions are related by an
order�preserving permutation� Let G�q� be the group of permutations of Q
which preserve the order and the subsets S�� � � � � Sq� An orbit of G�q� on n�sets
is speci�ed by the word x� � � �xn in the alphabet A � f�� � � � � qg	 where xi is the
index of the set containing the ith point of the n�set �in the order induced by
Q�� Every word of length n is realised� so fn�G�q�� � qn�

Now AG�q� is the algebra spanned by the set A� of all words in the alphabet
A� multiplication of two words is given by the sum of all words obtained by
�shu$ing� them together� For example	 using fa� bg instead of f�� �g for the
alphabet	 we have

�ab� � �aab� � abaab! �aabab! �aaabb�

This is the shu
e algebra	 which arises in the theory of free Lie algebras �see
Reutenauer ��
��� It was proved by Radford ���� that the shu$e algebra on a
given alphabet is a polynomial algebra generated by the Lyndon words� In order
to explain these	 we assume that the alphabet A is totally ordered	 and take
the lexicographic order on the words� Now a Lyndon word is a word which is
smaller �in this order� than any proper cyclic shift of itself� that is	 w is a Lyndon
word if	 whenever w � xy is a proper factorisation	 we have w � yx� Now the
combinatorial assertions required for Radford�s theorem are the following�

�a� any word has a unique expression as a concatenation w�w� � � �wn	 where
w�� � � � � wn are Lyndon words and w� � w� � � � � � wn�

�b� of all the words which can be obtained by shu$ing Lyndon words w�� � � � � wn

together	 the lexicographically greatest is the concatenation in non�increasing
order�
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Now we take the �connected� words to be the Lyndon words	 and the relation
of �involvement� to be lexicographic order reversed� and this result �ts into the
previous formalism�

Note that the number of Lyndon words of length n is �
n

P
djn ��d�q

n�d	 where
� is the M�obius function� This is a well�known expression	 which also counts
�among other things� the number of monic irreducible polynomials of degree n
over the �nite �eld of order q	 if q is a prime power� But that is another story
�see Bailey et al� �����

� Reconstruction

The algebraic considerations of the last section are also related to the vertex
reconstruction conjecture for graphs� Viewed in this way	 we have a reconstruc�
tion problem for the age of any oligomorphic group� The details di�er greatly
from one class to another�

Let G be the automorphism group of the random graph	 so that the Fra��ss�e
class of G is the class of all �nite graphs� We can regard the vector space Vn
as having a basis which consists of the isomorphism types of n�vertex graphs�
Let Tn�n�� be the linear map from Vn to Vn�� which takes each n�vertex graph
to the sum of its �n � ���vertex induced subgraphs� Then Tn�n�� is the map
represented by the matrixM of Section �� its dual is the map Tn���n from Vn��
to Vn induced by multiplication by the element e of the preceding section	 with
matrix P as in Section ��

Now two n�vertex graphs are hypomorphic if they have the same deck of
vertex�deleted subgraphs� that is	 if their images under Tn�n�� are equal� So if
X and Y are hypomorphic	 then X � Y � ker�Tn�n���� Moreover	 for any X
and Y 	 if aX ! bY � ker�Tn�n���	 with ab �� �	 then b � �a	 and X and Y are
hypomorphic�

So the vertex reconstruction conjecture for graphs can be stated in the form�
For n � �� the kernel of Tn�n�� has minimum weight greater than �� �The
minimum weight of a subspace	 as in coding theory	 is the smallest number of
non�zero coordinates of a non�zero vector in that subspace��

We could thus ask the question� What is the minimum weight of ker�Tn�n����
For example	 a trivial upper bound for the minimum weight is � ! n�� if n is
even� For	 if Xn�k is the graph with n vertices and k disjoint edges	 then

hXn��� Xn��� � � � � Xn�n��iTn�n�� � hXn����� Xn����� � � � � Xn���n����i�

So some non�zero element in hXn��� � � � � Xn�n��i belongs to the kernel of Tn�n���
This can surely be improved� but is the minimumweight bounded by an absolute
constant#

We can generalise further	 and ask� What is the minimum weight of ker�Tn�m�
for m � n� �We de�ne Tn�m to be the linear map taking an n�vertex graph to
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the sum of its m�vertex subgraphs�� Since

Tn�lTl�m �

�
n�m

l �m

	
Tn�m

for m � l � n	 the minimum weight of ker�Tn�m� decreases as m decreases� Is
there an absolute constant k such that ker�Tn�n�k� has minimum weight � for
all n�

Two further generalisations suggest themselves� First	 what happens if we
work instead over a �eld of non�zero characteristic p �such as the integers mod
p�# If p divides n	 then ker�Tn�n��� has minimumweight �� any graph with all
its vertex�deleted subgraphs isomorphic belongs to the kernel �for example	 any
vertex�transitive graph��

Second	 these questions can be posed for other Fra��ss�e �or more general�
classes of structures� As an example	 consider strings of length n over a binary
alphabet fa� bg� As earlier	 we consider these as sets with a total order whose
elements are partitioned into two distinguished subsets� So a substructure is a
�not necessarily consecutive� substring� The class of such strings is the Fra��ss�e
class of the group G��� of order�preserving permutations of Q which �x two
complementary dense subsets�

Now Tn�m maps a string to the sum of its m�element substrings	 counted
with multiplicities� Call two strings u and v m�equivalent if they have the same
image� that is	 if each string of length m has the same multiplicity in u and v�
�This can be extended to strings of length less than m by de�ning such a string
to be m�equivalent only to itself�� For example	 the strings X � abbbaab and
Y � baabbba of length  are ��equivalent	 since T	�
 maps both X and Y to

aaa! �aab! �aba! �abb! �baa! �bab! �bba! �bbb�

Now the obvious question is� What is the smallest n� as a function of m� for
which there are two m�equivalent binary strings of length n� The answer is not
known	 and the known upper and lower bounds are very far apart� John Dixon
���� proved a result characterising m�equivalence in purely algebraic terms� He
showed that two strings are m�equivalent if and only if	 when regarded as words
in the generators of the free nilpotent group of class m	 they are equal�

The edge reconstruction conjecture for graphs can be �tted into this form�
alism to some extent as well� Let G be the symmetric group on an in�nite set
�say N�	 in its induced action on the set � �

�
N

�

�
of ��element subsets of N�

Now an n�element member of the Fra��ss�e class of G consists of a graph with n
edges �in other words	 an n�vertex graph which is a line graph	 in a speci�ed
way� so the triangle counts twice	 according as it is the line graph of a triangle
or of a star�� The edge�reconstruction conjecture asserts that ker�Tn�n��� has
minimum weight greater than � in this class	 provided that n � �� Questions
like those posed earlier for vertex�reconstruction can now be asked�
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There are further links between edge�reconstruction and �nite permutation
groups� but that is another story�

� Cycle index

Now we come to the rule for calculating the sequence operator corresponding
to any oligomorphic group� We will also see how to count orbits on ordered
n�tuples of distinct elements �which amounts to the same thing as enumerating
labelled structures in the Fra��ss�e class of the group��

We begin with a little P�olya theory� Let � be a �nite set of size n� For any

permutation g of �	 we de�ne the cycle index z�g� of g to be s
c��g�
� s

c��g�
� � � �scn�g�n 	

where s�� s�� � � � � sn are independent indeterminates	 and ci�g� is the number of
cycles of length i in the cycle decomposition of g� If G is a permutation group
on �	 the cycle index of G is the average of the cycle indices of its elements�

Z�G� �
�

jGj
X
g�G

z�g��

The role of the cycle index in enumeration problems is well�known�
Clearly it is impossible to de�ne the cycle index of an in�nite group by any�

thing like this formula� so we adopt a di�erent approach� Let G be oligomorphic�
Choose representatives for the orbits of G on �nite subsets of �� For each such
representative "	 let H�"� be the group induced on " by its setwise stabiliser
in G� Now de�ne the modi�ed cycle index %Z�G� of G to be

%Z�G� �
X
�

Z�H�"���

where the sum is over the orbit representatives� This is meaningful	 since by
assumption there are only �nitely many orbits of size n	 and hence a monomial
of weight n occurs only �nitely many times in the sum �where the weight of
sc�� s

c�
� � � �scnn is de�ned to be c� ! �c� ! � � �! ncn��
This procedure is meaningful for �nite groups G	 but it gives nothing new�

in fact	 for a �nite group G	 %Z�G� is obtained from Z�G� by the substitution
replacing si by si !� for all i� �For experts in P�olya theory	 this is an exercise��

I now list three pairs of facts about the modi�ed cycle index� �rst	 its values
for the groups S and A� second	 its behaviour under taking direct and wreath
products� and third	 a couple of interesting specialisations of it� First	 another
de�nition� If G is oligomorphic on �	 we let Fn�G� be the number of G�orbits
on n�tuples of distinct elements of �� The �niteness of this number for all n is
equivalent to the oligomorphy of G� indeed	 we have

fn � Fn � n�fn
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for all n� If G is the automorphism group of a homogeneous relational structure
X	 then Fn�G� is the number of labelled n�element structures in the Fra��ss�e class
�that is	 the number of structures on the set f�� �� � � �� ng which are embeddable
in X�� As standard in enumeration theory	 we describe the sequence �Fn� by
an exponential generating function given by

FG�t� �
�X
n��

Fn�G�tn

n�
�

� %Z�S� � exp

�
� �X

j��

sj
j

�
A�

� %Z�A� �
�

�� s�
�

� %Z�H �K� � %Z�H� %Z�K��

� %Z�HWrK� is obtained from %Z�K� by substituting %Z�H��si� s�i� � � �� � �
for si	 for i � �� �� � � ��

� fG�t� is obtained from %Z�G� by substituting ti for si for i � �� �� � � ��

� FG�t� is obtained from %Z�G� by substituting t for s� and � for si for
i � �� �� � � ��

It follows from the direct product rule and the two specialisations that	 as
well as fH�K �t� � fH �t�fK �t�	 we also have FH�K�t� � FH�t�FK�t�� But	
because these are exponential generating functions	 the convolution rule for
sequences is a little di�erent	 namely

Fn�H �K� �
nX

k��

�
n

k

	
Fk�H�Fn�k�K��

This is the so�called exponential convolution�
The �fth of the six points gives us the rule for calculating the sequence

�fn�HWrK�� from �fn�H��� fHWrK�t� is obtained from %Z�K� by substituting
fH�ti� � � for si	 for i � �� �� � � �� We see that the information about K we
require is its modi�ed cycle index� Accordingly	 for any oligomorphic group K	
we can de�ne an operator K on sequences by using this rule	 so that

K�fn�H�� � �fn�HWrK���

In a similarway	 wreath products de�ne operators on the sequences �Fn�H���
These operators are much easier to work with	 since they are just given by
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substitution in the exponential generating functions	 after �rst removing the
constant term�

FHWrK�t� � FK�FH �t�� ���

The most famous case of this occurs when H is the symmetric group S�
We have FS�t� � exp�t�	 and FSWrK�t� � FK�exp�t� � ��� In particular	
FSWrS�t� � exp�exp�t� � ��	 the exponential generating function for the se�
quence of Bell numbers� �The nth Bell number counts partitions of an n�set	
that is	 Fra��ss�e structures for the group SWrS�� This operation has another
interpretation� If F �n�G� denotes the number of orbits of G on all n�tuples �of
not necessarily distinct elements�	 then we have

F �n�G� � Fn�SWrG��

as can be seen by replacing identical points of " in an n�tuple �where G acts
on "� by distinct points of the �bre over that point� Furthermore	 this relation
is equivalent to

F �n�G� �
nX

k��

S�n� k�Fk�G��

where S�n� k� is the Stirling number of the second kind	 the number of partitions
of an n�set into k parts� The operator on sequences given by the above formula
is called STIRLING by Bernstein and Sloane ����

�Dual� to this operator	 in some sense	 is the operator which maps �Fn�G��
to �Fn�GWrS��	 given by FGWr S�t� � exp�FG�t�� ��� This operator	 referred
to as EXP in ���	 maps the sequence enumerating labelled connected structures
in some class to arbitrary labelled structures in the class� the same job that S
�or EULER� does for the unlabelled structures� Explicitly	 it is given by the
recurrence

An �
nX

k��

�
n� �

k � �

	
CkAn�k�

where �Cn� � �Fn�G�� counts connected objects and �An� � �Fn�GWrS��
counts arbitrary ones�

	 A product identity

This section contains a proof of the identity

et����t� �
�Y
n��

��� tn����n��n�

where � is Euler�s totient function� We need another example of an oligomorphic
group�
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Let C be the group of all permutations preserving the cyclic order on the
complex roots of unity� �The cyclic order is a ternary relation R which holds for
�x� y� z� when the points are visited in this order starting at x and proceeding in
an anticlockwise sense around the circle� so	 if R�x� y� z� holds	 then R�y� z� x�
holds but R�x� z� y� doesn�t�� The group C is transitive	 and the stabiliser of
a point preserves a linear order on the remaining points� so the stabiliser is
isomorphic to A� Using this fact	 or by showing that the relational structure is
homogeneous �much as we did for A earlier�	 we see that C has just one orbit
on n�sets for every n � �	 and the stabiliser of an n�set induces on it the cyclic
group Cn of order n�

Now Cn contains ��d� elements of order d for each divisor d of n� and each
of these elements has n�d cycles of length d� So we have

%Z�C� � � !
�X
n��

�

n

X
djn

��d�s
n�d
d

� � !
�X
d��

��d�

d

�X
m��

smd
m

� ��
�X
d��

��d�

d
log��� sd��

Since fn�C� � � for all n	 we have fC�t� � ����� t� � � ! t���� t�� Hence

� !
t

�� t
� ��

�X
d��

���d��d� log��� td��

Now subtracting � from each side	 taking the exponential	 and replacing the
dummy variable d by n gives the result�

Note that	 having worked out %Z�C�	 we can write down the sequence operator
corresponding to C	 in terms of its action on generating functions�

�Cf��t� � ��
�X
n��

��n�

n
log�� � f�tn���

Having added C to our repertoire	 it is interesting to consider the group
CWrS� A member of the Fra��ss�e class for it consists of a set carrying a parti�
tion with a circular order on each part� This is precisely the speci�cation of a
permutation	 decomposed into disjoint cycles� So the group CWrS �represents�
permutations�

The numbers of permutations and of total orders on an n�set are both equal
to n�� So there should be some relation between CWrS and A� However	
the bijection between linear orders and permutations is not a �natural� one�
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we must �rst choose a distinguished order 		 and then any other order is a
permutation of 	�

We know already that %Z�A� � ���� � s��� A straightforward calculation	
using the value of %Z�C� found above	 shows that %Z�CWrS� �

Q
n����� sn�

���
These two expressions are di�erent� but	 to compute the e�g�f� for the number
of labelled structures	 we substitute t for s� and � for sn �n � ��� the results
are the same	 as they should be�

FA�t� � FCWr S�t� � �� � t����

�
 Stirling numbers

We already saw that Stirling numbers are involved with the formalism of wreath
products� It is possible to de�ne and generalise them using this philosophy�

I begin with a brief course on Stirling numbers� The Stirling number of the
�rst kind	 S�n� k�	 is the number of partitions of an n�set into k parts� We see
immediately that the sum

Pn
k�� S�n� k� � B�n� �the Bell number� is the total

number of partitions of an n�set	 which we recognise as Fn�SWrS��
The unsigned Stirling number of the second kind	 s�n� k�	 is the number of

permutations of an n�set with k disjoint cycles� Thus we have
Pn

k�� s�n� k� �
n� � Fn�A�� It is more useful to re�interpret this in the light of the remarks in
the last section� A permutation with k cycles is given by a partition into k parts
with a cyclic order on each part� and we have

Pn
k�� s�n� k� � Fn�CWrS��

This immediately suggests a generalisation� Let G be any oligomorphic
permutation group� We de�ne the generalised Stirling number S�G��n� k� to
be the number of partitions of an n�set into k parts	 with a member of the
Fra��ss�e class for G on each part� Thus we have

Pn
k�� S�G��n� k� � Fn�GWrS��

In this notation	 the �classical� Stirling numbers are S�n� k� � S�S��n� k� and
s�n� k� � S�C��n� k��

It is clear that the generalised Stirling numbers S�G��n� k� are determined
by the numbers Fn�G�� This can be expressed most concisely in terms of the
exponential generating functions�

�X
n�k

S�G��n� k�tn�n� � �FG�t�� ��k�k��

From this	 the equation FGWrS�t� � exp�FG�t� � �� is obtained by summing
over k�

The generalised Stirling numbers have a composition property�

nX
l�k

S�G��n� l�S�H��l� k� � S�GWrH��n� k��
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For consider S�G��n� l�S�H��l� k�� This counts pairs consisting of a partition
of f�� � � � � ng into l parts with a G�structure on each part	 and a partition of
the set of parts into k parts with an H�structure on each part� �Here �G�
structure� is short for �member of the Fra��ss�e class of G��� Viewed otherwise	
we have a partition of f�� � � � � ng into k parts	 each part carrying a partition into
�subparts� with a G�structure on each subpart and an H�structure on the set
of subparts �in other words	 a GWrH�structure�	 subject to the condition that
there are l subparts altogether� Summing over l removes the �nal condition and
yields S�GWrH��n� k��

This result can be expressed more compactly in matrix form� Let T �G� be the
triangular array of generalised Stirling numbers associated with G	 the in�nite
lower triangular mtrix with �n� k� entry S�G��n� k�� Then we have

T �G�T �H� � T �GWrH��

For example	 T �S� and T �C� are the arrays of classical Stirling numbers� and we
have

T �C�T �S� � T �CWrS� � T �A��

The numbers S�A��n� k� are the Lah numbers L�n� k�	 sometimes called
�Stirling numbers of the third kind�� see Lah �� �	 Bridgeman �
�� Unlike the
classical Stirling numbers	 there is a closed formula for the Lah numbers�

L�n� k� �
�n� ���

�k � ���

�
n

k

	
�

n�

k�

�
n� �

k � �

	
�

This can be shown by using the formula

X
n�k

L�n� k�tn�n� �

�
t

�� t

	k
�k�

and computing the coe�cient of tn on the right�hand side�

In a similar manner	 it can be shown that

nX
k��

S�G��n� k�Fk�H� � Fn�GWrH��

This property generalises the STIRLING transform we met earlier�

There is another remarkable property of classical Stirling and Lah numbers�
Let S��G��n� k� � ����n�kS�G��n� k� be the signed generalised Stirling numbers	
and let T ��G� be the corresponding triangular array� Then

nX
l�k

S�n� l�����l�ks�l� k� � �nk�
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or in other words
T �S�T ��C� � I�

It follows that also T �C�T ��S� � I and T �A�T ��A� � I� I do not know whether
this inversion relation has analogues for other groups�

�� Stabilisers and derivatives

We�ve seen that the group�theoretic operations of direct and wreath product
�correspond� to multiplication and composition of formal power series� It is
possible to interpret di�erentiation in similar terms� In this section	 I assume
that the permutation group G is transitive on �	 though it is possible to formu�
late the results more generally�

The stabiliser G� of the point 
 � � is the subgroup of G consisting of the
permutations which �x 
� We consider it as a permutation group on � n f
g�
Now we have

%Z�G�� �
�

�s�
%Z�G��

It follows that

FG��t� �
d

dt
FG�t��

�In fact	 it is easy to see this directly� Di�erentiating an exponential generating
function corresponds to shifting the terms of the sequence one place to the left	
so the preceding equation says

Fn�G�� � Fn���G��

The correspondence between orbits of G� on n�tuples and of G on �n!���tuples
can be described thus� take an orbit of G on �n!���tuples	 select all the tuples
which begin with 
	 and delete 
 from them��

On the other hand	 the sequence �fn�G��� is not determined by �fn�G���
The Fra��ss�e class for G� is obtained from that for G by distinguishing a

point x in each �nite substructure and deleting x� �This is not the same as just
deleting a point	 since it leaves a shadow	 the extra structure obtained when x
was distinguished� For example	 if the objects in the Fra��ss�e class are graphs	
then by distinguishing and deleting x we specify a subset of the remaining
vertices	 those which were joined to x�� In view of the e�ect on the generating
function	 I will denote this operation on Fra��ss�e classes by ��

Two�graphs provide an example �see Seidel ������ If x is a point of the two�
graph �X�T �	 there is a unique graph in the corresponding switching class with
the property that x is an isolated vertex� Thus	 if Gr and TwoGr denote the
classes of graphs and two�graphs	 we have

Gr � �TwoGr�

��



In combinatorial terms	 it is more natural to leave the point x in	 obtaining
a �rooted� structure� This is easily handled� adding the �xed point back in
corresponds to taking the direct product of G� with the trivial group acting on
a single point	 whose modi�ed cycle index is � ! s��

Having de�ned derivatives	 we can consider di�erential equations� For ex�
ample	 is there a group G for which G�

�� G � G# For such a group	 the
function F � FG satis�es F � � F �	 F ��� � �	 with solution F �t� � �� � t����
Thus Fn�G� � n�� This sequence is the same as the one realised by the group
A� Indeed	 the stabiliser of � in A has two orbits	 the positive and the negative
rationals� each orbit	 as ordered set	 is isomorphic to Q	 and A� induces all
order�preserving permutations on each� So indeed G � A satis�es the original
equation� �The fact that �A � A�A	 where A is the class of �nite total orders	
can be regarded as the basis for the recursive QUICKSORT algorithm ��
� for
sorting a list� select an element �	 partition the list into elements before and
after �	 and sort these two sublists��

The group G � CWrS also satis�es Fn�G� � n�	 corresponding combinator�
ially to the fact that any permutation can be decomposed into a disjoint union
of cycles� This group	 like A itself	 satis�es the related equation G�

�� A �G�
What about the di�erential equation G� � GWrG# It can be shown that

no such group exists� Nevertheless	 we obtain an interesting integer sequence
�Fn�G�� for such a non�existent group� With f�t� � FG�t� � �	 we have

f ��t� � � ! f�f�t��� f��� � ��

somewhat reminiscent of the Feigenbaum�Cvitanovi�c equation

g�t� � �
g�g�t�
��

�Feigenbaum ������ The unique power series solution does not converge in any
neighbourhood of �� Is the a combinatorial interpretation of the coe�cients �a
class of structures enumerated by them�# The �rst few terms of the sequence
are �	 �	  	 � 	 ���	 �
�
	 �� �
	 ��� ��	  � ��
�	 � � � �

�� The probability of connectedness

According to Cayley�s Theorem	 the number of labelled trees on n points is
nn��� It is a surprising fact	 proved by R�enyi �� � in ��
�	 that the number of
labelled forests on n points is asymptotic to cnn��	 where c �

p
e� that is	 the

probability that a random forest on f�� �� � � �� ng is connected tends to ��
p
e as

n 
 �� �I am grateful to Dominic Welsh for this reference�� Moreover	 for
labelled forests of rooted trees	 the limiting probability of connectedness is ��e�

In terms of our earlier notation	 if Cn � nn�� and �An� is the sequence
obtained by applying the operator EXP to �Cn�	 then limn	�An�Cn �

p
e�

And	 if we put Cn � nn�� instead	 the limit is e�

��



One could ask more generally� for which classes of structures �with a notion
of connectedness� is it true that the probability of connectedness for a labelled
or unlabelled structure tends to a limit strictly between zero and one# A class of
examples is provided by the N�free graphs� As we saw	 exactly half of the N�free
graphs on n points are connected if n � �	 and this is true for labelled or un�
labelled structures	 since complementation gives a bijection between connected
and disconnected structures� Furthermore	 it can be shown that the probability
that a �labelled or unlabelled� N�free poset is connected tends to the golden
ratio as the number of points tends to in�nity �see ������

In the unlabelled case	 it is easy to handle rooted trees	 since the number of
forests of rooted trees on n vertices is equal to the number of rooted trees on n!�
vertices� �Take a new root	 and join it to all the old roots�� Since these numbers
grow exponentially with constant ���

 �� � � ����	 the limiting probability of
connectedness is the reciprocal of this number	 namely ����
��� � � � It appears
that exponential growth for the number of n�element unlabelled structures is
necessary for the probability of connectedness to be strictly between � and �	
though I cannot prove such a precise result�

In terms of groups	 the question becomes� for which oligomorphic groups G
is it true that either limn	� Fn�GWrS��Fn�G�	 or limn	� fn�GWrS��fn�G�	
exists and is �nite and greater than �# Having formulated the question in this
way	 it immediately generalises� We can replace the group S by any oligomorphic
group	 take the wreath product in either order	 or use direct product instead of
wreath product� For more on this	 see �����

�� Two�graphs revisited

The last story	 like the �rst	 is about two�graphs	 and is taken from Cameron ���	
which contains all references for this section �and is available electronically��

There is a simple construction for two�graphs from trees	 as follows� Let T
be a tree with edge set �� Now let T consist of all triples of edges which do not
lie on a path in the tree �those for which the paths connecting them in the tree
form a subtree containing a trivalent vertex�� It is easily veri�ed that ��� T �
is a two�graph �by considering the four possible con�gurations of four edges��
These two�graphs arose in the work of Tsaranov �� � on a class of groups related
to Coxeter groups� Which two�graphs are produced by the construction#

The pentagon and hexagon two�graphs refer to the two�graphs associated	
as in the �rst section	 with the switching classes of the pentagon and hexagon
graphs respectively� In �
�	 I proved that a two�graph arises from a tree by the
construction described if and only if it doesn�t contain either the pentagon or
the hexagon two�graph as an induced substructure� Moreover	 non�isomorphic
trees give rise to non�isomorphic two�graphs� This solves the counting problem
for unlabelled pentagon� and hexagon�free two�graphs� the number on n points
is equal to the number of trees with n edges	 calculated by Otter �����

�




However	 there is a further di�culty associated with counting the labelled
pentagon� and hexagon�free two�graphs� For example	 a path with n edges can
have its edges labelled in n��� di�erent ways	 but all of these give rise to the
null two�graph �the two�graph with no triples��

The solution to the problem comes by showing that the two�graph obtained
from a tree T is reduced �in the sense of the �rst section� if and only if the tree
is series�reduced	 that is	 has no vertices of valency �� So we should �rst count
the series�reduced edge�labelled trees� The number of these with n edges turns
out to be

xn �
�

n

n��X
j��

����j
�
n! �

j

	�
n� �

j

	
j��n! �� j�n���j

for n � �	 with x� � �� Then the number of labelled pentagon� and hexagon�free
two�graphs is given by the STIRLING transform

nX
k��

S�n� k�xk�

We have a language to describe this behaviour� We can associate a sequence
operator with a class of objects even if it is not the Fra��ss�e class associated
with some group� de�ne the �modi�ed cycle index� to be the sum of the cycle
indices of the automorphism groups of the unlabelled structures in the class	
and then use the same formalism as described earlier� Now series�reduced trees
�counted by edges� and reduced pentagon� and hexagon�free two�graphs have
the same modi�ed cycle index	 because of the correspondence	 and hence de�ne
the same sequence operator� If we denote this class by SRT 	 then the class of
all pentagon� and hexagon�free two�graphs corresponds to SWrSRT 	 and the
class of all trees to AWrSRT apart from a slight mismatch for paths� �The
edges on a path have two possible orders which cannot be distinguished	 but
which are counted twice by AWrSRT ��

The class of pentagon�free two�graphs �those containing no induced pentagon�
is also interesting� It is closely connected with the class of N�free graphs� in fact	
the operator �	 applied to the class of pentagon�free two�graphs	 gives the class
of N�free graphs �like the relation between two�graphs and graphs�� Its members
can also be represented by trees �in a di�erent way�� and it can be enumerated
by techniques similar to those described� This is also found in �
�	 ����

End note

Jalaluddin Rumi was one of the leading Su� poets� The story of the blind
people and the elephant is common to several other religious traditions	 includ�
ing Quakers and Buddhists�

��
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