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Let Xi,Xs,...,X, be a sequence of independent random variables. A huge
amount of work has been done on estimating the L,-norm of the sum of the Xs:
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We first discuss Khintchine’s inequality [1], which deals with the Rademacher se-
quence £1,&y,...,E,, Where
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P(er=1)=P(gp, =—-1)=1/2  (symmetric Bernoulli distribution)

for each k. It is known that there exist constants A,, B, such that the bounds
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hold for arbitrary ¢y,¢,..., ¢, € R and n > 1. Szarek [2] and Haagerup [3], building
on [4,5,6,7, 8, 9|, proved that the best such constants are
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where W = 271/2(g; + &5), Z is Normal(0, 1), and py = 1.8474163360... is the unique
solution of the equation
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in the interval 0 < p < 2. In words, if 37, ¢? = 1, then A, = 2792 and B, = 1
encompass the average of | & ¢; & ¢o + -+ - & ¢,| taken over all 2" possible choices of
signs. See also [10, 11, 12, 13, 14, 15].

A complex analog of Khintchine’s inequality deals with the Steinhaus sequence
£1,€9,...,En, Where g is uniformly distributed on the unit circle {z : |z| = 1} for
each k. We keep notation identical to before, except that we allow ¢y, ¢s,..., ¢, € C.
The best constants A,, B, in the inequality
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were conjectured by Haagerup [16] to be
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where W = 271/2(g1+¢5), Z = 27V/2(U+44V) with U, V independent and Normal(0, 1),
and po = 0.4756170089... is the unique solution of the equation
1 2\\?
7 (7)< va ((757)
2 2
in the interval 0 < p < 2. Here, if 37 |cx|? = 1, then 4; = \/7/2 and B; = 1
encompass an average taken over all “complex signs” rather than only “real signs” as
earlier. Sawa [17] announced that he could verify significant portions of Haagerup’s
conjecture, but only the case p &~ 1 was published. See also [14, 15, 18, 19]. We

mention as well the following result [20, 21| for which p = 1 and n is the parameter

of interest:
E <
0

where Jy(t) is the zeroth Bessel function of the first kind. On the one hand, we have

2 71— cos(t)"
z / ﬂdt for the real case

) - }001 - JO(t:)n

t2

n
> e
k—1

dt for the complex case
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for the real case, where m = [ (n — 1)/2]. On the other hand, the Bessel integral takes
on the values 1, 4/7, 1.57459723... and 1.79909248... for n = 1, 2, 3 and 4. Keane
[22] recently determined that the third value in this list has the following closed-form
expression:

1 /1N /1V? N2 1\
———I‘<—> I‘<§> —%48WI‘<—> 1‘(—) _ 1.5745972375...
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2

for symmetric random variables (meaning that the distribution of —X is the same

but the fourth value still remains open.
We next discuss Rosenthal’s inequalities [23]:
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for nonnegative random variables and

> X
k=1

>
k=1

n 1/10
< D, - max (znxkng) |
» k=1 k=1

as the distribution of X). A variation of the latter inequality arises if we loosen the
restrictive hypothesis “symmetric” to “zero mean”; the constant is then denoted £,
rather than D,. Johnson, Schechtman & Zinn [24| showed that the growth rate of
the best constants C,, D,, E, is p/In(p) as p — oo; in contrast, the growth rate for
By is only /p. Subsequent work [25, 26, 27, 28| yielded that

1 ifp=1 1 L p=2
Cp=4 27 ifl<p<2 . Dy={ (14]2)5)" if2<p<4
1Ql, f2<p<oo IR -S|, if4<p<oo

where () is Poisson(1), Z is Normal(0,1), and R, S are independent Poisson(1/2)
variables. It is known that ||Q[" = au, and ||R — S|27 = B, for integer m, where
{am}oe  ={1,2,5,15,52,203,...} is the sequence of Bell numbers [29, 30|

Oy, = — = ——exp (exp(z) — 1)
J Oj' dx

=0
and {On oo = {1,4,31,379,...} is the sequence

2 0o 00 2m d2m

exp (cosh(x) — 1)
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Ibragimov & Sharakhmetov [31] conjectured that

1/p .
5, = (1+1212) if2<p<4
1Q —11, if 4 <p<oo

and proved that this is true when p = 2m; further, ||Q — 1|57 = v, and {v,,}2°_, =
{1,4,41,715,...} is the sequence

j _ 1 d2m
Z ) da:2m exp (exp(z) —z — 1)

=0

Combinatorial interpretations apply for each of the three sequences: «,, is the number
of partitions of an n-element set into blocks; 3, is the number of partitions of a 2n-
element set into blocks, each containing an even number of elements; and +, is the
number of partitions of a 2n-element set into blocks, each containing more than one

element [30].
)<

Define the following Orlicz-type norm:
for an arbitrary sequence = = { X}, of independent random variables, for any

[E]p:inf{)\>0: ﬁE(‘

p > 0. We mention Latala’s inequality [32]:
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which holds either if all the Xs are nonnegative and p > 1, or if all the Xs are
symmetric and p > 2. Observe here that the bounds do not depend on p, unlike the
earlier inequalities. For the nonnegative case, Hitczenko & Montgomery-Smith [33]

improved the left-hand constant (e — 1)/(2¢?) = 0.116272... to £ = 0.154906..., where

¢ is the unique positive solution of the equation

i 2/<:+1 o

Z =e

It is not known if this improvement carries over to the symmetric case, nor whether
a calculation of best constants is feasible at present.
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