Moments of Sums

Steven Finch

April 23, 2004
Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of independent random variables. A huge amount of work has been done on estimating the L_{p}-norm of the sum of the $X \mathrm{~s}$:

$$
\left\|\sum_{k=1}^{n} X_{k}\right\|_{p}=\left\{\mathrm{E}\left(\left|\sum_{k=1}^{n} X_{k}\right|^{p}\right)\right\}^{1 / p}, \quad p>0 .
$$

We first discuss Khintchine's inequality [1], which deals with the Rademacher sequence $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$, where

$$
\mathrm{P}\left(\varepsilon_{k}=1\right)=\mathrm{P}\left(\varepsilon_{k}=-1\right)=1 / 2 \quad \text { (symmetric Bernoulli distribution) }
$$

for each k. It is known that there exist constants A_{p}, B_{p} such that the bounds

$$
A_{p}\left(\sum_{k=1}^{n} c_{k}^{2}\right)^{1 / 2} \leq\left\|\sum_{k=1}^{n} c_{k} \varepsilon_{k}\right\|_{p} \leq B_{p}\left(\sum_{k=1}^{n} c_{k}^{2}\right)^{1 / 2}
$$

hold for arbitrary $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{R}$ and $n \geq 1$. Szarek [2] and Haagerup [3], building on $[4,5,6,7,8,9]$, proved that the best such constants are

$$
\begin{gathered}
A_{p}=\left\{\begin{array}{ll}
\|W\|_{p} & \text { if } 0<p \leq p_{\mathbf{0}} \\
\|Z\|_{p} & \text { if } p_{\mathbf{0}}<p<2 \\
1 & \text { if } 2 \leq p<\infty
\end{array}= \begin{cases}2^{1 / 2-1 / p} & \text { if } 0<p \leq p_{\mathbf{0}} \\
2^{1 / 2}\left(\frac{\Gamma((p+1) / 2)}{\sqrt{\pi}}\right)^{1 / p} & \text { if } p_{\mathbf{0}}<p<2 \\
1 & \text { if } 2 \leq p<\infty\end{cases} \right. \\
B_{p}=\left\{\begin{array}{ll}
1 & \text { if } 0<p \leq 2 \\
\|Z\|_{p} & \text { if } 2<p<\infty
\end{array}= \begin{cases}1 & \text { if } 0<p \leq 2 \\
2^{1 / 2}\left(\frac{\Gamma((p+1) / 2)}{\sqrt{\pi}}\right)^{1 / p} & \text { if } 2<p<\infty\end{cases} \right.
\end{gathered}
$$

where $W=2^{-1 / 2}\left(\varepsilon_{1}+\varepsilon_{2}\right), Z$ is $\operatorname{Normal}(0,1)$, and $p_{0}=1.8474163360 \ldots$ is the unique solution of the equation

$$
\Gamma\left(\frac{p+1}{2}\right)=\frac{\sqrt{\pi}}{2}
$$

[^0]in the interval $0<p<2$. In words, if $\sum_{k=1}^{n} c_{k}^{2}=1$, then $A_{1}=2^{-1 / 2}$ and $B_{1}=1$ encompass the average of $\left| \pm c_{1} \pm c_{2} \pm \cdots \pm c_{n}\right|$ taken over all 2^{n} possible choices of signs. See also $[10,11,12,13,14,15]$.

A complex analog of Khintchine's inequality deals with the Steinhaus sequence $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$, where ε_{k} is uniformly distributed on the unit circle $\{z:|z|=1\}$ for each k. We keep notation identical to before, except that we allow $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{C}$. The best constants A_{p}, B_{p} in the inequality

$$
A_{p}\left(\sum_{k=1}^{n}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq\left\|\sum_{k=1}^{n} c_{k} \varepsilon_{k}\right\|_{p} \leq B_{p}\left(\sum_{k=1}^{n}\left|c_{k}\right|^{2}\right)^{1 / 2}
$$

were conjectured by Haagerup [16] to be

$$
\begin{gathered}
A_{p}=\left\{\begin{array}{ll}
\|W\|_{p} & \text { if } 0<p \leq p_{0} \\
\|Z\|_{p} & \text { if } p_{0}<p<2 \\
1 & \text { if } 2 \leq p<\infty
\end{array}= \begin{cases}2^{1 / 2}\left(\frac{\Gamma((p+1) / 2)}{\sqrt{\pi} \Gamma((p+2) / 2)}\right)^{1 / p} & \text { if } 0<p \leq p_{0} \\
(\Gamma((p+2) / 2))^{1 / p} & \text { if } p_{0}<p<2 \\
1 & \text { if } 2 \leq p<\infty\end{cases} \right. \\
B_{p}=\left\{\begin{array}{ll}
1 & \text { if } 0<p \leq 2 \\
\|Z\|_{p} & \text { if } 2<p<\infty
\end{array}= \begin{cases}1 & \text { if } 0<p \leq 2 \\
(\Gamma((p+2) / 2))^{1 / p} & \text { if } 2<p<\infty\end{cases} \right.
\end{gathered}
$$

where $W=2^{-1 / 2}\left(\varepsilon_{1}+\varepsilon_{2}\right), Z=2^{-1 / 2}(U+i V)$ with U, V independent and $\operatorname{Normal}(0,1)$, and $p_{0}=0.4756170089 \ldots$ is the unique solution of the equation

$$
2^{p / 2} \Gamma\left(\frac{p+1}{2}\right)=\sqrt{\pi}\left(\Gamma\left(\frac{p+2}{2}\right)\right)^{2}
$$

in the interval $0<p<2$. Here, if $\sum_{k=1}^{n}\left|c_{k}\right|^{2}=1$, then $A_{1}=\sqrt{\pi} / 2$ and $B_{1}=1$ encompass an average taken over all "complex signs" rather than only "real signs" as earlier. Sawa [17] announced that he could verify significant portions of Haagerup's conjecture, but only the case $p \approx 1$ was published. See also [14, 15, 18, 19]. We mention as well the following result $[20,21]$ for which $p=1$ and n is the parameter of interest:

$$
\mathrm{E}\left(\left|\sum_{k=1}^{n} \varepsilon_{k}\right|\right)= \begin{cases}\frac{2}{\pi} \int_{0}^{\infty} \frac{1-\cos (t)^{n}}{t^{2}} d t & \text { for the real case } \\ \int_{0}^{\infty} \frac{1-J_{0}(t)^{n}}{t^{2}} d t & \text { for the complex case }\end{cases}
$$

where $J_{0}(t)$ is the zeroth Bessel function of the first kind. On the one hand, we have

$$
\frac{2}{\pi} \int_{0}^{\infty} \frac{1-\cos (t)^{n}}{t^{2}} d t=\frac{n!}{2^{n-1} m!(n-m-1)!}
$$

for the real case, where $m=\lfloor(n-1) / 2\rfloor$. On the other hand, the Bessel integral takes on the values $1,4 / \pi, 1.57459723 \ldots$ and $1.79909248 \ldots$ for $n=1,2,3$ and 4 . Keane [22] recently determined that the third value in this list has the following closed-form expression:

$$
\frac{1}{8 \pi^{3}} \Gamma\left(\frac{1}{6}\right)^{2} \Gamma\left(\frac{1}{3}\right)^{2}+48 \pi \Gamma\left(\frac{1}{6}\right)^{-2} \Gamma\left(\frac{1}{3}\right)^{-2}=1.5745972375 \ldots
$$

but the fourth value still remains open.
We next discuss Rosenthal's inequalities [23]:

$$
\left\|\sum_{k=1}^{n} X_{k}\right\|_{p} \leq C_{p} \cdot \max \left\{\left(\sum_{k=1}^{n}\left\|X_{k}\right\|_{p}^{p}\right)^{1 / p},\left\|\sum_{k=1}^{n} X_{k}\right\|_{1}\right\}, \quad p \geq 1
$$

for nonnegative random variables and

$$
\left\|\sum_{k=1}^{n} X_{k}\right\|_{p} \leq D_{p} \cdot \max \left\{\left(\sum_{k=1}^{n}\left\|X_{k}\right\|_{p}^{p}\right)^{1 / p},\left\|\sum_{k=1}^{n} X_{k}\right\|_{2}\right\}, \quad p \geq 2
$$

for symmetric random variables (meaning that the distribution of $-X$ is the same as the distribution of X). A variation of the latter inequality arises if we loosen the restrictive hypothesis "symmetric" to "zero mean"; the constant is then denoted E_{p} rather than D_{p}. Johnson, Schechtman \& Zinn [24] showed that the growth rate of the best constants C_{p}, D_{p}, E_{p} is $p / \ln (p)$ as $p \rightarrow \infty$; in contrast, the growth rate for B_{p} is only \sqrt{p}. Subsequent work [25,26,27,28] yielded that

$$
C_{p}=\left\{\begin{array}{ll}
1 & \text { if } p=1 \\
2^{1 / p} & \text { if } 1<p<2 \\
\|Q\|_{p} & \text { if } 2 \leq p<\infty
\end{array} \quad, \quad D_{p}= \begin{cases}1 & \text { if } p=2 \\
\left(1+\|Z\|_{p}^{p}\right)^{1 / p} & \text { if } 2<p<4 \\
\|R-S\|_{p} & \text { if } 4 \leq p<\infty\end{cases}\right.
$$

where Q is $\operatorname{Poisson}(1), Z$ is $\operatorname{Normal}(0,1)$, and R, S are independent $\operatorname{Poisson}(1 / 2)$ variables. It is known that $\|Q\|_{m}^{m}=\alpha_{m}$ and $\|R-S\|_{2 m}^{2 m}=\beta_{m}$ for integer m, where $\left\{\alpha_{m}\right\}_{m=1}^{\infty}=\{1,2,5,15,52,203, \ldots\}$ is the sequence of Bell numbers $[29,30]$

$$
\alpha_{m}=\frac{1}{e} \sum_{j=0}^{\infty} \frac{j^{m}}{j!}=\left.\frac{d^{m}}{d x^{m}} \exp (\exp (x)-1)\right|_{x=0}
$$

and $\left\{\beta_{m}\right\}_{m=1}^{\infty}=\{1,4,31,379, \ldots\}$ is the sequence

$$
\beta_{m}=\frac{2}{e} \sum_{k=1}^{\infty} \sum_{j=0}^{\infty} \frac{k^{2 m}}{j!(j+k)!2^{2 j+k}}=\left.\frac{d^{2 m}}{d x^{2 m}} \exp (\cosh (x)-1)\right|_{x=\mathbf{0}}
$$

Ibragimov \& Sharakhmetov [31] conjectured that

$$
E_{p}= \begin{cases}\left(1+\|Z\|_{p}^{p}\right)^{1 / p} & \text { if } 2<p<4 \\ \|Q-1\|_{p} & \text { if } 4 \leq p<\infty\end{cases}
$$

and proved that this is true when $p=2 m$; further, $\|Q-1\|_{2 m}^{2 m}=\gamma_{m}$ and $\left\{\gamma_{m}\right\}_{m=1}^{\infty}=$ $\{1,4,41,715, \ldots\}$ is the sequence

$$
\gamma_{m}=\frac{1}{e} \sum_{j=0}^{\infty} \frac{(j-1)^{2 m}}{j!}=\left.\frac{d^{2 m}}{d x^{2 m}} \exp (\exp (x)-x-1)\right|_{x=0}
$$

Combinatorial interpretations apply for each of the three sequences: α_{n} is the number of partitions of an n-element set into blocks; β_{n} is the number of partitions of a $2 n$ element set into blocks, each containing an even number of elements; and γ_{n} is the number of partitions of a $2 n$-element set into blocks, each containing more than one element [30].

Define the following Orlicz-type norm:

$$
[\Xi]_{p}=\inf \left\{\lambda>0: \prod_{k=1}^{\infty} \mathrm{E}\left(\left|1+\frac{X_{k}}{\lambda}\right|^{p}\right) \leq e^{p}\right\}
$$

for an arbitrary sequence $\Xi=\left\{X_{k}\right\}_{k=1}^{\infty}$ of independent random variables, for any $p>0$. We mention Latała's inequality [32]:

$$
\frac{e-1}{2 e^{2}} \cdot[\Xi]_{p} \leq\left\|\sum_{k=1}^{\infty} X_{k}\right\|_{p} \leq e \cdot[\Xi]_{p}
$$

which holds either if all the $X \mathrm{~s}$ are nonnegative and $p \geq 1$, or if all the $X \mathrm{~s}$ are symmetric and $p \geq 2$. Observe here that the bounds do not depend on p, unlike the earlier inequalities. For the nonnegative case, Hitczenko \& Montgomery-Smith [33] improved the left-hand constant $(e-1) /\left(2 e^{2}\right)=0.116272 \ldots$ to $\xi=0.154906 \ldots$, where ξ is the unique positive solution of the equation

$$
\sum_{k=0}^{\infty} \frac{(2 k+1)^{k}}{k!} x^{k}=e
$$

It is not known if this improvement carries over to the symmetric case, nor whether a calculation of best constants is feasible at present.

References

[1] A. Khintchine, Über dyadische Brüche, Math. Z. 18 (1923) 109-116.
[2] S. J. Szarek, On the best constants in the Khinchin inequality, Studia Math. 58 (1976) 197-208; MR0430667 (55 \#3672).
[3] U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1981) 231-283; MR0654838 (83m:60031).
[4] J. E. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. J. Math. 1 (1930) 164-174.
[5] R. R. Hall, On a conjecture of Littlewood, Math. Proc. Cambridge Philos. Soc. 78 (1975) 443-445; MR0404151 (53 \#7954).
[6] P. Whittle, Bounds for the moments of linear and quadratic forms in independent random variables (in Russian), Teor. Verojatnost. i Primenen. 5 (1960) 331335; Engl. transl. in Theory Probab. Appl. 5 (1960) 302-305; MR0133849 (24 \#A3673).
[7] S. B. Steckin, On the best lacunary system of functions (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961) 357-366; MR0131097 (24 \#A951).
[8] M. L. Eaton, A note on symmetric Bernoulli random variables, Annals of Math. Statist. 41 (1970) 1223-1226; MR0268930 (42 \#3827).
[9] R. M. G. Young, On the best possible constants in the Khintchine inequality, J. London Math. Soc. 14 (1976) 496-504; MR0438089 (55 \#11008).
[10] B. Tomaszewski, A simple and elementary proof of the Khintchine inequality with the best constant, Bull. Sci. Math. 111 (1987) 103-109; MR0886960 (89b:42004).
[11] R. Komorowski, On the best possible constants in the Khintchine inequality for $p \geq 3$, Bull. London Math. Soc. 20 (1988) 73-75; MR0916079 (89e:60037).
[12] F. L. Nazarov and A. N. Podkorytov, Ball, Haagerup, and distribution functions, available online at http://www.math.msu.edu/ ${ }^{\sim}$ fedja/prepr.html.
[13] J. Wissel and J. Turian, On the best constants in the Khintchine inequality, available online at http://www.ai.mit.edu/people/jude/research/khintchine/paper.html.
[14] G. Peshkir and A. N. Shiryaev, Khinchin inequalities and a martingale extension of the sphere of their action (in Russian), Uspekhi Mat. Nauk, v. 50 (1995) n. 5, 3-62; Engl. transl. in Russian Math. Surveys 50 (1995) 849-904; MR1365047 (96k:60038).
[15] A. Baernstein and R. C. Culverhouse, Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions, Studia Math. 152 (2002) 231-248; MR1916226 (2003d:60040).
[16] A. Pełczyński, Norms of classical operators in function spaces, Astérisque 131 (1985) 137-162; MR0816744 (87b:47036).
[17] J. Sawa, The best constant in the Khintchine inequality for complex Steinhaus variables, the case $p=1$, Studia Math. 81 (1985) 107-126; MR0818175 (87d:26024).
[18] G. Peškir, Best constants in Kahane-Khintchine inequalities for complex Steinhaus functions, Proc. Amer. Math. Soc. 123 (1995) 3101-3111; MR1283561 (95m:46037).
[19] H. König and S. Kwapień, Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors, Positivity 5 (2001) 115-152; http://analysis.math.uni-kiel.de/koenig/preprints.html; MR1825172 (2002a:60023).
[20] B. Grünbaum, Projection constants, Trans. Amer. Math. Soc. 95 (1960) 451-465; MR0114110 (22 \#4937).
[21] H. König, C. Schütt and N. Tomczak-Jaegermann, Projection constants of symmetric spaces and variants of Khintchine's inequality, J. Reine Angew. Math. 511 (1999) 1-42; http://analysis.math.uni-kiel.de/koenig/preprints.html; MR1695788 (2000i:46014).
[22] J. Keane, Exact value of an integral involving Bessel J_{0}, unpublished note (2004).
[23] H. P. Rosenthal, On the subspaces of $L^{p}(p>2)$ spanned by sequences of independent random variables, Israel J. Math. 8 (1970) 273-303; MR0271721 (42 \#6602).
[24] W. B. Johnson, G. Schechtman and J. Zinn, Best constants in moment inequalities for linear combinations of independent and exchangeable random variables, Annals of Probab. 13 (1985) 234-253; MR0770640 (86i:60054).
[25] I. F. Pinelis and S. A. Utev, Estimates of the moments of sums of independent random variables (in Russian), Teor. Veroyatnost. i Primenen. 29 (1984) 554-557; Engl. transl. in Theory Probab. Appl. 29 (1984) 574-577; MR0761144 (85m:60034).
[26] S. A. Utev, Extremal problems in moment inequalities (in Russian), Limit Theorems of Probability Theory, ed. A. A. Borovkov, Trudy Inst. Mat. 5, Nauka Sibirsk. Otdel., 1985, pp. 56-75, 175; MR0821753 (87d:60021).
[27] T. Figiel, P. Hitczenko, W. B. Johnson, G. Schechtman and J. Zinn, Extremal properties of Rademacher functions with applications to the Khintchine and Rosenthal inequalities, Trans. Amer. Math. Soc. 349 (1997) 997-1027; MR1390980 (97j:60035).
[28] R. Ibragimov and S. Sharakhmetov, On an exact constant for the Rosenthal inequality (in Russian), Teor. Veroyatnost. i Primenen. 42 (1997) 341-350; Engl. transl. in Theory Probab. Appl. 42 (1997) 294-302; MR1474714 (98j:60026).
[29] S. R. Finch, Lengyel's constant: Stirling partition numbers, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 316-317.
[30] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000110, A000296 and A005046.
[31] R. Ibragimov and S. Sharakhmetov, The exact constant in the Rosenthal inequality for random variables with mean zero (in Russian), Teor. Veroyatnost. i Primenen. 46 (2001) 134-138; Engl. transl. in Theory Probab. Appl. 46 (2002) 127-131; MR1968709 (2004b:60054a).
[32] R. Latała, Estimation of moments of sums of independent real random variables, Annals of Probab. 25 (1997) 1502-1513; http://www.mimuw.edu.pl/ ${ }^{\text {rlatala/publ.html; MR1457628 (98h:60021). }}$
[33] P. Hitczenko and S. Montgomery-Smith, A note on sums of independent random variables, Advances in Stochastic Inequalities, Proc. 1997 Atlanta conf., ed. T. P. Hill and C. Houdré, Amer. Math. Soc., 1999, pp. 69-73; math.PR/9804068; MR1694763 (2000d:60080).

[^0]: ${ }^{0}$ Copyright © 2004 by Steven R. Finch. All rights reserved.

