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1. Introduction

This paper introduces the reader to a new, but rapidly growing, branch of combinatorics,
namely counting occurrences of patterns. This topic is very young, with its roots in the
works by Rotem, Rogers, and Knuth in the 1970s and early 1980s. However, the first
systematic study was not undertaken until the paper by Simion and Schmidt appeared in
1985. Currently there exist more than two hundred papers on this subject.

The notion of counting occurrences of patterns can be illustrated by the following example.
Suppose we have a word, say COMBINATORICS, and assumed we have a lexicographic
order on the letters in this word (the letter A is the smallest letter, etc.). Occurrences of,
say, the pattern 3421 in this word are, for example, COBA and MTIC, since according
to the order of the letters, COBA and MTIC are order-isomorphic to 3421, that is, their
letters are in the same relative order as those of 3421. On the other hand, the occurrences
of the pattern 1231 are COTC, CORC, and IORI.

There are two basic problems in counting occurrences of patterns. They are the avoidance
problem and the counting problem. The former deals with finding the number of words
with no occurrence of a given pattern, whereas the latter deals with counting words with
a prescribed number of occurrences of a given pattern. In the last decade much attention
has been paid to the problem of finding the numbers of permutations containing exactly
r occurrences of a given pattern. Most of the authors consider only the case r = 0 (the
pattern avoidance problem). Only a few papers consider the case r > 0 (the pattern
counting problem), usually restricting themselves to patterns of length three. Pattern
avoidance has proved to be a useful language in a variety of seemingly unrelated problems,
from theory of Kazhdan-Lusztig polynomials [29], to singularities of Schubert varieties
(see, for example, [30], [31], [32], [33], [34], and [132]), to Chebyshev polynomials (see, for
example, [160] and references therein), to rook polynomials for a rectangular board (see
[155]), to various sorting algorithms, sorting stacks and sortable permutations (see, for
example, [41], [43], [49], [211], [213], and [214]).

On one hand, the present paper contains all the definitions and notations, as well as
their generalizations, that are needed to understand the results concerning occurrences of
patterns in different kinds of permutations, words and multi-sets. On the other hand, it
includes a historical overview on the results obtained in this subject. We tried to collect
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all the currently existing references to the papers directly related to the subject, and we
would like to apologize if we missed any contribution to the field. In any case, we would
like to mention the papers from Special Volume on Permutation Patterns in Electronic
Journal of Combinatorics (9:2 (2002–2003)) and references therein, as well as paper [160]
and the references therein, as a good source of results in the area. In Section 4 we discuss
a number of basic approaches that one can use when studying the patterns. Finally, in
Section 5 we mention a generalization of the concept of “pattern” discussed in this paper.

2. Patterns

Let Σ be a totally ordered alphabet. We denote the alphabet {1, 2, . . . , k} by [k]. A word
in the alphabet Σ is a finite sequence of letters of the alphabet. The number of letters
in the word σ is called the length of σ and denoted by |σ|. Any � consecutive letters of
a word σ generate a subword of length �. For example, 1323 is a subword of the word
1132331 over the alphabet [3]. A subsequence of length � in a word σ = σ1σ2 . . . σm is the
word σi1σi2 . . . σis , where 1 ≤ i1 < i2 < · · · < is ≤ m. For example, the word 155243245
over the alphabet [5] has the word 1235 as a subsequence. Let [k]n denote the set of all the
words of length n on the alphabet [k]. Clearly, the number of words in [k]n is |[k]n| = kn.

A permutation of a non-empty finite set A is a one-to-one correspondence between A and
itself. In this paper, we take A to be [n], and we write permutations of [n] as words
π = π1π2 . . . πn. For example, there are six permutations of the set [3], namely 123, 132,
213, 231, 312, and 321. We denote the set of all permutations of [n] by Sn (usually
called the symmetric group of order n). Clearly, the number of permutations in Sn is
|Sn| = n! = 1 · 2 · . . . ·n. We denote by S the set of all permutations of all sizes (including
the empty permutation ε, that is the permutation of length 0), that is S = ∪n≥0Sn.

Definition 2.1. Let σ ∈ [k]n and τ ∈ [�]m such that � ≤ k, m ≤ n, and τ contains all
the letters in [�]. An occurrence of τ in σ is a subsequence σi1σi2 . . . σim of σ such that
σi1σi2 . . . σim is order-isomorphic to τ = τ1τ2 . . . τm, that is, σip < σiq (resp. σip = σiq) if
and only if τp < τq (resp. τp = τq). In this context, the word τ is called a pattern.

For example, the word σ = 1242312 ∈ [4]7 contains three occurrences of the pattern
τ = 1231, namely σ1σ2σ3σ6 = 1241 and σ1σ2σ5σ6 = σ1σ4σ5σ6 = 1231.

2.1. Pattern avoidance in permutations. The reduced form of a permutation σ on a
set {j1, j2, . . . , jk}, where j1 < j2 < · · · < jk, is a permutation σ′ obtained by renaming
the letters of the permutation σ so that ji is renamed i for all i ∈ {1, . . . , k}. For example,
the reduced form of the permutations 3651 and 2863 are 2431 and 1432, respectively.

Definition 2.2. For k ≤ n, we say that a permutation σ ∈ Sn has an occurrence of the
pattern τ ∈ Sk if there exist 1 ≤ i1 < i2 < · · · < ik ≤ n such that the reduced form of
σ(i1)σ(i2) . . . σ(ir) is τ .

For example, the permutation π = 624153 contains three occurrences of the pattern 213,
namely π2π4π5 = 215, π2π4π6 = 213, and π3π4π5 = 415.

Remark 2.3. Definition 2.2 is a particular case of Definition 2.1, when n = k and � = m.
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We say that a permutation π avoids a pattern τ , or is τ -avoiding, if there is no occurrence
of τ in π. For example, let π = 83176254, τ = 1234, and τ ′ = 1243. Then it is easy to see
that π avoids τ , and contains exactly one occurrence of τ ′, that is π does not avoid τ ′.
The set of all τ -avoiding permutations in Sn is denoted Sn(τ). For any set T of patterns,
we define Sn(T ) = ∩τ∈TSn(τ).

Fundamental questions are to determine |Sn(T )| viewed as a function of n for given T ,
if |Sn(T )| = |Sn(T ′)| to find an explicit bijection (a one-to-one correspondence) between
Sn(T ) and Sn(T ′), and it is interesting to find relations between Sn(T ) and other combi-
natorial structures. By determining |Sn(T )| we mean finding an explicit formula, or the
ordinary or exponential generating functions.

Example 2.4. The case τ ∈ S2 is trivial. Clearly, Sn(12) = {n(n−1) . . . 1} and Sn(21) =
{12 . . . n}, that is |Sn(12)| = |Sn(21)| = 1.

The first interesting case is k = 3. The first explicit solution seems to be Hammersley’s
enumeration of Sn(321) in [104]. In [126, Ch. 2.2.1] and [128, Ch. 5.1.4] Knuth shows
that for any τ ∈ S3, we have |Sn(τ)| = Cn, where Cn is the nth Catalan number given
by Cn = 1

n+1

(
2n
n

)
(see [201, Sequence A000108]). Other authors considered restricted

permutations in the 1970s and early 1980s (see, for example, [192], [193], and [194]), but
the first systematic study was not undertaken until 1985, when Simion and Schmidt [199]
solved the enumeration problem for every subset of S3. As mentioned before, there exist
currently more than two hundred papers on this subject.

Now let us define some symmetry arguments, which we will often use later in the paper.
There are three symmetries on permutations: the reverse, the complement, and the inverse
operations.

Definition 2.5. For a permutation π, we define the reverse r : Sn → Sn, the complement
c : Sn → Sn, and the inverse i : Sn → Sn to be the permutation β such that

β = r(π) if and only if βj = πn+1−j for 1 ≤ j ≤ n,
β = c(π) if and only if βj = n + 1 − πj for 1 ≤ j ≤ n,

and i is the usual inverse operation on the symmetric group Sn.

For example, if π = 14253 ∈ S5 then r(π) = 35241, c(π) = 52413, and i(π) = 13524. We
call these operations trivial bijections of Sn to itself. We denote the group generated by
the trivial bijections on the symmetric group Sn by Gp. The following proposition follows
from the results by Simion and Schmidt [199].

Proposition 2.6. Gp is isomorphic to the dihedral group D8.

Proof. It is easy to see that r2 = c2 = (r · c)2 = 1, c · r = r · c, i2 = (r · i)4 = (c · i)4 = 1,
and i · r · i = c. So, Gp is isomorphic to D8. �

More generally, for a set of patterns T , we define g(T ) = {g(τ)|τ ∈ T} for any g ∈ Gp. For
example, if T = {123, 132} and g = r then g(T ) = {321, 231}. The following proposition
was given by Simion and Schmidt [199].
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Proposition 2.7. (Simion and Schmidt [199]) Let π be a permutation and T be a set of
patterns. Then π avoids T if and only if g(π) avoids g(T ) for any g ∈ Gp.

Definition 2.8. Given a subset of patterns T . We denote by T the set

{U | ∃ g ∈ Gp such that T = g(U)},
called the symmetry class of T . For simplicity, we denote by τ the symmetric class of the
set T = {τ}.

For example, if T1 = {123} and T2 = {132, 2134} then T1 = {123, 321} and

T2 = {{132, 2134}, {213, 1243}, {231, 4312}, {312, 3421}}.
Some other examples are listed in Table 1.

Symmetry class Sets of patterns

{123} {123}, {321}

{132} {132}, {213}, {231}, {312}

{123, 132} {123, 132}, {321, 231}
{123, 213}, {321, 312}

{123, 231} {123, 231}, {321, 132}
{123, 312}, {321, 213}

{123, 321} {123, 321}

{132, 213} {132, 213}, {231, 312}

{132, 231} {132, 231}, {132, 312}
{231, 213}, {213, 312}

Table 1. Examples of symmetry classes

Definition 2.9. Two sets of patterns T1 and T2 are said to be Wilf-equivalent, or in the
same Wilf class, if |Sn(T1)| = |Sn(T2)| for all n ≥ 0.

For instance, using Example 2.4, it is easy to see that there is only one Wilf class for
the patterns from S2. The first interesting case examined was the case of permutations
avoiding a pattern from S3 (see [126, Ch. 2.2.1] and [128, Ch. 5.1.4]). This result was
obtained by using Schensted’s correspondence between permutations and Young tableaux,
as well as MacMahon’s earlier result on Young tableaux.

Theorem 2.10. (Knuth, [126, Ch. 2.2.1] and [128, Ch. 5.1.4]) For any τ ∈ S3,

|Sn(τ)| = Cn,

where Cn is the nth Catalan number.
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Set from a Wilf class Cardinality of the set

123 Cn

{123, 132} 2n−1

{123, 231}
(

n
2

)
+ 1

{123, 321} 0, if n ≥ 5

{123, 132, 213} Fn+1

{123, 132, 231} n

{123, 321, 213} 0, if n ≥ 5

|T | = 4, 5, T ⊃ {123, 321} 0, if n ≥ 5

|T | = 4, 5, T 	⊃ {123, 321} 2, if n ≥ 4

S3 0, if n ≥ 3
Table 2. Wilf classes for subsets of S3

Later, Simion and Schmidt [199] found the cardinalities of Sn(T ) for any T ⊆ S3 (see
Table 2). In Table 2, Cn is the nth Catalan number and Fn is the nth Fibonacci number
(see [201, Sequence A000045]).

The cardinalities |Sn(T )| become much more difficult to determine, even for T ⊂ S4. This
is especially true when |T | is much more less than k!, in particular, for |T | = 1. In this
case, we are interested in determining the Wilf classes. Stankova and West [208] classified
the Wilf classes in Sn, where n = 1, 2, . . . , 7 (see Table 3).

Classes S1 S2 S3 S4 S5 S6 S7

Symmetry 1 1 2 7 23 115 694
Wilf 1 1 1 3 16 91 595

Table 3. Symmetry and Wilf classes in Sn for n ≤ 7

In cases when one does not succeed in finding |Sn(T )|, other questions arise. For example,
what is the asymptotic behavior for |Sn(T )|, and in particular, for |Sn(τ)|, where τ ∈ Sk.
In the case k = 3, one can find the asymptotic behavior from Theorem 2.10. In almost
all cases of k = 4, the asymptotic behavior was given by Bóna (see [36] and [37]). In the
case τ = 12 . . . k, Regev [175] gave a complete answer for the asymptotics (see also Gessel
[91]).

Another related question is the existence of a constant c such that |Sn(T )| < cn.
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Conjecture 2.11. (Stanley, Wilf) For any pattern τ ∈ S�, the limit

lim
n→∞

|Sn(τ)| 1
n ,

exists and is finite.

In the case k = 3, the conjecture follows from Theorem 2.10. In almost all cases of
k = 4, the conjuncture follows from the results by Bóna (see [36] and [37]). Using the
results of Regev [175] and Gessel [91], the conjecture holds for τ = 12 . . . k for any k ≥ 1.
Bóna proved the conjecture of Stanley and Wilf for layered patterns. A layered pattern
is a pattern which can be partitioned into layers so that the elements are increasing
within layers and decreasing between layers (for a formal definition see Section 4). For
example, in S4, the layered patterns are 1234 (= (1234)) and 3421 (= (34, 2, 1)). The
layers are the subsequences between two adjacent commas. Alon and Friedgut [5] proved
the following weaker statement for the conjecture: there exists a constant c = c(τ) such
that |Sn(τ)| ≤ cnγ�(n), where γ� is an extremely slow growing function, related to the
Ackermann hierarchy. The proof converts this problem to one about Davenport-Schinzel
sequences [123], about words that avoid patterns of equalities.

We refer to [219] for a more detailed overview on the progress with regard to Conjec-
ture 2.11. In particular, the following result by Arratia [8] is mentioned there:

lim
n→∞

|Sn(τ)|1/n = sup
n

|Sn(τ)|1/n.

The Stanley-Wilf conjecture was finally proved by Marcus and Tardos [162] in 2003. To
give some details from that paper we need to define the concept of avoidance of a matrix
by another matrix.

Definition 2.12. Let A and P be 0-1 matrices. We say that A contains the k× � matrix
P = (pi,j) if there exists a k × � submatrix B = (bij) of A with bij = 1 whenever pij = 1.
Otherwise we say that A avoids P .

For a 0-1 matrix Füredi and Hajnal [88] defined f(n, P ) to be the maximum number of 1
entries in an n × n 0-1 matrix avoiding P , and stated the following conjecture.

Conjecture 2.13. (Füredi, Hajnal) For all permutation matrices P we have f(n, P ) =
O(n).

By a result of Klazar [124] the truth of Conjecture 2.13 implies the truth of Conjec-
ture 2.11. Conjecture 2.13 was proven in [162], which settled Conjecture 2.11.

In the cases when the formula for |Sn(T )| is unknown, and the asymptotics are difficult
to find, one can ask another question: Is |Sn(T )| P -recursive? A function f : N → C is
called P -recursive if there exist polynomials P0, P1, . . . , Pk ∈ C[n], so that

Pk(n)f(n + k) + Pk−1(n)f(n + k − 1) + . . . + P0(n)f(n) = 0

for all n ≥ 1 (see [36, 37, 169]). Table 4 shows the present state of research on permutations
avoiding given patterns of length 4.
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pattern τ sn(τ) < cn formula for sn(τ) P -recursive

1234 Regev [175] Gessel [91] Zeilberger [221]

1342 Bóna [36] Bóna [37] Bóna [37]

1324 Bóna [36] open open

Table 4. Patterns from S4

2.2. Counting occurrences of patterns in permutations. We denote by sr
τ (n) the

number of permutations in Sn that contain exactly r occurrences of the pattern τ . For
example, if n = 3, τ = 12, and r = 1 then there are two such permutations, namely 231
and 312, that is sr

τ (n) = 2.

In the last decade much attention has been paid to the problem of finding the numbers
sr

τ (n) for a fixed r ≥ 0 and a given pattern τ (see [35, 38, 159, 169, 168, 187]). Most of
the authors consider only the case r = 0, thus studying permutations avoiding a given
pattern (see Subsection 2.1). Only a few papers consider the case r > 0, usually restricting
themselves to patterns of length three. Using the trivial bijections (the reverse and the
complement) on Sn it is immediate that with respect to being equidistributed, the six
patterns of length three fall into the two classes {123, 321} and {132, 213, 231, 312} (see
Table 1).

Noonan [168] proved that s1
123(n) = 3

n

(
2n

n−3

)
. A general approach to this problem was

suggested by Noonan and Zeilberger [169]. They gave another proof of Noonan’s result,
and conjectured that

s2
123(n) =

59n2 + 117n + 100

2n(2n − 1)(n + 5)

(
2n

n − 4

)
and s1

132(n) =
(
2n−3
n−3

)
. The first conjecture was proved by Fulmek [86], and the second one

by Bóna [38]. Also, Noonan and Zeilberger conjectured the following.

Conjecture 2.14. For any pattern τ and r ≥ 0, sr
τ (n) is P -recursive in n.

We observe that Conjecture 2.14 yields Conjecture 2.11. For the pattern τ = 132, con-
jecture 2.14 was proved by Bóna [35]. Mansour and Vainshtein [159] suggested a new
approach to this problem in the case τ = 132, which allows us to get an explicit expres-
sion for sr

132(n) for any given r.

This problem can be generalized as follows. Let r be a vector of occurrences, namely
r = (r1, r2, . . . , rm), and let L be a list of patterns, namely L = {τ 1, τ 2, . . . , τm}. We
denote by sr

L(n) the number of permutations in Sn that contain exactly ri occurrences of
the pattern τ i, for i = 1, 2, . . . , m. Noonan and Zeilbereger [169] have made the following
general conjecture.
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Conjecture 2.15. (Noonan, Zeilberger, [169]) For any fixed vector of occurrences
r = (r1, r2, . . . , rm) and list of patterns L = {τ 1, τ 2, . . . , τm}, sr

L(n) is P -recursive in n.

This conjecture holds for many cases (see, for example, [50, 60, 108, 130, 156, 157, 188, 187,
189]). Most of the authors considered the case m = 2. More precisely, they considered the
case of a vector r = (r1, r2), where r1 = 0, 1 and r2 ≥ 0, and L = {τ 1, τ 2}, where τ 1 ∈ S3

and τ 2 ∈ Sk (for the case k = 3 see Table 5). For example, Chow and West [60] found the
generating function for the number of permutations in Sn that avoid the patterns 132 and
12 . . . k, which is given in terms of Chebyshev polynomials of the second kind. This result
was extended to many different cases. Robertson [187] found the number of permutations
in Sn that avoid the pattern 132 and have exactly one occurrence of the pattern 123
and the number of permutations in Sn that avoid the pattern 123 and have exactly one
occurrence of the pattern 132. These results were generalized by Robertson, Wilf and
Zeilberger [189]. They found the number of permutations in Sn that avoid the pattern
132 and contain exactly r occurrences of the pattern τ = 123. This result was extended
by Mansour and Vainshtein [156], by Krattenthaler [130], by Jani and Rieper [108], and
by Brändén, Claesson and Steingŕımsson [50] to the case of permutations containing
the pattern 12 . . . k exactly r times and avoiding the pattern 132. In [157], the above
conjecture was proved for the case L = {132, τ} and r = (0, 0), where τ ∈ Sk.

Set L Vector r Cardinality sr
L(n)

{123, 321} (0, 1) 0 for n ≥ 6

{123, 132} (0, 1) (n − 2)2n−3 for n ≥ 3

{123, 231} (0, 1) 2n − 5 for n ≥ 3

{132, 213} (0, 1) n2n−5 for n ≥ 4

{132, 231} (0, 1) 2n−3 for n ≥ 3

{123, 321} (1, 1) 0 for n ≥ 6

{123, 132} (1, 1) 1
2
(n − 3)(n − 4)2n−4 for n ≥ 5

{123, 231} (1, 1) 2n − 5 for n ≥ 5

{132, 213} (1, 1) (n2 + 21n − 28)2n−9 for n ≥ 7

{132, 231} (1, 1) 2n−3 for n ≥ 4

Table 5. Cardinalities sr
L(n) for L ⊂ S3, |L| = 2, r = (0, 1), (1, 1)

One can prove the following proposition.

Proposition 2.16. The truth of Conjecture 2.15 implies the truth of Conjecture 2.11.

2.3. Patterns in signed permutations. Signed pattern avoidance has proven to be
a useful language in combinatorial statistics defined in type-B noncrossing partitions,
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enumerative combinatorics, algebraic combinatorics, geometric combinatorics and singu-
larities of Schubert varieties. (see, for example, [29, 32, 164, 81, 45, 198, 180]). In this
section we extend the avoidance problem from the symmetric group to the hyperoctahedral
group.

We will regard the elements of the hyperoctahedral group Bn as signed permutations
written as π = π1π2 . . . πn in which each of the symbols 1, 2, . . . , n appears, possibly
barred. Clearly, the cardinality of Bn is 2nn!. For example, B2 contains 8 elements,
namely 12, 12, 12, 12, 21, 21, 21, and 21. We define |πi| to be πi if the symbol πi is not
barred, otherwise |πi| is πi, where we assume πi = πi. Moreover, for π = π1π2 . . . πn we
define |π| = |π1||π2| . . . |πn|. For example, if π = 12 then |π| = 12.

Now let τ ∈ Bk, and π ∈ Bn; we say that π contains a signed pattern τ or is a τ -containing
signed pattern, if there is a sequence of k indices, 1 ≤ i1 < i2 < · · · < ik ≤ n such that
two conditions hold:

(1) |πip | > |πiq | if and only if |τp| > |τq| for all k ≥ p > q ≥ 1;

(2) πij is barred if and only if τj is barred for all 1 ≤ j ≤ k.

For example, π = 2134 ∈ B4 contains the signed patterns 12 and 21 but does not contain
the patterns 12 and 21. If π does not contain a signed pattern τ , then we say that π
avoids τ , or is a τ -avoiding, and in this context τ is called a signed pattern. We denote by
Bn(τ) the set of all the τ -avoiding signed permutations in Bn. More generally, we define
Bn(T ) = ∩τ∈T Bn(τ). We denote by bT (n) the cardinality of Bn(T ).

Example 2.17. The case τ ∈ B1 is trivial. Clearly,

Bn(1) = {π1π2 . . . πn|π = π1π2 . . . πn ∈ Sn} and Bn(1) = Sn,

that is b1(n) = b1(n) = n!.

As we mentioned above, in the symmetric group Sn, for every 2-letter pattern τ , the
number of τ -avoiding permutations is 1, and for every pattern τ ∈ S3, the number of τ -
avoiding permutations is given by the Catalan numbers (see Theorem 2.10). Simion [198,
Section 3] found out that there are similar results for the hyperoctahedral group Bn. More
precisely, she proved that for every 2-letter signed pattern τ the number of τ -avoiding

signed permutations in Bn is given by
∑n

j=0

(
n
j

)2
j!. Mansour and West [161] found all the

cardinalities bT (n), where T ⊆ B2. (The exhaustive treatment of cases was suggested by
the influential paper of Simion and Schmidt [199], which followed a similar program for
the cardinalities sT (n) where T ⊆ S3. For example, in the case |T | = 2 see Table 6).

Now let us define some symmetry arguments on Bn, which will be used later in this
paper. There are three symmetries on signed permutations: the baring, the reverse, and
the complement operations.

Definition 2.18. We define three simple operations on signed permutations: the reverse
(i.e., reading the permutation right-to-left: r : π1π2 · · ·πn �→ πnπn−1 · · ·π1), the barring
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Set of signed patterns T Cardinality bT (n)

{12, 21}, {12, 12}

{21, 12}, {21, 12} (n + 1)!

{12, 12}, {12, 21}
(
2n
n

)
{12, 21} n! + n!

n∑
i=1

(
1

i

i−1∑
j=0

1

j!

)

{12, 12} 2
n∑

l=1

∑
i1+i2+···+il=n, ij≥1

l∏
j=1

ij !

Table 6. Cardinalities bT (n), where T ∈ B2, |T | = 2.

(i.e., bar : π1π2 · · ·πn �→ φ1φ2 · · ·φn where φj = πj if πj is not barred, otherwise φj = πj)
and the complement (i.e., c : π1π2 · · ·πn �→ β1β2 · · ·βn where βi = n + 1 − πi if πi is not

barred, otherwise βi = n + 1 − |πi|) on Bn.

For example, if π = 14253 ∈ B5 then r(π) = 35241, c(π) = 52413, and bar(π) = 14253.
We call these operations trivial bijections of Bn to itself. We denote the group generated
by the trivial bijections on the hyperoctahedral group Bn by Hp. More generally, for
a set of patterns T , we define g(T ) = {g(τ)|τ ∈ T} for any g ∈ Hp. For example, if
T = {123, 132} and g = r then g(T ) = {321, 231}. The following proposition was given
by Simion [198].

Proposition 2.19. (Simion [198]) Let π be a permutation and T be a set of patterns.
Then π avoids T if and only if g(π) avoids g(T ) for any g ∈ Hp.

Similarly to Subsection 2.1 one can define the symmetry classes and the Wilf classes on
signed permutations. Likewise, one can identify classes that avoid signed permutations in
the hyperoctahedral group (the natural analogue of the symmetric group) with enumera-
tive properties analogous to those classes avoiding permutations in the symmetric group
see Simion [198]).

2.4. Patterns in coloured permutations. The goal of this subsection is to give analo-
gies of the enumerative results on certain classes of permutations characterized by pattern-
avoidance in the symmetric group and in the hyperoctahedral group (see Subsections 2.1
and 2.3) for coloured patterns, which were introduced by Mansour[139].

We define the group S(r)
n = Sn  Cr (the wreath product of the cyclic group of order r,

Cr, and Sn), which plays the role of the symmetric group Sn and of the hyperoctahedral

group Bn, respectively. We will view the elements of the set S(r)
n as coloured permutations

π = π1π2 . . . πn in which each of the symbols 1, 2, . . . , n appears once, and is coloured

by one of the colours 1, 2, . . . , r (more generally, we denote by S{c1,...,cr}
{a1,...,an} the set of all

permutations of the symbols a1, . . . , an, where each symbol appears once and is coloured



12 A SURVEY ON CERTAIN PATTERN PROBLEMS

by one of the colours c1, . . . , cr). Thus, S(1)
n is identified as Sn, S(2)

n is identified as Bn, and

the cardinality of S(r)
n is n!rn. We define |π| as the permutation |π1||π2| . . . |πn|, where |πj |

is the symbol which appears in π at position j. For example, π = 1(1)3(2)2(1) is a coloured

permutation in S(2)
3 and |π| = 132.

Let τ̂ = τ
(s1)
1 τ

(s2)
2 . . . τ

(sk)
k ∈ S(r)

k and π̂ = π
(v1)
1 π

(v2)
2 . . . π

(vn)
n ∈ S(r)

n ; we say that π̂ contains
τ̂ , or is τ̂ -containing, if there is a sequence of k indices 1 ≤ i1 < i2 < · · · < ik ≤ n such
that the following two conditions hold:

(1) πip > πiq if and only if τp > τq for all k ≥ p > q ≥ 1;

(2) vij = sj for all j = 1, 2, . . . , k.
Otherwise, we say that π̂ avoids τ̂ , or is τ̂ -avoiding. The set of all τ̂ -avoiding coloured

permutations in S(r)
n is denoted by S(r)

n (τ̂), and in this context τ̂ is called a coloured
pattern. For an arbitrary finite collection of coloured patterns T , we say that π̂ avoids

T if π̂ avoids any τ̂ ∈ T ; the corresponding subset of S(r)
n is denoted by S(r)

n (T ). As an

example, π̂ = 3(1)2(2)1(2) ∈ S(2)
3 avoids 2(1)1(1), that is, π̂ ∈ S(2)

3 (2(1)1(1)).

Similarly to Subsection 2.1 one can define the trivial bijections, the symmetric classes,
and the Wilf classes on coloured permutations.

Coloured pattern τ̂ Cardinality |S(r)
n (τ̂ )|

1(1)2(1), 1(1)2(2)
∑n

j=0 j!(r − 1)j
(

n
j

)2
Table 7. Cardinalities |S(r)

n (τ̂)|, where τ̂ ∈ S(r)
2

As we mentioned above, in the symmetric group Sn, for every 2-letter pattern τ , the
number of τ -avoiding permutations is one, and for every pattern τ ∈ S3, the number
of τ -avoiding permutations is given by the Catalan numbers (see Theorem 2.10). Also,
Simion [198] found out that there are similar results for the hyperoctahedral group Bn.

Mansour [139] proved that for every τ̂ ∈ S(r)
2 , the number of τ̂ -avoiding coloured permu-

tations in S(r)
n is

∑n
j=0 j!(r − 1)j

(
n
j

)2
(see Table 7). He also proved that if two distinct

elements τ̂ and θ̂ from S(r)
2 are to be avoided simultaneously, then the number of Wilf

classes is one for r = 1, four for r = 2, and six for r ≥ 3.

2.5. Patterns in words. We recall the definition of patterns in words in Definition 2.1.
Also, we denote by [k]n(τ) the set of all τ -avoiding words. More generally, we define by
[k]n(T ) = ∩τ∈T [k]n(τ).

Up to now, most research on restricted permutations dealt with cases where τ and σ
are permutations. Some papers dealt with cases where only τ is a permutation (σ is
a word). For example, Albert et al. [3] considered permutations of a multiset which
avoid certain patterns of length 3. Burstein [52] gave a complete description, in the
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manner of Simion and Schmidt [199], for the case of words avoiding permutation patterns
of length 3. Regev [176] found the asymptotics for the number of words avoiding the
pattern k(k − 1) . . . 1.

Word pattern τ Generating function
∑

k,n≥0 |[k]n(τ)|xnyk

111 1

1−y(1+x+ 1
2
x2)

112, 121 1
1−y

(
1−y

1−y−xy

)1/y

123, 132 1 + y
1−x

+
2y2

(1 − 2x)(1 − y) +
√

((1 − 2x)2 − y)(1 − y)
Table 8. Wilf classes for words avoiding a 3-letter word

Similarly to Subsection 2.1 one can define the trivial bijections, the symmetric classes,
and the Wilf classes on words. There are two symmetry classes of 2-letter patterns with
representatives 11 and 12. To avoid 11 means that there are no repeated letters, so the
number of words in [k]n(11) is given by

(
k
n

)
n!. A 12-avoiding word is just a non-increasing

string, so the number of words in [k]n(12) is given by
(

n+k−1
n

)
. Burstein and Mansour [53]

studied the case of subword patterns (patterns where the letters have to be adjacent) in
words. For example, they gave an explicit expression in terms of generating functions for
the number of words avoiding a 3-letter word with repeated letters (see Table 8).

2.6. Patterns in other sets. In this subsection we describe some analogies for occur-
rences of patterns problem. One can generalize the counting occurrences of patterns as
follows.

Definition 2.20. Let A be a totally ordered alphabet with linear order <A. An element
Ξ in the alphabet A is a finite sequence of letters of the alphabet. The number of letters
in the element Ξ is called the length of Ξ and denoted by �(Ξ). Let B = ∪n≥0 Bn, where
Bn is a finite set of elements of length n.

Let τ = τ1τ2 . . . τk be an element in the alphabet A and Ξ = Ξ1Ξ2 . . .Ξ� be any element in
B�. An occurrence of τ in Ξ is a subsequence Ξi1Ξi2 . . .Ξik of Ξ such that Ξi1Ξi2 . . .Ξik is
order- isomorphic to τ , that is, Ξip <A Ξiq if and only if τp <A τq for all 1 ≤ p < q ≤ k.
In this context, the word τ is called a pattern.

Particular cases of Definition 2.20 are Definitions 2.1 and 2.2. For example, if A is the
set of all natural numbers N, and Bn = Sn, we get Definition 2.2. Other particular cases
of Definition 2.20 which are discussed by some authors are considered in the following
subsubsections.
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2.6.1. Even and odd permutations. The number of inversions of π is given by

Inv(π) = |{(i, j) : πi > πj , i < j}|.
In other words, Inv(π) is equal to the number of occurrences of the pattern 21 in a
permutation π. For example, if π = 2431 then π has inversions (1, 4), (2, 3), (2, 4), and

(3, 4), that is, Inv(π) = 4. The signature of π is given by sign(π) = (−1)Inv(π). In the
example above, sign(π) = 1.

A permutation π is said to be an even permutation (resp. an odd permutation) if sign(π) =
1 (resp. sign(π) = −1). We denote by En (resp. On) the set of all even (resp. odd)
permutations in Sn. Clearly, |En| = |On| = 1

2
n! for all n ≥ 2.

Simion and Schmidt [199] found the number of even and odd permutations avoiding a
3-letter pattern from S3. More precisely, they proved

e0
132(n) = 1

2(n+1)

(
2n
n

)
+ 1

n+1

(
n−1

(n−1)/2

)
,

e0
123(n) = 1

2(n+1)

(
2n
n

)
+ (−1)(

n
2)

n+1

(
n−1

(n−1)/2

)
e0
231(n) = 1

2(n+1)

(
2n
n

)
+ (−1)(

n
2)

n+1

(
n−1

(n−1)/2

)
,

where er
τ (n) is the number of even permutations containing the pattern τ exactly r times.

Mansour [145] considered the case of counting the occurrences of the pattern 132 in
even permutations. He presented an algorithm that computes the generating function for
er
132(n) for any r > 0. To get the result for a given r, the algorithm performs certain

routine checks for each element of the symmetric group S2r. The algorithm has been
implemented in C, and yields explicit results for 0 ≤ r ≤ 6. For example, the generating
function for the number of even permutations in Sn containing the pattern 132 exactly
once is given by

−1

2
(1 − 2x − x2) +

1 − 3x

4
(1 − 4x)−1/2 +

1 − 3x − 4x2 + 4x3

4
(1 − 4x2)−1/2.

2.6.2. Involutions. An involution π is a permutation such that π = π−1. Let In denote
the set of all the involutions in Sn. We denote by I the set of all the involutions of all
the sizes including the empty involution, that is, I = ∪n≥0 In.

Several authors gave enumerations of sets of involutions which avoid certain patterns. In
[175] Regev provided an asymptotic formula for |In(12 . . . k)| and showed that In(1234)

is enumerated by the nth Motzkin number
∑[n/2]

i=0

(
n
2i

)
Ci (see [201, Sequence A001006]).

The general case, which is enumeration of In(12 . . . k), was studied by Gessel [91]. In the
cases k = 5, 6, Gouyou–Beauchamps [28] gave exact formulas, which are

In(12345) = C[(n+1)/2]C[(n+2)/2],

and

In(123456) =

[n/2]∑
i=0

6n!(2i + 2)!

i!(i + 1)!(i + 2)!(i + 3)!(n − 2i)!
.
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On the other hand, Simion and Schmidt [199] obtained explicit formulas for |In(τ)|, where
τ ∈ S3 (see Table 9).

Pattern τ Cardinality |In(τ)|

123, 132, 213, 321
(

n
[n/2]

)
231, 312 2n−1

Table 9. Involutions avoiding a 3-letter pattern

Pattern-avoiding involutions have also been linked with other combinatorial structures.
Gire [94] established a one-to-one correspondence between 1-2 trees having n edges and
Sn(321, 3142) (which is the set of permutations in Sn avoiding the patterns 321 and
231, except that the latter is allowed when it is a subsequence of the pattern 3142). More
generally, Guibert [98] gave bijections between 1-2 trees having n edges and each of the sets
Sn(231, 4132), In(3412), and In(4321) (and therefore with In(1234), by transposing the
corresponding Young tableaux obtained by applying the Robinson-Schensted algorithm).
In addition, Guibert [98] established a bijection between In(2143) (these involutions are
sometimes called vexillary involutions) and In(1243). Also, Guibert, Pergola, and Pinzani
[102] gave a one-to-one correspondence between 1-2 trees having n edges and vexillary
involutions in In. Thus, all these sets are enumerated by the nth Motzkin number. A
remaining open problem is to prove the conjecture of Guibert (see [98]) that In(1432) is
also enumerated by the nth Motzkin number.

Guibert and Mansour [100, 101] found a general approach to studying involutions, even
involutions, and odd involutions avoiding 132 (or containing 132 exactly once), and avoid-
ing (or containing exactly once) an arbitrary pattern τ ∈ Sk. They established a bijection
between 132-avoiding involutions and primitive Dyck words. They extended this bijection
to bilateral words. This bijection allows to determine more parameters, in particular, to
consider the number of inversions (ocurrences of the pattern 21) and rises (occurrences
of the pattern 12) of the involutions onto bilateral words, and to consider the case of even
(odd) involutions and statistics of some generalized patterns. For example, the generating
function for the number of involutions in In(132, 12 . . . k) is given by

1

xUk

(
1
2x

) k−1∑
j=0

Uj

(
1

2x

)
,

where Um is the mth Chebyshev polynomial of the second kind (see Section 4 for a
definition).

Egge and Mansour [70] enumerated various sets of involutions that avoid the pattern 231
or contain it exactly once. Interestingly, many of these enumerations can be given in
terms of k-generalized Fibonacci numbers. In particular, they found that the generating
function for the number of involutions which contain the pattern 231 exactly once and
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contain the pattern k(k − 1) . . . 1 exactly r times is given by

(r + 1)xkr+4

(1 − x − x2 − · · · − xk−1)r+2
.

2.6.3. Multisets. A permutation of a multiset 1a12a2 . . . kak is a sequence of length a1 +
a2 + · · · + ak which contains ai occurrences of the letter i for each 1 ≤ i ≤ k. For
example, there are three permutations of the multiset 1221, namely 112, 121, and 211.
We observe that the set of permutations of the multiset 1a12a2 . . . kak is all the words
σ ∈ [k]a1+a2+···+ak such that σ contains exactly ai occurrences of the letter i. Thus, one
can define an occurrence of a pattern in a permutation of a multiset in the same manner
as we did before (see Subsection 2.5).

Similarly to the paper by Simion and Schmidt [199], Albert et. al. in [3] considered
the number of permutations of 1a12a2 . . . kak which avoid a set of patterns T ⊂ S3. This
number is denoted by sT (a1, a2, . . . , ak). For the case |T | = 4, see Table 10.

Set of patterns T sT (a1, a2, . . . , ak) where k ≥ 3

{123, 132, 213, 231}
(

a1+a2

a2

)
{123, 132, 231, 312} ak + 1

{132, 213, 231, 312} 2

{123, 132, 213, 321} a2 + 1 if k = 3, 1 if k = 4, 0 if k ≥ 5

{123, 132, 231, 321} 2 if k = 3, 0 if k ≥ 4

{123, 213, 231, 321}
(

a1+a3

a1

)
if k = 3, 0 if k ≥ 4

Table 10. Avoidance of patterns in multisets

2.6.4. Alternating permutations. A rise (resp. descent) in a permutation π = π1π2 . . . πn

is an index i such that πi < πi+1 (resp. πi > πi+1). The number of rises (resp. descents)
in a permutation π is denoted ris(π) (resp. des(π)).

A permutation is said to be alternating if it starts with rise and then descents and rises
come in turn. In other words, an alternating permutation π = π1π2 . . . πn satisfies π2j−1 <
π2j > π2j+1 for all 1 ≤ j ≤ [n/2], that is to say its rise (resp. descent) is equal to an
odd (resp. even) index. We denote the set of all alternating permutations on n letters by
An. Other names that authors have used for these permutations are zig-sag permutations
and up down permutations. An example of an alternating permutation is 14253. The
determination of the number of alternating permutations for the set {1, 2, . . . , n} (or on n
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letters) is known as André’s problem (see [6, 7]). The number of alternating permutations
on n letters, for n = 1, 2, . . . , 10, is 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521 (see [201,
Sequence A000111]). These numbers are known as the Euler numbers and have the
exponential generating function sec x + tan x.

Mansour [144] studied the generating function for the number of alternating permutations
on n letters that avoid or contain exactly once the pattern 132 and also avoid or contain
exactly once an arbitrary pattern on k letters. In several interesting cases, the generating
function depends only on k and is expressed via Chebyshev polynomials of the second
kind. For example, the generating function for the number of alternating permutations
in Sn(132, 12 . . . k) is given by

(1 + x)Uk−2

(
1
2x

)
xUk−1

(
1
2x

) ,

where Um is the mth Chebshev polynomials of the second kind (see Section 4 for a
definition).

2.6.5. Dumont permutations. A permutation π is said to be a Dumont permutation of
the first kind if each even integer in π must be followed by a smaller integer, and each
odd integer is either followed by a larger integer or is the last element of π (see, for
example, [224]). In [69] Dumont showed that certain classes of permutations on n letters
are counted by the Genocchi numbers [201, Sequence A000366]. In particular, Dumont
showed that the (n+1)st Genocchi number is the number of Dumont permutations of the
first kind on 2n letters. Mansour [143] studied the number of Dumont permutations of the
first kind on n letters avoiding the pattern 132 and avoiding (or containing exactly once)
an arbitrary pattern on k letters. For example, the generating function for the number of
Dumont permutations of the first kind in Sn(132, 12 . . . k) is given by

Fk(x) + xFk−1(x),

where Fm(x) is the solution of the recurrence Qr(x) = 1 + x2Qr−1(x)
1−x2Qr−2(x)

with Q0(x) = 0 and

Q1(x) = 1.

2.6.6. Finite approximations of some sequences. The most attention in the papers on
patterns is paid to counting exact formulas and/or generating functions for the number of
words or permutations avoiding, or having k occurrences of, certain patterns. In [116, 120,
121] the authors considered another problem, namely counting the number of occurrences
of certain patterns in certain words. These words were chosen to be the set of all finite
approximations of certain sequences.

Let Σ be an alphabet and Σ� be the set of all words on Σ. A map ϕ : Σ� → Σ� is called
a morphism, if we have ϕ(uv) = ϕ(u)ϕ(v) for any u, v ∈ Σ�. It is easy to see that a
morphism ϕ can be defined by defining ϕ(i) for each i ∈ Σ. The set of all rules i → ϕ(i) is
called a substitution system. We create words by starting with a letter from the alphabet
Σ and iterating the substitution system. Such a substitution system is called a D0L
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(Deterministic, with no context Lindenmayer) system [134]. D0L systems are classical
objects of formal language theory. They are interesting from a mathematical point of
view [84], but also have applications in theoretical biology [133].

Suppose a word ϕ(a) begins with a for some a ∈ Σ, and that the length of ϕk(a) increases
without bound. The symbolic sequence lim

k→∞
ϕk(a) is said to be generated by the morphism

ϕ. In particular, lim
k→∞

ϕk(a) is a fixed point of ϕ. However, in this paper we are only

interested in the finite approximations of lim
k→∞

ϕk(a), that is in the words ϕk(a) for k ≥ 1.

An example of a sequence generated by a morphism is the following sequence w. We create
words by starting with the letter 1 and iterating the substitution system φw: 1 → 123,
2 → 13, 3 → 2. Thus, the initial letters of w are 123132123213 . . .. This sequence was
constructed in connection with the problem of constructing a nonrepetitive sequence on
a 3-letter alphabet, that is, a sequence that does not contain any subwords of the type
XX, where X is any non-empty word over a 3-letter alphabet. The sequence w has that
property. The question of the existence of such a sequence, as well as the questions of
the existence of sequences avoiding other kinds of repetitions, were studied in algebra
[1, 109, 129], discrete analysis [59, 65, 76, 111, 172] and in dynamical systems [165].
Kitaev and Mansour [120] gave the number of occurrences of some patterns in the finite
approximations of w, which are the iteration stages in the construction of w, that is 1,
123, 123132, etc. They found, for example, that the number of occurrences of the pattern
12 in the finite approximations of the sequence w is given by 1

2
(3 · 4n−1 + 2n) for n ≥ 2.

In the direction of counting occurrences of patterns in words, Kitaev [116] considered the
sigma-sequence that was used by Evdokimov [77] to construct chains of maximal length
in the n-dimensional unit cube; Kitaev and Mansour [120] considered two different classes
of morphisms, and Kitaev, Mansour and Séébold [121] considered the Peano Curve that
was studied by the Italian mathematician Giuseppe Peano in 1890 as an example of a
continuous space filling curve.

3. Generalized patterns

Starting from now, we refer to the patterns defined in Definitions 2.1, 2.2 and 2.20 as
classical patterns. In this section we consider generalized patterns, which were introduced
by Babson and Steingŕımsson [12]. The motivation for introducing these patterns was the
study of Mahonian permutation statistics (see [191, 137]).

3.1. Generalized patterns in permutations. In [12] Babson and Steingŕımsson in-
troduced generalized permutation patterns that allow the requirement that two adjacent
letters in a pattern must be adjacent in the permutation. In order to avoid confusion
we write a classical pattern, say 231, as 2-3-1, and if we write, say 2-31, then we mean
that if this pattern occurs in the permutation, then the letters in the permutation that
correspond to 3 and 1 are adjacent. For example, the permutation π = 516423 has only
one occurrence of the pattern 2-31, namely the subsequence 564, whereas the pattern
2-3-1 occurs, in addition, in the subsequences 562 and 563. If we use ”[” in a pattern,
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for example if we write p = [1-2), we indicate that in an occurrence of p, the letter cor-
responding to the 1 must be the first letter of the permutation, whereas if we write, say,
p = (1-2], then the letter corresponding to 2 must be the last (rightmost) letter of the
permutation. Let us give a formal definition of a generalized pattern.

Definition 3.1. A generalized pattern of length k is a word τ = x1τ1x2τ2 . . . xkτkxk+1,
where τ1τ2 . . . τk ∈ Sk, x1 (resp. xk+1) is either “(” (resp. “)”) or “[“ (resp. “]”), and
for 1 < j < k + 1, xj is either the empty string ε or a dash “-”. If xj =”-” then in the
definition of an occurrence of a classical pattern we allow ij > ij−1 + 1; also we allow
i1 > 1 if x1 =”(”, and ik < n if xk+1 =”)”; else ij = ij−1 + 1; in particular i1 = 1 if
x1 =”[“, and ik = n if xk+1 =”]”.

Remark 3.2. Most of generalized patterns considered in this paper had an implicit dash
at the beginning and the end, in the sense that they have been allowed to begin, and end,
anywhere in a permutation. To simplify the notation, in case if we have no sign “[“ or
“]”, we remove the parenthesis “(“ and “)” from the pattern. Thus, a pattern with no
dashes corresponds to a contiguous subword anywhere in a permutation.

For example, the permutation π = 314265 has two occurrences of the pattern 2-31-4,
namely 3-42-6 and 3-42-5.

A number of interesting results on generalized patterns were obtained in [62]. Relations
to several well studied combinatorial structures, such as set partitions (see [105]), Dyck
paths (see [163]), Motzkin paths (see [66]) and involutions (see [200]), were shown there.
The main results from that paper are given in Table 11, where Bn is the n-th Bell number,
Cn is the n-th Catalan number, and B�

n is the n-th Bessel number. For some other results
on generalized permutation patterns see [63, 64, 113, 114, 115, 117, 118, 142, 146, 147].

patterns P |Sn(P )| description
1-23 Bn partitions of [n]

1-32 Bn partitions of [n]

2-13 Cn Dyck paths of length 2n

1-23, 12-3 B�
n non-overlapping partitions of [n]

1-23, 1-32 In involutions in Sn

1-23, 13-2 Mn Motzkin paths of length n

Table 11. Avoidance of generalized patterns in permutations

As in the paper by Simion and Schmidt [199], dealing with the classical patterns, Claes-
son [62], Claesson and Mansour [63] considered a number of cases when permutations
have to avoid two or more generalized patterns simultaneously (see Table 11). In [113],
Kitaev gave either an explicit formula or a recursive formula for almost all cases of simul-
taneous avoidance of more than two generalized patterns of length three with no dashes,
and listed what was known about double restrictions (the remaining cases were described
in [117, 118]).
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In [113, 117, 118], the authors considered avoidance of an arbitrary generalized 3-letter
pattern with additional restrictions such as beginning or ending with certain patterns.
These additional restrictions in fact are equivalent to simultaneous avoidance of several
patterns. For example, beginning with the pattern 123 is equivalent to simultaneously
avoiding the patterns [132), [213), [231), [312) and [321). A motivation for considering
additional restrictions such as beginning or ending with some patterns is their connection
to some classes of trees. In [113] it was proven that the number of 132-avoiding permu-
tations in Sn that begin with the pattern 12 is equal to the number of increasing rooted
trimmed trees with n + 1 nodes. In an increasing rooted tree, the nodes are numbered
and the numbers increase as we move away from the root. A trimmed tree is a tree where
no node has a single leaf as a child (every leaf has a sibling).

The case of counting occurrences of a given generalized pattern is studied in the following
cases. Elizalde and Noy [72] found the distribution of the number of occurrences of a single
generalized pattern from a certain class of generalized patterns with no dashes among all
permutations in Sn. In particular, they found the generating functions for the number of
permutations in Sn containing occurrences of the patterns 123 and 132 exactly r times,
which are given by∑

π∈S
x123(π) y|π|

|π|! =
1

1 −
∫ y

0
e

1
2
t2(x−1)dt

,

∑
π∈S

x132(π) y|π|
|π|! =

2
√

(x − 1)(x + 3)e
1
2
y(1−x+

√
(x−1)(x+3))

1 + x +
√

(x − 1)(x + 3) − (1 + x −
√

(x − 1)(x + 3))ey
√

(x−1)(x+3)
,

where |π| is the length of π, and 123(π) and 132(π) are the number of occurrences of the
pattern 123 and 132 in π, respectively.

Claesson and Mansour [63] studied this problem in the case of a given 3-letter generalized
pattern with one dash. In particular, they found the generating function for the number
of permutations in Sn containing the pattern 2-13 exactly r times, which is given by∑

π∈S

x2-13(π)y|π| =
1

1 − [1]xy

1 − [1]xy

1 − [2]xy

1 − [2]xy

1 − . . .

,

where |π| is the length of π, [n]x = 1 + x + · · · + xn−1, and 2-13(π) is the number of
occurrences of the pattern 2-13 in π.

Mansour [146, 147] investigated the case of avoidance of the classical pattern 1-3-2 and
counting certain generalized patterns. For example, he found, in terms of continued frac-
tions, the generating function for the number of 1-3-2-avoiding permutations in Sn which
contain the pattern τ exactly r times, where τ ∈ {1-2- · · · -k, 12-3-4- · · · -k, 21-3-4- · · · -k}.
Also, Mansour [148] considered the case of avoidance of a 3-letter generalized pattern with
one dash and containing another 3-letter generalized pattern exactly r times. In particu-
lar, he found the generating function for the number of 12-3-avoiding permutations which
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contain the pattern 23-1 exactly once. This function is given by

∑
d≥0

[
x2d+2

pd+1(x)

(∑
k≥0

x2k

pk+d−1(x)pk+d+1(x)
− 1

)]
,

where pm(x) =
∏m

j=0(1 − jx).

3.2. Generalized patterns in words. Burstein’s work [52] was extended to several
directions. One of these directions is counting occurrences of generalized patterns in
words. Burstein and Mansour [54] considered the case of avoidance of a 3-letter generalized
pattern with repeated letters. For example, they found the generating function for the
number of words in [k]n that avoid the pattern 212, which is given by∑

n≥0

∑
π∈[k]n(212)

xn =
1

1 − x
∑k−1

j=0
1

1+jx2

.

More generally, Burstein and Mansour [55] investigated the case of counting occurrences of
certain generalized patterns, in particular 3-letter generalized pattern. For example, they
found the generating function for the number of words in [k]n that contain the pattern
212 exactly r times, which is given by∑

n≥0

∑
π∈[k]n(212)

xny212(π) =
1

1 − x
∑k−1

j=0
1

1+jx2(1−y)

,

where 212(π) is the number of occurrences of the pattern 212 in π.

3.3. Partially ordered generalized patterns. Kitaev [114] introduced a further gen-
eralization of generalized patterns, namely partially ordered generalized patterns (POGP).
A POGP is a generalized pattern some of whose letters are incomparable. For instance, if
we write p = 1-1′2′ then we mean that in an occurrence of p in a permutation π the letter
corresponding to the 1 in p can be either larger or smaller than the letters corresponding
to 1′2′. Thus, the permutation 13425 has four occurrences of p, namely 134, 125, 325 and
425.

Kitaev [114] considered two particular classes of POGPs: shuffle patterns and multi-
patterns. A multi-pattern is of the form p = σ1-σ2- · · · -σk and a shuffle pattern is of the
form p = σ0-a1-σ1-a2- · · · -ak-σk, where for any i and j, the letter ai is greater than any
letter of σj and for any i 	= j each letter of σi is incomparable with any letter of σj . For
example, τ = 1′-2-1′′ is a shuffle pattern, and φ = 12-2′1′ is a multi-pattern. Kitaev found
the exponential generating functions for the number of permutations avoiding a shuffle-
pattern and a multi-pattern, in terms of exponential generating functions for the number
of permutations avoiding certain generalized pattern with no dashes. In particular, he
found the number of τ -avoiding and φ-avoiding permutations, which are given by 2n−1

and (n − 2)2n−1 + 2, respectively.

Kitaev’s work [114] was extended to considering POGPs in words. Kitaev and Man-
sour [119] investigated the analogue of the shuffle patterns and the multi-patterns in
permutations. For example, they found that the generating function for the number of
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words in [3]n avoiding the shuffle pattern τ is given by 1−2x+4x2−3x3+x4

(1−x)5
, whereas the gen-

erating function for the number of words in [k]n avoiding the multi-pattern φ is given by
1−kx−2(1−x)k

(1−x)2k .

The POGPs allow us to study the distribution of the maximum number of non-overlapping
occurrences of a pattern τ with no dashes, if we only know the e.g.f. for the number of
permutations that avoid τ . In many cases, this gives nice generating functions. Let τ and
φ be two patterns. An occurrence of τ overlaps an occurrence of φ in a permutation π
if these two occurrences share a letter in π. For example, if τ = 123, φ = 231, and π =
623514 then 235 and 351, being occurrences of the patterns τ and φ respectively, overlap.
Kitaev [114], and Kitaev and Mansour [119] considered the distribution of the maximum
number of non-overlapping occurrences of a pattern τ with no dashes in permutations and
words, respectively. In particular, if we consider the maximum number of non-overlapping
occurrences of the generalized pattern 132, then the distribution of these numbers in
permutations is given by

1

1 − yx + (y − 1)

∫ x

0

e−
1
2
t2 dt

.

3.4. Generalized patterns in other sets. Similarly to the case of classical patterns
(see Subsection 2.6), we consider some analogies for occurrences of generalized patterns
problem in other sets, which are involutions, alternating permutations, and finite approx-
imations of some sequences.

3.4.1. Generalized patterns in involutions. In [100, 101], Guibert and Mansour studied
1-3-2-avoiding involutions with additional restrictions (for the case of the classical patterns
see Subsubsection 2.6.2). For example. they found that the distribution of the number of
occurrences of the generalized pattern 12 in 1-3-2-avoiding involutions is given by∑

π∈I(1-3-2)
x|π|y12(π) =

2(1 + x − xy)

3 − 3x2 − 2xy + 2x2y2 +
√

1 − 2x2 + x4 + 4x2y2
,

where |π| is the length of π and 12(π) is the number of occurrences of the generalized
pattern 12 in π.

3.4.2. Generalized patterns in alternating permutations. Mansour [144] considered the
case of 1-3-2-avoiding alternating permutations with additional restrictions. This work
extends the results from Subsubsection 2.6.4 to the case of generalized patterns. In
particular, he found the generating function for the number of 1-3-2-avoiding alternating
permutations that avoid the generalized pattern 12-3-4- · · · -k, which is given by

(1 + x)Uk−1

(
1
2x

)
xUk

(
1
2x

) ,

where Um is the mth Chebyshev polynomial of the second kind.
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3.4.3. Finite approximations of some sequences. Kitaev [116, 120, 121] discussed counting
occurrences of certain classical patterns (see Subsubsection 2.6.6), as well as of certain gen-
eralized patterns in finite approximations of certain sequences. For instance, the number
of occurrences of the generalized pattern 12 in the finite approximations of the sequence
w defined in Subsubsection 2.6.6 is given by 3 · 2n−2.

4. Some of the approaches to study the pattern problems

Many authors used the same approaches to obtain different results in the subject. In this
section, we discuss some of these approaches, which are using transfer matrices, generating
trees, continued fractions, and block decompositions.

To proceed further, we recall that Chebyshev polynomials of the second kind (in what
follows just Chebyshev polynomials) are defined by

Ur(cos θ) =
sin(r + 1)θ

sin θ

for r ≥ 0. Evidently, Ur(x) is a polynomial of degree r in x with integer coefficients. For
example, U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, and in general, Ur(x) = 2xUr−1(x) −
Ur−2(x). Chebyshev polynomials were invented for the needs of approximation theory,
but are also widely used in various other branches of mathematics, including algebra,
combinatorics, and number theory (see [185]).

4.1. Transfer matrices. Apparently, for the first time the relation between restricted
permutations and the transfer matrix approach was discovered by Chow and West in [60].
The main result of [60] can be formulated as follows.

Theorem 4.1. ([60, Theorem 3.1]) Let T1 = {321, 23 . . . k1}, T2 = {132, 12 . . . k}, and
T3 = {132, 23 . . . k1}, then :

(i) The generating function for the number of permutations avoiding both the patterns
from T1 is given by Rk(x);

(ii) The generating function for the number of permutations avoiding both the patterns
from T2 is given by Rk(x);

(iii) The generating function for the number of permutations avoiding both the patterns
from T3 is given by Rk(x),

where Rk(x) =
Uk−1

(
1

2
√

x

)
√

xUk

(
1

2
√

x

) , and Uk is the kth Chebyshev polynomial of the second kind.

The main idea behind the transfer matrix approach can be described as follows (see [204,
Theorem 4.7.2]). Consider a directed multigraph on n vertices v1, v2, . . . , vn, and let A
denote its weighted adjacency matrix, that is, aij is the number of edges directed from vi

to vj . Then the generating function for the number of walks from vr to vs is given by

(4.1)
(−1)r+s det(I − xA; r, s)

det(I − xA)
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where I is the identity matrix and det(B; r, s) is the minor of B with the rth row and sth
column deleted.

SIlvia: Check on whether col and row are interchanged.

To apply this approach, one has to construct a bijection between the permutations in
question and walks in an appropriate directed graph. We describe below three bijections
of this type: the first one is based on generating trees, the second one on Dyck paths, and
the third one on diagrams of permutations.

4.1.1. Generating trees. Following [217], a generating tree is a rooted labeled tree with the
property that if v1 and v2 are any two nodes with the same label and l is any label, then
v1 and v2 have exactly the same number of children with label l. To specify a generating
tree it therefore suffices to specify:

(1) the label of the root, and
(2) a set of succession rules explaining how to derive from the label of a parent the

labels of all of its children.

Example 4.2. (The complete binary tree) Since all the nodes in the complete binary
tree are similar, it is enough to use only one label, which we choose to be 2. So we get
the following description:

Root: (2)
Rule: (2) → (2)(2).

Example 4.3. (The Fibonacci tree) Here we have nodes of two different types, so we use
two labels: 1 for a non-breeding pair and 2 for a breeding pair. We thus get:

Root: (1)
Rules: (1) → (2), (2) → (1)(2)

Given a generating tree, one assigns to it a directed graph whose vertices correspond to
the labels. There is an edge from vertex i to vertex j for every occurrence of label j in
the succession rule i → · · · . The graphs corresponding to the above two examples are
shown in Figure 1.

12 2

Figure 1. Directed graphs for the complete binary tree and the Fibonacci tree

Given a permutation τ , one defines a rooted tree as follows. The nodes on level n are
precisely the elements of Sn(τ). The parent of a permutation π = (π1, π2, . . . , πn) is the
unique permutation π′ = (π1, . . . , πj−1, πj+1, . . . , πn) such that πj = n. We denote the
resulting tree T (τ). Similarly, the tree corresponding to the set Sn(T ) is denoted by
T (T ).
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Chow and West [60] proved that the succession rules for the tree T (123, (k−2, . . . , 1, k−1))
are

(l) → (2) · · · (l)(l + 1), l < k − 2

(k − 2) → (2) · · · (k − 1)(k − 2)(k − 2),

and the label of the root is (2). The corresponding graph is shown in Figure 2.

432 k-2432 k-2

Figure 2. The directed graph for T (123, (k − 2, . . . , 2, 1, k − 1))

The corresponding transfer matrix is

Ak−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 · · · 0 0 0
1 1 1 0 · · · 0 0 0
1 1 1 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
1 1 1 1 · · · 1 0 0
1 1 1 1 · · · 1 1 0
1 1 1 1 · · · 1 1 1
1 1 1 1 · · · 1 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Besides, Chow and West proved that the graphs, and hence the transfer matrices for
T (213, (k, 1, 2 . . . , k − 1)) and T (213, (1, 2, . . . , k)) are exactly the same (though the suc-
cession rules may vary). The number of permutations in Sn(T ) (in all cases) is thus equal
to the number of walks of length n starting from vertex 2. However, since each vertex is
connected to vertex 2 by exactly one edge, this number is equal to the number of walks of
length n+1 starting at vertex 2 and ending at the same vertex. The generating function for
this number is given by 4.1 with A = Ak. It is proved in [60] that the determinants in ques-
tion satisfy linear recurrences of order two very similar to that for Chebyshev polynomials,
which almost immediately yields Theorem 4.1, since T1 = c({123, (k − 1, . . . , 2, 1, k)}),
T2 = r ◦ c({213, (1, 2, . . . , k)}), and T3 = r ◦ c({213, (k, 1, 2, . . . , , k − 1)}), where r and c
are the reverse and the complement respectively.

4.1.2. Dyck paths. A Dyck path is a path in the plane integer lattice Z2, consisting of
up-steps (1, 1) and down-steps (1,−1), which never passes below the x-axis.

Following [130], we define a bijection Φ between permutations in Sn(132) and the Dyck
paths from the origin to the point (2n, 0). Let π = (π1, . . . , πn) be a 132-avoiding permu-
tation. We read the permutation π from left to right and successively generate a Dyck
path. When πj is read, then in the path we adjoin as many up-steps as necessary, followed
by a down-step from height hj + 1 to height hj (measured from the x-axis), where hj is
the number of elements in πj+1, πj+2, . . . , πn which are larger that πj .
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For example, let π = 534261. The first element to be read is 5. There is one element in
34261 which is larger than 5, therefore the path starts with two up-steps followed by a
down-step, thus reaching height 1. Next 3 is read. There are 2 elements in 4261 which
are larger than 3, therefore the path continues with two up-steps followed by a down-step,
thus reaching height 2. And so on.

Conversely, given a Dyck path starting at the origin and returning to the x-axis, the
obvious inverse of the bijection Φ produces a 132-avoiding permutation.

It is proved in [130] that the bijection Φ sends the permutations in Sn(132, (1, 2, . . . , k))
onto the Dyck paths that never pass above the line y = k − 1. Evidently, such paths
correspond bijectively to walks of length 2n starting at vertex 0 in the graph shown in
Figure 3.

10 k-1

Figure 3. The directed graph for Dyck paths in a strip

Using Eq. (4.1) one obtains Theorem 4.1(ii). A further study of the bijection Φ yields
part (iii) of the same theorem.

4.1.3. ECO-method. In this subsubsection, we present another general method (called
ECO) for the enumeration of some classes of combinatorial objects. The main idea of
this method is the following: using an operator that performs a ”local expansion” on
the objects, we give recursive constructions of these classes. Then we introduce some
functional equations verified by classes of generating functions. By solving these functional
equations, we enumerate the combinatorial objects according to various of parameters (for
more details see [17]).

Following [17], the ECO method can be defined as follows. Let X be a class of combina-
torial objects with a parameter p, p : X → N , and Xn = {x ∈ X | p(x) = n}. An operator
µ on X is a function from Xn to the power set of Xn+1. We say that the operator µ
is a recursive operator on X if it satisfies the following conditions: (1) for each element
y ∈ Xn+1 there exists x ∈ Xn such that y ∈ µ(x), and (2) if x1, x2 ∈ Xn and x1 	= x2, then
µ(x1) ∩ µ(x2) = ∅.
Proposition 4.4. If µ is a recursive operator on X , then {µ(x)| x ∈ Xn} is a partition
of Xn+1.

Therefore, such an operator on X gives a recursive description of the class X , that is, the
above proposition allows us to construct each object y ∈ Xn+1 from an object x ∈ Xn and
every y ∈ Xn+1 is obtained by only one x ∈ Xn. In many cases the recursive description
is given by generating trees (see Subsubsection 4.1.1). For example, let us show how the
ECO method works on the class of Dyck paths. Let P be the class of Dyck paths, Pn be
the set of all Dyck paths of length 2n, and s : P → N be the number of northeast steps.
For p ∈ Pn, we define µ(p) as the set of all Dyck paths obtained from p by inserting a
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peak at any point of p’s last descent. Then Pn+1 is obtained by performing the operator µ
on Pn. Now, let p be any Dyck path with k last descents (last descents contains k points),
then by writing the rule that characterizes the generating tree on P we get the rule

(k) → (2) · · · (k)(k + 1).

This approach proved to be a good one in many cases of restricted permutations, for
example in the case of Sn(321) (see [17, Section 3.4]) and in the case of Motzkin permuta-
tions, Sn(321, 3142) (see [17, Section 4.4]). (For more examples of classes of combinatorial
objects and special classes of restricted permutations see [17, 18, 19, 21, 22, 23, 24, 20].)

4.1.4. Diagram of a permutation. The diagram of a permutation is an important tool in
theory of Schubert polynomials for permutations. Schubert polynomials were extensively
developed by Lascoux and Schützenberger (for more details see [136]).

A diagram D(π) of a permutation π can be defined as the following: first let π be rep-
resented by an n × n-array with a dot in each of the squares (i, πi) (numbering from the
top left hand corner). Shadow all the squares due south or due east of some dot and
the dotted cell itself. The diagram D(π) is defined as the region left unshaded after this
procedure. A square that belongs to the diagram D(π) is called a diagram square and a
row (column) of the array that contains a diagram square is called diagram row (diagram
column).

In [87], Fulton introduced the essential set E(π) of a permutation π together with the
rank function used as a tool for an algebraic treatment of Schubert polynomials. By
the construction above, each of the connected components of the diagram D(π) is called
Young diagram. We define the essential set of a permutation π to be the corners. For any
element (i, j) ∈ E(π), its rank is defined to be the number of dots northwest of (i, j), and
is denoted by ρ(i, j). Furthermore, we denote the set of all elements of E(π) with rank
equals r by Er(π).
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Figure 4. The diagram and the ranked essential set for the permutation
π = 938417652.

Fulton [87, Lemma 3.10b] proved a fundamental property of the ranked essential set of a
permutation π, that uniquely determines π. An algorithm for retrieving the permutation
from its ranked essential set was provided by Erikson and Linusson [74] (see also [73]).
The authors gave a complete answer for a question of Fulton, namely, a characterization
of all ranked sets of the squares that can arise as ranked essential sets for permutations.
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To recover a permutation from its diagram is trivial: row by row, put a dot in the leftmost
shaded square in such way that there is exactly one dot in each column.

In [177], Reifegerste used the permutation diagrams to give combinatorial proofs for some
enumerative results concerning forbidden subsequences in 132-avoiding permutations and
discussed some open problems which have been raised in [160]. By [177, Theorem 2.2], 132-
avoiding permutations are exactly those permutations for which the diagram corresponds
to a partition, or equivalently, for which the rank of every element of the essential set
equal 0. More precisely, the diagram of a permutation in Sn(132) is a Young diagram
fitting in the shape (n − 1, n − 2, . . . , 1).

In [178], Reifegerste generalized these bijections to obtain combinatorial proofs for some
enumerative results in [71] concerning forbidden subsequences in {1243, 2143}-avoiding
permutations. By [178, Theorem 2.1], the permutations π ∈ Sn(1243, 2143) are exactly
those permutations for which every element of its essential set is of rank at most 1.

4.2. Continued fractions. The relation between restricted permutations and continued
fractions was discovered by Robertson, Wilf, and Zeilberger in [189]. The main result in
[189] can be formulated as follows.

Theorem 4.5. (Robertson, Wilf, and Zeilberger [189, Theorem 1]) The generating func-
tion for the number of permutations in Sn(132) containing the pattern 123 exactly r times
is given by ∑

n≥0

∑
π∈Sn(132)

xnz123(π) =
1

1 − xz(0
2)

1 − xz(1
2)

1 − xz(2
2)

. . .

in which the jth numerator is xz(j−1
2 ).

To prove this, let π be a permutation avoiding 132. Then each letter in π to the left of n
must be greater than any letter to the right of n. Thus, if π = (π′, n, π′′) (where both π′

and π′′ must necessarily be 132-avoiding), then

(123)π = (123)π′ + (12)π′ + (123)π′′,

where (τ)π is the number of occurrences of τ in π. It follows that the generating function

F (x, y, z) =
∑

π∈S(132)

x(1)πy(12)πz(123)π

satisfies the equation F (x, y, z) = 1 + xF (xy, yz, z)F (x, y, z). Equivalently,

F (x, y, z) =
1

1 − xF (xy, yz, z)
,

and the theorem follows by induction after plugging in y = 1.
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This result was generalized by Mansour and Vainshtein [156], by Krattenthaler [130],
and by Jani and Rieper [108] to the case of permutations containing the pattern 12 . . . k
exactly r times. It turns out that

(4.2)
∑
n≥0

∑
π∈Sn(132)

xnz12...k(π) =
1

1 − xzd1

1 − xzd2

1 − xzd3

. . .

,

where dj =
(

j−1
k−1

)
.

The proof in [156] is a straightforward generalization of the above proof of Theorem 4.5.
The proof in [130] is based on the bijection Φ between 132-avoiding permutations and
Dyck paths described in the previous section and on the result of Flajolet [79, Theorem 1]
presenting the generating function for the Dyck paths in terms of continued fractions.
The proof of [108] is based on a bijection between 132-avoiding permutations and rooted
ordered trees, which can be obtained from the bijection Φ via the standard bijection
between rooted ordered trees and Dyck paths through a depth-first traversal of the trees
(see [205, Proposition 6.2.1, Cororllary 6.2.3]). For further generalizations and interesting
combinatorial applications see [50].

It was observed in [156] that Rk(x) is the kth approximant for the continued fraction

1

1 − x

1 − x

1 − . . .

.

This, together with formula 4.2 applied for r = 0 immediately gives Theorem 4.1(ii).

Paper [130] contains the description of a bijection Ψ between 123-avoiding permutations
and Dyck paths. This bijection, combined with Roblet and Viennot’s continued fraction
representation of the generating function for Dyck paths [186, Proposition 1] gives the
first part of Theorem 4.1.

4.3. Block decompositions. The core of this approach initiated by Mansour and Vain-
shtein [157] lies in the study of the structure of 132-avoiding permutations, and permuta-
tions containing a given number of occurrences of 132 [159]. Let us start with the simplest
case of 132-avoiding permutations. It was noticed in [157] that if α ∈ Sn(132) and αt = n,
then α = (α′, n, α′′) where α′ is a permutation of the numbers n−t+1, n−t+2, . . . , n−1,
α′′ is a permutation of the numbers 1, 2, . . . , n − t, and both α′ and α′′ avoid 132. This
representation is called the block decomposition of α, see Figure 4.3.

This simple observation allows to formulate a general result concerning permutations
avoiding 132 and an arbitrary pattern τ = (τ1, . . . , τk) ∈ Sk(132). Recall that τi is said



30 A SURVEY ON CERTAIN PATTERN PROBLEMS

α / /

α /

n-t

n

Figure 5. The block decomposition for α ∈ Sn(132)

to be a right-to-left maximum if τi > τj for any j > i. Let m0 = k, m1, . . . , mr be the
right-to-left maxima of τ written from left to right. Then τ can be represented as

τ = (τ 0, m0, τ
1, m1, . . . , τ

r, mr),

where each of τ i may be possibly empty, and all the entries of τ i are greater than all the
entries of τ i+1. Define the ith prefix of τ by πi = (τ 0, m0, . . . , τ

i, mi) for 1 ≤ i ≤ r and
π0 = τ 0, π−1 = ∅. Also, the ith suffix of τ is defined by σi = (τ i, mi, . . . , τ

r, mr) for
0 ≤ i ≤ r and σr+1 = ∅.

Theorem 4.6. ([157, Theorem 1]) For any τ ∈ Sk(132), the generating function for the
number of permutations in S(132, τ), Fτ (x), is a rational function satisfying the relation

Fτ (x) = 1 + x

r∑
j=0

(
Fπj (x) − Fπj−1(x)

)
Fσj (x).

The proof is rather straightforward. Let α = (α′, n, α′′) be the block decomposition of
α ∈ Sn(132). It is easy to see that α contains τ if and only if there exists i, 0 ≤ i ≤ r +1,
such that α′ contains πi−1 and α′′ contains σi. Therefore, α avoids τ if and only if there
exists i, 0 ≤ i ≤ r, such that α′ avoids πi and contains πi−1, while α′′ avoids σi. We thus
get the following relation:

fτ (n) =

n∑
t=1

r∑
j=0

fπj−1

πj (t − 1)fσj (n − t),

where fτ (n) = |Sn(132, τ)|, and f ρ
τ (n) is the number of permutations in Sn(τ) containing

ρ at least once. To obtain the recursion for Fτ (x) it remains to observe that

fπj−1

πj (l) + fπj−1(l) = fπj(l)

for any l and j, and to pass to generating functions. Rationality of Fτ (x) follows easily
by induction.

This technique has been used in many papers for different structures (see [160] and the
references therein). For example, it is used in pattern avoidance in involutions (see [100,
101]), coloured permutations (see [139]), generalized patterns (see [142, 146, 147]), and
even permutations (see [145]).
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4.3.1. Removing the first or the last element, or removing the greatest or the smallest
element. IIn [169], Noonan and Zeilberger suggested a new approach for the enumeration
of permutations with a prescribed number of occurrences of a list of patterns. Many
authors have since used this approach directly or indirectly. We now present the method
and two applications of it.

To determine the number of permutations in Sn having exactly r occurrences of the
pattern τ = τ1τ2 . . . τk,

(1) Determine the best way to obtain a recurrence for this pattern. There are basically
four ways to do this, namely by removing
(a) the last entry of the permutation;
(b) the first entry of the permutation;
(c) the maximal entry of the permutation;
(d) the minimal entry of the permutation;

(2) Identify the other parameters needed in order to describe the recurrence.

Noonan and Zeilberger [169] used this method to find the number of permutations in Sn

containing the pattern 123 exactly once, which is given by 3
n

(
2n

n+3

)
; they conjectured that

the number of permutations in Sn containing the pattern 123 exactly twice is given by
59n2+117n+100
2n(2n−1)(n+5)

(
2n

n−4

)
(which was proved by Fulmek [86] using the Dyck paths approach, see

Subsubsection 4.1.2) and that the number of permutations in Sn containing the pattern
132 exactly once is given by

(
2n−3
n−3

)
(which was proved by Bóna in [38], and the general

case was suggested by Mansour and Vainstein [159]).

Burstein [52] gives another application of this approach. In his thesis, he presented the
number of words avoiding a set of patterns in S3. For example, he proved that the number
of words in [k]n avoiding a pattern of length three is given by

f123(n, k) = f132(n, k) = 2n−2(k−2)

k−2∑
j=0

ak−2,j

(
n + 2j

n

)
,

where

ak,j =

k∑
m=j

CmDk−m, Dt =

(
2t

t

)
, Cm =

1

m + 1

(
2m

m

)

and the generating function for those words is given by

1 +
y

1 − x
+

2y2

(1 − 2x)(1 − y) +
√

((1 − 2x)2 − y)(1 − y)
.

4.4. Young Tableaux. In 1961, Schensted [196] introduced a bijection (see also [190])
between permutations of the symmetric group Sn and the pairs of standard Young tableaux
(see also [96, 125, 212]). Schensted [196] proved that there is a bijection between the set
of Young tableaux having n cells with at most k rows and the set of involutions in Sn

avoiding the increasing pattern of length k + 1, namely involutions in Sn(12 . . . k(k + 1)).

Let λ = (λ1, λ2, · · · , λk) be a partition of a positive integer n, that is,
∑k

i=1 λi = n and
λ1 ≥ λ2 ≥ · · · ≥ λk > 0. The Ferrers diagram Fλ of shape λ is the left-justified rows of
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cells with λi cells in the ith row (reading from top to bottom). A standard Young tableaux
(more simply, a Young tableaux) of shape λ is a filling of the cells in Fλ with the numbers
1, 2, . . . , n in such a way that the numbers increase in each row (when reading from left
to right) and each column (when reading from top to bottom). We denote by Y k

n the set
of Young tableaux having n cells and at most k rows.

The first simple expressions for the number of standard Young tableaux for given a shape
were the Frobenius-Young formula [85, 167, 220] and the Frame-Robinson-Thrall hook
formula [82]. Since 1954 many proofs of the hook formula have been given using prob-
abilistic (Greene, Nijenhuis and Wilf [97]) or purely combinatorial methods (Remmel
[181], Remmel and Whitney [182], Gessel and Viennot [93], Zeilberger [223], Franzblau
and Zeilberger [83], and see also [89, 195, 203]).

Let Sk
n be the number of standard Young tableaux with n cells and at most k rows.

Schensted [196] proved the number of involutions in Sn avoiding the increasing pattern of
length k + 1 is given by Sk

n. Regev [175] found the exact formulas for Sk
n where k = 2, 3:

S2
n =

n!

[n/2]![(n + 1)/2]!
and S3

n = Mn,

where Mn is the nth Motzkin number. Gouyou-Beauchamps [95] found another two
formulas for Sk

n where k = 4, 5 and proved that

S4
n = C[(n+1)/2]C[n/2]+1 and S5

n =

[n/2]∑
i=0

6n!(2i + 2)!

(n − 2i)!i!(i + 1)!(i + 2)!(i + 3)!
,

where Cn is the nth Catalan number. The proofs of these results are purely combinatorial
using the bijection between involutions and labelled Motzkin words (see [95, Section 3]).

5. Our final remark

As a final remark, we would like to mention that the idea of the patterns described
in this paper can be generalized to the numbered polyomino patterns or just polyomino
patterns (see [122]). The polyomino patterns are two-dimensional, and one can consider
occurrences of them in matrices or other two-dimensional shapes. These patterns are
interesting, for instance, from a graph theoretic point of view. For example, occurrences of
particular polyomino patterns in the adjacency matrix of a graph pose certain restrictions
on the set of edges of the graph and on its cycles.
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Combinatoire B48e (2003) 19pp.
[116] S. Kitaev, The sigma-sequence and counting occurrences of some patterns, The Australasion

Journal of Combinatorics 29 (2004), 187–200.
[117] S. Kitaev and T. Mansour, Simultaneous avoidance of generalized patterns, Ars Combinatorica ,

to appear.
[118] S. Kitaev and T. Mansour, On multi-avoidance of generalized patterns, Ars Combinatorica , to

appear.
[119] S. Kitaev and T. Mansour, Partially Ordered generalized patterns and k-ary words, Annals of

Combinatorics 7 (2003), 191–200.
[120] S. Kitaev and T. Mansour, Counting the occurrences of generalized patterns in words generated

by a morphism, preprint.
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deux points, Discrete Mathematics 153 (1996), 271–288.
[187] A. Robertson, Permutations containing and avoiding 123 and 132 patterns, Discrete Mathematics

and Theoretical Computer Science 4 (1999) 151–154.
[188] A. Robertson, Permutations restricted by two distinct patterns of length three, Advances in

Applied Mathematics 27 (2001) 548–561.
[189] A. Robertson, H. Wilf, and D. Zeilberger, Permutation patterns and continuous fractions,

Electronic Journal of Combinatorics 6 (1999) #R38.
[190] G.De B. Robinson, On the representation of the symmetric groups, Am. J. Math. 60 (1938),

745–760; 69 (1947), 286–298; 70 (1948), 277–294.
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[202] D.A. Spielman and M. Bóna, An infinite antichain of permutations, Electronic Journal of Com-

binatorics 7 (2000) #R2.
[203] R. Stanley, Ordered structures and partitions, thesis, Harvard universty, 1971.
[204] R. Stanley, Enumerative Combinatorics, Volume1, Cambridge University Press, Cmabridge,

1997.
[205] R. Stanley, Enumerative Combinatorics, Volume2, Cambridge University Press, Cmabridge,

1999.
[206] R. Stankova, Forbidden subsequences, Discrete Mathematics 132 (1994), 291–316.
[207] R. Stankova, Classification of forbidden subsequences of length 4, European Journal of Combi-

natorics 17:5 (1996) 501–517.
[208] Z. Stankova and J. West, Explicit enumeration of 321-hexagon-avoiding permutations, Journal

Combinatorics Theory Series A .
[209] Z. Stankova and J.West, A new class of Wilf-equivalent permutations, Journal Combinatorics

Theory Series A , preprint Co/0103152v2.
[210] G. Szego, Orthogonal Polynomials, AMS, Providence, RI, 1967.
[211] R. Tarjan, Sorting using networks of queues and stacks, J. Assoc. Comput. Mach. 19 (1972)

341–346.
[212] G. Viennot, Chain and antichain families, grids and Young tableaux, Ann. Disc. Math., Proc.

Int. Conf. on ’Ensembles ordonnés’, Lyon, 1982.
[213] J. West, Permutations with forbidden subsequences and stack-sortable permutations, Ph.D. The-

sis, Massachusetts Institute of Technology, Cambridge (1990).
[214] J. West, Sorting twice through a stack, Theoretical Computer Science 117 (1993), 303–313.
[215] J. West, Generating trees and forbidden subsequences, 6éme conférence Séries Formelles et Com-
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(1995), 247–262.
[217] J. West, Generating trees and forbidden subsequences, Discrete Mathematics 157 (1996), 363–374.
[218] H. Wilf, Ascending subsequences of permutations and the shapes of tableaux, Journal Combina-

torics Theory Series A 60 (1992) 155–157.
[219] H. Wilf, The patterns of permutations, Discrete Mathematics 257 (2002), 575–583.
[220] A. Young, On quantitative substitutional analysis II, Proc. Lond. Math. Soc. 34 (1902), 361–397.
[221] D. Zeilberger, Holonomic systems for special functions, J. Computational and Applied Mathe-

matics 32 (1990) 321–368.
[222] D. Zeilberger, A proof of Julian West’s conjecture that the number of two-stack-sortable per-

mutations of length n is 2(3n)!/((n + 1)!(2n + 1)!), Discrete Mathematics 102:1 (1992), 85–93.



A SURVEY ON CERTAIN PATTERN PROBLEMS 41

[223] D. Zeilberger, A short hook-lengths bijection inspired by the Greene-Nijenhuis-Wilf proof,
preprint.

[224] ———— , Available in http://www.theory.csc.uvic.ca/∼cos/inf/perm/GenocchiInfo.html.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


