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CHAPTER 1 
 
 

INTRODUCTION 
 
 
Throughout this document, words in italics are explained in the Glossary, pages 33-35.  

What is a fair die?  If made uniformly, a cube is often considered fair.  For hundreds of 

years, the cube has been used in gambling because of its perceived fairness.  ‘Fair’ implies that 

all faces have an equal likelihood of being the ‘down’ face.  Has anyone ever mathematically 

proven that a cube is fair?  Other than by rolling and applying the law of large numbers, the answer 

appears to be ‘no.’   

Research for this problem started during a lecture, when Dr. Rinaldo Schinazi 

mentioned ‘fair die’ after a series of very careful definitions.  Similar to the weightless rods 

found in physics problems, the ‘fair die’ seemed to be an abstraction.  Can a fair die have five 

sides?   

A simple mathematical model suggested ‘yes,’ and led to the construction a pyramid 

that was fair within the framework of the model.  A second mathematical model suggested ‘no,’ 

and gave strong evidence that dice are fair if and only if they are isohedral.  A polyhedron is 

isohedral if any face can be mapped directly onto any other face by some rotation or reflection 

of the polyhedron onto itself.  Such a polyhedron is called an isohedron. 

For the Geometric Model, the five-sided pyramid gives a function that assigns to each 

height h a value f(h) equal to the probability that a pyramid will land on its unit square base.  In 

this model, when h ∈ (1,2), the pyramid function is continuous. 



 2
 
 

The Geometric Model exploits spherical trigonometry to describe how an idealized (i.e. 

– non-bouncing, non-spinning) object will behave.  It maps the edges of an object to the surface 

of a centroid-centered sphere. The centroid, also called the center of mass, is the point such that 

the first moment of every line through the point is zero. 

The Geometric Model postulates that if all images on the sphere have equal area, then 

the object is fair.  The model is flawed – unstable faces cause this model to fail.  The model, 

Maple, and [Wer 727-736] allowed the construction of fair 5-sided prisms and pyramids.  I 

discuss the model further in Chapter Three.  The Geometric Model allows for the 

asymmetrical object constructed in Chapter Four. 

Parallel to this research, I built a list of all the dice which are ‘obviously’ fair – the 

objects that would work in all of the mathematical models for fairness.  The five Platonic 

polyhedra (tetrahedron, cube, octahedron, dodecahedron, and icosahedron) are ‘obviously’ fair.  

Any isohedron is obviously fair.  The isohedra are symmetrical, so Group Theory was used to 

prove that the list of dice is complete.  Several proofs exist for the theorem concerning the 

finite subgroups of SO[3].  The complete list of isohedra led to a new proof of this theorem. 

The major result of this thesis was obtained in April 1997.  Weird dice are strongly 

influenced by the way they are tossed.  A fair pyramid when dropped on a glass surface from 

two feet might not be fair anymore when tossed from three feet onto a wooden surface.  The 

Energy State Model takes these factors into account.  It can be considered as a convergent 

Markov Chain, with one matrix for each bounce.  Since dice can easily be tossed in a variety of 

ways, these results show that the isohedra are the only fair dice.  I discuss the Energy State 

Model in Chapter Six. 



 3
 
 

This research touches on and links the following mathematical areas: linear algebra, 

group theory, graph theory, geometry, mathematical modeling, chaos theory, probability, and 

analysis.  Several times, results were proven by converting the problem into one involving a 

different field of mathematics. 

This thesis explains how dice work, and solves key questions about fairness.  The work 

includes an elementary proof classifying finite subgroups of rotations in 3-space.  To quote Toy 

Story’s Buzz Lightyear – “This is falling, with style.” 



 

 

 
 
 

CHAPTER 2 
 
 

REVIEW OF THE LITERATURE 
 
 

The initial clue for solving the title problem was inspired by Buffon’s Needle Problem: 

A board is ruled with a series of equidistant parallel lines, and a very fine needle, which 
is shorter than the distance between lines, is thrown at random on the board.  
Denoting by l  the length of the needle and by h  the distance between lines, the 
probability that the needle will intersect one of the lines (the other possibility is that the 
needle will be completely contained within the strip between two lines) is found to be p 
= 2l / πh   [Upe 112]. 
 
The experiment suggested by the above theorem provides a striking application of 

Bernoulli’s law of large numbers.  In a trial conducted by R. Wolf, a value for π of 3.1596 was 

found using 5000 needle tosses.  Ambrose Smith reached the value 3.155 using 3204 needle 

tosses [Upe 113].  Since a two dimensional object could be analyzed by using a circle, it 

occurred to me that a three dimensional object could be analyzed using a sphere.  From this 

came the Geometric Model, which I discuss in the next chapter. 

One problem with Buffon’s model is that it fails to take into account the process of 

landing.  When I tried tossing a needle on a glass surface, the needle bounced around a lot 

before stopping.  On paper, the needle tended to slide or roll.  Depending upon the method 

used for tossing the needle, one might find that certain final angles are more likely than others.  

This turns out to be a key result of the Energy State Model, which is discussed in Chapter Six. 

For three dimensional solids, the method of tossing becomes even more important.  In 

Las Vegas, cubic dice must bounce off the backboard before the roll is considered fair.  

Without such an element, it is possible, with some practice, to ‘cheat’ while rolling the dice.  
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Using the backboard, cubes are considered ‘fair dice.’  Las Vegas doesn’t use dimpled dice – in 

Chapter Six a good reason for this decision is shown – dimpled dice are not fair.  The 

backboard forces at least three unpredictable bounces.  

A key element of fairness seems to be symmetry.  Group Theory has powerful tools 

for analyzing symmetric objects, such as the rotation groups of the sphere. 

John Napier, who also analyzed the sphere, invented both the decimal point and 

logarithms.  He developed many of the formulas that are still used for Spherical Trigonometry.  

After his death in 1617, Euler and Gauss fleshed out a few of the formulas, but Napier’s 

analysis almost exhausted this branch of mathematics.  The problems in spherical trigonometry 

that Napier couldn’t solve remain unsolved.  For example, if the surface of the sphere is 

divided into a finite number of congruent pieces, what is the minimal diameter of these pieces?  

The best known answer corresponds to the 120 triangles of the hexakis icosahedron, but no 

proof exists [Cro 90].  Another problem, called the problem of Tammes (after a botanist 

studying pollen grains), asks for optimal arrangements of n circles on a unit sphere [Cro 114].  

Many of the problems involving spherical trigonometry lead to page-long formulas that 

are best evaluated by a computer.  Perhaps dice haven’t been studied much due to the fact a 

linkage was needed between computers and an area of mathematics that had been seen as a 

dead end.  Even Euler and Gauss weren’t able to improve much upon Napier’s results. 

Leonhard Euler did, however, add to many other areas of mathematics (as did Gauss); 

one area he developed was Graph Theory.  Euler’s formula, faces (f) - edges (e) + vertices (v) = 2, 

applies to any polyhedron topologically equivalent to a sphere – these include all convex 

polyhedra.  There is one basic polyhedron with four faces, the tetrahedron.  There are two 
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basic polyhedra with five sides, the prism (three rectangles and two triangles) and the pyramid 

(as in Egygt). 

  Martin Gardner asked how many basic six-sided polyhedra there were in his 

Mathematical Games column in Scientific American [Gar 233].  There are seven basic shapes. 

  

 

 

 

Figure 1.  The Seven Basic Hexahedra. 

Note the arrows in Figure 1.  An arrow indicates a vertex-splitting operation.  A vertex 

is split, the two new vertices are joined by an edge, and the edges incident on the original vertex 

are apportioned between the two new vertices.  The other direction would be considered a 

vertex-merging operation.  Note that, by Euler’s formula, the number of faces remains 

constant with either operation.  I rediscovered that all polyhedra of a given number of faces are 

connected via vertex-splitting and vertex-merging operations.  Tutte proved this result in 1961 

[Har 46].  Converting the graphs to matrices, it is relatively easy to write a program which will 

find all of the polyhedra with f faces.   

Michael B Dillencourt did just that, and found 1 tetrahedron, 2 pentahedra, 7 

hexahedra, 34 heptahedra, 257 octahedra, 2606 enneahedra, 32,300 decahedra, 440,564 

hendecahedra, and 6,384,634 dodecahedra [Dil 98] (Dillencourt’s paper was found via the 

Encyclopedia of Integer Sequences [Slo M1796]). 

For unstable polyhedra, Richard K. Guy discovered a 19-sided solid object with the 

property that 18 of its faces are unstable.  When tossed, the object always winds up on the 

65 

7

432 1 
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same face each time.  Such an object is called unistable.  No unistable object with fewer faces has 

been found.  A tetrahedron with two unstable faces exists, with an edge of length 41 opposite 

an edge of length 4, 24 opposite 20, and 26 opposite 17  [Cro 61]. 

The Rigid Tetrahedral Group ( ) is the following collection of 12 3x3 matrices.   

They form a group under multiplication. 

A =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 0 0
0 1 0
0 0 1

                 B =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
−

1 0 0
0 1 0
0 0 1

C =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

−

1 0 0
0 1 0
0 0 1

D =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
−

1 0 0
0 1 0
0 0 1

E =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 1 0
0 0 1
1 0 0

         G        F =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
−

0 1 0
0 0 1
1 0 0

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

−

0 1 0
0 0 1
1 0 0

H =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
−

0 1 0
0 0 1
1 0 0

I =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 0 1
1 0 0
0 1 0

                J =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
−

0 0 1
1 0 0

0 1 0
K =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

−

0 0 1
1 0 0
0 1 0

L =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
−
0 0 1
1 0 0

0 1 0

Forming the multiplication table helps to verify that this is a group – see Table 1.  The 

group axioms are easily verified.  Note that A is the identity element for this group. 

 A B C D E F G H I J K L 
A A B C D E F G H I J K L 
B B A D C F E H G J I L K 
C C D A B G H E F K L I J 
D D C B A H G F E L K J I 
E E H F G I L J K A D B C 
F F G E H J K I L B C A D 
G G F H E K J L I C B D A 
H H E G F L I K J D A C B 
I I K L J A C D B E G H F 
J J L K I B D C A F H G E 
K K I J L C A B D G E F H 
L L J I K D B A C H F E G 
Table 1.  Multiplication Table for a Matrix Group 
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Two different groups of 24 matrices can be realized by considering the group 

generated by G above together with , or .  A group of 48 matrices is 

generated by adding both matrices and forming all possible products.  The original twelve 

matrices correspond to the rigid tetrahedral group, .  Adding the first matrix produces the 

group corresponding to the rigid octahedral group, .  Adding the second matrix to either group 

allows for mirror image reflections.  The following are generators for , the icosahedral group: 

0 0 1
0 1 0
1 0 0

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 0 1
0 1 0
1 0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

i
k

- 1 0 0

0 1
3

2�2
3

0 2�2
3 - 1

3

y
{
i
k

- 1
2 -

�3
2 0�3

2 - 1
2 0

0 0 1

y
{
i
k

1
4 -

�15
4 0

-
�15

4 - 1
4 0

0 0 - 1

y
{ 

As an example of how groups are useful, the plane x y z
3 4 5 1+ + =  can be rotated 

via , producing 12 planes.  The pentagon {{1.276, 1.276, 1.276}, {1.442, 3.0, -1.153}, {2.609, 

2.609, -2.609}, {3.0, 1.153, -1.442}, {3.0, -1.153, 1.442}} can be isolated from the points where 

some three of the twelve planes intersect.  This pentagon is representable as a matrix which, 

when multiplied by elements of the matrix group, produces 12 interlocking pentagons.  An 

isohedron results, as shown in Figure 2. 

  

Figure 2.  The Tetrahedral Pentagonal Dodecahedron  
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 has provided a beautifully symmetric diagram.  These groups are rare, unfortunately. 

Theorem:  , , and , together with the cyclic and dihedral groups, form all 

possible finite subgroups of rotations in three dimensional space. 

Proof: See [Arm 104], [Yal 93], or [Dub 260] for identical proofs involving actions, 

orbits, stabilizers, and high-level algebraic theorems.  See [Cox 53] for a different proof 

involving spherical trigonometry and high-level geometric theorems.  See Chapter 5 for a new 

proof. 

  

 



 

 
 
 

CHAPTER 3 
 
 

THE GEOMETRIC MODEL 
 
 
  Take a cube, and draw its circumsphere.  The centroid of the cube coincides with the 

center of the sphere.  Now project the edges of the cube onto the surface of the sphere via the 

centroid.  The sphere’s surface will now be divided into six areas.  In the figure below, imagine 

that the other four great circles have been drawn, and consider the segments which correspond 

to edges. 

-0.5

0

-0.5

0

-0.5

0

0.5

-0.5

0

-0.5

0

 

Figure 3.  The Geometric Model 

If the cube is randomly dropped, and doesn’t bounce, the face that winds up on the 

table is the same as the corresponding face on the sphere, due to gravity.  This model explains 

why loaded dice are not fair –  moving the center of gravity alters the maps on the sphere. 

However, the model falls apart for unstable faces.  For me, this was realized when I 

built one of my first results, set it on one of its faces, and watched in horror as it tipped over 
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onto another face.  Still, it’s a pretty good model when all the faces are stable.  A knowledge of 

spherical trigonometry and of spherical triangles is necessary to use the model. 

1. For spherical triangles on the unit sphere with spherical coordinates (αj , δj) for 

point Pj , the arc-length distance, θ (P1 , P2), between P1 and P2 is given by         

cosθ (P1 , P2) =  cosδ1 cosδ2 cos(α1 - α2) + sinδ1 sinδ2 . 

2. The rotation angle, Θ3 = Λ(P1 , P2 ; P3), from P1 to P2 about a third point, P3 , is 

given by cos cos ( , ; )
cos ( , ) cos ( , ) cos ( , )

sin ( , ) sin ( , )
Θ Λ3 1 2 3

1 2 1 3 2 3

1 3 2 3
= =

−
P P P

P P P P P P
P P P P

θ θ θ
θ θ

; 

similarly, Θ1 = Λ(P2 , P3 ; P1) and Θ2 = Λ(P1 , P3 ; P2). 

3. The area of a spherical triangle, Ωt , equals Θ1 + Θ2 + Θ3 - π  [1, 2, 3: Wer 727]. 

The full formula for calculating the area of a spherical triangle involves 45 cosines, 42 

sines, and 9 arccosines.  With Maple, this formula can be graphed. 

 
      Figure 4.  Area of a Equilateral Spherical Triangle 
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The area of an equilateral spherical triangle is shown in Figure 4, where Φ is the angle 

from the ‘north pole’ of the unit sphere to a vertex of the triangle.  Note that when Φ is π/2 

radians, the resulting triangle is a great circle, and has an area equal to half the surface area of 

the sphere.  Using an equilateral triangle allows the use of a simpler formula for the area, 

namely the following: 

  

To solve the problem of the fair 5-sided prism, we need an equilateral spherical triangle 

with an area of 4π (the surface area of the unit sphere) divided by 5 (the number of sides), or 

approximately 2.513.  An exact solution probably isn’t possible – the equation is much more 

complicated than a fifth order polynomial.  However, with Maple, the value of Φ = 1.138 can 

be approximated.  See the graph.  With some regular trigonometry, this corresponds to an 

object made of two equilateral triangles 1.57 on a side, and three .84 x 1.57 rectangles.  In an 

actual trial of this figure, out of 90 tosses, the triangles came up 50 times.  If the model worked, 

the triangles should come up around 36 times.  The results of tossing the object have 

consistently been biased towards the triangles. 

For a pyramid, the problem is trickier due to the fact that the center of gravity changes 

as the height changes.  For a solid pyramid with a height of 1, the centroid is at a height of 

(1 1
2

3− ).  This is easily calculated by using the cone volume formula (V = 1
3 Ah ), the area of 

an octahedron with unit edges ( 2
3 ), and some basic algebra.  The angle in radians of .212535 

approximates a spherical square with area 4π/5.  With the ratio between the height and the 
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centroid known, the fair solid pyramid has a height of 1, a square base 1.352 on a side, and four 

isosceles triangles with 1.38344 as the doubled side. 

Using the Geometric Model as a basis, many new dice can be created.  Some examples 

are given in the following paragraphs: 

Prisms.  Let the base be a regular n-gon with unit sides, and let h be the height of the 

prism.  Using the previous methods, for n = 3, h ≅ 0.5336;  for n = 4, h = 1 (the cube); for n = 

5, h ≅ 1.5060; for n = 6, h ≅ 2.0598;  for n = 7, h ≅ 2.6602;  for n = 8, h ≅ 3.3049;  for n = 9, h ≅ 

3.9916;  for n = 10, h ≅ 4.7181;  for n = 11, h ≅ 5.4824;  for n = 12, h ≅ 6.2828. 

Antiprisms.  Let the base be a regular n-gon with unit sides, and let h be the height of 

the antiprism.  The height of fair antiprisms is higher than that of fair prisms.  The n = 3 

antiprism is the octahedron, with h = .8165 = 6
3 .  For n = 4, h ≅ 1.4953;  for n = 5, h ≅ 

2.2270; for n = 6, h ≅ 3.0244;  for n = 7, h ≅ 3.8864;  for n = 8, h ≅ 4.8100;  for n = 9, h ≅ 

5.7921;  for n = 10, h ≅ 6.8297;  for n = 11, h ≅ 7.9202;  for n = 12, h ≅ 9.0613. 

Snipped Cube.  Remove four corners from a unit cube that define a tetrahedron.  Let 

h be the side of one of the resulting equilateral triangles.  At some point before the figure 

becomes a tetrahedron, a fair die of 10 faces will result. 

Snipped Octahedron.  Remove two opposite corners of a unit octahedron.  Let h be a 

side on the resulting square.  At some point before the original faces become unstable, a fair die 

of 10 faces will result. 

In Chapter 5, I’ll explain why none of these objects are fair. 

 



 

 
 
 

CHAPTER 4 
 
 

AN ASYMMETRICAL FAIR DIE 
 
 
An application of the previous chapters can produce a die which is asymmetrical.  The 

die is made from cardboard, so it is a shell of sorts.  For an example, follow these steps: 

1.  Find the centroid of a scalene tetrahedron. 

2.  Move a corner from the centroid while preserving direction. 

3.  Calculate the new centroid of the figure. 

4.  Draw a ray from the new centroid through the old centroid.  Find the point on the 

figure where the ray intersects. 

5.  Calculate how much mass is required at this point to realign the old centroid. 

More explicitly, start with the scalene tetrahedron marked by points (5,3,4), (5,-3,-4), 

(-5,0,5), and (-5,0,-5).  Each face of this object is a triangle with edges of length 190 , 110 , 

and 10.  All faces are identical, and all faces have identical relationships with each other, so it is 

an isohedron.  Note how the (3,4,5) Pythagorean triangle is exploited.  The centroid of this 

tetrahedron is at the origin. 

Move the point (-5,0,-5) to (-6,0,-6).  The resulting object is no longer fair under any 

model.  If we use the Geometric model, the die will be fair again if the centroid can be moved 

back to the origin.  To do that, the four triangles of the new figure must be analyzed for both 

their centroid and their mass.  This can be done using Heron’s formula, and by exploiting the 

fact that the centroid is one third of the distance from a midpoint of a side to the opposite 

vertex.  Using these facts, we obtain complete information for all four triangles; see Table 2. 
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 Vertices Edges Centroid Area 
Triangle A (5,3,4) (5,−3,−4) (−5,0,5) 190 110 10 (1.666, 0, 1.666) 52. 20 

Triangle B (5,3,4) (5,−3,−4) (−6,0,−6) 230 134 10 (1.333, 0, −2)  57. 87 

Triangle C (5,3,4) (−5,0,5) (−6,0,−6) 230 122 110  (−2, 1, 1) 57. 92 

Triangle D (5,−3,−4) (−5,0,5) (−6,0,−6) 190 134 122  (−2, −1, −1.666) 61. 76 

Counterweight 
(discussed later) 

(5,3,4) (−4.69, .09, 4.97)  (5, 
−2.82, −3.76) 

13.363, 10.164, 9.7 (1.77, .09, 1.74) 49. 07 

 Table 2.  The Triangles of an Asymmetrical Fair Die 

The edges are found via the Euclidean distance formula.  The formula for finding the 

center of mass of two point masses is (Σ massk positionk / Σ massk ) [Tho 360].  Using this, 

the centroid for triangles A and B is at ((1.49, 0, -.26) mass = 110.072), and the centroid for 

triangles C and D is at ((-.2543, -.016, -.3186) mass = 119.68).  The centroid for the whole 

figure can be found at ((-.3273, -.0167, .-3210) mass = 229.756). 

The equation of the line containing the old (origin) and new (above) centroids is 

(-.3273t, -.0167t, -.3210t).  The plane containing triangle A is 30x - 80y + 60z = 150.  Finding 

these involved using linear algebra again [Tho 733].  The point of intersection is at a = (1.77, 

.09, 1.74).  Using the formula above, a mass of 42.5 is needed at this point.  To find the 

counterweight triangle above, draw a line from (5,3,4), which is closest to a, through a, then 

half that distance again (median property) to find the point b = (.155, -1.365, .61).  I want b to 

be a midpoint of points on the lines (5, 3+6s, 4+8s) and (-5+10t, 3t, 5-t).  It turns out that three 

points are collinear if the matrix formed by those points has determinant zero [Zwi 269].  

Using this matrix and Maple, t =(486 + 517s)/(486+1003s).  From there, use the Euclidean 

distance formula to determine that s = -.97 would make b a midpoint.  The counterweight 

triangle weighs 49.07, so a circle of radius 1.45 must be removed, centered at a.  Finished!  But, 

in truth, this figure in only fair in an idealized world. 



 

 

 
CHAPTER 5 

 
 

THE ISOHEDRA 
 
 
Polyhedra with congruent faces.  For which triangles T does there exist a convex 
polygon with all its faces congruent to T, either with or without reflections allowed? 
[Unsolved Problems in Geometry, p 75] 
 
Mistake!  The above problem is solved, not unsolved.  All triangles T can be made into 

an eight-sided tetragonal scalenohedron, a figure known by crystallographers.  I mention this 

mistake to illustrate the obscurity of isohedra.  The overlooked tetragonal scalenohedron is an 

isohedron.  All isohedra (literally, “equal surfaces”) share two properties: 

P1 -- All faces have identical relationships with the other faces. 

P2 -- All faces have identical relationships with the centroid. 

Note that either property implies that all faces are identical.  Coincidentally, the two 

properties together guarantee that a die will work in both mathematical models.  A loaded die 

satisfies P1 and not P2.  The figure below – a combination of skew prisms and pyramids – 

satisfies P2 and not P1.   Together, they allow for an interesting consequence. 

Proposition: An isohedron is a fair die. 

   
Figure 5.  A Polyhedron with Identical Faces which is not Isohedral 
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Figure 5 suggests how a convex polyhedron can be formed with 4n identical isosceles 

triangles for n > 3.  Whether other polyhedra exist that satisfy P2 and not P1 is an unsolved 

question [Cro 90].   I do not know if there exist unloaded figures which satisfy P1 and not P2. 

For all faces to have identical relationships with each other, the vertex degrees for 

corresponding vertices on each face need to be identical.  An illustration:                          At the 

‘4’ vertex, three more triangles will be found in an isohedral figure, for a total of 4 planes 

meeting at the ‘4’ vertex, and every face must have vertex degrees 4, 6, and 9. 

6

9

4 

Euler’s formula, V+F-E=2, can be used to figure out how many faces such a figure 

would have.  Let F be the number of faces in the figure.  The number of ‘4’ vertices will be 

F
4 , since every face meets one of the ‘4’ vertices exactly once.  The total number of vertices 

is thus F F F
4 6 9+ + . The number of edges, E, is equal to 3

2 F (three sides per face, two 

faces per edge).  Substituting for E and V in Euler’s formula and solving for F, we obtain the 

following: F =
- + - + - +

=
2

1
4

1
2

1
6

1
2

1
9

1
2 1

72
( ) ( ) ( )

.  

The above result can be generalized for triangles with vertex degrees a, b, and c: 

F
a b c

=
- + - + - +

2
1 1

2
1 1

2
1 1

2 1( ) ( ) ( )
.   It can be extended to isohedra consisting of 

quadrilateral or pentagons: F
a b c d

=
- + - + - + - +

2
1 1

2
1 1

2
1 1

2
1 1

2 1( ) ( ) ( ) ( )
and 

F
a b c d e

=
- + - + - + - + - +

2
1 1

2
1 1

2
1 1

2
1 1

2
1 1

2 1( ) ( ) ( ) ( ) ( )
.  There are no isohedra 

based on hexagons or other n-gons, since the denominator would be zero or negative. 
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We started with a [4,6,9]=72 triangle; that is, a triangle with vertex degrees 4, 6, and 9 

leads to a figure with 72 faces.  Unfortunately, this is impossible.  Consider one of the ‘9’ 

vertices.  Radiating from this point are nine lines, each connecting to a ‘4’ vertex or a ‘6’ vertex.  

These vertices must alternate, which is impossible with a cyclic arrangement of nine vertices.  

Either one winds up as an ‘odd man out,’ so this figure is impossible. 

For [a,b,c], if a is odd, then b=c. 

Another potentially promising solution is [3,3,4,6] = 24.  Can the ‘3’ vertices be 

adjacent?  If so, then two quadrilaterals meet at the edge connecting the ‘3’ vertices.  But this 

leads to a contradiction when we try to add the third quadrilateral to either ‘3’ vertex.  So the ‘3’ 

vertices must not be adjacent.  Consider the ‘6’ vertex.  It is surrounded by 3 vertices, which 

connect to ‘4’ vertices.  We are then forced to use a quadrilateral with two ‘4’ vertices.  This 

figure is impossible. 

For [3,3,a,b], a=b. 

Also, F must be a positive whole number.  Based on the equations and the rules above, 

an exhaustive list of all possible isohedral vertex degrees follows: [4,4,X]=2X, [3,3,3,X]=2X, 

[3,3,3]=4, [3,6,6]=12, [3,4,3,4]=12, [3,3,3,3,3]=12, [5,5,5]=20, [3,8,8]=24, [4,6,6]=24, 

[3,4,4,4]=24, [3,3,3,3,4] = 24, [3,5,3,5]=30, [4,6,8]=48, [3,10,10]=60, [5,6,6]=60, [3,4,5,4]=60, 

[3,3,3,3,5]=60, [4,6,10]=120.  As it happens, all of these figures can be constructed, as will be 

shown.  In fact, the same degree sequence may lead to non-isomorphic isohedra, depending 

upon the symmetry of the faces.  A triangle, for example, can be equilateral, isosceles, or 

scalene; leading to edge codes ααα, ααβ, and αβγ. 

Five of the possible figures are Platonic Solids ([3,3,3]=4, [3,3,3,3]=6, etc.).  Thirteen 

more of the possible figures are duals of the Archimedean solids.  The mathematician Catalan was 



 19

 

 
 

the first to describe them, in 1865 [Smi 58].  Six more figures, variants of Archimedean duals, 

were first described by the mathematician Hess in 1883 [Gru 76].  In addition to these twenty 

four figures, there is an infinite family of isohedral figures with 2n sides for each n > 3.  For n 

odd, these figures are known as dipyramids and trapezohedrons, and are duals to the prisms (2 n-

gons + n squares) and antiprisms (2 n-gons + 2n equilateral triangles).  For n even, three 

variants are possible. 

Two more isohedra are the lens and the sphere.  A coin would be isohedral were it not 

for the edge.   A coin is arguably fair if its edge is unstable, but then the edge can be divided 

according to which face it favors, and a lens-type object results. 

This lists all of the isohedra.  To prove that this list is exhaustive, it’s important to 

understand rotations in three dimensional space.  If the point a = (a,b,c) on the unit sphere (the 

set of points 1 away from the origin) is rotated to the point d = (d,e,f) on the unit sphere, there 

exist 3x3 matrices A such that  d = A a [Zwi 300].  This means rotation about some axis 

through the sphere.  The move can be made by first rotating the sphere about the z-axis by an 

angle of α, then rotating the sphere about the y-axis by θ.   

A = −

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟ −

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cos sin
sin cos

cos sin

sin cos

α α
α α

θ θ

θ θ

0
0

0 0 1

0
0 1 0

0

 

The matrix A has the property that it is orthogonal, which means ATA = I .  The 

determinant of this matrix equals 1.  If we take the group of all 3x3 orthogonal matrices under 

multiplication we get what is called the orthogonal group, or O(3).  The orthogonal matrices 

with determinant +1 form a subgroup of O(3) which is called the special orthogonal group, or 

SO(3) [Dub 33].  This group may be identified with the rotations of 3-dimensional Euclidean 

space; any member of this group will map any point on the unit sphere to another point on the 
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unit sphere and, conversely, any rotation may be realized by a member of SO(3).  For an 

isohedron to meet the criteria that all faces have identical relationships with the other faces, it 

must by isomorphic to a finite subgroup of SO(3).  Recall the theorem in Chapter 2.  A new proof 

can be given for this theorem that uses isohedra. 

Theorem:  , , and , together with the cyclic and dihedral groups, form all 
possible finite subgroups of rotations in three dimensional space. 
 
Proof:  Let P be a plane tangent to the unit sphere.  P may be represented as a matrix.  

Let G be a noncyclic finite subgroup of SO(3), containing two elements a and b which have 

different axes of rotation such that P ≠ a P and P ≠ b P.  Form the set of rotations of this 

plane, obtaining X ={P * g | g ∈ G}. 

Claim 1:  There is no point p on the unit sphere such that p = a p = b p.  This is 

impossible since a and b have different axes of rotation, and only the points on the poles of a 

rotation are left fixed.  

Claim 2:  Any ray from the origin passes through a plane in X.  Assume this claim is 

false.  For any plane that does not intersect the origin, there is a hemisphere of vectors which 

do not intersect the plane.  Let Q be the intersection of these hemispheres defined by the 

planes of X.  Q cannot contain antipodal points.  Else, a line connects them, and all planes in X 

rotate about this line.  Q = a Q = b Q, due to the method of construction.  Q has a unique 

centroid, which leads to a contradiction of the sort seen in Claim 1.   

Claim 3:  The convex hull of planar intersections visible from the origin is isohedral, if 

one considers the planes as opaque.  With the full SO(3), the hull is a solid sphere – for each 

plane, only the point closest to the origin is visible.  But G is finite, so starting from the original 
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plane P, a polygon p will be visible from the origin.  The hull will be a polyhedron with n faces.  

This polyhedron is identical when rotated by any element of G, giving the claimed isohedron. 

Claim 4: The isohedra with vertex degrees and edge codes as given in Table 3 all 

correspond to , the icosahedral group. 

Vertex 
Degrees 

Faces Edges Vert Edge 
Code 

Order 
Rigid 

Order 
Full 

Name 

[3,3,3,3,3] 12 30 20 ααααα 60 120 Regular Dodecahedron 
[5,5,5] 20 30 12 ααα 60 120 Regular Icosahedron 
[3,5,3,5] 30 60 32 αααα 60 120 Rhombic Triacontahedron 
[3,10,10] 60 90 32 ααβ 60 120 Triakis Icosahedron 
[5,6,6] 60 90 32 ααβ 60 120 Pentakis Dodecahedron 
[3,4,5,4] 60 120 62 ααββ 60 120 Trapezoidal Hexecontahedron 
[3,3,3,3,5] 60 150 92 αββγγ 60 60 Pentagonal Hexecontahedron 
[4,6,10] 120 180 62 αβγ 60 120 Hexakis Icosahedron 

Table 3.  The Icosahedral Isohedra (see Figure 6) 

 In all eight possible cases, a rigid rotation group of order 60 results.  In the case of 

[4,6,10], only 60 triangles will be considered.  Table 4 contains all 13 groups of order 60. 

 Number of elements of a given order 
Group 1 2 3 4 5 6 10 12 15 20 30 60 
2^2  x  15 1 3 2  4 6 12  8  24  
60 1 1 2 2 4 2 4 4 8 8 8 16 
S3  x  10 1 7 2  4 2 28  8  8  
5  x  3:4 1 1 2 6 4 2 4  8 24 8  
A4  x  5 1 3 8  4  12  32    
D10  x  6 1 11 2  4 22 4  8  8  
10.2  x  3 1 1 2 10 4 2 4 20 8  8  
3  x  5:4 1 5 2 10 4 10  20 8    
D60 1 31 2  4 2 4  8  8  
30.2 1 1 2 30 4 2 4  8  8  
S3  x  D10 1 23 2  4 10 12  8    
S3 + (5:4) 1 5 2 30 4 10   8    
A5 1 15 20  24        

Table 4.  Groups of Order 60 
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Tables 4, 6, and 8 were all generated with GAP [GAP].  A table containing the 

notation used by GAP can be found in the Glossary. 

The first twelve groups all contain an element of order 15.  Each element needs to be a 

matrix which accomplishes a rotation.  Powers of that matrix will all accomplish the same 

rotation, and leave some point fixed.  Thus, 15 elements will leave the same point fixed –  

either a vertex, the midpoint of an edge, or the centroid of a face.  All other vertices will be 

rotated around the resulting pole, defining some number of circles.  Each circle will contain 

15n vertices, for some integer n.  There can be 12, 20, 32, 62, or 92 vertices, so two vertices 

cannot be placed upon these circles, and therefore must be the fixed points defining the poles.  

Each element will map the original figure to itself, including edges.  But no vertex has vertex 

degree of 15.  The last group is isomorphic to , the group of symmetries of an icosahedron. 

The above sequence of steps will prove typical in the following claims: 

1.  Isolate an order of some element, giving a cyclic subgroup of that same order. 

2.  Examine the number of vertices, then determine the number of fixed points and 

circles that will be defined by the given element. 

3.  Any vertices which are fixed points have some number of edges which is equal to 

the vertex degree for that vertex. 

4.   Edges from connected to a fixed vertex must be mapped to like edges when 

operated upon by a member of G. 

5.  Repeat these steps for each order, and determine which orders are impossible. 
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Figure 6.  The Icosahedral Isohedra (as given in Table 3) 

Claim 5: The isohedra with vertex degrees [4,4,X] and [3,3,3,Y] correspond to a dihedral 

group of some sort.  If X = 4 or Y=3, other groups are possible.  In each case, there are 2X or 

2Y faces, and thus exactly 2 vertices with vertex degree X or Y.  The perpendicular bisecting 

plane for the segment connecting these two vertices will bisect the isohedron.  The cross-

section will be one of three different types.  In all rotations, the cross-section will be mapped 

back to the cross-section, giving a dihedral group.  For [3,3,3,Y], two variants are possible, 

depending upon whether the faces are symmetrical.  For [4,4,X], only one type of isohedron 
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exists if X is odd, otherwise three variants are possible.  For the first, use 2X isosceles triangles.  

For the second, move alternate ‘4’ vertices an equal amount toward the origin.  For the third, 

move alternate ‘4’ vertices above and below the bisecting plane. 

 Claim 6: The isohedra with vertex degrees and edge codes as given in Table 5 all 

correspond to , the octahedral group.   

Vertex 
Degrees 

Faces Edges Vert Edge 
Code 

Order 
Rigid 

Order 
Full 

Name 

[3,3,3,3] 6 12 8 αααα 24 48 Cube 
[4,4,4] 8 12 6 ααα 24 48 Octahedron 
[3,4,3,4] 12 24 14 αααα 24 48 Rhombic Dodecahedron 
[3,3,3,3,3] 12 30 20 αββββ 12 24 Octahedral Pentagonal Dodecahedron
[3,8,8] 24 36 14 αββ 24 48 Triakis Octahedron 
[4,6,6] 24 36 14 αββ 24 48 Tetrakis Hexahedron 
[3,4,4,4] 24 48 26 ααββ 24 48 Trapezoidal Icositetrahedron 
[3,3,3,3,4] 24 60 38 αββγγ 24 24 Pentagonal Icositetrahedron 
[4,6,8] 48 72 26 αβγ 24 48 Hexakis Octahedron 

Table 5.  The Octahedral Isohedra (see Figure 7) 

To prove this, please reference Table 6 – The Groups of Order 24.  Using previous 

methods, the first thirteen groups require a vertex degree sequence of X, 6, X; which is 

impossible.  The last two groups are both valid.  See Figure 7 for the resulting isohedra.  

# of elements of order … # of elements of order … 
Group 1 2 3 4 6 8 12 24 Group 1 2 3 4 6 8 12 
2^3  x  3 1 7 2  14    12.2 1 1 2 2 2 12 4 
12  x  2 1 3 2 4 6  8  SL(2,3) 1 1 8 6 8   
24 1 1 2 2 2 4 4 8 grp(24,11) 1 9 2 6 6   
D8  x  3 1 5 2 2 10 4   D24 1 13 2 2 2  4 
Q8  x  3 1 1 2 6 2  12  Q8  +  S3 1 1 2 14 2  4 
S3  x  2^2 1 15 2  6    A4  x  2 1 7 8 8    
S3  x  4 1 7 2 8 2  4  S4 1 9 8 6    
2  x  6.2 1 3 2 12 6    Table 6.  Groups of Order 24.      . 
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Figure 7.  The Octahedral Isohedra (as given in Table 5) 

Claim 7:  The isohedra with vertex degrees and edge codes as given in Table 7 all 

correspond to , the tetrahedral group. 

Vertex 
Degrees 

Faces Edges Vert Edge 
Code 

Order 
Rigid 

Order 
Full 

Name 

[3,3,3] 4 6 4 ααα 12 24 Regular Tetrahedron 
[3,6,6] 12 18 8 αββ 12 24 Triakis Tetrahedron 
[3,4,3,4] 12 24 14 ααββ 12 24 Trapezoidal Dodecahedron 
[3,3,3,3,3] 12 30 20 αββγγ 12 12 Tetragonal Pentagonal Dodecahedron
[4,6,6] 24 36 14 αβγ 12 24 Hexakis Tetrahedron 
[3,4,4,4] 24 48 26 ααβγ 12 24 Dyakis Dodecahedron 

Table 7.  The Tetrahedral Isohedra 
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As before, looking at all possible groups of order 12 provides the answer (see Table 8).  

The first four groups contain an element of order 6, which would require a vertex degree 

sequence of X, 6, X.  No such isohedra exists.  The last group is the correct one. 

Group 1 2 3 4 6 12 
6  x  2 1 3 2  6  
12   1 1 2 2 2 4 
D12 1 7 2  2  
6.2 1 1 2 6 2  
A4 1 3 8    

Table 8.  Groups of Order 12. 

 

Figure 8.  The Tetrahedral Isohedra 

In summary, a finite subgroup of SO(3) would require an isohedron, which in turn 

requires a certain group structure.  All other group structures are impossible.  This completes 

the proof.  In the process, all possible isohedra have been listed. 



 

 

 

 
CHAPTER 6 

 
 

THE ENERGY STATE MODEL 
 
 
Dice bounce.  Depending on the type of die, and the surface, the die will bounce a 

different number of times.  Before each bounce, the Geometric Model can be used to 

determine which face of the die has current influence.  During each bounce, a matrix can be set 

up to determine the relative probabilities that other faces will inherit influence for the next 

bounce.  Thus, a series of matrices can be used to model what is happening to a die.  All of 

these matrices are different, though, because the amount of energy possessed by the die 

decreases geometrically [Tho 556].  In order for the model to work, some nth bounce must 

relate to an identity matrix, relating to the state where there isn’t enough energy left to shift the 

die from any face to any other face. 

Bouncing dice are somewhat similar to a Markov process. Let b = bounciness, e = 

kinetic energy, n = bounce number, hjk = Topple height from side j to side k, qjk = (radians 

swept from point under centroid on face j by edge k)/2π,  f(n) = 0 if n ≤ 0, 1 if n ≥ 1, else n. 

Ajk = qjk (1 - f( hjk /ebn ))            Ajj = 1 - (sum of other entries in j column) 

An = Matrix of the A entries. 

The initial state vector x can be determined by the Geometric model.  The final 

probability distribution y is given by A6 A5 A4 A3 A2 A1 x  = y.  As n approaches infinity, An 

approaches the identity matrix.  Usually, this happens before n reaches 10.  For an initial 

demonstration, this system can be used to show why nickels rarely land on edge. 
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A nickel is 2mm thick, with a diameter of 21mm.  Using trigonometry, the topple 

heights are .094mm and 21.095mm.  Other values were assigned arbitrarily: e = 200, b = .2 .  In 

order, the rows and columns represent heads, edge, tails. 

 

* 

     

=

This says that nickels land on edge 3 out of every 10000 tosses.  With a nickel, the 

probability of an edge landing can be somewhat skewed by the limited number of bounces.  To 

counteract this, squaring each An will better define the tendency of each bounce.  Doing this, 

we obtain that a nickel will land on edge roughly 15 times out of every hundred million tosses.  

There are several historical cases where coins really did land on edge (the most famous 

involved a flip by the composer of Trumpet Voluntary), so this set of odds is believable. 

When this model is used with the .84 x 1.57 prism from chapter 3, the prism turns out 

to be progressively more unfair as b increases.  When e =250 and b = .235, the triangles come 

up 5 out of every 9 throws … this correlates perfectly with the experiment using an actual 

model.  This implies I’ve rigged something, which is true.  The odds depend heavily on the 

force of the toss, so I picked a force that gave the odds I wanted.   
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The matrices provide a model of a five-sided prism.  A5 is the identity matrix, which 

means the object has come to rest.  Multiplying these matrices together, we obtain that the 

triangles occur 5 times out of every 9 tosses, which is the rigged result. 

This model can be used to show that dimpled dice are unfair.  We’ll use a six-sided 

cube with an edge of 10, and use hemispheres with a radius of .984745 to represent the dimples 

(volume of a dimple is thus 2).  Calculate the centroid by removing a solid disk of volume 12 

from each face, leaving an isohedral figure of volume 928.  Remove the dimples from each 

disk, then put the remains of each solid disk back to their original faces.  The volume of the ‘1’ 

disk is ten, whereas the volume of the ‘6’ disk is zero.  The six solid disks are equivalent to 

masses of 10 at {1,0,0}, {0,3,0}, and {0,0,5}.  This is equivalent to a point mass of 30 at {1/3, 

1, 5/3}.  The centroid of the dimpled die is at {.0104, .0313, .0522}. 

With this data and some basic trigonometry, the Energy State model provides the 

following set of matrices.  I used e=200 and b=.4 in this model.  Altering these numbers did 

not change the final result to any great extent. i
k

0.552812 0.11265 0.112689 0.112729 0.112768 0
0.112303 0.552655 0.112381 0.112421 0 0.112499
0.111951 0.11199 0.552498 0 0.112107 0.112146
0.111643 0.111682 0 0.552342 0.111799 0.111838
0.111291 0 0.111369 0.111408 0.552186 0.111486

0 0.111023 0.111062 0.111101 0.11114 0.552031

y
{Final bounce 
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k
0.221125 0.19602 0.196036 0.196051 0.196067 0
0.195521 0.221062 0.195553 0.195568 0 0.1956
0.19496 0.194976 0.220999 0 0.195023 0.195038

0.194477 0.194493 0 0.220937 0.19454 0.194555
0.193917 0 0.193948 0.193963 0.220874 0.193994

0 0.193449 0.193465 0.19348 0.193496 0.220812

y
{ i

k
0.0884499 0.229368 0.229374 0.229381 0.229387 0
0.228808 0.0884248 0.228821 0.228827 0 0.22884
0.228164 0.22817 0.0883997 0 0.228189 0.228195
0.227611 0.227617 0 0.0883747 0.227636 0.227642
0.226967 0 0.226979 0.226985 0.0883498 0.226998

0 0.22642 0.226426 0.226432 0.226438 0.0883249

y
{ i

k
0.03538 0.242707 0.24271 0.242712 0.242715 0

0.242123 0.0353699 0.242128 0.242131 0 0.242136
0.241446 0.241448 0.0353599 0 0.241456 0.241458
0.240864 0.240867 0 0.0353499 0.240874 0.240877
0.240187 0 0.240192 0.240194 0.0353399 0.240199

0 0.239608 0.23961 0.239613 0.239615 0.03533

y
{
i
k

0.16666
0.16666
0.16666
0.16666
0.16666
0.16666

y
{= i

k
0.1679
0.1674
0.1669
0.1665
0.1659
0.1654

y
{  This last matrix is extremely interesting!  It provides the odds for how 

often a number on a dimpled die will be the Down face.  For the up face, and 10,000 tosses:  

1665 

1669 

1674 

1679 
 

1659 
 

 
1654 

 

Figure 9.  Ten Thousand Tosses of a Dimpled Die 

According to the Energy State Model, dimpled dice are not fair.  One would need to 

toss a die many times to see this phenomenon, however. 

The only fair dice are the isohedra.  This completes the list of fair dice, and this thesis. 
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GLOSSARY 

 

Abelian.  A group G is abelian iff for all a, b ∈ G, a b = b a. 

Antiprism.  A polyhedron formed by two n-sided polygons and 2n isosceles triangles. 

Archimedean Solid.  A polyhedron where all vertices are identical, and all faces are 

regular polygons.  There are thirteen such polyhedra. 

Centroid.  The point such that the first moment of a geometric object about every line 

through the point is zero.  Also called the center of mass.  

Cyclic.  A finite group is cyclic if it can be generated from a single element. 

Degree.  The degree deg x of a vertex x in a graph is the number of adjacent vertices. 

Die, dice.  A rigid solid with n stable faces.   

Dihedral.  A group which is isomorphic to the symmetry group [2, n].  It correlates to 

the group of symmetries of a regular n-gon. 

Dual.  Find the center points of each face of polyhedron A.  Let these points be the 

vertices of polyhedron B, the dual of A. 

Edge. In a simple graph, an edge is an element e ∈ E (the set of edges) that is incident 

to two vertices v, w ∈ V (the set of vertices).   

Eigenvector.  An eigenvector x of a matrix A is a nonzero solution to the system A x = 

λ x . 
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Euclidean Distance.  For points a = {a1, a2, …, an) and b = {b1, b2, …, bn), the 

Euclidean distance is defined as ( )a bi i
i

n

−
⎛
⎝
⎜

⎞
⎠
⎟

=
∑ 2

1

1
2

. 

Face.  A distinct collection of points that touches the table when the object is at rest.  

A coin’s faces are heads, tails, and edge.     

Fair.  In probability, a trial is fair if for any two possible outcomes E and F, P(E) = 

P(F).  Here, a tossed die will be fair if all faces are equally likely to wind up on the table. 

Group.  A group is a non-empty set G and a “product” operation defined on G such 

that:  (1) For any pair of elements a, b in G, the product ab is unique and is in G.  (2) There is an 

element, e, in G, the identity, such that eb = be = b for any b in G.  (3) For any a in G, there is an 

element x in G, called the inverse of a, such that ax = xa = e.  (4) For all a, b, c ∈ G, a(bc) = 

(ab)c. 

Icosahedral.  A group which is isomorphic to the symmetry group [3, 5]. 

Isohedral.  A polyhedron is isohedral if any face can be mapped directly onto any other 

face by some rotation or reflection of the polyhedron onto itself.  Such a figure is called an 

isohedron.  

Isomorphic.  Two groups G1 and G2 are isomorphic if there exists a 1-1 and onto 

function ϕ : G1  G2 such that ϕ(a b) = ϕ(a) ϕ(b)  for all a,b ∈ G1. 

Law of Large Numbers.  Given by Jakob Bernoulli.  Suppose the probability of an 

event E is p, and in n independent trials the event E occurs n1 times.  Then for an arbitrary 

positive number ε,  P(|n1/n  -  p| < ε)  ≥  1 - 1/(4ε 2n). 

Octahedral.  A group which is isomorphic to the symmetry group [3, 4]. 
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Order. The order #(G) of a group is the number of elements in the group. 

Orthogonal.  A square matrix is orthogonal if ATA = I. 

Polyhedral.  A graph is polyhedral if and only if it is planar and 3-connected. 

Polyhedron.  A polyhedron is a solid figure with many faces.  

Rotation Group.  A rotation group is a set of orthogonal matrices that forms a group of 

rotations of n-dimensional space.   

Stable Face. A stable face is one where the minimal Euclidean distance from the 

center of mass of the solid to the face defines a segment perpendicular to the face (i.e., the 

center of mass is directly above the face).  The object can be placed at rest in n distinct ways.  

Subgroup.  H is a subgroup of G iff H is a group, H ⊆ G, and for all a, b ∈ H, ab ∈ H 

using the binary operation of G. 

Symmetry Group.  A symmetry group [m, n] is a group with generator elements a and b 

such that am = bn = (a b)2 = e  (the identity element).   

Tetrahedral.  A group which is isomorphic to the symmetry group [3, 3]. 

m Cyclic group of order m 
Dm Dihedral group of order m 
Qm Quaternion group of order m 
QDm Quasi-Dihedral group of order m 
Sm Symmetric group on m points 
Am Alternating group on m points 
SL(d,q) Special Linear group 
GL(d,q) General Linear group 
K^n Direct power of n copies of K 
K:H Split extension of K by H 
K.H Non-split extension of K and H 
K+H Subdirect product with identified factor groups of K and H 
KYH Central amalgamated product of the groups K and H 
K  H Direct product of K and H 

Table 9.  Notation of Group Names used by GAP. 


