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Abstract

This paper discusses investigations of sequences of natural numbers which count
the orbits of an in�nite permutation group on n�sets or n�tuples� It surveys known
results on the growth rates� cycle index techniques� and an interpretation as the
Hilbert series of a graded algebra� with a possible application to the question of
smoothness of growth� I suggest that these orbit�counting sequences are su�ciently
special to be interesting but su�ciently common to support a general theory�

�I count a lot of things that there�s no need to count�� Cameron said� �Just because
that�s the way I am� But I count all the things that need to be counted��

Richard Brautigan� The Hawkline Monster

� Three counting problems

This paper is a survey of the problem of counting the orbits of an in�nite per�
mutation group on n�sets or n�tuples� especially the aspects closest to algebraic
combinatorics� Much of the material surveyed here can be found elsewhere�
for example in ����

We begin by discussing three counting problems in di�erent areas of mathem�
atics and their relations�

��� Enumeration of �nite structures

A relational structure M consists of a set X and a family of relations on X�
These relations can have arbitrary arities� and there may be a �nite or in�n�
ite number of relations� Many familiar structures have only a single relation�
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graphs� directed graphs� total or partial orders� and so on� However� for a
general 	non�uniform
 hypergraph we would need a k�ary relation for each
cardinality k of hyperedges�

The age of M � written Age	M
� is the class of all �nite relational structures
	in the same language
 which are embeddable in M � 	This terminology was
invented by Fra��sse ���� who says that the structure M is younger than N if
the age of M is contained in that of N �


Problem� How many 	a
 labelled� 	b
 unlabelled structures in Age	M
�

As standard in combinatorial enumeration� labelled structures are based on
the set f�� �� � � � � ng� unlabelled structures are isomorphism types�

��� Counting orbits

A permutation group G on a set X is oligomorphic if G has only �nitely many
orbits on Xn� for all n� equivalently� on the set of n�subsets of X� or on the
set of n�tuples of distinct elements of X� 	The term �oligomorphic� suggests
�few shapes�� We will see later that orbits are often associated with �shapes� of
�nite substructures of some structure whose automorphism group is G� and
�few� is interpreted as �only �nitely many�� The word �oligomorphic� is also
used in computer science to describe viruses which exist in only a few distinct
forms and so can be recognised�


Problem� How many orbits on 	a
 n�sets� 	b
 n�tuples of distinct elements�
	c
 all n�tuples� does a given oligomorphic group have�

��� Types of a �rst�order theory

Let T be a complete consistent theory in the �rst�order language L� An n�type
over T is a set S of formulae in L with free variables x�� � � � � xn� maximal
subject to being consistent with T � Thus a type encodes everything that can
be said 	in the �rst�order language
 about n elements in some model of T �

We say that T is ���categorical if it has a unique countable model 	up to
isomorphism
� This is equivalent to there being only �nitely many n�types for
each n� This is part of the celebrated theorem of Engeler� Ryll�Nardzewski
and Svenonius� about which we shall say more later�

Problem� How many n�types�
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Fig� �� Order�automorphism of Q

��� An example

Let M be the totally ordered set Q� Recall Cantor�s Theorem� which asserts
that any countable dense totally ordered set with no least or greatest element
is isomorphic to Q� Since all these properties apart from countability are �rst�
order� the theory of M is ���categorical�

The age of M consists of all �nite ordered sets� there is one unlabelled struc�
ture� and n� labelled structures� on n elements�

Its automorphism group is transitive on n�sets for every n� This is because�
given any two n�tuples of rational numbers� each in increasing order� we can
�nd a piecewise�linear order�preserving map taking the �rst n�tuple to the
second 	see Figure �
� We also see that there are n� orbits on ordered n�tuples
of distinct elements�

An n�type speci�es� of each pair of variables� whether they are equal� and�
if not� which is greater� So the number of n�types is equal to the number of
preorders 	re�exive and transitive relations P such that� for all x and y� either
P 	x� y
 or P 	y� x
 holds
 on the set f�� �� � � � � ng� This number is

nX
k��

S	n� k
k�

where S	n� k
is the Stirling number of the second kind� since a preorder is
speci�ed by an equivalence relation and a total order on its equivalence classes�

��� Connections

As the example suggests� there are close connections between the three prob�
lems�

A structure M is homogeneous if any isomorphism between �nite induced
substructures of M can be extended to an automorphism of M � Thus� the
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Fig� �� The Amalgamation Property

ordered set Q is homogeneous�

Theorem � �Fra��ss�e�s Theorem� A class C of �nite structures is the age
of a countable homogeneous structure M if and only if it is closed under iso�
morphism	 closed under taking induced substructures	 contains only countably
many members up to isomorphism	 and has the amalgamation property�

If these conditions hold	 then M is unique up to isomorphism�

The amalgamation property asserts that� if two structures B� and B� in C have
isomorphic substructures� then they may be embedded in a larger substructure
C � C so that the isomorphic substructures coincide 	see Figure �
�

We call a class C which satis�es the hypotheses of this theorem a Fra
�ss�e class�
and the homogeneous structure M its Fra
�ss�e limit�

Now if M is homogeneous� then the number of orbits of its automorphism
group on n�tuples of distinct elements 	resp� on n�sets
 is equal to the number
of labelled 	resp� unlabelled
 structures in its age�

There is a natural topology on the symmetric group of countable degree 	point�
wise convergence
 with the properties that

	a
 a subgroup is closed if and only if it is the automorphism group of a
homogeneous relational structure�

	b
 the closure of a subgroup is the largest overgroup with the same orbits
on Xn for all n�

Hence counting labelled�unlabelled structures in a Fra��sse class is equivalent to
counting orbits of a permutation group on n�sets�n�tuples of distinct elements�

We turn now to the connection with counting types�

The theorem of Engeler� Ryll�Nardzewski and Svenonius says more than we
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have seen so far�

	a
 for a countable structure M � the theory of M is ���categorical if and only
if Aut	M
 is oligomorphic�

	b
 if these condition holds� then all n�types are realised in M � and two n�
tuples realise the same type if and only if they are in the same orbit of
Aut	M
�

Thus� if T is ���categorical� counting n�types of T is equivalent to counting
orbits of Aut	T 
 on n�tuples of elements in the unique countable model of T �

Moreover� as we have seen� for any oligomorphic group G� the closure of G is
the automorphism group of a homogeneous relational structure� whose theory
is ���categorical�

So the enumeration problem for a Fra��sse class 	for which the answer is �nite
for all n
� the orbit�counting problem for an oligomorphic permutation group�
and the type�counting problem for an ���categorical theory� are all �equivalent��
We will focus on the orbit�counting version from now on�

� Three counting sequences

We consider the classes of sequences which can arise in this situation�

��� The sequences

Let G be an oligomorphic permutation group on X� Let

� fn	G
 � number of G�orbits on n�subsets�
� Fn	G
 � number of G�orbits on n�tuples of distinct elements�
� F �

n	G
 � number of G�orbits on all n�tuples�

Then fn and Fn count unlabelled and labelled n�element structures in a Fra��sse
class� while F �

n counts n�types in an ���categorical theory� We take as a con�
vention that the zeroth term in each sequence is �� there is a single empty set
or tuple�

These sequences are� of course� related� We have�

Theorem � a� F �
n �

nX
k��

S	n� k
Fk	 where S	n� k
 is the Stirling number of

the second kind�
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b� fn � Fn � n� fn�

Thus F determines F � and vice versa� The series 	fn
 is more di�cult to work
with than 	Fn
� but for this reason more interesting� The examplesG � S 	the
symmetric group
 and G � A 	the group of order�preserving permutations of
Q
 show that equality is possible in each inequality in 	b
�

The fundamental problem is� Which sequences occur�

Let f and F be the sets of f � and F �sequences arising from oligomorphic groups�
A compactness argument shows that both are closed in the space NN of all
integer sequences 	in the topology of pointwise convergence
� In particular�
each of these sets has cardinality ���� the same as the whole of NN� So the
conditions we are looking for should be local ones�

The �rst such result is the following�

Theorem 	 For all N � �	 we have Fn�� � Fn and fn�� � fn�

The �rst inequality is trivial� each orbit on 	n � �
�tuples is obtained by
�extending� a unique orbit on n�tuples� Moreover� equality holds if and only
if Fn � Fn�� � � 	that is� G is 	n � �
�transitive� The second inequality�
however� is much less trivial� Two completely di�erent proofs are known� one
using linear algebra and �nite combinatorics 	we will discuss this later
� the
other a strengthened version of Ramsey�s Theorem�

For example� if G is the group of order�preserving permutations of Q� then we
have fn � �� Fn � n�� and

F �
n �

nX
k��

S	n� k
k� �

��� Growth rates

Apart from Theorem �� very few local conditions are known� One of these
asserts that� if fn � fn��� then G has a �xed set of cardinality at most n and
acts on the complement as a 	n��
�set�transitive group 	one with fn�� � �
�
So� if the sequence 	fn
 is not ultimately constant� then it grows at least
linearly with slope �

� �

We now look at some examples of possible growth rates� First� we de�ne two
group�theoretic constructions� Let G� and G� be permutation groups on X�

and X�� Then the direct product G� �G� acts on the disjoint union X� �X��
an ordered pair 	g�� g�
 acts on X� as g� and on X� as g��
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Fig� 	� Wreath product

The wreath product is a little more complicated� It acts on X��X�� which we
regard as a covering of X� with all the �bres bijective with X�� The wreath
product G� WrG� is generated by two types of permutation�

� the base group� which �xes each �bre setwise and acts on it as an element
of G� 	these elements chosen independently
�

� the top group� which permutes the �bres as an element of G� acting on X��

	See Figure ��
 We let S denote the in�nite symmetric group� Sk the �nite
symmetric group of degree k� and A the group of order�automorphisms of Q�

The following list illustrates some known growth rates�

Polynomial growth� For example� if Sk is the direct product of k copies of S�
then an orbit of Sk on n�sets is speci�ed by giving the number xi of points in
the intersection of the n�set with the ith orbit� for i � �� � � � � k� So fn	Sk
 is the

number of choices of k non�negative integers with sum n� which is

�
n� k � �

k � �

�
�

This is a polynomial of degree k � � in n� with leading coe�cient ��	k � �
��

Similarly� fn	S Wr Sk
 is the number of partitions of n with at most k parts�
which is a polynomial of degree k � � with leading coe�cient ��	k�	k � �
�
�

Note� in particular� that fn	S Wr S�
 � � � bn��c� This shows that the result
asserting that 	fn
 is either ultimately constant or at least linear with slope �

�

is best possible�

Fractional exponential growth� For example� fn	S Wr S
 � p	n
� the partition
function� which is roughly exp	n���

� More generally� fn	SWrSWrSk
 is very
roughly exp	n�k�����k����

It is worth noting that the iterated wreath product of at least three copies of
S has the property that 	fn
 grows faster than any fractional exponential but
slower than straight exponential�
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Fig� 
� Boron trees

Exponential growth� Here there is a wide variety of examples� of which I note
three�

� fn	S� WrA
 � Fn� the nth Fibonacci number� 	This is a simple exercise�

� Boron trees� A boron tree is a tree in which all vertices have valency �

or �� The leaves are hydrogen atoms� and the non�leaves boron atoms� in
an imaginary version of hydrocarbon chemistry in which trivalent boron
replaces tetravalent carbon� Figure � shows the boron trees with at most
�ve leaves� The leaves of a boron tree carry a quaternary relationR	a� b� c� d
�
which holds whenever the paths ab and cd in the tree are disjoint� The class
of such relational structures is a Fra��sse class� The automorphism group of
its Fra��sse limit has fn � an����cn� where c � ����� 	 	 	�

� This example will be important later� Let q be a positive integer� Then it is
possible to partition Q into q pairwise disjoint dense subsets in a unique way
up to order�preserving permutations� Any orbit on n�sets is parametrised
by a word of length n in an alphabet A with q symbols� 	Associate a symbol
with each of the q sets� then the word records the sets containing the n points
in order�
 Thus� if G	q
 denotes the group of permutations preserving the
order and �xing the q sets� then fn	G	q

 � qn�

Factorial growth� Consider the class of �nite sets carrying two independent
total orders� Such a set is described by the permutation which takes the �rst
order to the second� Since the structures form a Fra��sse class� we obtain a
group with fn � n� � Similarly� by taking k independent orders� we obtain
fn � 	n�
k�

Another example is the group induced by S on the set of unordered pairs from
the original set� For this group� fn is the number of graphs with n edges and
no isolated vertices 	up to isomorphism
� The asymptotics of this sequence
appear to be unknown�

Exponential of a polynomial� The most famous example arises as follows�
The class of all �nite graphs is a Fra��sse class� Its Fra��sse limit is the cel�
ebrated countable random graph R discovered by Erd os and Renyi ���� Thus�
fn	Aut	R

 is the number of n�vertex graphs up to isomorphism� which is
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asymptotically �n�n������n� 	since almost all �nite graphs have trivial auto�
morphism group
�

It is worth observing here that there is no upper bound to the growth rates
which can be achieved� it is possible to construct a Fra��sse class of relational
structures with any given �nite number of k�ary relations for all k� and in
which these relations hold only for k�tuples with all elements distinct� If there
are ak relations of arity k� and they are independent� then clearly fn � �an �

The question is much more interesting over languages with only �nitely many
relations� It is clear that� for a homogeneous structure over such a language�
fn is bounded above by the exponential of a polynomial 	precisely� by

�n
k������nkr �

where k�� � � � � kr are the arities of the relations� It is not clear what happens
for arbitrary structures�

However� the most interesting groups and structures 	those with the greatest
amount of symmetry
 are those with the slowest growth rates�

Some restrictions on growth rate are known�

Theorem 
 a� For homogeneous binary relational structures	 either
� c�n

d � fn � c�n
d for some d � N	 c�� c� � ��	 or

� fn grows faster than polynomially�
b� In the latter case	 fn � exp	n�����
 for n � n�	�
�

The �rst part is due to Pouzet ����� the second to Macpherson ����� A much
more dramatic result was proved by Macpherson ���� in the case of primitive
groups 	those which preserve no non�trivial equivalence relation
�

Theorem � If G is primitive	 then either fn � � for all n	 or fn � cn for all
su�ciently large n	 where c � ��

Macpherson�s proof gives c � �
p
� � �� Of the earlier examples� only those

associated with boron trees are primitive� The slowest growth known for a
primitive group is roughly �n���n� We discuss this example later�

��� Smoothness

Sequences arising from groups should grow smoothly� In particular� for poly�
nomial growth� log fn� log n should tend to a limit 	and� for growth of degree d

!



in Pouzet�s Theorem� fn�n
d should tend to a limit
� for fractional exponen�

tial growth� log log fn� log n� for exponential� log fn�n� and so on� How do you
state a general conjecture�

	Actually we might expect such smoothness to fail for very rapid growth� As
we noted� examples can be constructed of Fra��sse classes with large numbers
of k�ary relations� If these numbers grow very irregularly� then probably the
numbers of orbits will do so too� We return to this below�


Another type of question has been considered� We look at the motivation for
this question later�

De�ne an operator S on sequences of natural numbers by the rule that Sa � b
if

�X
n��

bnx
n �

�Y
k��

	� � xk
�ak �

Is it true that� if f � Sa counts orbits of a group� then an�fn tends to a limit
	possibly � or �
�

	This question has something to do with smoothness of growth� since� if Sa �
b� then bn � an � F 	a�� � � � � an��
 for some function F �

	 An algebra

The most immediate connection of the subject of this paper with algebraic
combinatorics is that we can de�ne a graded algebra over C with the property
that the degree of the nth homogeneous component is fn� This algebra is the
topic of the present section�

��� Construction

Let X be an in�nite set� For any non�negative integer n� let Vn be the set of
all functions from the set of n�subsets of X to C � This is a vector space over
C �

De�ne

A �
M
n��

Vn�

��



with multiplication de�ned as follows� for f � Vm� g � Vn� let fg be the
function in Vm�n whose value on the 	m� n
�set A is given by

fg	A
 �
X
B�A
jBj�m

f	B
g	A nB
�

This is the reduced incidence algebra of the poset of �nite subsets of X�

If G is a permutation group on X� let AG be the subalgebra of A of the formL
n�� V

G
n � where V G

n is the set of functions �xed by G�

If G is oligomorphic� then dim	V G
n 
 is equal to the number Fn	G
 of orbits of

G on n�sets� since a function is �xed if and only if it is constant on each orbit�

��� Integral domain�

The algebra A has any divisors of zero� The characteristic function f of a
single n�set satis�es f� � �� If the group G has this n�set as one of its orbits�
then f � AG�

I conjecture that if G has no �nite orbits	 then AG is an integral domain�

This would have as a consequence a smoothness result for the sequence 	fn
�
in view of the following result�

Theorem � Let A �
L
Vn be a graded algebra which is an integral domain	

with dim	Vn
 � an� Then am�n � am � an � � for all m�n�

In fact� a stronger conjecture can be made� Let e denote the constant function
in V� with value �� Then e � V G

� for any permutation group G� It can be shown
by �nite combinatorial arguments that e is not a zero�divisor� 	The inequality
fn��	G
 � fn	G
 follows� for multiplication by e is a linear map from V G

n to
V G
n��� and the fact that e is not a zero�divisor shows that its kernel is zero�
 I

conjecture that if G has no �nite orbits	 then e is prime in AG 	in the sense
that AG�eAG is an integral domain
� This conjecture also has a consequence
for smoothness� namely

	fm�n � fm�n��
 � 	fm � fm��
 � 	fn � fn��
 � ��

since the dimension of the nth homogeneous component of AG�eAG is fn �
fn���

These conjectures are still open after more than twenty years� Recently ��� I
proved the following� Call a permutation group G entire if AG is an integral
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domain� and strongly entire if AG�eAG is an integral domain� 	It is easy to see
that the second condition implies the �rst�
 We call H a transitive extension
of G if H is transitive and the stabiliser of the point x� acting on the points
di�erent from x� is isomorphic to G as permutation group�

Theorem  Let G be strongly� entire	 and H a transitive extension of G�
Then H is strongly� entire�

��� Polynomial algebra�

There are a few cases in which the structure of the algebra AG can be de�
termined� For a simple example� if G � S� the symmetric group� then AG is a
polynomial ring in one variable 	generated by e
� Also� we have

AG��G� �� AG� 
C AG� �

so that ASk is isomorphic to the polynomial ring in k variables� in agreement
with our formula

fn	S
k
 �

�
n� k � �

k � �

�
�

Moreover� if H is a �nite permutation group of degree k� then S WrH is the
extension of Sk by H� and we see that ASWrH is the ring of invariants of H
	thought of as acting as a linear group by permutation matrices
� In particular�
ASWrSk is isomorphic to the ring of symmetric polynomials in k variables�

The other cases where the structure is known are instances of a general pro�
cedure�

Let M be the Fra��sse limit of C� and G � Aut	M
� Suppose that the following
properties hold�

� there is a notion of disjoint union in C�
� there is a partial order of involvement on the n�element structures in C� so

that if a structure is partitioned in any manner� then it involves the disjoint
union of the induced substructures on its parts�

� there is a notion of connected structure in C� so that every structure is
uniquely expressible as the disjoint union of connected structures�

Theorem � Under the above assumptions	 AG is a polynomial algebra gener�
ated by homogeneous elements� The generators are the characteristic functions
of the isomorphism types of connected structures in C�
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Now the operator S that we de�ned earlier on integer sequences plays two
roles in this context�

� Let C be a class of structures� each of which is uniquely expressible as a
disjoint union of �connected� substructures� Suppose that the sequence a �
	an
 enumerates 	unlabelled
 connected structures in �matthcalC� Then
b � Sa enumerates all unlabelled structures in C�

� Let A be a graded algebra which is a polynomial algebra in homogeneous
generators� let the sequence a � 	an
 enumerate the generators by degree�
Then the sequence b � Sa is the Hilbert sequence of A�

The �rst fact motivates the question in the earlier section concerning whether
an�fn tends to a limit� where f � Sa and fn � fn	G
 for some permutation
group G� In the case where the Fra��sse class C satis�es the hypotheses of
the above theorem� the question is equivalent to the following� Let pn be the
probability that a random n�element structure in C is connected� Does pn tend
to a limit as n � �� See ��� for more information on the probability of
connectedness�

��� Examples

Example � Let C be any Fra��sse class� M its Fra��sse limit� and G � AutM �
Then� regardless of the structure of AG� it is true that AGWrS is a polynomial
algebra� where S is the symmetric group� For an orbit of GWr S on n�sets is
described by a partition of an n�set with a structure from C on each part� and
no relation between the parts� the class of such partitioned structures is the
Fra��sse class corresponding to GWrS� Now we interpret �connected structure�
to be one in which the partition has just one part� �disjoint union� of structures
to mean that points of di�erent constituent structures lie in distinct parts� and
�involvement� to be inclusion of all the relations 	other than the equivalence
relation de�ning the partition
� The axioms for Theorem � are satis�ed�

The polynomial generators of AGWrS correspond to the orbits of G on n�
sets� so are enumerated by 	fn	G

� We see� incidentally� that the sequence
	fn	GWrS

 is obtained from the sequence 	fn	G

 by applying the operator
S� This was the reason for the choice of name� In the next section we will
generalise this sequence operator�

Example �� We met the random graph R of Erd os and Renyi� This is the
Fra��sse limit of the class of �nite graphs� It is the unique countable homogen�
eous graph R containing all �nite graphs� Let G � Aut	R
�

If we take the usual graph�theoretic notions of connectedness and disjoint
union� and let involvement mean �spanning subgraph�� then the axioms be�
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fore Theorem � are satis�ed� the algebra AG is a polynomial algebra� whose
generators correspond to connected graphs�

The group G has a transitive extension H� which can be described as follows�
A two�graph is a collection T of ��subsets of a set X having the property that
any ��subset of H contains an even number of members of T � The class of
�nite two�graphs is a Fra��sse class� and the automorphism group of its Fra��sse
limit is a transitive extension of G�

This leads to a curious problem� It follows from Theorem � that AH is an
integral domain 	and that e is prime in AH� Is it a polynomial algebra� The
best chance of proving this would be to identify a class of �connected� two�
graphs�

Now Mallows and Sloane ���� showed that two�graphs and even graphs 	graphs
with all valencies even
 on n points are equinumerous 	but there is no natural
bijection
� Hence� if AH is a polynomial algebra� then the number of poly�
nomial generators of degree n is equal to the number of Eulerian 	connected
even
 graphs on n vertices�

Example �� Recall the group G	q
 preserving the order on Q and q dense
subsets which partition Q� We have fn	G	q

 � qn� and the orbits of G	q

on n�sets are described by words in an alphabet of length q� Now the nth
homogeneous component of AG�q� is spanned by the words of length n� The
multiplication is de�ned on words as follows� the product of two words is the
sum 	with appropriate multiplicities
 of all words which can be obtained by
�shu"ing� together the two words in all possible ways� For example�

	aab
 	 	ab
 � abaab� �aabab� �aaabb�

This is the shu�e algebra� which arises in the theory of free Lie algebras 	see
Reutenauer ����� which is a reference for what follows
�

A Lyndon word is one 	like aabab
 which is strictly smaller 	in the lexicographic
order
 than any proper cyclic permutation of itself� Now� if we interpret �con�
nected� to mean �Lyndon word�� �disjoint union� to mean �concatenation in
decreasing lexicographic order�� and �involvement� to be the reverse of lexico�
graphic order� then the axioms are satis�ed� This says� in essence� that any
word can be expressed uniquely as a concatenation of Lyndon words in de�
creasing lexicographic order 	as ab�aab in the example
� and that� of all the
words obtained by shu"ing Lyndon words together� the greatest is the concat�
enation in decreasing lexicographic order� We conclude that the shu"e algebra
is a polynomial algebra generated by the Lyndon words� This is a result of
Radford �����

��



Now we get a puzzle similar to that in the last case� it turns out that the
groups G	q
 have transitive extensions H	q
 	so that H	q
 is strongly entire�
by Theorem �
� but it is unknown whether A�H	q

 is a polynomial algebra�
Here are some further details on the case q � ��

The Fra��sse class corresponding to H	�
 consists of what have been called
local orders� locally transitive tournaments� or vortex�free tournaments by au�
thors in very di�erent areas� permutation groups ���� model theory ����� and
computational geometry �!�� These are tournaments which contain neither a
��cycle dominating a vertex� nor a ��cycle dominated by a vertex� as induced
sub�tournaments� The Fra��sse limit can be described as follows� Choose a
countable dense set on the unit circle with the property that it contains no
two antipodal points� 	If we choose one of each antipodal pair of complex roots
of unity at random� then with probability �� the resulting set is dense�
 Now
an arc joins x to y if the angular distance from x to y 	in the anticlockwise
direction
 is smaller than that from y to x�

The number fn	H	�
 of n�vertex tournaments with this property� up to iso�
morphism� is given by

�

�n

X
djn
d odd

�	d
�n�d�

From this� by applying the inverse of the operator S� it is possible to calculate
the hypothetical sequence enumerating the polynomial generators 	assuming
that the algebra is polynomial
� The sequence� which begins �� �� �� �� �� �� ��
�� ��� �� � � �� appears to be unknown�

Note that fn	H	�

 � �n���n� If we use instead the group H�	�
 of auto�
morphisms and anti�automorphisms of the tournament 	where an anti�auto�
morphism reverses all arcs
� we see that fn	H�	�

 � �n���n� This is the
example� promised earlier� of a primitive group with slowest known growth
rate�


 Cycle index

The class of oligomorphic groups appears to be the largest class of in�nite
permutation groups to which the theory of cycle index for �nite permutation
groups can be naturally extended� This has been adequately discussed else�
where� so only a sketch will be given here� The challenge is to connect this
material with the algebra of the last section�

��



��� De�nition and properties

We begin with a brief recall of the cycle index of a �nite permutation group�
Let ci	g
 denote the number of cycles of length i in the cycle decomposition
of g� where g is a permutation of a �nite set of cardinality n� Then the cycle
index of g is

z	g
 � s
c��g�
� s

c��g�
� 	 	 	 scn�g�n �

a monomial in the indeterminates s�� � � � � sn� If G is a group of permutations
of a set of n elements� its cycle index is the average cycle index of its elements�

Z	G
 �
�

jGj
X
g�G

z	g
�

Clearly there is no hope of extending this de�nition to an in�nite permuta�
tion group� However� if G is oligomorphic� we can proceed as follows� Choose
representatives for the orbits of G on �nite sets� Let G	#
 denote the group
of permutations of # induced by its setwise stabiliser in G� Then we de�ne
the modi�ed cycle index of G by

$Z	G
 �
X

Z	G	#

�

where the sum is over the orbit representatives� This is well�de�ned� for a
monomial sa�� 	 	 	 sann occurs only in the summands G	#
 for which

X
iai � j#j�

and there are only �nitely many of these� since G is oligomorphic� The result
is a formal power series in in�nitely many indeterminates� 	By convention� we
take the cycle index of a �permutation group on the empty set� to be ��


If it happens that G is the automorphism group of a homogeneous structure
M � then $Z	G
 is the sum of the cycle indices of the automorphism groups of
the unlabelled structures in the age of M � This agrees with Joyal�s de�nition
of the cycle index of a species ����

This de�nition works equally well if G is a �nite group� But in this case� we
get nothing new� it can be shown that

$Z	G
 � Z	G� si  si � �
�

��



	We use the notation F 	si  ti
 for the result of substituting ti for si in the
polynomial or formal power series F �
 In this sense� then� our modi�ed cycle
index is a genuine extension of the cycle index of a �nite group�

The next three results summarise the behaviour of the modi�ed cycle index
under group�theoretic constructions� how we obtain the counting sequences
	fn	G

 and 	Fn	G

 as specialisations� and the modi�ed cycle index of some
special groups� As is usual in combinatorial enumeration� we represent the
sequence 	fn	G

 	which counts unlabelled structures
 by the ordinary gen�
erating function fG	x
 �

P
n�� fn	G
xn� and the sequence 	Fn	G

 	which

counts labelled structures
 by the exponential generating function FG	x

 �P
n�� Fn	G
xn�n�� As earlier� S is the in�nite symmetric group and A the

group of order�preserving permutations of Q�

Proposition �� a� $Z	G �H
 � $Z	G
 $Z	H
�
b� $Z	GWrH
 � $Z	H� sn  $Z	G� sm  smn
� �
�
c� If H is a transitive extension of G	 then $Z	G
 � � $Z	H
��s��

Proposition �	 a� fG	x
 � $Z	G�n xn
�
b� FG	x
 � $Z	G� s�  x� sn  � for n � �
�

Proposition �
 a� $Z	S
 � exp

�
�X
n��

sn
n

�
A�

b� $Z	A
 � ��	� � s�
�

��� Sequence operators

From Propositions �� and ��� we see that 	fn	G Wr H

 is determined by
	fn	G

 and the modi�ed cycle index of H� We can de�ne an operator as�
sociated with any oligomorphic group H 	which will also be denoted by H

formally� as follows� if a � 	an
� then Ha � 	bn
� where� setting a	x
 �

P
anx

n

and b	x
 �
P
bnx

n� we have

b	x
 � $Z	H� sn  a	xn
� �
�

Thus� S is the operator we met earlier� while we see from Proposition �� that
Aa � b means

b	x
 �
�

�� a	x

�

Now the earlier question about the probability of connectedness can be gen�
eralised� Is it true that	 for any oligomorphic group H	 if Ha � b and the

��



sequence b is realised by some oligomorphic permutation group	 then an�bn
tends to a limit as n���

Bernstein and Sloane ��� discuss a number of operators on sequences� Among
their list are S and A 	which they refer to as EULER and INVERT respect�
ively
� They do not consider any other operators of the above form�

Other sequence operators could be de�ned from groups� Here are two ex�
amples�

� For a �xed oligomorphic group H� we could consider the operator which
takes 	fn	G

 to 	fn	G � H
� By Propositions �� and ��� this is just the
convolution with the sequence 	fn	H

� In particular� ifH � S� this replaces
a sequence by the sequence of its partial sums�

� We could use the sequences Fn instead of fn� Since

FG�H	x
 � FG	x
FH	x


and

FGWrH	x
 � FH	FG	x
� �
�

these operators will be exponential convolution 	for the direct product
 and
substitution in the exponential generating function 	for the wreath product
�
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