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Abstract

This paper discusses investigations of sequences of natural numbers which count
the orbits of an infinite permutation group on n-sets or n-tuples. It surveys known
results on the growth rates, cycle index techniques, and an interpretation as the
Hilbert series of a graded algebra, with a possible application to the question of
smoothness of growth. I suggest that these orbit-counting sequences are sufficiently
special to be interesting but sufficiently common to support a general theory.

‘I count a lot of things that there’s no need to count,” Cameron said. ‘Just because
that’s the way I am. But I count all the things that need to be counted.’
Richard Brautigan, The Hawkline Monster

1 Three counting problems

This paper is a survey of the problem of counting the orbits of an infinite per-
mutation group on n-sets or n-tuples, especially the aspects closest to algebraic
combinatorics. Much of the material surveyed here can be found elsewhere,
for example in [4].

We begin by discussing three counting problems in different areas of mathem-
atics and their relations.

1.1 Enumeration of finite structures

A relational structure M consists of a set X and a family of relations on X.
These relations can have arbitrary arities, and there may be a finite or infin-
ite number of relations. Many familiar structures have only a single relation:
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graphs, directed graphs, total or partial orders, and so on. However, for a
general (non-uniform) hypergraph we would need a k-ary relation for each
cardinality k of hyperedges.

The age of M, written Age(M), is the class of all finite relational structures
(in the same language) which are embeddable in M. (This terminology was
invented by Fraissé [7], who says that the structure M is younger than N if
the age of M is contained in that of N.)

Problem. How many (a) labelled, (b) unlabelled structures in Age(M)?

As standard in combinatorial enumeration, labelled structures are based on
the set {1,2,...,n}; unlabelled structures are isomorphism types.

1.2 Counting orbits

A permutation group G on a set X is oligomorphic if GG has only finitely many
orbits on X", for all n: equivalently, on the set of n-subsets of X, or on the
set of n-tuples of distinct elements of X. (The term ‘oligomorphic’ suggests
‘few shapes’. We will see later that orbits are often associated with ‘shapes’ of
finite substructures of some structure whose automorphism group is ¢, and
‘few’ is interpreted as ‘only finitely many’. The word ‘oligomorphic’ is also
used in computer science to describe viruses which exist in only a few distinct
forms and so can be recognised.)

Problem. How many orbits on (a) n-sets, (b) n-tuples of distinct elements,
(c) all n-tuples, does a given oligomorphic group have?

1.3 Types of a first-order theory

Let T be a complete consistent theory in the first-order language L. An n-type
over T is a set S of formulae in L with free variables zq,...,z,, maximal
subject to being consistent with 7. Thus a type encodes everything that can
be said (in the first-order language) about n elements in some model of T

We say that T is Rg-categorical if it has a unique countable model (up to
isomorphism). This is equivalent to there being only finitely many n-types for
each n. This is part of the celebrated theorem of Engeler, Ryll-Nardzewski
and Svenonius, about which we shall say more later.

Problem. How many n-types?
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Let M be the totally ordered set Q. Recall Cantor’s Theorem, which asserts
that any countable dense totally ordered set with no least or greatest element
is isomorphic to Q. Since all these properties apart from countability are first-
order, the theory of M is Ng-categorical.

The age of M consists of all finite ordered sets: there is one unlabelled struc-
ture, and n! labelled structures, on n elements.

Its automorphism group is transitive on n-sets for every n. This is because,
given any two n-tuples of rational numbers, each in increasing order, we can
find a piecewise-linear order-preserving map taking the first n-tuple to the
second (see Figure 1). We also see that there are n! orbits on ordered n-tuples
of distinct elements.

An n-type specifies, of each pair of variables, whether they are equal, and,
if not, which is greater. So the number of n-types is equal to the number of
preorders (reflexive and transitive relations P such that, for all # and y, either

P(z,y) or P(y,x) holds) on the set {1,2,...,n}. This number is

Zn: S(n, k)k!

k=1

where S(n, k)is the Stirling number of the second kind, since a preorder is
specified by an equivalence relation and a total order on its equivalence classes.

1.5 Connections
As the example suggests, there are close connections between the three prob-
lems.

A structure M is homogeneous if any isomorphism between finite induced
substructures of M can be extended to an automorphism of M. Thus, the
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Fig. 2. The Amalgamation Property

ordered set @ is homogeneous.

Theorem 1 (Fraissé’s Theorem) A class C of finite structures is the age
of a countable homogeneous structure M if and only if it is closed under iso-
morphism, closed under taking induced substructures, contains only countably
many members up to isomorphism, and has the amalgamation property.

If these conditions hold, then M is unique up to isomorphism.

The amalgamation property asserts that, if two structures By and B; in C have
isomorphic substructures, then they may be embedded in a larger substructure
C € C so that the isomorphic substructures coincide (see Figure 2).

We call a class C which satisfies the hypotheses of this theorem a Fraissé class,
and the homogeneous structure M its Fraissé limit.

Now if M is homogeneous, then the number of orbits of its automorphism
group on n-tuples of distinct elements (resp. on n-sets) is equal to the number
of labelled (resp. unlabelled) structures in its age.

There is a natural topology on the symmetric group of countable degree (point-
wise convergence) with the properties that

(a) a subgroup is closed if and only if it is the automorphism group of a
homogeneous relational structure;

(b) the closure of a subgroup is the largest overgroup with the same orbits
on X" for all n.

Hence counting labelled /unlabelled structures in a Fraissé class is equivalent to
counting orbits of a permutation group on n-sets/n-tuples of distinct elements.

We turn now to the connection with counting types.

The theorem of Engeler, Ryll-Nardzewski and Svenonius says more than we



have seen so far:

(a) for a countable structure M, the theory of M is No-categorical if and only
if Aut(M) is oligomorphic;

(b) if these condition holds, then all n-types are realised in M, and two n-
tuples realise the same type if and only if they are in the same orbit of

Aut(M).

Thus, if T is Ng-categorical, counting n-types of T' is equivalent to counting
orbits of Aut(T") on n-tuples of elements in the unique countable model of T'.

Moreover, as we have seen, for any oligomorphic group &, the closure of G is
the automorphism group of a homogeneous relational structure, whose theory
is Nyp-categorical.

So the enumeration problem for a Fraissé class (for which the answer is finite
for all n), the orbit-counting problem for an oligomorphic permutation group,
and the type-counting problem for an Ry-categorical theory, are all ‘equivalent’.
We will focus on the orbit-counting version from now on.

2 Three counting sequences

We consider the classes of sequences which can arise in this situation.

2.1 The sequences

Let GG be an oligomorphic permutation group on X. Let

e f.(G) = number of G-orbits on n-subsets;
e F,(G) = number of G-orbits on n-tuples of distinct elements;
e F*(G) = number of G-orbits on all n-tuples.

Then f, and F, count unlabelled and labelled n-element structures in a Fraissé
class, while 7" counts n-types in an Ng-categorical theory. We take as a con-
vention that the zeroth term in each sequence is 1: there is a single empty set
or tuple.

These sequences are, of course, related. We have:

Theorem 2 (a) F7 =Y S(n,k)F,, where S(n, k) is the Stirling number of
k=1
the second kind;



(b) fo < F,<nlf,.

Thus F' determines F* and vice versa. The series (f,) is more difficult to work
with than (F),), but for this reason more interesting. The examples G = S (the
symmetric group) and G = A (the group of order-preserving permutations of
Q) show that equality is possible in each inequality in (b).

The fundamental problem is, Which sequences occur?

Let § and § be the sets of f- and F-sequences arising from oligomorphic groups.
A compactness argument shows that both are closed in the space N of all
integer sequences (in the topology of pointwise convergence). In particular,

each of these sets has cardinality 2%, the same as the whole of NV, So the
conditions we are looking for should be local ones!

The first such result is the following.
Theorem 3 For all N > 0, we have F,p1 > F, and f,11 > f,.

The first inequality is trivial: each orbit on (n 4 1)-tuples is obtained by
‘extending’ a unique orbit on n-tuples. Moreover, equality holds if and only
if F, = F,41 = 1 (that is, G is (n + 1)-transitive. The second inequality,
however, is much less trivial. Two completely different proofs are known, one
using linear algebra and finite combinatorics (we will discuss this later), the
other a strengthened version of Ramsey’s Theorem.

For example, if & is the group of order-preserving permutations of Q, then we

have f, =1, F, = n!, and

2.2  Growth rates

Apart from Theorem 3, very few local conditions are known. One of these
asserts that, if f, = f,12, then (& has a fixed set of cardinality at most n and
acts on the complement as a (n + 2)-set-transitive group (one with f,42 = 1).
So, if the sequence (f,) is not ultimately constant, then it grows at least
linearly with slope %

We now look at some examples of possible growth rates. First, we define two
group-theoretic constructions. Let GG; and G5 be permutation groups on X;
and X,. Then the direct product G; x (G5 acts on the disjoint union X; U X:
an ordered pair (¢1,¢2) acts on X; as g; and on X5 as gs.
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Fig. 3. Wreath product

The wreath product is a little more complicated. It acts on X7 x X5, which we
regard as a covering of X, with all the fibres bijective with X;. The wreath
product GGy Wr (5, is generated by two types of permutation:

e the base group, which fixes each fibre setwise and acts on it as an element
of GGy (these elements chosen independently);
o the top group, which permutes the fibres as an element of (G, acting on X,.

(See Figure 3.) We let S denote the infinite symmetric group, S the finite
symmetric group of degree k, and A the group of order-automorphisms of Q.

The following list illustrates some known growth rates.

Polynomial growth. For example, if S* is the direct product of k copies of 3,
then an orbit of S* on n-sets is specified by giving the number z; of points in
the intersection of the n-set with the sth orbit, for7 = 1,..., k. So f,(5%) is the
n+k—1
E—1
This is a polynomial of degree k — 1 in n, with leading coefficient 1/(k — 1)!.

number of choices of k non-negative integers with sum n, which is

Similarly, f,,(S Wr Si) is the number of partitions of n with at most k parts,
which is a polynomial of degree k& — 1 with leading coefficient 1/(k!l(k — 1)!).

Note, in particular, that f,(S Wr S3) = 1 + |n/2]. This shows that the result
asserting that (f,) is either ultimately constant or at least linear with slope %
is best possible.

Fractional exponential growth. For example, f,(S Wr S) = p(n), the partition
function, which is roughly exp(n'/2)). More generally, f,(SWrSWrSy) is very
roughly exp(nF+1)/(k+2),

It is worth noting that the iterated wreath product of at least three copies of
S has the property that (f,) grows faster than any fractional exponential but
slower than straight exponential.



Fig. 4. Boron trees

Ezxponential growth. Here there is a wide variety of examples, of which I note
three.

o f.(5; Wr A) = F,, the nth Fibonacci number. (This is a simple exercise.)

e Boron trees. A boron tree is a tree in which all vertices have valency 1
or 3. The leaves are hydrogen atoms, and the non-leaves boron atoms, in
an imaginary version of hydrocarbon chemistry in which trivalent boron
replaces tetravalent carbon. Figure 4 shows the boron trees with at most
five leaves. The leaves of a boron tree carry a quaternary relation R(«a, b; ¢, d),
which holds whenever the paths ab and ¢d in the tree are disjoint. The class
of such relational structures is a Fraissé class. The automorphism group of
its Fraissé limit has f, ~ an=%/?¢*, where ¢ = 2.483 - - -.

e This example will be important later. Let ¢ be a positive integer. Then it is
possible to partition Q into ¢ pairwise disjoint dense subsets in a unique way
up to order-preserving permutations. Any orbit on n-sets is parametrised
by a word of length n in an alphabet A with ¢ symbols. (Associate a symbol
with each of the g sets; then the word records the sets containing the n points
in order.) Thus, if G(q) denotes the group of permutations preserving the
order and fixing the ¢ sets, then f,(G(q)) = ¢".

Factorial growth. Consider the class of finite sets carrying two independent
total orders. Such a set is described by the permutation which takes the first
order to the second. Since the structures form a Fraissé class, we obtain a
group with f, = n! . Similarly, by taking & independent orders, we obtain

fn = (n’)k

Another example is the group induced by S on the set of unordered pairs from
the original set. For this group, f, is the number of graphs with n edges and
no isolated vertices (up to isomorphism). The asymptotics of this sequence
appear to be unknown.

Exponential of a polynomial. The most famous example arises as follows.
The class of all finite graphs is a Fraissé class. Its Fraissé limit is the cel-
ebrated countable random graph R discovered by Erdés and Rényi [6]. Thus,
fa(Aut(R)) is the number of n-vertex graphs up to isomorphism, which is



asymptotically 2°"=1/2 /n! (since almost all finite graphs have trivial auto-
morphism group).

It is worth observing here that there is no upper bound to the growth rates
which can be achieved: it is possible to construct a Fraissé class of relational
structures with any given finite number of k-ary relations for all k£, and in
which these relations hold only for k-tuples with all elements distinct. If there
are ay relations of arity k, and they are independent, then clearly f, > 2%,

The question is much more interesting over languages with only finitely many
relations. It is clear that, for a homogeneous structure over such a language,
fn is bounded above by the exponential of a polynomial (precisely, by

nkl _|__|_nkr
2 ;

where kq,...,k, are the arities of the relations. It is not clear what happens
for arbitrary structures.

However, the most interesting groups and structures (those with the greatest
amount of symmetry) are those with the slowest growth rates.

Some restrictions on growth rate are known:

Theorem 4 (a) For homogeneous binary relational structures, either
o cin? < f, < con? (for some d €N, ¢;,¢ > 0), or
o [, grows faster than polynomially.
(b) In the latter case, f, > exp(n'/>=) for n > no(c).

The first part is due to Pouzet [14], the second to Macpherson [12]. A much
more dramatic result was proved by Macpherson [11] in the case of primitive
groups (those which preserve no non-trivial equivalence relation):

Theorem 5 [If GG is primitive, then either f, =1 for all n, or f, > ¢" for all
sufficiently large n, where ¢ > 1.

Macpherson’s proof gives ¢ = /2 — . Of the earlier examples, only those
associated with boron trees are primitive. The slowest growth known for a
primitive group is roughly 2”72 /n. We discuss this example later.

2.8 Smoothness

Sequences arising from groups should grow smoothly. In particular, for poly-
nomial growth, log f,/log n should tend to a limit (and, for growth of degree d



in Pouzet’s Theorem, f,/n? should tend to a limit); for fractional exponen-
tial growth, loglog f,/log n; for exponential, log f,,/n; and so on. How do you
state a general conjecture?

(Actually we might expect such smoothness to fail for very rapid growth. As
we noted, examples can be constructed of Fraissé classes with large numbers
of k-ary relations. If these numbers grow very irregularly, then probably the
numbers of orbits will do so too. We return to this below.)

Another type of question has been considered. We look at the motivation for
this question later.

Define an operator S on sequences of natural numbers by the rule that Sa = b
if

b,x" = H(l — :L'k)_“k.
0 k=1

n=

[s it true that, if f = Sa counts orbits of a group, then a,/f, tends to a limit
(possibly 0 or 1)?

(This question has something to do with smoothness of growth, since, if Sa =
b, then b, = a, + F(ay,...,a,—1) for some function F.

3 An algebra

The most immediate connection of the subject of this paper with algebraic
combinatorics is that we can define a graded algebra over C with the property
that the degree of the nth homogeneous component is f,. This algebra is the
topic of the present section.

3.1 Construction

Let X be an infinite set. For any non-negative integer n, let V,, be the set of
all functions from the set of n-subsets of X to C. This is a vector space over

C.

Define

10



with multiplication defined as follows: for f € V,,, ¢ € V,,, let fg be the
function in V4, whose value on the (m + n)-set A is given by

fa(A)= 3" f(B)g(A\ B).

BCA
|Bl=m

This is the reduced incidence algebra of the poset of finite subsets of X.

If (G is a permutation group on X, let A% be the subalgebra of A of the form
®D.>o V& where V% is the set of functions fixed by G.

If G is oligomorphic, then dim(V.%) is equal to the number F,(G) of orbits of
(G on n-sets, since a function is fixed if and only if it is constant on each orbit.

3.2 Integral domain?

The algebra A has any divisors of zero. The characteristic function f of a
single n-set satisfies f? = 0. If the group G has this n-set as one of its orbits,
then f € A“.

I conjecture that if G has no finite orbits, then A% is an integral domain.

This would have as a consequence a smoothness result for the sequence (f,,),
in view of the following result:

Theorem 6 Let A =@V, be a graded algebra which is an integral domain,
with dim(V,,) = ay. Then apmyn > am + an — 1 for all m,n.

In fact, a stronger conjecture can be made. Let e denote the constant function
in V; with value 1. Then e € V|* for any permutation group G. It can be shown
by finite combinatorial arguments that e is not a zero-divisor. (The inequality
Jor1(G) > f.(G) follows: for multiplication by ¢ is a linear map from V% to
V%, and the fact that e is not a zero-divisor shows that its kernel is zero.) I
conjecture that if G has no finite orbits, then e is prime in A% (in the sense
that A%/e A% is an integral domain). This conjecture also has a consequence
for smoothness, namely

(fm-l-n - fm—l—n—l) Z (fm - fm—l) + (fn - fn—l) - 17

since the dimension of the nth homogeneous component of A% /e A% is f, —
fn—l-
These conjectures are still open after more than twenty years. Recently [5] 1

proved the following. Call a permutation group i entire if A% is an integral

11



domain, and strongly entire if A“ /e A% is an integral domain. (It is easy to see
that the second condition implies the first.) We call H a transitive extension
of G if H is transitive and the stabiliser of the point x, acting on the points
different from =z, is isomorphic to (G as permutation group.

Theorem 7 Let GG be (strongly) entire, and H a transitive extension of (.
Then H is (strongly) entire.

3.3 Polynomial algebra?

There are a few cases in which the structure of the algebra A% can be de-
termined. For a simple example, if ¢ = S, the symmetric group, then A% is a
polynomial ring in one variable (generated by e). Also, we have

AGl XG2 g AGl ®(C AG27

so that A5 is isomorphic to the polynomial ring in k variables, in agreement
with our formula

res= ("I,

Moreover, if H is a finite permutation group of degree k, then S Wr H is the
extension of S* by H, and we see that AW™H is the ring of invariants of H
(thought of as acting as a linear group by permutation matrices). In particular,
ASWrSk ig isomorphic to the ring of symmetric polynomials in k variables.

The other cases where the structure is known are instances of a general pro-
cedure.

Let M be the Fraissé limit of C, and G = Aut(M). Suppose that the following
properties hold:

o there is a notion of disjoint union in C;

o there is a partial order of involvement on the n-element structures in C, so
that if a structure is partitioned in any manner, then it involves the disjoint
union of the induced substructures on its parts;

o there is a notion of connected structure in C, so that every structure is
uniquely expressible as the disjoint union of connected structures.

Theorem 8 Under the above assumptions, A% is a polynomial algebra gener-
ated by homogeneous elements. The generators are the characteristic functions
of the isomorphism types of connected structures in C.

12



Now the operator S that we defined earlier on integer sequences plays two
roles in this context:

o Let C be a class of structures, each of which is uniquely expressible as a
disjoint union of ‘connected’ substructures. Suppose that the sequence a =
(a,) enumerates (unlabelled) connected structures in 3matthcalC. Then
b = Sa enumerates all unlabelled structures in C.

o Let A be a graded algebra which is a polynomial algebra in homogeneous
generators; let the sequence a = (a,) enumerate the generators by degree.
Then the sequence b = Sa is the Hilbert sequence of A.

The first fact motivates the question in the earlier section concerning whether
an/fn tends to a limit, where f = Sa and f, = f,(G) for some permutation
group (. In the case where the Fraissé class C satisfies the hypotheses of
the above theorem, the question is equivalent to the following: Let p, be the
probability that a random n-element structure in C is connected. Does p, tend
to a limit as n — oo? See [1] for more information on the probability of
connectedness.

3.4  FEzxamples

Example 9 Let C be any Fraissé class, M its Fraissé limit, and G = Aut M.
Then, regardless of the structure of A%, it is true that A““5 is a polynomial
algebra, where S is the symmetric group. For an orbit of G Wr S on n-sets is
described by a partition of an n-set with a structure from C on each part, and
no relation between the parts; the class of such partitioned structures is the
Fraissé class corresponding to G Wr S. Now we interpret ‘connected structure’
to be one in which the partition has just one part; ‘disjoint union’ of structures
to mean that points of different constituent structures lie in distinct parts; and
‘involvement’ to be inclusion of all the relations (other than the equivalence
relation defining the partition). The axioms for Theorem 8 are satisfied.

ASWS correspond to the orbits of G on n-

The polynomial generators of
sets, so are enumerated by (f,(G)). We see, incidentally, that the sequence
(f.(GWr 9)) is obtained from the sequence (f,,(G)) by applying the operator
S. This was the reason for the choice of name. In the next section we will

generalise this sequence operator.

Example 10 We met the random graph R of Erdos and Rényi. This is the
Fraissé limit of the class of finite graphs. It is the unique countable homogen-
eous graph R containing all finite graphs. Let G = Aut(R).

If we take the usual graph-theoretic notions of connectedness and disjoint
union, and let involvement mean ‘spanning subgraph’, then the axioms be-

13



fore Theorem 8 are satisfied. the algebra A is a polynomial algebra, whose
generators correspond to connected graphs.

The group G has a transitive extension H, which can be described as follows.
A two-graph is a collection T of 3-subsets of a set X having the property that
any 4-subset of H contains an even number of members of 7. The class of
finite two-graphs is a Fraissé class, and the automorphism group of its Fraissé
limit is a transitive extension of G.

This leads to a curious problem. It follows from Theorem 7 that A is an
integral domain (and that e is prime in Af. Is it a polynomial algebra? The
best chance of proving this would be to identify a class of ‘connected’ two-
graphs.

Now Mallows and Sloane [13] showed that two-graphs and even graphs (graphs
with all valencies even) on n points are equinumerous (but there is no natural
bijection). Hence, if A is a polynomial algebra, then the number of poly-
nomial generators of degree n is equal to the number of Eulerian (connected
even) graphs on n vertices.

Example 11 Recall the group G(q) preserving the order on Q and ¢ dense
subsets which partition Q. We have f,(G(q)) = ¢", and the orbits of G(q)
on n-sets are described by words in an alphabet of length ¢q. Now the nth
homogeneous component of A% is spanned by the words of length n. The
multiplication is defined on words as follows: the product of two words is the
sum (with appropriate multiplicities) of all words which can be obtained by
‘shuffling” together the two words in all possible ways. For example,

(aab) - (ab) = abaab+ 3aabab + 6aaabb.

This is the shuffle algebra, which arises in the theory of free Lie algebras (see
Reutenauer [16], which is a reference for what follows).

A Lyndon word is one (like aabab) which is strictly smaller (in the lexicographic
order) than any proper cyclic permutation of itself. Now, if we interpret ‘con-
nected” to mean ‘Lyndon word’, ‘disjoint union’ to mean ‘concatenation in
decreasing lexicographic order’; and ‘involvement’ to be the reverse of lexico-
graphic order, then the axioms are satisfied. This says, in essence, that any
word can be expressed uniquely as a concatenation of Lyndon words in de-
creasing lexicographic order (as ab.aab in the example), and that, of all the
words obtained by shuffling Lyndon words together, the greatest is the concat-
enation in decreasing lexicographic order. We conclude that the shuffle algebra
is a polynomial algebra generated by the Lyndon words. This is a result of
Radford [15].

14



Now we get a puzzle similar to that in the last case: it turns out that the
groups ((q) have transitive extensions H(q) (so that H(q) is strongly entire,
by Theorem 7), but it is unknown whether ACH(q)) is a polynomial algebra.
Here are some further details on the case ¢ = 2.

The Fraissé class corresponding to H(2) consists of what have been called
local orders, locally transitive tournaments, or vortex-free tournaments by au-
thors in very different areas: permutation groups [3], model theory [10], and
computational geometry [9]. These are tournaments which contain neither a
3-cycle dominating a vertex, nor a 3-cycle dominated by a vertex, as induced
sub-tournaments. The Fraissé limit can be described as follows. Choose a
countable dense set on the unit circle with the property that it contains no
two antipodal points. (If we choose one of each antipodal pair of complex roots
of unity at random, then with probability 1, the resulting set is dense.) Now
an arc joins x to y if the angular distance from x to y (in the anticlockwise
direction) is smaller than that from y to x.

The number f,(H(2) of n-vertex tournaments with this property, up to iso-
morphism, is given by

% S o(d)2r.

dln
d odd

From this, by applying the inverse of the operator 5, it is possible to calculate
the hypothetical sequence enumerating the polynomial generators (assuming
that the algebra is polynomial). The sequence, which begins 1, 0, 1, 0, 2, 1, 4,
4,12, 15..., appears to be unknown.

Note that f,(H(2)) ~ 2"7'/n. If we use instead the group H*(2) of auto-
morphisms and anti-automorphisms of the tournament (where an anti-auto-
morphism reverses all arcs), we see that f,(H*(2)) ~ 2"7%/n. This is the
example, promised earlier, of a primitive group with slowest known growth
rate.

4 Cycle index

The class of oligomorphic groups appears to be the largest class of infinite
permutation groups to which the theory of cycle index for finite permutation
groups can be naturally extended. This has been adequately discussed else-
where, so only a sketch will be given here. The challenge is to connect this
material with the algebra of the last section.
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4.1 Definition and properties

We begin with a brief recall of the cycle index of a finite permutation group.
Let ¢;(g) denote the number of cycles of length ¢ in the cycle decomposition
of g, where ¢ is a permutation of a finite set of cardinality n. Then the cycle
index of ¢ is

(9)

832(‘9) .. S%"(-g)7

z(g) = sy’

a monomial in the indeterminates sq,...,s,. If G is a group of permutations
of a set of n elements, its cycle index is the average cycle index of its elements:

Clearly there is no hope of extending this definition to an infinite permuta-
tion group. However, if (G is oligomorphic, we can proceed as follows. Choose
representatives for the orbits of GG on finite sets. Let G(A) denote the group
of permutations of A induced by its setwise stabiliser in . Then we define

the modified cycle index of G' by

2(G) =30 Z(G(A)),

where the sum is over the orbit representatives. This is well-defined: for a
occurs only in the summands G(A) for which

Ziai = |A|7

an

monomial sj* - - s

and there are only finitely many of these, since (G is oligomorphic. The result
is a formal power series in infinitely many indeterminates. (By convention, we
take the cycle index of a ‘permutation group on the empty set’ to be 1.)

If it happens that G is the automorphism group of a homogeneous structure
M then Z(G) is the sum of the cycle indices of the automorphism groups of
the unlabelled structures in the age of M. This agrees with Joyal’s definition
of the cycle index of a species [8].

This definition works equally well if (¢ is a finite group. But in this case, we
get nothing new: it can be shown that

Z(G) = Z(Gys; s+ 1).

16



(We use the notation F'(s; < t;) for the result of substituting ¢; for s; in the
polynomial or formal power series F'.) In this sense, then, our modified cycle
index is a genuine extension of the cycle index of a finite group.

The next three results summarise the behaviour of the modified cycle index
under group-theoretic constructions, how we obtain the counting sequences
(f.(G)) and (F,((G)) as specialisations, and the modified cycle index of some
special groups. As is usual in combinatorial enumeration, we represent the
sequence (f,(G)) (which counts unlabelled structures) by the ordinary gen-
erating function fg(x) = ¥,50 fu(G)x"™, and the sequence (F,(G)) (which
counts labelled structures) by the exponential generating function Fy(z)) =
Souso Fu(G)a™[nl. As earlier, S is the infinite symmetric group and A the
group of order-preserving permutations of Q.

Proposition 12 (a) 7Z(G H) = Z(GYZ(H).
(b) Z(GWrH) Z(H Sn%Z(G Sm%smnz 1).
(¢) If H is a transitive extension of G, then Z(G) = (H)/asl.

Proposition 13 (a) fa(x) = Z(Gyp  2™).
(b) Fa(x) = Z(Gy sy < x,8, < 0 forn > 0).

Proposition 14 (a) Z(S) = exp (Z %)
(b) Z(A)=1/(1 - s1). _

4.2 Sequence operators

From Propositions 12 and 13, we see that (f.(G' Wr H)) is determined by
(f.(G)) and the modified cycle index of H. We can define an operator as-
sociated with any oligomorphic group H (which will also be denoted by H)
formally, as follows: if @ = (a,), then Ha = (b,), where, setting a(z) = 3 a,z"
and b(x) = Y. b,x"™, we have

b(x) = Z(H, Sp < a(z™) —1).

Thus, S is the operator we met earlier, while we see from Proposition 14 that
Aa = b means

b(x) = %cz(:z;)l

Now the earlier question about the probability of connectedness can be gen-
eralised: [s it true that, for any oligomorphic group H, if Ha = b and the
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sequence b is realised by some oligomorphic permutation group, then a,/b,
tends to a limit as n — 0o ?

Bernstein and Sloane [2] discuss a number of operators on sequences. Among
their list are S and A (which they refer to as EULER and INVERT respect-

ively). They do not consider any other operators of the above form.

Other sequence operators could be defined from groups. Here are two ex-
amples:

e For a fixed oligomorphic group H, we could consider the operator which
takes (f,.(G)) to (f.(G x H). By Propositions 12 and 13, this is just the
convolution with the sequence (f,,(H)). In particular, if H = S, this replaces
a sequence by the sequence of its partial sums.

o We could use the sequences F), instead of f,. Since

FGxH(l') = Fg(l’)FH(l')
and
Fower(z) = Fu(Fo(x) —1),

these operators will be exponential convolution (for the direct product) and
substitution in the exponential generating function (for the wreath product).
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