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Abstract

Lutz [16] proposed the study of the structure of the class NP =
NTIME(poly) under the hypothesis that NP does not have p-measure
0 (with respect to Lutz’s resource bounded measure [15]). Lutz and
Mayordomo [18] showed that, under this hypothesis, NP-m-completeness
and NP-T-completeness differ, and they conjectured that further NP-
completeness notions can be separated. Here we prove this conjecture
for the bounded-query reducibilities. In fact we consider a new weaker
hypothesis, namely the assumption that NP is not p-meager with respect
to the resource bounded Baire category concept of Ambos-Spies et al. [2].
We show that this category hypothesis is sufficient to get:

(i) For k > 2, NP-btt(k)-completeness is stronger than NP-btt(k + 1)-
completeness.
(ii) For k > 1, NP-bT'(k)-completeness is stronger than NP-bT'(k + 1)-
completeness.
(i) For every k > 2, NP-bT'(k — 1)-completeness is not implied by NP-
btt(k 4 1)-completeness and NP-btt(2* — 2)-completeness is not im-
plied by NP-bT'(k)-completeness.

(iv) NP-btt-completeness is stronger than NP-tt-completeness.

1 Introduction

Since 1t is commonly believed that NP differs from P, the internal structure
of NP has been studied under the hypothesis that NP # P. Classical results
in this direction are Mahaney’s theorem stating that the NP-m-complete (i.e.
Karp-complete) sets are not sparse ([19]) and Ladner’s result that, for any of
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the standard polynomial-time reducibilities, there are sets in NP which are
neither complete nor in P ([13]). Many of the fundamental questions on the
structure of NP, however, remained open when working with the P # NP hy-
pothesis. This made researchers work with stronger hypotheses. Natural and
useful assumptions made in the literature include stronger separation hypothe-
ses for the polynomial hierarchy: For instance, Karp and Lipton [12] expanded
Mahaney’s theorem from the NP-m-complete sets to the NP-T-complete (i.e.
Cook-complete) sets under the assumption that %4 # Y. Since even these
stronger assumptions on the polynomial-time hierarchy did not help in answer-
ing some of the fundamental questions on the structure of NP, Lutz [16] sug-
gested to work with another hypothesis concerned with the relation between
NP and deterministic exponential time.

Note that, for the localization of NP in the deterministic time hierarchy,
it is only known that P C NP C EXP = DTIME(2°%), and there are
relativizations realizing the two extremes. Assuming NP = EXP, most of
the fundamental questions on the structure of NP can be resolved since the
structure of EXP is well understood. This assumption, however, has some
consequences, like NP = co-NP, which are widely disbelieved, whence this
assumption is not considered to be plausible. Therefore Lutz [16] proposed to
adopt a weaker assumption, namely that NP contains a non-negligible part of
E = DTIME(2""). Using his resource-bounded measure theory ([15]), Lutz
formalized this “non-smallness” hypothesis by saying that NP does not have
polynomial-time measure 0 (up(INP) # 0). This hypothesis proved to suffice
to settle some of the questions on the structure of NP, which could not be
answered by using only the weaker hypothesis NP # P (see [18] or Section
12 of [17] for more details). The probably most interesting consequence of
Lutz’s non-smallness hypothesis obtained so far, is the separation of NP-m-
completeness and NP-T-completeness (Lutz and Mayordomo [18]). In fact,
Lutz and Mayordomo showed that there is a set A which is both NP-bt¢(3)-
complete and NP-bT'(2)-complete, i.e. a set which is complete for NP under
both polynomial-time truth-table reducibility of norm 3 (that is a non-adaptive
reduction allowing 3 queries) and polynomial-time Turing reducibility of norm
2 (that is an adaptive reduction allowing 2 queries), but which is not NP-
m-complete. In [20] Mayordomo further improved this result by showing that
the set A is not even NP-btt(2)-complete. Lutz and Mayordomo conjectured
that this separation result can be extended to other standard polynomial time
reducibilities.

The goal of this paper is to prove some of the most natural instances of this
conjecture. Assuming pup(NP) # 0 we show:

(1) For every k > 2, NP-bit(k)-completeness is stronger than NP-btt(k + 1)-
completeness.

(2) For every k > 1, NP-bT'(k)-completeness is stronger than NP-6T'(k + 1)-
completeness.



(3) For k > 2, NP-bT'(k — 1)-completeness is not implied by NP-btt(k + 1)-
completeness and NP-bt¢(2% — 2)-completeness is not implied by NP-
bT'(k)-completeness.

(4) NP-btt-completeness is stronger than NP-t-completeness.

In fact, we obtain these results under some weaker hypothesis. We use the re-
source-bounded Baire category concept of Ambos-Spies, Fleischhack and Huwig
[2] for describing the size of complexity classes and we express non-smallness of
NP in this context by the hypothesis that NP is not p-meager (in the sense of
[2]). Though, classically, Baire category and Lebesgue measure are two classi-
fication schemes which in general are incompatible, the resource-bounded cate-
gory concept of [2] is sufficiently weak to become compatible with the resource-
bounded measure concept of [15]: For any class C, pp(C) # 0 implies that C is
not p-meager (Ambos-Spies et al. [4]), whence Lutz’s non-smallness axiom for
NP based on measure implies our category-based non-smallness axiom. In fact,
as we will show below, Lutz’s hypothesis is strictly stronger than our hypothesis
in the sense that, relative to some oracle, NP satisfies the latter but not the
former hypothesis.

The outline of the paper is as follows.

In Section 2 we introduce the fragment of Ambos-Spies et al. resource-
bounded category concept necessary for stating our non-smallness hypothesis
for NP and for working with this hypothesis, and we compare it to Lutz’s
measure hypothesis for NP.

In Section 3 we prove the separation theorems (1)—(3) assuming that NP
is not p-meager. The proof of (1) uses some ideas of Lutz and Mayordomo’s
separation result but requires some additional new features. The proofs of the
other two theorems follow the same pattern. Therefore, to a certain extent, we
establish them in parallel.

In Section 4, building upon (1), we prove the separation theorem (4), and in
Section b we state some open problems.

In our notation we do not distinguish between numbers and strings, and sets
and their characteristic sequences. l.e. n is identified with the n-th string so
that |n| & log(n), and X [n = X(0)...X(n—1) is the characteristic string of the
initial segment of X of length n. X—, denotes the set of strings in X of length n.
In general, our notation follows the setting of Ambos-Spies in [1] where also more
details on and motivation for the category and genericity concepts used here
can be found. For more background information on resource-bounded measure
and randomness we refer to the recent survey by Lutz [17]. Another recent
survey by Ambos-Spies and Mayordomo [3] focuses on the relations between
resource-bounded measure and category. There also a preliminary account of
the category-based non-smallness axiom introduced here is given, and some
relations to other strong hypotheses for NP are discussed. The polynomial
time reducibilities discussed here were introduced by Ladner et al. in [14] and



we recommend the survey of Buhrman and Torenvliet [8] for an overview on
completeness notions.

2 Largeness Axioms for NP

In this section we present some material on resource-bounded category and
genericity required for introducing (and working with) our category-based non-
smallness hypothesis for NP. We first define the general category concept devel-
oped by Ambos-Spies [1] (for polynomial time) which is an amalgamation of the
category concepts of Ambos-Spies, Fleischhack and Huwig [2] and Fenner [9],
and then define the category concept of [2] by restricting the general category
concept.

Definition 2.1 ([1], [2], [9])

1. An n*-extension function f is a partial function f: {0,1}* — ({0,1}* x
{0,1})* such that f € DTIME(n*) and, whenever f is defined on input
XIn=X(0)...X(n—1), then

(5) f(X [n) = (yoa io), R (yﬂ% Zm)
for some m > 0, some strings y; withn < yg < ... < Ym, and some
i € 10,1} (0< j < m).
2. A p-extension function is an n*-extension function for some k > 1.

3. A set A meets the n*-extension function f at n if f(Aln)l, say (5) holds
for X = A, and A(y;) = 1; for j < m; and A meets f if A meets f at

some n.

4. The n*-estension function f is dense along A if f(A|n) | for infinitely
many n.

5. A set G is general n”-generic if G meets every nf-extension function f
which is dense along G; and G is general p-generic if G is general n”-
generic for all k> 1.

6. A class M s general p-meager «f, for some k > 1, M does not contain
any n*-generic set.

By considering only extension functions specifying the next bit, we obtain the
category concept of Ambos-Spies et al. [2]:

Definition 2.2 (/2])

1. A simple n*-extension function f is an n*-extension function f such that,
whenever f(X [z) |, then f(X |z) = (x,i) for some i < 1, in which case
we also write f(X [x) = i.



2. A set G is nF-generic if G meets every simple n* -extension function which
is dense along G; and G is p-generic if G is n*-generic for all k > 1.

3. A class M is p-meager if, for some k > 1, M does not contain any n”-
generic set.

By applying a general observation on classes closed under < non-p-meagerness
of NP can be expressed in terms of genericity as follows:

Lemma 2.3 ([1]) NP is not p-meager iff NP contains a p-generic set.

So our non-smallness assumption for NP based on the category concept of [2]
can be stated as follows:

(G) 3 GENP (G p-generic) (Genericity Hypothesis)

By elementary properties of the n*-generic sets, many properties of NP derived
from Lutz’s measure hypothesis also easily follow from (G). E.g. any n?-generic
set is P-bi-immune (see [4]), whence (G} implies

(B) 3 Be NP (B P-bi-immune) (Bi-immunity Hypothesis)

For a P-bi-immune B € NP and, for an infinite set C € P, BNC € NP — P,
whence, by letting C' = {0}* or C'= {0%" : n > 0} the Bi-immunity Hypothesis
(B) implies

(T) 3 A€ NP —P (A tally)
and
(TT) 3 A€ NP —P (A exptally)

These assumptions are equivalent to E # NE and EE # NEE, respec-
tively, and the existence of sets in NP — P which are p-selective (see Selman
[22]) is among the consequences of (T), while (TT) e.g. implies the existence of
search problems in NP which cannot be reduced to their corresponding decision
problems (Bellare and Goldwasser [6]). A more detailed discussion of the con-
sequences of the Bi-immunity Hypothesis can be found in Lutz and Mayordomo
[18].

In order to relate (G)to Lutz’s hypothesis we need the observation of Ambos-
Spies et al. [5] that every p-random set is p-generic and the analog of Lemma
2.3 in the measure setting.

Lemma 2.4 ([5]) Every p-random set is p-generic.
Lemma 2.5 ([5]) 11, (NP) # 0 iff NP contains a p-random set.

So Lutz’s non-smallness assumption that pu,(NP) # 0 can be rephrased by
(R) 3 ReNP (R p-random) (Randomness Hypothesis)



Proposition 2.6 (R) implies (G). Hence any property of NP which can be
obtained from (G) can also be obtained from (R).

Proof. By Lemma 2.4. m]
In fact, the implication (R) = (G) is strict in the following sense:

(i) (R) = (G) holds relative to every oracle.

(il) (G) = (R) fails relative to some oracle.

Note that (i) holds by relativizing Lemma 2.4 and (ii) holds by the following
theorem:

Theorem 2.7 There is an oracle A such that, relative to A, NP contains a
p-generic set but no p-random set.

Proof. We will construct a set A with the required properties in stages. l.e. we
will effectively enumerate a sequence of finite characteristic functions (Oés)szo
which has the characteristic function of A as its limit.

In order to guarantee that NP# does not contain any p-random set we will
ensure that every set in NP4 agrees with some P#-set on all strings of length n
for infinitely many numbers n. This will be achieved by letting the oracle A look
like the canonical NP#-complete set K4 on sufficiently large intervals infinitely
often. Let N, be the e-th nondeterministic oracle Turing machine with respect
to some standard numbering and let

KA = {(0°,2,0") : N2 accepts x in < n steps}

(where, for technical convenience, we assume that |(z,y, z)| is odd for all strings
z,y,z). Then the construction of A will ensure that

(6) F°nVr(n<|z|<2" = Ax) = K4(x))
That this suffices to eliminate random sets in NP is shown as follows.

Claim 1. Assume that (6) holds. Then NP* does not contain any p#-random
set.

Proof. Given B € NP4 there is an index e and a polynomial p such that « € B
iff (0¢, 2, 00020y € K4 Since |(0°,,070*D)] is polynomially bounded in |z|,
it follows from (6) that there are infinitely many numbers n such that, for the
PA-set B = {x : (0,2, 000Dy € A}, B_,, = B—,. But the observation that,
for any p-random set R, R=, # @ for all sufficiently large n (see e.g. Lemma
2.10 in [1]), can be easily extended to show that, for any P-set C', R—, # C=,
a.e. and that this fact relativizes. This completes the proof of Claim 1.

In order to achieve the second goal of the construction we will ensure that the
set

GA = {e: Jy(y| = |ar:|2 &rye A}



will be pA-generic. Fix a recursive enumeration (fe)exo of the oracle dependent
simple p-extension functions such that w.l.o.g. f. 1s an n®-extension function.
Then to make G4 p-generic relative to A it suffices to meet the requirements

Re: f4 dense along G4 = G* meets f2

for e > 0. These requirements will be met by a so-called slow diagonalization,
a variant of the finite extension method: If the hypothesis of R, will hold then
at some stage s of the construction we will choose the finite extension «a; of
the previously specified finite part a;_1 of A in such a way that «, will force
that fA(G4|s) | = GA(s). For each requirement this action has to be taken
at most once and if this action becomes necessary then, by the hypothesis of
the requirement, there will be inifinitely many stages at which we can take this
action. This will allow us to spread out the actions for meeting the requirements
R, in such a way that, by letting A(z) = K#(z) in the intermediate phases,
condition (6) will be satisfied. In the construction below this will be imple-
mented by allowing only requirements R, to act at stage s for which e < d(]s]|)
for some slowly growing function d.

If we take action for requirement R. and choose ay to force fA(G4|s) |=
G4(s) we have to make sure that this action will not simultaneously force
FAHGA )] £ GA(s') for some ¢/ < e and s’. Otherwise, for some require-
ment R/, the actions of the requirements R, with e > ¢’ could force fﬁ to
be dense along G in such a way that we will not be able to ensure that G4
meets f4. So the combined actions of the lower priority requirements could
cause the failure of R.. This problem is overcome by allowing a requirement
Re: of higher priority to complain about the extension a; proposed by a lower
priority requirement R.. If this happens R, will not become active but instead
we will choose the extension oy, s’ > s, in such a way that fA(G#|s) will be
undefined, thereby eliminating the reason for R, becoming active at stage s.

For stating the formal construction we need the following notation.

In the following, lower case Greek letters will denote finite partial functions
from * to {0,1}. We say 3 extends o (o C ) if the graph of « is contained
in the graph of 3 and we say § extends a along v (denoted by 5 = a U~w) if
B(z) = a(z) for € dom(a) and B(z) = y(z) for all x € dom(y) \ dom(«).
Similarly, a set X extends a (o« C X) if o coincides with the characteristic
function of X on dom(a). If used as an oracle, a finite function « is interpreted
as the finite set {& € dom(a) : a(xz) = 1}. So, for a query = ¢ dom(a), the
oracle « returns the answer 0.

For a string « call the set code(z) = {zy : |y| = |2|?} the coding region of x,
let m(z) be the least element of code(x), and call a finite function « z-honest
if, for all z € dom(a) N code(x), a(z) = 0. Then = € GA iff AN code(z) # 0,
Alm(z) is z-honest, and, for any z-honest o with code(z) € dom(«) we can find
extensions 3; forcing GX () = i for all extensions X of 3; by letting 3y be the
extension of a along {(z,0) : z € code(x)} and by letting 1 be the extension
of & along {(z, 1)} for some string z € code(x) — dom(«). In the construction of



A below, the part as_1 of A specified by the end of stage s — 1 will be chosen
to extend Alm(s) whence G*|s will be determined by the end of stage s — 1,
namely G4 s = G%-1|s.

For describing the dependence of fX(GX |x) on the oracle X let (X, e, z)
be the use function of this computation, 1.e. the finite characteristic function
determining the oracle queries in the computation of fX(G*[z). Then, for
any oracles X and Y such that X [m(z) = Y |[m(z) (whence G* |z = GY | z)
and (X, e,z) = p(Y,e,z), fX(GXz) = f¥(GY |z). Moreover, since f. is
an né-extension function, |dom(p(X, e, x))| < |GXlz|* < 2¢1°l and, for any
2 € dom(p(X, e, x)), |2| < 2¢1°l. This implies that for any oracle X the set

QY ={z: Jr <s3e< d(s]) (z € dom(p(X, e, x)))}
has at most
g, = 215171 d(]s]) - 24D ]

elements. Note that ¢, < 2/*° for almost all numbers s if d(|s]) < log(]s])
whereas |code(s)| = 215" This will ensure that in the construction we can
choose oy to force a computation fA(GA]s) to converge without exhausting
code(s) completely. We assume that the function d limiting the number of
requirements which are considered at some stage is chosen so that ¢, < 2lsl?
holds for all s and such that, for all e < d(]s|), 2¢*l < 921", Moreover, in order
to guarantee (6), we choose d to be nondecreasing and to satisfy d(n) < log(n)
and

(7)) ny=pl(d(l) > j) = njp1 > 0(n;) forall j >0
where §(m) = 22 }6m-times.

Stage s (s > 0) of the construction of A consists of two parts where the first
part contains the action for meeting the requirements R, while in the second
part condition (6) will be ensured. In stage s we do not only define the initial
part a; of A but also sets Sats and Undef; where Sat; contains the indices of
the requirements which have been satisfied by the end of stage s while, for a pair
(e,2') € Undefs, fA(G*|2') will be made undefined unless some requirement
R, with ¢/ < e will be satisfied at a stage > a’. The initial values of these
parameters are a_1 = Sat_y = Undef_, = 0.

Stage s of the construction of A:

Step 1: Requirement R, requires attention via § if e < d(|s]), e ¢
Sats_y,  is an s-honest extension of a,_; and fZ(GP1s) is de-
fined. Requirement R, requires attention if R, requires attention via
some (. Requirement R,/ complains about § D as_y if ¢/ & Sat,_q
and there are strings z,z such that z € code(x), z € dom(B) \
dom(a;s—1), B(z) = 1 and there is an extension v of 7 such that



(x)  fI(GY]z)=0or
(xx)  3(e/,2') € Undef,_1 (f), queries z on input G7]z').

Now if there is a requirement R, and a finite function 8 such that R,
requires attention via 3 and no R,/ with €/ < e complains about 3
then fix the least such e and g (in this order), let 4 be the extension
of 7 along the union of the use functions (5, ¢/, ) for all numbers
¢/ < e and strings # such that # = s or (¢/,2) € Undef;_1, let z be
the least string in code(x) \ dom(y), and let

§=(yU (2, f2(G"15))) U (code(s) x {0}).
In this case say that R, receives attention (via f) and let

Sat, = Sats_1 U{e}
Undefs = Undefs_1.

Otherwise, let § = a;—1 U (code(s) x {0}) and let

Sat, = Sat,_4
Undef, = Undefs_1 U{(e,s) : Re requires attention at stage s}

Step 2: For the extension ¢ of a;_; defined in Step 1 let

as =8U (K% [m(s+1)).

This completes the construction. Note that K”(z) only depends on 3 for the
strings in dom(5) which are less than . So in Step 2 «; and K% [m(s + 1)
can be inductively defined by fixing a,(y) for the strings y < m(s + 1) with
y & dom(8) in order.

The correctness of the construction is established by the following claims.

Let Sat = |J,»o Sats and Undef = J,~, Undefs.

Claim 2. For all s > 0, «; is well defined, a; extends a,_1, dom(as) con-
tains all strings less than m(s + 1), and, for z € dom(a;) with z £ m(s + 1),
lz| < 921"l Moreover, for any z € code(s), z € dom(as;_1) implies that
z € dom(p(as—1,e,8")) for some e < d(|s — 1]) and s’ < s.

Proof. The proof, which 1s by induction on s, easily follows from the following
observations: If no requirement receives attention at stage s then there is no
string z € code(s’) for s’ > s such that z € dom(e;)\ dom(as_1). If R, receives
attention at stage s via § then minimality of 5 and the inductive hypothesis
for the second part of the claim ensure that, for the corresponding v, dom(y) N
code(s) C Q7 whence the string z € code(s) \ dom(7) required for the definition
of the J-part of o, exists.



By Claim 2 the sequence (ay)s>0 is well defined and determines a unique set
A. Moreover, for any s and 3 D a,_1, G¥-1]s = G’ s = G*|s, which will
be tacitly used below. It remains to show that A satisfies condition (6) and the
requirements R.(e > 0) are met.

Claim 3. Every requirement R, receives attention at most once and if R, receives
attention then R, is met.

Proof. Assume that R, receives attention via § at stage s. Then e € Sat,: for all
s’ > s whence R. does not require attention after stage s. Moreover, by choice
of § and definition of a, f7(GP[s) = fo (G |s) | since a, extends ¢(8, e, s),
and there is a string z € code(s) with a,(z) = f&(G* [s) and a,(z’) = 0 for
all 2’ € code(s) — {z}. Hence fA(GA]s) = G¥(s) = GA(s).

Claim 4. Condition (6) is satisfied.

Proof. Let xy, be the least string « with d(]x|) = n and let [(n) = |z,]|. We will
show that for all sufficiently large n there is a number m with {(n) < m < 2™ <
[(n+ 1) such that A(z) = K#(z) for all strings  with m < |z| < 2™,

2t (n)

Note that {(n) > n whence, by (7), [(n+1) > 2% where the exponential
function is iterated 6n times. Hence, for ; (i = 0,...,3n) defined by {; = I(n)
and [y = 221’, Iln) =1y <li <...<lz <Il{n+1). On the other hand,
only the n requirements Ry, ..., R,_1 can receive attention at a stage s < xp41
and, by Claim 3, each requirement receives attention at most once. So we can
pick & < 2n such that no requirement receives attention at any stage s with
li < |s| < lgya. It follows by construction that A(z) = K4(z) for all strings
r < m(0'+2) with = ¢ dom(a,,) where s = 171 Since |z| < lg41 for
z € dom(as,) by Claim 2, this implies the claim.

Claim 5. Assume that R. never receives attention and that no R, with ¢/ < e
receives attention after stage s.. Then, for any stage s > s. at which R, requires

attention, f2(G#|s) is undefined.

Proof. For a contradiction assume that R, requires attention at stage s > s
and fA(G#4]s) is defined. Let 8 = a,_1 U (A, e,s) and fix § > s minimal such
that 3 C a;. Then fP(GP|s) = fA(G*]s)] via the same computation (i.e.
w(B,e,5) = p(A e, s)). We will show that

(8) 5 is s-honest and no R, with ¢’ < e complains about 3 at stage s.

Since f7(G*|s){ this will imply that R, requires attention via 3 at stage s and
no higher priority requirement complains about 5. So R, or a requirement R,
with ¢’ < e will receive attention at stage s contrary to the choice of s..

Note that a;_; is s-honest since R, requires attention at stage s. Moreover,
for s/ > s such that no requirement receives attention at a stage s” with s <
s < s,

10



(9) ¥Ya (as_1 x-honest = ay z-honest)

Namely, in Step 1 of such stages s only pairs (z,0) are added to a»_1 and, by
convention, |{(u, v, w)|is odd for all strings u, v, w while any string z in a coding
region has even length, whence K% (z) = 0. So a;(z) = 0 for all strings z
from a coding region added to a; in Step 2.

Now, if we assume that (9) holds for s’ = § then (8) is obvious. Hence
w.l.o.g. we may fix s’ with s < s <s minimal such that some requirement
Rs receives attention at stage s, say via 3. By construction, either s’ = s

or (e, s) is put into Undefs at stage s. In any case, ay—1 and B are s-honest
and o, extending 3 is chosen in such a way that the computation ff(Gﬁ [s) is
preserved by the choice of 4. Hence ff(Gﬁ Is) = FA(GA]s) = fP(GP|s) and
B(x) = 0 for all € dom(f) \dom(é). Therefore 3 is s-honest and if there is
a z € dom(fB) \ dom(cs—1) to complain about then z € dom(é) \ dom(ag_1)
by minimality of s'. Hence, if ¢/ < e and R, complains about 3 at stage s
then ¢’ < e < ¢ and R, complains about B at stage s’, too, contrary to the
assumption about B
This completes the proof of Claim 5.

Claim 6. Every requirement R, is met.

Proof. For a contradiction assume that R, is not met. Then fA(G#|s) is defined
for infinitely many strings s and, by Claim 3, e ¢ Sat. Moreover, again by Claim
3, we may fix s, such that no requirement R.., ¢’ < e, receives attention after
stage s.. Now take s > s, such that z < s for all z € dom(a,_) and such that
fA(GA|s) is defined.

Then, by Claim 5, R, does not require attention at stage s. On the other
hand, for 8 = a,_1 U (A, e,s), 3 C A and f2(GPls) = fA(GA]s)). Hence 3
is not s-honest. By # C A this implies that G4(s) = 1 whence fA(G%|s) =0
since otherwise R, will be met. Moreover, since 5 C A and A[m(s+1) C a,, o,
Is not s-honest, whence we may fix s’ < s minimal such that «, is not s-honest.
Note that s’ > s, since a;, C AJm(s).

Now, as shown in the proof of Claim 5 already, the extension a;41 of an
z-honest «; is z-honest again unless a requirement receives attention at stage
t+ 1. So, by s, < s’, a requirement R, with €’ > e receives attention at stage
s, say via B Note that B C ay C as C A and distinguish the following two
cases.

If s < s then non-s-honesty of a;/ implies that B 1s not s-honest since for
z € code(s) with z € dom(agr) \ dom(é), ag(z) = 0. On the other hand, by
BC A, (G )s) = fAGA])s) =0 for y = B U 3, whence requirement R, will
complain about B at stage s’. So R, will not receive attention via B contrary
to assumption.

If s = s then B 1s s-honest since R/ requires attention via B at stage s.
Moreover, by ¢/ > e, a; D 3 is chosen to preserve fP(GPs), ie., fA(GP|s) =
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JA(GA1s) and p(B,e,5) = (A, €,5) C as. So, by choice of 3, 8 C BUp(3, ¢, 5)
whence, by s-honesty of 3, 18 s-honest too. A contradiction.
This completes the proof of Theorem 2.7. a

We close this section with a property of the p-generic sets needed in the following.
The concept of a simple extension function underlying the genericity concept of
[2] considered here may appear quite weak. Ambos-Spies [1], however, has shown
that in the definition of p-genericity simple extension functions can be replaced
by bounded extension functions, where an extension function f is k-bounded
(k > 1) if, whenever f(X [z) is defined, then f(X [2) = (yo,%0),. .., (Ym,im) for

some m < k.

Lemma 2.8 ([1]) Let G be p-generic and let f be a k-bounded n®-extension
funetion which is dense along G (k,c > 1). Then G meets f.

Here we will need a somewhat stronger observation which can be proved in a
similar way: For f(X [#) = (yo,%0),- .-, (Ym, ¢m) it is not necessary that f(X [ )
can be computed in |f(X [2)|° = O(2°17l) steps but it suffices that, for j <
m, (Yo,%),--.,(y;,%;) can be computed in O(2¢19il) steps. In the following
lemma we state a special case of this observation which will be sufficient for our
investigations here.

Lemma 2.9 Letl,c > 1 and let f be an extension function such that, for almost
all initial segments o« = X [0 of length 2" — 1(n > 1), f(«) s defined and

f(OZ) = (yOé,la ioc,l)a sy (yoa,laaioc,la)
where lo < I,pos(a) = (Yo, Ya,l,) is computable in 2°7 steps and in ; is
computable in 2¢WWesl steps. Then every p-generic set meets f.

Proof. W.l.o.g. we may assume that [, = [ for all strings a on which the
extension function f is defined. We split f into [ simple n°*!-extension functions
fi,..., fi as follows: Given k with 1 < k <[ and a string X [y let fi(X]y) =
iak, where « is the shortest initial segment X 0" of X [y such that, for f(a) =
(yoc,laioc,l);~~~a(yoc,laioc,l)a Y = Yok and (X[y)(yoc,]) = ioc,j for 1 S .7 < k. If
no such « exists, fi(X [y) is undefined. Then, as one can easily check, f; is
dense along all sets, fz41 is dense along all sets which meet fi; infinitely often
(1 <k < 1), and a set which meets f; meets the extension function f, too. Since
a p-generic set G meets any simple n°*t!-extension function which is dense along
G not just once but infinitely often (see [1], Proposition 6.11), the above implies
that any p-generic set G will meet f. a

3 Separating NP-Completeness Notions
of Bounded Query Reducibilities

In this section we compare the NP-completeness notions induced by the bounded
query reducibilities of fixed norm under the genericity assumption (G). We first

12



consider the case of nonadaptive reductions. Recall that a polynomial-time
bounded-truth-table reduction of norm k (P-btt(k)-reduction for short) of a set
A to a set B is given by polynomial-time functions h : ¥* = ¥ (evaluator) and
Jly -y g X = X (selectorsj such that A(z) = h(x, B(g1(x)), ..., B(gr(x)))
for all z. We write A <b”( ") B if there is a P-btt(k)-reduction from A to B,

and a set B € NP is NP-btt(k)-complete if A <b”( ") B for all A € NP.
Theorem 3.1 Assume (G) and let k > 2. There is an NP-btt(k + 1)-complete
set A which is not NP-btt(k)-complete.

Proof. Let G € NP be p-generic and let C' be an NP-m-complete set such
that C'€ DTIM E(2"). Before going into details we want to give the idea of the
proof. Note that p-generic sets are designed to share the properties that can be
forced by diagonalization strategies within the range of given bounds. This can
be viewed as “built-in diagonalizations” in the p-generic sets: every describable
diagonalization strategy with the given resources will succeed.

Therefore we will consider a set G that is P-btt(k — 1)-reducible to the p-
generic set . The set A will be the disjoint union of the k — 1 parts of G that
determine G and of the sets G N C and G U C. By this construction A will
be NP-btt(k + 1)-complete, since membership in G can be detected by £ —1
queries and membership in C' can be detected by two extra queries. Allowing
only k queries will cause some lack of information, either about & or about the
relation between G and C'. This fact will be used in the proof of A not being
NP-btt(k)-complete.

There we will take a subproblem B of G which is independent of the parts of
G used in the definition of A and, for a contradiction, we will assume that a P-
btt(k)-reduction from B to A is given. Then, exploiting the “lack of information”
in this reduction, there will be a strategy forcing A and B to disagree on the
reduction.

Formally this will be achieved by defining a bounded extension function f
describing the diagonalization strategy, and, by G meeting f, we will argue
that this strategy will succeed. Since the diagonalization strategy has to pay
attention to all possible kinds of missing information, the definition of f will
require a careful and somewhat tedious distinction of cases.

The desired set A is defined as follows. Let z1,..., 2541 be the first £ + 1
strings of length &, let

G = {22, € G (1<m<k)

and let
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be the union of the first £ — 1 of these sets. Then A is the disjoint union of the
k+1sets Gp,...,Gx—1,GNC and GUC":

k=1
A= U{xzmxeém} U {zz 2 e GNCIU
m=1

U{J;zkH:xEGUC}.

Since G and C are NP-sets; it follows by standard closure properties of NP
that A € NP, too. Moreover, for any string =z,

xeC & 2eGNC o [1¢G&reGuU(]
&S zel@NC or MVI<i<k(zg¢G)&reGUul]
& rzp €A or [V1<i<k(zz @ A)&azppq € A

whence (' §£t(k+1) A. So, by NP-m-completeness of C, A is NP-btt(k + 1)-
hard.

It remains to show that A is not NP-btt(k)-complete, which will be the most
involved part of the proof. Since Gy € NP it suffices to show that Gy fit(k) A.

For a contradiction assume that Gy, §£t(k) Avia (h,g1,...,9%), i.e.

(10) ék($) = h(z, A(g1(2)), ..., Algr(x)))

for all strings .

In the following we will use p-genericity of G to refute (10). We will define a
bounded extension function f such that f will satisfy the hypothesis of Lemma
2.9 and such that (10) will fail for = 0" if G will meet f at O"**.

For this sake, given n and X [0"t* we will define a set COND = {(y, ) :
[ <m} (where 0% < yg < y1 < ... < ym) of forcing conditions in such a way
that, firstly,

(11) X107+ = G10™+ & V(y, i) € COND(G(y) = i)
will imply

(12) Gr(0™) # h(0", A(g1(0™)), .., A(gx(0™))

and, secondly, [CON D| < ¢ for some constant ¢ (not depending on X [0"** and
n) and there are uniform procedures for computing the set {y : { < m} of the
positions of the forcing conditions in O(2") steps and for computing the value
i of some forcing condition (y,7) in O(2!¥!) steps.

Then, by letting

f(Xr0n+k) = (yO,iO)a : "a(ym,im)a

the latter ensures that f fulfills the premises of Lemma 2.10. Moreover, G
meeting f at 0"+* implies (11). So, by p-genericity of G, (12) will hold for some
n.
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In the remainder of the proof we define the condition set CON D for given n
and X [07** and we show that it has the desired properties. Since CON D will
be chosen so that (11) ensures (12), the motivating remarks on the definition
of CON D are made under the asumption that (11) holds. So, by G [0"+* =
X [0tk for strings y with |y| < n + k the value of G(y) is determined by
X 107**. For strings y with |y| > n + k and for i < 1 we can assume that
G(y) = i can be forced by adding the condition (y,7) to COND. Tle. the
set CON D should be viewed as a tool allowing us to fix the values of G on a
constant number of strings of length at least n + k.

Using the dependence of Gy and A on G, by forcing values for (¢ we can also
force values for G and, to a certain extent, for A. E.g., since Gk(O”) = G(0"z)
the condition (0" zy, ¢) forces Gk(O”) =1 (fori=0,1).

We will use this observation to force values A(w) = a(w) for the queries
w € QUERY = {¢1(0"),...,95(0")}

on the right side of (12). Then we can compute
(13) jo = h(0", a(g1(07)), ..., a(gx(0™)))

whence, by adding the condition (072, 1—jy) to CON D we can force ék(O”) =
1 — jo thereby satisfying (12).

Since the dependence of A on G is less straightforward and since, in fact, A
does not only depend on G but also on the complete set C', next we will discuss
to what extent values for A can be forced. This requires a closer look at the
definition of A. Corresponding to the parts Gl, . Gk 1, GNC and GUC of
which A is composed, a string w € A is of the form vzp, 1 <p<k+1, where p
indicates that membership of w in A is determined by the pth component. For
w = vz, we call v the value and p the indexr of w. Then the relation between
A(w) and G depends on the index of w as follows

(14) 1<p<k—-1= Alvzy) =G(vz)

vk €A & velC & AN<<I<k—1&vz €A)

(1) S veC&ANLKI<k-1&vzy €d)

(16) vzkp1 €A S velC VvV A KIL<k—1&vy € A)
S veC v ANKI<k—1&vzy €6)

(17) p>k+1 = vz, & A

By (14) we can force A(w) =i (for i = 0, 1) for astring w of indexp € {1,... k—
1} by the condition (w, ). If the index of w is k then we can only control
the second conjunct on the right side of (15): taken together the conditions
(vz1,0),..., (vzk—1,0) will ensure that this conjunct fails whence A(vz;) = 0.
By the dependence on C', however, here in general it is impossible to force

A(vzi) = 1. Dually, by (16), for w with index k& + 1, adding (vz, 1) to COND
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for some { € {1,...,k — 1} will force A(vzi41) = 1, whereas A(vzi41) = 0 in
general cannot be forced. So, for queries w,w’ € QU FRY with index k and
k+ 1, we have to force A(w) = 0 and A(w') = 1, respectively.

For strings w = vz, and w’ = vzg41 of index k and k+1 with the same value
v the above strategies for forcing A(w) = 0 and A(w') = 1 are not compatible. In
order to force these values here, we have to know the value of C'(v): If C'(v) =0
then A(w) = 0 by failure of the first conjunct, whence we can force A(w') = 1 as
above. Dually, for C'(v) = 1, A(w') = 1 is immediate by the first disjunct in (16)
whence here it suffices to force A(w) = 0. For the following it will be important
to note that if this situation applies to strings w, w’ € QU FRY and we have to
know C'(v) in order to decide whether some string zz;, 1 <! < k — 1, has to be
forced into G (and thereby into A!) then we can choose I so that xz; ¢ QU ERY .
Namely, since vz, and vzi41 are both among the k queries at least one of the
k — 1 strings xz1, ..., 221 will not be queried. (This will guarantee that the
values a(w) for w € QU ERY can be computed in O(2") steps, whence, by (13),
the condition (07zy, 1 — jg) forcing the desired disagreement in (12) will obey
the required time bounds for COND.)

Next we define the function o : QUFERY — {0, 1} specifying the intended
values for A on these queries. Fix w = vz, € QUERY . For the definition of
a(w) we distinguish between short and long strings w. If |w| < n+ k let

X(w) ifl<p<k-1

1 ifp=k&veC&IA1<I<k-1&vy € X)]
(18) a(w) = or
p=k+1&(welCVv IAILSI<k-1&vz € X))]
0 otherwise

It is easy to check that in this case the hypothesis X [07t% = G07** in (11)
implies A(w) = a(w) by (14)—(17). For w with |w| > n+ k let

1 ifp=Fk+1
19 = or
(19) a(w) = p=k—1&Vie{l,....k—1k+1}(vzy € QUERY)]

0 otherwise

Here, assuming (11), A(w) = a(w) will be ensured by the definition of the set
CON D of forcing conditions which we will give next.

For any value v, |v| > n, such that there is a query vz, € QUERY for some
pwith 1 <p <k+41, we will define a set CON D, of forcing conditions which
will be part of CON D. Given such a value v let

INDw)={p: 1<p<k+1&vz, € QUERY}

be the set of indices of queried strings with this value. The definition of CON D,
depends on this index set and on the parameter r defined by

r=pus>1(sg IND(v) Vs=k—1)
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as follows:
(20) k+1¢IND(w) = COND,={(vz1,0),...,(vz5-1,0)}

(21) k+1 € INDv) & k&IND(v)
= COND, ={(vz,§): 1<i<k-1& (=1 i=r)}

k+1 € INDw) & k € IND(v)
(22) = COND,={(vz,j):
1<i<hk—1&G=0ifi#r&(=1-Cl)ifi=r)}

Note that in case of (22), r € IND(v), i.e.,, vz, & QU ERY , since, by |IN D(v)| <
|QUERY| =k, k € IND(v) and k+ 1 € IND(v) imply that s & IND(v) for
some s € {1,....k—1}.

To show that, assuming (11), this part of the definition of CON D ensures
that A(w) = a(w) for strings w € QUERY with |w| > n + k, fix such a string
w = vzp and distinguish the following cases depending on the index of z.

Case 1: p <k — 1. Then a(w) =0 and (vzp,0) € COND, whence A(w) =0 by
(11).

Case 22 p=k—1and IND(v) ={1,...,k—1,k+1}. Then a(w) = 1. More-
over, r = k — 1 whence, by (21), (vzg_1,1) € COND. So A(w) =1 by (11).

Case 3: p=k—1and IND(v) #{1,...,k—1,k+1}. Then a(w) = 0. More-
over, either k + 1 ¢ IND(v) whence case (20) applies or r # k — 1. So in any
case (vzi—1,0) € CON D, whence A(w) = 0.

Case 4: p= k. Then a(w) = 0. If v & C then A(w) = 0 is immediate by (15). So
assume v € C'i.e., 1 —=C(v) = 0. Since for the definition of CON D, (20) or (22)
applies, it follows that CON D, = {(vz1,0),..., (vz5—1,0)} whence G(vz) =0
forallle {1,...,k =1} by (11). Hence A(w) = 0 by (15).

Case 5: p=k+ 1. Then a(w) = 1. If v € C then A(w) = 1 is immediate by
(16). So assume v ¢ C, ie., 1 — C(v) = 1. Since case (21) or (22) applies,
(vzr, 1) € COND, whence vz, € G by (11). Tt follows that A(w) =1 by (16).

This completes the proof that, assuming (11), the above defined parts of
CON D force A(w) = a(w) for all queries w. So, by adding (07+* 1 — j,) for jo
defined by (13) as final condition, (11) will imply (12). Hence it only remains
to show that the condition set satisfies the bounds specified above.

For this sake, first observe that |[CON D| < k? since besides the last condition
(0"** 1 — jo) forcing the desired value of the left side of (12), for any of the at
most k different values v attained by some query in QU ERY |, k — 1 conditions
were added to COND. Moreover, the positions yy, ..., yn of the conditions
can be computed in poly(n) steps. Finally, given X [0"+#  for the computation
of the value i of a condition (y,i) O(2W!) steps suffice: If (y,4) is added to
CON D via (20), (21) or (22) then obviously poly(|y|) steps suffice unless (y,7) =
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(vzr, 1=C(v)) in case (22) where the claim follows from C' € DTIM E(2™). This
leaves the final condition (0”+#% 1 — j5). Here, by (13), it suffices to show that
a(w) for w € QUERY can be computed in O(27) steps. But for a(w) defined
by (18) this follows by |w| < n+k and C' € DTITM E(2") while for o(w) defined
by (19) obviously a(w) is computable in poly(n) steps.

This completes the proof of Theorem 3.1. a

Next we will prove the analog of Theorem 3.1 for the adaptive reducibilities.
A polynomial-time bounded Turing reduction of norm k (P — bT(k)-reduction
for short) is a polynomial-time bounded Turing reduction M in which for any
oracle set X and any input x the number of oracle queries is bounded by k.
The queries may depend on the oracle, i.e. on the answers of the previous
queries, whence the computation or query tree of M(x) where the nodes are
labelled with the queries has depth < k — 1 but may have size 2 — 1. We say
that A is P — bT'(k)-reducible to B (A §bPT(k) B) via M if A = M?® for the
P — bT(k)-reduction M, and B € NP is NP-bT'(k)-complete if A §pr B for
all A € NP.
Obviously,

(%)

(23) A Sit(k) B = A SbPT(k) B
and, by the above remark on the size of the query tree of a P —bT'(k)-reduction,
(24) A<{ppy B = A<[ o) B,

—btt

and both implications are optimal (see [13]).

In order to distinguish NP-0T'(k+1)-completeness from NP-6T'(k)-complete-
ness assuming (G'), we show that the set A constructed in the proof of Theorem
3.1is NP-bT'(k)-complete but not NP-6T'(k — 1)-complete. Together with The-
orem 3.1 this implies the following stronger result.

Theorem 3.2 Assume (G) and let k > 2. There is a set A which is NP-bT'(k)-
complete and NP-btt(k 4+ 1)-complete but neither NP-bT(k — 1)-complete nor
NP-btt(k)-complete.

Proof. Fix A, C' and G as in the proof of Theorem 3.1. It remains to show
that A is NP-bT'(k)-hard but not NP-6T'(k — 1)-hard.
For a proof of the former note that, by definition of A,

reC & [zeG&aeelGnCor[egG&eeGUC]
< [Anfezy: 1<I<k-1}#0&xz € A]
or

[An{zz : 1<I<k -1} =0& xzp41 € A

whence (' §bPT(k) A. By NP-m-completeness of C' this implies that A is NP-
bT'(k)-hard. The proof that A is not NP-6T'(k — 1)-hard is similar to the proof
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that A fails to be NP-btt(k)-complete. Hence we will only sketch the proof
where we will use the notation introduced there.
Given a P-bT'(k — 1)-reduction M it suffices to show that

(25) Gi(0™) # MA(0")

for some n. As in the proof of Theorem 3.1, given a number n and an initial
segment X [0"1F it suffices to define a set COND = {(w,4) : | < m} of
forcing conditions such that 07"t% < yy < y; < ... < Y, the sizes of the sets
CON D are unifomly bounded by a constant ¢, the forcing locations {yo, . . ., Ym }
and the forced values 4; are uniformly computable in O(27) and O(2!%1) steps,
respectively, and to ensure that the assumption (11) will imply (25).

As in the proof of Theorem 3.1 this is achieved by first defining a function
«a specifying the intended A-values for the oracle queries in M4 (0"?) where «
will be computable in O(2") steps. Then, by appropriate forcing conditions it
will be ensured that, assuming (11), the intended values are actually attained
for some n whence M(0") = M#(0"). Hence by adding a condition forcing
ék(O”) =1— M*(0") the desired diagonalization (25) is achieved.

For the definition of the function o : ¥* — {0, 1} we distinguish between
short and long input strings. For w with |w| < n + k, a(w) is defined by (18)
and, for w = vz, with |w| > n+ k we let a(w) = 1 iff the index p of w is k + 1.

Next, by simulating M on input 07 define the set QU ERY of the queries
asked by M if the previous queries were answered by a(w), and let M *(0™)
denote this computation.

Note that |QUERY| < k — 1 since M is (k — 1)-bounded and, as one can
easily show,

(26) jo = M=(0")

can be computed in O(2") steps by definition of a.

In order to ensure that, assuming (11), M4(0?) = M*(0") and ék(O”) =
1 — M>(0™) we define the set COND of forcing conditions as in the proof of
Theorem 3.1 (using the set QU ERY defined above and jy as in (26)). For the
proof of correctness it is crucial to note that now |QUFERY| < k — 1 whence
not only in (22) but also in (21) » &€ IN D(v), i.e., the string forced into A there
is not a member of the set QU ERY . Hence, assuming (11), for w € QUERY
with |w] > n+ k, A(w) = a(w) = 0 for strings of index < k — 1 is immediate
while, for strings of index k or k + 1, A(w) = a(w) is shown as in the proof of
Theorem 3.1. a

Corollary 3.3 Assume (G) and let k > 1. There is an NP-bT'(k+1)-complete
set which is not NP-bT'(k)-complete.

Corollary 3.4 Assume (G) and let k > 2. There is an NP-btt(k+1)-set which
is not NP-bT'(k — 1)-complete.

19



While the separation for the bounded Turing reducibilities above is optimal,
the corresponding Theorem 3.1 for the truth-table reducibilities leaves a small
gap for k£ = 1:

Question 1. Assuming (&), is there an NP-btt(2)-complete set which is not
NP-btt(1)-complete?

Also it remains the question whether the comparison of bounded truth-table
and bounded Turing completeness in Corollary 3.4 can be further improved to
obtain optimal bounds:

Question 2. Assume () and let k& > 1. Is there an NP-btt(k + 1)-complete set
which is not NP — bT'(k)-complete?

Under the stronger hypothesis that there is a p-generic set G in NP NcoNP we
can give affirmative answers to these questions. This stronger hypothesis allows
the construction of witness sets A for the separations which also use negative
information on (. This greatly simplifies the above proofs where the access of
the constructed set A to the generic set GG was only positive in order to guarantee
membership of A in NP.

For the comparison of bounded truth-table and bounded Turing complete-
ness in the other direction we can prove a bound which is optimal by (24).
Here again the lack of direct access to negative information on the generic set
G requires a quite involved definition of the witness set.

Theorem 3.5 Assume (G) and let k > 2. There is an NP-bT (k)-complete set
A which is not NP-btt(2~ — 2)-complete.

Proof. The basic format of the proof is the same as that of Theorem 3.1.
As there we fix an NP-m-complete set C' € DTTM FE(2") and a p-generic set
G € NP. From these sets we define a set A of which we will show that it has
the desired properties. Again, there will be a part of A for which we can force
A(w) = i by fixing G(v) = ¢ for some string v and ¢ < 1, a second part for which
we can force A(w) = 0 and a third part for which we can force A(w) = 1 by
fixing G on a constant number of strings.

For the definition of A we need the following notation. For any string y let

Lilyy={z: ziCy} (i=0,1)

be the set of proper initial segments z of y such that the i-extension zi is still

extended by y. Note that Iy(y) and I,(y) are disjoint and the union of these

sets consists of all proper initial segments of y, whence |Iy(y)| + |11(v)] = |y|.
Using this notion we define sets Cl, and C'y depending on €' and G as follows:

Co={zy:ly=k-2&[zeClryec G&Vz e I,(y)(7z € G)]}

Cv=A{zy:lyl=k—-2&[zeC VvVaycG Vv Iz hy)(zz € G}
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where Zy denotes the coded pair (x,y) defined by Ty = 11°1+10zy. (For the
following note that zy € £* \ {0}* and, for |y| = k — 2, |zy| = 2|»|+ k.)

Then the desired set A is defined as the disjoint union of G= = G\ {0}*,
Cyg and C\:

A={vl:veG@ } U {v2: vely} U {vd:vely}

where 1, 2, 3 are the first three strings of length 2. By standard closure prop-
erties of NP, A € NP whence it suffices to show that A is NP-bT'(k)-hard but
not NP-bt¢(2% — 2)-hard.

In order to do so we first point out some basic relations among the parts of
A and the sets C' and G. For any string z let y, be the unique string of length
k — 2 satisfying

(27)Vz2Cyr (@Fz€G & z1C yy)

Then zz € G for all z € I1(y;) and Zz ¢ G for all z € Iy(y,) whence, by
definition of Cy and C'y,

(28) Ty, € G = Cz) = Cg(Tyy) & Cv(Fyy) =1
and

(29) zy, ¢ G = C(x) = O\ (Tyy) & Cy(Ty,z) = 0.
For strings y # y, of length k — 2 we have

y<py. => Cyv(zy) =1
30 "
(30) Yo <Ly = Ce(zy)=0

(where u <z v denotes that u is to the left of v, i.e., u = welw; and v = wplws
for some strings wy, wy, wy). This follows from the fact that, by definition of y,,
for the longest common initial segment z of y and y,, G(Zz) = 1 and z € Iy(y)
if y <z yr while G(zz) =0 and z € I1(y) if y» <z y. Finally note that, for any
string y of length k& — 2,

(31) Ce(y) < G(ry) < Cv(zy).

Now, for a proof of NP-bT'(k)-hardness of A, we show that the NP-m-complete
set C'is P-bT (k)-reducible to A as follows. Given x, first by k—2 adaptive queries
to the G~ -part of A produce the string y, = v,(0) ... yz (k — 3) satisfying (27)
by letting v, (I) = G(Z(yz 1)) for I < k —3. Then, by (28) and (29), a (k — 1)th
query to the G~ -part of A will tell how a final query to the Clg,-part respectively
Cy-part will give the desired answer.

In the remainder of the proof we will demonstrate that G ﬁgt(zk—z) A
whence A is not NP-bt¢(2% — 2)-hard. Given a p-btt(r)-reduction (h, g1, ..., gr)
with r < 2% — 2 it suffices to show that

(32) G(0") # h(07, A(g1(07)), ..., Alg-(07)))
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for some n. Asin the two preceding proofs this can be established by defining, for
any given number n and any initial segment X [07 aset COND = {(y,4) : [ <
m} of forcing conditions such that 0" < yo < y1 < ... < ym, and the following
properties hold: The size of CON D is uniformly bounded by a constant, there
are uniform procedures for computing the set {y; : { < m} in O(2") steps and
for computing 4; from y in O(2/¥!) steps, and, finally, the condition (11) will
imply that (32) holds.

Fix n and X [0". For QUERY = {¢1(0"),...,4-(0")} we define a function
«: QUERY — {0,1} such that, assuming (11), A(w) = a(w) will either
hold by the first part of (11) or will be forced by the definition of CON D and
the second part of (11). Moreover, « will be computable in O(2") steps. Hence
adding the condition (y, i) = (0™, 1—h(0", a(g1(0™)), ..., a(g-(0")))) to COND
will ensure that (32) holds, and i will be computable in O(27) = O(2) steps
as required above.

For the definition of o and COND we have to distinguish the different
types of elements of A. A string w is called relevant if w = zyj, j € {1,2,3},
ly| < k—2, and |y| = k—2if j € {2,3}. And w is called simple if w = vl,
v & {0}*, and w is not relevant. For a relevant string w = zyj, 1 < j <3, j is
called the index of w and z is called the value of w. N

Note that any element of A is relevant or simple. For a relevant string w = vl
with index 1 or a simple string, A(w) = G(v) whence, assuming (11), we can
force A(w) =1 (i € {0,1}) by the condition (v,?) if |v| > n, i.e., |w| > n+ 2.

For a relevant string w = Zy2 with index 2, A(w) = Cg (Zy), and the latter
conjunctively depends on C(z) and G(#z) for some z C y. By the conjunctive
dependence on €', manipulating G only suffices to force A(w) = 0. Similarly, for
relevant strings with index 3, by disjunctivity of the dependence only A(w) =1
can be forced. Moreover, forcing these values will require to fix G on certain
strings with value z, whence forcing the values of A for strings with the same
value has to be coordinated.

Based on these observations we define o and the parts of CON D forcing A
to agree with « as follows. For any irrelevant, non-simple string w € QU ERY,
a(w) = 0, and, for any simple w = vl € QUERY let a(w) = (X[07)(v) if
|[v] < n and let a(w) = 0 if |v| > n. Moreover, in the latter case add the
condition (v,0) to CON D. Note that, assuming (11), in any of the above cases
this ensures that A(w) = a(w).

For the remaining cases let z be a string such that there is a relevant query
w in QUERY with value . Then «(w) is simultaneously defined for all such
strings w and a part COND, of COND is specified which, assuming (11),
guarantees the correctness of a(w). The definition depends on the length of .

Case 1: 2|z|+ k < n. Then, for any relevant string w = zyj with value z, |zy| <
n whence for w € QUERY the definition of a(w) can be based on the initial
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segment X [0" as follows:

X(zy) if j=1
a(zyj) = C(my) if j=2
CH(zy) if j=3

where C’g and CX are defined as Cg, and Cy, respectively, with X [0 in place
of GG. Moreover, we let COND, = §.

In this case, A(w) = a(w) by the first part of (11) and a(w) can be computed
in O(2") steps by C € DTIME(2").

Case 2: 2|z|+ k < n+ k. Then let CON D, consist of the conditions (Zy, 0) for
all strings y with |y| < k — 2 and [zy] > n and let X [0"t* be the extension
of X 0™ with X(z) = 0 for all strings » with 0" < z < 0"**. For the relevant
strings w € QU ERY with value z, a(w) is defined as in Case 1 with X [0?+F
replacing X [0”.

Note that, by the second part of (11), CON D, forces G(zy) = 0 for all zy
of length > n which are relevant for the value of A(w) for the above queries w.
So computing «(w) requires information on C only for the string x and |z| < n
whence a(w) can be computed in O(2") steps.

Case 3: n+ k < 2|z|+ k. Then, for any string v =z with |z| < k-2, |v| > n
whence G(v) = i (¢ € {0,1}) can be forced by adding the condition (v,#) to
CON D. We will force these values in such a way that for all strings y of length
k=2, Cy(Ty) = 0 and Cy(zy) = 1, whence A(w) = 0 and A(w) = 1 for relevant
strings w with value & which have index 2 and 3. Hence, correspondingly, we
let a(w) = 0 and a(w) = 1, respectively, for those of these strings w which are
queried. For the definition of CON D, and « for the index-1 strings with value
z we distinguish the following cases.

Case 3.1: 3z (J2| < k—2& 7zl € QUERY'). Then let zy be the least such string
and let

COND, = {(zz,0): |z|<k-2&2z<g zl}
U{(@z,1) : |2| <k —=2& 20 <1 2}
U{(Zz,4) : i< 1&z € ILi(z)}
U{(Zz0, 1 — C(x))}.

For any relevant string zz1 € QU ERY with value # and index 1, let a(Zz1) be
the unique number ¢ with (zz,7) € CON D,. By (11) this will obviously imply
that a(zz1l) = A(zzl). Moreover, by choice of zg, the last part of COND,
is not used for determining a(Zz1) = ¢ whence this value can be computed in
poly(n) steps. To show that CON D, forces the intended values for strings with
index 2 and 3 too, fix y with |y| = & —2. Tt suffices to show that, assuming (11),
Cy(7y) = 0 and Cy(Zy) = 1. First observe that, by the third part of CON Dy,
zo C y, for the unique string y, satisfying (27), and that the first two parts of
CON D, imply that
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(33) (z<pz0 = G@)=0)& (20 <z 7 = G(7z) =1)

for all strings z with |z|] < k — 2. So if y <p zo then, by (33) and (31),
Cy(Zy) = 0 and, by 2z C y, and (30), Cyv(Zy) = 1. For zg <p y, Cg(Fy) =0
and Cy(Zy) = 1 are shown similarly. This leaves the case where zy C y, for
which it is crucial to note that C'(z) # G(Zz) by the fourth part of COND,.
So, if zg = y then y = y, and C'(z) # G(ZTy,) whence the claim follows from (28)
and (29). Otherwise, zg C y, say p = |y| — |2z0|. Here the proof depends on the
value of C(z). If C(x) = 0 then Cg(Zy) = 0 is immediate by (31). Moreover,
by 20 C y» and, by C(z) = 0 and by the definition of CON D, G(zz1') = 1
for all { < p whence y, = z1? and G(Zy;) = 1. So, either y <p y,, whence
Cv(zy) = 1 by (30), or y = y,, whence C\(Fy) = 1 by G(zy,) = 1 and (31).
Finally if C(x) = 1 then, by similar arguments, C\ (Zy) = 1 is immediate and
Yy = z200P and G(ZTyy) = 0. So y, <p y or y; = y whence Cg(Zy) = 0 by (30)
or (31), respectively.

Case 3.2: V2 (|z2| < k—2 = %z1 € QUERY). Then there are at least 2871 —1
strings with index 1 in QU ERY . Since

2k—1_1+2k—2+2k—2:2k:_1

whereas |QUERY| < r < 28 — 2, for one of the 2~ strings y of length k — 2
2y2 ¢ QUERY or zy3 € QU ERY . For the following fix y with |y| = k — 2 and
J with 1 < j < 3 minimal such that zyj ¢ QUERY . Let

COND, = {(zz0) : |z|<k-2&z<p y}
U{(zz,1) : 2| <k—-2&y<p 2}
U{(zz,4) : i<1&z€ L(y)}
U{(@yi) : (i=1 & j=2)&(i=0 & j=3)}

and, for any relevant string zz1 € QU ERY with value # and index 1 let a(zz1)
be the unique number ¢ with (zz,4) € CON D,. Then, obviously, a(Zz1) can be
computed in poly(n) steps and, by (11), A(zz1) = a(zz1). It remains to show
that, assuming (11), CON D, forces the intended values for relevant queries
with value  and index 2 or 3. Note that the third part of CON D, ensures that
y = y» whence, by the first two parts, for any string y' of length k£ — 2,

Y <rye = G@y)=0)& (4o <2y = G@y')=1)

holds. As in Case 3.1 this implies A(Zy'2) = Cg(Ty') = 0 and A(zy'3 =
Cv(zy') =1 for y # y. Finally, if ¥ = y, then Zyj € QUERY. So, for j = 2,
it suffices to show that A(Zy3) = Cy(Ty) = 1. In this case the fourth part
of CON D, consists of the condition (Zy, 1) whence G(Zy) = 1. So the claim
follows from (31). Similarly, if j = 3, then the final condition of COND, is
(Zy,0) whence G(Zy) = 0 and therefore A(Zy2) = Cg(Zy) = 0 by (31). This
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completes the definition of a. The condition set C'ON D consists of the parts
specified above together with the final condition

(07,1 = h{a(g1(0™)), ..., a(g,(07)))) -

Then, assuming (11), CON D forces A to agree with o on the query set QU ERY
whence, by the final condition, (32) holds. The proof of the required bounds
on COND is straightforward by the above remarks. In particular, |[COND| <
2%=1 gince for any of the » < 2¥ — 2 queries at most 25~ — 1 conditions are

added to COND.
This completes the proof of Theorem 3.5. a

4 Further Separation Results

In the preceding section we gave separations of the NP-completeness notions
for the bounded query reducibilities of fixed norm (under the assumption (G)).
By exploiting the unifomity (in k) of the proof of Theorem 3.1, here we sepa-
rate NP-btt-completeness from NP-t{-completeness. This requires the following
diagonalization lemma.

Lemma 4.1 Let C,,, n > 0, be uniformly recursively presentable classes which
are closed under finite variants, let D C {0}* x X* be a recursive set such that

DIl = {2 (0" 2) € D} ¢ C,,

and let f . IN— [N be a nondecreasing and unbounded recursive function. Then
there exists a set A and a function g : IN = IN such that

(34) A¢U,50Cn
(35) ¥ n(Az, = DES

(36) g is polynomial-time computable with respect to the unary representation
of numbers.

(37) ¥n (g(n) < f(n))

Note that (35) and (36) imply that A <! D. So Lemma 4.1 can be viewed as
an infinitary version of Schoning’s diagonalization lemma in [21].

Proof. The proof is by a standard delayed diagonalization argument similar to
the one in [21]. Let U be a recursive presentation of the classes C,,, n > 0, i.e.
U CN xIN x X* is a recursive set such that

C; = {UZ»[”] :n >0}  where UZ»[”] ={zeX: {iyn,z)eU}.
We define the function A : IN — IN by

h(n) = pm > n(¥i <nVl <n3z(|z| € [n,m) & DW(z) £ U (x)))

25



Then, for ¢ < n, the length interval [n, h(n)) will contain witnesses for the fact
that the i-th diagonal set DUl does not occur under the first n sets in the class C;.
Since the sets D and U are recursive and the classes C; are closed under finite
variants h will be total recursive. Therefore we may choose a time-constructible
function r» > h and define the intervals

I"(n) == {x € X : v™(0) < |z| < "1 (0)}
where r%(0) = 0, »"+1(0) = »(r"(0)).

Now choose a polynomial-time computable enumeration a of IN in which
every number occurs infinitely often and such that a(n) < f(n) for all numbers
n. (E.g., given a polynomial-time computable and invertible pairing function
< > N xIN = N we can define « by letting «({n, m)) = m if the relation
m < f({n,m)) can be shown in quadratic time by finding a number k& < {(n,m)
with m < f(k) and by letting a({n, m)) = 0 otherwise.)

Finally we define the desired set A by

A= U I"(n) N plen)]
n>0

For a proof of (34), assume that the claim fails, say A € C;, whence A = Ui[k] for
some k. Then, by the choice of a, there is an m such that ™ (0) > max{i, k}
and a(m) = i. Since r™*t1(0) > h(r™(0)), by definition of h there exists a
string « € I"(m) such that z € D[i]AUZ»[k]. Since A(x) = DUl(z) by definition,
it follows that A(x) # Ui[k](x) contrary to the assumption.

For a proof of the conditions (35) — (37), note that, by definition of A, there
is a unique function g : N — IN such that (35) holds. Moreover, since r(n) > n,
for any number n there is a unique number s(n) < n such that »*(")(0) <
n < r*M+1(0) and, by time constructibility of r, s(n) can be computed in
poly(n) steps. Then g(n) = a(s(n)), whence (36) holds by polynomial time
computability of . Moreover, by choice of a and by weak monotonicity of f,
it follows with s(n) < n that

g9(n) = a(s(n)) < f(s(n)) < f(n)
whence (37) is satisfied, too. a

Proposition 4.2 A set A is NP-btt-complete iff A is NP-btt(k)-complete for
some k > 1.

Proof. For a proof of the nontrivial implication assume that A 1s NP-btt-
complete and let C' be an NP-m-complete set. Then C' §£t A whence, by
definition, C' §£t(k) A for some k. Hence, for any B € NP, B <l C §£t(k) A
by NP-m-hardness of C. It follows that B §£t(k) A whence A is NP-btt(k)-

hard. O
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Theorem 4.3 Assume (G). There is an NP-tt-complete set A which is not
NP-btt-complete.

Proof. The set A will be composed of the btt(k+1)- but not btt(k)-complete
sets of Theorem 3.1. Let C' be an NP-m-complete set with C' € DTIME((2")
and let C'= {01z : n > 0& z € C} be a padded version of C. Note that C' is
NP-m-complete and C € DTIME(2"), too.

For k > 0 let Ay be the NP-btt(k + 3)-complete set constructed in the proof
of Theorem 3.1 from C' as above and some fixed p-generic set G. Then A, € NP
uniformly in k, whence D = {{0* z) : k> 0& = € Ax} € NP too. Moreover,
for Cx = {B : B NP-btt(k)-complete} (for & > 1 and Cy = C;), the classes
Cj are uniformly recursively presentable and closed under finite variants, and
DIl = A, ¢ Cy. So, by Lemma 4.1, we may fix A and g satisfying (34)—(37)
for the recursive function f(n) = pm(2m + 3 > n). By (35) and (36), A <I D
whence A € NP. Moreover, by (34), A is not NP-btt(k)-complete for all k£ > 1,
whence by Proposition 4.2 A is not NP-btt-complete. B

Finally, for the proof that A is NP-tt-hard, it suffices to show that C' <f A.
So fix # and let |¢| = n. Then, for any numbers k,m > 0, 6’(1‘) = C(0™1x)
and, by definition of Ay, C(0™1x) can be computed from (Ax)=(m414n)+k+2
with £ 4+ 3 non-adaptive queries in polynomial time uniformly in z, & and m.
On the other hand, by choice of A, f and g, A—sn13 = (Ay(2n43))=2n43 Where
g(2n + 3) < n for all numbers n. By the above, 6’(1‘) can be recovered from A
as follows: Let k = ¢(2n+ 3) and m = n — k. Then A—apys = (Ak)=2nt3 =
(Ak)=(m+14n)+k+2 Whence 6’(1‘) = C(0™1xz) can be recovered from A—apy3
with g(2n + 3) + 3 non-adaptive queries. a

5 Open Problems

Assuming Lutz’s non-smallness hypothesis (R) for NP or the weaker category
hypothesis (G), we obtained almost complete separation results for the NP-
completeness notions of the bounded query reducibilities.

The relations among the completeness notions for the standard 1-query re-
ducibilities like bt¢(1), m and 1(= one-one), however, remain open. Since for
EXP btt(1)-, m-, and 1-completeness coincide (see [11] and [7]) and since the
hypotheses (G) and (R) are compatible with NP = EXP, we cannot use any
of these hypotheses for a separation here.

Another interesting open question is the relation between NP-T-complete-
ness and NP-tt-completeness. The hypotheses (G) and (R} might not suffice,
however, to settle this question. There is some evidence, that (G} helps only
for bounded query reducibilities (see e.g. Theorem 2.11 in [4]) while (R) can
deal with unbounded queries (see e.g. Theorem 3.8 in [18]) but (by the Borel-
Cantelli-Lemmas) only if the number of queries is growing sufficiently slowly in
the input length.
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A strengthening of the hypothesis (G), however, namely the assumption that
NP is not general p-meager in the sense of Definition 2.1, suffices for separating
NP-T-completeness and NP-tt-completeness. This can be seen by an analog
construction as in Theorem 3.5.

Along these lines one could be tempted to work with still stronger hypotheses
based on the recent category concepts of Fenner [10] and Ambos-Spies ([1],
Section 7). As Fenner [10] has shown, however, non-p-meagerness of NP for
these concepts already implies that NP = EXP, so that these assumptions are
not very plausible.
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