Degrees of Computing and Learning

Habilitationsschrift von Frank Stephan

Uberarbeitung der bei der
Fakultat fiir Mathematik
der
Ruprecht-Karls-Universitat
Heidelberg
im Februar 1999
von Frank Stephan
aus der Bundesstadt Bonn

eingereichten Schrift

Degrees of Computing and Learning

Frank Stephan*

Zusammenfassung In dieser Arbeit wird die Gradstruktur von Orakeln, dargestellt
als Mengen natiirlicher Zahlen, hinsichtlich traditioneller rekursionstheoretischer sowie
auch neuerer lerntheoretischer Reduktionen untersucht. Letztere sind definiert nach der
Fahigkeit der Orakel, Klassen totaler und berechenbarer Funktionen unter einem vorgege-
benen Lernkriterum zu lernen. Zu diesen Kriterien gehoren das Lernen im Limes (Ex),
das verhaltenskorrekte Lernen (BC), das endlichen Lernen (Fin) und die Vorhersage von
Funktionswerten (NV). Die ersten beiden Kapitel geben eine Einleitung in das Thema
und stellen die Nutzung von Orakeln fiirs Lernen vor. Das dritte Kapitel untersucht jene
Lernkriterien, die neben dem Orakel noch einen Lehrer vorsehen, der Auskunft tiber die
zu lerndende Funktion gibt. Im vierten Kapitel wird das Lernen von Datenstromen unter-
sucht, welche jede korrekte Information unendlich oft, aber auch zu einem gewissen Grad
inkorrekte Storungen endlich oft enthalten. Das zentrale Ergebnis ist, daf§ das Funktions-
Lernen im Limes von gestorten Daten genauso machtig ist wie das endliche Funktions-
Lernen von herkdmmlichen, ungestérten Daten mit Orakel K. Im fiinften Kapitel wird das
Sprachlernen untersucht, insbesondere wird die Komplexitit universeller Lerner bestimmt
in Abhangigkeit von der Information, die iiber die Klasse S der zu lernenden Sprachen
verfiigbar ist. So gibt es zum Beispiel einen berechenbaren universellen Lerner, der jede
prinzipiell lernbare Klasse S mit Hilfe ihrer Index-Menge B als Orakel lernt. Im sechsten
Kapitel betrachtet man das Lernen bei robustem Zugriff auf die Orakel, das heifit, der
Lerner mufl mit jedem Orakel erfolgreich sein, das einer Spezifikation geniigt. Es zeigt
sich, daf} Spezifikationen syntaktischer Natur dazu besonders gut geeignet sind. Wenn
man dagegen einen Turing-Grad, zum Beispiel den vom Halteproblem K, als Spezifikation
vorgibt, konnen nur solche Klassen gelernt werden, die auch ohne Orakel lernbar sind. Im
siebten Kapitel wird die Klassifikation betrachtet, die irgendwo in der Mitte zwischen der
Theorie des Lernens und der des Rechnens liegt. Das achte Kapitel betrachtet die Struk-
turen innerhalb von Truth-Table Graden. Es wird gezeigt, dal jeder Truth-Table Grad
unendlich viele Bounded Truth-Table Grade enthélt. Die Anzahl der positiven Grade in-
nerhalb eines Truth-Table Grades kann einige ungerade Werte wie 3, 19, 219 annehmen
oder auch unendlich sein, aber gerade Anzahlen und die Anzahl 1 sind nicht mdglich. Des
weiteren werden die Techniken dahingehend angewandt, dafl man einen nicht-rekursiven
Turing-Grad konstruiert, der nur aus 1-subjektiven und 2-subjektiven Mengen besteht.

*Mathematisches Institut, Universitit Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Ger-
many, EU, Email: fstephan@math.uni-heidelberg.de.

3

Contents

1 Introduction

1.1 Overview on the Results

1.2 Acknowledgments L

Degrees of Inferability

2.1 Various Types of Oracles
2.2 Degrees of Ex-Learning
2.3 Finite Learning
2.4 Learning Criteria Closed Under Union
2.5 Behavioural Correct Learning

2.6 Branch-Learning

Oracles and Teachers

3.1 Some Useful Facts.
3.2 The Omniscient Degree
3.3 The Trivial Degree
3.4 Complete Families
3.5 Variants of Learning in the Limit
3.6 The Finite Case

3.7 Successor and Other Functions.

Noisy Data

4.1 Language Learningo
4.2 Inference From Informant
4.3 Inference From Text
4.4 Characterizing Finite Learning From Text With K-Oracle
4.5 Informant Versus Text
4.6 Learning Uniformly Recursive Families
4.7 Behaviourally Correct and Partial Identification
4.8 Alternative Models and Further Work

11

12
12
14
15
17
22
24

26
27
28
30
33
35
37
39

Universal Language Learners

5.1
5.2
5.3
5.4

Universal Learning From Text With Index Sets

Learning From Recursive Indices
Bounds on the Grammar Size

Finite Learning With Additional Information . .

Robust Access to Oracles

6.1 Robust Learning Inside Given Degrees
6.2 Lists
6.3 Predictors oo
6.4 Classifiers
6.5 Identifiers L.
6.6 Martingales
Classification

7.1 The Basic Model of Classification
7.2 Classification and Turing Complexity
7.3 Complete Classes
7.4 Index Sets of One-Sided Classes
7.5 Classification and Measure
7.6 Classifying Recursive Sets Only

Inside Truth-Table Degrees

8.1 Some Structural Properties.

8.2 Inside Hyperimmune Truth-Table Degrees . . .

8.3 Inside Truth-Table Degrees not Enumerable Relative to K
8.4 On Least Bounded Truth-Table Degrees

8.5 An Application of Least btt-Degrees

8.6 A Positive Result About Positive Degrees

8.7 Weak Truth-Table Degrees

Conclusion

References

66
67
71
73
75

79
81
87
89
91
93
97

98

99
101
106
108
110
115

117
120
125
129
133
136
138
149

152

154

1 Introduction

Computing and Learning are basic topics of computer science. Not only has there been a
lot of practical and applicable work but there has also been much theoretical research on
a very abstract level dedicated to study these phenomena.

Church’s Thesis [33] states that all models for computation are equivalent. The com-
putable functions have many natural formalizations, the best known one is the Turing
machine [34, 119, 145]. Further approaches are those of the p-recursive functions or ab-
stract versions of programming languages where machine-dependent limitations like max-
imal values for variables are removed [111, Chapter I]. This uniqueness of the notion is
lost, if resource bounds on time and space are introduced: then deterministic and non-
deterministic computation might become different, also the power of algorithms depends
on the exact nature of the bounds. Therefore it is still attractive to study the phenomenon
of computing within the well-behaved framework of recursion theory.

Inductive inference is the counterpart to recursion theory within the world of learning.
In contrast to the situation of computing, there is no unique model for learning. Already
Gold [56] observed that learnability depends on the form of presenting the data, the num-
ber of revisions the learner may make and the quality which the final hypothesis should
have: is it sufficient if the final hypothesis just generates the set to be learned by an enu-
meration procedure or is it required that the final hypothesis computes its characteristic
function? So learning theorists consider a lot of different notions which capture various
aspects of learning. Learning theorists look upon all these models as a family of similar but
not identical phenomena which all have their own right of existence. They compare and
classify the models in the same way as topologists deal with the large variety of topological
spaces and their more or less restrictive additional axiomatizations.

There are many connections between the fields of computing and learning. The fact
that there is no recursive enumeration containing exactly all total recursive functions is
one of the reasons why it is impossible to learn all total recursive functions by a single
computable machine. The fact that one cannot even find out whether two programs do
the same thing on all data causes the difference between syntactic convergence (explana-
tory learning) and semantic convergence (behaviourally correct learning) where the learner
can revise the hypothesis infinitely often but still has to output almost always a correct
hypothesis.

Some basic learning models converge in the limit to a hypothesis. Similarly one can
define computation in the limit: A function f is computable in the limit iff there is a com-
putable function ¢ such that, for each x, the sequence g(z,0), g(z,1), ... converges to f(x)
in the sense that almost all values ¢g(z,y) are exactly f(x). This concept of computation
in the limit is more powerful than ordinary computation. But Shoenfield’s Limit Lemma
[130] states that there is still a connection: a function f is computable in the limit iff it is
computable in the standard sense via a procedure which in addition can query the halting
problem K as an oracle. Oracle queries allow to check whether some element belongs to
the set representing the oracle and so the learner can determine, whether the e-th program
terminates with some output for the input x or whether it ends up in an endless loop or
undefined situation. One application of computing with help of an oracle is to model easily
variants of computing like limiting recursive processes within the standard framework of
recursion theory. A second application of oracles is to measure the degree of difficulty of
some unsolvable problem by determining which oracles allow to solve this problem. For
example, the oracle K is necessary and sufficient to compute functions which are, without

any oracle, computable in the limit.

Post [120] started to compare oracles (in his case: enumerable sets) with respect to
several reducibilities. His main question was whether there is some nonrecursive but enu-
merable set A such that the halting problem K is not computable relative to A. Post
obtained several intermediate results and showed that such sets exist for many types of
reducibilities, only for the most general Turing reducibility the question remained open
for more than a decade. Finally, Friedberg [47] and Muchnik [107] solved the problem by
constructing such a set A. So Post’s problem was the beginning of the study of several
types of degrees in computing, with some accent on enumerable Turing degrees. Many
refinements of Turing reducibility have been considered in the sense that the computation
of A relative to B has to satisfy further properties. Degree structures have been studied
with respect to their whole structure and also with respect to the possible degree structures
induced by a stronger reducibility within the degrees generated by a weaker reducibility.

Turing reducibility compares oracles with respect to their ability to perform any com-
putational task. Thus, A is Turing reducible to B iff (the characteristic function of) A can
be computed relative to B. Jockusch [71] analyzed the ability of the oracles with respect
to one specific task. Namely Jockusch asked for prominent classes S whether they are
“subuniform in A”, that is, whether there is an A-recursive total function e,z — f.(z)
such that every function in S equals to some f.. He showed that the class REC of all re-
cursive functions is subuniform in an oracle A iff A is high (A" >; K'). Learning theorists
have an equivalent notation for classes S subuniform in A: S is NV-learnable relative to A
where NV-learning is (the most restrictive form of) learning by predicting the next value
from the previous ones. So Jockusch’s main result, translated into the learning theoretic
terminology, says that an oracle is omniscient for NV iff it is high.

Formally, Adleman and Blum [1] transferred the notion of oracles to learning theory.
They showed that for the common notion of explanatory learning (Ex) a result very paral-
lel to Jockusch’s result for NV [71]: an oracle allows to learn the class REC iff this oracle
is high. Gasarch and Pleszkoch [51] shaped the modern view of learning with oracles and
started to investigate the ordering on the oracles induced by learning criteria: an oracle
A is below B iff everything learnable with oracle A is also learnable with oracle B. This
ordering has a minimum compatibility to the ordering induced by Turing reducibility in
the sense that whenever A is computable relative to B then A is also below B: every class
S learnable with oracle A is also learnable with oracle B. But there is also a difference: for
many learning criteria like NV and Ex, there are omniscient oracles which allow to learn
everything and which so form a greatest degree — the Turing degrees do not have such a
greatest degree. For most criteria, the least and greatest degree, provided that the latter
exists, have been determined.

1.1 Overview on the Results

Chapter 2 gives an introduction to the notion of oracles and their applications in learning
theory. After an overview on various types of oracles, the most popular notions for learning
computable functions are presented. It is analyzed to which extent certain types of oracles
are useful to support learning functions under these learning criteria. Adleman and Blum
[1] characterized the omniscient oracles for Ex-learning as the high ones, that is, as those
relative to which one can compute a function dominating all recursive functions. This
characterization is extended by analyzing the connections between the learnability of an
oracle A and the quantity of total recursive functions which can be dominated by some

function computable relative to A [89, 132]. For the notions of finite learning [42] and some
other notions, it is shown that, comparing two oracles A and B, the oracle A can learn
everything what B can learn iff B can be computed relative to A. The learning criterion
BC turns out to be the only basic criterion for which it is possible to learn the class REC
relative to some low oracle.

This chapter mainly serves as an introduction to learning with oracles and gives an
overview on mostly known results, with some accent on the author’s earlier work.

Chapter 3 is dedicated to the relations between oracles and teachers. An oracle is a fixed
set which does not depend on the present function f to be learned, but a teacher knows the
function f and answers questions on f provided that they are formulated in a given query
language. So the amount of information about f accessible by the learner is controlled
by the choice of this query language. Furthermore, the language might interfere with the
oracle since one might deduce some nonrecursive knowledge if the query language either
alone or in combination with f permits queries whose answers cannot be computed, even
if one knows a program for f.

The three most common query languages L[Succ], L[<] and L[+] are considered and
combined with oracles.

In the case of learning in the limit (Ex) the results for each of these three models
of query-inference are the same: If an oracle is omniscient for query-inference then it is
already omniscient for Ex. There is an oracle of trivial Ex-degree, which allows nontrivial
query-inference. Furthermore, queries to a teacher cannot overcome differences between
oracles and the query-inference degrees are a proper refinement of the Ex-degrees.

In the case of finite learning, the query-inference degrees coincide with the Turing
degrees. Furthermore oracles cannot close the gap between the different types of queries
to a teacher.

The main results of this chapter have been presented at the Eighth Annual Conference
on Computational Learning Theory [137]. An improved version will appear in the Annals
of Pure and Applied Logic.

Chapter 4 deals with several variants of inductive inference from noisy data. The notion
of noise is based on the idea that the learner receives a sequence of data elements such
that each correct element appears infinitely often and each incorrect element appears at
most finitely often. The main result is that the concept of learning in the limit from noisy
informant has the same power as finite learning using a K-oracle from noise-free informant.
The analogous equality for text fails in general and holds only in one direction in the case
of learning uniformly recursive families. Furthermore, learnability from noisy informant or
text in presence of using oracles is investigated. It is shown that partial identification of
all enumerable sets can also cope with noisy informant and text.

The results of this chapter have been presented at the Sixth Workshop on Algorithmic
Learning Theory and appeared in the journal Theoretical Computer Science [139]. Case,
Jain and Sharma [24, 27, 28] continued the research on the here presented model of noise.

Chapter 5 deals with language learning from text. A learner is universal if it succeeds
to learn any given language from a suitable description of a principally learnable class
containing this language. In particular, the following is shown, where S ranges over the
class to be learned and L over the languages in S.

If the additional information is given by a set containing at least one index for each
language from S and no index of any nonmember of S then there is a universal learner
having the same Turing degree as the inclusion problem for enumerable sets. This result
is optimal in the sense that any further universal learner has the same or higher Turing

degree.

If the additional information is given as the set of all indices of languages in S then
there is a computable universal learner.

Furthermore, if the additional information is presented as an upper bound on the size
of some grammar that generates L then a high oracle is necessary and sufficient to learn
every language L from such an upper bound without knowledge of S.

Finally, it is investigated for which classes there are universal learners with respect to
finite learning and learning from good examples. These notions need the halting problem
B' relative to the index set B as additional information.

This chapter is based on joint work with Sebastiaan Terwijn who presented it at the
Eleventh International Symposium on the Foundations of Computation Theory [141].

Chapter 6 studies the use of oracles for learning functions under the assumption that the
learner has to succeed with all oracles which meet a given specification. The advantage of
this robust access to oracles is that the approach allows to analyze the usability of oracles
with respect to the concrete information they provide on the family S to be learned.

The first main result considers oracles of the same Turing degree: Robust learning with
any oracle from a given degree does not achieve more than learning without any additional
information.

The further work considers learning from function oracles which describe the whole
class of functions to be learned in one of the following five ways: as a list of all functions
in this class, a predictor for this class, a one-sided classifier accepting just the functions in
this class, an identifier for the class or a martingale succeeding on this class.

It is shown that for learning in the limit (Ex), lists are the most powerful additional
information, the powers of predictors and classifiers are incomparable and identifiers and
martingales are of no help at all. Similar results are obtained for the criteria of predicting
the next value, finite, Popperian and finite Popperian learning. Lists are omniscient for
the criterion of predicting the next value and also identifiers are helpful at this criterion.
So it turns out that algorithms to predict the next value can much better exploit robustly
oracles than algorithms which give explanations (Ex-learning). For Ex-learning none of
these five types of help is omniscient, that is, some classes cannot be Ex-learned with any
of these types of additional information. The class REC is Ex-learnable with the help of a
list, a predictor or a classifier.

This chapter is based on joint work with Susanne Kaufmann. The work has been
presented at the Third European Conference on Computational Learning Theory [77].

Chapter 7 deals with the world of two-sided classes (= AY classes) within the one-sided
classes (= X9 classes). A one-sided classifier is a computable device which reads the char-
acteristic function of a set and outputs a sequence of guesses which converges to 1 iff the
set on the input belongs to the given class. Such a classifier is two-sided if the sequence
of its output in addition converges to 0 on sets not belonging to the class. The present
work obtains the below mentioned results for one-sided classes with respect to four areas:
Turing complexity, 1-reductions, index sets and measure.

There are one-sided classes which are not two-sided. This fact may have either com-
putational or topological reasons. Computational difficulties can be overcome by using a
suitable powerful oracle and the present work determines for several one-sided classes those
Turing degrees which provide a two-sided classifier for the given classes. Topological diffi-
culties cannot be compensated by oracles and such classes also do not have nonrecursive
two-sided classifiers.

The concepts of 1-reduction, 1-completeness and simple sets also exist for one-sided

10

classes: There are 1-complete classes and simple classes, but no class is at the same time
1-complete and simple.

The one-sided classes have a natural numbering. Most of the common index sets rela-
tive to this numbering have complexity II}: the index sets of the class {0,1}*°, the index
set of the equality problem and the index set of all two-sided classes. On the other side
the index set of the empty class has complexity I13; IS and X are the least complexities
any nontrivial index set can have.

Any one-sided class is measurable. It is shown that a one-sided class has effective mea-
sure (if it has measure 0, but that there are one-sided classes having measure 1 without
having measure 1 effectively. The measure of a two-sided class can be computed in the
limit.

Case, Kinber, Sharma and Stephan also considered the related model where one has to
classify only the recursive sets correctly. This model was presented at the Symposium on
Theoretical Aspects of Computer Science [30].

Chapter 8 is dedicated to the study of strong reducibilities inside truth-table degrees. The
following theorems are established:

Dégtev’s result that the number of bounded truth-table degrees inside a truth-table
degree is at least two [36] is improved by showing that this number is infinite. There are
even infinite chains and antichains of bounded truth-table degrees inside the truth-table
degrees which implies an affirmative answer to a question of Jockusch [70] whether every
truth-table degree contains an infinite antichain of many-one degrees.

Some but not all truth-table degrees have a least bounded truth-table degree. The tech-
nique to construct such a degree is used to solve an open problem of Beigel, Gasarch and
Owings [15]: there are Turing degrees (constructed as hyperimmune-free truth-table de-
grees) which consist only of 2-subjective sets and do therefore not contain any objective set.

Furthermore, a truth-table degree consisting of three positive degrees is constructed
where one positive degree consists of enumerable semirecursive sets, one of coenumerable
semirecursive sets and one of sets, which are neither enumerable nor coenumerable nor
semirecursive. So Jockusch’s result that there are at least three positive degrees inside
a truth-table degree is optimal [69]. The number of positive degrees inside a truth-table
degree can also be some other odd integers as for example nineteen, but it is never an even
finite number.

1.2 Acknowledgments

The author wants to thank Klaus Ambos-Spies for supervising the project “Recursion-
Theoretic Aspects of Inductive Inference”. Wolfram Menzel and Martin Kummer invested
much time and work for the preceding project “Query-Complexity in Recursion Theory”
and introduced the author into the fields of recursion theory and inductive inference. The
DFG supports the author through these two projects since 1992. In 1996 and 1997, Arun
Sharma invited the author to visit his group on learning-theory at the University of New
South Wales. Chapters 5 and 6 are based on the fruitful collaboration with Susanne
Kaufmann and Sebastiaan Terwijn. The author would also like to thank many further
colleagues for helpful discussions and for proofreading parts or all of this work: Richard
Beigel, Bernd Borchert, John Case, Alexander Dégtev, Rod Downey, Peter Fejer, Riisins
Freivalds, William Gasarch, Carl Jockusch, Dick de Jongh, Efim Kinber, Wolfgang Merkle,
André Nies, Jim Owings, Piergiorgio Odifreddi, Matthias Ott, Victor Selivanov, Theodore
Slaman, Carl Smith and Thomas Zeugmann.

11

2 Degrees of Inferability

One of the main companies offering, among other software, also database systems has the
name “Oracle”, a name which has a mathematical motivation. For mathematicians, an
oracle is just an abstract representation of a data base with a minimum instruction set:
the only type of data-base access is to ask whether a certain number z - representing any
type of information numerically - is in the data-base or not. If x € A for the oracle A,
then the return-value is 1, if © ¢ A then it is 0. So one writes A(x) for the result of this
query. The oracle is therefore nothing else then a subset of the set N = {0, 1,...} of the
natural numbers. It is used to retrieve nonrecursive information which cannot be obtained
otherwise. The next section gives an overview on oracles and then the relationship between
oracles and learning is investigated.

2.1 Various Types of Oracles

Oracles can be compared with each other with respect to certain abilities. The most
common ability is that to compute. So an oracle A can be replaced by an oracle B,
or more precisely, everything computable relative to A is also computable relative to B,
iff every value A(z) can be computed with some queries relative to B. For example if
A(x) = B(2x) A B(2x + 1) then A(x) can be computed by making two queries to B at
2z and 2z + 1. If both values are in B, then A(x) = 1, otherwise A(z) = 0. One says
that A is computable relative to B or — more formally — A is Turing reducible to B,
written A < B. A Turing degree is a maximal set of oracles such that every oracle in this
set is Turing reducible to every other oracle in this set. Now some examples for oracles
and types of oracles are given. Indeed most definitions are not totally unique since they
often depend on the chosen acceptable enumeration ¢ of the partial recursive functions.
Furthermore, for some of the types defined below, the quantity of oracles satisfying the
condition is uncountable.

Example 2.1.1 Some prominent oracles and classes of oracles.

e P ={z:xisa prime number}. This oracle is recursive since one can test effectively
whether there is some y € {2,3,..., 2 — 1} which divides 2. Therefore P <; A for
every set A. Recursive oracle are therefore at the bottom end of the structure of all
oracles. Normally the empty set () is the default representative for the class of all
recursive oracles.

e K = {x: p,(x)]}. Thisis the diagonal halting problem. It has the same Turing
degree as the full halting problem {(z,y) : v.(y) |}, that is, K can be computed
relative to this set and this set can be computed relative to K. K itself is not a
recursive set.

e cnumerable oracles: An oracle is enumerable iff it is the domain (or the range) of
a partial recursive function. The domain of the function ¢, is denoted by W, and
every enumerable set equals to such a set W,. An oracle has an enumerable Turing
degree iff some of the oracles inside this Turing degree is enumerable. The enumer-
able oracles are traditionally called “recursively enumerable” and are now also known
as “computably enumerable” or “computably generated” oracles.

12

o K' ={z: pX(x)]} is the halting problem relativized to K. K is Turing reducible
to K’ but not vice versa. So K is strictly below K’. K’ has the same Turing degree
as the index set {e: W, is finite} of the class of all finite sets.

e high oracles: An oracle A is high if the halting problem relative to A is at least as
hard as K’, that is, A’ >4 K’. The high oracles have a characterization: A is high iff
there is some function f computable relative to A which dominates every recursive
function: for every g € REC there is an x such that g(y) < f(y) for all y > x.

e low oracles: An oracle A is low if its halting problem is computable relative to K:
A" =; K. Note that there are nonrecursive low oracles.

e hyperimmune oracles: An oracle A is hyperimmune if some hyperimmune set is
computable relative to A. An alternative characterization is that a function f is
computable relative to A which is not dominated by any recursive function. For
example, high oracles are hyperimmune, but some hyperimmune oracles are not high.

e hyperimmune-free oracles: those which are not hyperimmune. These oracles have also
alternative characterizations: An oracle A is hyperimmune-free iff every function f
computable relative to A is majorized by some g € REC: (Vz) [f(z) < g(x)]. Also A
is hyperimmune-free iff its tt-degree and Turing degree coincide [70].

e 1-generic oracles: An oracle A is 1-generic if it either meets or strongly avoids every
recursive set of strings. That is, given a recursive set W of strings, there isan 0 < A
such that either ¢ € W or no string 7 > o is in W. Note that for every B > K
there is a 1-generic set A such that A @ K, A" and B have the same Turing degree.
There are 1-generic oracles below K and these are low [72, Lemma 2.6 (a)].

e PA-complete oracles: An oracle A is called PA-complete if there is a complete ex-
tension of Peano Arithmetic which is computable relative to this oracle [111, Section
V.5]. Alternative equivalent definitions are that every recursive tree has a branch
computable relative to A and that every partial-recursive {0, 1}-valued function has
an A-recursive total extension. Jockusch and Soare [73] showed that there is a low PA-
complete set, therefore it is much easier to extend the {0, 1}-valued partial-recursive
functions than those without any limitations on the range.

e Anoracle A = {ayg, ay, ...} is retraceable iff there is a partial recursive function f with
f(ans1) L= a, for all n. Without loss of generality, one can define that in addition
f(ao)d = ap holds.

The Turing degrees have an order induced by Turing reduction. This order has a least
degree, given by the recursive oracles, but no greatest degree, since every oracle A is
strictly below A’. For any two oracles A and B, the join A& B is the least common upper
bound; formally 2z +y € A@Biffxt € ANy =0o0rz € BAy = 1. Friedberg [47]
and Muchnik [107] showed that there are enumerable incomparable Turing degrees. If one
considers only enumerable degrees, then there is also a greatest one, namely that of K.
Dekker and Myhill [38] introduced the retraceable oracles. They are useful to simplify
proofs due to the following two points: every Turing degree contains a retraceable set; if
a retraceable set A is enumerable relative to B then A is already computable relative to
B. Tt is often more convenient to show that an oracle is enumerable in B rather than
computable in B. Hence the following fact will be useful throughout the present work.

13

Fact 2.1.2 [38] In every Turing degree there is a set A such that whenever an infinite
subset of A is enumerable relative to some set B then A is already Turing reducible to B.

Proof Given a set C representing some Turing degree, let A be the set of all strings
a, = C(0)C(1)...C(n) which are identified with the numbers 2"*! 4 C'(0)2" + C(1)2"~' +
...+C(n)2° A is clearly retraceable because a,, can be obtained from a,; by just omitting
the last bit in its binary representation.

If now an infinite subset of A is enumerable relative to B then one can transform an
enumeration uniformly into a decision procedure of A relative to B as follows: Given =,
wait until the first a,, with a,, > x is enumerated and then compute all values a,, form <n
using the retracing function. If x = a,, for some m then A(z) =1 else A(z) =0. |

2.2 Degrees of Ex-Learning

If A is Turing reducible to B, then one can state it in the form that everything, which is
computable relative to A, is also computable relative to B. The next sections deal with
the analogous statement for learning: A has Ex-degree below B if everything, which is Ex-
learnable relative to A is also Ex-learnable relative to B. Before investigating this notion
it is suitable to introduce Ex-learning, that is learning in the limit, formally.

Definition 2.2.1 [56] A machine M ezplanatorily learns (Ex-learns) a function f iff M is
total, M(f(0)f(1)...f(n)) outputs the same program e for almost all n and e computes
f. The machine M learns a class S C REC iff M learns every function f € S.

Now one writes S € Ex iff there is a recursive machine M which Ex-learns S. In the case,
that M in only A-recursive, one writes S € Ex[A]. Gasarch and Pleszkoch [51] introduced
the following inference degrees.

e A has inference degree below B iff Ex[A] C Ex[B]. The notions “below” and “above”
include equality, otherwise one says “strictly below” and “strictly above”, respec-
tively.

e A and B have the same inference degree iff Ex[A] = Ex[B].

e A has least inference degree iff Ex[A] C Ex[B] for all oracles B. A has trivial
inference degree iff Ex[A] = Ex. By definition, every recursive oracle belongs to the
trivial degree. This trivial degree is then also the least inference degree.

e A has greatest inference degree iff Ex[B] C Ex[A] for all oracles B. A has omniscient
inference degree iff every class S can be learned relative to A. Theoretically, a greatest
degree is not automatically omniscient. Indeed for criteria like the variants of learning
uniformly recursive families of languages from text considered in Corollary 4.6.8, there
are greatest degrees which are not omniscient; the class of all finite sets plus IN is not
learnable under any of the learning-criteria considered there. But the more standard
notions of inference either have an omniscient degree or no greatest one. For example,
the notion Ex considered here has a greatest and also omniscient degree.

e A and B have incomparable inference degree iff Ex[A] and Ex[B] are incomparable
viewed as sets. That is, some class S is Ex[A]-learnable but not Ex[B]-learnable and
some class S is Ex[B]-learnable but not Ex[A]-learnable.

14

There are also further notions for learning. If one knows for such a notion, when a learner
M learns a function f, then one can deduce all further definitions analogously to the way
it is presented here for Ex.

Any structure of inference-degrees (like the ones for Ex) is coarser than the structure of
Turing degrees. This is due to the following observation: Let A <; B and M be an A-re-
cursive learner for some class S. There is an algorithm translating every query to A into
queries to B. Concatenating the learner M and this algorithm gives a B-recursive learner
with exactly the same input- and output-behaviour as M. So S is also B-learnable and
Ex[A] C Ex[B]. It follows that every inference degree is the union of some Turing degrees.

The degree-structure of the Ex-degrees is closely related to the capability to dominate
certain classes of recursive functions. So one introduces the notion F[A] for the collection
of all classes S C REC which are dominated by some f <; A. That is,

SeFA] & (3f <r A) (Vg € 5)(Bx) (vy 2 2) [f(y) = 9(y)].

Adleman and Blum [1] showed that an oracle is omniscient iff it is high. Thus A is
omniscient iff REC € F[A]. Kummer and Stephan [89] showed that the Ex-degrees of
oracles below K can be characterized by domination properties. On the other hand this
characterization does not carry over to all degrees.

Theorem 2.2.2 For all oracles A, B,C with A <p K and C" 21 K' the following holds:
() REC € Ex[B] & REC € F[B] [1, §IV].

(b) Ex[A] C Ex[B] & F[A] C F[B] [89, Theorem 9.4].

(c) Ex[B] C Ex|[C]= B' <r C'ANF[B] C F[C] [89, Theorem 9.1].

Kummer and Stephan [89] showed that R4 € F[B] is in the second condition enough to
imply Ex[A] C Ex[B] where Ry = {f € REC: (Vx) [f(z) < ca(2)]}, ca(z) = min{s > x :
(Vy < z)[As(y) = A(y)]} and Aj is a recursive approximation for A. So R, is a typical
member of F[A]. The function ¢4 is also linked to Turing degrees: A <p B iff there is
a B-recursive function dominating ¢4 [105]. The last result also implies that in general
the structures induced by domination and learning differ: If B is hyperimmune-free then
F[B] = F[0] by definition but Ex[B] € Ex[}] since B" £; K [111, Exercise V.5.3.(d)].

Based on a result of Haught [60], Kummer and Stephan [89] showed, that for every
A <7 K which is not below a 1-generic set, the class R4 is not dominated by any recursive
function, that is, R4 ¢ F[()]. Therefore one can learn with this oracle A some classes not
learnable by a recursive learner. Together with Theorem 2.2.2 (c), this gives an alternative
proof for the hard direction of Slaman and Solovay’s characterization of the trivial oracles
for Ex.

Theorem 2.2.3 [132] Ex[A] = Ex iff there is a 1-generic set B with A <¢ B <y K.
Kummer and Stephan [89] have two further results on the structure of the Ex-degrees.

Theorem 2.2.4 (a) If A is enumerable then Ex[A] C Ex[B] iff B is high or A <p B.
(b) If A, B are 1-generic then Ex[A] C Ex[B] iff B is high or A <r B&® K.
2.3 Finite Learning

A finite learner cannot withdraw a hypothesis. So the finite learner reads data and out-
puts the special symbol “?” until enough data is collected to come up with the then true

15

hypothesis. Now the formal definition follows.

Definition 2.3.1 [56] M finitely learns (Fin-learns) a function f iff there is a unique index
e of f (f = y.) such that M(o) = e for some o < f and M (1) € {e,?} for all other 7 < f.

Clearly if M learns f finitely, then M learns f also in the limit. So the class Fin of all S
which have a finite recursive learner is contained in Ex; this containment is even proper
since the class of all almost everywhere 0 functions is in Ex but not in Fin.

Fortnow et al. [43] showed that the structure induced by Turing reducibility and that
induced by the capacity of an oracle to support finite learning are the same. Let Fin[A]
denote the collection of all classes S C REC which are learnable relative to oracle A.

Theorem 2.3.2 [43] A <y B iff Fin[A] C Fin[B].

Proof Clearly, if A <; B then Fin[A] C Fin[B]. So only the converse direction is
interesting. According to Fact 2.1.2, one can chose A such that A <; B whenever A is
enumerable relative to B.

Now one takes the class of all functions whose course of values is first a (probably void)
sequence of nonelements from A then followed by a constant sequence given by some fixed
be A:

fes & (Jag,a1,...,a, ¢ A)(Fb € A)[f = apa ...a,b™] (1)

Assume now that there is a B-recursive learner M for S. Now if x € A then M (a™) # 7 for
some n since M must output on the input > some index for f. If x ¢ A then M (2™) =7
for all n since every function x"y* with y € A is in S and the learner M must not make
any output before the function to be learned is specified uniquely by the data seen so far.
Thus

r€e€A & (In)[M(") #7 (2)

and so A is enumerable and even computable relative to B. |

So the structure of the degrees of finite learning is just the intensively studied structure of
the Turing degrees [111, Chapter V]. The criterion Fin[K] is quite prominent in learning
theory. The following statements either directly characterize Fin[K| or show that K is the
least or greatest degree among the oracles A such that Fin[A] satisfies some condition.

Remark 2.3.3 (a) S € Fin[K] iff S is learnable from noisy data in the limit. Chapter 4
and Theorem 4.2.1 provide more details.

(b) If S = {fo, f1,...} is a uniformly recursive family (also called an “indexed family”)
in the sense that the function e,z — f.(z) is recursive in both parameters e and z then
S € Fin[K] iff S € Fin[A] for some A iff S is discrete where S is called discrete iff, for
every f € S, there is a 0 < f such that no function g € S — {f} extends o. Furthermore,
Fin[K] ¢ Fin[A] for all oracles A 24 K, so the choice of the oracle K is optimal in this
context. — The proof of Corollary 4.6.5 is actually for set-learning, but can be easily
adapted to the model of learning functions considered here.

(c) S € Fin[K] iff there is an enumerable tree such that all f € S are fully isolated on
T [104, Theorem 5.2], where a branch of a tree T is called fully isolated iff there is some n
such that the nodes in 7" above f(0)f(1)... f(n) are exactly the nodes f(0)f(1)...f(m)
with m > n.

(d) Fin[A] C Ex iff A <; K. So K is the greatest oracle A such that Fin[A] is contained
in Ex. The inclusion is quite obvious and follows the ideas outlined in Theorem 4.2.1. The
noninclusion is more difficult and thus proven in the next theorem.

Theorem 2.3.4 If Fin[A] C Ex then A <y K.

16

Proof It is possible to define a family ¢,; ;) which satisfies the conditions below — this
family is just that one from [89, Theorem 8.1], equipped with a further parameter j.

e 10170 < @y(;,;) for all ¢ and j.
® g, (x) is defined for all # with at most one exception a;; > i + j.

e If for some fixed j, there exists a machine M inferring all total functions among the
©g(ij)» ¢ € IN, then there exists an 4 such that ¢ ;) is partial and M converges to
the same index e; ; on the two functions fy and f; which extend ¢y ;) with 0 and 1
at a; ;, respectively.

The third condition is just a corollary from the one presented in [89, Theorem 8.1]. Now let
S be the collection of all total functions ¢,; jy where j € A and of all functions f extending
some @g(; ;y with one undefined place where j ¢ A. One has that

j is in A iff there are i, s, a, e such that

(@) @gigy(a)T and

(0) M{(pg(i) (0)g(iy (1) - - - Pgtigy (@ = Dbpyiigy(a+1) - g (@) =€
for all x > a+ s and b € {0, 1}.

It follows that A is enumerable relative to K: the conditions (a) and (b) are K-recursive
and the whole term is an existential quantification over the conjunction of these K-recursive
terms. To see that (b) is really K-recursive, note that ¢y j)(z) | whenever z # a and
©qi,)(@) T, so the term inside the universal quantification is recursive and these quantifiers
can be resolved using the oracle K. Thus A is enumerable in K.

By Fact 2.1.2, one can chose the oracle A within the given Turing degree such that A
is enumerable relative to some oracle B iff A is recursive to B. So one obtains that A is
recursive relative to K. |

2.4 Learning Criteria Closed Under Union

Many results on Fin and Ex use that there are two learnable classes whose union is not
learnable. This enables to code the oracle into a parameterized mixture of the two classes.
The notions considered within this section are closed under union so that this method
does not work. The five notions considered are predicting the next value, learning in the
limit by total guesses only, two variants of reliable learning in the limit and learning via a
machine which converges on all functions, also on the nonrecursive ones. Here the formal
definitions.

Definition 2.4.1 [11, 19, 31, 106] Let M be a learner and f be a function.

(a) Next Value learning: M NV-learns f iff M is total and M (f(0)f(1)... f(z)) = f(z+1)
for almost all =.

(b) Reliable Explanatory learning: M REx-learns f iff M Ex-learns f and in addition
M makes infinitely many mind changes on every recursive function g which M does not
Ex-learn.

(c) Reliable Explanatory learning with respect to all functions: M RyyEx-learns f iff M
Ex-learns f and in addition M makes infinitely many mind changes on every function g
which M does not Ex-learn, including nonrecursive functions g.

(d) Popperian Ezplanatory learning: M PEx-learns f iff M Ex-learns f and every guess

17

on any data (even if not belonging to any valid concept) is a total program.

(e) Ezxplanatory learning with total convergence on recursive functions: M TEx-learns f
iff M Ex-learns f and M in addition converges on every recursive function to some index.
(f) Ezplanatory learning with total convergence: M TyyEx-learns f iff M Ex-learns f
and M in addition converges on every function to some index, even on the nonrecursive
ones.

It is quite well-known that these criteria are closed under union, nevertheless some basic
ideas are presented how to construct a learner for the union from two learners M; and M
for the given classes.

In the case of NV, the learner M just follows that learner A/; which has made less errors
on the preceding data. In the case of REx and R,;Ex, M takes the value of that learner
M; which has made less mind changes.

In the case of PEx, the closure under union can be deduced from the following charac-
terization: A class S is PEx[A]-learnable iff there is an A-recursive set E of indices of total
recursive functions such that every function in S has an index in E. Having two classes
S and S in PEx[A], one just takes the corresponding A-enumerable index sets F and E.
Their union is also enumerable relative to A and so S U S is also in PEx[A].

In the last case of TEx and T, Ex, the algorithm is more complicated. A learner M;(o)
is called currently faulty iff there is some x such that a0 ()} # o(x) | . If one learner,
say M, is currently faulty, then M takes the output of the other learner, in this case M.
Otherwise, that is, if no learner is currently faulty, then M just outputs the amalgamation
of the programs M (o) and My(o), where the amalgamation of a set I of programs com-
putes for each input = that y such that there is some i € I for which the computation ¢;(x)
outputs y before the other computations have converged. That is, the amalgamation just
runs all programs in parallel and then takes the first output generated by any of them.

So the common property of all these notions is that they are closed under union. Many
diagonalization techniques are based on the nonunion property of Ex or BC. These tech-
niques are therefore not applicable here. Nevertheless it turns out that in spite of this
common property the degree structures induced by these learning-criteria are quite differ-
ent.

Barzdins and Freivalds [12] showed that S € NV iff there is a uniformly recursive family
fo, f1,... such that every f € S equals to some f,. This result also holds relatived to
any oracle A. Jockusch [71] called such a class S subuniform in A [135, Section V.5] and
showed that RECy; is subuniform for all high and all PA-complete oracles and REC is
A-subuniform iff A is high. So only the high oracles are omniscient for NV. The same holds
also for REx and R,;Ex since these criteria are restrictions of the criterion Ex, which is
also omniscient only for high oracles. As the next theorem shows, are high oracles also
sufficient to learn REC under the criteria NV, REx and Ry, Ex.

Theorem 2.4.2 [1, 43] The omniscient degrees of NV, RyyEx and REx consist of the high
oracles. The omniscient degree of PEx consists of all oracles A which satisfy A ® K >1 K'.

The trivial degree of these notions is more complicated. There is no recursion-theoretic
characterization but it could be shown that many oracles are trivial for PEx, in particular
the cardinality of this trivial degree is not countable.

Theorem 2.4.3 [43, Theorem 6.40] If A <r K or if A has hyperimmune-free Turing degree
then A is in the trivial degree for PEx-learning.

18

For the degrees below K, there is a partial characterization in the following sense: If
Ex[A] C Ex[B] then the same inclusion holds for the notions REx and NV of inference.
So the REx and NV degrees are courser than the Ex-degrees below K. Note that the
inclusion structure of Ex and F coincide below K so that the following theorem is stated
in terms of the domination classes F. The central idea of the proof follows that one of [89,
Theorem 9.4].

Theorem 2.4.4 If A <; K and F[A] C F[B] then NV[4] C NV[B], REx[4] C REx[B],
RanEx[A] C Ry Ex[B] and TEx[A] C TEx[B].

Proof Let S in NV[A], REx[A], RaEx[A] or TEx[A], respectively. The learner M is
recursive relative to A but might be nonrecursive. Nevertheless for each f € S in the first
three cases and for each f € REC in the case of TEx, the function

z— M(f(0)f(1)...f(x))

is still recursive: In the case NV, it is a finite variant of f. In the other cases, M converges
to an index e and the function is almost constant. In these last three cases one can use the
Padding Lemma to make M increasing in the sense that M (o7) > M(o) for all o and 7
and on every function f, M either converges to an index of f or grows unboundedly. Since
A <p K, M has a recursive approximation M which in the cases REx and R,;Ex again
satisfies Ms(o1) > M (o) for all s, o and 7. Furthermore, let oy, oy, ... be an enumeration
of all strings. Now one defines for M and for every f € S and in the case of TEx for every
f € REC the functions

cv(r) = min{s >z : M(o,) = M (o) for all y < z},
¢s(x) = min{s >z : M;(o,) = M(o,) for all y <z with o, < f}.

The function c¢s is A-recursive, the functions ¢y are all recursive. By definition, cj; dom-
inates every function c;. Therefore there is a B-recursive function g which dominates
every cs. Using this g it is possible to give the following inference algorithm:

N(oy,) = M,(0,) for the first x > y with M,(o,) = M(o,) for s =z, 2+1,...,9(z). (3)

Clearly the algorithm is B-recursive. Since furthermore M(o,) converges to M(o,) at
some t, any = > y + t satisfies the condition in (3) and N is total. Given f, the function
¢y is dominated by g. So there is some z such that c¢f(x) < g(z) for all > z;. Almost
all o, < f satisfy y > x4, for each of them the algorithm produces an x > x; such that
M(oy) = My(oy) for s = z,2 4+ 1,...,9(x). By the choice of ¢y, one of these M(o,)
coincides with M(o,). So the output of A and N coincide for almost all o, < f. In
particular, if M NV-learns f, so does N, if M Ex-learns f, so does /N, and if M converges
on f € REC, so does N.

For the cases of REx-learning and R, Ex-learning, it is shown that whenever M diverges
on a function so does N. Given such an f and a constant k there is an y such that o, < f
and M(o,) > k. Then there is a stage ¢ such that M,(o,) > k for all s > ¢. If now o, < f
is sufficiently large, that is, if o, = o0, and 2 > t then the algorithm converges to some
value M,(o,) with > z. Since z > t, it follows that M,(c,) > k and by the monotonicity
of M, it follows that also M,(o,) > k. Now N(o,) > k and N takes on f arbitrary large
values, in particular N does not converge on f. |

The same proof would also work with Ex, LimEx and Ex* in place of REx since the exact
nature of the indices is not important and the additional requirement on the divergence

19

could be dropped. A LimEx-learner converges to a program which computes f in the limit
and an Ex*-learner to a program which computes f at all but finitely many places. For
LimEx and oracles A, B <7 K one has that the implication

Ex[A] = Ex[B] = LimEx[A] = LimEx|[B]|

holds but not its converse. There is a low oracle A which is omniscient for LimEx [43].
So LimEx[A] = LimEx[K] but Ex[A] # Ex[K]. This example gives some (small) incidence
that the degree-structures below K of the criteria NV, REx and R,;Ex might differ from
that of F and Ex. Nevertheless one can at least for the PA-completes oracle show that the
degrees of F and NV coincide.

Theorem 2.4.5 Let A and B be PA-complete. Then NV[A| = F[A]. In particular the
inclusion structures are the same: NV[A] C NV[B] iff F[A] C F[B].

Proof The equivalence of the inclusion structure is a direct corollary of NV[A] = F[A]
and the corresponding result for B. So it is sufficient to show the equality of the notions
NVI[A] and F[A] for any PA-complete oracle A.

Let S be in NV[A]. Then there is a uniformly A-recursive array fy, f1,... such that
every f € S equals to some f,.. It follows that the A-recursive function

v = folw) + fi(e) + ... + fu(2)

dominates every function f, and thus also every in S. It follows that S € F[A].

For the converse let S € F[A] and ¢ be an A-recursive function which dominates the class
S. Since A is PA-complete there is a total A-recursive function h such that h(e,z) = p.(x)
whenever .(z)] < g(z) +e. If f € S then g dominates f and there is a sufficiently large
index e of f such that f(z) < g(z)+e for all z. Using h it is possible to learn all functions
dominated by g by enumeration. Let o abbreviate f(0)f(1)... f(z) and

M (o) = h(e,x + 1) for the first e with h(e,y) = o(y) for all y € dom(o).

It is well-known that “learning by enumeration” is correct, but it remains to show that
this particular M terminates for every input o. To see this, note that the function o0
has some index e greater than any of its values. Now ¢.(y) < e < g(y) + e for all y and
thus h(e,y) = @e(y) for all y. So if the algorithm had not found an index below this e, it
will take this e, predict 0 and terminate. So the learner M is total and this completes the
proof. 1

Recall that TEx[A] and T,;Ex[A] denote the classes of the functions which are Ex[A]-
learnable via a learner converging on every recursive and on every, also nonrecursive,
function, respectively. Ambainis, Jain and Sharma [4] showed that the second learning
criterion is equivalent to the model of learning with ordinal mind change bounds intro-
duced by Freivalds and Smith [45]. The easiest way to realize such an ordinal bound is
to consider a well-ordering C on the natural numbers and a marker placed initially on 0.
Now the learner can make a mind change only if the marker moves at the same time for
its current position i to some j T i. A learner M learns now a class S iff there is such
a recursive well-ordering C which can be used to permit the mind changes. Since it is
possible to move downward in a well-ordered set only finitely often, the learner converges
on every function f to some index. The difficult direction of this characterization is the
other one.

The next theorem shows that the T,;Ex-degrees and Turing degrees coincide and that,

20

in particular, the trivial degree consists only of the recursive oracles and no greatest de-
gree exists. This shows that there is a clear difference, whether convergence on all or
only on recursive functions is required: An omniscient Ex-learner converges on every re-
cursive function and thus all high oracles are omniscient for TEx. Also the implication
F[A] = F[B] = TEx[A] = TEx[B] for A, B <y K from Theorem 2.4.4 does not transfer
to Ta”EX.

Theorem 2.4.6 Ta”EX[A] g Ta”EX[B] ZﬁA ST B.

Proof According to Fact 2.1.2 one can take A such that A < B whenever A is enumer-
able relative to B. If A <; B then T ;Ex[A] C T,;Ex[B]. For the converse direction, let
S be the class in Fin[A] from Theorem 2.3.2, Equation (1):

fes & (Jag,ay,...,a,¢ A) (b€ A)[f = apay . ..a,b™].

This class is clearly also in T,;Ex[A]. By assumption there is a B-recursive learner M
which Ex-learns every f € S and in addition converges on every function. So there is a
o € A" such that M(o7) = M(0) for every 7 € A™ — otherwise one could repeatedly
extend any string by a further string from A~ such that a mind change occurs and so get a
function on which M diverges. Having this o there is an a ¢ A such that a # @) () for
the first « ¢ dom(c). So one knows that M (o) is not the index of any function extending
oa. Given any b, one knows by the choice of o that there is no mind change on cab™ for
b ¢ A and that there is a mind change on cab™ for b € A since cab>® € S and M infers
this function. So one obtains the following condition which corresponds to (2):

be A < (In)[M(cab™) # M(o)] (4)

and A is enumerable relative to B by this formula. By the choice of A, A is computable
relative to B. |

This result, as already indicated, does not go through for TEx in place of T,;Ex. But
there is a subcase where it can be saved.

Theorem 2.4.7 Let A, B have enumerable and nonhigh Turing degree. Then TEx[A] C
TEx([B] iff A <r B.

Proof If A <p B then TEx[A] C TEx[B]. For the converse direction, let TEx[A] C
TEx[B] and B be enumerable but not high. Without loss of generality, A can be taken
as a coenumerable set within the given degree. Recall the class S from Theorem 2.3.2,
Equation 1. One can now use the proof of the preceding theorem to show that S €
TEx[B] only if B >7 A. Only the Equation (4) needs an explicit proof and fails for some
nonenumerable oracles — due to this fact, the present theorem is restricted to enumerable
and nonhigh oracles. So assume by way of contradiction that

(Vo € A" (3r € A" [MP(o7) £ MB(0)]. (5)

Let 09, 01,... be an enumeration of A" where oy is the empty string A\. There is a B-
recursive function g such that for every n there is a n' such that n < n’ < g(n) and, for
every m < n, there is a m’ < n' with o,y = 0, and MB(0,,) # MP(0,,) and all elements
of B queried by some computation M?(o,,) with m’ < n' are enumerated into B within
time g(n). Since B is not high, there is a recursive function h not dominated by the func-
tion n — g(g(n)). Now let 79 = 0 and 7,41 be the first string o,,; > 7, such that there is
an s > h(m) with M%:(0,,) # MP:(r,) and s > m' where m is the index with o, = 7,.

21

The sequence 7y, 7, ... has a limit f which is a recursive function. By construction, the
range of f is contained in A.

Now it is shown that M? diverges on f. Let h(e) > g(g(e)) for some e and let n be the
maximal index of some 7,, = 0, with m < e. Let £ be the index of 7,11, that is, oy = 7,41.
Now either k£ > g(m) or g(k) < h(k).

In the first case £ > g(m), one has that there is an s > k& — which then also satisfies
s > g(m) — such that 7, is the first string extending 7,, with M5 (7, 1) # MP:(7,).
Furthermore, by assumption there is a smallest index m' such that o,, extends 7, and
MB (o) # MP(r,). Since s > g(m) it follows that MPB:(c,n) = MZB(oy,) for all
m"” < m’ and one has that ¥ > m’. On the other hand k¥ < m' since MP:(0,,) =
MB (o) # MB(1,) = MP(r,) and 7, is the first string o, with this property. So
MPB(7,41) # M®(7,) for this n.

In the second case g(k) < h(k) one has that 7,5 is the first string o, extending 7,4
such that M5 (7,,5) # MP:(7,,,). Here now m is replaced by k and n+ 1 by n compared
to the first case, but the argumentation is again the same since s > h(k) > g(k). So
MB(7y42) # MB(7,41) in this case.

Since there are infinitely many e such that h(e) > g(g(e)), it follows that there are
infinitely many n such that 7,,; has an index larger than e and that either MP(r,) or
MB(7,42) differs from M?(7,,1). So M makes infinitely many mind changes on the func-
tion f. Since MP® converges on every recursive function, such an f cannot exist and the
assumption (5) is false. This completes the proof. |

2.5 Behavioural Correct Learning

The problem, whether two hypotheses are equivalent, is undecidable. Sometimes a learner
cannot detect whether the momentary hypothesis is consistent with the data seen so far
and therefore, the learner does not know when to make a mind change. To overcome this
problem, Barzdins [11] proposed to require only semantic and not syntactic convergence.

Definition 2.5.1 M learns behaviourally correct (BC) a function f iff M (o) is a program
for f for almost all 0 < f.

By definition, BC is more general than Ex. Barzdins [11] showed that the inclusion is
proper. The following example S of the almost self-describing functions [31] witnesses this
fact:

fes & () (Vy>) le)l=)l (6)

A BC-learner for this class S produces for every input o = f(0)f(1) ... f(x) an hypothesis
Yy such that 1, (y) = o(y) ify € dom(o) and ¥, (y) = @) (y) if y & dom(o). If x € dom(o)
for the z in Equation (6) then the guess is total and correct: for arguments y € dom(o), in
particular for arguments y < z, the function ¢, (y) takes the correct data from the input
and for arguments y ¢ dom(c) the function v, (y) takes the value ¢y (y) which is correct
by Equation (6). On the other hand, one cannot learn S under the criterion Ex since
one cannot identify the places of diverging computations in the limit [31]. Kummer and
Stephan [89, Theorem 8.1] showed that the class S is not even contained in Ex[A] for any
nonhigh oracle A.

The inference degrees of BC behave on the enumerable and 1-generic oracles like Ex;
also the trivial degree is the same. But on the PA-complete oracles, they are different:

22

every PA-complete oracle allows to learn the whole class REC under the criterion BC
(43, 89].

Theorem 2.5.2 (a) REC € BC[A] for every PA-complete oracle A [43, 89].

(b) BC[A] =BC iff A <p B <y K for some 1-generic oracle B [43].

(c) If A, B are enumerable and not high then BC[A] C BC[B] & A <y B [89].
(d) If A, B are 1-generic and not high then BC[A] C BC[B] < A" <r B’ [89].

Proof Items (b), (c) and (d) are proved in a similar way as the corresponding results for
Ex. A proof of (a) is given in [43] and included here for the readers convenience as one of
the most relevant contributions of the author to this work. Since K is omniscient for Ex
and therefore also for BC, the remaining interesting case is that A 2, K.

Let a and 8 be partial functions. « is compatible with (iff (Vx € dom(a) N dom())
la(z) = B(x)]. «is incompatible with [otherwise. « extends 8 iff « is compatible with
and dom(3) C dom(«).

Let I be a finite subset of N x IN. Let mam(I) be a program for the modified amalga-
mation of I which computes the function ,umr)(x) as follows: for all (i,a) € I, run (by
dovetailing) ¢;(z); if an (7, a,t) is found such that ¢;;(z)] =y and a ¢ K, then output y
for the first such (i, a,t) found.

Assume (i,ay),...,(i,am) € I, z € N and @;(z) }. If {a1,...,an} N K # 0 then
Omam(n) () might be @;(z). If {a1,...,apn} C K then @pmem(x) can be p;(x) only if at
least one of the elements of {ay,...,a,} enters K after p;(x) has converged. Consider now
the following partial recursive function:

0 if (Ft)[a € Ky A p; extends p;];
1 if (3t)[a & Ky A

¢; is incompatible with ¢;,];
1T otherwise.

v(i,j,a) =

Assume a € K. Then (i, j,a) is trying to test if ¢; and ¢; are incompatible, but only
allowing the test to use part of ¢;. In particular it can only use the part of ¢; that has been
computed by the time a enters K. Assume a ¢ K. Then 7(i, j,a) will halt and output 1
if ¢; and ¢; are incompatible and diverge otherwise.

Since A is PA-complete, there is a {0, 1}-valued total A-recursive function g extending
~. This function g yields the following informations.

e If g(i,7,a) = 1 then (i, 7,a) # 0. In the subcase a € K, ¢; does not extend ¢,. In
the subcase a ¢ K no information can be obtained.

e If g(i,7,a) = 0 then (i, 7,a) # 1. Hence, for all ¢ such that a ¢ K, ; and ¢, are
compatible.

The inference-algorithm M works as follows:

To infer f € REC, initialize ¢(0) = 0.
For all stages s and input f; = f(0)f(1)... f(s) do the following:

o Let I(s) ={(j,a):c(s) <j<sAa<sAg(es),j,a) =0}
e Output M(fs) = mam(I(s)).

23

e If one of the conditions
(1) (35" < 5)[e(s") = e(8) A @ar(r,),s s incompatible with f]
(11) (Fj,a,t < s)[a € K; A fs extends o, A g(c(s),],a) =1]
hold then let ¢(s + 1) = ¢(s) + 1 else ¢(s + 1) = ¢(s).

For a given recursive f there is a least index ¢ such that ¢; = f.

Claim 1 (Vs)[ce(s) < 1.

Assume there is a stage s such that ¢(s) = ¢. Now it is shown that the conditions (1)
and (11) of the third item are not satisfied and therefore, ¢(s + 1) = i

(1): Assume, that c(s') = c(s) and @ary,)s(x) L # f(z) for some s',2 < s. Then
there are j,a,y,t such that ¢;,(z) = vy, a ¢ K;, v # f(x) and g¢(¢,j,a) = 0. Since
@i(z) = f(x) # vy, ¢; is incompatible with ¢, and so (i, j,a) = 1, contradicting that ¢
extends 7.

(11): Let a € K; and f; extend ¢;;. Then ¢; extends p,; as well and ¢(i,7,a) =

v(%,j,a) = 0. Thus ¢(s) converges to some limit k£ < i. Say, ¢(s) = k for all s > s,.

Claim 2 ¢,y = f for almost all stages s.

Since ¢(s + 1) = ¢(s) for all stages s > sg, conditions (1) and (1I) are never satisfied.
Hence f extends ¢y, for all these s.

Since g(k,i,a) = 0 for a € K by condition (11) and since K <1 A, there is some ay ¢ K
such that g(k,7,a9) = 0. For s > sq+ayg, (7,a9) € I(s). For any z, there is some stage ¢ and
some y such that ¢;,(z) =y and ag ¢ K;. So (i, a0,t,y) enforces that ©ar(s,) = Cmam(i(s)
is defined at x. Thus pu(y,) is total and pars) = f. |

Harrington [31] showed that the whole REC is learnable under the criterion BC* where M
BC*-learns f iff M (o) computes a finite variant of f for almost all ¢ < f. This result can
also be proved using the fact of Adleman and Blum that REC is Ex-learnable with K-oracle.
There is an approximation M to the Ex[K]-learner M and using this approximation one
defines the BC*-learner N implicitly by

ON (o) (T) = Oar, () ().

Now ¢n(e) () coincides with ¢y (2) for almost all x since M,(0) = M(o) for almost
all z. Given any f € REC, the Ex[K]-learner M outputs for almost all ¢ < f a program
for f; then N(o) coincides with that program on all but finitely many places and thus N
succeeds under the criterion BC* for all recursive functions.

2.6 Branch-Learning

Kummer and Ott [88, 116] studied a problem related to inductive inference: given data on
a recursive infinite tree, find an infinite recursive branch of it. The most direct approach
would be to learn a program for the tree from the data on the input — which presents for
every node o the information whether o belongs to the tree or not — and then to compute
a program for an infinite branch from the program for the tree. This direct approach does
not always work as the following example shows.

Example 2.6.1 [88] Let the class S contain every tree which has a unique root of form e
in the sense that only nodes o with o(0) = e are in the tree and for which . is a program
for an infinite branch. Then S is BranchFin-learnable but the task to find programs for the
trees in S is as hard as to learn REC.

24

Proof A BranchFin-learner has to output exactly one hypothesis which is an infinite
branch of the tree whose data the learner sees. This is done by waiting for the first nonvoid
node o in the tree and then taking o(0) which is an index for an infinite branch of the tree
by the choice of the trees in S.

The hardness follows from the fact, that, given a fixed self-describing function ¢, with
©e(0) = e and p.(1) = 1, one can now add for every function f € REC to the nodes
©e(0)pe(1) ... @e(x) the nodes €0 and e0f(0)f(1)... f(x) for all z. Given a learner M for
the trees, one can design a learner N for REC which for any given f constructs the “joint
tree of ¢, and f” and then extracts the guesses for f from those of programs for the joint
trees. |1

Now let BranchEx and BranchBC denote the learning criteria corresponding to Ex and BC
in the sense that the learner converges syntactically or behaviourally correct to a branch
of the given tree. BranchBC can be generalized to BranchWBC where the learner outputs
almost always programs for branches of the given tree, but these branches are not required
to be the same.

Ott and Stephan [117] studied for these notions also the amount of help, oracles provide
during the learning process. High oracles are omniscient for BranchEx, since they allow
to learn a program for the tree in the limit and then to find an infinite branch of them.
The second step can be executed with the oracle K’ by looking for the first index e of a
total function such that ©(0)p.(1)...¢e(x) is on the tree for all z. Since this search may
be executed in the limit, any oracle A with A" >¢ K is sufficient to do this, so the second
step also needs only a high oracle. Now let S contain for each recursive function f the tree
containing exactly the nodes f(0)f(1)... f(x); then this class is in BranchEx[A] iff REC
is in Ex[A] and therefore high oracles are also necessary for BranchEx-learning the given
class S — so the oracles omniscient for BranchEx are exactly the high oracles.

More interesting is the question whether BranchBC and BranchWBC have nonhigh
omniscient oracles. It turns out that it is impossible to generalize Theorem 2.5.2 (a) to
branch-learning since the second step of the learning algorithm requires a high oracle as
the following example shows.

Example 2.6.2 [117] Let the e-th tree in the class S contain every node o such that either
a(0) =0A (Vn € dom(0)) [|We,om)| = n] or 0(0) > |We 5)|. Then S is in BranchWBC[A]
iff A is high.

Proof Since S is in BranchEx|[A] for high oracles A, only the other direction is interesting.

If W, has the finite cardinality n, then all infinite branches f of the e-th tree satisfy
f(0) > n. If W, is infinite then all infinite branches f of the e-th tree satisfy f(0) = 0.
Furthermore, in both cases some infinite branches of the e-th tree are recursive.

If now M* is a BranchWBC[A]-learner, then one can compute relative to A whether
W, is finite by simulating A4 on the e-th tree as input: Let 4g,7;,... be the sequence of
the output, almost all 7, are indices of some infinite branch of the e-th tree. Therefore
©;,(0) | for almost i,. Now one computes at stage s the maximum £ < s such that the
program 7, converges within s computation steps at 0 to some value a;. If a; = 0 then
one takes b, = 0, otherwise by = 1. It follows from the construction that b, converges to 0
if W, is infinite and to 1 if W, is finite. Thus one can compute relative to A in the limit
which W, are finite and which are infinite, therefore A is high. 1

25

3 Oracles and Teachers

An oracle gives some general information which is independent of the current concept
presented to the learner. This is not adequate for those learning situations where the
learner has access to some interactive help which knows the current problem to be learned,
for example for the situation of pupils and teachers in school. Angluin [3] as well as
Gasarch and Smith [55] formalized this situation and introduced the concept of a teacher
into learning theory: the teacher knows the concept and answers specific queries on it. The
basic ideas behind both concepts can be illustrated using the famous example of the game
Mastermind.

The teacher first selects the code — a quadruple of colours — that should be learned.
Then the learner tries to figure out the code. In each round, the learner makes one guess
what the code might be. This guess implicitly codes two questions: how many colours and
how many positions of the guess are correct? The teacher supplies the answers to these
two questions and then the learner starts the next round with a new guess based on the
previous questions and answers. The learner succeeds if the correct code is found after a
given number of rounds.

The learner may in addition consult an oracle, for example, a book or a database.
Such a book is of course ignorant of the current code to be learned since it was pressed
before the code was elected. But nevertheless the book may be helpful if it contains an
algorithm of how to generate the queries. The power of this help depends on the quality
of the algorithm. Now both phenomena, the teacher and the oracle, are combined and the
power of the oracles is measured with respect to the different concepts of learning from a
teacher.

As the example showed, the communication between learner and teacher follows a
specific protocol. In the framework of inductive inference and in the absence of restrictions
on the number of queries, one can restrict the query language to questions, which can be
answered by “yes” or “no” and which have always a unique answer.

This removes nondeterminism from the behaviour of the teacher, so that some problems
of Angluin’s model [3] can be avoided directly: the teacher might use the ability to choose
among different answers for either helping the learner by encoding syntactically the solution
into the answers or spoil the learner by giving lengthy answers to destroy resource bounds.
By the way, Angluin overcame the problem by requiring that the learner succeeds with all
legal answers of the teacher and by computing the resource bounds relative to the size of
the input and the size of the answers of the teacher.

Gasarch and Smith [55] studied learning from queries within inductive inference and
considered query languages which used logical queries about functions like (3z,y) [f(z) =0
A fly) = 1] or (3x) (Vy) [f(y) =].

Formally, a query language is a language that has the usual logical symbols (equality,
constants, variables, quantifiers and logical operations to link the atom) and a special
symbol f. Query languages may contain further symbols, in particular Succ, < and +
which denote the successor-function Succ(z) = 241 on IN, the less-than relation < on IN
and the addition + on IN. These three languages — with one of the additional symbols —
are denoted by L[Succ], L[<] and L[+]. A query in the language is a formula without free
variables; such formulas without free variables are called sentences. The intention is that
a query ¢(f) is asking about f. For example in the language L[<] the query

(Fz) (Vy) [y <z V f(y) = 0]

26

is asking if at some point the function becomes the constant 0. S € QEx[*] means, that
some machine infers S using the query-language L[| where * denotes — in contrast to
other papers on this field — one of the symbols Succ, <, 4. Note that by introducing a
new variable and one quantifier, Succ and < can be expressed by < and +, respectively:

z=Succ(y) & y<zAN)[z<yVz=yVz=zVz>uz;
<y & (F)y=z+z+1].

Indeed Ex C QEx[Succ] C QEx[<,Succ] = QEx[<] C QEx[+, <] = QEx[+] holds. In
principal, every learning criterion like Ex and Fin can be combined with queries from a
given language L[x], but the main accent lies on the concepts QEx[x| and QFin[x] where in
the first case finitely many revisions of the hypothesis are allowed in and the second case
none.

The present work addresses the combination of both types of queries, those to oracles
and those to teachers. Given some language L[x] and an oracle A, the learner may query
either the teacher in the language L[] about f or make a membership query to the oracle
A. But the learner must not make combined queries; so queries like (3z) [f(z) = 0Ax € A]
are not permitted. The so obtained criteria induce in the same way as the traditional
learning criteria an ordering on the oracles, for example, the QEx[Succ]| degree of an oracle
A contains all oracles B such that every class S C REC is learnable under the criterion
QEx[Succ; A] iff S is learnable under the criterion QEx[Succ; B|.

Gasarch was in particular interested to obtain characterizations for the trivial and
omniscient degrees of query inference, which had been left open while the same questions
where solved for most other learning criteria [43]. Within the next sections, the omniscient
degree of QEx[*] is shown to consist exactly of the high degrees and so to coincide with
that one of Ex. The trivial degree is a proper subset of the trivial degree of Ex. After
that noninclusions like QEx[<] € QEx[Succ] are strengthened in the way that there is a
family S € QEx[<] which is not contained in QEx[Succ; B] for any nonomniscient oracle B.
Further results in this chapter deal with generalizations of QEx like QBC to one direction
and QFin to the other directions; also it is investigated to which extent one can replace
Succ by some other fixed function F.

3.1 Some Useful Facts

The separation results within this chapter use the notion of “k, (n)-good functions” which
had been introduced by Gasarch, Pleszkoch and Solovay [52]. They showed that for an
k. (n)-good function the truth-value ¢(f) can be computed from some suitable initial seg-
ment of f. This behaviour is, that f is {0, 1}-valued and takes infinitely often both values
but f takes them only on a very thin sequence of arguments. The intuitive idea is that it
is then almost impossible to distinguish which x take f(x) =1 with small formulas.

Definition 3.1.1 A function f is k4 (n)-good if the following holds for m = k,(n):

() @) [f(x) =1];
() (Yz >n)[f(x) =1 = m! divides z];
() (Vz>n)Vy>z)[flx)=1Afly)=1=2-m <yl

The formula m! denotes the product 1-2-...-m.

The function k, can be chosen such that it is possible to decide any queries above a function
f with the knowledge of only finitely many values of f.

27

Fact 3.1.2 [52, Theorem 11] There are recursive functions ki and truthy such that for
every sentence ¢ € L|+| and every {0, 1}-valued function f: If f is ky(n)-good and n > |¢|

then ¢(f) < truthy(n, o, f(0), f(1),...,f(n)).

Gasarch, Pleszkoch and Solovay [52] formulated Fact 3.1.2 a little bit different; they com-
puted for each o = f(0), f(1),..., f(n) and for each sentence ¢ a value k(¢, o) depending
on ¢ and o instead of n. So the function k., used here is derived from their function & by
the formula &, (n) = max{k(¢,0) : |¢| < nAl|o| < n+1} where ¢ ranges over all sentences
in L[+] and o over all strings in {0,1}*. It is easy to see that every k(n)-good function
f is also k(¢, 0)-good for all sentences ¢ and strings o with |¢| < n and |o| < n+1; the
formulation of Fact 3.1.2 given above is more suitable for the present work.

Sometimes it is necessary to make functions “inaccessable” via formulas in the language
L[<] while they can be “accessed” via formulas in L[+]. Such functions are the k. (n)-good
functions which will be used in Theorems 3.3.4, 3.4.1 and 3.6.4.

Definition 3.1.3 A function f is k.(n)-good if the following holds for m = k. (n):
(v) (F%2) [f(z) =1];

(v) (Vx>n)[f(z)=1=m <z
(vij (Vz>n)Vy>z)[f(z)=1Af(y)=1=z+m <yl

Fixing the function k. in a suitable way it is possible to compute the truth-value for any
k<(n)-good function and any formula in L[<] of size at most n only from the first n + 1
values of f.

Fact 3.1.4 There are recursive functions k. and truth. such that for every sentence
¢ € L[<] and every {0, 1}-valued function f: If f is k<(n)-good and n > |p| then ¢(f) <
trUth<(n7 ¢7 f(0)7 f(l)a sy f(n))

These recursive functions k., k., truth, truth. are used in the following sections. Without
loss of generality, k-(n) < k<(n+1), ky(n) < ky(n+1) and n < k<(n) < ky(n) for all n.

3.2 The Omniscient Degree

Fortnow et al. [43] left open the problem to determine the omniscient inference degree of
the criteria QEx[Succ], QEx[<] and QEx[+]. Since all Ex-omniscient oracles are QEx[x]-
omniscient, only the other direction is interesting: whether there are QEx[x]-omniscient
oracles, which are not Ex-omniscient. The following theorem gives a negative answer: if
Ex[A] € Ex[B] then also QEx[x; A] € QEx[x; B]. Thus the QEx[x|-degrees are a refinement
of the Ex-degrees and their omniscient degree is a subset of the omniscient Ex-degree;
indeed these omniscient degrees are equal.

Theorem 3.2.1 If Ex[A] € Ex[B] then Ex[A] € QEx[+; B].

Proof The basic idea of this proof is to define a recursive transformation I' such that for
every S C RECy; the transformed set S = {I'(g) : ¢ € S} has the following properties:

S C REC),,. (7)
S € Ex[A] = S € Ex[A]. (8)
S ¢ Ex[B] = S ¢ Ex[B]. (9)
S ¢ Ex[B] = S ¢ QEx[+; B]. (10)

28

Choosing S € Ex[A] — Ex|[B] gives directly a witness S € Ex[A] — QEx[+; B].

The transformation makes use of Fact 3.1.2 in the way that on one hand there is an

increasing recursive sequence ay, ag, . . . such that the transformed function I'(g) is k4 (ay,)-

good for all n and on the other hand I'(¢) codes g in a very easy way so that (8) and (9) can

be guaranteed. The sequence ag, aq,... and the transformation I' are defined as follows:
apg = 0,

tny1 = (ki (an))h
g(m) if x = agy, for some m;
f(z) = T(g9)(z)=<1 if x = agy,41 for some m;
0 otherwise, that is, x ¢ {ag, as, as,...}.

Let S C RECy,. Obviously S C RECy,; so (7) holds. (8) follows since g can be recovered
from f =T'(g) by g(m) = f(agm): Let M witness S € Ex[A]. The new learner N to witness
S € Ex[A] computes on input f(0), f(1),..., f(asm) the values g(0),¢(1),...,g(m), then
N simulates M to compute M’s current guess e = M(g(0),g(1),...,g(m)) and finally
N outputs an index h(e) for I'(p.); such a recursive function h exists since the sequence
ag, a1, . .. is recursive. It is easy to see that N converges on I'(g) to h(e) iff M converges on
g to e; thus if M infers S then N infers S. So (8) holds. Similarly one can show that there
is also an inverse translation of the inductive inference machines and (9) follows from its
contrapositive. It remains to show (10):

First it is shown that every f = I'(g) is k;(ay)-good for all n: Since f(agmi1) = 1
for all m, (1) holds. If x > a, and f(z) = 1 then z = (ki (a,))! for some m > n,
(k4 (ay))! divides z (since a,, > a,,) and ky(a,,) > ky(a,). Thus (11) holds. If m > n then
1 = (ky(ap)! > ki(an) - (ky(am) — 1) > ky(an) - am > ky(a,) - ap. Thus also (111) is
satisfied. So f is k1 (a,)-good for all n. Since ajy > |¢|, the relation

o(f) & truthy(ayg, ¢, f(0), f(1),..., f(ay))

enables to answer any query ¢ to f by analyzing the prefix f(0)f(1) ... f(a4) of f.
So the QEx[+; B] inference algorithm can be translated into an Ex[B] algorithm, that
is, S € QEx[+;B] = S € Ex[B] and S ¢ Ex[B] = S ¢ QEx[+;B]. This finishes
the proof of (10).

If Ex[A] € Ex[B] then this is witnessed by some S C RECy;. By (8) and (9), also
S € Ex[A] — Ex[B]. From (10) it follows that S ¢ QEx[+; B]. Therefore the noninclusion
Ex[A] € QEx[+; B] holds. 1

The inclusions Ex[C] C QEx[Succ; C] C QEx[<;C] C QEx[+; C] hold for all oracles C.
Therefore every noninclusion in the Ex-degrees induces a noninclusion in the QEx[x]-
degrees. Also if REC € Ex[C] then REC € QEx[x;C] and the omniscient degree of the
criteria Ex, QEx[Succ], QEx[<], QEx[+] coincides:

Theorem 3.2.2 If Ex[A] € Ex[B] then

(a) QEx[+; A] Z QEx[+; B];

(b) QEx[<;A] Z QEx[<; BJ;

(c) QEx[Succ; A] Z QEx[Succ; B].

Furthermore QEx[+; A], QEx[<; A] and QEx[Succ; A| are omniscient iff A is high.

29

3.3 The Trivial Degree

To characterize the trivial QEx[x]-degrees is still an open problem. However it is shown
that these trivial QEx[x|-degrees are different from the trivial Ex-degree, indeed they are
a proper subset of it.

This result is based on the idea of coding some nonrecursive enumerable set B uniformly
into the graph of each f € S for some S ¢ QEx[*; B]. From the fact that any learner can
recover B with queries about f it follows that QEx[x; A] = QEx[x; A @ B] for all A. Now
there is a 1-generic set A <p K such that A @ B =p K. This A has nontrivial QEx[*]-
degree since S € Ex[K]| C QEx[x; A & B], but A has trivial Ex-degree. So it follows
using Theorem 3.2.2, that the trivial QEx[x]-degree is properly contained in the trivial
Ex-degree.

Again the basic idea of the construction is defining a transformation I'? depending on
an enumerable nonhigh and nonrecursive oracle B. Starting with the set RECy; of all
recursive {0, 1}-valued functions, the transformed set S = {I'®(g) : ¢ € RECy} has the
following properties:

S C RECy ;. (11)
A®B>r K = S € QEx[x; Al. (12)
S ¢ Ex|B]. (13)
S ¢ QEx[x; B] and S ¢ QEx[x]. (14)

Posner and Robinson [110] showed that every B below K can be lifted to K by joining a
1-generic set.

Fact 3.3.1 Given any nonrecursive set B <y K there is a 1-generic set A <p K such that

Using this 1-generic set A, it will come out that on one hand A @ B = K and therefore
S € QEx[x; A] but on the other hand S ¢ QEx[x], so A does not have trivial QEx[*]-degree,
but A has trivial Ex-degree.

Now the proof in detail. Lemma 3.3.2 is the first step in obtaining such a set B and
transformation I'?. B is chosen as some kind of deficiency set of nonhigh nonrecursive
degree; h is an auxiliary function used below. This special form of B makes it easier to
define I'? in the proofs of Theorems 3.3.3 and 3.3.4.

Lemma 3.3.2 In every enumerable Turing degree there is an enumerable set B and a
recursive function h such that

(a) B={n:(3m >n)h(m) <nl} and
(b) (Vn)[h(n) < n.

Proof Let f be a recursive 1-1 enumeration of some enumerable set C' representing the
given enumerable Turing degree. For each s define

(s) = the f(s)-th element of By;

g
h(s) = min{g(s), s};
B, = {n<s:(Im>n)[m<sAh(m)<nl}.

Now it is shown that B = |J, B; has the desired properties. It is easy to see that B = {n :
(Im > n) [h(m) < n]} and (¥Yn) [h(n) < n] but it remains the more difficult part to prove

30

that B =7 C.

B <p C since B is permitted by C: Any new element n enters B at stage s only if
h(s) < n < s and h(s) is the f(s)-th element of B, that is, n is permitted by the new
element f(s) of C' with f(s) < h(s) <n.

C <p B: This part needs first to show that B is infinite. For any c there is some s with
f(n) > cfor all n > s. Since By is finite, By is infinite and its least ¢ elements do never
enter B, so it follows that B is infinite. Now it is shown that

ceC < ce{f(0),f(1),...,f(s+c+1)} (15)

where s is the first stage such that the c+1 least elements of B and B, are identical: If
c ¢ C then also ¢ ¢ {f(0), f(1),..., f(s+c+1)} since f is an enumeration of C. If c € C
then there is some ¢ with ¢ = f(¢). Let d be the c+1-st element of B and B,. Since By
contains only elements below s, d < s+c¢+ 1. If t > s+ ¢+ 1 then h(t) = g(t) <d <t
and d would be enumerated to B in contradiction to the choice of d. Thus ¢t < s+ ¢ + 1.
So the equivalence (15) follows. Since s is computed using the oracle B and since f is
computable without any oracle, the question whether ¢ € C' is decided using the oracle B.
So C ST B. I

Using Lemma 3.3.2 and Theorems 3.3.3 and 3.3.4, it is possible to show that there is a set
A of nontrivial query inference degree but of trivial Ex-degree. Theorem 3.3.3 has a full
proof for the case of L[+] while Theorem 3.3.4 deals with the remaining cases L[Succ| and
L[<] and its proof shows only the differences to the proof of Theorem 3.3.3.

Theorem 3.3.3 There is a 1-generic set A <r K such that QEx[+; A] € QEx[+].

Proof Let B and h be as in Lemma 3.3.2 and let B have nonhigh and nonrecursive
Turing degree. Further let k£ be as in Theorem 3.2.1 and let A be as in Fact 3.3.1. The
modification from I' to I'? is implemented implicitly by modifying the sequence ag, a1, . ..
from Theorem 3.2.1; the way I'® is derived from the modified sequence is exactly analogous
to the way [is derived from the original sequence.

a = 0;
. { (ky(an))! + agpmy if n = 2m and h(m) < m;
il (ki (ay))! otherwise.
g(m) if x = ay, for some m;
flz) = TB(g)(x) =41 if x = agp 41 for some m;

0 otherwise, that is, « ¢ {ag, a1, as,...}.

The basic idea of the construction is that the queries in L[+] to f — independent of g —
have the same Turing degree as B. For each sentence ¢ there is some m > |@| such that
m ¢ B. For these m ¢ B (but not for all m), f is ky(agmn)-good and ¢(f) is equivalent to
truthy (asm, ¢, f(0), f(1), f(2),..., f(azm)). On the other hand every membership query
to B can be answered via logical queries about any f = I'®(g). Recall the four conditions
from the beginning of the section, now applied for L[x] = L[+]:

S C RECy,,. (11)
A@® B>y K= S € QEx[+; A]. (12)
S ¢ Ex[B]. (13)
S ¢ QEx[+; B] and S ¢ QEx[+]. (14)

Now it is shown that S = {T'?(g) : ¢ € RECy} satisfies these four conditions and thus
witnesses the noninclusion: S € QEx[A;+] — QEx[+]. (11): This item follows directly

31

from the construction.

(12): A@B >y K = S € Ex|[A® B|: S € Ex[K] since K is an omniscient oracle. Now
any query to K can be computed via some membership queries to A and B. Those to A
can be executed directly, but those to B have to be translated into logical queries about
f. This is possible without any a priori knowledge on f beyond the fact that f € S, that
is, the queries use only the fact that f € S but not which particular function f is:

mée B & (In>m)[h(n) <m)]
& (In > m) [asny1 Z 0 modulo agy, 1 |
& (Jz > agmy1) [f(z) = 1 and x # 0 modulo agy,1 |
& (Fy,2) [flagmir -y +2) =1Ay#0A

(Z:1\/z:2\/\/z:a2m+1—1)]

Multiplications with constants can be expressed in the language L[+], for example, 5 -z as
x4+ x +x+ o+ x. The constant as,,,1 can be computed from m. Thus the whole query
is effectively equivalent to a sentence in L[+] and the Ex[A @& B] inference process can be
simulated by a QEx[+; A] inference machine. Therefore A® B >7 K = S € QEx[+; A].

(13): Assume by way of contradiction that S € Ex[B] via M. Then a new Ex[B]-
learner N translates the input function g to f = I'B(g), computes e = M (f(0), f(1), ...,
f(a2m)) and outputs an index u(e) for @ue)(r) = @e(ass). It is easy to see that N wit-
nesses RECy; € Ex[B] since I'B(g) € S for every ¢ € RECy;. Then B has to be high in
contradiction to the choice of B, thus S ¢ Ex[B].

(14): This part is based on the following observation: If m ¢ B then I'(g) is k (agm,41)-
good. Since f(a,) = 1 for all odd n, f takes infinitely often the value 1 and satisfies
(1). Since h(n) > m for all n > m, all n > 2m + 1 either satisfy a,11 = (ki(a,))!
or ani1 = (ky(an))! + ay! for some [> m; note that ay = (ki(ay-1))!. In both cases
(k4 (@2m+1))! divides a,41 and (11) holds. Furthermore, a, 1 > (ky(a,))! > ki(agms1) - an
for all n > 2m + 1, thus also (111) holds.

Therefore for any sentence ¢ € L[+] there is some m ¢ B such that |¢| < agm1-
Since f = T'P(g) is ky(agms1)-good, the value @(f) is equivalent to truth, (agm.1,®,
f(0),..., f(agms+1)) and the query can be answered from f(0),..., f(aams1). Thus S €
QEx[+] = S € Ex[B]. Note that the oracle B cannot be removed since it is necessary to
find the index 2m + 1.

So all 4 items hold. By Fact 3.3.1 it is possible to select a 1-generic set A <p K
such that A@® B =y K. Then S € QEx[+; A] — QEx[+] and A does not have trivial
QEx[+]-degree. 1

Theorem 3.3.4 There is a 1-generic set A <rp K such that QEx[Succ; A] € QEx[<].

Proof This proof is similar to that of Theorem 3.3.3. The sets A and B as well as the
function h are the same, but it is necessary to use Fact 3.1.4 instead of Fact 3.1.2 and to
adapt ['B.

apg = 0,
{ an + k<(agpmy+1) if n=3m + 1 for some m;
On+1 a, + k<(an) otherwise, that is, n = 3m or n = 3m + 2.
g(m) if x = a3, for some m;
fx) = I'P(g)(x) =<1 if ¥ = agmy1 Or T = agpo for some m;

0 otherwise, that is, ¢ {ag, a1, as, ...}.

32

Again f is k- (agm)-good whenever m ¢ B. So any L[<]-query to f can be answered using
B-oracle and a sufficiently long prefix of f.

On the other hand, m € B iff there is some ¢ € {k-(ap),k<(a1),...,k<(a3ms2)} such
that (3x > asmi1) [f(z) = 1 A f(z4+¢) = 1] holds. So B can be recovered via 3m queries
in L[Succ] to f. The rest of the proof follows the lines of Theorem 3.3.3. 1

The following Theorem summarizes the results of this section:

Theorem 3.3.5 There is a set A such that
(a) Ex[A] = Ex;

(b) QEx[+;A] Z QEx[+];

(c) QEx|<iA] Z QEx|<];

(d) QEX[SuCC Al € QEx[Succ].

3.4 Complete Families

The notion of a complete family S is normally used with respect to some notion of reduction
such that all families inferable under a given criterion are reducible to S. The complete
families considered here are not complete with respect to an inference criterion but with
respect to a noninclusion, that is, a family S is called complete with respect to the non-
inclusion QEx[+] € QEx[<] iff S € QEx[+] and S ¢ QEx|[<; A] for every oracle A of non-
omniscient QEx[<]-degree. In this section it is shown that there are complete families with
respect to to the noninclusions QEx[+] Z QEx[<], QEx[<] Z QEx[Succ] and QEx[Succ]
Ex. As a corollary one obtains that Ex[A] C QEx[Succ; A] C QEx[<; A] C QEx[+; A] for
all nonhigh oracles A.

Theorem 3.4.1 There is a family S € QEx[+] which is not QEx[<; A] learnable for any
nonomniscient A.

Proof This family S is the same as in Theorem 3.3.3 with the only difference that B is
chosen to have the same degree as K. The proof of (12) does not require that B is nonhigh
and therefore can be adapted to show S € QEx[+]. The oracle B can be recovered by the
same existential queries about f as in Theorem 3.3.3:

méeB & (r,y) [fl@ampty) =1 AzF#0A
(y=1Vy=2V...Vy=agm1—1)]

Note that as,,; in this sentence is a constant. So inferring any f € S, the learner has
access to B via the above coded membership queries and since B belongs to the omniscient
Ex-degree, the learner identifies f. Thus S € QEx[+].

Now it is shown that every f € S has the property k. (a,)-good from Fact 3.1.4 for all n:
The functions f € S take the value 1 exactly on some infinite subset of {ag, a1, ...}. So (1v)
holds, for (v) and (v1) it is necessary to look at the sequence ay, ay, . ..; by construction all
m > n satisty: a1 > (ky(am))! > (ky(am) — 1) - ki(am) > am - ky(am) > am + ki (am) >
am + k<(am) > am + k<(a,). This implies (1v) since a,, > apy1 > an + k<(a,) and (V)
since for all x > a,, and y > = with f(x) = 1 A f(y) = 1 there is an m with x = a,, and
Y > ampr > ¢+ k().

So each f € S is k-(a,)-good for all n and therefore each L[<]-query ¢ to f can be
decided after reading f(0),..., f(ai4). Thus S € QEx[<; A] = S € Ex[A]. Furthermore,
S € Ex[A] = REC;; € Ex[A] and if S € QEx[<;A| then A is high, that is, A has
omniscient QEx[<]-degree. 1

33

The next theorem separates the class QEx[<] from the class QEx[Succ; A]. It has a more
complicated proof. In Theorem 3.4.1 only existential queries are necessary to recover B
from f. But every existential query in L[<] to a {0, 1}-valued function f can be replaced by
a sequence of existential queries in L[Succ] to f, or in other words, if S € REC,; NQ Ex[<]
then S € Q;Ex[Succ| where Q; Ex[x] means that queries of the inference process may only
contain existential quantifiers but not universal quantifiers. There are two ways to overcome
this difficulty: either by dropping the requirement that S C REC,; and considering a
family like

{F:f =90} U{f: [=1 where 2 = max{y: f(y) > y}}

or by coding the oracle K in f such that it cannot be recovered via existential queries in
L[<]. The proof of Theorem 3.4.2 goes the second way.

Theorem 3.4.2 There is a set S € QEx[<] with S ¢ QEx[Succ; A] for all nonhigh ora-
cles A.

Proof Let K, be an enumeration of K. Using K, the following approximation h to K is
defined: Let h(x,s) =0 if x € K, and h(z,s) = 1 otherwise (z ¢ K;). Given any function
g € RECy, the function f =TI'(g) is inductively defined as ogo10 ... with

oy = 0°10°g(s)0%* 10°h(0, 5)0° 10*h(1, 5)0% 10?h(2, 5)0° ... 10°h(s, 5)0°.

This construction is used to code g and K into f = I'(g). Since the length of the oy does not
depend on g but only on s and since g(s) = o4(2s+1), the o5, — and therefore also ¢ — can
be recovered from f. Furthermore, each o, contains for all x < s the substring 10%h(z, s):
Thus if all h(z,s) = 1, that is, if z ¢ K, then 10°1 occurs in all strings oy with s > x.
Otherwise h(z, s) = 0 for almost all s and 10”1 is not a substring of o, for almost all s. So
x € K iff the substring 10”1 appears only finitely often in f iff f(y) =0V f(y+2+1) =0
for almost all y. In short

reK & (F2)(Vy>z2)[fly) =0V fly+z+1)=0].

This query is in L[Succ, <] since x is a constant, for example, if z = 3 then y+x + 1 is an
abbreviation for Succ(Succ(Suce(Suce(y)))). Now let

S = {F(g) 1 g c RECO,I}.

S € QEx[Suce, <] = QEx[<] since queries to K can be coded as queries in L[Succ; <]
about f. So it remains to show that S ¢ QEx[Succ; A] for every nonhigh oracle A. This
is done by showing that if S € QEx[Succ; A] then S € Ex[A]. In particular it is sufficient
to show that every L[Succ]-query ¢ to any f € S can be decided effectively by analyzing
a sufficiently long prefix of f.

The algorithm step-wise eliminates all quantifiers from the formula. It proceeds as
follows, where 1, ¢y, 15 always denote quantifier-free subformulas of ¢.

(a) (Yu) [¥(u,xq,...,x,)] occurs in ¢:
Then (Vu) [p(u,x1,...,2,)] is replaced by =((Fu) [~o(u, x1, ..., 2,)])-

(b) (Fu) [¢(u,x1,...,x,)] occurs in ¢ and ¢ is not in disjunctive normal form:
1 is transformed into disjunctive normal form.

() (Fu) [1(u,xq,...,2,) V ho(u,xq,...,2,)] occurs in ¢:
Then the subformula is replaced by (Ju)[¢1(u, 1, ..., x,)] V (Fu)[tha(u, 1, ..., z,)].

34

(d) (Fu)[u =z, +cA(u,xq,...,2,)] occurs in ¢:
If ¢ > 0 then the subformula is replaced by ¢ (z1+c, z1,...,x,). Otherwise (¢ < 0)
the subformula contains the additional information x; > —c¢. Thus the subformula
becomes (x1 ZO0Axy #1N...ANx1 # <=1 ANY(x1+¢, 21, ..., T)).

(e) (Fu)[¢(u,z1,...,x,)] occurs in ¢, but none of the above cases holds:
Without loss of generality ¢ (u,xy,...,2,) = (f(u+co) =do) Ao . A(f(u+¢) =d;)
AN(uFcip) N A(u#) AN(u# oy, +ei) A A (u# ay, o) An(a, ...,).
Let c =24k +|co| + ...+ |cx| and d = |ogoy ... 0.|. Then (Fu) [(u,xq,...,2,)] is
replaced by ¢(0, 21, ..., 2,) V(L 21, ..., 2,) V... VO(d,21,...,2,).

If several of the above rules are applicable then the first one is executed. Thus v is always
in disjunctive normal form, if rule (c), (d) or (e) is applied. Furthermore, ¢ does not
contain any V if rule (d) or (e) is applied. It is easy to verify that the substitutions (a),
(b), (c¢) and (d) work properly, that is, do not change the truth-value of the formula. The
last operation (e) is more complex and so its correctness is now proven explicitly:

For ease of argumentation assume that ¢ = 0,¢y = 1,...,¢ = 4. Let 7 denote
dody ...d;. If 7 contains more than two 1s then 7 is a substring of ogo;...0;. So the
formula is correct in this case. Otherwise 7 is of the form 0° or 0*10* and 7 occurs in
OiyOit1,---,0c. S0 there are more than k£ occurrences of 7 in f before d and since there are
only k£ — i inequalities in 1), the subformula (f(u) = do) A (f(u+1) =di)A...A(f(u+1) =
di) N(u# ciz1) Ao AN (u# i) AN (u# gy, +cip) Ao A (u # xy, + ¢) holds. In the last
case 7 has the form 0¥10°10* with ¢ > a + 2. Either a ¢ K, and then 7 occurs in each of
the strings oy, 0,11, ..., 0., so the new formula is correct by the same argument as before.
Or a € K, and then 7 does not occur in f beyond d.

So the formula is iteratively transformed into an equivalent one without variables and
quantifiers. This formula consists only of atoms of the form f(¢) = d and can be decided
by knowing a sufficiently long prefix of f. |

Let So = {f : (Fe) [pe. = fA01 <X f]} and S; = {f : (V*®z) [f(z) = 0]}. The family SyU S,
is not Ex[A] learnable for any nonomniscient A [89, Proof of Theorem 8.1]. But Sy U S;
is QEx[Succ]| learnable [55, Theorem 6]: A learner conjectures ¢, but continuously checks
for ¢ = 0,1,... whether (3x > ¢) [f(z) # 0]. These queries can be formulated without the
symbol < since c is a constant, so if f = 00> then the learner will discover this fact after
making ¢ = |o| queries. The learner makes a mind change to 00> and terminates. Thus
one obtains the following fact:

Fact 3.4.3 Sy U S, € QEx[Succ] — Ex[A] for all nonhigh oracles A.

So the families given in Theorem 3.4.1, Theorem 3.4.2 and Fact 3.4.3 show that the following
corollary is true:

Corollary 3.4.4 Ex[A] C QEx[Succ; A] € QEx|[<; A] C QEx[+; A] for all nonhigh ora-
cles A.

3.5 Variants of Learning in the Limit

The results of the previous sections can be transferred to other concepts of learning. This
section gives a summary for three important notions and the next one will give a more
detailed analysis of the situation for the case of finite learning.

The first notion to be looked at is that of team learning. A class S can be learned by

35

a team of n machines (S € [1, n|QEx[x]) iff there are n machines My, ..., M, such that for
each f € S at least one machine M, of these infers f under the criterion QEx[x|. Theo-
rem 3.2.1 generalizes to the fact that [1, n)QEx[x; A] € [1, n]QEx[x; B] whenever [1, n|Ex[A]
is not contained in [1,n|Ex[B]. Since only high oracles are omniscient for [1,n]Ex[A] [43,
Theorem 6.19] the same holds for [1, n]QEx[*]. The transformations of RECy; considered
in Theorems 3.3.3 and 3.3.4 are for no n and nonhigh A in [1, n]|Ex[A], thus QEx[x; A] is
not trivial for some oracle A in the trivial [1, n]Ex-degree. Also the families witnessing the
noninclusions in Theorems 3.4.1 and 3.4.2 witness also the corresponding noninclusions
for teams. Only in family in Fact 3.4.3 has to be replace by an other suitable family, for
example, {f € REC : range(f) = K}. Theorem 3.5.1 summarizes the results.

Theorem 3.5.1 The inference degrees of [1,n]QEx[x| are a refinement of the [1,n|Ex-de-
grees; the omniscient degree of [1,n]QEx[x| and [1,n|Ex coincide but the trivial degree
of [1,n]QEx[*] is a proper subset of the trivial [1,n]Ex-degree. Furthermore, Ex[x] C
[1,n]QEx[Succ] C [1,n]QEx[<] C [1,n|QEx[+] and these witnesses for the properness of
the inclusions are also not learnable by the weaker criterion if this receives in addition a
nonhigh oracle.

The second notion to be looked at is that of learning with only finitely many queries to
the oracle, that is, a family S is in QEx[x; Ax] iff there is a machine M which QEx[x; A]
learns S and in addition while inferring any f € S makes only finitely many queries to f.
Surprisingly the structure of these degrees is the same as that of Ex-degrees with finitely
many queries.

Theorem 3.5.2 QEx[x; Ax] C QEx[x; Bx] & Ex[Ax| C Ex[Bx].

Proof This theorem is a combination of three facts, whose proofs transfer directly.

First, QEx[x; (A ® K)*] = QEx[x; A%] in the same way as Ex[(A & K)x] = Ex[Ax] [43,
Lemma 4.9]: the finitely many queries to K are computed in the limit and for each value
M (o) the approximation K, is used instead of K.

Second, if A@® K > K' then REC € Ex[Ax| [43, Theorem 5.8]. Also the more general
notion QEx[x; Ax] is omniscient for these A.

Third, if A@K £r B&K and B@K #r K' then there is a family Sy € Ex[Ax]—Ex[Bx]
[89, Theorem 5.5, (2 = 1)]. Since this set S consists only of {0, 1}-valued functions, its
transformed set S, using the transformation T’ from Theorem 3.2.1 witnesses the non-
inclusion: S € QEx[x; Ax] — QEx[x; Bx]. 1

Note that one result does not hold for QEx[x; A] learning: queries to a 1-generic oracle can-
not be replaced by finitely many queries to the same 1-generic oracle as in the case of Ex[Ax]
(43, Lemma 4.19]: By Theorems 3.3.3 and 3.3.4 there is a 1-generic A <p K such that
QEx[x; A] # QEx[x]. Since this A <; K, Theorem 3.5.2 gives that QEx[x; Ax] = QEx[#],
in particular that QEx[x; A] # QEx[x; Ax] for this 1-generic oracle A.

The third notion considered in this section is the well-studied concept of behaviourally
correct inference. A machine M learns a function f under the criterion QBC[x; A] if M
computes using queries to the oracle A and the teacher in the language L[x| and infinite
sequence of indices such that almost all of them compute f. Furthermore, S € QBC[x; A]
iff there is one machine M which learns every f € S under the criterion QBC[x; A]. Theo-
rem 3.5.3 gives a summary of the main results.

Theorem 3.5.3 The inference degrees of QBC[x| are a refinement of the BC-degrees; the
omniscient degree of QBClx| and BC coincide but the trivial degree of QBCIx| is a proper
subset of the trivial BC-degree.

36

The results for QBCIx] correspond very much to those for QEx[x] in the previous sections.
The next items go into some details of this correspondence.

o If BC[A] € BC[B] then QBC[x; A] £ QBC[x; B]. In particular, if S witnesses the
noninclusion for BC then the transformed set S of Theorem 3.2.1 witnesses the non-
inclusion for QBC.

e REC € QBC[x; 4] iff REC € BCJ[A4], that is, the omniscient degree for learning
with or without queries to a teacher coincide. This result is a direct application of
the previous one combined with the fact that REC € BC[A] = REC € QBC[x; 4],
that is, that every BC-omniscient degree is also QBC[x]-omniscient. Note that the
omniscient BC-degree does not coincide with the omniscient Ex-degree [43, Theorem
5.18].

e There is an oracle A which is trivial for BC but not for QBC, that is, QBClx; A] #
QBC[*] while BC[A] = BC. The construction is the same as in Theorems 3.3.3
and 3.3.4.

e Theorems 3.4.1 and 3.4.2 state that there are families witnessing the noninclusions
QEx[<] € QEx[Succ; A] and QEx[+] € QEx[<; A] for all oracles A which are not
omniscient for Ex. The same languages witness even the noninclusions QBC[<] €
QBC[Succ; A] and QBC[+] € QBC[<; A], respectively, where A is any oracle which
is not omniscient for BC, so Theorems 3.4.1 and 3.4.2 transfer from QEx to QBC if
the condition “not high” is replaced by “not omniscient for BC”.

e It is unknown whether Sy U S; € BC[A] holds for some non-BC-omniscient oracle A.
But Fact 3.4.3 can be transferred using the family {f € REC : range(f) = K}.

Furthermore, the degree structure of QBCl*; Ax] is the same as that of QEx[x; Ax|, BC[Ax]
and Ex[Ax].

3.6 The Finite Case

Recall that finite learning (Fin) means learning without mind changes, that is, the learner
first outputs “?” until at some time the only guess e is output and never withdrawn.
Theorem 2.3.2 by Fortnow et al. [43] states that the inference degrees of finite inference
coincide with the Turing degrees. This result can be extended to finite inference with
queries:

Theorem 3.6.1 The following is equivalent for any oracles A and B:
(a) A ST B,’

(b) Fin[A] C Fin[B|;

(c) QFin[Succ; A] C QFin[Succ; Bl;

(d) QFin[<; A] C QFin[<; B];

(e) QFin[+; A] C QFin[+; B].

Proof The whole theorem can be reduced to the fact

Fin[A] C QFin[+;B] = A<y B

37

whose contrapositive is now shown: Let A £ B. The transformation I" from Theorem 3.2.1
satisfies also the following properties for every set S C RECy :

['(S)={l(g9): g€ S} CRECy,.

S € Fin[A] = I['(S) € Fin[A].

S ¢ Fin[B] = I'(S) ¢ Fin[B].

['(S) ¢ Fin[B] = I['(S) ¢ QFin[+; BJ.

~— N’

By [43, Theorem 6.36] there is a set S € Fin[A] — Fin[B], for example, the set
S={0"":ne Ap A} U{0"1"0®:nec A®dAAm >0}

is a witness for this noninclusion Fin[A] Z Fin[B]. So I'(S) € Fin[A] — QFin[+; B] and
Fin[A] Z QFin[+; B.

Also the separation of the query-hierarchy easily transfers from the Ex-case to the case of
finite inference. Here the sets are easier to define:

Theorem 3.6.2 S = {0°} U {0"1* : n > 0} € QFin[Succ] — Fin[A] for all oracles A.

Proof S € QFin[Succ] since the query (3z)[f(z) = 1] tells the learner whether either
f=0%or f =071 for some n. In the first case the learner outputs an index for 0°°, in
the second case the learner reads the input so long until the first 1 appears and therefore
n is known. Then the learner outputs an index of 0™1°°.

If a learner with A-oracle but without teacher infers 0°° then the learner must output
an index for 0 on some input 0”. Thus the learner fails to identify 0"1*° without making
a mind change. |

Theorem 3.6.3 There is a family S € QFin[<] — QFin[Succ; A] for all oracles A.

Proof Let S consist of the function go = 10°10'10%210%10*. .. and of all functions ¢, =
10°10' 10210%10%...10"10% for all n > 0. In the same way as in Theorem 5.2 it can be
shown that every L[Succ| query to any f € S can be decided after reading a sufficiently
long prefix of f; thus S € QFin[Succ; A] = S € Fin[A]. The function gy is a limit-point
of the sequence g1, g2, g3, . .. and therefore S ¢ Fin[A] by an argument similar to that in
Theorem 3.6.2. It follows that S ¢ QFin[Succ; A].

On the other hand the query (Vz)(Jy > z)[f(y) = 1] separates gy from the other
functions: if the answer is yes the function inferred is go, otherwise there is an n such that
the inferred function has the prefix 10°10'10%210310%...10"10"*2: g, is the only function
in S with this prefix and so g, is inferred after seeing a sufficiently long prefix of f. |

Further Sy U S; € QFin[<] — QFin[Succ; A] witnesses the same noninclusion for all oracles
A where Sy = {f : (Fe) [pe = fA0°1 = f]} and S; = {f : (V*®z)[f(x) = 0]}. This set
So U St is a very popular example in many fields of inductive inference, but the proof for
this fact is omitted since Theorem 3.6.3 already shows the noninclusion.

Theorem 3.6.4 Let S = {0°} U {0"1*° : n € N}. I'(S) € QFin[+] — QFin[<; A] for some
suitable transformation I' and all oracles A.

Proof The sequence ag, ay,... and the transformation I' are defined as
apg = 0,
Aon4+1 = 2. (a2n + k< (a2n)) + 1;

38

Qont2 = 2- (G241 + k<(G2n41));
g(m) if x = agpy;
[(g)(xz) = <1 if © € {a1,a3,as,...};
0 otherwise, that is, x ¢ {ao, a1, as,...}.

By Fact 3.1.4 there is a procedure that answers every L[<|-query to any f € ['(S) after
reading a sufficient long segment of the input, thus I'(S) € QFin[<; A] iff I'(S) € Fin[A] iff
S € Fin[A]. So I'(S) ¢ QFin[<; A] since S ¢ Fin[A] by Theorem 3.6.2.

For the other direction note that a,, is even iff m is even. So only the values of the
even arguments are interesting and the query

(Vo) [f(x +z) = 0]

checks whether f takes only the value 0 on the even arguments. If so, f = I'(0°) and the
learner outputs an index for this function I'(0°°). Otherwise there is a minimal n such that
f(ag,) = 1. This n can be found by looking at f(ag), f(az2), f(as), ... and then the learner
outputs an index for I'(0"1%°). Such an index for I'(0"1*°) can be computed effectively
fromn. 1

3.7 Successor and Other Functions

It was pointed out to the author that some results on the classes QEx[Succ] generalize
when the Successor is replaced by a suitable function F'. In particular Theorems 3.4.2 and
3.6.2 hold also for functions like F'(z) = 2% or F(x) = 2z + 5. Within the query-language,
“F” represents the fixed built in function while “f” represents the function from S to be
learned.

Theorem 3.7.1 Let F be computable and strictly increasing: (Vz)[F(x) < F(z + 1)].
Then QFin[<] € QFin[F; A] and QEx[<] € QEx[F; B| for all oracles A and all nonhigh

oracles B.

The proof of this theorem can be directly constructed from the proofs of the Theorems 3.4.2
and 3.6.2. Somehow there are limitations so that F' cannot be taken of a more general
form. If queries to F', which do not contain any reference to the function f to be learned,
allow to decide a high set, say the halting problem K, then it is possible to QEx[F]-learn
REC. So the following conditions are not sufficient for Theorem 3.7.1.

e F' strictly increasing: Take F(x) = 2x + K(x). Then K(z) can be computed by
simple asking whether the value of F(x) is 2z or 2z + 1 — where the values =,
2z, 2z + 1 in this query are constants. So the query language gives access to the
halting-problem K.

e Frecursive: There is a recursive enumeration ag, ay, . .. of K and by letting F'(x) = a,
every query to K can be translated into the query whether (Jy) [F(y) = x| which
then gives again the K-oracle.

e Fincreasing and recursive: Let ag, aq,... be again a recursive enumeration of K and
take F' = 0%1%2% . ; that means the first ¢y numbers are mapped to 0, the next
a; to 1, the next ay to 2 and so on. Then for each x the query whether there are

39

exactly x numbers y,s,...,y, which take the same value ¢, is equivalent to the
query whether x € K:

ze K < (3c) (F) [F(y) =c].
Speaking more verbosely, for any fixed z, say for x = 3, the 3”-quantifier can be

restated: (F%y) [F(y) = x] is equivalent to (yi,y2,y3) (V2) [y1 # v A y1 # ys A
YFys A (f(z)=coz=nVz=ypVze=uy)l

While Theorem 3.7.1 still holds for F'(z) = z? or F(x) = 2z +5, other results depend much
more on the special form of Succ than this one.

Theorem 3.7.2 The following is equivalent for every function F':

(a) QFin[F, <] = QFin[<].

(b) F is definable in L[<].

(c) F is definable in L[Succ].

(d) Either F takes almost everywhere the same value or F(x) = x + ¢ for some integer ¢
and almost all x.

Proof The proofis (d = ¢ = b = a = d) where the last implication is the most difficult
one.

(d = c): If (d) holds then either f is almost constant or F'(z) is almost everywhere
equal to z + d — c. In these cases, F' is definable in L[Succ]. For example, let F'(x) = 4 for
r=0,1,2,8 and F(z) = x — 1 otherwise. Now one can construct a formula for F' which
splits of the finitely many cases via a table and uses the successor to define the rest:

Fz)=y & (z€{0,1,2,8} Ay=4)V (z ¢ {0,1,2,8} A Succ(y) = z)

where the membership of the finite set {0, 1, 2,8} is equivalent to a disjunction on finitely
many equalities: z =0Vz =1Vz =2V ax = 8. It is easy to see how to apply this system
for the other functions F' of this type. So F is definable in L[Succ].

(c = b = a): The implication (¢ = b) is due to the fact that the function Succ is
definable in L[<]. The implication (b = a) to due to the following observation: if F' is
definable in L[<] then the languages L[F, <] and L[<] can express the same things and so
the additional feature to use F' in the query language does not give more learning power.

(a = d): Claim (a) states that QFin[F, <] = QFin[<]. Let x ~ y mean that x and
y are neighbours with respect to F', that is, that either x = F(y) or y = F'(x). For the
following distinction of four cases, one chooses the first one to hold, for example, if F' is
not computable and each z is mapped either to x 4+ 1 or x + 2 then case (1) is taken and
not case (Iv).

(1) Some nonrecursive set A is definable in L[F, <], in particular F' is not recursive itself:
Then there is a class S € Fin[A] — Fin. Using the transformation I' from Theorem 3.6.1
it follows that ['(S) € Fin[A] — QFin[<] and thus QFin[F| € QFin[<]. In particular
QFin[F, <] # QFin[<] in contrary to the choice of F'. So this case does not occur and F' is
recursive in the cases (11), (111) and (1v) below.

(11) (3z) (3®y) [x ~ y]: Fix this x with infinitely many neighbours. The set B = {y :
r~y}={F(x)} U{y: F(y) = z} is definable in L[F]. If B is cofinite then F(y) = z
for almost all y and (d) holds. So it remains to look at the subcase where B is coinfinite.
By choice B is also infinite. Now B can take the role of the set of even numbers in

Theorem 3.6.4 and the sequence ag, aq, ... is defined as follows:
ay = least x € B;
o1 = least x ¢ B with > 2+ (ag, + k<(az2,));
oo = least x € B with z > 2 (aspy1 + k<(aonyi1))-

40

[and S are defined analogously to those in the proof of Theorem 3.6.4. Note that I is com-
putable and translates computable functions into computable ones since B is computable.
Now on one hand I'(S) ¢ QFin[<] and on the other hand I'(S) € QFin[F] where the only
query is (Vy € B) [f(y) = 0] or more precisely (Vy) [F(y) =z V F(z) =y = f(y) =0]. By
(1), such a class I'(S) does not exist and in the case (11) only the subcase occurs where F
is takes almost everywhere the same constant value.

(11) (Vo,c¢) (Fy,d) [z <y Aec < dAy~y+d]: Since case (1) does not hold, for each z
there are only finitely many y with x ~ y. Starting with ay = 0 it is possible to construct
the sequence ag, a, ... as follows:

aont1 and ag, o are the least numbers y and y + d such that y,d > 2 - (ag, +
kc(ag,)),y~y+dand z £ yAx £ y+dforall x < ag,.

This sequence defines again an operator I' such that I'(S) ¢ QFin[<] where the proof to
show T'(S) ¢ Fin = I'(S) ¢ QFin[<] has to uses the fact that the functions in I'(S) are
k< (ay)-good for even n. So on one hand the classes S = {0°} U {0"1* : n € N} and I'(S)
are not finitely learnable and thus I'(S) ¢ QFin[<]. On the other hand S € QFin[F] since
the query whether no two neighbouring numbers are mapped to 1, that is, whether

(Va,y) [F(z) =y = f(z) =0V f(y) = 0],

is answered with yes if f = ['(0°°) and with no if f = I'(0"1°°). In the first case f is already
found and in the second case the parameter n for f is found by inspecting I'(f) at the places
ai,as, as, ... until I'(f)(am,) = 1 for some odd m. It follows that I'(S) € QFin[F]— QFin[<]
in contradiction to (a) and so case (111) does not occur.

(1v) Otherwise, that is, (3d) (Vz)[r —d < F(x) < x + d]: That this formula indeed
holds is due to the fact that (11) is considered if F' takes some value infinitely often and
that (111) is considered if the tradeoff between = and F'(z) is not bounded. So fix now this
d. Forc=—d,1—d,...,d—1,d, each set B, = {x: F(x) = x + ¢} is definable using Succ
and F, for example B_; = {x : Succ(F(x)) = z}. Since the successor is definable in L[<],
it follows that each set B, is definable in L[F,<]. Arguing as in case (1I), all these sets
B, are either finite or cofinite. Since they cover IN, exactly one of them is cofinite and so
F(z) = x + ¢ for almost all and the index ¢ of this cofinite set B..

So cases (1) and (111) do not occur, case (II) states that F' takes almost everywhere the
same number and case (IV) states that F' equals = + d for some integer d on all but finitely
many places. Thus (a = d) holds and the Theorem follows. 1

In cases (1), (11) and (111) it is even shown that QFin[F] without the additonal symbol is
not covered by QFin[<].

Corollary 3.7.3 If QFin[F| C QFin[<] then there is a constant ¢ such that either F(z) = ¢
for almost all x or y —c < F(y) < y—+c for all y.

So functions like F(z) = 2® or F(z) = 2x 4+ 5 define classes QFin[F] which are not
contained in QFin[<]. But the function F' given by F(0) = 1, F(2z + 2) = 2z and
F(2z + 1) = 2z + 3 is somehow in between: on one hand QFin[F] C QFin[<] and on the
other hand QFin[F, <] Z QFin[<].

So one sees that the successor (or equivalently predecessor) is somehow the most natural
example of a function F' with QFin[F] C QFin[<]. Furthermore, the successor defines up to
equivalence the most powerful language of the type L[F] among all F' with L[F, <] = L[<].

41

4 Noisy Data

Many scientific problems are only solved numerically and the correctness of the solution
depends on the computing power and equipment available. This situation forces scientists
to base their theories on data, which might be inaccurate. Modelling the development of
science has therefore to take into account inaccuracies in experimental data.

The present model of inaccuracies guarantees that these inaccuracies are detected at
some future point, that is, succeeding generations of researchers, who have better simulation
techniques and computing equipment, can each remove some of the worst inaccuracies in
their data. Therefore they can replace the old theories by new improved hypotheses.

This — of course a bit simplified — view on scientific progress motivates the following
abstract model of learning from noisy data: The learner wants to design a program for a
given function via outputting better and better hypotheses based on more and more data.
The learner’s input describes the function via giving for each x an infinite sequence of pairs
(x,y) representing the more and more precise simulations which intend to compute f(x)
from z. The z-th sequence converges in the sense that almost all pairs (z,y) are identical
with (z, f(z)). For the ease of notation, the different sequences are merged into one for
all x which contains each pair (z, f(z)) infinitely often and for each x only finitely many
additional pairs of the form (z,y). The learner’s output is a sequence of hypotheses which
converge either syntactically to a program for f or behaviourally correct to f. This notion
of noise is also transferred to language learning from informant and text in a suitable way.

There are various approaches to inference from faulty data [10, 50, 61, 113]; Jain [61]
distinguishes three basic types of models for learning in the limit from faulty data: (a)
the learner receives some spurious data together with all correct data on the concept to
be learned, (b) all data presented is correct but some data about the concept is never
presented and (c) the combination of both kinds of inaccuracies.

Many models of learning from faulty data have the disadvantage, that it is impossible
to define the object to be learned only from the input to the learner. If for example in
case (a) information (0,0) and (0, 1) are both supplied to the learner, then it is impossible
to know which one is correct, that is, whether f(0) = 0 or f(0) = 1. The same holds if
according to (b) no statement of the form (0,y) is made at all. The learner therefore has
to overcome this gap by a priori knowledge about f, for example, that always f(0) = f(1)
and f(1) is specified uniquely on the information supplied to the learner.

The present model solves this problem by presenting the correct information infinitely
often while the incorrect one occurs only finitely often, that is, f(z) = y iff (z,y) occurs
infinitely often on the learner’s input-tape. During the inference process, the learner still
has the problem not to know whether the current input is correct, but in the limit it
turns out which data is correct and which is incorrect; thus the learner needs less a priori
knowledge for learning in the limit.

So the noisy inference considered here can be put into Jain’s first category (a), that
is, learning with additional spurious information. The noisy texts in this context are
a combination of the intrusion texts as defined by Osherson, Stob and Weinstein [113,
Exercise 5.4.1E| which may contain finite additional false data-elements and the fat texts
(113, Section 5.5.4] in which each data-element appears infinitely often. Learning from
texts and learning from fat texts are equivalent models [113, Proposition 5.5.4A]. But
the intrusion texts are more restrictive than noisy texts as defined below since the class
{{0},{1}} can be learned from noisy text but not from intrusion texts.

One main topic of this chapter is to look at relationships of noisy learning in the limit
on one side and noise-free finite learning on the other side. It turns out that removing noise

42

allow to bring down learning in the limit to finite learning, provided that some “additional
computing power” is added in form of the oracle K.

e Learning Functions or Languages from Noisy Informant
The power of this learning criterion turned out to be equal to that of finite learning
(from informant) with K-oracle.

e Learning Languages from Noisy Text
This notion turned out to be incomparable to finite language-learning from text with
any oracle. So the result above does not transfer.

e Learning Uniformly Recursive Families of Languages from Noisy Text
In this context, learning from noisy text is more powerful than finite learning with
K-oracle from noise-free text. Here the inclusion holds in one direction and is proper,
therefore the situation is somewhere between those of the previously mentioned sce-
narios.

Furthermore relativizations and variants of these results are studied. The last section deals
with weaker forms of identification such as behavioural correct and partial identification
[19, 113]. In the setting of partial identification, a single machine can learn all languages
from text [113]. This result is transferred to the setting of noisy text, which may contain
only finitely many incorrect data-elements. But the result cannot be transferred to very
noisy texts 7" whose only requirement is that a data-element w occurs infinitely often in 7°
iff it belongs to the language L to be learned.

4.1 Language Learning

Languages are enumerable sets. Since there characteristic functions is in general not com-
putable, one normally describes them by programs which generate all their elements. So it
is quite natural, to learn them from a data presentation related to this description: a text
is just a list of all elements of a language in an arbitrary order. A learner then learns a
language L iff it succeeds with every legal description, in this case the learner has to find
a program generating the language from every text of the language. In addition to this
new form of input, one also transferred the traditional input f(0)f(1)... for functions f
to languages, which is there called an informant.

Besides these two basic notions, this section also considers noisy versions of these no-
tions. Texts are already more difficult to deal with than informants since they provide
only information on the elements in the language, but no direct information on those not
in the language. Noisy texts which contain in addition s to the elements also some noise
are of course even more difficult to deal with. All notions of noisy input have here in
common, that they determine in the limit which elements belong to L and which not.
The definitions of informant and noisy informant are stated in the versions for functions
since the characteristic function is — formally — also nothing else than a (nonrecursive)
{0, 1}-valued function.

Definition 4.1.1 The input 7 is always an infinite sequence of data-elements describing
the object to be learned. T can be specified in six different ways. In the definitions L
stands for a language and f stands either for a recursive function or the characteristic
function of a language L.

43

e An informant for f is an infinite sequence of pairs such that the pair (x, f(x)) occurs
for every x. In this case of learning from noise-free informant it is convenient to
present the data in the default ordering and to give the values f(0), f(1), ... instead
of the pairs (0, f(0)), (1, f(1)), ...; in particular a string o = apay .. .a, represents
the first n + 1 values f(0), f(1), ..., f(n).

e A noisy informant for f is an infinite sequence such that every pair (z, f(x)) occurs
infinitely often in this sequence while for each x only finitely often some data-element

(x,y) with y # f(z) occurs.

e A wvery noisy informant for f is an infinite sequence such that every pair (z, f(z))
occurs infinitely often in this sequence while for each = and y with y # f(x) the pair
(x,y) occurs only finitely often. But in contrast to the noisy informant, it is legal
that for fixed = the total amount of all occurrences of pairs (z,y) with y # f(z) is
infinite.

e A text for L is an infinite sequence of numbers such that every x € L occurs in
the text and no x ¢ L. In texts may also occur the symbol # which stands for void
information — this symbol is necessary since otherwise the empty set would not have
a text.

e A noisy text for L is an infinite sequence of numbers such that every x € L occurs
infinitely often in the text and the total amount of occurrences of x ¢ L is finite.

e A wery noisy text for L is an infinite sequence of numbers such that every z € L
occurs infinitely often in the text and every x ¢ L occurs only finitely often.

Informant and noisy informant for sets are defined by using the characteristic function of
L as the function f in the first two definitions. In the third definition, any very noisy
informant 7 for L can be turned into a noisy one by removing all data-elements (z,y) with
y > 1 from T'. Thus the first three definitions apply for functions and the first two together
with the last three apply for sets.

All these forms of input can be combined with traditional learning criteria for functions
and one obtains the corresponding variants for languages learning from informant or text
as well as for learning functions or languages from the corresponding noisy form of input.
The definition shows how this is done for learning languages in the limit from text or
informant.

Definition 4.1.2 A learner M learns L in the limit from some given sequence T iff M (o) =
e and e generates L for almost all o < T If this sequence T is just L(0)L(1)... then one
just says that M learns L in the limit from informant. If T is a text and if M succeeds on
every text 1" for L, then one says that M learns L in the limit from text. So the notion of
Ex-learning functions has two generalizations for Ex-learning sets:

S € Ex iff some recursive machine M learns every f € S
from the informant for f in the limit.

S € ExInf iff some recursive machine M learns every L € S
from the informant for L in the limit.

S € ExTxt iff some recursive machine M learns every L € S
from every text for L in the limit.

44

Similarly one can define the corresponding versions for Finlnf, FinTxt, BCInf and BCTxt
of finite and behaviourally correct language learning. Besides them, the following three
learning criteria are considered.

e Noisy Inference (Noisy). S € Noisy via M means that S is a class of recursive func-
tions such that M from any noisy informant of some function f € S computes a
finite sequence of guesses such that the last guess is a program for f. Noisylnf and
NoisyTxt are the corresponding notions for learning languages from noisy informant
or text in the limit. Related criteria as learning from very noisy informant or text
are defined analogously but do not have own symbols.

e Dual Strong Monotonic (SMon?) learning is considered here only with respect to
learning languages from text. M infers L under the criterion SMon?Txt from a text

T for L iff M guesses on T a finite sequence ey, eq,...,e, of grammars such that
W 2W,, D... 2 W, =L |[75, 94].

e Partial Identification. A machine identifies an object partially iff it while reading
a description outputs an infinite sequence of guesses such that exactly one index e
appears infinitely often in the output and this e is an index for the object.

Finite and dual strong monotonic learning are not combined with noisy data.

Language learning from (nonnoisy) texts and informants has been studied from the begin-
ning. Gold [56] showed already, that not all classes of languages are learnable from text. In
particular the class consisting of IN and all finite sets is not learnable from text, even not
under the criterion BC and with access to an arbitrary powerful oracle A. The structure of
the inference degrees induced by the criterion TxtEx does not have any greatest or max-
imal element [64, 113]. An oracle A is trivial iff it is Turing reducible to some 1-generic
oracle B below K which can be obtained by generalizing the techniques from the case
of function learning [43, 132]. The degrees induced by finite learning from text or from
informant coincide with the Turing degrees. Sharma [129] observed that finite learning
from informant can be turned into Ex-learning from text so that one has the hierarchy
FinTxt C Finlnf C ExTxt C ExInf where the inclusions are proper.

Angluin [3] started to study the learnability of those classes S = {Lg, L1, ...} which
have a uniformly recursive decision procedure i,z — L;(x). She gave a characterization
in terms of tell-tale sets: There is an ExTxt-learner for S finding for every L; and every
text T of L; an index j with L; = L; iff there is a uniformly enumerable array of finite
sets Wy(;) such that, for every i and j, the relation Wy, C L; C L; holds only if L; = L;.
This concept was studied extensively, in particular after Jantke [68] introduced a variety of
learning concepts where the learner has to satisfy certain monotonicity constraints as for
example the concept of strong monotonic learning where the learner M can only increase
its hypothesis but not decrease it: L) C Ls(r) for all o, 7. Section 4.6 is dedicated to
the study of learning uniformly recursive families from noisy data.

4.2 Inference From Informant

The main result of this section is, that finite learning from informant with K-oracle equals
learning from noisy informant. This relation motivates the study of connections between
noisy inference and finite inference with oracles.

45

Theorem 4.2.1 NoisyInf = FinInf[K].

Proof The basic idea of the proof is for the first direction is that using the oracle K
it is possible to find some kind of “locking sequence” for the NoisyInf-learner which then
is output by the FinInf[K]-learner. The idea for the reverse direction is, that — even
from noisy informant — it is possible to find in the limit the input first a which the
FinInf[K]-learner needs to make a guess and second the index e which the learner outputs
on input a.

In this proof «, 3 are strings of numbers ranging over prefixes of noise-free informants
while o, 7, are strings of pairs ranging over prefixes of noisy texts. Let [y, 4;,... be an
enumeration of all binary strings of numbers and 7y, 7y, ... an enumeration of all strings
of pairs (z,y) with The main idea of the proof is that the FinInf[K]-learner emulates the
NoisyInf-learner and vice versa. It will turn out that the each learner converges to the
same output as the other one.

NoisyInf C FinInf[K]: Assume that M is a recursive machine which learns a class S from
noisy informant. A string o is called L(0)L(1) ... L(k)-consistent iff

(Vo < k) [if (z,y) occurs in o then y = L(x)].

Now the FinInf[K|-learner N searches — using K-oracle — some kind of “locking sequence”
Nm and then outputs e = M(n,,). Formally N is defined as follows:

N outputs M(n,,) for first pair (m, k) which satisfies the equality M (n,,7) =
M (n,,) for every L(0)L(1)...L(k)-consistent string 7.

Note that the query “(V L(0)L(1)...L(k)-consistent 7)[M(n,7) = M(n,)]?” is indeed
recursive in K.

For the verification assume now that on the inference of L € S, N outputs e = M (n,,)
for some pair (m, k). Let w(g) = (z, L(x)) for all z, y where (z,y) = -(z+y)-(z+y+1)+z.
Now 9, wowqws . . . is a noisy informant for L and thus M has to converge on this informant
to a correct index. Since all strings 7, = wow; ... w, are L(0)L(1)...L(k)-consistent,
e = M(n,m,) and e is an index for L. Thus if N outputs a guess then this guess is
correct.

So it remains to verify that N always finds a pair (m, k). Assume that N does not
converge, that is, for every o = n,, and every k there is a L(0)L(1) ... L(k)-consistent string
T with M(o1) # M(o). Let o9 = (0,0). For n = 1,2,..., there are L(0) L(1)...L(n)-
consistent strings 7,, such that

M(o,) # M(o, 1) where
0, = 0,-1(0,L(0))(1,L(1)) ... (n,L(n)) 7.

It follows that T" = lim,o, is a noisy informant for L and that M diverges on T, a
contradiction. Thus N infers every L € S and NoisyIlnf C FinInf[K].

FinInf[K] C Noisylnf: For any oracle X let N denote that N is equipped with the
oracle X. During the proof K is sometimes replaced by a recursive approximation K, =
{ap,a1,...,as} where ag,ai,... is a recursive enumeration of K; therefore it is necessary
to denote explicitly the oracle supplied to N at the different situations. So let N¥ be a
FinInf[K]-learner for some class S.

A string « is called o-consistent iff for all x € dom(«) the pair (z,«(z)) occurs in o at

46

least as often as any other pair (z,y). Now

N¥iel (@) for the first o-consistent a € {3y, B1, ..., B}
M(o) = which satisfies N¥o1 (o) | # 7 within |o| steps;
? otherwise, that is, there is no such a.

M Noisylnf infers S: Let 1" be a noisy informant for L and let a = 3; be the first string
such that o < L, that is, a = L(0)L(1)...L(n) for some n, and N¥(a) = ¢ #7?. Then
« is o-consistent for almost all ¢ < T. Let j < i. Either 3; # L or N¥(3;) =7. In the
first case (3; is not o-consistent for almost all o < T', in the second case N*=1(3;) =7 for
almost all 0 < T'. So these 3; are considered only by finitely many o < T and the output
of M is e = N¥(a) for almost all o < T'. Thus M converges on every noisy informant 7’
to the index e of L and so M infers S from noisy informant. |

It is easy to see that the proof holds as well for learning functions as well for learning enum-
erable sets; the only major changes in the proof are to replace {0,1} by IN and L by f.

Corollary 4.2.2 A class S € REC of functions can be learned from noisy informant in
the limit ioff S can be learned from noise-free informant finitely using the oracle K, that s,
Noisy = Fin[K].

Furthermore the proof of Theorem 4.2.1 relativizes. Since the Turing degrees coincide with
the inference degrees of finite learning, that is, since Finlnf[A] C Finlnf[B] & A <, B
[43, Theorem 6.36], the relativized version of this theorem also characterizes the inference
degrees for noisy informant. In the nonrelativized world, NoisyInf is between Finlnf and
ExInf.

Corollary 4.2.3

(a) NoisyInf[A] = FinInf[A'].

(b) NoisyInf[A] C NoisyInf[B] iff A’ < B'.
(c) Finlnf C NoisyInf C ExInf.

While for sets the definitions of noisy informant and very noisy informant are equivalent,
this equivalence does not hold in the field of inferring functions. But there remains a
connection:

Theorem 4.2.4 [f S C REC can be learned from noisy informant and some K-recur-
sive function f bounds all functions g € S, then S can also be learned from very noisy
informant.

Proof Let M infer S from noisy informant and let f; be a uniform recursive sequence
of functions which approximate f in the limit: (Vz) (V*°s) [f(z) = fs(x)]. Since f only has
to be an upper bound, without loss of generality the f, approximate f from below.

Every very noisy informant 7" = wywy ... for ¢ € S can be translated into a new noisy
informant 7" = vgv; ... as follows:

{ws ifws:(w,y) andyéfs(x);
Vg =)
otherwise.

Also in T" every pair (z, g(x)) occurs infinitely often since (x, g(z)) occurs infinitely often in
T, g(z) < f(z) and therefore g(z) < fs(x) for almost all s. On the other hand, if y > f(z),
then y > fs(x) for all x and therefore (x,y) never occurs in 7. Further if y < f(x) and
y # g(x), then (z,y) occurs only finitely often in 7" and therefore also only finitely often

47

in T'. Thus 7" is a noisy informant for g. Since this translation is computable and can be
done on all finite initial segments of 7', M can infer g from 7". |

The converse does not hold. For example the class {€1°0% : e € IN} can be learned from
very noisy informant, but it has no bound on f(0) at all. On the other hand, the condition,
that f is K-recursive cannot be weakened, since the class

{0°90° :z e NA1 <y < f(2)}

can be learned from very noisy informant iff some K-recursive function majorizes f.

4.3 Inference From Text

Comparing the definition for learning from noisy informant with those for learning from
noisy text and from very noisy text, the second seems more to fit to its counterpart than
the first one. But it turns out that learning from very noisy text is a very restrictive
concept since here two restrictions add - that of texts (compared to informant) and that
of severe noise. Indeed the class of all singleton sets can only be learned from noisy text
and not from very noisy text. This result has a mirror-image: the class of all constant
functions can only be learned from noisy informant but not from very noisy informant. So
the next theorem indicates why noisy text is more interesting than very noisy text and
noisy informant is more interesting than very noisy informant.

Theorem 4.3.1 The class S containing all singleton sets {x} can be learned from noisy
text but not from very noisy text.

Proof There is an easy algorithm to infer S from noisy text: For each input ocw the
learner just guesses {w}. Since for each given noisy text wow; ... almost all w; are the
single data-element z of the singleton language {x} to be learned, this algorithm is correct.

Now the assumption that some machine M learns the sets {1}, {2},... from very noisy
text is used to construct a very noisy text 7" for the set {0} on which M even does not
converge to a guess. Let oy be the empty string and o, = 0,0n* for the first & with
M (0,,0n*) outputting an index for {n}. Such a k must exist since 0,,0n> is a very noisy
text for {n}. The limit 7" of all these o, is a very noisy text for {0} since 0 occurs infinitely
often (in each o, exactly n times) and each n occurs only the k times for the & in the
definition of 0, ;. Since M outputs infinitely many different indices on 7" (for each set {n}
at least one), M does not converge on 7T'. So there is no machine which infers S from very
noisy text. |

Locking sequences are an important tool in understanding learning from text. Therefore
it is useful to define them also for inference from noisy text. Let M infer L. o is called a
locking sequence for L iff

e M(o) =e with W, = L and
e M(or) = M(o) for all T € L*.

Since L = W,, o is also called a locking sequence for the index e. The proof, that a locking
sequence exists, is almost identical to the one in the case of learning from noise-free text
and is therefore omitted. Using the concept of locking sequences, the next theorem shows,

48

that it is impossible to learn a class of sets from noisy text, if some of the sets is a proper
subset of some other.

Theorem 4.3.2 If L' C L then {L', L} ¢ NoisyTxt.

Proof Let M infer at least L and has a locking sequence o for L. Further let wqw ... be
an enumeration of L' in which every element of L' occurs infinitely often. Now cwyw; . ..
is a noisy text for L', but since e = M(0) is an index for L and M (cwow; ...w,) = e for
all n (by wp,wy,... € L), M does not infer L’ from noisy text. [

Case, Jain and Sharma [27, 28] generalized this theorem to learning with errors in the
sense that the learner outputs in the limit only grammars which generate a finite variant
of the set to be learned. The result is now that whenever L' C L and L — L' is infinite
then {L, L'} cannot be learned by a learner permitted to make finitely many errors.

They also showed that for BC-learning from noisy text with finitely many errors (that is,
the learner outputs on every noisy text 7" for an L € S almost always some grammar which
differs from L only at finitely many places) is always possible if S is uniformly recursive.
In particular if an index is given for this uniform enumeration, it can be turned effectively
into a machine which learns S from noisy texts with finitely many errors behaviourally
correct.

The nonlearnability of these classes depends besides noise on a second factor: the noisy
text may be uncomputable. Case and Jain [24] also analyzed the case, where noise is
present but the noisy text must be computable. Within this setting, classes like {(),IN}
can be BC-learned, but syntactic convergence is still impossible: For Ex-style learning,
computable noisy texts are as hard as noisy texts in general.

The severe restriction from Theorem 4.3.2 contrasts with the fact, that if the sets to
be learned are the graphs G of a set of functions, then there is no difference between noisy
and noise-free text, so learning from noisy text is in general not so restrictive as learning
from noisy informant.

Theorem 4.3.3 Let Sgrapn be the set of the graphs of some set of total recursive functions.
Then Sgraph € NoisyTxt < Sgrapn € ExTxt.

Proof It is sufficient to proof the direction “Sgrapn € ExTxt = Sgrapn € NoisyTxt”
since the other one follows directly from the definitions. So let Sgrapn € ExTxt via M and
T = wowy ... be a noisy text for the graph of a function ¢g. 1" contains only finitely many
(x,y) with y # g(x) while each pair (z, g(x)) occurs infinitely often in 7. There is a first
k such that the data-elements wy, w41, ... are all correct, that is, are of the form (z, g(x))
for some x. So wgwy1wkys ... is a noise-free text for graph(g) and M converges on this
text to an index of graph(g). The idea is now that the NoisyTxt learner N approximates
k from below and then simulates M on the data-elements starting with w. This can be
done since each incorrect element is discovered in the limit. Formally /V is given as follows.

On input wow; ...w,, N searches the least m < n such that the information
Wiy Wit - - -, Wy 18 Ot contradictory, that is,

Vi, j,2,y,2) [m < i < j <nAw; = (v,y) Nw; = (x,2) = y = 2],
and then N outputs M (w, W1 - .. wy).

For almost all n, this m (depending on n) coincides with & and therefore

(Vn) [N(wowy . .. wy) = M(wgwgq ... wy)]

49

Thus N on the noisy text wow; ... and M on the text wgwgyy ..., both converge to the
same index for graph(g). So Sgraph € NoisyTxt via N. 1

Some classes of functions can be inferred in the limit, but are not in FinInf[A] for any
oracle A. The class

{f: (v®°z)[f(z) = 0]} € ExInf — Finlnf[A]

is an example. So their graphs are ExTxt and NoisyTxt learnable, but not FinInf[A] and
FinTxt[A] learnable for any oracle A. Therefore inference from noisy text is not contained
in finite inference relative to any oracle:

Corollary 4.3.4 NoisyTxt Z FinTxt[A] for all oracles A.

So in contrary to the case of the informant, the classes FinTxt[K| and NoisyTxt do not co-
incide. Indeed Theorem 4.3.7 will show, that FinTxt[A] and NoisyTxt are incomparable for
all oracles A. Since Theorem 4.3.7 also studies the connections FinTxt[A] C NoisyTxt[B]
it is worth to look first at the inference degrees with respect to learning from noisy text:

Theorem 4.3.5 The following holds for all oracles A and B:

(a) If A is enumerable then NoisyTxt[A] C NoisyTxt[B] < A <r B.

(b) If A, B >¢ K then NoisyTxt[A] C NoisyTxt[B] < A’ < B'.

(c) NoisyTxt[A] = NoisyTxt iff A <y K and A has recursive or 1-generic degree.

Proof (a): Obviously A <r B = NoisyTxt[A] C NoisyTxt[B] holds. For the converse
consider the class S consisting of the enumerable set A and all sets {z} with = ¢ A. It will
be shown that S € NoisyTxt[A] and S € NoisyTxt[B] only for B > A.

The NoisyTxt[A]-learner M for S is given as follows: M (wow; ... w,) outputs a canon-
ical index of the set {w,} if w, ¢ A and a fixed index of A iff w, € A. M is obviously
A-recursive; further if wyw ... is a noisy text for {z}, then w; = « for almost all i and M
converges to an index for {z}. If wowy ... is a noisy text for A then w; € A for almost all
¢ and M almost always outputs the same index for A.

On the other hand, assume that S € NoisyTxt[B] via some B-recursive N. A has
a locking sequence o. If x ¢ A, then N converges on oz™ to an index of {z}, thus
N(oz™) # N(o) for some n. If x € A, then N(oz") = N(o) for all n since o is a locking
sequence for A. In short

r€A & (Yn)[N(oz") = N(o)]
and the enumerable set A is coenumerable relative to B. Thus A <, B.

(b): Let A,B >y K, A <y B" and S € NoisyTxt[A] via M. It is shown that M can
be translated into a NoisyTxt[B]-learner N for the same class S. Let 19,7y, ... be an 1-1
enumeration of all strings in IN*. The set of all (e, m) such that 7, is locking sequence for
W, is recursive in A’ by the formula

E ={(e,m): (vr € W) [M(nm7) = M (1m)]}-

Thus E has a B-recursive approximation F, such that without loss of generality no F,, is
void. The new B-recursive machine N infers L € S from the text wyw; ... as follows:

For input wywy ... w, find the first pair (e,m) € E,, such that the norm
e+m+{i <n:w; ¢ W}

20

of (e,m) with respect to the current input wow ...w, is minimal among the
norms of all (¢/,m') € E, with respect to the same input wow ...w,. Then
output e.

Since B >p K the W, are uniformly decidable relative to B. Since for each n there is a
pair (e,m) € E,, the algorithm finds at least one e. Furthermore N has to compare the
pair (e,m) only with a finite number of other pairs (¢/,m') since almost all pairs (¢/, m’)
have a higher norm than (e, m). Thus the algorithm terminates using the B-oracle.

Since for every set L € S there is a pair (m,e) € E with W, = L, either the algorithm
finds this pair for sufficient long n and converges to e or the algorithms converges to e’
for some other pair (m',e’). Assume by way of contradiction, that the algorithm takes
the second case for some e’ with W, # L. If there is some w € L — W, then this w
occurs infinitely often. While the norm of (m,e) with respect to each input wow; ...w, is
bounded by a constant ¢, the norm of (m’,¢e') is greater than the number of occurrences
of w in the input seen so far and so the norm of (m',e’) is almost always greater than ¢
and greater than the norm of (m,e). From this contradiction it follows that the algorithm
takes ¢’ only if L C Wy. Since (m/,¢') € E, it follows that M(n,,7) = ¢’ for all 7 € W,
and in particular M(o'r) = ¢ for all 7 € L*. Since M converges to €' on some noisy
text 1" € oL, ¢/ must be an index for L, a contradiction. So this case also fails and N
infers S.

For the converse direction, let C' be a retraceable set of degree A’, which is coenumerable
in A. Using this set C' as a parameter, the following class S € NoisyTxt[A] is constructed
coding the set C such that every NoisyTxt[B]-learner N allows to enumerate C' in the limit
and thus to compute A in the limit. The class S consists of the sets

{z,0} iff >0 and z€C,
{z} iff x>0 and z ¢ C.

Further Cy denotes an A-recursive approximation of C. Now given any input o, let z(0)
denote the last y > 0 which occurs in o, that is, z(0) = y & 0 € N*y0*. If o0 € 0* then
z(o) = 0. Now M (o) outputs some index of the set

{2(0),0} if (o) € Cly
{z(0)} otherwise.

If T is a noisy text for {0, 2} or {z}, then z(c) = x for almost all ¢ < T. Further z € C),|
iff z € C for almost all 0 < T. So S € NoisyTxt[A] via M.

Thus S € NoisyTxt[B] via some B-recursive N. If x € C then there is a locking
sequence o such that N(o7) = e for some index e of {0,z} and all 7 € {0,z}*. On the
other hand if # ¢ C then N converges on every text oz* to an index for {x}. Thus

reC & (do)(e) (Vn)[0 € W, A N(oz") = €.

Therefore C' is enumerable in B’; since C' is retraceable, C' is even recursive in B’ and
A" < B’ follows.

(c): The proof of this fact is similar to that of [89, Theorem 10.5] concerning ExTxt
inference degrees. |

Theorem 4.3.5 also holds with ExTxt instead of NoisyTxt [89, Theorems 10.2, 10.4 and
10.5]. So it is likely, that the structures of the ExTxt and NoisyTxt inference degrees
coincide and the following conjecture holds:

ol

Conjecture 4.3.6 NoisyTxt[A] C NoisyTxt[B] < ExTxt[A] C ExTxt[B].
The next result deals with the relation between FinTxt[A] and NoisyTxt[B].
Theorem 4.3.7 FinTxt[A] C NoisyTxt[B] & K <r BA (A& K)' <r B".

Proof The proof consists of three parts:

(a) If FinTxt C NoisyTxt[B] then K <r B.

(b) If FinTxt[A] C NoisyTxt[B] then (A ® K)' <, B'.

(c) f (A® K)' <r B" and K <r B then FinTxt[A] C NoisyTxt[B].

(a): Let S contain K plus all singletons {z} with x ¢ K. There is a recursive function f

such that
K ifzeK;

Wi = {{x} ifod K.
Now the FinTxt-learner waits for the first x to appear on the input, outputs the guess
W) and terminates. The proof of Theorem 4.3.5 (a) shows that S € NoisyTxt[B] only
if K <r B.

(b): Let FinTxt[A] C NoisyTxt[B]. Let C be a retraceable set of degree (A @ K)" which is
coenumerable in A ® K. So C is the domain of the partial function ¢*®*. Let U, contain
all z such that the computation of 4®%v(x) terminates within y steps and equals to that
relative to A® K: whenever an odd number 22+ 1 is queried, then either z € K, or z ¢ K.
Furthermore, all queries are made to numbers below y. Note that U, C C. Further each
z ¢ C is in almost all sets U,. The sets U, are uniformly coenumerable in A and there is

a recursive function h such that U, = W,f(zye)A:Ky}. Now let S consist of the sets

{22,1,3,5,7,...} iff ze€C,
{2z,2y + 1} it xel,.

First S € FinTxt[A] is shown. The learner waits until the even number 2z and an odd
number 2y + 1 are in the input. Then it outputs the index f(z,y) where

i 1S. 1 z€A:z
Faoy) = { {2x,2y + 1} if z € Uy, that is, if z ¢ W’;{(ye) <y};

{22,1,3,5,7,...} otherwise, that is, if x € W,f(zye)A:Ky}.

The function f is A-recursive and queries A only below y. f(z,y) contains a table of

A(0), A(1),..., A(y) and first enumerates 2z and 2y + 1 into Wy(,,). Then the machine

emulates the enumeration of W,f(zye)A:Ky} until z is enumerated into this set; if this happens

then all odd numbers are enumerated into Wy,). So the learner guesses {2z,2y + 1} if
x € U, and guesses {22,1,3,5,7,...} ifv ¢ Uy, in particular if # € C. Thus S € FinTxt[A]
and S € NoisyTxt[B] via some B-recursive M.

If z € C then M infers V, = {2x,1,3,5,7,...} and V, has a locking sequence. If z ¢ C|
then = € U, for some y. Then M infers {2z,2y + 1} and V, has no locking sequence since
{2z,2y + 1} C V,. So the equivalences

xr € C < V. has a locking sequence
& (o) (Fe) (Vr € V') [M(oT) = e N |We| > 2]
hold. C' is enumerable in B’. Since C' is retraceable, C' <r B' and (A® K)' <r B'.
(c): f B>r K and (A® K)' <p B’', then NoisyTxt[A @ K] C NoisyTxt[B]. So it remains
to show that FinTxt[A] C NoisyTxt[A & K].

Let S € FinTxt[A]. Form the definition of finite learning follows, that there are
A-recursive functions f, g such that for every L € S:

52

o If Df(i) C L then Wg(i) =L;
e There is some 7 with Dy C L.

Such a sequence can be obtained by A-recursively enumerating all strings ¢ on which
a given FinTxt[A]-learner M outputs some e #7. Then for the i-th such string o;, let
Dy = range(o;) and g(i) = M(0;). Without loss of generality S # {0} and therefore
Dy(iy # 0 for all . Now the following machine N infers S from noisy text:

e For all i < |o|, N calculates ¢; which is the maximal number y such that every
xr € Dy(;y occurs y times in o.

e N finds the least ¢ with ¢; > ¢; for all j < |o]|.
e N outputs ¢(j) for the least j with Dy € Wy and Dy © W)

In a given text T for L, only finitely often, say k times, occurs some z ¢ L. On the other
hand each x € L occurs infinitely often in 7. There is a minimal j with D) € L and
W) = L. Every x € Dy(;) occurs at least k+1 times in almost all o < T, thus for almost
all 0 X T', the 7 computed in the second step satisfies Wy;) = L. Then Dy € Wy and
Dy € Wy(). Furthermore, j is the smallest index with this property and N outputs g(j).
It follows that N converges on T to ¢g(j) and that N infers S from noisy text. |

So the only relation is FinTxt[K] C NoisyTxt[K] and there is no equivalent statement to
FinInf[K] = NoisyInf. The class

(N-{i}:ieN}

is learnable from very noisy text but not FinTxt[A] learnable for any oracle A.

4.4 Characterizing Finite Learning From Text With K-Oracle

Since the equivalence NoisyInf = FinInf[K] did not transfer to learning from text, the
question arrizes whether there is an alternative characterization for the class FinTxt[K].
Indeed such a characterization can be found using monotonicity notions.

Kapur [75] introduced (in the restricted context of section 4.6) the notion of strongly
dual monotonic inference, that is, whenever the learner makes a mind change from e to €',
then the new language must be more special: W,r C W,. Jain and Sharma [65] and Kinber
and Stephan [80] generalized this and other notions of monotonic inference to learning
enumerable languages. While the class FinTxt[K| cannot be characterized in terms of
noisy inference, it turned out to be equivalent with strongly dual monotonic inference
without oracle. The reader may find more information on the field of monotonic learning
in [68, 75, 94, 146, 150].

Theorem 4.4.1 S € FinTxt[K] iff S can be learned via a recursive and strongly dual
monotonic machine.

Proof SMoniTxt C FinTxt[K]: Assume that M SMoniTxt infers S. Then a new
FinTxt[K]-learner N for S can be defined as follows:

|7| < |o| and range(r) C range(o);

e if there is a locking sequence 7 for W, with M (1) = e,
N(o) =
? otherwise.

23

Further N is required to make no further mind change if it once has made a guess. Since
N has only to check the strings 7 in a finite set whether they are locking sequences for
Wis(ry or not, this can be done with K-oracle: 7 is a locking sequence iff M(7n) = M(7)
for all n € Wi()*. By the strong dual monotonicity and the construction it holds that
range(t) C range(oc) € L C Wiyry. Since some text for L starts with 7 and since M
makes no mind change on this text after guessing M (7), M(7) is an index for L. On the
other hand there is a locking sequence 7 and whenever o is long enough, that is, whenever
range(o) 2 range(r) and |o| > |7|, the locking sequence is discovered.

FinTxt[K] € SMon4Txt: This proof is similar to the corresponding part of Theorem 4.2.1.
Given the FinTxt[K]-learner M, the guess N (o) of the new SMon“Txt-learner is calculated
as follows:

e Let s = |o]. N searches for the shortest 7 < o with M%s(7) #7.
e If there is no such 7, then N outputs some index of IN.
e Otherwise N computes e = M*:(7) and outputs some index f(e) of the set

W, if MEt(n) = M%:(n) for all n < 7 and t > s;
Wiey =4 N otherwise, that is, if M*t(n) £ M =(n)
for some n < 7 and t > s.

The condition in the “otherwise”-case is enumerable, thus an uniform algorithm for
Wy (e first enumerates W, until it discovers that the condition in the “otherwise”-case
holds and then enumerates the whole set IN. So f is recursive.

The inference process converges to the guess e of M and all previously guessed grammars
enumerate IN — if not directly then at the moment that an error in the estimation MX: is
discovered. 1

One might ask, if this theorem relativizes. It does not relativize in the obvious way; the
relativization needs the concept of inferring with finitely many queries. A machine M
SMon!Txt[Ax] infers L iff M is strongly dual monotonic and L has a locking sequence
o such that M(o7r) = M(0o) for all 7 € Wy * and M makes the same oracle queries
while calculating M (o) and M(o7). An equivalent definition is that M on every text for
L makes only finitely many queries to A. See [43, Definition 2.23 and Section 5.2] for more
information. Now the relativizations are:

Theorem 4.4.2

(a) SMondTxt[A*] = FinTxt[4A & K].

(b) SMon‘Txt[A] C FinTxt[A'].

(c) SMoniTxt[A] = FinTxt[A'] for 1-generic sets A.
(d) SMon‘Txt[K] C FinTxt[K"].

Proof The proofs of (a) and (b) follow the corresponding parts of Theorem 4.4.1. (c)
follows from the fact, that A" =r A @ K for every 1-generic set A. The inclusion in (d)
follows from (b) and the class S containing the sets

{z} iff >0 and z € K"
{0,2} iff >0 and z ¢ K"

witnesses that the inclusion SMonTxt[K] C FinTxt[K'] is proper: The proof of The-
orem 4.3.7 shows, that S € FinTxt[K'| since K" is enumerable in K'. To show that

o4

S ¢ SMondTxt[K] assume by way of contradiction, that a K-recursive machine M infers
S dual strong monotonically from text. If z € K", then M infers {z} from the text z>°
and there is an n such that M (z™) outputs some index for {z}. Otherwise (z ¢ K") the
learner M must identify {0,z} on each text x"*10> and therefore M (z") always outputs
a language which not only contains x but also 0. Thus

re K' & (Hn) [0 ¢ WM(a:n)]-

Since the computation of M(z") and the test, whether 0 ¢ Wy, are recursive in K,
K" would be enumerable in K, which is obviously not possible. Thus such an M does not
exist and the inclusion is proper. |

4.5 Informant Versus Text

It follows immediately from the definition that every class of enumerable sets, which is
learnable from text, is also learnable from informant. But this does not hold in the case
of noisy inference, since the definitions of noisy text and noisy informant do not match so
good as in the standard case. So the following holds:

Theorem 4.5.1 NoisyInf[A] and NoisyTxt[B] are incomparable for all oracles A and B.

Proof The class {(),IN} is finitely learnable from noisy informant, but not learnable
from noisy text by Theorem 4.3.2. The class mentioned to prove Corollary 4.3.4 is in
NoisyTxt[B] for all oracles B, but not in FinInf[A’] for any oracle A, in particular not in
NoisyInf[A]. |

So it is better to look for inclusions which hold under additional constraints. The first is to
consider very noisy text versus (very) noisy informant; note that in the case of characteristic
functions of sets, there is no difference between noisy and very noisy informant. Given a
noisy informant 7' = (wo, by), (wy,by), ... for a set L, the sequence T containing all w;
with b; = 1 is a very noisy text for L: w; occurs in 7" infinitely often iff (w;, 1) occurs in T’
infinitely often iff w; € L. Thus one can translate every noisy informant into a very noisy
text and simulate the machine learning from very noisy text. Thus the following theorem
holds (and also relativizes to every oracle):

Theorem 4.5.2 Fvery class of sets learnable from very noisy text is also learnable from
noisy informant.

While NoisyInf[A] Z NoisyTxt[B] for all oracles A and B, there is a connection if the
machine learns from text without any noise:

Theorem 4.5.3 NoisyInf[4] C ExTxt[B] & A' <p B'.
Proof (=): Let Noisylnf[A] C ExTxt[B]. Further let C' be a retraceable set of degree

A" and let the class S contain the sets
X, = {z,z+1,2+2,...} iff zeC;
Xx,y = {x,x+1,x+2,,x+y} lﬁ (L‘%C and yeN

The class has a FinInf[A']-learner which on input o outputs indices of the following sets:

X, ifxeC and o > 071;
Xyy ifzé¢C and o> 071-190;
? otherwise.

95

The learner makes only one guess and is recursive in C, that is, recursive in A’. From
FinInf[A"] = NoisyInf[A] follows, that S € ExTxt[B] via some N.

If z € C then N has a locking sequence o for the set X,. If x ¢ C then there is no
locking sequence o € X7 : The range of o is finite and there is some y > max(range(o)) such
that M (o) is not an index for X, ,. Therefore there is some 7 € X with M(oT) # M(0).
So the equivalences

x € C & N has alocking sequence on the set X,
& (Joe X)) (Vre X)) [N(or) = N(o)]

hold and show that C' is enumerable in B’. Since C' is retraceable, C' is recursive in B" and
A <r B.

(«<): From S € NoisyInf[A] and A" <p B’, it follows by Corollary 4.2.3 (a) that S €
NoisyInf[B] via some B-recursive learner M. Now a B-recursive ExTxt[B] learner N just
translates the given text wgw; ... into a noisy informant vy vy ... for M and emulates M:

From input wy w; ... w, compute vy, vy, ..., v, via

G ifie {wo,wi, ... w5
Uiing) = (4,0) otherwise (i ¢ {wo, w1, ..., w;});

and output M(vyvy ... vy,).

Since j < (i,j) the values vy, vy,...,v, are computed without accessing the input-text
beyond w,, thus the computation is well-defined. Furthermore the whole sequence vy v; ...
is a noisy informant for L: if ¢ ¢ L then i does not occur in the sequence wpw; ... and
thus only (¢,0) occurs in the informant. If ¢ € L then w, = i for some n and v ;, = (7, 1)
for all j > n, that is, (i,1) occurs infinitely often in the noisy informant and (7,0) only
finitely often (at most n times). So N behaves on the text wyw; ... exactly as M on the
noisy informant vy v, ... and thus S € ExTxt[B] via N. |

4.6 Learning Uniformly Recursive Families

Angluin [2] introduced the concept of learning, where the class S to be learned must have
a uniformly recursive representation Ly, L1, ..., that is, S = {Lgy, Ly, ...} and the function
giving the characteristic function Lg(x) for an index k and an input z is effective in both
parameters k and x. This 4.6-th section is dedicated to this model of learning uniform
recursive families of languages. Zeugmann’s Habilitationsschrift [150] gives an overview
on this field. There are three well-known forms of learning uniformly recursive family
{Ly, Ly, ...} of languages:

e Exact Learning: The learner outputs indices of the original uniformly recursive
farnlly {Lo, Ll, .. }

e Class Preserving Learning: The learner outputs indices of some uniformly recur-
sive famlly {H[], Hl; .. } with {L[]; Ll; .. } = {H(), Hl; .. }

e Class Comprising Learning: The learner outputs indices of some uniformly re-
cursive famlly {H(), Hl; .. } with {Lo, Ll; .. } g {H[], Hl; . }

26

In the context of noisy inference these three notions turn out to be equivalent. Furthermore,
they are very restrictive, therefore the results, in particular with respect to relativization,
are different from those in section 4.3

Theorem 4.6.1 For a uniformly recursive family S = {L;} the following are equivalent:
(b) S is exactly learnable from noisy text.

(c) S is class preserving learnable from noisy text.

(d) S is class comprising learnable from noisy text.

Proof (b = c) and (¢ = d) are obvious. Further (d = a) follows from Theorem 4.3.2
which states that any class learnable from noisy text does not contain two languages such
that one is a proper subset of the other.

(a = b): Let S fulfill the requirement from (a) and let wow; ... be a noisy text for some
Les.

M converges to that ¢ for which the norm i+ [{m : w,, ¢ L;}| is minimal.

For each i, M approximates this norm i+ [{m : w,, ¢ L;}| from below via looking at larger
and larger parts of the input. If L; # L then L; € L, in particular there is some w € L—L;.
This w occurs infinitely often in the input and i+ [{m : w,, ¢ L;}| > i+ |[{m: w,, = w}| =
co. Otherwise L; = L and i + [{m : wy, ¢ L;}| =i+ k where k = |{m : w,, ¢ L}| is finite.
The language L has a smallest index 7. M converges to this minimal index 7 of L since its
norm ¢+ k is finite, less than the norm of every other index and M can exploit the implicit
knowledge that any j > ¢ + k has a norm greater than ¢ + k. |

It is easy to see that Theorem 4.3.2 holds also in a relativized world, that is, that for any
oracle A, L C L' = {L, L'} ¢ NoisyTxt[A]. Since avoiding inclusions is the only restriction
to S and this restriction cannot be overcome, oracles do not help to increase the learning
power:

Theorem 4.6.2 If S is a uniformly recursive family which is NoisyTxt[A] learnable for
some oracle A, then S s already learnable from noisy text without any oracle.

The theorem needs that S is uniformly recursive. Note that this is totally different in the
case of learning arbitrary families of enumerable languages since by Theorem 4.3.7, there is
even no greatest inference degree and the jump of an oracle always supplies more learning
power: NoisyTxt[A] C NoisyTxt[A'].

Case, Jain and Sharma [27] extended the result by showing that a NoisyTxt-learner
for S can be computed from an index of a function ¢, — L;(x) whenever such a learner
exists, that is, whenever L = L' for all L, L’ € S with L C L'. Similarly, a behaviourally
correct learner dealing with recursive noisy texts can be synthesized from an index of a
uniformly recursive family S whenever S is learnable from text in the limit [24].

Theorem 4.6.3 For a uniformly recursive family S = {L;} the following are equivalent:
(a) (Vi) (3 finite set D) (Vj) [D C L; & L; = Lj].

(b) S is exactly FinTxt[K] learnable.

(c) S is class preserving FinTxt[K]| learnable.

(d) S is class comprising FinTxt|[K] learnable.

Proof (b= c) and (c = d) are obvious.

o7

(a = b): Let S fulfill the requirement from (a). The FinTxt[K]-learner asks on input o
with range D always iff D has two incomparable extensions in S. Or more formally, the
learner asks the query

Since D is a fixed finite set, the query is K-recursive. By condition (a) after finite time
the query receives a negative answer. Then the learner has only to output the first index
1 with D C L;; this index exists since o is part of a text of some language L;.

(d = a): If S is class comprising FinTxt[K] learnable, then for each L; there is some string
o such that the FinTxt[K]-learner M makes a guess, which of course is correct, that is,
M(o) guesses L;. Assume that D = range(o) C L;. Then on one hand o is also a prefix
of some text for L; and on the other hand M does not change its mind after guessing L;
on input o. It follows that L; = L; and for each ¢ there is a D satisfying condition (a). 1

This result has an effective variant [152, Theorem 7] which states that a uniformly recursive
family {Lo, Ly, ...} is FinTxt-learnable iff there is a recursive procedure which assigns to
each i a finite set 7; such that (Vi) (Vj)[1; C L; & L; = L;].

The degree-structure of the FinTxt and FinInf inference degrees relative to learning
uniform recursive families of sets is different from the degree structure of learning arbitrary
families of enumerable sets. Fortnow et al. [43, Theorem 6.36] showed that the latter
coincides with the Turing degrees.

Let F[A] be the set of all functions f which are majorized by an A-recursive function
and for which the set {(z,y) : y < f(z)} is enumerable. Note that the last condition is
not present in Section 2.2, so the definition of F[A] here does not exactly coincide with the
notion given there.

Theorem 4.6.4 In the context of learning uniformly recursive families, the following three
statements are equivalent for all oracles A and B:

(a) FA] C F[B].

(b) FinTxt[A] C FinTxt[B].

(c) FinInf[A] C FinInf[B].

Proof (a = b): Let F[A] C F[B] and S = {L;} € FinTxt[A] be a uniformly recursive
family. Without loss of generality if ¢ # j then L; # L;. Now for each i let w;, = x
if v € L; and w;, = # otherwise (z ¢ L;). Further let f4(:) be the first 2 such that
M(wipw;y ... w;z) #7. Certainly range(w;ow; ;... wi,) = {y € L, 1 y < x} € L; for
every set L; # L;. Thus f, dominates the function fg given by

fs(i) = min{z : (Vj #i) 3y < 2)[y € Li — L]}

The set {(,y) : y < fs(i)} is enumerable and fg € F[A]. From the hypothesis (a) follows,
that a B-recursive function fp majorizes fs. The new learner M works as follows:

M(o) = {Z if i <|o|and (Vz < fg(i)) [x € L; & = € range(o)];
? otherwise.

Since {x € L; : « < fp(i)} € L; for all j # 4, the 7 in the expression is unique and
M is well-defined. Whenever M infers L; then M outputs the symbol “?” until it has
seen all elements in {x € L; : v < fp(i)}; then it begins to output its only guess i. So
S € FinTxt[B] via M.

28

(b = c¢): Note that S € FinInf[A] & S' = {L® L : L € S} € FinTxt[A]. Thus
S € Finlnf[A] = 5" € FinTxt[A] = S’ € FinTxt[B] = S € Finlnf[B] and therefore
FinInf[A] C Finlnf[B].

(c = a): This is done by showing the contrapositive, let f € F[A] — F[B] and let the
A-recursive function f4 majorize f. Since f has a recursive approximation from below, the
family

S = {finite and nonempty D : max(D) < min(D) + f(min(D))}

is uniformly recursive. M finitely infers S relative to A as follows:
e If 0 =017 and || > fa(i) then M outputs an index for {x € dom(o) : o(z) = 1}.
e Otherwise M makes no guess, that is, M (o) =7.
On the other hand assume that S € FinInf[B] via N and let
fs(i) = min{|7| : N(0"17) #?}.

Since no B-recursive function majorizes f, there is some i with fg(i) < f(i). Thus there
is D € S such that i = min(D) and inferring D, N makes its guess before seeing whether
i+ f(i) € D or not. N fails to infer either D U {i+ f(i)} or D — {i + f(i)}, but both sets
arein S. 1

Corollary 4.6.5 For the inference degrees of FinTxt or Finlnf learning uniformly recursive
families, the following holds:

(a) All oracles of hyperimmune-free degree are in the least inference degree.

(b) All 1-generic oracles are in the least inference degree.

(c) If A is enumerable, then A’s inference degree is below that of B iff A <r B.

(d) {A: A>r K} is the greatest inference degree.

Proof (a): If A is of hyperimmune-free degree then F[A] = F[)] since any A-recursive
function is majorized by a recursive one. Thus all sets of hyperimmune-free degrees belong
to the least inference degree.

(b): Let A be a 1-generic set. Consider any f € F[A] and let the A-recursive function
fa = {e}* majorize f. The set

B={n: @) [{e}"(x)}< f(z)]}

is enumerable; since {e}*(x) | > f(z), no string in B is a prefix of A. Since A is 1-generic,
there is a string 0 < A such that no extension of ¢ is in B. Now let

g(x) = {e}"(z) for the first n > o such that {e}"(z)] within |n| steps.
g is recursive and majorizes f. Thus f € F[()], that is, F[A] = F[0].
(c): Let Ag be a recursive enumeration of A and F[A] C F[B]. Now

o) = {s for the first s with x € Ag;
Y710 otherwise (z ¢ A, that is, there is no such s);

is a function in F[A] and some B-recursive function g majorizes f. Thenz € A & o € Ay
and A <r B.

29

(d): The greatest degree can only contain oracles A >7 K since K is enumerable; so it
remains to show that F[A] C F[K] for all oracles A. But this follows from the fact, that
each function f € F[A] is already K-recursive since {(z,y) : y < f(x)} is an enumerable
set. |1

Theorem 4.6.6 FinTxt[K] C NoisyTxt in the context of uniformly recursive families.

Proof Assume that S satisfies the condition (a) of Theorem 4.6.3. Then S also satisfies
condition (a) of Theorem 4.6.1: If L; C L; then there is some D C L; such that all sets
L € S which contain D are equal to L;. Then in particular, L; = Lj;.

The family S = {IN — {i} : i € IN} of all sets whose complement has cardinality 1
witnesses that the inclusion is proper. |

Sometimes the addition of an oracle allows to overcome the difference between two con-
cepts. For example Theorem 4.4.1 showed, that in the general context the K-oracle closes
the gap between finite and SMon? learning from text. The next result states for the set-
ting of uniformly recursive families, that K closes the gap between conservative learning
and learning in the limit. Angluin [2] introduced the notion conservative: A learner is
defined to be conservative iff every mind change is motivated by a counterexample to the
previous conjecture, that is, 7 is guessed on input o7 after ¢ was guessed on input o only
if range(or) € L;.

Theorem 4.6.7 ConsvTxt[K]| = ExTxt in the context of uniformly recursive families.

Proof (=): Let S = {Ly,Ly,...} € ConsvIxt[K] via M¥ and T be a text for some
L € S. M can be taken conservative for all oracles, that is, the following holds for every
A: If i = M*(0) # j = M*(o7) then range(or) € L;. That means that M regardless
of the oracle postpones any mind change until a witness is seen that makes it necessary.
Since the sets Lg, Ly, ... are uniformly recursive, this postponing does not require access to
the oracle. On each input o the ExTxt learner guesses N(o) = M*®<i(c). M converges on
some 7 = 7' to an index ¢ for the language to be learned. Now for sufficient long o € 7-L} it
holds that MEiI(1) = M¥(7) = i and therefore also M*¥I=I(c) = i by the conservativeness
of the machine M*l-1. So N (o) =i for all sufficient long o and N infers S.

(«<): Let S ={Ly, Ly,...} € ExXTxt via N and wow, ... be a text for some L € S. With
K-oracle it is possible to test whether a given sequence o is a locking sequence for N. The
ConsvTxt|[K]-algorithm defines inductively (using the K-oracle) a new text wyoowyoy . ..
and emulates N on this text:

If there are ¢ and 7 such that

*

e i+ |7| <nand 7€ {wy,w,...,w,}%5
® Wy, Wy, ..., W, € Ly;
o (V€ L) [N(wyopwoy ... w,mn) = il;

then let o, = 7, M¥ (wow; ... w,) = N(wooowi01 . .. w,0,) = i
else let o, = A\, ME (wow; ... w,) =7.

The algorithm works with K-oracle, since the search for the 7 is bounded. If wqw ... is
a text for L; then wyopwo ... is also a text for L;. N converges on this text to ¢ and
so M¥ converges on the text wow; ... also to i. Furthermore if M* (wow; ...w,) = j #
ME (wowy ... wy,) =i with m > n then N(wooowi0y ... w,0,) = 7, N(wooow107 . .. Wyom)

60

= i and N(wyopwyioy ... wo,n) = j for all n € L;. Thus wooow101 . . . WO, ¢ L} and
since o), € {wo, wy, ..., wy}* for k& < m it follows that some wy ¢ L, for k& < m. So the
mind change from j to i was induced by a counterexample and M* is conservative (using
the definition that outputting the symbol “?” does not count as a mind change). |

The proof even relativizes to ExTxt[A] = ConsvTxt[A’] which shows that the inference-
degrees with respect to learning uniform recursive families is quite different to the degree-
structure with respect to learning arbitrary families of enumerable sets: In the latter case
the low enumerable oracles all belong to different inference-degrees. Furthermore if L; ¢ L;
for all 7,5 then the family S can be learned conservatively: On input o the learner just
guesses the first index ¢ with range(c) C L;. So in the context of learning uniformly
recursive sets the following holds for all oracles A and B:

Corollary 4.6.8 FinTxt C FinTxt[K] = FinTxt[A & K] C NoisyTxt C ConsvTxt C
ConsvTxt|K] = ExTxt C ExTxt[K]| = ExTxt|B & K]|.

4.7 Behaviourally Correct and Partial Identification

Behavioural correct identification means that the learner outputs an infinite sequence of
hypotheses which almost all compute the correct function or generate the correct set. It
turns out that learning functions from noisy informant, there is no difference between
behaviourally correct and explanatory convergence:

Theorem 4.7.1 The following three statements are equivalent for any class S C REC:
(a) S can be learned finitely from informant using K -oracle.

(b) S can be learned in the limit from noisy informant.

(c) S can be learned behaviourally correct from noisy informant.

Proof Since convergence in the limit always implies behaviourally correct convergence,
obviously (b = c¢) holds. (a = b) is shown in Theorem 4.2.1, part FinInf[K]| C NoisyInf.
The remaining implication (¢ = a) is an adapted version of Theorem 4.2.1, part NoisyInf C
FinInf[K]:

Assume that M is recursive and learns the class S of functions behaviourally correct
from noisy informant. A string o is called a-consistent iff all pairs (z,y) occurring in o
satisfy either z ¢ dom(«) or y = a(z). Now the following Fin[K]-learner N infers S:

On input a, N checks using the K-oracle whether there is a string o of length
up to |« such that, for all a-consistent strings 7 and 7', the relation

(V2) [omon) (@) 4 A@rror) (2) 4= @rron) () = Oaror) ()]

holds. If yes, then no two guesses M(o7) and M (o7') contradict each other
and N(«a) converges to an index e of the amalgamation of all functions ¢a(sr)
with 7 ranging over all a-consistent strings. If not, then N(a) =7.

Let f € S and M behaviourally correct infer f. Then there is some o < f and some string
o such that M(o7) is an index for f for all a-consistent strings 7 — otherwise it could be
shown as in Theorem 4.2.1 that there is a noisy informant from which M does not learn
f behaviourally correct. Without loss of generality assume that |o| < |a|. Then N(«)
outputs some index e of the amalgamation of the functions s (,7); it is easy to see that

61

e =

So it remains to show that /N does not output an other false index before finding e, that
is, that already the first index output by N is correct. So let o < f satisfy N(a) = e #7.
Take the o from the definition of N(«). Let T enumerate all pairs (z, f(x)) infinitely often
without any noise. Now o7 is obviously a noisy informant for f and there isa 7 < T
such that f = @ or). By choice, 7 is a-consistent. So e(2)] = @m@r)(x) for all 2 and
v = f. It follows that inferring any function f € S the first guess of N is already correct
and without loss of generality N makes no mind changes. 1

While for learning functions from noisy informant the concepts of behaviourally correct
learning and learning in the limit coincide, this is not longer true for learning languages.
Case, Jain and Stephan [28] showed this for learning languages from noisy informant and
the theorems below show it for learning languages from text: While FinTxt is not included
in NoisyTxt, FinTxt is included in the criterion of behaviourally correct learning from
noisy text.

Theorem 4.7.2 If S can be learned finitely from text then S can also be learned be-
haviourally correct from noisy text.

Proof Let M infer finitely a class S of languages from text, in particular M guesses the
symbol “?” until it outputs a guess e and then keeps this output e for ever. Now consider
N given by

N(wow; ... wy) = M(WypWpiq ... wy,) for the maximal m < n
with M (W, Wiy .. wy) #7

and let wyw; ... be a noisy text for L. Since there is a maximal k£ with wy ¢ L, each sequence
Wi Wiy1 - - . With m > k is a text for L. In particular for all n > m, M(wpywpi1 ... wy)
is either the symbol “?” or an index for L. Since N outputs M (w,,Wy41 ... w,) for the
maximal m such that M (w,wyyq ... wy,) #7, these m satisfy m > k for almost all input
Wowy . . . Wy; then wy,, wy11,...,w, € L and since M finitely learns L, M (wy, w1 - .. wy)
is always an index for L.

The properness of the inclusion follows from NoisyTxt Z FinTxt (Corollary 4.3.4) and
the obvious fact that any S which can be learned in the limit from noisy text can also be
learned behaviourally correct from noisy text. |

Osherson, Stob and Weinstein [113, Exercise 7.5A] introduced the notion of partial iden-
tification from text and showed that the class of all enumerable languages can be learned
from text under this criterion. This identification criterion is the mirror image of noisy
input since the learner outputs the correct guess infinitely often and each other guess only
finitely often.

Definition 4.7.3 [113] A machine M partially identifies S from noisy text iff for every
L € S and every noisy text 71" for L there is a unique index e such that M outputs e
infinitely often on input 7" and this e is an index for L: W, = L. Partial identification
from very noisy text and noisy informant is defined analogously. The concept also transfers
easily to learning functions from noisy or very noisy informant.

Let REC denote the class of all total recursive functions and RE that of all enumerable
sets. The result of Osherson, Stob and Weinstein generalizes for learning from very noisy
informant and from noisy text:

62

Theorem 4.7.4 REC is partially identifiable from very noisy informant.
RE is partially identifiable from noisy informant.
RE is partially identifiable from noisy text.

Proof REC is partially identifiable from very noisy informant:

Let {¢n(e)},oN be a Friedberg numbering of all partial recursive functions, A is total
recursive. Further let T be a very noisy informant for f. M may be specified only by
stating how often M outputs an index h(e) on text T since it does not matter when these
outputs occur and identification only depends on how often M outputs an index.

M outputs h(e) at least n times iff for z = 0,1, ..., n the following two condi-
tions are satisfied:

- SOh(e) (ZL‘) \I/)
- (@, n(e)(x)) occurs at least n times in 7',

So M reads longer and longer initial segments and whenever M notices that it has put out
less than n times h(e) while the conditions above demand to output h(e) at least n times,
M'’s next output is h(e).

There is an unique index e with f = ¢y (. For each z, the pairs (z, f(x)) occur infinitely
often in T" and furthermore, ¢y)(z)] = f(x) for all . Thus the conditions are satisfied
for each n and M outputs h(e) infinitely often.

Now consider any €’ # e. There is some x such that either @y ()1 or pue)(z) # f(2).
In the latter case, (x, gn()()) occurs only finitely often, say m times in 7°. Thus for all
n > x — with additionally n > m in the second case — M outputs the index h(e') less
than n times, in particularly only finitely often. Therefore M partially identifies REC from
very noisy informant.

RE is partially identifiable from noisy informant:

Note that for characteristic functions, the notions noisy informant and very noisy in-
formant are the same. So the statement is equivalent to saying that RE can be partially
identified from very noisy informant. Now let W), Wh(1), ... be a Friedberg numbering
of all enumerable sets and let 7" be a noisy informant for some enumerable set L. This
inference process is similar to the previous one.

M outputs h(e) at least n times iff there is some s > n such that the pairs
(2, Whe),s(x)) occur at least n times in T for x = 0,1,...,n.

Let e be the index of L, that is, L = Wj,. For each n there is s > n such that W, (z) =
Wie),s(x) for all # < n. Thus (z, Wi(e),s(7)) occurs in T infinitely many times for these =
and M outputs h(e) at least n times, therefore even infinitely often.

Let €' # e. There is some z with W) (x) # Wi (x). There is some m such that
(2, Wh(ery(z)) does not occur in 7" more than m times and Wi e () = Wier)(z) for all
s > m. Then M does not output h(e’) for any n > x + m. Thus M partially identifies L
from T

RE is partially identifiable from noisy text:

To proof this, one needs a padded version of the Friedberg numbering. So let W x) =
Wiy for an injective recursive function g and the Friedberg numbering i of all enumer-
able sets from the second part. Let T" = wowiws... be a noisy text for the enumerable
language L.

63

M outputs g(e, k) at least n times iff the following three enumerable conditions
are satisfied:

= Wiy Wet1y -+ Wetn € Whe);

- k=0 or wp_y ¢ Wh(e),n;

- Each x € Wy, occurs at least n times in T'.

There are e and k with Wyer) = L and k¥ = min{l : (Vm > I)[w,, € L]}. The number
k exists since T is a noisy text for L and so almost all w,, are in L.

By the choice of k, wg, wry1,. .., Weyn € Wie) holds for all n. Either & = 0 or wy_; ¢
Wiey (and therefore wy_1 ¢ W)). Each o € Wy occurs infinitely often in 7. So all
three conditions are satisfied for each n and M outputs g(e, k) infinitely often.

It remains to show that whenever M outputs g(e’, k') infinitely often on this text T
then e = ¢’ and k = k'. Each & € Wy) occurs infinitely often in T since each such x
is enumerated into Wy x at some stage s and for all n > x + s, if M outputs g(e’, k)
at least n times then z occurs in T at least n times. Thus # € L. If & ¢ Wy ») then z
must not occur in 7" beyond the &'-th position, in particular only finitely often. Therefore
x ¢ L. So Wyery = L and ¢ = e. By the second condition in the algorithm, g(e’, k')
occurs only then infinitely often if either &' = 0 or wy—1 ¢ Wje. It follows that k' < k.
On the other hand, wy, wpi1,... € Wiy, so &' > k. Thus M outputs g(€', k') infinitely
often iff g(¢/, k') = g(e, k) and M identifies RE partially from noisy text. |

While RE is partially identifiable from noisy text, RE is not partially identifiable from very
noisy text as the following example shows:

Example 4.7.5 Let S contain all sets {x,x+1,2+2,2+3,...}.
S is partially identifiable from very noisy text.
S U{D} is not partially identifiable from very noisy text.

Proof Since each set in S is cofinite, every very noisy text for some L € S is already a
noisy text: each number not in L occurs only finitely often and since there are only finitely
many numbers outside L, only finitely many data-elements of a very noisy text for L are
not in L: Thus the text is already noisy. Since every class of languages can be partially
identified from noisy text, S can be identified from very noisy text.

Assume by way of contradiction that M partially identifies S U {}. Using a list
€o, €1, €2, . .. of all indices of the empty set, a very noisy text 1T = oy0,05 ... is constructed
inductively on which M fails.

For each n select a string o, € {n,n+1,n+2,...}* such that
(V7 € {n,n+1,n+2,...}") [M(1a0nT) # €n],
where ny = A and 1, = g0y ...0,_1 for n > 0.

This construction works, because if o, would not exist there would be a noisy text 7, €
muin,n+1,n+2,...} for {n,n+1,n+2,...} on which M infinitely often outputs e, and
then M would not partially identify {n,n-+1,n+2,...} since e, is an index of {).

So by construction, M(7) # e, whenever 1,0, <7 < T, thus M outputs e,, on input T’
only finitely often. Further each number n occurs only in the strings o, for m < n, thus
each number n occurs only finitely often in 7. So T is a very noisy text for () but M does
not partially identify () from 7. |

Since S is learnable in the limit from text by guessing) if range(o) = () and guessing the
set {n,n+1,n+2,...} if range(o) is not empty and has minimum n, S is a witness for

64

the fact, that ExTxt does not imply partially identifiability from very noisy text. On the
other hand the class of all graphs of recursive functions is partial identifiable from very
noisy text without being learnable in the limit from text or informant.

Corollary 4.7.6 Learning in the limit from text and partially identification from very noisy
text are incomparable concepts.

4.8 Alternative Models and Further Work

The notions are robust in the sense, that similar notions can be translated into one of
them. For example, the following variants to present the input-data for the learner are
equivalent to noisy informant:

e for each z, finitely many pairs (z,y) occur in the input such that the last one has the
form (z, f(z));

e for each z, finitely many pairs (z,y) occur in the input such that the majority has
the form (z, f(x));

e for each x, the proportion of the number of pairs (z, f(x)) within the first n data-
elements with respect to the number of all pairs (z, y) within the first n data-elements
converges to 1 for n — oo.

The translation procedures between these three notions of noisy informant and that one
from Definition 4.1.1 are recursive and defined on finite strings of data-elements. For
example, using a sequence xg, Ty, T2, ... 1in which every number of IN occurs infinitely often,
one can define a translation of a noisy informant according to the first condition to be an
infinite sequence (zo,4o) (z1,¥1) ... such that y, = y for the last pair of the form (z,,y)
appearing in 1" within the first n pairs and y,, = 0 if there is no such pair within the first n
elements of T" of this form. The disadvantage of these alternatives is that they do not have
corresponding notions for noisy text. Furthermore, the nice property that a data-item is
correct iff it appears infinitely often in the data-stream holds for all notions of noisyness
considered here, but would fail for these three alternative definitions of noisy informant.

Case, Jain and Stephan [28] investigated two learning criteria between explanatory learning
and behaviourally correct learning from noisy text: Barzdins and Podnieks [13] introduced
FEx-convergence where the learner converges semantically as in the case BC with the
additional constraint that the learner outputs in total only finitely many programs. Case
and Smith [31] introduced the notion of FEx-convergence where the learner outputs finitely
many programs such that one of them is correct. It is no longer required to detect the
some subset of correct programs in the limit. Case, Jain and Stephan [28] obtained the
following results for these criteria as well as some further, parameterized results (where the
parameters count the number of programs, mind changes, errors and so on).

Fact 4.8.1 [28] The following inclusions follow directly from the definition for learning
from noisy text or informant: Ex-convergence implies FEx-convergence; FEx-convergence
implies OEx-convergence and BC-convergence.

For learning from noisy text, there are no further inclusions between these parameters.

65

Theorem 4.8.2 [28] The class containing K and all sets {x} for x ¢ K is BC-learnable
from noisy text but not OEx-learnable from noisy text. The class containing) and N is
OEx-learnable from noisy text but not BC-learnable from noisy text.

The situation for learning from informant is between the previous one and the one for
learning from noise-free informant where the learning criteria FEx and OEx coincide with
Ex [13, 31].

Theorem 4.8.3 [28] For learning from noisy informant, the notions of FEx-convergence
and OEx-convergence are equivalent and properly situated between those of Ex-convergence
and BC-convergence.

Case, Jain and Sharma [27] extended this work by studying the following question: given
a program for a uniform enumeration or decision procedure, to which extent is it possible
to synthesize learners which are able to cope with noisy data. Furthermore, Case and Jain
[24] addressed the same question for the case of learning from recursive noisy texts only.
It is easier to synthesize BC-learners which have only to deal with recursive texts than to
synthesize those which have to deal with every text. But for the synthesis of Ex-learners,
the restriction to recursive texts does not give any advantage.

5 Universal Language Learners

The basic concept considered in this section is learning from (noise-free) text as defined
in Definition 4.1.2. There are no omniscient learners for the model of learning from text:
The class {IN} U {D C N : D is finite} cannot be learned from text relative to any oracle
[56]. Let A denote the collection of all classes S of languages which are learnable by some
nonrecursive machine. Jain and Sharma [64] showed that no Turing degree suffices to learn
all classes in A: for any oracle A, there exists a class S € A which is not learnable relative
to A. An alternative proof for this fact is given by Osherson, Stob and Weinstein [113,
Proposition 4.1A] who showed that no denumerable set of learners can learn every class
from A — this implies the just mentioned fact directly since there are only countably many
learners computable relative to a given Turing degree.

It is a natural question to ask what resources are needed to learn all the learnable
in a uniform way. Although no fixed resource allows to learn all classes in A, one can
inquire whether there exists a uniform learning procedure that is given as a parameter
extra information about the class of which the current target language is an element. The
question is asked whether there is a learner M which succeeds for every class S € A when
M receives as additional information an oracle B which describes S in some specified way.

It is shown that such a learner exists if B contains an index for all languages in .S but for
no language outside of S. The Turing degrees of such learners are exactly the degrees above
0”, that is, every universal learner must be able to solve the inclusion problem for recursively
enumerable sets. While in this general case the learner is inherently nonrecursive, it is
shown that for the more restricted case where B = {e : W, € S} there exists already
a computable universal learner. After presenting these results in Section 5.1, they are
adapted to the world of learning recursive languages in Section 5.2. Section 5.3 deals
with the case where an upper bound on the size of some grammar for each language L is
provided to the learner instead of information on the whole class S. In this setting, which
was introduced by Freivalds and Wiehagen [46] and explored by Jain and Sharma [63],
there is a single learner for the whole class of all enumerable languages. Such a learner

66

exists in a Turing degree a iff a is high. In Section 5.4 it is investigated to which extent it
is possible to transfer the results of the previous sections to the concept of finite learning.
Even if B is an index set of S, it might in some cases be necessary to work with B’ instead
of B since a finite learner cannot investigate the whole set B in finite time.

Osherson, Stob and Weinstein [115] proved a result similar to those in Sections 5.1
and 5.2 in a model-theoretic context. They constructed a universal inductive inference
machine that learns in the limit from data about a model of a set of sentences T" whether
a given sentence € holds in this model, provided that T is given as an oracle and that
both # and —6 are equivalent under 7' to an existential-universal sentence. Further related
work considers the case where uniformly enumerable classes are given by a single index
e where the class to be learned is of the form S = {W, : ¢ € W,}. Osherson, Stob
and Weinstein [114] introduced this concept and Baliga, Case and Jain [9] extended the
study. One fundamental result is that on the one hand there is a computable learner which
identifies every finite class S provided that S is given via a set W, which contains for
every L € S exactly one index but that on the other hand this fails if W, may contain
up to 2 indices per set in S. Kapur and Bilardi [76] considered the case where the family
to be learned is uniformly recursive. They showed that it is impossible to learn these
families universally if the only information supplied is an index of a uniformly recursive
enumeration of the family. Nevertheless they give some natural subcollections of A which
have universal learners using an index of the families to be learned as the only additional
information.

5.1 Universal Learning From Text With Index Sets

This section contains the two main results: in the general scenario the Turing degrees of
the universal learners are just the cone above 0", that is, the Turing degree 0” is necessary
and sufficient. Furthermore, in the special case where the oracle B contains exactly those
indices e where W, € S there is already a computable universal learner, that is a universal
learner of Turing degree O.

Definition 5.1.1 A set B is for S'it S = {W, : e € B}. Note that this set B is not fully
determined by S, that is, B can be a proper subset of the index set {e : W, € S} of S.
A universal (text) learneris a (not necessarily computable) machine M which learns every
class S € A using a set B for S as additional information.

M is not requested to be computable but M still has a Turing degree. The main result of
this paper is that such a machine can have any Turing degree above or equal to 0” but no
other one. Note that the condition S € A is still necessary: whenever M learns a class S
then S is learnable relative to every oracle encoding M and B; thus S is in A.

Theorem 5.1.2 There is a universal learner M of Turing degree 0.

Proof The learner M works as follows:
On input o, M looks for the first ¢ < |o| such that

range(o) C Wi; (20)
range(o) C W; C W; for no j € B with j <|o]|. (21)

If such 7 are found then M outputs the smallest one of them. Otherwise M
abstains from guessing by outputting “7”.

67

For the verification, let ¢ be the minimal index within B of a language L € S. Angluin [2,
Theorem 1] and, for the noneffective case, Osherson, Stob and Weinstein [113, Proposition
2.4A] showed that for the given W; there is a finite set F' such that F is a subset of W;
and no language in S is between F' and W;:

and so no j € B satisfies F' C W; C W;. Any text T for L has a sufficiently long prefix o
such that F' C range(o) and i < |o|. It is easy to see that the algorithm for this and any
longer prefix outputs .

So it remains to show that the algorithm can be executed by a machine having Turing
degree 0”. The only two uncomputable operations required in the algorithm, besides the
access to the oracle B, are to compare whether one language is a subset of another and to
check whether the range of a finite string is contained in some language. Both operations
can be performed by a machine whose Turing degree is 0”. |

The next theorem shows that it is necessary to have the ability to check subset-conditions.
It shows that every universal learner has the computational power to decide whether
W; C W; or not.

Theorem 5.1.3 The Turing degree of every universal learner is at least 0”.

Proof Let M be a universal learner and define S = {L: L =K V (L € K A L is finite)},
that is, S contains K and all finite sets which are not subsets of K. This class is in A since
it is learnable with oracle K: the learner guesses K if range(c) C K and guesses range(o)
otherwise.

The expression use(M, B,o) denotes all oracle queries made by the learner M% to
compute MP(7) for some 7 < o. This use is always a finite set. Now the following
statement holds by adapting the construction of a locking sequence to the general case of
universal learners:

There exists a finite set C of indices of languages in S including some index of

K and there is a string o € K* such that M?(o7) = M%(0) for all 7 € K*

whenever B contains only indices of languages in S and B(z) = C(x) for all
x € use(M, B, o).

(23)

If (23) fails, then one can construct inductively a sequence of finite sets C; and strings
o; € K* such that M%+(0;,,) # M%(0;), each C; contains the minimal index of K
and perhaps finitely many other indices of languages in S, C;i1(z) = Cj(z) for all x €
use(M,C;,0;) and 0,41 = o;a; where apa; ... is an enumeration of K. It follows that
T = lim; o; is a text for K and the set B = |J; C; contains only indices of languages in S.
Furthermore, MB(0;) = M (0;) for all i and so MP diverges on the text 7. But since
B is a set for a class in A containing K, M? has to learn K from the text T and from this
contradiction it follows that (23) holds.

Now the condition (23) is used in order to decide the inclusion problem. Let C' and o
be as in (23). Let g be a number in K — range(o). There is a one-one recursive function
g such that W,(z) = K(g(e,x)) and g has a recursive range disjoint from {d} U range(o).
Now one defines

Whe,en = {9(¢',2) 2 € W} U (K — {d} — {g(¢',z) : z € N})

where the sets {g(¢/,z) : x € N} are uniformly recursive for ¢’ = 0,1, 2, ... since the range
of g is recursive and g is one-one. So the equivalences

W, CWe & {g(e,z) :x e W} C{gle,x): 2 € Wu}

68

& {g,x):xeW,} CK
g Wh(e,e’) CK
<~ Wh(e,e’) CcCK

hold where the last equivalence is due to the fact that d ¢ W, (.) and therefore K # Wi o)
for all e,e’. Furthermore, one can slow down the enumeration of Wi) by enumerating
a number into the new set Wy . iff all numbers previously enumerated into W,) have
also appeared in K. So Wy = Wheer) if Wieey € K and Wy o) is a finite set not
contained in K otherwise. Furthermore, one can use padding to define f such that the
range of f is disjoint from use(M, o, C).

Let B=CU{f(e,€')}. Since B is finite, the class of all languages with indices in B is
learnable and M”* has to identify Wy .. Furthermore, if Wy . is a proper subset of K,
then MZ(o7) # M€(0) for some 7 € K*. Otherwise Wy is in S and MZ(o7) = M“(0)
for all 7 € K*. So one obtains

W,C Wy & (3re K*)[MP(or) #£ MC(0)]

where the characteristic function of B is uniformly recursive with parameters e and €'
The inclusion problem {(e,e') : W, C W, } is enumerable relative to the learner M as an
oracle.

Since K is many-one-reducible to the inclusion problem, K is enumerable relative to
M. Hence K is computable relative to M. Since the complement {(e,e') : W, € W} of
the inclusion problem is enumerable relative to K, it is also enumerable relative to M. So
the inclusion problem is computable relative to M. Hence, the Turing degree of M is 0”
or above. 1

If B contains all indices of the languages to be learned and not only some then there exist
computable universal learners. This is chiefly due to the fact that index sets have a high
complexity in terms of Turing degree. Rice [121] showed that every nontrivial index set
(and those of learnable classes are always nontrivial) has at least the Turing degree 0'. The
construction exploits that whenever a learnable class contains an infinite language then its
index set B has even degree 0", in particular, one can find in the limit an algorithm which
computes relative to B the inclusion problem {(e,¢e') : W, C W, }.

Theorem 5.1.4 There is a computable universal learner M such that M® learns every
class S € A provided that B is the index set of S.

Proof A canonical encoding D; of a finite set allows to compute the cardinality and a list
of all elements of D; from the index 7. Since canonical indices can be translated effectively
into enumerable indices, not only the question whether W; € S but also whether D; € S
can be answered effectively by inspecting the index set B of S.

A pair (D;, W;) (or better said, its indices) are a potential candidate to compute the
inclusion problem if

D; C Wj, D, ¢ S and Wj € S; (24)
Dy ¢ S for all k with D; C Dy C W,. (25)

The set A of (the indices of) these candidates is the difference of two sets which are
recursively enumerable relative to B: the first one enumerates the pairs (D;, W) which
satisfy the condition (24) and the second one all pairs which fail to satisfy (25). So A has
a B-recursive approximation: A = limg A,.

Recall that whenever S contains an infinite language I¥; then this IW; has a finite subset

69

D; ¢ S such that no set in S, in particular no finite set Dy € S, is between D, and W,
2, 113]. So whenever S contains an infinite language then there is also a pair (D;, W)
satisfying (24) and (25). Furthermore, whenever a pair (D;, W;) belongs to A, then W; is
infinite: If W; is finite then it has a canonical index k. By D; C Dy, =W; A Dy, € S it
follows that no subset D; satisfies (25) together with W;. The inclusion problem whether
W, C Wer can be computed relative to B under the assumption that a given pair (D;, ;)
is in A.

From the index e one can compute an enumeration ag, ay, ... of W, and define
Weeey = DiU{z € W;: (Vy <) lay, € Wel}.
Now W, C W, & Wf(e,e’) = Wj -~ Wf(e,e’) eSS & f(e, 6,) € B.

For the verification note that Wy .y = W; in the case that W, C W,, that is, in the case
that all a, are enumerated into /. In order to deal with () the enumeration ag, ay, ... might
also contain repeatedly the symbol # for void information which a priori is in every set.
Otherwise some a, is not in Wy and Wy) is a finite set: it contains just the elements of
D; and those of W; below z. So Wy (., is finite and between D; and W, therefore Wy, o
is not contained in S.

All pairs (D;, W;) can be put into an ordering equivalent to that of the natural numbers,
so that it is possible to speak of a first pair, second pair and so on. Recall that it is
computable relative to B in the limit as to which of these pairs belong to A — Ay, Ay, ...
denotes this B-recursive approximation of A. Having this approximation, it is possible
to describe a computable universal learner which learns every class S from text using the
index set B for S provided that S € A.

On input o check whether there is a pair in A}, among the first |range(o)| pairs.

If so, take the least such pair (D;,W;) € A, and emulate the algorithm
from Theorem 5.1.2 using this pair to answer the inclusion queries at posi-
tions (20) and (21).

If not, just output the canonical index for range(o).

For the verification of the algorithm it is necessary to consider two cases where L denotes
the actual language L € S whose text is fed into the learner. Recall that |L| is the
cardinality of L and note that n < |L| for all n if L is infinite.

First, the case that, for all n < |L|, the n-th pair does not belong to A. Then L
has to be finite since otherwise such a pair must exist and must have an index below the
cardinality oo of L. So for sufficiently long prefixes o of a given text, range(oc) = L and
none of the first |L| pairs is in the current approximation A;,. So for all these sufficiently
long prefixes of the text, M outputs the canonical index of L and so converges to a correct
index.

Second, there is a least n-th pair (D;,W;) € A and n < |L|. Then for all sufficiently
long prefixes o of a given text of L, |range(o)| > n, (D;, W;) belongs to Ay, but none
of the pairs before (D;, W;). So M goes into the first case and uses the pair (D;, W;) for
deciding the subset queries of type (20) and (21). Therefore the algorithm produces for
almost all prefixes o of the given text the same output as the algorithm in Theorem 5.1.2
and converges to an index of L. |

70

5.2 Learning From Recursive Indices

In the case of learning classes of recursive languages, one may consider the situation where
one or more programs are given for each L € S, rather than just one or more grammars
generating it. An index e is a program for L if ¢, computes the characteristic function
of L: ¢, is total and L(z) = pe(x) for all z. In the following every total function ¢, is
identified with the set {z : ¢.(z) > 0}. Furthermore, B is a set of programs for S iff B
contains only total programs (which converge on every input) and S = {¢. : e € B}. A
machine M BC-learns a class S from text iff on every text for some L € S, M outputs an
infinite sequence ey, ey, ... of hypotheses such that almost all e,, are grammars for L.

The next result is quite parallel to the a result of Baliga, Case and Jain [9, Theorem 11],
who showed that there is an algorithm which translates every index of a uniform decision
procedure of a class S € A into a program of a BC-learner for S. The essential ideas of
the proof of that result and the one below are the same.

Theorem 5.2.1 There is a computable universal BC-learner M such that MP learns a
class S € A whenever S consists of recursive languages and B is a set of programs for S.

Proof The BC-learner M is constructed as follows: M computes on input o first the
set Iy of all indices i < |o| such that i € B and range(c) C ¢;. The guess f(ly) then
does two processes in parallel: First it throws out all indices from Iy which are believed
to be incorrect. Second it enumerates all elements which are in all remaining sets ¢; with
i € I into Wy,). Formally the set of the “correct indices” is given as an intersection
I =1IynIiNIN...where the sets [; are defined inductively by

i€l & i €L NV <i)[TELVpit) <t
Now Wy(ry) = Nier i is enumerable by the following formula:
Wiy = {z: (3t) (Vi €) [z € o]}

For the verification note that, for every ¢ € B, there is a finite subset F' of ; such that,
for all j € B with F' C ¢;, the following holds:

e if j < then ; D ¢;;
e if j >4 then ¢; Z ¢;.

Therefore whenever F' C range(o) C ¢; and |o| > i then i € [and every j € [is a
program of a superset of ¢;. So Wy, = ; for almost all prefixes o of a text for L. |

If a learner having Turing degree a > 0 is chosen then even Ex-convergence is possible,
that is, the learner makes on every text of a language in S only finitely many mind changes.
In addition to that, such a learner can take characteristic indices. So given a BC-learner
M, the new Ex-learner N is obtained by

N(o) = min{e : (Vo < |o]) [pe(2)d = War(o) ()] }-

On the other hand, a universal Ex-learner which succeeds on every family S € A of recursive
languages given as a set of programs for S needs at least Turing degree 0'.

Theorem 5.2.2 There is a universal Ex-learner M such that MP learns a class S € A
whenever S consists of recursive languages and B is a set of programs for S. The Turing
degrees of such learners are just those above 0'.

71

Proof As just mentioned, any universal computable BC-learner can be transferred into
a 0'-recursive Ex-learner. So the converse direction is the interesting one. Its proof is
obtained by adapting the one of Theorem 5.1.3.

The role of K is replaced by the role of the set £ of even numbers, any other infinite
and coinfinite recursive set could also be used. Now S just consists of the set E and every
finite set containing an odd number, that is, a nonelement of E. One can again show that
for every universal learner M there is a finite set C' of characteristic indices for sets in S
including one for F, a constant ¢ and ¢ € E* such that, for all sets B containing only
characteristic indices for languages in S and agreeing with C below ¢ and for all 7 € E*,
the equation MZ(o7) = M“(0) holds. M®(o) is then a characteristic index for E. Having
this, one can enumerate K relative to C:

There is a recursive function f with range {¢+1,¢+2,...} which assigns to any x the
characteristic index of the language range(o) in the case z ¢ K and range(o) U {2s + 1}
in the case that x is enumerated into K exactly at stage s. Then

r¢ K < (3re B [MOV@ or) £ MY(0))

is an existentially quantified formula for K relative to the Turing degree of M. It follows
that K is computable relative to M, that is, the Turing degree of M is at least 0. |

The above result uses the fact that the learner M must also succeed with nonrecursive sets
B for some languages. If one requires that B is recursive, one obtains a further restriction.
These restricted classes are then exactly the uniformly recursive classes. The next result
shows that the Turing degrees of universal learners for these classes are exactly the high
ones.

Theorem 5.2.3 There are universal learners who learn those classes S € A from every
recursive set B of characteristic indices for the languages in S which have such a set B.
The Turing degrees of these universal learners are just the high degrees.

Proof In a high Turing degree a, the learner can first identify an index for the set B in
the limit. Whenever the learner makes a mind change concerning B, the learning algorithm
for the language learner is restarted. So it is sufficient to formulate the algorithm for the
case that a program for B is known to the universal learner M. The learner M uses a list
of pairs (i, 7) such that all pairs of indices and strings occur exactly once in the list. The
set

A=A{(i,7) : (Vj € B) (V) (Jy) [range(T) C p; ANz € ¢, — p; =y € v; — i}

contains all (¢,7) such that W; € S and (range(7), W;) satisfy Angluin’s condition (22) on
page 68 for the class given by B. The set A is in Il; and thus membership in A can be
computed relative to a in the limit, let A, be the corresponding a-recursive approximation.
Now the learning algorithm is the following:

M (o) searches the first pair (i, 7) such that

eie€B i<|oland T <0,
e pi(x) =1 for all z € range(o),
° (i,T) € A|g|.

If the pair (i, 7) is found then M (o) =i else M (o) =7.

72

For any text 7T for a language L € S there is a first pair (i,7) € A satisfying 7 <T,7 € B
and ¢; = L. The learner converges either to this pair or to some previous one, thus also
the output of the learner converges to some 7’.

Assume now by way of contradiction, that i’ is not an index for L. Then i’ must be an
index of a proper superset and there must be a 7’ such that the leaner converges to (i, 7).
range(7') is a subset of L and therefore (i',7") ¢ A since the relation range(r’) C ¢; C i
holds. This contradiction gives the correctness of M.

For the converse direction let a be the Turing degree of some learner M for the class S
containing all languages {2x,2x + 2, ...}, all finite sets with at least one odd element and
all sets {2z,2x+2,...,22+ 2y} whenever W, has at least y elements but is finite. There is
a recursive set B for S: Let B contain standard indices for the languages {2x, 2z + 2, 2x +
4,...} and the finite languages with odd elements. Furthermore, let f(x,y,t) be an index
of the set having the elements 2z,2x + 2,...,2x 4+ 2y plus the element 2s + 1 in the case
that s > ¢ and s is the first stage where a new element not yet in W, ; is enumerated into
W,. Let B contain those f(z,y,t) where W, ; has at least y elements.

Now one enumerates relative to a’ the locking sequences o, for the sets {2z,2x+2,...}
and defines that g(x) = max(range(o,)). Since each set {2x,2z + 2,...} has at least one
locking sequence, g(x) is defined for all z. One has that g(x) > 2z + 2|W,| whenever W,
is finite and it follows that W, is finite iff W, has at most g(x) elements. The condition
|W,| > g(x) can be checked relative to a’ and one can compute relative to a’ which sets
W, are finite. Therefore a is high. |

Kapur and Bilardi [76, Theorem 3] showed that there is no computable learner which is
universal for enumerable families which are learnable from text by a computable learner.
Indeed they showed that the Turing degree a of such a learner satisfies a” > 0", that is, a
is high,. The above proof uses a single family such that this family is not learnable without
a high oracle. So the previous theorem does not imply the result of Kapur and Bilardi,
but one can adapt the above proof by considering the parameterized classes

Sy ={L € S :min(L) € {2z,2z + 1}}

which have uniformly recursive decision procedures whose index can be computed from .
These classes contain the set {2z,2x+2, ...}, some finite sets with at least one odd element
and perhaps finitely many subsets of {2z, 2242, ...}, so they are all learnable by a recursive
learner. But a universal learner for all of them can be translated into a learner for S by
waiting until some first data-item appears in the text and then emulating always the
learning procedure for that S, where x is the minimal number such that some number
y < 2z + 1 has occurred in the input text so far.

So any learner which is universal for those enumerable families that are learnable by a
computable learner must have high Turing degree. This improves the result of Kapur and
Bilardi quoted above.

5.3 Bounds on the Grammar Size

Freivalds and Wiehagen [46] introduced the model where the learner receives in addition to
the data f(0), f(1),... of the function to be learned some upper bound b on the size of some
program e of f, that is, some number b such that b > e for at least one of the programs
for f. They showed that in this case there exists a computable universal learner which
is able to learn all computable functions. Jain and Sharma [63] transferred this model to

73

the scenario of language learning from text and showed that the result does not hold in
this setting. This kind of nonlearnability is not a principal one but is only caused by the
limited computational abilities of a recursive machine. Using more complex machines it is
possible to learn the class of all enumerable languages with one machine whose input is a
text for a language L to be learned and an upper bound b on the size of some grammar
for L. The Turing degrees of these machines are exactly the high degrees and so the result
is very similar to those of Adleman and Blum [1] and Fortnow et al. [43] for many other
learning criteria.

Theorem 5.3.1 Let M be a learner which can infer every enumerable language L from a
text for L and from an upper bound b on some grammar for L. Then M has a high Turing
degree. Furthermore, there exists such a learner in every high Turing degree.

Proof Let a be a high Turing degree. Now a learner M as specified in the theorem is
constructed which is computable relative to a. Consider the following function f:

£i,5) = x for the smallest number z with W;(z) # W;(z);
“J)Z 10 if there is no such x, that is, if W; = W;.

This function is computable relative to 0”. The high degrees are those which can compute
in the limit every 0”-recursive function. So it follows that for each pair 4, j, f(4,j) can be
computed in the limit by some machine of Turing degree a. In particular, for every b, the
value ¢(b) = max{f(i,j) : ¢ < j < b} can be approximated by a sequence ¢,;(b) which is
a-recursive in both parameters s and b. The learner M uses the approximation c(b):

M (o, b) = i for the smallest 7 with W ,(z) = range(o)(z) for all x < ¢j5)(b).

Note that M (o,b) is always defined since every finite set range(o) has a canonical index
and one might define that, for canonical indices, every element appears already at stage 0.

Now, for the verification, let T" be a text and s be so large that c¢s(b) already has
converged to ¢(b), that every element z of L which is smaller than ¢(b) has already appeared
in the text and that every y € W, with j < b and y < ¢(b) has already been enumerated
to W;. Then M(o,b) outputs the least index ¢ of L for every prefix o < T of length at
least s: W; and range(o) coincide below cj,((b) since W; = L and the conditions above are
satisfied. For j < i the values of W; and W; differ below ¢(b) and W), and W coincide
below ¢(b). Thus W, and range(o) disagree below c¢j,|(b). The algorithm outputs i and
therefore converges to the minimal index of L.

It remains to show that such a learner has high Turing degree. Let M learn every enum-
erable language from text with an upper bound b on a grammar of this language and let a
be the Turing degree of M. Now it is shown that the problem whether a set equals IN can
be computed relative to a’ and thus a is high.

Let a be an index for the language IN and consider the behaviour of M with the
additional information e + a, which is an upper bound for the indices of both languages,
W, and IN. So M must learn them both using this upper bound. The language IN has a
locking sequence o in the sense that M(e + a,07) = M(e + a,0) for all strings 7. Such a
o can be found by a suitable algorithm of Turing degree a’. If W, # IN then the difference
must occur in range(o) since otherwise M would fail to learn W,. So

We=N & range(o) C We.

This test whether range(o) C W, is recursive in 0’ and in particular recursive in a’. So
it can be computed within Turing degree a’ whether W, = IN. This problem has the
complexity 0” and thus the Turing degree a is high. |

74

The algorithm to learn all languages from an upper bound needs nonrecursive information
for exactly one part: the computation of ¢(b). Taking now b as the minimal index of a
language L, the Ex-learner can be made recursive by supplying an upper bound ¢ > ¢(b)
instead of b itself. So one obtains an (unpublished) result of Jain, that an Ex-learner
identifies all enumerable languages with a sufficiently large upper bound as additional
information.

Corollary 5.3.2 There is a computable learner M which infers every enumerable language
L from text, given a bound c such that for the minimal index i of L and every j < i there
is some x < ¢ such that W; and W; differ on .

The difficulty for learning with upper bounds on the size of a grammar is due to the fact
that it is impossible to know whether two languages are equal or not. To overcome this
problem, Barzdins and Podnieks [13] have introduced the slightly weaker criterion called
FEx: Here the learner is not required to converge syntactically but is allowed to alternate
between finitely many correct indices infinitely often. Jain and Sharma [63, Proposition 16|
showed that there is a universal FEx-learner which succeeds on every enumerable language
L provided that an upper bound b on some grammar for L is given to the learner.

The algorithm is quite easy: For every string o the learner takes just that index e below
the given bound b for which the value

z(e,0) = max{y < |o|: (Vz < y)[range(o)(z) = W, »(2)]}

is maximal. On a text for the language L, x(e, o) is bounded uniformly for all prefixes o
of the text if W, # L and converges to oo if W, = L. Thus the learner outputs from some
certain stage only correct indices.

So weakening from Ex to FEx brings down the complexities of universal learners from
the high Turing degrees to computable.

5.4 Finite Learning With Additional Information

Smith proposed to study topics related to those in the previous sections also for finite
learning. The classes which are finitely learnable, even relative to oracles, are more re-
stricted than for the other learning criteria. Therefore, besides A, also the collections Ag,
and Aj are considered, where Ag, contains all classes of languages learnable by some finite
learner with access to an oracle and A all inclusion-free classes. A class S is inclusion-free
iff any two distinct languages L, H € S satisfy L € H and H € L. Osherson, Stob and
Weinstein [113, Exercise 1.5.2C] characterized Ag,; Mukouchi [98, Theorem 7] did the same
for uniformly recursive families. A further related result is Theorem 4.6.3 which charac-
terizes the uniformly recursive families which are finitely learnable from text with help of
the oracle K.

Fact 5.4.1 [113] A class S is in Agn iff every L € S has a finite subset F C L such that
F & H for every H € S different from L.

The proper inclusions Ag, C Ay C A hold: Clearly every finitely learnable class is
inclusion-free and the class S containing the set £ of all even numbers and every set
{0,2,4,...,22,2x + 1} witnesses the properness of the first inclusion since S is inclusion-
free but F has no finite subset F' such that F is the only superset of F' within S. The
algorithm “Learning by Enumeration” which outputs an index of the first L; to satisfy

75

range(o) C L; witnesses that every class {Lg, L1, ...} € Ajr is also in A. The class {0, N}
witnesses the properness of this second inclusion Aj; C A.

Behaviourally correct and explanatory learning can take into account the whole set B
since they have the right to withdraw or update a hypothesis if some assumption on B
turns out to be false. This is no longer true for finite learning, therefore a finite universal
learner cannot succeed if it has access only to the index set. Some method to obtain infinite
information on B is necessary.

Theorem 5.4.2 There is no universal learner M (of arbitrarily high Turing degree) which
learns every S € Mg, finitely from text with the index set B = {e : W, € S} of S as the
only additional information about S.

Proof Let S contain the set E = {0,2,4,...} of all even numbers and perhaps also a
finite set L which contains an odd number. The learner M? has to output after reading
some part 024 ... 2z of the canonical text for F a guess, this guess must compute F.
Since MP does not know whether there is any language in S besides E, M? outputs this
hypothesis after having queried only elements B(b) with b < a and each such b is in B iff
b is an index for E.

Now there is another set L = {0,2,4,...,2y,2y + 1} with y > 2 which has no index
below a — this can be obtained by taking a sufficiently large y. So L can be added to
the class S without changing B at the queried places. The language L has a text which
starts with 024 ... 2z and therefore M? fails to identify it. So M is not a finite universal
learner for all languages in Ag,. |1

A direct consequence of the proof is that there is no finite learner — with an arbitrarily high
oracle — which learns the class containing F and all sets of the form {0,2,4,...,2z,2z+1}
from text. Thus the inclusion Ag, C Ajr is proper.

It is possible to find an uniform learner for S if more information than an index set
is supplied to M. This information is the halting problem relative to the index set which
then also allows to derive some facts of the structure of the whole set by one query. The
learner can be taken to be recursive. This fact is not very surprising, since K <,, B' in a
uniform way and by Rice’s Theorem [121] even K' <,,, B'.

Theorem 5.4.3 There is a machine M such that M finitely learns every class S € Agn
where the oracle B' is the halting problem relativized to the index set B of S.

Proof 1Ifi,j € B and W; # W;, then the union W; U W; does not belong to S since for
no proper superset of a set in S is also in S; but if W; = W; then the union equals to W;
and is still in S. Thus the index f(i, j) of the union is in B iff W; = W;. The finite learner
has to read new data-items until there is a unique superset of the data seen so far in S and
so the learner can check this condition by asking to B’ whether

(3i,j € B) [range(o) C Wi N W; A f(i, j) ¢ B (26)

and outputs the symbol “?” for no guess as long as (26) is satisfied. Then the learner
checks using B’ whether there is an i € B with range(o) C W;. If so, the learner outputs
the smallest such 7, otherwise the data is incorrect and the learner continues to output the
special symbol “77. 1

Instead of going from B to B’ one might ask whether there are other ways to improve
learnability. Indeed one can use the concept of using an upper bound on the size of the
smallest grammar to generate a concept. This still does not work for the class containing

76

{0} and {0, 1} since an upper bound on the size of both programs does not help to decide
whether a given text starting with a lot of 0’s will eventually have also a 1. But it works
for all inclusion-free classes, so this learning criterion is more powerful than finite learning
alone. Progress is made in two directions: the collection of learnable classes is increased
from Ag, to Ay and the complexity of the additional input for the universal learner is
decreased from B’ to B.

Theorem 5.4.4 There is a computable learner M which learns every class S € Ay from
the additional information consisting of the index set B for S and an upper bound a on the
size of a grammar generating the language L to be learned.

Proof M executes the following algorithm.

M?(a, o) computes the finite sets

By = {i € B : the size of i is below a} and

Bi={jeBy:(Vie By)[i<j=W;#W,|}

If there is a unique i € B; with range(o) C W;

Then M®(a, o) outputs this i else M5 (a, o) outputs the symbol “?”.

First, it is shown that all steps of the algorithm can be computed using the data given.
Since S is inclusion-free one knows that, for 7, j € B with W; # W;, the union W; UW; is a
proper superset of W; and W; and thus not in S. As in the previous proof, f(7, j) computes
an index of W;UW; and, for 4, j € B, one has that W; = W; < f(i, j) € B. Similarly it can
be checked using B whether range(c) C W, for any i € B and o: If so, then W; Urange(o)
is in S, otherwise W; U range(o) is a proper superset of W; and not in S.

Second, one verifies that the algorithm never outputs a wrong index. Whenever T is a
text for some L € S and a is an upper bound on the size of some grammar generating L
then the minimal index i of L is in B;. For any ¢ < T it holds that range(c) C W; and
therefore the output can either be this ¢ or the symbol “?”. So the output cannot be an
incorrect index.

Third, one verifies that the correct index is output eventually. Each two indices in B are
minimal indices of different languages in S. They enumerate sets which are incomparable
according to the choice of S. Thus for every j € B; different from ¢ there is an z; in
W; — W;. After sufficient long time, for the finitely many j € By — {i}, the corresponding
x; have shown up in the text and thus range(o) € W;j. It follows that from this time on,
the index ¢ is unique. The learner M outputs this index 7. |

The nonlearnability of the class containing {0} and {0,1} cannot be overcome by us-
ing powerful oracles combined with upper bounds on programs. Freivalds, Kinber and
Wiehagen [44] introduced the concept of learning from good examples. Lange, Nessel and
Wiehagen [92] transferred the concepts to learning from text and showed that the learning
power can be increased to that of conservative learning [2] from text for uniformly recur-
sive families [92, Theorem 2]. Using sufficiently powerful oracles, one can turn every text
learner into a conservative learner, thus one knows that every class from A is learnable
from good examples with a sufficiently powerful learner. So good examples are a variant
of finite learning having the advantage of covering all classes in A. Goldman and Mathias
[57] defined the same notion and addressed the role of a teacher (that is, the algorithm to
compute F' from e in the definition below) in learning concrete classes like Horn formulas
and decision lists.

Definition 5.4.5 [57, 92| A class S is learnable from good examples iff there are a partial
learner M and a partial function ¢ such that, for every e with W, € S, 1(e) is the canonical

7

index of a finite subset Dy of W, such that, for all finite sets Dy with Dy C Dy C W,
M(d) is defined and an index for W,.

Again it is not possible to generate the learner M and the partial function ¢ from the
index set B alone. The proof of Theorem 5.4.2 can be adapted by taking IN instead of £
and any finite superset L of some prefix 01 ... x of the canonical text for IN. Therefore
the next result uses B’ instead of B.

Definition 5.4.5 omitted any constraints on the computability of the mappings related
to the learning process. Therefore it was possible to define the process without caring
about the enumeration on which the concept is based — Lange, Nessel and Wiehagen [92]
used uniformly recursive families which makes it easier to compute) (e) than in the case
where e is taken from some acceptable numbering of all enumerable sets — but the next
result shows that besides the set B’ no extra source of nonrecursive computation power is
necessary for computing M and .

Theorem 5.4.6 There is a universal learner which learns every S in A from good examples
using the oracle B' where B is the index set of S. Furthermore, no fized S ¢ A can be
learned from good examples, even when no bound in terms of Turing degrees is placed on
the complexity of the learner.

Proof Let M be the universal learner from Theorem 5.1.4. For every W, € S, M has
a locking sequence o satisfying M?Z(o7) = MP(c) for all 7 € W*. This definition can
be checked using oracle B’ and so one can define the following B’-recursive algorithm to
compute (e):

Enumerate W} until a 0 € W} with (V7 € W) [M?(o7) = M*?(0)] is found. (27)

Then let ¢(e) be the canonical index for range(o).

Since M* learns all sets in S and B is the index set for S, 1(e) is defined for all e € B.
Given MB, the following machine N7 is a universal learner for the criterion of learning

from good examples.

N5 (d) enumerates all strings in D} until a € D7 is found such that D; C
Wasy and (V7 € Wys,)) [MP(nt) = MP(n)]. Then NP'(d) outputs the (28)
index M2 (n).

For the verification of NB’, assume that W, € S and Dy € Dy € W,. Let 0 € D;‘;(e) be
the string from (27).

The algorithm for N7'(d) is defined since it could take o for the value 7 in its definition
(28). For the case that the 7 taken there is different from o, consider the strings on and
no. Recall that MP was constructed in Theorem 5.1.4 such that M? outputs for strings
of the same length and range the same index, thus M*®(on) = M?(no). Furthermore, 7 is
in Wis(, since the set Wiy () equals to W, and contains therefore Dy and range(n). It
follows that M”(on) = M”(n). Since o is in D}, Was(, contains Dy and Dy contains
Dyye), the equality MP(no) = M*(n) holds as well. Putting these observations together,
one obtains that N?'(d) outputs also in the case n # o the hypothesis MZ(c): N¥'(d) =
MP(n) = M (no) = M*(on) = M* (o).

Since there is a text for W, starting with o and since M? does not withdraw the
hypothesis M (o) on this text, it follows that M7 (o) is a recursively enumerable index
for W, and the output N (d) is correct. So NP witnesses together with the auxiliary
function ¢® that the languages in A are universally learnable from good examples.

78

The second result can be obtained by just transferring the learnability result [92, Section 3|
from the world of uniformly recursive classes to arbitrary classes: the usage of learners of
higher Turing degrees compensates the loss by giving up the uniform decision procedure.
The direct proof is nevertheless shorter and therefore included here.

Let M and 1 witness that S is learnable from good examples. Since constraints on
computability are absent, M and 1 are without loss of generality total. A new learner N
which infers S from text in the limit, is defined as follows:

N(o) is the minimal index e of the language generated by M (d) where d is the
canonical index for range(o).

For every W, € S, Dy, is a finite subset of W, and whenever Dy C range(o) C W,
then N(o) outputs the minimal index of W,. All the finitely many elements of Dy show
up eventually on every text for W,, thus the learner N converges on every text of W, to
an index for W,. So N learns S in the limit from text and S € A. 1

6 Robust Access to Oracles

In the previous chapters, the oracle A was always fixed and the learner was always con-
structed exactly for one given oracle. Now it is investigated what happens if the learner
cannot specialize on one specific oracle but has to be robust in the sense that learning has
to succeed with every oracle from a given set of oracles. So one considers oracles which
meet certain specifications in the way they present information on the class S to be learned:
(a) the oracle is a list of all functions in S; (b) the oracle is a predictor which predicts
every f € S under the model “next value”; (c) the oracle is a one-sided classifier which
converges on a function f to 1 iff f € S; (d) the oracle is an identifier which converges on
every function f € S to some value e; which is unique for f; (e) the oracle is a martingale
which succeeds on every function in S.

Two types of additional information where already presented in the previous chapters:
the standard use of oracles and the bounds on the size of programs [46, 63] discussed in
Section 5.3. The latter was generalized by considering other additional finite information
as indices for higher order programs which compute the function f to be learned relative
to K [8], programs which agree with f on sufficiently many arguments [62] and indices
of certain trees on which f is an infinite branch [104]. Learning with infinite additional
information has a further root in the literature, namely Angluin’s model of the “minimal
adequate teacher” [3]: Here the learner may ask queries about f to a teacher which serves
as additional information on the function f or the language to be learned. This additional
information is infinte in the sense, that it provides answers to infinitely many queries in
some fixed query language. Furthermore, the answers to the queries are not always unique;
for example, there may be several ways to select counterexamples to a learner’s hypothesis.
So the learner has in her model to be robust in the sense that learning has to succeed with
every teacher which meets the specification. Similarly robust learning in the present work
is modelled by the infinite concept of a “minimal adequate oracle”.

Five basic learning notions are considered, namely Ex, PEx, Fin, PFin and NV where
PFin is a finite learner whose output is on any data either the symbol “?” for “no hypo-
thesis yet” or an index of a total recursive function. For these notions, it is investigated
to which extent the types of oracles defined below support learning classes S C REC. The
learner M accesses the oracle O via queries for O(z) at certain numbers or strings z. M

79

has to learn every f € S with any “minimal adequate” oracle meeting the specification.
Note that M has to be a learner only for these permitted oracles, if the oracle O does not
meet the specification then M may also violate the specifications of the learning process,
in particular, M may be partial in the case of NV-learning or output programs not be-
ing total in the case of PEx-learning or PFin-learning. The requirement, that the learner
meets its specifications only for minimal adequate oracles, is quite reasonable: otherwise,
for example in the case of PEx-learning, the notion would be too restrictive and not permit
any nontrivial inference; that is, a PEx-learner which outputs total programs for all oracles
can be replaced by a PEx-learner operating without any oracle.

Together with the definitions of the required relation between S and the oracles, an
overview on the results is given. The oracles are always function oracles; one can access
them either by analizing their graph or by giving the arguments of the function and re-
ceiving the output. Mathematically, both ways are equivalent for total functions, but the
second definition is much more convenient. So, a function oracle like a list F' is accessed
by querying z,y and receiving the value F(x,y) and not by repeatedly asking whether
F(z,y) = z for some given x,y, z.

List: A class S is in Ex[List] iff there is a machine M such that M equipped with
a function oracle F' Ex-learns every f € S whenever F' is a list of S, that is, S =
{Fy, F1, ...} where F} is the function given by F,(y) = F(z,y). The machine M
accesses the oracle by querying x, y and receiving F'(z,vy).

Most prominent classes of recursive functions like the class REC of all recursive
functions and the class RECy; of all {0, 1}-valued recursive functions are in Ex|[List],
but there is also some S ¢ Ex[List]. Furthermore, every class is in NV[List| but
PEx|[List], Fin[List] and PFin[List] are weaker than PEx|[List].

Predictor: A class S is in Ex[Predictor] iff there is a machine M such that M equipped
with a function oracle P Ex-learns every f € S whenever P is a device which NV-
learns all f € S. The machine M accesses P by giving as input a finite sequence o
and receiving the prediction P (o) of P.

Predictors are strictly weaker than lists, for example, RECy; is in Ex[List] but
not in Ex[Predictor]. Interestingly this is one of the few cases in inductive inference
where a criterion behaves differently for REC;; and REC: REC € Ex|[Predictor] but
RECy,; ¢ Ex[Predictor]; this observation is a corollary of the fact that RECy; but
not REC can be NV-learned relative to a suitable low oracle in the classic setting
of oracle-use. By definition, predictors are omniscient for the criterion NV but on
the other hand they are useless for the criteria PFin, Fin and PEx, that is, anything
learned with a predictor under one of these criteria can also be learned without any
additional help under the same criterion.

Classifier: A class S is in Ex[Classifier] iff there is a machine M such that M equipped
with a function oracle C' Ex-learns every f € S whenever C'is a one-sided classifier for
S. A one-sided classifier C' converges on all f € S to 1, that is, (V0 < f) [C(0) = 1],
and does not converge to 1 on every (also nonrecursive) f ¢ S, that is, (30 < f)
[C(o) = 0]. M accesses C' by querying some finite sequence o and receiving the
value C(0).
Classifiers allow to Ex-learn and NV-learn the classes REC and RECy; but they
are not omniscient for these criteria. For Fin, PEx and PFin they are useless.

Identifier: A class S is in Ex[Identifier] iff there is a machine M such that M equipped
with a function oracle I Ex-learns every f € S whenever I identifies S in a very ab-
stract manner: The sequence I(f(0)f(1)...f(n)) converges for every f € S to a

80

value ¢ which is unique for f within S: I converges on every g € S with g # f to
some value j # i. M accesses I by receiving I(o) for a query o.

Such an identifier is a generalization of the criterion of learning higher-order pro-
grams [8, 26]. In the abstract way defined above it is equivalent to the concept where
the identifier chooses some oracle A and converges to a program computing f with
help of A on every f € S. It turns out that it is very difficult to use these abstract
algorithms: Identifiers are useless for Ex, PEx, Fin and PFin. But they are still help-
ful for certain classes during NV-learning, but these classes have to be dominated by
a recursive function. So REC, the class Sy of self-describing functions and the class
Sy of all total step-counting functions, cannot be NV-learned using identifiers.

Martingale: A class S is in Ex[Martingale| iff there is a machine M such that M
equipped with a function oracle m Ex-learns every f € S whenever m is a martingale
succeeding on S. A martingale is a total function with positive rational values such
that m(A) = 1 and for each o there is a rational number ¢ with 0 < ¢ < m(o) and a
prediction a such that m(ca) = m(o) + ¢ and m(ob) = m(o) — ¢ for all b # a. M
accesses m by receiving the rational in a suitable coding after querying o.

It turns out that martingales are useless for all considered learning criteria.

Inside Given Degrees: The oracles in this notion are (other than the previous ones)
independent of S. A class S is robustly learnable inside a given degree a of oracles
iff there is a machine M which Ex-learns every f € S with any oracle A € a. M
accesses the oracle A in the traditional way: on input z the value A(z) is returned
(0forz ¢ A, 1forz € A).

It is shown that for most common notions of degrees (Turing, tt, wtt, btt, m)
this kind of additional information allows only to learn classes which can already be
learned without access to any oracle. This result justifies the approach to investigate
more syntactical qualities of the oracle than their Turing degrees with respect to the
ability of oracles to support learning robustly. Only for 1-degrees the world looks
different: there are some omniscient oracles like the 1-degrees of maximal sets and
also some intermediate degrees.

Furthermore, one could, following the ideas of Chapter 5, consider a set B for S as ad-
ditional information. Such a set is omniscient for Ex, PEx and NV since in the case of
function learning these criteria might use the algorithm “learning by enumeration”. For
the criteria Fin and PFin, one can adapt the results from Section 5.4 and obtains that it is
possible to learn all discrete classes from the jump B’ of any set B for S but some discrete
classes cannot be learned from B alone. The same results hold for index sets. But both
notions, sets B for S and the index set of S, need to fix an acceptable enumeration of the
partial-recursive functions in contrast to the main idea of this chapter where the sources of
additional information are not linked to such a fixed enumeration in order to make such a
source a bit more unpredictable for the learner. Therefore, these concepts are not studied
within this chapter beyond the summary just given.

6.1 Robust Learning Inside Given Degrees

For a given oracle A, the Turing degree of A is the collection of all oracles B which have
the same computational complexity as A, that is, which are Turing equivalent to A. There
are refinements of the notion of a Turing degree such as m-degree and 1-degree: A set A is
m-reducible to B iff there is a recursive function f such that A(z) = B(f(x)) for all z. If

81

this f is furthermore one-one, then A is 1-reducible to B. A and B are called m-equivalent,
that is, A and B have the same m-degree, if A is m-reducible to B and B is m-reducible
to A. Similarly 1-equivalence and 1-degrees are defined. Odifreddi [111, Chapter VI| gives
an overview on these and other degrees. The following theorem states that robust learning
from an m-degree does not help. The same result also holds for the degrees given by the
reductions btt, tt, wtt and Turing as defined in [111] since each such degree is the union
of several m-degrees.

Theorem 6.1.1 Assume that a single machine M Ex[B]-learns (NV[B]-learns) S via
access to oracle B for any B in the m-degree of A. Then S can be Ex-learned (NV-learn-
ed) without any oracle.

(a) Proof for Ex-Learning Let S € Ex[B] via a machine M which succeeds using any
of the oracles B in the m-degree of A. Without loss of generality, M is total also for the
oracles outside the m-degree of A and M (o) is computed with oracle access only below
|o| — these conditions can be satisfied via delaying mind changes [43, Note 2.14]. For any
function f let M*(f) abbreviate the result of computing M (f(0)f(1)... f(J«|)) using any
oracle extending a where, according to the delayment above, it does not have any effect
what the values of the oracle outside the domain of a are. There are two cases:

(1) There is a function f € S with (Vo) (38 = «) [MP(f) # M*(f)]. Now it is possible
to compute inductively binary strings ag, aq, ... such that, for each n and agy,a4,...,a, €
{0,1}, there are «, f with appai; ...a, < o 2 3 < apapaiay .. .aza, and M(f) #
MP(f). So, each a,, has to cope with all 2"*! possible values of ag,ay, ..., a,. Therefore,
o, is produced by concatenating strings v, for k¥ = 0,1, ...,2""! — 1 where the v, are
defined inductively as follows: suppose that agpa; ... a, equals the binary representation of
k and let a = apapaiay ... a,YoY1 - - - Yk—1 for this binary representation. Then 4 is the
first string found such that M<(f) # MP(f) for 8 = ary. After doing this for all &, all
possible values for ag, aq,...,a, are covered.

It follows that M does not converge for any oracle of the form agapa;a . . ., in particular
not for B = A(0)apA(1)c; ... which is m-equivalent to A. So the case (1) does not hold.

(11) For each function f € S there is an a with MP(f) = M%(f) for all 8 = «. Now the
Ex-learner N for S works as follows: On input f(0)f(1)...f(n), N searches for the first
string a such that MP(f(0)f(1)...f(|3])) = M2(f(0)f(1)...f(|a])) for all strings 8 = «
of length up to n and outputs M*(f(0)f(1)...f(]a])).

Some first string « satisfies the condition at (11) for the given function f and thus N
converges to the value M“(f). Since there is some oracle B in the m-degree of A with
B = «, M converges using this oracle B also to M“(f) and M®(f) is the correct value. So
N infers S without the help of any oracle.

(b) Proof for NV-Learning Here M*(f(0)f(1)...f(n))!{ =y means that the oracle
Turing machine queries only within dom(«) and converges to the output y. Again there is
a case-distinction.

() (3f € 5) (Ya) (Yn) Fm > n) (3B = o) [MP(f(0)f(1)... f(m)) L# f(m +1)]. As

in the Ex-case it is possible to construct a computable sequence «y, «,... such that M
makes infinitely many mistakes during the attempt to NV-learn f for any oracle of the form
apapaiay The strings o, = Y971 . . . Yan—1 are defined inductively for k = 0,1,..., 27" —

1 such that one searches in parallel for a vy, and m > n with MP(f(0)f(1)...f(m))] #
f(m~+1) where 8 = apagai vy - .. apYoyi - - - Vi and agay . . . a, is the dual representation for k.
The construction gives that M does not NV-learn f with oracle B = A(0)apA(1)ay ...
although the strings oy, a1, ... are determined recursively and independent of A and thus

82

B has the same m-degree as A.

() (Vf € S)(Ba) 3Fn) (Ym > n)[(3F = @) [MO(f(0)f(1)... f(m)) L= f(m +)] A
(VB = a) (Vy) [MP(f(0)f(1)...f(m))l=y =y = f(m+1)]]. Here the learning-algorithm
is a bit different to that of the Ex-case but has the same basic idea. Note that for every input
f(0)f(1)...f(n) and for every « there is some 3 = « such that MP(f(0)f(1)...f(n))]
since some oracle in the m-degree of A extends 3. The new inference machine N tries
always to extrapolate B from a finite amount of information « in the just indicated way
and crosses out every a which once produced an error via moving it into a book-keeping
set C.

Let o ¢ C be the first binary string within a given enumeration which is not
already crossed out. Now let

N(fO)f(1)... f(n)) = MP(f(0)f(1)... f(n))

for the first 3 > « where this computation terminates within |3| computation
steps. If it turns out later (when the input f(0)f(1)...f(n)f(n + 1) is pro-
cessed) that this prediction was wrong then « is crossed out and C is replaced
by C U {a}.

Note that at every stage of the algorithm only one string « is crossed out. Furthermore,
whenever o and n satisfy the condition (11) for a function f € S, then so does also either
a0 or al with the same n. In particular infinitely many extensions of « satisfy (1) with
the same n and at most n of them can be crossed out. Since the algorithm uses always
the first a not yet in the set C' of crossed out candidates, it uses the same « in almost all
steps. Thus, almost all predictions are correct since otherwise this v would also be crossed
out. The algorithm learns every fin S. |

For the criteria Fin, PEx and PFin the same result holds also with 1-degrees in place of
m-degrees.

Theorem 6.1.2 Assume that a single machine M PEx[B]|-learns S via access to oracle B
for any B in the 1-degree of A. Then S can be PEx-learned without any oracle. The same
result holds also for the criteria Fin and PFin.

Proof First it is necessary to note that each finite binary string can be extended to a
set in the 1-degree of A since A is not recursive and therefore infinite and coinfinite —
otherwise one could fix A and replace queries to the oracle by computations. Now let S
be PEx-learnable via uniform access to some oracle in the 1-degree of A via a machine M.
The set

E={M®0):B=,Aand 0 € N*} = {e: (38 € {0,1}") (o € N*) [MP(0) = ¢]}

is an enumerable set of indices: since M uses for any output only a finite prefix of B, the
search can go over all binary strings instead over all oracles 1-equivalent to A. Since any
such string can be extended to an oracle 1-equivalent to A, each index in F is an index of a
total recursive function. On the other hand, E contains all guesses M4(f(0)f(1)... f(n))
for each f € S. Since M learns S from oracle A, E contains for each f € S an index.
Thus F is an enumerable set containing only indices of total recursive functions and for
each function in S there is an index in E. It follows that S is PEx-learnable.

The proofs for the criteria Fin and PFin are based on the same idea. For each ¢ define

83

— similarly to above — the sets

E(o) = {M"(0):p€{0,1}"}
G(U) = UT<UE|U|(T)

where the E,(7) are a recursive enumeration of the E(7) uniform in 7. The algorithm
outputs the symbol “?” until it reaches some o < f such that G(o) is not empty. Then
the algorithm outputs some e € G(0) and abstains from any mind change. This first guess
is computed relative some finite binary string 4 and since some B =; A extends (3, the
output must be a correct index for f provided that f € S. Furthermore, in the case PFin
e has to be a total index, also if o does not belong to any f € S. So again it follows that
uniform access to 1-degrees does not support learning for the criteria Fin and PFin. |

Some 1-degrees are also trivial for Ex-learning and NV-learning. For example the 1-degree
of a cylinder A, where A is called a cylinderif A((z,y)) = A({x, 0)) for all pairs (z,y). But
if A is sufficiently thin then the class REC of all recursive functions can be Ex-learned and
NV-learned uniformly relative to every B =; A by a single machine M.

Theorem 6.1.3 If the principal function ps of A dominates every recursive function f €
REC then there is a machine M which Ex-learns REC relative to any oracle B in the
1-degree of A. The same holds for NV.

Proof Recall that the principal function p4 of A assigns to each x the z-th element of A.
It can be shown that for each B =; A, the principal function pg of B also dominates every
recursive function: There is a computable one-one function f such that A = {f(x) : x € B}.
If pp would not dominate the recursive function ¢ then p4 would also not dominate the
recursive function n — max{f(m): m < g(n)}.

Now the following algorithm M? Ex-learns all recursive functions ¢: On input o < ¢
of length n, MP first computes © = pg(n). Then M?P searches for the least e such that
¢e(y) L = o(y) within z computation steps for all y € dom(c). If M finds such an e below
n then MP outputs this program e. Otherwise MP? outputs the symbol “?” to indicate
that M? could not make up its mind because of either too few data or too few computation
time.

M?% converges to the minimal index e of ¢: Since the principal function pp dominates
the computation time of ¢,, the learner M? outputs almost always either e or an index
below e. The second case only occurs finitely often because there are only finitely many
indices i < e and, for each i < e, there is x; such that ¢;(x;) either diverges or computes a
value different form f(z;). So whenever xg,z1,...,z._1 € dom(c), MP(o) does not output
a guess strictly below e and thus M? converges to e.

The modification from Ex-learning to NV-learning is that M? in place of outputting e
simulates p.(n + 1) for z computation steps and outputs the result if it is found within
steps. Otherwise it outputs 0. Since pg dominates the computation-time of ¢, whenever
©e is total (and in particular equals f) the procedure predicts almost always every recursive
function. Note that M must be total only for oracles B =; A and may diverge on others,
in particular on oracles represented by finite sets. |

This proof gives the nice (and already well-known) fact that whenever a dominating func-
tion can be computed from the oracle then REC can be learned under the criterion Ex
using this dominating function [1]. This function needs not to be the same for all permitted
oracles but each permitted oracle must give a dominating function via the same algorithm.
The construction will be used in several proofs below. Martin [97] and Tennenbaum [142]

84

showed that the complement of every maximal set has a dominating principal function.
Therefore it follows immidiately that the 1-degrees of maximal sets are omniscient for
robust learning.

Corollary 6.1.4 If A is mazimal then REC is NV-learnable and also Ex-learnable with
robust access to the oracles within the 1-degree of A.

The following result allows to characterize the robust learning power of enumerable Turing
degrees. As the last results indicates, it is possible to learn the whole class REC relative
to a suitable 1-degree inside any given high degree. All other enumerable Turing degrees
do somehow not contain any 1-degree which is helpful for robust learning, so enumerable
Turing degrees are either omniscient or trivial.

Theorem 6.1.5 If A has enumerable but not high Turing degree then every S robustly
Ex-learnable inside the 1-degree of A is also Ex-learnable without any oracle.

Proof The proof follows mainly the lines of Theorem 6.1.1. Assume that M is a robust
learner. Now it is sufficient to consider case (1) since the translation of the algorithm
in case (11) is literally the same. Case (I) assumed that there is a function f € S with
(Vo) (38 =) [MP(f) # M*(f)]. Without loss of generality, one can assume that M is
increasing so that whenever there is a mind change the new value is properly larger than
the old one.

Again there is a routine which given an n produces a string 3, such that, for every
a € {0,1}", some mind change occurs if the oracle extends af,: M (f) # M*(f).
Furthermore, let each string 3, contain at least one 0 and one 1. Now one constructs a set
B =; A such that there are infintely many n with B(z + n) = (3,(z) for all z € dom(,).
Let Ay, Ay,... be an approximation of A with A-recursive modulus. There is a function
g computable relative to A which assigns to each n the value m + n + s such that m =
pa(n+|6a]) +px(n+|58,]) and s is the first stage where A,(x) has converged to A(z) for all
r < m. Recall that p4(k) is the position of the k-th element of A and p+(k) is the position
of the k-th element of A, that is, of the k-th nonelement of A. Note that ¢ is increasing.
Since A does not have high Turing degree, there is a computable and increasing function
h such that, for infinitely many k, h(k) > g(g(k)). Now a permutation 7 is constructed in
stages. If at stage s the first n values of 7 are defined then one extends 7 on the next |3,|
values by the following rule:

m(n+z) =min{y ¢ {7(0),7(1),...,7(n+x —1)} : Aym)(y) = Bu(z)}

The resulting function 7 is computable. Let B = m(A). There are infinitely many &
with h(k) > g(g(k)). For each such k consider the first s for which 7w (k) is defined. The
corresponding n is above k but below g(k). Therefore h(n) > h(k) > g(g(k)) > g(n).
So it follows that at this stage s for y < g(n) the values Ay, (y) and A(y) coincide and
therefore also for any « € dom(f3,) the equation B(n +) = ,(x) holds. So for infinitely
many n and the corresponding o = B(0)B(1) ... B(n — 1) it holds that B > «/3, and that
Mebn(f) # M(f). Thus M makes for each such n a mind change and does not, converge
on f. Since each (3, contains an 1 and 0, each element and each nonelement of A is at
some time associated to some x and 7 is a computable permutation. So B is in the same
1-degree as A but M does not learn f relative to B.

So case (1) does not hold and therefore (11) from Theorem 6.1.1 holds. Now it follows
by exactly the same argument as in Theorem 6.1.1 that S € Ex. 1

The last theorem showed that enumerable nonhigh Turing degrees do not contain any
1-degree relative to which it is possible to learn anything nontrivial robustly. The next

85

theorem shows that some nonhigh Turing degrees D differ from this in the sense that they
contain a 1-degree which allows to learn every S € Ex[D] robustly. So for any oracle in this
1-degree the learning power given by robust and normal access to the oracle is the same.

Theorem 6.1.6 Let D <p K have the Turing degree of a complete extension of Peano
Arithmetic. Then there is A = D such that exactly the S € Ex[D] can be learned robustly
relative to the 1-degree of A. Furthermore, D can be chosen such that D is not trivial and
also not omniscient, that is, some nontrivial class S is learnable relative to D while REC
cannot be learned using oracle D.

Proof A number z is Kolmogorov random if there is no index e < % such that r =

©e(0). Let C be the set of all Kolmogorov random numbers. The complement of C is
an enumerable set. Furthermore, C' has in each interval I, = {2",2" +1,...,2"" — 1}
at least one element. Relative to the oracle D one can select from each interval I, an
element x,, which is not enumerated into the complement of C' and thus C has a subset
{.’L‘O, L1y } ST D.

Let ¢p(z) be the first stage s > « such that Ds(y) = D(y) for y = 0,1, ...,z where Dj
is an approximation of D. If the sequence by, by, ... dominates ¢y then D is computable
relative to B = {by, by, ...} [135, Exercise IX.2.18 (a)]. There is even a single machine N
such that NZ(z) = D(x) whenever b, > cp(z) for all z > z. N can be modified such that
NB(z,y) = D(z) whenever b, > cp(z) for all z > y. Furthermore, N is total for every
infinite oracle.

Now let a, = ¢, for all n. The set A = {ag, a4, ...} has the same Turing degree as
D. Let B be in the same 1-degree as A. There is a recursive one-one function f such that
B = f(A). Now for each a, it holds that f(a,) > ¢ - a, — ¢ for some rational constant
g > 0 and some c since otherwise the sequence ag, ay, ... would not consist of Kolmogorov
random numbers. It follows that f(a,) > log(a,) for almost all n and thus f(a,) > ¢p(n)
for almost all n. Since B is the range of A, b, > ¢p(n) for almost all n.

Given S € Ex[D], there is a D-recursive Ex-learner M for S such that M (o) queries
D only below |o| for every o0 € IN*. Since D <y K there is an approximation M; for M.
Let 0y, 01, ... be an enumeration of all strings and define as in Theorem 2.4.4 the function

ey () = min{s > x : My(o,) = M(oy) for all y < z}.

Since ¢y (z) < ¢p(x) for all z, the sequence by, by, ... dominates also ¢p;. Now it is shown
that the machine N given by

N(oy) = M,(0,) for the first x > y with M,(0,) = M(oy) for s =z, z+1,...,b,

robustly Ex-learns every f € S: Since M;(o,) converges to M (o,) at some ¢, any x > y+1
satisfies the condition M,(o,) = M(o,) for s = z,z+1,...,b, and N is total. There is a
number z such that ¢y (z) < b, for all z > z. Almost all o, < f satisfy y > z, so for each of
them the algorithm produces an x > z such that M,(o,) = M,(0,) for s =z, 2+1,...,b,.
By the choice of ¢js, one of these M;(o,) coincides with M (o,). So the output of M
and N coincide for almost all o,. So if M Ex-learns f, then NZ(f(0)f(1)...f(y)) =
M(f(0)f(1)...f(y)) for almost all y and so also N Ex-learns f. Therefore it is possible
to learn every S € Ex[D] also using robustly any oracle B within the 1-degree of A.

On the other hand, if some class is learnable with robust use of the oracle A, then it is
also learnable with standard use of the oracle A and since A <, D also with standard use
of the oracle D. So robust and standard use of the oracle A coincide.

Now an intermediate degree D is constructed: By the Low Basis Theorem [135, VI.5.13]

86

there is a low set D <p K whose Turing degree is the one of a complete extension of the
Peano Arithmetic. Since such a set is not below a 1-generic set, it is not trivial for Ex [132].
On the other hand, D is not high and therefore REC is not Ex-learnable relative to D [1].
It follows that the 1-degree of the corresponding set A is neither trivial nor omniscient
with respect to robust Ex-learning. |

6.2 Lists

Gold [56] showed that every uniformly recursive class of functions can be learned by enu-
meration. Also in more restricted notions of learning, a uniformly recursive representation
of the class — also often called an indexed family — is very helpful. So Angluin [2] initiated
a study of the learnability of classes of sets with an indexed family. Jantke [68] introduced
within this model the intensively studied notions of monotonic inference. Lange and Zeug-
mann [150, 151] give an overview on these studies.

In the present work such a uniformly recursive computation procedure is replaced by
an oracle which consists of a list of all functions in S. It is investigated how well such an
oracle supports learning.

For a given array F' let F, denote the function F,(y) = F(x,y). Such an array F is a
list for a class S iff S = {F, : x € IN}, so a list for S contains just all functions in S (but
no nonmembers of 5).

A folklore result is that every uniformly recursive class can be learned with respect to
its enumeration as hypothesis space. Learning by enumeration allows also to predict the
next value, thus the following NV-learner P succeeds on all functions in S using any list F’
for S.

F.(y+1) for the first x <y with
P(apay ...a,) = Fp(0) = ap, Fu(1) = ay, ..., Fi(y) = ay;
0 if there is no such x < y.

So, one obtains the following theorem.
Theorem 6.2.1 S € NV|[List| for all S C REC, that is, lists are omniscient for NV.
Many natural examples can be Ex-learned using a list.

Example 6.2.2 The following classes are in Ex[List].

(a) The classes REC of all recursive functions.

(b) The class RECy; of all {0, 1}-valued recursive functions.

(c) The class Sop = {f : (Fe) [pe = f A 0°1 < f]} of all self-describing functions.
(d) The class Sy = {f : (V>°xz) [f(xz) = 0]} of all functions with “finite support”.
(e) The union Sy U S;.

The classes Sy and S are already in Ex, so one does not need to proof Example 6.2.2 (c)
and (d). The other three cases are covered by Theorem 6.2.3 below.

Alternatively to Theorem 6.2.3, one could prove (a) and (e) also by adapting the proof
of Theorem 6.1.3. The basic idea is the following: A list F' contains, in both cases,
for every recursive function f, a function F, which dominates f. Then, the function
h = Fy(x) + Fi(z) + ...+ F.(z) also dominates every recursive function. Although the
specific form of the function h depends on the oracle F', the dominating property holds for
every list F' and can be exploited uniformly for the learning algorithm.

87

Theorem 6.2.3 If REC,; N Sy C S then S € Ex[List].

Proof This proof follows an idea of Jockusch [71]. There is a partial-recursive {0, 1}-
valued function v which has no total recursive extension. Based on this ¢ one defines via
dovetailing

1 ifa=j;
0 if x < j or ¢;(y) converges for all y < x;
Qe (@) = Y(z) if > j and ¥(x) converges before
the condition above is satisfied;
T otherwise.

By the Fixed-Point Theorem, there is a function e such that oy i) = @eq) for all i. The
resulting function ;) is either partial or in SoNRECy ;. Furthermore, ¢,(;) has a recursive
{0, 1}-valued extension iff ¢; is total. In particular, ¢.(; has an extension Fj iff ¢; is total.
So the learner M uses the list F' to check whether ; is total and searches for the least pair
(i, k) such that ¢; differs not from f and ;) is extended by Fj, that is, the totalness of
©; 1s “witnessed” by Fj:

M(f(0)f(1)...f(z)) outputs the ¢ from the least pair (i, k) such that, for all

y <, f(y) = ia(y) whenever p;,(y) is defined and ¢e(;),.(y) = Fj(y) when-
ever e« (y) is defined.

For the verification note, that such a pair (i, k) exists, since each {0,1}-valued total re-
cursive function has an index ¢ and then the function @) is also total and recursive
and equals some Fj. Furthermore, all false pairs (i, k) are thrown out eventually since
either ¢;(y) 1 # f(y) for some y or ¢.; has no recursive extension and thus differs from
F}, somewhere on dom(ge)). So M converges to the i of the least pair (i, k) such that

©; = fand @iy = F. |1

Most learning-criteria are closed with respect to taking subclasses, that is, if S C S’ and
S’ is learnable, so is S. But the previous theorem gives some incidence that this might
fail for the criteria considered here: Learning RECy; required a different method than
learning REC. Indeed since information on the class S’ is given to the learner for S’, some
of this information might be lost when replacing S’ by the subclass S and the lack of this
information might destroy learnability. The next result establishes this conjecture and
shows in addition, that the learning criterion Ex[List] is not closed under union.

Theorem 6.2.4 There are two classes Sy, S3 € PFin[List| such that their union Sy U Sy
and their difference Sy — Sy are not in Ex[List]. That is, none of the criteria PFin, Fin,
PEx and Ex is closed under union or difference for learning from lists.

Proof Let S5 contain all constant functions. The class Sy is defined using a construction
from [89, Theorem 7.1]. This theorem shows that there is a family @0, @41, ... and a
list fo, fi, ... of functions in RECy; such that

range(pym) = {0,1} and 0°1 < Dg(i);

For all 4 there is at most one z with @) (z)1;

fi extends ¢y and is recursive;
The set A = {(z,4) : fi(z) = 1} has low Turing degree;
The class Sy = {f; : i € N} is not Ex-learnable relative to A.

88

Now let Sy contain all functions in Sy plus all constant functions of the form f(x) = (i, j)+2
where (V5 > i) [¢4i)(7) L]. The following four observations give a proof of the theorem.
(1) Sy € PFin|[List]: Learning a function f € Sy, the learner M checks whether f(0) > 1.
If so, the function is a constant function and M outputs a total index for it. If not, M
outputs “?” until an i is known with 0’1 < f and a j is found such that the function h with
h(0) = (i,7) +2 is in the list. Then the function ¢, is total beyond j and M outputs the

index ¢'(i, j) of
| f(2) if v <75
‘Py’(i,j)(x) - {gpg(i) (x) otherwise;

where f is the function on the input. Only its first j values are necessary, but the 7 can
depend on the concrete form of the list. By the choice of the constant functions in S, and
the fact that the list contains exactly those functions which belong to S,, the algorithm
always outputs exactly one total program and this one is correct if the data belongs to
some f € Ss.

(11) S3 € PFin[List]: This follows directly from the fact, that a constant function f is
known after seeing the value f(0).

(111) So — S3 ¢ Ex|[List]: Sy = Sy — S3 and A is a list for S;. By the choice of A and S,
the class S, cannot be learned with A-oracle, in particular not under the criterion Ex[List]
since the list presented can be exactly A.

(1v) Sy U S5 ¢ Ex[List]: There is also an A-recursive list for Sy U S3 = S5 U S3. Since
Sy ¢ Ex[A], the same holds for the superclass Sy U S3 and so this class can also not
be learned with the help of a list. Indeed the point is that by the union the particular
information, from where on a function g is total, is overwritten. |

A direct corollary is, that the class Sy can be learned under the criteria PFin[List],
PEx[List], Fin[List] and Ex[List], but not under the criteria PFin, PEx, Fin or Ex. So
lists are really a help for several learning criteria.

6.3 Predictors

Barzdins [11] and Blum and Blum [19] introduced the learning criterion NV where the
learner has to interpolate the next value from the previous ones. In this section it is
investigated to which extent such a predicting device can be uniformly translated into a
learner for one of the other four criteria. Formally, a total device P is called a predictor
for S iff

(Vf € 8)3x) (vy>) [P(FO)F(1)... fly) = fly+ 1)),

that is, iff it predicts each function f € S at almost all places y + 1 from the data
f(0), f(1),..., f(y). Using the algorithm above Theorem 6.2.1, one can turn any list F' to
a predictor P. But this translation is not reversible: a predictor may also predict functions
outside the class S to be learned and so hide the information which functions belong to S
and which not.

While lists help under all inference-criteria, predictors are no longer helpful for PFin,
Fin and PEx. This is due to the fact, that every finite modification of a predictor is again a
predictor and so the inference machine has to fulfill the requirements for these three learn-
ing criteria also under all finite modifications of the predictors. Then it follows by an easy
adaption of the proof of Theorem 6.1.2 that the criteria are not supported by predictors
as additional information.

89

Theorem 6.3.1 PEx[Predictor] = PEx, Fin[Predictor] = Fin and PFin[Predictor] =
PFin.

Proof Let S € PEx[Predictor| via a machine M. The sets
E(0) ={e: (Ba e N) [M*(0)] = e]}

are uniformly enumerable and contains all possible outputs of M on o, in particular a
program for every f € S. If P is a predictor for S, so is the predictor) defined as

_ [(alo) ifo e dom(w);
Qo) = {P(O’) otherwise;

since the change from P to « on the domain of a can in the worst case add only finitely
many errors to those of P on any function f. So every « is a prefix of a predictor of S and
all indices in E(o) are total in the case of the learning criteria PEx and PFin. If f = o is
in S, then every index in E(0) is a program for f in the case of PFin and Fin.

In the case of PEx, the union of all E(o) is again recursively enumerable and contains
only total programs, among them for each f € S at least one. It follows that S is the subset
of an enumerable family and has already a PEx-learner which does not use any oracle.

In the case of Fin and PFin, the learner outputs “?” until an input f(0)f(1)... f(n) is
processed which is so long that some index e in the set E(f(0)f(1)...f(m)) is found in
time n? for some m < n. Then this e is by assumption a program for f and the learner
succeeds on f. It again follows that the modified learner succeeds on S but does not use
any oracle. |

While predictors are omniscient for NV-learning (by definition) and trivial for Fin, PFin
and PEx, they are intermediate for Ex-learning. In particular the natural class REC is
learnable by predictor while the class RECy; is not.

Theorem 6.3.2 REC € Ex|[Predictor] and RECy; ¢ Ex[Predictor].

Proof The first result is due to the fact that a dominating function can be computed
using a predictor. For each o the predictor P defines inductively a total function f, via
extending the string o by P:

o(n) for n € dom(o);

fo(n) = {P(fg(())fa(l) oo fo(n—=1)) for n ¢ dom(o).

So if n is the first number outside the domain of o then f,(n) = P(0), f,(n+1) = P(of,(n))
and so on. Given an enumeration oy, oy, ... of all strings, the function

W) = foo (@) + for () + - + fo,(2)

is uniformly recursive in the given predictor P and dominates every recursive function. As
in Theorem 6.1.3 it follows that REC can be learned in the limit using this A obtained
from P.

The construction fails in the case of RECy ;. Indeed there is a low oracle predicting all
{0, 1}-valued functions. This oracle gives a predictor, but the predictor is not sufficiently
powerful to learn RECy ; in the limit since this requires a high oracle [1, 43]. 1

90

6.4 Classifiers

A one-sided classifier C' [138] assigns to every string o a binary value. C' classifies S iff
(V) [f € S (V20 = f)[Clo) = 1]].

For suitable classes S, the one-sided classifier cannot be recursive. Furthermore, one cannot
use two-sided instead of one-sided classifiers, since several classes like the class S; of all
almost everywhere 0 functions do not even have a nonrecursive two-sided classifier [124,
Chapter 15.1]. Chapter 7 provides more information on classifiers. One-sided classifiers
still do not help the criteria PEx, Fin and PFin via the same argument as in the case of
1-degrees and predictors. The following theorem is stated without proof, since the proofs
for Theorem 6.1.2 and 6.3.1 could be adapted with minor changes.

Theorem 6.4.1 PEx|[Classifier] = PEx, Fin|[Classifier] = Fin and PFin[Classifier] = PFin.

Reliable inference [19, 25, 81, 106] means, that a machine converges on a function f iff it
learns this function. In the context of learning total functions, there are two definitions: the
first postulates only divergence on the not learned functions in REC, the second postulates
also divergence on the total functions outside REC. The next theorem shows, that every
class S learnable in the limit using any classifier can even be learned reliably in the second,
more restrictive sense (here called REx), again using any classifier.

Theorem 6.4.2 Ex[Classifier] = REx[Classifier].

Proof The criterion Ex is more general than REx, thus it is sufficient to show only the
direction Ex[Classifier] — REx[Classifier]. Let S € Ex[Classifier] via a classifier C' and
an inference-machine M. Furthermore, let pad be an injective padding-function such that
©pad(i,j) = wi for all ¢ and j. The new REx-learner N uses pad to enforce a mind change
whenever C' takes the value 0.

N(o)=pad(M (o),|r|) for the longest T <o with C(7)=0V M (1)# M(0).

Without loss of generality, C'(\) = 0 and thus N is total. Now one shows that N is a
reliable inference algorithm for S: If f € S, then C' converges on f to 1 and M converges
to some index e with ¢, = f. There is a longest 7 < f such that C(1) = 0V M(71) # e.
Thus the learner N converges to pad(e, |7|). If f is not in S then there are infinitely many
7 = f with C(7) = 0. For all these 7, N takes the value pad(M(7), |7|) and all these values
are different, that is, N does not converge. It follows that S is learned via the reliable
machine N. |

The next Theorem uses — as the corresponding Theorem 6.2.3 for lists — Jockusch’s con-
struction [71] in order to show that every class containing all {0, 1}-valued self-describing
functions is learnable using a classifier.

Theorem 6.4.3 If RECy; NSy C S then S € Ex[Classifier].

Proof Let ¢ be a {0,1}-valued partial recursive function without any total recursive
extension. By Jockusch’s construction [71] there is a recursive function g such that the
functions @g(n,m) satisfy the following requirements:

e 01 =< Pg(n,m) and 7"ange(gog(n,m)) = {07 1};

o If ¢, is total so are all functions @g(nm);

91

o If ¢, is partial then @y, m)(7) | = 1 (z) for almost all x € dom(z)).

By the recursion theorem with parameters [135, I11.3.5] there is a recursive function h such
that ©um) = @g(nnn)) for all n. Note that every function ¢y, is self-describing and that
©n(n) 1s total iff ¢, is. Furthermore, @y, is either total or has no total recursive extension
at all.

It can be computed effectively in the limit from any classifier C' for S whether the
function ¢pm) is total or not: To see this let o, be the longest prefix of the function
©Onn)(0)Pnm)(1) ... such that all its values are calculated within s stages. An extension
T = 0, is said to be consistent with @pm) (Onm),s) iff for every z € dom(r) N dom(pp(n))
(z € dom(T) Ndom(pp(n),s)), the values 7(x) and pun)(z) coincide. Consider the following
sequence, which is uniformly recursive in the parameters s and n.

1 if there is an extension 7 € {0,1}*™! of o,
which is consistent with ¢y(,) s and which satisfies
C(n) =1 for all n with o5, < n < 7;

0 otherwise.

g =

If , is total, then ¢y, is total and C' converges on @,y to 1. If s is sufficiently large,
then o, is sufficiently long and the string 7 = ©pn)(0)Prm)(1) ... Onm)(s) satisfies the
requirements. 7 extends o,. 7 is obviously consistent with um),. C(n) = 1 for all n
between o, and 7. So the ay converge to 1.

If ¢, is partial, then ¢p,) has no recursive extension and C' does not converge to 1
on any f extending ypm). Let o be the longest prefix of ¢y, such that all its values are
defined. Now consider the following binary tree 7T:

A binary string 7 is in T, either if 7 < o or if 7 extends o, 7 is consistent with
¢nm)y and C(n) = 1 for all n between o and .

Since C' does not converge to 1 on any f extending ¢y (,), the binary tree Tj; does not have
any infinite branch f. So the tree 7, is finite and there is some = bounding the length
of every string in 7,. Let s > x be a stage such that for all y < z the value @u(n)(y)
is calculated within s steps whenever it is defined. Now oy = 0. Furthermore, whenever
T ¢ T,, there is either some 1 between oy and 7 with C'(n) = 0 or there is some y with
7(y) 4 # ©nm)(y) | . If the first case does not hold, then it follows by the construction of T,
that the second case holds for some y < x. So 7 is also inconsistent with ¢y,),s. It follows
that a;, = 0 since ay is not 1 via any 7 € {0,1}**!. The a, converge to 0 in this second
case.

So it can be computed in the limit using C' which functions ¢, are total and this
computation does not depend on the particular form of C'. The learner M uses this
information for the following construction: At every stage, M outputs the first e which is
at stage |o| assumed to be total and for which ¢, |, is consistent with the data o seen so
far, that is, which satisfies o, ,(2) = o(z) for all x € dom(g.,s) N dom(c). |

This result also holds for NV-learning (after modifying the last part of the proof above).
Any list F' can be transferred into a one-sided classifier C: Let e, be the smallest index
such that either F,_ extends o or e, = |o|. Now let C'(A\) = 0 and, for any non-empty
string oa,
1 ife, = epq;
Cloa) = {0 otherwise.
This C'is the classification-version of the well-known algorithm to learn by enumeration; C'
converges to 1 exactly on the functions in the list F'. So everything which can be learned
from a classifier can also be learned from a list.

92

Theorem 6.4.4 Ex[Classifier] C Ex[List].

So both concepts Ex[Classifier] and Ex[Predictor| are weaker than Ex[List]. The next
theorem shows that they are incomparable and thus both concepts are strictly weaker
than Ex-learning from a list.

Theorem 6.4.5 Ex|[Classifier] and Ex[Predictor| are incomparable.

Proof Since RECy; € Ex[Classifier] — Ex[Predictor], only the other noninclusion remains
to be shown: Ex[Predictor] ¢ Ex[Classifier]. The class to witness this noninclusion is the
union of the following two classes:

e The class S; from Theorem 6.2.4.

e The class S5 = {®. : e > 0} N REC of all total step-counting functions, where ®.(z)
is defined as the time to compute @ () if p.(z)] and ®.(x) is undefined otherwise.

Blum [18] introduced abstract measures where the step-counting functions are the best
known example of such an abstract measure — S5 can be defined using any such ab-
stract measure instead of the step-counting functions. Note that the uniform graph
G = {(z,y,e) : P.(z) | = y} of all step-counting functions is decidable and thus S; has
even a recursive one-sided classifier C' given by

e C(f(0)f(1)...f(n)) =0ifn =0 or a, > a, 1 where a, = max{i < n : (Vj <)

)
Bz <n)[(x, f(2),]) & Gl};
e C(f(0)f(1)...f(n)) =1 otherwise.

The class Sy has a list relative to some low oracle A and therefore it also has a classifier
relative to A. So, the union of S;US5 has a classifier of degree A, but as already mentioned
in Theorem 6.2.4, S4 and every superclass can only be learned from oracles of high degree.
Therefore Sy U S5 ¢ Ex|Classifier].

On the other hand, if M is a predictor for S5 then M must predict the computation-time
for each function ¢, almost everywhere. So uniformly in M some function dominating all
computation-times can be calculated and using this function it is possible to infer every
recursive function — in particular every function in Sy U S5. |

A direct corollary is, that whenever M is a predictor for S5, then a dominating and there-
fore nonrecursive function can be computed relative to M. In particular S5 has no pre-

dictor which uses only the computable above constructed classifier as oracle and thus
S5 ¢ NV/[Classifier].

Corollary 6.4.6 The class S5 of all total step-counting functions is not in NV|Classifier].

6.5 Identifiers

An identifier is a generalization of an Ex-learner: it converges on every function in S to a
number which is unique for this function within S. Such a number could be viewed as an
abstract code for this program. The criterion LimEx is a generalization of Ex in the sense
that the learner converges to a program which computes f in the limit — or equivalently
with help of the oracle K.

Identifiers are the next step of this direction: Given an identifier I, there exists a

93

(generally not recursive) two-variable function F' such that, for all f € S, there is an index
i where the identifier I converges on the data f(0)f(1)...to ¢ and f(z) = F(i,z) for all z.
Note that this definition is consistent since there is, for every ¢, at most one f € S on
which I converges to i. One may complete the definition of F' by taking F'(i,z) = 0 for
those ¢ where I converges on no f € S to ¢. Formally the definition of an identifier is as
follows.

An abstract device I is an identifier for a class S of functions iff I converges on every
f € S and I takes on every two distinct functions f,g € S different values in the limit.
There is no requirement how I behaves on functions outside S, on these I may either
diverge or converge to any index e without caring whether e is an index of some function
in S or not. The only requirement is that, also in these cases, I as a function is total, that
is, I (o) is defined for every o € IN*.

There are classes which are learnable under the criterion LimEx but not under the
criterion Ex [26] and LimEx is not omniscient. Furthermore, some classes S ¢ LimEx have
an recursive identifier but REC does not have one. So an identifier can still provide some
nontrivial information. But the surprising result is, that this information is of no help
for Ex-learning at all: Roughly spoken, it is as hard to decode and translate the indices
produced by an arbitrary I as to learn programs for functions in a given S without any help.
On the other hand certain classes are NV-learnable with the help of an identifier which
cannot be NV-learned without any help. So while the translation of indices produced by
an identifier is always impossible it is sometimes possible to “evaluate” them in nontrivial
situations.

Theorem 6.5.1 If S is robustly learnable under one of the criteria Ex, PEx, Fin, PFin
with the help of an identifier then S is learnable under the same criterion without any help.

Proof The proofs for PEx, Fin and PFin use only the fact that identifiers are closed under
finite variations, so the results follow immidiately the lines of Theorems 6.1.2 and 6.3.1.
The case Ex needs a new proof which is based on three ideas: (1) there is a computable
binary tree T such that relative to every branch it is possible to compute uniformly an
identifier for REC, (11) if S € Ex[Identifier] then S is learnable via a machine N which
succeeds with every oracle represented by an infinite branch of 7" and (1) if S is Ex-
learnable robustly relative to every infinite branch of T" then S is already Ex-learnable
without the help of any oracle.

(1): It is convenient to identify the levels of the tree with all triples (i, j, k) of natural
numbers. The nodes of T are now those binary strings o € {0,1}* which satisfy the
following two conditions:

e For each 4, j there is at most one k with «(7,j,k) = 1.
o If v;(j) = k within |a| steps and (i, j, k) € dom(a) then «(i, 5, k) = 1.
The following program computes for every infinite branch A of T an identifier for REC:

i for the least ¢ < |o| such that
I(0) = (1,7,0(j)) € A for all j € dom(o);
|o| if there is no such i.

The verification is straightforward and based on the following two observations: First, for
every f € REC, there is an i such that (i,7,k) € A< f(j) = k. An example for such an i
is the index of some program for f. Therefore the identifier converges on every computable
function to some index. Second, if f and ¢ are different computable functions, then there

94

is a pair (4, k) such that f(j) = k and g(j) # k. It follows that I converges on f to some
index i with (i,j, k) € A and for g to some index ' with (i, 7, k) ¢ A. Thus I converges
on every two different computable functions to different indices. So I is an identifier for
REC. Note that an identifier for REC is also an identifier for every S C REC.

(11): Let M witness that S € Ex[Identifier]. Then M works also with every I as an
oracle. Now the learner N simulates M and just computes for every o the value I4(o)
according to the algorithm given above, so N learns S from every oracle A which is an
infinite branch of the tree T" given above.

(1m1): This part needs only the recursiveness of T', not its special form. Furthermore,
one can assume that whenever N makes a mind change, that is, whenever N(oa) # N(o0),
then N takes an index which is larger then the input seen so far: N(ca) > |o| + N(o).
Such an index can be found effectively by padding [111, Proposition I1.1.6]. Furthermore,
the convergence can be slowed down such that N queries only values below |o| in order to
compute N*(c). The basic idea of such a slow down is just to postpone a computation if
it takes too long or queries too large data-items [43, Note 2.14]. All in all one obtains a
monotonic increasing machine which queries for each o only values below |o| and which
converges for every f € S on all infinite branches to an index for f. Now the following
algorithm H Ex-learns S even without oracle-queries — note that 7" is computable.

H(o) = min{N%(0) : a € {0,1}°/ 0 T}.

Given some f € S, let e be the minimal value such that there is an infinite branch A of T’
for which N* with input f converges to e. This index e is a program for f and it remains
to be shown that H also converges to e.

Since N4 is nondecreasing on f, the relation H(c) < e holds for all ¢ < f. On the
other hand, there is no infinite branch of 7" on which N converges to some value smaller
than e and so the subtree

T'={B€T:N(f0)f(1)...f(IB])) < e}

of T" has no infinite branch. 7" is finite by Ko6nig’s Lemma [111, Theorem V.5.23]. There
is some string o < f such that no string 3 of length |o| is in 7”. Thus N”(o) > e for all
strings € T of the same length as 0 and H(o) > e. Since H is increasing and does not

take on f values greater than e, the learner H converges on f to e. So H is an Ex-learner
for S, that is, S € Ex. 1

So, the only interesting concept is NV[Identifier|. The next theorems show that many
natural classes are also not learnable under this concept but there are some classes which
can be NV-learned. NV[Identifier] and NV[Classifier| turn out to be incomparable but in
some cases the combined concept is quite powerful.

Theorem 6.5.2 If S € NV[Identifier] then some computable function g dominates every
fes.

Proof In the proof of Theorem 6.5.1 a computable binary tree 7" and an algorithm I is
given such that I is an identifier for REC relative to every infinite branch A of T. By
the Hyperimmune-Free Basis Theorem [111, Proposition V.5.34] T has an infinite branch
A of hyperimmune-free degree. If S € NV[Identifier| then also S € NV[A] via some total
A-recursive machine M. Along the lines of the proof of Theorem 6.3.2 it follows that some
A-recursive function h dominates every function in S. By the definiton of hyperimmune-
free degrees [111, Definition V.5.2] there is a computable function g which dominates this
function h and with it also all functions in S. |

95

This result shows immidiately that NV[Classifier] is not contained in NV[Identifier|: By
Theorem 6.4.3 every class containing Sp is in NV|[Classifier], in particular the whole class
REC itself. Since REC is not dominated by a computable function, REC is not in
NV[Identifier]. The reverse inclusion also does not hold. The next example shows this
and also provides a nontrivial class in NV[Identifier].

Theorem 6.5.3 The criteria NV[Classifier] and NV|[Identifier] are incomparable.

Proof As already mentioned, one noninclusion is already known. For the other one, let
g be the function from Theorem 6.2.4 satisfying the following requirements:

o range(@y) = {0, 1} and 0'1 =< pyp);
e For all ¢ there is at most one x with ¢y (z)1;

e The class S = {f € RECy,, : f extends some ¢,;} is not Ex-learnable.

Here Sg contains the class Sy from Theorem 6.2.4, the main difference is that Sy contains
exactly one function extending each 4y while Sg contains every {0, 1}-valued function
extending ;).

S¢ ¢ NV|[Classifier]: This is done via showing that Sg has already a computable classifier
C. Then this C cannot provide any help for learning and the statement follows from
S¢ ¢ NV — note that NV without oracle is less powerful than Ex. The computable
classifier for Sg is given as follows

1 if o and py@),s| are consistent
for the ¢ with 0’1 < o;
C(0) =14 0 otherwise, that is, either no 0’1 < o or
o and ©g(i),|o| are not consistent
for the ¢ with 0’1 < o;

where @y (0| is the part of the function ;) obtained within |o| computational steps and
consistency means that, for all € dom(o), if ¢y (x) outputs within |o| computational
steps a value y then y = o(x).

Sg € NV([Identifier|: This result uses the computable classifier from above and the fact
that every f € Sg is {0,1}-valued. Let I be an identifier for Ss. Now for any o, consider
the following trees

Ty = {7 € {0,1}": (Vn 2 7) [I(oan) = I(0) A C(oan) = 1]}

If for example 007Tj has an infinite branch f then f € S since C outputs on f only finitely
often a 0. Furthermore the tree 0177 cannot have also an infinite branch g since then g
would belong to S and I on both functions, f and g, converge to I(c). Thus one of the
trees T, is finite and the NV-learner M outputs that 1 — a for that ¢ where M finds out
first that T}, is finite. If f € S then C outputs 0 only on finitely many o < f and similarly
I makes only finitely many mind changes, thus for almost all ca < f, the corresponding
tree T, is infinite and the prediction is the correct value a. |

So as a corollary of the last part of the proof one gets the following theorem that states that
all classes of {0, 1}-valued functions can be learned if both, an identifier and a classifier,
are supplied.

Corollary 6.5.4 S € NV|[Classifier,Identifier] for all S C RECy.

96

6.6 Martingales

A martingale calculates the gambling-account of someone who always tries to predict the
next value of a function. In each round the gambler places an amount ¢ on some number
a, that is, for each string o there is a rational number ¢, 0 < ¢ < m(o), such that
m(oa) = m(o) + ¢ for some a and m(ob) = m(o) — q for all b # a. The gambler wins on
a function f iff the martingale takes on prefixes of f arbitrary large amounts of money. m
is a martingale for S iff m wins on every function f € S. The interested reader can find
more on martingales in Schnorr’s book [128].

Theorem 6.6.1 If S € Ex[Martingale| then S € Ex. The same holds for all other inference
criteria. In short: martingales do not help.

Proof There is a martingale m <7 A for some 1-generic set A <y K which wins on every
recursive function — indeed every set A of hyperimmune degree is suitable. Let g <; A be
a monotone function which is not dominated by any recursive function. Now the strategy
of m is the following:

Let o be the input, x = |o| and @ = f(x) be the value to be predicted. Now
look for the least e < x such that . (y) converges to o(y) fory =0,1,..., 2 —1
and @.(z) also converges to some value ¢ within g(x) steps. If there are such
an e and a then bet ¢ = @ on a and otherwise do not bet (¢ = 0).

This martingale succeeds: Let e be the least index of f. ¢ is not dominated by A where
h(z) is the time to compute all values ©.(0),..., p.(x). There are even infinitely many z
with g(z) > h(3z + 3e). For these x, the martingale m bets for y = z,z +1,...,3x + 3e
either on ¢.(y) or on ¢;(y) for some j < e. It happens for each j < e at most once that m
bets on ¢;(y) and ¢;(y) # ¢.(y), so this phenomenon produces in total at most e wrong
bets. On the other hand, ¢.(y) is computed within g(x) < ¢g(y) steps and so whenever m
takes no value ¢;(y) with j < e then it predicts the value ¢.(y). So at least 2z + 2e of the
predictions between x and 3z + 3e are correct and m(f(0)f(1)...f(3z + 3e)) > (2)"*.
Since this holds for infinitely many x, m succeeds on ¢ and so m succeeds on every recursive
function.

If now S € Ex[Martingale| then S can also be learned via any oracle relative to which
such a martingale exists. In particular S can be inferred relative to a low 1-generic oracle
and thus S can be learned in the limit without any oracle [132]. So martingales do not
help for learning in the limit. The same holds for learning under the criterion NV.

As in the case of predictors and classifiers, each finite part of any martingale can be
extended to a martingale for S. The set of all such finite parts is enumerable and therefore
the arguments from Theorem 6.1.2 and 6.3.1 can be used to show that martingales also do
not help to learn under the criteria Fin, PFin and PEx. |

So martingales are on the bottom of the inclusion-structure of these five types of additional
information as it is summarized in the following theorem. While unrelativized NV is much
more restricted than unrelativized Ex, the opposite holds for many types of oracles: Most
types of oracles can be exploited much better by an NV-learner than by an Ex-learner.

Theorem 6.6.2 The inclusion-structure of the five types of additional information with
respect to the learning criteria Ex and NV are given by the diagrams in Figure 1 on page 98.
For the criteria Fin, PFin and PEx only lists provide some help while the other four types
of additional information are trivial, that is, they do not increase the learning-power.

97

Ex-learning NV-learning

List List = Predictor = Omniscient
Predictor Classifier Identifier Classifier
Identifier = Martingale = Trivial Martingale = Trivial

Figure 1: The Inclusion-Structure for Ex and NV.
7 Classification

Classification means to identify whether an object is contained in a class or not, these
objects are in the present work subsets of the natural numbers. Classification is a con-
cept common to two fields: (a) In recursion theory, classes can be defined via formulas
describing whether a set belongs to a class or not. (b) In inductive inference, classification
is just a natural generalization of a learning-process. The learner does not any longer infer
a program for a set but decides only whether a set belongs to a class or not.

Here, two basic forms of classification are investigated. In the more restrictive setting
of two-sided classification, the classifier converges to 1 on the data from members of the
class and to 0 on the data from nonmembers of the class. In the more general setting of
one-sided classification, the classifier converges on data from members of the class and di-
verges on data from nonmembers. These notions coincide with the basic recursion-theoretic
concepts of AY and XY classes, respectively. These definitions reflect a similarity to the
world of computable (AJ) and enumerable (3}) sets. So there are many parallel definitions
and phenomena, which are also investigated in the present work. This similarity has also
its limitations, for example, there exists an infinite one-sided class not having an infinite
two-sided subclass. This is due to the fact that besides the computational aspects known
from the theory of sets, the theory of classes has also to deal with a aspects of a second
type: many results are influenced by topological properties of the classes. Another example
for this influence is that it is impossible to turn every one-sided class into a two-sided one
with help of an oracle: For example, the class of all finite sets is in X3 but not in II} since
it is not the intersection of topologically open classes [124, Theorem 15.IX].

For recursion theorists, picking 395 and AY classes seems to be arbitrary and random,
looking at X9 versus AY classes could also be interesting. But from the viewpoint of learn-
ing theory, the ¥9 and AY classes fit well into the until now studied concepts; choosing
them has therefore some kind of naturalness.

Wiehagen and Smith [147] introduced a model, in which a finite number of classes is
given and the classifier has to detect at least one class where the language to be classified
belongs to. As in many other definitions in the field of inductive inference [19, 56], the
process has only to converge in the limit and so the machine has the right to withdraw
hypotheses and to replace them by new ones. Wiehagen and Smith [147] expected the
process only to converge on the domain, so they avoided the topological problems which
arize when the classifier has also to signal that a language does not belong to any class of
the given collection.

Ben-David [17] and Kelly [78] started to investigate these topological aspects of classi-

98

fication: they showed that a (not necessarily computable) device can classify all sets with
respect to one class in the limit iff the given class is the union of countably many closed
classes and the intersection of countably many open classes at the same time; for this
definition they use the Baire topology generated by the subbasis A, , = {A : A(z) = y}
(x € N,y € {0,1}). So their work is a direct motivation for the notion of two-sided classi-
fication since their model is just equivalent to relativized two-sided classification. Gasarch,
Pleszkoch and Velauthapillai [53, 54| extended the result by establishing a close relation
between the topological Borel hierarchy and the quantifier-hierarchy of query-languages
during classification.

Minicozzi [106] introduced the notion of reliable inference: In this notion, given data of
an arbitrary function f, the learner either converges to a correct program for f or diverges.
This concept motivates one-sided classification since the learner converges exactly on the
functions belonging to the class learned.

A further and early approach to classification was to design finite automata which de-
cide in the limit whether an infinite string (representing the characteristic function of a
language) belongs to a given w-language or not [21, 100, 108, 144]. The restrictive com-
putational ability of these finite automata led Biichi [21] and his successors to consider
nondeterministic automata. The present approach takes the alternative way of choosing
Turing machines as classifiers. In fact, already Biichi and Landweber [22, 93] did some
first research into this direction.

7.1 The Basic Model of Classification

As already mentioned, Ben-David and Kelly already showed that a class is classifiable in
the limit iff it is a (relativized) A class; Rogers [124] called the AJ classes also AS classes.
Reliable inference [106] can be generalized to the concept of one-sided learning classes since
the learner signals membership by converging for the sets in the class and nonmembership
by divergence. This is equivalent to the notion of X9 classes or Egs) classes as Rogers [124]
called them. That is, a machine H is a classifier for a class A iff H accepts every set
in A by converging to 1 and rejects every set outside A by either diverging (one-sided

classification) or converging to 0 (two-sided classification); the formal definition follows.

Definition 7.1.1 H is a one-sided classifier for A iff
(VA e A) (Vo < A)[H(0) = 1]
and (VA ¢ A)(3*0 < A)[H (o) = 0];
M is a two-sided classifier for A iff
(VA e A) (Vo < A)[M(o) =
and (VA ¢ A) (V°0 < A)[M(o)

1]
0].
The relations between these two natural concepts of classification is the central topic of
the present work. For each n, the concepts of X0 sets relate to that of the A? almost in
the same way as that of the enumerable (= X?) sets to that of the computable (= A?)
sets. This work shows that on one hand for one-sided versus two-sided classes this analogy

basically also holds but that on the other hand the similarities are much more restricted
than the parallel definitions suggest at the first glance.

Example 7.1.2 [124] The notions of effective topology follow the definitions as stated by
Ko [82, p. 72, p. 165] and Rogers [124, §15.1]: A class A is recursively open iff there is
a recursive sequence oy, oy, ... of strings such that A € A < (3In) o, < A]. A class A

99

is a recursively G class iff there is a recursive array o,,, of strings such that A € 4 &
(Im) (Vn) [oma 2 Al

Any recursively open class is two-sided and any recursively G class is one-sided. There
are recursively Gy classes which are one-sided but not two-sided. An example for such a
class is the class of all finite sets.

One important tool in recursion theory is that there is an acceptable numbering of all
enumerable sets. Similarly there is an acceptable numbering of all one-sided classes given
by total one-sided classifiers.

Fact 7.1.3 There is an effective list Hy, Hy, ... of one-sided classifiers such that every
one-sided class is generated by such a classifier and every machine H, is total. The so
defined numbering of the one-sided classes is acceptable: every further effective numbering
Go,G1, ... can be represented via a computable function f as Hyey = Ge.

This effective list of classifiers H, is generated from an acceptable numbering ¢, of all
partial computable functions which of course contains all classifiers. The formal definition
is

He(o) = @e(T) outputs 0 or 1 within |o| steps;

{ @e(7) for the longest 7 < o such that
0 if there is no such 7.
It is easy to verify that whenever ¢, is a one-sided classifier for A, then so is H,; and
whenever ¢, is a two-sided classifier for A, then so is H,.

At many places this list H, of one-sided classifiers will be quite useful; in particular it
is much more handy to use the H, in diagonalizations than the ¢, since the H, are always

total and {0, 1}-valued. #, denotes the one-sided class generated by H,.

In the case of sets, the relations between ¥, and A, sets are — for n > 1 — practically
the same as those between enumerable and recursive sets. In the case of classes, many but
not all analogies from the world of enumerable versus recursive sets carry over. The result
that 39 and 1 classes are closed under union and intersection, that AY classes are closed
under all Boolean operations and that a class is AY iff the class and its complement is X2
all carry over [124, Chapter 15]. But the statement that “every infinite enumerable set
contains an infinite recursive subset” causes trouble in the world of classes. It is still true
for the lowest level: every infinite 3¢ class contains an infinite AY class. On the next level,
it does not longer hold. The next theorem shows that there is an infinite one-sided (= X9)
classes which does not contain an infinite two-sided (= AY) class. Nevertheless one can
still save the result, if “infinite” is replaced by the stronger requirement “uncountable”.

Theorem 7.1.4 Every uncountable one-sided class has a two-sided subclass of same car-
dinality. There is a one-sided infinite class which has no two-sided infinite subclass.

Proof For the first statement, consider any uncountable one-sided class A and let H be
its one-sided classifier. A is the ascending union of the II9 classes

Ap = {A € A: (Vo> k) [HAO)AQ) ... A(n)) =1]}

and some A, is not countable since A is not countable. This class A; has then the
cardinality of the continuum {0,1}°°. The same holds for the superclass A. Since every
I19 class is in AY, A has the two-sided subclass Ay, of the same cardinality.

The second statement is proven by constructing an infinite sequence ag, aq, ... which
is computable relative to K such that the class A of all A, with A, = {ag,a1,...,a,}

100

is one-sided but does not have an infinite two-sided subclass. The sequence starts with
ay = 0 and one defines

anr1 = 14+ max{b: (Je < n) [pe(ao,ai,...,a,)L="0]}.

The sequence is obviously computable relative to K, so there is a uniformly recursive
approximation ay g, @1, ... to the a,. Now let

H(oa) = o(x)l=1% 2 € {ao), 01|, nol};

{ 1 if @ = 0 and there exists an n with
0 otherwise.

H outputs infinitely many often a 0 on every infinite set, so H accepts only finite sets and
it is easy to verify that any of these finite sets has to be the set A, = {agp,a4,...,a,} for
some n. So H is a one-sided classifier for A.

Assume now by contradiction that M is a two-sided classifier for some infinite sub-
class of A. Now there is a partial recursive function ¢, such that for each finite set
D given as {bg,by,...,b,} the value @.(by,b1,...,b,) is the first z > max(D) such that
M(D(0)D(1)...D(x)) = 1 provided that this x exists. If M converges on A, to 1 and
n > e then p.(ag, a1, ..., a,) exists and is properly below a, 1. So M outputs an 1 between
a, and a,; on the characteristic function of A, which up to that place also equals to the
characteristic function of the infinite set A = {ag, a1, ...}. It follows that M outputs on A
infinitely many 1s if M converges on infinitely many A, to 1. So either M outputs on A
infinitely many 1s or M converges only on finitely many A, to 1. Therefore a two-sided
classifier either accepts the set A ¢ A or accepts only a finite subclass of A. |

7.2 Classification and Turing Complexity

Post [120] asked whether there are enumerable sets which have neither the Turing degree
0 nor 0'. The work to solve this and similar problems initiated a large study of the Turing
degrees of enumerable sets. Soare [135] gives a comprehensive overview on this work.

The analogous question for one-sided classes is to determine the amount of complexity
which is necessary to compute a two-sided classifier for them. The straight forward imple-
mentation of this idea would be to identify each class with the easiest two-sided classifier
for it — but such two-sided classifier sometimes do not exist and if they exist, there may
be no one of least complexity.

Therefore classes are (in general) not related to a single Turing degree but to a col-
lection of Turing degrees. This collection is called the Turing complexity of a class and
consists of all oracles which allow to compute a two-sided classifier for the given class.

The one-sided classes are ordered in terms of their Turing complexity: So A has Tur-
ing complexity below that of B iff a two-sided classifier for A can be computed relative
to every two-sided classifier for B considered as an oracle. With respect to this ordering,
there are one-sided classes of least and greatest Turing complexity. Furthermore, among
those of intermediate Turing complexity, there are some classes whose Turing complexity
can be identified with a single Turing degree: Such a class has Turing degree a iff the
Turing-degrees of the two-sided classifiers just form a cone above a:

{degr(M) : M is a two-sided classifier for A} = {b:a < b}.

So there are four types of one-sided classes with respect to their Turing complexity.

101

e A two-sided class has the least possible Turing complexity since it is two-sided relative
to every oracle. () and {0,1}° are examples of two-sided classes. Every two-sided
class has a Turing degree, namely the degree 0 of the computable sets.

e There are one-sided classes which are not two-sided relative to any oracle. So they
have the greatest possible Turing complexity: Example 7.2.6 gives three such one-
sided classes.

e There is a one-sided class which has a nonrecursive Turing degree.

e There is a one-sided class which is two-sided relative to some oracles but which does
not have a Turing degree.

The next results deal with the classes of intermediate Turing complexity according to the
third and fourth case. Sacks [126, Section I1.4] called a set A a IIJ singleton iff A is the
only set B which satisfies (Vx)(3y)[R(z,y, B)] for some recursive predicate R. Such II9
singletons allow to construct a one-sided classes A which has a nonrecursive Turing degree.

Example 7.2.1 The cosingle class A = {B : B # A} has a Turing degree which is exactly
that of A. Furthermore, A is one-sided iff A is a 113 singleton. So every hyperarithmetic
set is below the Turing degree of some one-sided class.

Proof Assume that M classifies two-sided A. Then there is a finite string ¢ < A such
that M (7) =0 for all 7 with 0 < 7 < A. The binary tree

T={r:(Vn=27)ln=0VvMpn =0}

is recursive in M and A is its only recursive branch. Therefore M >; A. On the other
hand, an A-oracle is obviously sufficient for two-sided classification since this means only
to compare with A.

The second statement follows directly from the definition: The class A is one-sided iff
it is X9 iff its complement is T19; since this complement contains exactly the set A is it a
I19 singleton iff it is TIS.

The third statment follows from the fact that the hyperarithmetic sets are just the
Turing closure downward of the I3 singletons [126, Section IT.4]. 1

The single one-sided classes {A} are less complex than the cosingle ones: they are already
two-sided without oracle and so have least Turing complexity. Some of the cocountable
classes, which are a natural generalization of the cosingle classes, do not have a Turing
degree, but they all are two-sided relative to some hyperarithmetic oracle. Example 7.2.2
gives an example of a class which does not have a Turing degree and whose Turing complex-
ity is just the collection of all high Turing degrees. There are also cocountable examples
with the same property. But for having a better readable proof, the easiest example is
chosen.

Example 7.2.2 There is a one-sided class A whose Turing complexity is the collection of
all high Turing degrees. A does not have a Turing degree.

Proof Let A= {{e}:e € K'}. The Limit-Lemma states that K’ has a {0, 1}-valued
approximation a(e, s) such that a(e, s) is almost everywhere 1 iff e € K'. Now A is one-
sided via a classifier H which outputs a(e, s) for the input 0°10° and 0 otherwise.

It is easy to see that for two-sided classifiers only the behaviour on sets with exactly one
element e is interesting. A two-sided classifier converges on these sets {e} to 1 iff e € K’

102

and to 0 iff e ¢ K'. So such a classifier exists in a Turing degree a iff K’ is computable
relative to a’, that is, iff a is high.

The second statement of the theorem follows from the fact that the high Turing degrees
do not form a cone. |

The next three theorems establish further results for classes of intermediate Turing com-
plexity.

Theorem 7.2.3 If a one-sided class is two-sided relative to some oracle, then it is two-sided
relative to an oracle in A}.

Proof Let H be a computable one-sided classifier for C. Assume furthermore that C is
two-sided relative to some oracle. Now any, not necessarily recursive, two-sided classifier
M satisfies the following IT} equation:

It states that for all A, whenever H accepts or rejects A one-sidedly, so does M two-sidedly.
It follows that M is a solution to the predicate iff M is a two-sided classifier for C. So M is
specified via a I1] predicate. Provided that this predicate has at least one solution, Addison
and Kondo [126, Corollary 9.4] showed that there is a further I} predicate (VA)[P(M, A)]
which has exactly one solution and whose solution N is also a solution to the original
predicate. The sets {0 : N(0) = ¢} are in X} for ¢ = 0, 1:

N(o)=c¢ & (3M)(VA)[M(0) = c A P(M, A)].

Since one set is the complement of the other, it follows that the machine N is in A}. 1

Theorem 7.2.4 Let H be a one-sided classifier for A and for any A ¢ A let f4(m) denote
the first k > m such that H(A(0)A(1)...A(k)) = 0. Then A has a two-sided classifier
of degree a iff there is a function g of degree a which dominates the functions fa for all

A¢ A

Proof Assume that g dominates the functions f4 for all A ¢ A. The following M <7 ¢
is a two-sided classifier for A:

with H(A(0)A(1). .. A(m)) = 0;

{1 if g(m) <n forallm <n
0 otherwise.

If A € A then there are only finitely many m with H(A(0)A(1)...A(m)) = 0. Almost all
n are greater than g(m) for each such m and thus M(A(0)A(1)...A(n)) = 1 for almost
all n. Otherwise A ¢ A and g dominates f4. So for almost all m there is a k£ with
m < k < g(m) and H(A(0)A(1)...A(k)) = 0. So for almost all n, the greatest m < n
with H(A(0)A(1)...A(m)) = 0 satisfies the condition m < n < g(m) and it follows that
M(A(0)A(1)...A(n)) = 0 for these n. So M is a two-sided classifier for A.

For the converse direction, let M <p E be a two-sided classifier for A. The following
function ¢ is computable relative to E:

g(n) = 2+ max{|o|:0 € T,} where
T, = {o: (VT =20)[|r|<nV(M(t)=0AH(r)=1)]}.

103

Assume that g would be undefined for some n. Then T}, is infinite and by Konig’s Lemma
the tree T, has an infinite branch A. M converges on A to 0 while H outputs on input
A only finitely many Os, that is, M and H classify A differently in contradiction to the
choice of M and H. So T, is finite and g is total. Since 7T, is computable relative to F, its
maximal string can be found using the oracle F and g <p F.

Let A ¢ A. There is an n such that M(A(0)A(1)...A(m)) =0 for all m > n. Assume
now by way of contradiction that fa(m) > g(m) for some m > n. Then M(o) = 0 and
H(o) =1for all 0 < A with m < |o| < g(m) and the string A(0)A(1)... A(g(m)) is in T},
in contradiction to g(m) being greater than the length of all strings in 7},,. Thus such an
m does not exist and fa(m) < g(m) for almost all m. |

A consequence of this is that every one-sided class, which is two-sided relative to a hyper-
immune-free oracle, is already two-sided via a classifier without any access to oracles.

Theorem 7.2.5 If A has a Turing degree then A has a hyperarithmetic Turing degree.

Proof Assume that A has Turing degree a and let M be a two-sided classifier for A
of degree a. Theorem 7.2.4 implies that a < b whenever every a-recursive function is
dominated by a b-recursive function. There is a function f; dominating every function
computable relative to a such that whenever ¢ majorizes fy then M <p g. First it has to
be shown that this can be done via a single index, that is,

(e, f) (Yg majorizing f)[M = ¢?]

and in a second step it is deduced that M has hyperarithmetic Turing degree. The existence
of such e and f is shown via an algorithm which either provides the information to find e
and f or which constructs a g majorizing fy such that M £r g. In this proof oy, 01, ...
denote strings of numbers and not of bits. og is the empty string.

Given o0, and f,, check whether there is a f,,; majorizing f, and an extension
Ont1 = 0y, such that

® 0y <X Opy1 2 fn+1 and

e there is some 7 € {0, 1}* such that either 7"+ (n)|# M(n) or ¢I(n) T
for all g majorizing f,.1 with g > 0,11.

If there are such 0,1, f+1 the algorithm proceeds with them in the next step
otherwise it terminates.

If the algorithm goes through all steps, then ¢ = lim, 0,, exists and majorizes f;. By
construction, for all e there is some n € {0,1}* such that either ©9(n) | # M(n) (since
geti(n) L # M(n) and oey1 < g) or ¢4(n) T (since g majorizes fei1). So M is not
computed relative to g via any e in contradiction to the choice of f.
Thus the algorithm terminates in some stage n. Now for each g the following set is not
empty:

F(g,n) = {7 = on: pp(n)d A (Ym € dom(r) — dom(an)) [7(m) = g(m)]}.

Furthermore, whenever g majorizes f,, and 7 € F(g,n) then ¢] (1)l = M(n). Using these
two facts it is possible to construct e:

104

If within |n| steps no triple (6, 1, 72) has been enumerated witnessing inconsis-
tency in the way that 7, € F/(g,0) and ¢} (0) # ¢©72(6)

then ¢?(n) = ¢] (n) for the first 7 found in F(g,7)

else o9(1) 1

So M = ¢9 for all ¢ majorizing f,, and ¢? is partial if M # ¢9. The second step is now
easy. The sets M. = {n: M(n) = c} are II} according to the following definition:

M(n) =c < (Vg)[pl is total = @I(n) = d].
Since M is the complement of M, both sets are in A and M is hyperarithmetic. |

Example 7.2.6 The following classes are one-sided but not relatively two-sided:
(a) A={A: A is cofinite} [53, 124].

(b) B ={B: B is primitive recursive} [124].

(c) C={C@D:D#C"}.

Proof (a): The one-sided classifier H outputs a on input oa. It takes almost always the
value 1 iff the input is a cofinite set. On the other hand this class is not relatively two-sided
since for any function g there is a set A ¢ A such that g does not dominate f4. Namely
for given g, this set is A = N — {xq, x1,...} where 29 = g(0)+1 and z,,,1 = g(x,) + 2, + 1.
From the definition of H it follows that fa(z,) = 1 = g(z,) + 2, + 1 > g(x,) and ¢
does not dominate f4.

(b): Rogers [124, §15.1] showed that dense classes with a uniform enumeration are one-sided
but not two-sided relative to any oracle, so this proof covers also part (a): Let By, By, ...
be a uniform enumeration, in this case of all primitive recursive sets. Now on input oa,
the one-sided machine looks for the first k£ with ¢ < By,. If then also oca < B, it outputs
1 otherwise it outputs 0. It is easy to see that the machine outputs 1 on almost all inputs
o = B iff B = By, for some k. The other part of the proof uses that no countable and dense
class like B is the intersection of countably many open sets and thus not a relativized IT9
class [124, Theorem 15.IX(b)].

(c): For each set C there is a uniform approximation of C' via strings 7¢ of C such that
each v¢ queries C only at the places 0,1,...,n, [7¢] < n and 7§ < C’ infinitely often.
Now the one-sided machine H outputs on strings of odd length an 1 and processes strings
of even length as follows:

H(C(0)D(0)C(1)D(1)...C(n)D(n)) = {0 if 7 < D(0)D(1) ... D(n);
1 otherwise.

As mentioned, 7¢ can be computed using only the C(m) with m < n, thus the whole
procedure needs no oracle but retrieves the answers from the input. If D # C' then
v A D for almost all n; therefore H accepts all sets in C. If D = (' then there are
infinitely many n with ¢ < D(0)D(1)...D(n). H takes 0 at these n and thus rejects all
sets outside C. So H is a one-sided classifier for C.

Assume now by way of contradiction that C is two-sided via M. Now M can also be
viewed as a set and so one can consider the class {C ® D : C # MV D # M'}. A machine
to identify this set can be derived from M as follows:

N(o) = {M(O’) if o(x) = M(%) for all even & € dom(0);
11 otherwise;

105

N is obviously recursive in M. On the other hand, the new class is cosingle and contains
all sets except M @ M’'. Then M @ M’ has to be recursive in M, a contradiction. [

Singleton one-sided classes are always two-sided and therefore less complex than cosingle-
ton ones which can have a Turing degree above every given hyperarithmetic Turing degree.
The relation between countable and cocountable one-sided classes is the other way round:
While some countable one-sided classes can have the highest possible Turing complexity
this is not true for cocountable classes.

Theorem 7.2.7 Any cocountable one-sided class A = {B : (Vn)[B # A,]} is two-sided
relative to some hyperarithmetic set.

Proof Let H be a one-sided classifier for A. Sacks [126, Theorem III.6.2] showed that
every Yi class either contains a perfect subclass (and is just uncountable) or has only
members below some hyperarithmetic set. Since each one-sided class is defined without
quantification over sets or functions, its complement is a ¥} class (indeed it is even a Al
class). So there is a hyperarithmetic set C' such that A, <r C for all n. Now for each n
the function f4, as defined in Theorem 7.2.4 is recursive in A,. Some function g <, C'
dominates all functions computable relative to C, in particular ¢ dominates each function
fa,. By Theorem 7.2.4 the class A is two-sided relative to C’ which has hyperarithmetic
Turing degree since the hyperarithmetic Turing degrees are closed under the jump. |

7.3 Complete Classes

There are some other reducibilities between sets besides Turing reduction. Post [120]
introduced the concept of 1-reduction: A set A is 1-reducible to B iff there is a one-one
computable function f such that x € A < f(x) € B. The set K is complete within the
enumerable sets, that is, every enumerable set can be 1-reduced to K.

It is possible to transfer the notion of 1-reduction to the world of classification. Here a
1-reduction from a class A to a class B is a one-one computable and continuous operator
" translating every set A into a set I'(A) such that A € A < T'(A) € B.

Definition 7.3.1 A computable operator I' is called a 1-reduction from A to B if

e I' is strictly monotone (with respect to =), that is, I'(0) < I'(7) iff 0 < 7 for all
o,7 € {0,1}*

o Ac Aff I'(A) =lim,<4 I'(0) € B for all sets A.

A class A is called 1-complete iff every one-sided class is 1-reducible to it and A itself is
one-sided.

It is easy to see that if A <; B and B is two-sided via a (nonrecursive) machine M then
A is also two-sided via a classifier computable relative to M. Since there are classes which
are not relatively two-sided, the following 1-complete class is not relatively two-sided and
does not have a Turing degree.

Theorem 7.3.2 The class K = {A : (VY even x) [x € A} is 1-complete.

Proof The classifier
1 if nis odd;

a, if n is even;

H(agay .. .ay) :{

106

witnesses that K is one-sided. Assume now that L is a computable one-sided classifier for
a further class A. A 1-reduction I' from A to K is defined as follows:

L) = L)
['(ca) = T(o)aL(oa).

From this equation it follows that H(I'(¢)) = L(o) and that whenever n < I'(A) and
H(n) =0 then n =T'(0) for some 0 < A. The equivalence

(3% 2 A)[L(o) = 0] & (3F®n X T(A))[H(n) = 0]
gives that A € Aiff I'(A) € K and A is 1-reducible to K. So K is 1-complete. 1

Theorem 7.3.3 The class A of all cofinite sets has greatest Turing complexity but is not
1-complete.

Proof By Example 7.2.6 (a), the class A of all cofinite sets has greatest Turing complexity.
But A is not 1-complete: Consider the full class {0, 1}* of all sets. If {0,1} is 1-reducible
to A via I then every infinite branch of the tree I'({0,1}*) would be contained in 4. This
contradicts the fact that A4 contains only countably many sets. |

Post [120] showed that simple sets are not complete under various constructions. Indeed
it is possible to define something analogous to simple set and to show that it is not 1-
complete: A one-sided class is called simple iff it intersects every other infinite one-sided
class.

Theorem 7.3.4 No 1-complete class is simple.

Proof Let A be a 1-complete class. Then the class C of all cofinite sets is 1-reducible
to A via some reduction I'. Now it is shown that A is not simple via showing that the
class {I'(4p),(A;),...} is a two-sided infinite class disjoint to A4 where A, = {z}. No set
A, = {x} is contained in C. Thus also no set I'(4,) is in A and B = {['(4y),I'(4,),...} is
an infinite class disjoint to A. It remains to be shown that B is one-sided; indeed it will
be shown that the following machine M is a two-sided classifier for B.

M(o) = { 1 if there is an x with ['(0°1) < ¢ < T'(010%);
0 otherwise.

The check whether such an z exists, is computable: Only the z < |o| have to be considered
since the string I'(0°1) is longer than o for x > |o|. Furthermore, the sets I'(A,) are
uniformly recursive, so the whole check and thus M is a computable procedure.

During the classification of any set A, M makes only two mind changes: from the initial
guess 0 to 1 if it turns out that I'(071) < A for some x. A further mind change back to 0 if
A turns out to be different from I'(A,). Since no string I'(0¥1) with y # x extends I'(0”1),
there is no danger of a third mind change from 0 to 1 because of such a I'(0¥1) being a
prefix of A.

It is now easy to verify is that M converges on the sets I'(A;) to 1 and on all other sets
to 0; so M is a classifier for B.

In particular B is a one-sided infinite class which is disjoint to A and thus witnesses
that A is not simple. |

107

7.4 Index Sets of One-Sided Classes

Let G be a collection of classes and . denote the class generated by the e-th one-sided
classifier H,. Then the set E = {e : H, € G} is called the index set of G and every
such set E belonging to a collection of classes is called an index set. So this section
deals with the analogue of the index sets of classes of enumerable sets; while index-sets of
sets are mostly situated in the arithmetical hierarchy, index sets of one-sided classes have
often the complexity II}. The first example of such an index set is the equality problem

{(e,€) - He =Her}
Theorem 7.4.1 The set {{e,€') : H, = He} is 11} complete.

Proof The formula
(VA) [(3%0 2 A) [He(0) = 0] & (3%0 =X A) [He(o) =0]]

witnesses that equality is in IT]. Fixing €’ to be an index of {0, 1}* the next Theorem 7.4.2
witnesses that the set is also H% hard. 1

Theorem 7.4.2 The sets I = {e : H, is two-sided} and J = {e : H, = {0,1}*>°} are
[T} complete.

Proof The set J = {e: (VA) (V0 < A)[H.(c) = 1]} is in II]. Furthermore, e € I iff
there is an index €’ such that H. = H. and H., makes on any A only finitely many mind
changes, that is,

ecl & (3) [(VA)[(T® < A) [Ho(0) = 0] & (F®0 < A)[Ha(o) =0]] A

—
~—

So it follows that also I is in IIj.

Now it is shown that both sets are complete via the same m-reduction f. Let Ty, T},... C
IN* be a computable enumeration of all primitive recursive trees. The set

E ={e: T, is well-founded}

is T} complete [126] where a tree is well-founded iff it does not contain an infinite branch.
A string o is said to code a finite branch aga, ...a, iff there are by, by,...,b, € IN such
that o = 1(@bog1{ebug 1{enbn)0 F is m-reducible to both index sets via the following
reduction:

0 if o codes a finite branch of 7T}, that is,
Hpey (o) = { if o = 1{wbo)g1lenbiq 1(enbe)0 and agay .. . an € Ty;
1 otherwise.

It follows that H) outputs infinitely many 0 on some set A iff A = 1(@0bo)g1labny for
an infinite branch aga; ... of T¢.

In the case that T, is well-founded, Hy.) outputs on every set A only finitely many Os
and therefore H () = {0,1}*. This class is two-sided, so f(e) € I and f(e) € J.

Otherwise T, has an infinite branch aga, ... and for any sequence byb; . .. the set A with
the characteristic function 1(40t001(@:00 . is not in H (). It follows that H) # {0,1}*°
and f(e) ¢ J. Furthermore, for each function g, the sequence byb; ... can be chosen such
that (ap11,0n11) > bns1 > g(c,) where ¢, = n+ (agp, bo) + (a1,b1) + ...+ (an, b,). It follows
that fa(c,) > g(c,) for each n and that g does not dominate f4. So there is no function

108

g dominating the functions f4 for all A ¢ H (). By Theorem 7.2.4, H () is not two-sided
— not even relative to any oracle — and f(e) ¢ I. |

Theorem 7.4.2 has an immediate application: it shows that there is nothing equivalent to
a Friedberg numbering. If all one-sided classes would have a Friedberg numbering, then
there would be also a numbering where one class, namely {0, 1}, is omitted. But such a
numbering does not exist.

Theorem 7.4.3 No numbering contains all one-sided classes except {0,1}.

Proof Assume by way of contradiction that there is a computable function f such that
the numbering H ¢y, Hsq), ... covers all one-sided classes except {0,1}>. Then the set
{e: (3e') [He = Hyeen]} is in 11} since II} is closed under quantification on numbers as ¢’
and since the equality problem is in IT{. For any given e such an e’ exists iff H, # {0,1}.
So the complement of this IT] set is the II} complete index set of {0,1}* and such a
recursive function f cannot exist. |

Theorem 7.4.4 The sets {e: H, <, A} and {e: H. =1 A} are in 1} for every one-sided
class A. In particular {e : H, is 1-complete} is in II}.

Proof The proofs are very similar. There is an enumeration of all operators I'; such
that whenever I'; is total then it is strictly monotone. Furthermore, there is a one-sided
classifier H for A. Now

He <1 A & (Fi) (VA) [T is total A
((V*n) [He(A(0)A(D) ... A(n)) = 1] &
(V>n) [H(Ti(A(0)A(1) ... A(n))) =
He=1A & (3i,7) (VA) [T and T'; are total A

1)]

(V) [H(A(0)A(L) ... A(n)) =1] &
(V*n) [H (I':(A(0)A () A(n))) =1]) A
((v>n) [H(A(0)A(1) .. () =1] =
(v>n) [H.(I';(A(0)A(1) - An)) =1])]

Since the existential quantifier ranges over numbers, these expressions are II}. They char-
acterize the two index sets. |

These classes are not I} complete for every A. In particular if A =) then they are in II9:
He =1 0 iff H, = 0 iff for each n there is an m such that every string o € {0,1}™ has at
least n prefixes 7 < o with H.(7) = 0. The difference in the complexity of the question
whether H, is empty or equals {0,1}° is the mirror image of the fact that the question
whether W, = () is TI? complete while the question whether W, = N is IT complete.

Furthermore, it can be shown that the index set {e : H. = 0} has the least complexity
of an index set of classes. Rice [121] showed for the world of enumerable sets that every
nontrivial index set is ITY hard or XY hard. In the world of one-sided classes it can be shown
that every nontrivial index set F is I3 hard or X9 hard. In particular it is shown that the
¥ complete set F' is m-reducible to E or E.

Theorem 7.4.5 Let E be a nontrivial index set of some collection G of classes. Then the
set F' = {e: W, is finite} is m-reducible either to E or to E.

Proof First consider the case {0,1}* € G. In this case it is shown that F' <,, E via a
m-reduction f. This f then witnesses that E has at least complexity I13. Since E is not

109

trivial there is some one-sided class A ¢ G with some computable one-sided classifier H.
Now f is defined implicitly via giving an informal description for the classifier Hy():

Hyey outputs on A at least n 0s iff |W,| > n and H outputs on A at least n 0Os.

If W, is finite, Hy() outputs on every A only finitely often a 0 and thus accepts every set;
so Hyey = {0,1}>° and f(e) € E for every e € F. If W, is infinite then Hj(, accepts a set
A iff H does; so Hy) = A and f(e) ¢ E for every e ¢ F. It follows that J is m-reducible
to E via f.

The other case that G does not contain the class {0, 1} just gives an m-reduction from
F to E using the above proof with E in place of E and {A: A ¢ G} in place of G. |

7.5 Classification and Measure

The measure v given by v(0)) = 0, v({0}) = v({1}) = 0.5, v({0,1}) = 1 has an infinite
product x on the space {0,1}°°. This can be extended in such a way that every subclass of
a class with measure 0 is again measurable and has measure 0. Lusin [126, Lemma I1.6.2]
showed that any IT} class and therefore also every one-sided class is measurable. So the
main question is how effective the measure of the classes are. For two-sided classes, one
can compute the measure in the limit.

Theorem 7.5.1 The measure p(A) of a two-sided class can be computed from any index
e of a two-sided classifier H, for A.

Proof For each set A there is a unique n such that H, converges at A(0)A(1)...A(n)
either to 1 or to 0. Now let A, = {A : H, converges to 1 at n} and B, = {A : H, converges
to 0 at n}. Since H, converges on every set A either to 1 or to 0, these classes Ay, A;, . .. and
By, By, . .. form a partition of {0, 1}*°. In particular p(Ag)+pu(Bo)+p(A1) +u(By)+... = 1.
Now consider the computable sequence

qn = 2—1—n : Z He(aoal .. an)

aQ,aq,..., an€{0,1}

of rational numbers. This sequence converges to p(A) since p(Ag) + p(Ar) +. ..+ p(A,) <
Gn < 1= (u(Bo) — p(B1) — ... — p(Bn)) and therefore |u(A) — ¢| < €, where €, =
(A1) + p(Boi) + p(Anre) + p(Brio) + - . .5 the €, converge to 0 since the sum p(Ap) +
w(Bo) + (A1) + pw(By) + ... + u(A,) + pu(B,) approaches monotonically to 1. Thus the
sequence of the ¢, converges to (. A) and so the measure of A can be computed in the
limit from any two-sided classifier for A. |

This is not longer true for one-sided classes. The class of all sets A which are lexicographic
before K’ has the measure 271 K’(0) + 272K'(1) + ... which can not be computed in the
limit since otherwise K’ would be computable in the limit. So one might ask whether the
measure is at least in those cases computable where the measure of the class is a recursive
real. But also this fails since one can construct a function f with Hz) = {0,1}> if W, is
finite and H sy = 0 if W, is infinite.

For the further analysis, the notion of recursive measure 0 and 1 is introduced which
can be defined using martingales [42, 95, 128]. A class has recursive measure 0 if a recursive
martingale succeeds on all its members and effective measure 1 if a recursive martingale
succeeds on all its nonmembers. A martingale is a function m which associates to every
o € {0,1}* a rational number such that:

110

e m(c0) + m(ol) = 2m(o);

e m(o) >0 and m(\) = 1.

A martingale witnesses that a class A has measure 0 iff for each A € A and for each k there
is an n such that m(A(0)A(1)... A(n)) > k. It witnesses that a class has measure 1 iff it
witnesses that the complement of this class has measure 0. A class has recursive measure
0 or 1 iff some recursive martingale witnesses that it has measure 0 or 1, respectively.

Easier than computing such a measure is to verify that a class has measure 0 or 1 via
presenting a recursive martingale which either succeeds on the class or on its complement.
But — as the next example shows — also this fails for certain one-sided classes with
measure 1: there is just no such martingale.

Example 7.5.2 There is a cosingle one-sided class A which does not have recursive mea-
sure 1.

Proof Every set A <r K is a 7 singleton. Therefore it follows that for every A <7 K
the class A = {B : B # A} is one-sided and it remains to be shown that there is some
A £r K such that no recursive martingale succeeds on A. This is just the well-known fact
that there is a random-set A <; K. |

It is easier to determine that a one-sided class is small than that it is large. As already
seen the index set of the empty class is much easier than that of the full class {0,1}>. This
result has a parallel with respect to measure. While some cosingle one-sided classes do not
have measure 1, every one-sided class of measure 0 does also have recursive measure 0.

Theorem 7.5.3 If a one-sided class A has measure 0 then A has recursive measure 0.

Proof Let A be one-sided via a machine H and have measure 0. Now a recursive
martingale m is constructed in order to witness that A has recursive measure 0. The
inductive definition starts with m(\) = 0.

Now in each step chose (one of) the shortest o such that m(o) is defined but not m(c0)
and m(ol). Let L, be the set of all 7 € {0,1}" such that H(on) = 1 for all nonempty
n =< 7. If for each n the cardinality of L, would be larger than 2" 2 then H would output
on a “quarter” of all sets A > o never a 0 after processing ¢ which implies p(A) > 27171=2
in contradiction to the choice of A. Thus there is an n > 0 such that L,, has at most 272
elements, without loss of generality, n is the smallest such number.

Now let m(o7) = 1.5 - m(o) for every 7 € L, and let m(o7r) = L1kl .

5 [L]
the other strings 7 of length n. All values m(o7) are above 0 and their sum is 2" - m(o).

Furthermore, define m(on) for strings n of length n—1,n—2, ..., 0 according to the formula
m(n) = 3 - (m(n0) + m(n1l)). This finishes the extension step.

Each such step finishes and since each step takes the shortest o with m(o0), m(o1)
being undefined, m becomes a total function. Furthermore, all values of m are positive
rational numbers and it can be verified that the equation m(c0) +m(ol) = 2-m(c) holds
for all 0. Thus m is a recursive martingale.

Let now A € A. Let 0y < 07 < ... =< A being that sequence of strings such that o, 1
is always a string of the form o, 7 when m is extended at o,. By the construction the
following holds:

m(o) for

m(ont1) < m(o,) < H(n) =0 for some n with 0, <1 < 0,41
m(opy1) = 1.5-m(o,) < H(n) =1 for all n with 0, < n < 0,11

111

Since H outputs on A almost always 1s, the second case holds for almost all n and it
follows that m takes on A arbitrary large values. So A has recursive measure (0 witnessed
by the recursive martingale m. 1

Example 7.5.2 showed already that one-sided classes of measure 1 do not need to have
recursive measure 1. So it is natural to look for the help of oracles and the next result
states, that a K-oracle is sufficient to do the job: If a class has measure 1 then it has
already K-recursive measure 1, that is, a K-recursive martingale witnesses that the class
has measure 1.

Theorem 7.5.4 If a one-sided class A has measure 1 then A has K-recursive measure 1.

Proof For given one-sided class A with measure 1 a K-recursive martingale m is con-
structed which succeeds on every A ¢ A and so witnesses that A has K-recursive measure
1. Let H be a one-sided classifier for A. Let p denote the standard measure on {0, 1}
and for any computable tree T let

v(T,n) = p({A = n: Ais infinite branch on T'}).
Starting with m(A) = 1, the inductive definition of m runs as follows:

e Choose the shortest o such that m(c0)1 and m(ol)7.
Indeed the domain of m will be a tree at each stage and by extending the domain on
some shortest leaf, it is guaranteed that m is total at the end. This ¢ can be found
by bookkeeping on the previously defined places.

e Let T, = {7 : |[{m € dom(r) : H(7(0)7(1)...7(m)) = 0}| < n}. Find using the
oracle K a suitable n such that v(7T},0) > 2717171,
Such an n exists since the union of all 7}, contains almost all branches through ¢ and
so v(o,T,) must approach to 2717l by the continuity of x. Furthermore,

v(o,T,) =271 =% 217l

T isleaf of T,

is computable via K-oracle and thus a suitable n can be found.

e Define m on all nodes of 7, above o such that m(7) > 1.5 - m(o) for every leaf 7 of
T, above o.
The definition m/(7) = m(o) - (0.95 - 21717l (7, T;,) /v (0, T;,) + 0.05) satisfies all
requirements but has the disadvantage of not giving rational numbers. But m' can
be approximated by an extension of m onto 7, above o such that m has on this
extended domain the same computational complexity as m/', takes only rational values
and satisfies 0.9 - m'(n) < m(n) < 1.1-m'(n) for all n. Since even m/(7) > 1.9 - m(o)
for all leaves of T, it follows that m(7) > 0.9-1.9-m(o) > 1.5- m(o) for these 7.

At each stage of the definition, a set A stays on the corresponding tree 7T, only if H outputs
a finite number of Os on input A. Thus starting with oy = A, a given A ¢ A leaves this
tree through a leaf oy and when m is extended on a tree above o; then A leaves this tree
through a leaf o, and so on. So A goes through an infinite sequence oy, o1, ... of nodes
such that m(og41) > 1.5-m(oy) for all these nodes. It follows that m takes on A arbitrary
high values and so m witnesses that A has K-recursive measure 0. [

Let I be an interval of real numbers. It follows from the definition of the Lebesgue measure,
that every measurable set £ C [is approximable via a F, set F' in the sense that the

112

symmetric difference of E' and F' has measure 0. Lusin [118, Satz 8.2] showed a function
f I — I is measurable iff for each € > 0 there is a set D of measure less than e such that
the restriction of f to the domain I — D is continuous. These results motivate to look at
the question to which extent from the view-point of measure theory, a one-sided class can
be approximated by a two-sided one.

Theorem 7.5.5 For every one-sided class A and every € > 0 there is a two-sided class B
such that the symmetric difference of both classes has a measure less than €. But there is
also a one-sided class A such that every two-sided class differs from A on a set of positive
Measure.

Proof Recall that every one-sided class is measurable. For given one-sided class A and
e > 0 consider the classes Aj, containing all sets A on which H outputs at most k£ times
a 0. These classes are two-sided and they approximate A from below. Since the measure
is continuous, p(A) is the upper limit of the pu(Ag) and so u(A) — e < p(Ax) < u(A) for
some k. Since A; C A, the symmetric difference has the measure p(A) — u(Ayg) which is
less than e.

For the second result let G be 1-generic and below K. Consider the class A = {A :
A <y G}. This class is one-sided via outputting 1 if 0 <e; G|y and 0 otherwise where
G, is a recursive approximation to G. Now let B be any two-sided class with classifier
M. M converges on GG to some value a, with only finitely many changes one can obtain
that M (o) = a for all 0 < M. Thus G avoids the computable set {7 : M(7) # a} and
so there is some prefix o such that M(7) = a for all 7 > o. On the other hand there are
Mo, = o such that all sets extending 7, belong to A and all sets extending 7; belong to
A, in particular all sets A > 7,_, are in the symmetric difference of 4 and B so that this
symmetric difference has a measure larger than 2/ > 0. |

There are two natural properties, one-sided classes can take: being simple and maximal.
The first one was already introduced above: a simple class is one-sided and intersects every
infinite one-sided class. The second one is the following: A one-sided class A is maximal if
it is coinfinite and has the property that either AUB or AURB is cofinite for every one-sided
class B. The easiest way to construct a maximal class is just to convert a maximal set into
it: Let U be a set which is maximal relative to K, that is, U is enumerable relative to K,
coinfinite and no further set which is enumerable relative to K can split the complement
of U into two infinite parts. The class {A : |A] # 1V (A = {z} Az € U)} is maximal.
So maximal classes exist. Simple and maximal classes are not only large in the sense that
they intersect every infinite one-sided class. They are also large with respect to measure
theory.

Theorem 7.5.6 If A is simple then u(A) > 0. If A is mazimal then p(A) = 1.

Proof First it is shown that no one-sided class A of measure 0 is simple. So let A be a
one-sided class of measure 0. A then also has recursive measure 0 and there is a computable
martingale m witnessing this fact. The class B, = {4 : (In) [m(A(0)A(1)...A(n)) > ¢|} of
all sets on which m obtains some value greater than ¢ has measure at most % So the class
B, has at least measure % and is therefore infinite. By is disjoint to A since the martingale
succeeds on every set in 4. Furthermore, B, is one-sided via guessing 1 on input A as
long as m(A(0)A(1)...A(n)) < 2 and then making a mind change to 0. So the infinite
one-sided class B, is disjoint to A and A is not simple.

Second it is shown that u(A) = 1 for all maximal classes A. Given a maximal class
A some kind of “kernel” B of A is constructed as follows: for each n one of the classes

113

{A¢ A: An) =0} and {A ¢ A: A(n) = 1} is finite and the other one is infinite; so
let B(n) take that value b for which {A : A(n) = b} is infinite. It follows that for every n
the class {A ¢ A: A(n) # B(n)} is finite and thus their union is countable. So A has at
most countably many members: those just mentioned plus perhaps B itself. Therefore the
complement of any maximal class is countable and so every maximal class has measure 1. |

Theorem 7.5.6 has two limitations: first it is only claimed that maximal classes have
measure 1 but not that they have recursive measure 1. Indeed this is not possible since by
Example 7.5.2 there is a cosingle class A not having a recursive measure 1 and taking any
maximal class B, the new class A N B does also not have recursive measure 1 but is still
maximal.

The second restriction is that there are simple classes with measure below 1 as will be
proven below. Indeed this tradeoff between the size of maximal and simple classes has
an analogy in recursion theory given by the fact that a simple set can be arbitrary thin
— there is for every given computable function f a simple set which has only n elements
among the numbers 0,1, ..., f(n) — while no similar result holds for maximal sets.

Example 7.5.7 For each € > 0 there is a simple class A with u(A) < e.

Proof Each string o generates an open class o - {0,1}> of sets. This open class is said
to meet the one-sided class H, generated by H, effectively iff there is a set A € o-{0,1}*
such that H.(A(0)A(1)...A(n)) =1 for all n > |o|. This condition is coenumerable, that
is, for each class H,. given by H, the set

N, ={o:0-{0,1}* does not meet H, effectively}

is enumerable. Furthermore, almost all sets A(0)A(1) ... A(n)-{0,1}* meet #, effectively
whenever A € H,. There is an algorithm which generates a three-dimensional array o, s
of strings such that

the length of each string o, , is at least &;
o if H,# () then o, = limy ,o 0, s Xists;
e if 0, exists then the open class o, - {0, 1} meets #, effectively.

This algorithm works after a simple schema: o,y is just the first string (with respect
to some given ennumeration of all strings) whose length is at least & and which is not
enumerated to N, within s computation steps. So this algorithm converges to some o,
if H. # () and diverges otherwise. Let E denote the index set of all nonempty classes H.,
that is, the set of all e where the sequences o, 0, 0c 1, ... converge.

Given € there is a number n such that 217" < e. Now A is taken to be the union of all
classes 0¢ e - {0,1}> with e € E. The measure of A is bounded by p(A) < Eocp27¢" <
217" < ¢ and so the requirement on the measure of A is satisfied. It remains to show that
A is one-sided. A one-sided classifier for A is given as follows:

H outputs on A at least n Os iff there is s > n such that
Oe ks 7 A(0)A(1) ... A(m) for all m < n and e, k < n.

If A € A then some o,y s converges to a prefix of A. So there are m,t such that o, =
A(0)A(1)...A(m) for all s > t. It follows that H does not output more than e +m + ¢ Os
and H accepts A.

If A ¢ A then for each n there is a stage s such that all strings A(0)A(1)...A(m) with

114

m < n are enumerated to all N, with e < n. It follows that all o, with e,k < n are
different from all A(0)A(1)...A(m) with m < n and H outputs on A eventually at least
n 0s. Since this holds for each n, H rejects A.

So H is a one-sided classifier for A. By construction, .4 meets every nonempty set #.,
so A is a simple class. Furthermore, p(A) < € and so A satisfies all conditions of the
theorem. |

A related notion to measure is that of the category. A class has first category or is meager
iff it is the countable union of nowhere dense classes. Here a class A is dense if for every
string o there is a A € A with 0 < A and is nowhere dense iff for every o there is an
extension 7 = o such that no A > 7 is an element of A.

Mehlhorn [101] introduced an effective notion of meagerness. He called a class A ef-
fectively meager iff there is a uniformly recursive family fy, f1,... of function such that
fn(o) = o for every n and o and such that for each A € A there is a function f, with
fn(A(0)A(L) ... A(m)) £ A for all m.

Now one can show that for one-sided classes there are many natural relations between
these notions.

Theorem 7.5.8 Let A be a one-sided class. Then A is meager iff A is effectively meager
iff the complement A is dense. Furthermore, if A has measure 0 then A is meager but the
converse does not hold.

Proof If A is meager then no class o-{0,1}* is contained in .4 and thus the complement
of A is dense. For the second transition let A be dense and let M witness, that A is
one-sided. Then for each n there is a function f, which searches for given o an extension
7 » o such that M(n) = 0 for at least n prefixes n < 7. The f, are total since A is
dense and so every ¢ has an infinite extension A > ¢ on which M outputs infinitely many
0s. Furthermore, the f, are uniformly recursive, that is, the mapping n,0 — f,(0) is
computable in both parameters. If A € A then M outputs on A only finitely often, say
n times, a 0 and so f,11(A(0)A(1)...A(m)) is for no m a prefix of A. It follows that A
is effectively meager. The third transition from effective meagerness to meagerness follows
directly from the definition.

For the second statement of the theorem, the implication holds since no class of measure
0 contains a subclass o - {0,1}* and so every class of measure 0 has a dense complement.
The properness of this relation can be obtained by considering the following two-sided
class:

Ac As (Vn)[A ¥ 0,0m?

where 0y, 01, ... is an enumeration of all strings. The class A has a dense complement and
so is meager, it is even nowhere dense. But its measure satisfies pu(A) > 1 — X, 277277l
> % and so A does not have measure 0. |

7.6 Classifying Recursive Sets Only

Smith, Wiehagen and Zeugmann [134, 147] looked at classification tasks where only the
behaviour on computable sets is considered. Case, Kinber, Sharma and Stephan [30]
extended this work. They obtained results which are much more similar to the world of
enumerable versus recursive sets — a reason for this is that topological constraints are
much less important and that the whole world REC has only countably many objects
which can be identified with their finite descriptions (programs) although one cannot find

115

them without a high oracle. For classifying recursive sets only, Case, Kinber, Sharma and
Stephan [30] obtained the following results:

e Every one-sided classifier H can be transformed into a two-sided one with the help
of a high oracle — by inferring the program e of the function and then computing in
the limit whether the set {x : H(p.(0)pe(1)...pc(x)) = 0} is finite or infinite.

e A class in Ex is one-sided iff it is in REx; the result holds also using LimEx instead of
Ex where again a reliable LimEx learner diverges on every function not inferred. The
corresponding result in the general framework would be that a class in Ex (which
then is a subset of REC) is in R, Ex iff it is one-sided.

e For every one-sided class A, either A or its complement contain an infinite class
B which is a uniformly recursive (or indexed) family. That is, B is of the form
B = {By, By, ...} where the mapping i,z — B;(z) is recursive in both parameters.
But there is a two-sided infinite class .4 which does not have such a subclass.

Theorem 7.1.4 showed that some infinite one-sided class has no infinite two-sided subclass.
It is natural to ask whether this also holds for the model of classifying recursive sets only,
but this is until now unknown. Further research [30, Section 4] is dedicated to the study
of classification from positive data. In this context it was again possible to construct an
infinite one-sided class which does not have an infinite two-sided subclass, namely the class
containing exactly the sets {0,1,...,a} where a € IN. A further interesting result is, that
if A and B are two-sided classifiable from text, then A = B iff A and B contain exactly
the same finite sets.

This section now deals with the relation of the general model where all sets are classified
versus the restricted model where only computable sets are classified. The next theorem
shows that there is a class which is two-sided in the restricted model but does not have
any two-sided classifier relative to any oracle in the general model.

Theorem 7.6.1 There is a class A of computable sets such that some computable M
classifies all computable sets with respect to A but there is not even a nonrecursive classifier
which converges on every input-set and classifies all computable sets with respect to A.

Proof Let S be a simple set and A = {finite A: ANS = QA|A| is odd}. First it is shown
that some M classifies S one-sided where M converges on every computable set. This M
is given by

M(o) = {0 if { : o(x) = 1} meets S|, or has even cardinality;
1 otherwise.

That means that M outputs 0 or 1 depending on the cardinality of the 1s in ¢ until M
discovers that some z with o(z) | = 1 is enumerated into S — then M switches to 0
forever.

Now it is shown that M converges on every computable set. If A is finite then M
changes only finitely often its mind — either when M finds a new element or when some
already found element is enumerated into S. If A is computable and infinite then M also
makes only finitely often a mind change since M eventually discovers that there is an
xr € AN S and from this time on only outputs 0.

The second part is to show that every classifier N which is correct on all finite sets
with respect to A diverges on some infinite set A = {ao, ay, ...} where this set is defined
inductively starting with n = 0 and some aq ¢ S.

116

Take some o,, < {ag,ay,...,a,} such that |o,| > a, and N(o,) =1iff n+1is
odd. Then take some a1 ¢ SUdom(oy).

The o, is found since N classifies {ag, a1, ..., a,} with respect to A. The a,; exists since
S is coinfinite and dom(o,,) is finite. So the construction works for all n and the resulting
set A is infinite and disjoint to S. Furthermore, N(o,) = 0 for all even n, N(o,) = 1 for
all odd n and the o, are all different prefixes of A, so N does not converge on A. |

So sometimes two-sided classifiers for computable sets cannot be extended to two-sided
classifiers for all sets. But as the next theorem shows, they can be extended to one-sided
classifiers for all sets such that the corresponding class has measure 1.

Theorem 7.6.2 Every one-sided class A has a one-sided “extension” B of measure 1 such
that A € A& A € B for every computable set A.

Proof Let H be a one-sided classifier for A. Now a new one-sided classifier N is
constructed such that the class B defined via N has the desired properties. N just slows
down the output of the Os and meets the following definition:

N outputs on A at least n Os if H outputs on A at least n Os and there is m > n
such that ¢, (z)] = A(z) for all x < m.

So whenever A is recursive, A has infinitely many indices and in particular for each n there
is an index m > n of A. This m satisfies of course ¢,,(x)| = A(zx) for all x < m. Therefore
M outputs on A infinitely many Os if H does and N classifies A to be in B iff H classifies
A to bein A. So A and B coincide on the computable sets.

Let A, = {A: (Vo < m)[pn(x)l= A(x)]}. Each class A,, has measure 277! if ¢,
is defined on the input 0,1,...,m and is empty otherwise. So whenever N outputs on a
set A at least n Os, then A belongs to some A, with m > n. Since pu(A, UA,1U...) <
p(Ay) + Ay +. .. <27t 2724 =277 it follows that the measure of the class
of all A on which N outputs at least n Os has the upper bound 2~". Thus the measure of B
which is the class of all sets on which N outputs infinitely many 0s is 0 since it is bounded
by each number 27", It follows that B has measure 1. |

A similar Theorem does not hold with measure 0 in place of measure 1. Taking the one-
sided class A = {0,1}* of all sets, every one-sided class B which agrees with A on all
computable sets just has to contain every computable set. The measure of B cannot be
0 since then B had recursive measure 0 and so there would be a recursive martingale
succeeding on all computable sets - which does not exist.

8 Inside Truth-Table Degrees

A reducibility between two sets D and F is called strong, if it is a restriction of truth-table
reducibility and is called weak otherwise. For example, at weak truth-table reducibility it
is impossible to know for all illegal oracle-answers, what the result of the reduction would
be while for the strong version, truth-table reducibility itself, it is possible to compute for
each theoretically possible outcome of the oracle answers a value which coincides with the
result of the reduction if the correct oracle answers are supplied. This chapter deals mainly
with strong reducibilities, so first an overview on the most important of them is given.

117

The main goal is to compare Post’s notion of truth-table reducibility [120] with two more
restrictive variants: the bounded truth-table reducibility (btt) and the positive reducibility.
The first variant uses only a fixed number of queries, the second variant a positive formula to
evaluate the queries. A given tt-reduction is positive iff for all sets Dy, Do, E;, E5 such that
D, <y Ey and Dy < F5 via this same tt-reduction the implication £y C Ey = Dy C D,
holds.

It follows directly from the definition that btt-degrees and positive degrees are subsets of
tt-degrees. So the more interesting question is the reverse direction: how many btt-de-
grees and positive degrees are in every tt-degree? For the recursive tt-degree the answer
depends somehow on the definition of positive degrees: the normal definition gives one
but if a real dependence on the input data is requested then {()} and {IN} are two further
positive degrees so that there are three positive degrees inside the recursive tt-degree. On
nonrecursive sets the definition of positive reducibility is more robust and gives the same
relationship for both ways to define it.

For btt-degrees, Kobzev [85] showed that every nonrecursive enumerable tt-degree con-
sists of at least two btt-degrees. Dégtev [36] extended the result by showing that there
are at least two btt-degrees inside every nonrecursive tt-degree. These two btt-degrees are
given by a semirecursive set and the tt-cylinder. Beigel, Gasarch, Gill and Owings [14]
found an alternative short proof for this fact.

Within this chapter it is shown that every nonrecursive tt-degree contains infinitely
many btt-degrees so that Dégtev’s lower bound is improved from 2 to co. This is done in
two steps: first the result is shown for all hyperimmune tt-degrees (that is, for all tt-degrees
inside hyperimmune Turing degrees) and second the same is shown for all degrees not enu-
merable relative to K which covers the case of hyperimmune-free nonrecursive tt-degrees.

Further investigations deal with the structure of the btt-degrees inside nonrecursive
tt-degrees. It is shown that these btt-degrees form infinite chains and antichains. These
antichains witness an affirmative answer to the following question of Jockusch [70]: does
every nonrecursive tt-degree contain an antichain of m-degrees? The tt-cylinder represents
the greatest btt-degree among all btt-degrees inside a given tt-degree. So it is natural to ask
whether there is also a least one. Kobzev [84] has already constructed a minimal btt-degree
inside some tt-degree. Within the present work, this result is extended by showing that
on one hand some of these minimal degrees are not a least one inside their tt-degree and
that on the other hand some tt-degrees have a least btt-degree. The construction of these
tt-degrees having a least btt-degree is used to answer a question of Beigel, Gasarch and
Owings [15]: there exists a Turing degree such that, for every set in this degree, arbitrary
large portions of its characteristic function can be computed with only two nondetermin-
istic queries to this set.

Jockusch [69] showed that every nonrecursive tt-degree consists of at least three positive
degrees. It is shown that this result is optimal in the sense that some nonrecursive tt-de-
grees consist of exactly three positive degrees. These tt-degrees can even be chosen such
that they fulfill additional requirements such as being hyperimmune-free or enumerable.
The so constructed enumerable tt-degrees have some nice properties: one of their positive
degrees consists of semirecursive enumerable sets, the second one of semirecursive coenum-
erable sets and the third degree of sets which are neither enumerable nor coenumerable
nor semirecursive. So in these tt-degrees the notions “semirecursive” and “enumerable”
coincide (modulo complementation). Furthermore, there is no tt-degree consisting of four
or any other finite even number of positive degrees, so that the first next possible cardi-
nality to come is five. The next known cardinality is nineteen, so it is open whether some
tt-degrees consist of five, seven, nine, eleven, thirteen, fifteen or seventeen positive degrees.

118

The results can be extended in the way that there are infinitely many odd numbers which
are the cardinality of the positive degrees inside some suitable tt-degree.

Also it is shown that many of the results transfer to the weak versions of the considered
reducibilities. For example, every nonrecursive weak truth-table degree consists of infinitely
many wbtt-degrees. Since the strong and weak versions coincide for hyperimmune-free sets,
some wtt-degree consists of exactly three weak positive degrees. The results for enumerable
wtt-degrees are different from those for enumerable tt-degrees: Every enumerable wtt-de-
gree contains exactly one enumerable weak positive degree but infinitely many further weak
positive degrees.

For certain other strong and weak reducibilities these questions are already solved.
Jockusch [69] showed that some positive degrees consist of exactly one many-one degree
(namely those of semirecursive sets) and others consist of infinitely many many-one degrees:
Such an example is the nonsemirecursive positive degree in some tt-degrees which consist
of three positive degrees. Every tt-degree contains infinitely many many-one degrees [70]
and taking away the two semirecursive positive degrees consisting of one many-one degree
the remaining one contains infinitely many of them. Furthermore, Dégtev [37] showed for
Bulitko’s notion of linear reducibility [23] that some linear degrees are so large that each
of them covers a whole tt-degree while other linear degrees are so small that each of them
consists only of one many-one degree.

In contrast to many other areas where the recursion theoretic side is much better known
than the complexity-theoretic one, the structure inside recursive polynomial time tt-de-
grees is well-known: There are nontrivial tt-degrees which consist only of one btt-degree.
Ambos-Spies [6] constructed some natural examples; these are the tt-degrees of certain
supersparse sets. Ladner, Lynch and Selman [91] showed that, whenever X <;; Y (in the
context of polynomial time reducibilities) for two recursive sets X and Y, then there is a Z
which is properly between X and Y: X <4 Z < Y. So having two different btt-degrees
X, Y inside one tt-degree, one can take the upper bound X @Y of both which is still inside
the same tt-degree. At least one of the btt-degrees, say X, is strictly below X @Y and one
can construct an infinite ascending chain from X to X @Y. So every recursive polynomial
time tt-degree consists of either one or infinitely many btt-degrees.

Basically, the last result depends only on the dense embeddability of countable chains
into every proper interval of the subrecursive btt-degrees. As a consequence, infinite chains
can be replaced by arbitrary countable distributive lattices due to a corresponding result
on lattice embeddings by Ambos-Spies [5]. In fact, these embeddability results do not
depend on the use of polynomial time bounds. The results hold for abstractly defined
subrecursive (or “bounded”) reducibilities which comprise a wide class of time and space
bounded reducibilities [102, 103]. Also they are independent of the exact nature of the
reducibilities; therefore every time-bounded tt-degree contains either one or infinitely many
positive degrees which contrasts from the result for recursion theoretic positive degrees
versus tt-degrees. Nevertheless, the sets representing these degrees are still required to
be recursive. Furthermore, also for the world of recursive polynomial time degrees, some
questions are still open. For example, it is unknown whether there is a Turing degree
consisting of exactly one many-one degree.

Now the formal definition of the reducibilities is given. A set D is Turing reducible to F
iff there is an algorithm which computes for each = the value D(x) using some queries to
E which depend on x. All reducibilities considered within this chapter are obtained by
restricting the way in which D(z) is computed. In particular the number of the queries
made is restricted and also the way the results are evaluated afterwards.

119

truth-table reducibility
D < E < (3 total-recursive f,g) (Vz) [D(z) = g(z, E(0), E(1),..., E(f(x)))].
The intuitive idea is that D(x) is computed in two steps: First the algorithm queries
E at 0,1,..., f(x) and then evaluates this information via a truth-table which may
depend on .

bounded truth-table reducibility
D <y F < (3k) (3 total-recursive fi, fa, ..., fi, 9)
(Vz) [D(x) = g(z, E(fi(x)), E(fa(2)), .., E(fi(x)))]-
This is a more restrictive variant of the truth-table reducibility since the algorithm
makes only k queries to E, these queries are selected by k total recursive function
in parallel. The number k is called the norm of the btt-reducibility. The notion
D <pyry B means that D <u; E with norm k.

positive reducibility

D <, E <« (3 total-recursive f,g) (Vx) [D(z) = g¢(z, E(0), E(1),...,E(f(x)))]
where in addition g(z,ag, a1, ..., apm) < g(@,bo, b1, ..., bpy) whenever a; < b; for
i=0,1,..., f(x).

So positive reducibility is a restricted truth-table reducibility not in the way that
the number of queries is bounded by a constant but in the way that the function
evaluating the queries must be “positive” or “monotone”. The easiest way to think
of a “positive” truth-table is to think of a formula whose atoms have the form E(i) or
0 or 1 and are connected by and-operations and or-operations. The formula does not
contain any negation or negated form E(i) of an atom. The formula may of course
depend on z.

many-one reducibility
D <,, E & (3 total-recursive f) (Vz) [D(z) = E(f(x))].
Many-one reducibility might be considered as a special case of btt-reducibility with
norm 1. The evaluation does not depend on z and is given by the simple formula
reD<& f(x) € E.

Closely related to the notion of reducibility is that of degree. Two sets are truth-table
equivalent iff each of them is truth-table reducible to the other one and the truth-table
degree is just a class which contains all sets truth-table equivalent to some given represen-
tative.

Y= X & V< XANX <Y,
tt-degree (X) = {YV:YV =, X}.

Similarly one can define the corresponding equivalence relations and degrees also for
bounded truth-table, positive truth-table, many-one and other reducibilities.

8.1 Some Structural Properties

Post [120] looked at many structural properties of sets in order to decide whether they are
complete for some strong reducibility or not. Post himself did not find a structural property
which could be used to prove that there is some Turing incomplete enumerable set. The
first constructions [47, 107] to show that such a set existed did not exploit such structural
properties but introduced the priority method. Finally, Harrington and Soare [59] found

120

such a structural property. Similarly the structure induced by the strong reducibilities is
explored using representatives having certain structural properties. The sets A, B and C
defined below have certain outstanding structural properties so that they are important at
many places within this chapter. They are introduced at the next definition and the letters
A, B and C' are reserved for sets of these types. They are constructed from any arbitrary
representative X of their tt-degree. Note that these sets are constructed as sets of strings
or formulas instead of sets of numbers — in this case the constructions use implicitly some
canonical translation between these concepts.

Definition 8.1.1 The set A contains the strings X (0)X(1)...X(n) for all natural num-
bers n, that is, A is the set of all prefixes of the characteristic function of X. In short,
A ={x:2 =2 X}. Ais an example of a retraceable set as introduced by Dekker and
Myhill [38].

The set B contains all strings which are lexicographically below those in A, that is, it
contains every string X (0)X(1)...X(n) and furthermore every string Y (0)Y(1)...Y (n)
such that there is an m < n with Y (k) = X (k) for £ < m and Y (m) < X(m). In short,
B=Ax:2 <40 X} ={2:(Jy € A)[x <jex y]}. B is just the standard semirecursive
set derived from X as used by Martin [96], McLaughlin [99] and Jockusch [69, Theorem
3.6]. Jockusch [69, Corollary 4.3] showed that B is never in the greatest positive degree
and Dégtev [36] showed that B is never in the greatest btt-degree of its tt-degree.

The set C' contains all tuples (n, ¢, z1,...,z,) where ¢ is a Boolean formula in n vari-
ables and ¢(X (z1), X (z3),..., X (x,)) is true. Rogers [124, §8.4] called this set C' the
tt-cylindrification of X or simply a tt-cylinder. C' represents the greatest m-degree within
a tt-degree, that is, for all sets U the equivalence U <;; C' < U <,,, C holds. It is obvious
that C' also represents the greatest positive degree and btt-degree within its tt-degree.

The next definition deals with tt-reducibilities to A. Since A is of a special form, these
tt-reducibilities can be represented in some standardized form.

Definition 8.1.2 Let A be a set-variable which ranges over the sets of the same form as A,
that is, A ranges over all sets derived from some X by A = {z: 2 < X}.

If h is a tt-reduction from a set D to the set A, that is, if D = h“, then one can define
the following function:

0 if h'(a) = 0 for all A with z € A;
hlz](a) = § 1 if hA(a) =1 for all A with z € A;
? otherwise.

So the function h searches on all oracles A of the same form as the given set A which contain
x. If this search gives a unique opinion then h[z](a) outputs this value, otherwise h[x](a)
outputs the symbol “?”. The search terminates since h is a tt-reduction and therefore the
oracles A have to be inspected only on the use of the tt-reduction at input a. In particular,
if z € A and x is sufficiently large, then h[z](a) = D(a).

Now the relations between A, B and C' with respect to some strong reducibilities are
investigated. It is easy to see that A, B and C' belong to the same tt-degree.

For positive reducibility, Jockusch [69] showed already that B and B define two separate
positive degrees which are in addition different to that one of C'. Since everything inside
the tt-degree of C' is many-one reducible to C, the positive degrees of B and B are below
that of C'. Furthermore, A and C are equivalent under positive reducibility since every
tt-reduction to A can be turned into a positive one: Since A(z) = A(z0) + A(x1), every
query to some x can be replaced by two queries to 0 and z1. So one can adjust the queries

121

of the tt-reduction such that A is evaluated just at the strings of one given length. Since A
contains exactly one element of each length, exactly one of the queries is answered with 1
and every vector of answers containing no or several 1s does not come from A. So one can
modify the truth-table on these vectors to 0 for the all-O-vector and to 1 on those vectors
which contain at least two 1s. The truth-table reduction has been turned into a positive
one and the sets A and C' belong to the same positive degree.

So it remains to investigate which relations hold between A, B and C' with respect to
btt-reducibility. The first result is due to Dégtev who proved his lower bound by showing
that B and C represent two different btt-degrees inside every given nonrecursive tt-degree.

Proposition 8.1.3 [36, Theorem 1] B <y, C.

Dégtev showed this as follows. First C' belongs to the greatest m-degree and therefore also
to the greatest btt-degree inside the tt-degree of X, so B <;; C. Second he showed that
the sets

By = {(x1,x9,...,x) : |[{i : z; € B}| is odd }

form an ascending chain of m-degrees, that is, By <,, Bry1 for all k. Third he showed that
under the assumption that C' <p; B there is a k such that C' <, By. Since By <., C by
the first result, Dégtev obtained that By, <,, By in contradiction to his second result.

The next result shows that A forms a btt-degree strictly below B provided that B is
neither enumerable nor coenumerable.

Proposition 8.1.4 If B is neither enumerable nor coenumerable then A <y B.

Proof Let z,y,z range over the strings {0,1}*, let x < y mean that y = zz for some
z € {0,1}* and let z <j., y mean that x is lexicographic before y, that is, either z <y or
there is a string z such that 20 < z and 21 < y. If B is not computable then A and B
relate to each other as follows:

A={z:(3Jy,z=x)[y€ BAz ¢ Bl}. (29)

In other words, A is just the borderline between B and B. For every z let 2’ denote the
lexicographic successor of x of the same length (if it exists). For example, 00110’ = 00111,
101011 = 101100 and 1111" does not exist. Since A is the borderline of B, x is in A iff x

is in B and 2’ is not in B. More formally, A <2y B via the following reduction.

re€BANZ ¢ B ifxe{0,1}* —{1}* that is, if 2 exists;

A . . .
red = {x €B otherwise, that is, z € {1}* and 2’ does not exist.

For example, 0011 € A < 0011 € BA0100 ¢ B and 11111 € A < 11111 € B.

By way of contradiction, it is assumed that B <;; A. First it is shown that each query to
some y can be replaced by up to two queries to some z < x.

So every query whether “y € A?” where y A x has to be replaced by some queries to
some prefixes of z. In the case that y > x one knows that y€ A =2 € A= 2 € B. So
within the computation a query whether “y € A?” can be replaced by a query whether
“r € A” such that the computation halts with “B(z) = 1”7 if the answer “x € A” is received
and continues using that “y ¢ A” if the answer “z ¢ A” is received. In the case that y A
and x A y a further case-distinction is made beginning with the subcase x <., y. There
is a unique greatest lower bound z for x and y, that is, 20 < z and 21 < y. So the
query whether “y € A?” is replaced by the query whether “z € A A 20 ¢ A?”. If so, the
computation halts with “z € B” since z1 € A and so some number lexicographic above

122

x is in B; otherwise one knows that 21 ¢ A and therefore y ¢ A and the computation
continues in this case using that “y ¢ A”. In the other subcase where x >, y a similar
common lower bound z with z0 < y and 21 < z is computed. This is symmetric to the
previous subcase with the two differences that the query is whether “z € AA 21 ¢ A?”
and that in the case that this holds the computation terminates with “c ¢ B”. Note that
the number of queries is still bounded by a constant, but this constant may be twice the
previous one.

So if B <p; A then the reduction B(z) = g(z, A(fi(x)), A(f2(2)), ..., A(fx(2z))) can be
taken such that fi(z) < fo(z) < ... < fr(z) <z for all z. Without loss of generality, let k
be the minimal norm such that there is a reduction of this form. The next case-distinction
shows that either the assumption on the minimality of the norm k& or on the fact that B is
neither enumerable nor coenumerable is false, so the contradiction is obtained.

(1): There is an x € A such that f;(y) < x for all y > x. Then it is possible to compute
B with norm k£ — 1 relative to A:

0 if y v and y > 75
B(y) =41 if y # v and y <je, w;
9 L A)s - AGr(y)) otherwise, that is, if y = o.

This contradicts to the choice of k as the optimal norm for the reduction and therefore
case (1) does not occur.

(11): For every x € A there is a y = z with fi(y) = z. Now it is possible to find
d € {0,1} such that in addition g(y,0,0,...,0) = d can be required for infinitely many
x € A. One can now replace “for infinitely many z” by “for all 2” since if such a y exists
above some z then the same y exists also above every z’ < x satisfying the same condition.
Now a case distinction is made for the two possible values of d in order to show that for
d = 0 the set B and for d = 1 the set B is enumerable.

(ma): d = 0. Let y <], x denote that there is some z < y with 20 < y and 21 < .

—lex

Note that € B iff some y <) x is in A.

—lex

Assume that for an arbitrary z there is some y such that y <), =, fi(y) <., © and

9(y,0,0,...,0) = 0. If fi(y) € A then x € B. Otherwise fi(y) ¢ A and then none of
the values fi(y), fo(y),..., fr(y) is in A, B(y) = 0 and y,x € B. On the other hand for
every z € B there is an 2’ <], x in A and for this 2’ some y = 2’ satisfies 2’ < f1(y) and
9(y,0,0,...,0) = 0. This y then also satisfies y <], = and fi(y) <], ©. So one obtains
that

/
lex

B = {l‘ : (Ely S;ew :U) [fl(y) Sgem a:/\g(y,(),O,...,O) = 1]}

and B is an enumerable set.

(11b): d = 1. This case is symmetric to the previous one. Assume that for an arbitrary
x there is some y with <i., f1(y), £ <ier ¥ and ¢(y,0,0,...,0) = 1. If fi(y) € A then
also fi(y) € B and = € B. Otherwise fi(y) ¢ A and then fi(y), fo(y),..., fr(y) ¢ A,
B(y) = 1 and again € B. On the other hand for every x € B some 2’ € A and some y
satisfy @' >ep 2z, g(y,0,0,...,0) =1, y = 2’ and fi(y) > 2. It follows that y >, = and
f1(y) >iex . So one obtains that

B ={z:(3y >tex) [[1(y) Ztex N g(y,0,0,...,0) =1] }
is an enumerable set. |

Dégtev [35, Theorem 3] constructed a tt-degree containing an enumerable set M such that
every further nonrecursive enumerable set which is tt-reducible to M is already many-
one equivalent to M. So let B belong to such a degree and be enumerable. Again let 2’

123

denote the lexicographic successor of x (if it exists). The set B has a recursive enumeration
20, 21,... and let D = {y : z, ¢ A}. D is an enumerable set since y € D < (z,)' € B. So
D and B are many-one equivalent and there is a recursive function f such that v € B <
f(x) € D & zp4) ¢ A. This equivalence shows that A =, B. Therefore it is essential
to the previous proof that B is neither enumerable nor coenumerable. Since there is by
Theorem 8.6.4 a tt-degree whose semirecursive sets are all enumerable or coenumerable,
A <y B cannot be achieved by a suitable choice of B within this tt-degree.

The next theorem shows that each class of sets btt-reducible to a given semirecursive set
B is restricted. The same results hold also for A since A <, B.

Proposition 8.1.5 Let D <y B for some semirecursive set B and let D be nonrecursive.
Then D =7 B. Furthermore, iof D is simple, then D 1is also hypersimple.

Proof The proof works using a technique from the field of frequency computation. This
technique uses the notion of strongly (m,n)-verbose sets [14, 16]: A set E is strongly
(m, n)-verbose iff there is a total recursive function f which computes, for every xy,..., z,,
m binary vectors of length n such that (E(xy),..., E(z,)) is among these m vectors.
Every semirecursive set is (n + 1,n)-verbose for all n by the simple algorithm which
generates all vectors compatible with the ordering C for which B is an initial segment [14].
Using this fact one proves the following claim: Every set btt-reducible to B with norm k

is strongly (nk 4 1,n)-verbose for all n. Given arguments xq,Zs, ..., T, one can calculate
for each z; exactly k numbers y; 1,9i2,...,yir such that the characteristic function at x;
can be computed from B(y; ;) for j = 1,2,...,k. Since B is semirecursive, one can find

nk + 1 binary vectors among which one agrees to the characteristic function of B at all
y;;- For each of these vectors, one can evaluate the btt-reduction and get £n + 1 vectors,
among them the characteristic function of the given set at xy,xs,...,z,. This completes
the claim.

If D has a different nonrecursive Turing degree than B, then the set B & D is strongly
(m(n), n)-verbose only for a function m which is at least quadratic: m(n) > $(n+1)(n+3)
[16, Theorem 3.3]. On the other hand, if D <u; B then B & D is also btt-reducible to B
and would be strongly (nk + 1,n)-verbose for some k& — which is impossible for n = 4k.
Then the upper bound of the verboseness is 4k* + 1 < (4k + 1)k and the lower bound is
1(4k + 1)(4k + 3) > (4k + 1)k, a contradiction.

Kummer and Stephan [90, Theorem 4.7] showed that a simple set D which is not
hypersimple are strongly (m(n),n)-verbose only if m(n) > in(n+ 1) 4+ 1. Again one has
that if D <u; B with some norm k, then D is on one hand strongly (2k* + 1, 2k)-verbose
and on the other hand not strongly (2k? + k, 2k)-verbose, a contradiction. So D %y B. |

Also any c-complete enumerable, hypersimple and maximal set D has a quadratic lower
bound for the minimum complexity in terms of strong verboseness. As indicated in the
proof of the previous theorem, no such set D is btt-reducible to a semirecursive set or a set
retraced by a total recursive function. Jockusch [69, Corollary 4.6] showed the result for
enumerable sets: No maximal set is btt-reducible to an enumerable semirecursive sets. The
d-complete sets have even the exponential lower bound 2" for their complexity in terms
of strong verboseness and so are not btt-reducible to any set which is strongly (2" — 1, n)-
verbose for some n.

124

8.2 Inside Hyperimmune Truth-Table Degrees

A tt-degree is called hyperimmune iff it is contained inside a hyperimmune Turing degree.
That is, a set has hyperimmune tt-degree iff there is a hyperimmune set H Turing equiva-
lent to it.

Within this section it is shown that every hyperimmune tt-degree contains an infinite
number of btt-degrees. This is the first step on the way to a proof that all nonrecursive
tt-degrees contain infinitely many btt-degrees. In addition it is shown that the ordering of
the enumerable sets under inclusion can be embedded into the ordering of the btt-degrees
inside every given hyperimmune tt-degree (with respect to the ordering but not preserving
meets and joins) and so there exist infinite ascending and descending chains as well as
infinite antichains of btt-degrees within the given tt-degree.

The main result, Theorem 8.2.3, is based on some propositions. The first one of them,
Proposition 8.2.1, shows that below every set A of hyperimmune tt-degree there is some
hyperimmune set H <; A. This cannot be improved to H =; A since for example the
tt-degree of K does not contain a hyperimmune set: Post [111, Theorem III1.3.10] showed
that K is not tt-reducible to a hypersimple set; actually the proof works for hyperimmune
sets.

Proposition 8.2.1 If the Turing degree of A is hyperimmune then there exists a function
f <u A such that, for every k, the set Fy, = {z : f(x) = k} and its complement are both
hyperimmune.

Proof First f is constructed. Given A, let Y = {yo, 41, ...} be a hyperimmune set which
is computable relative to A. For each n, let ¢, be the time which is used to compute
Y (0),Y(1),...,Y(y,) relative to the oracle A. So t, is just the time to search through Y
until at least n + 1 elements are found. Now let xg = yo + o and z,11 = T + Yno1 + Luor.
The set X = {xg,21,...} is also hyperimmune but it is also truth-table reducible to A
while Y was only Turing reducible to A. Note that there is no computable function g such
that g(n) > z, for all n [111, Proposition II.3.8]. This can even be strengthened in the
way that for every computable function ¢ there is an n with g(x,) < x,41. To see this just
consider the function given by ¢'(0) = xy and ¢'(n + 1) = max{g(y) : y < ¢'(n)} and take
the first n with ¢’(n + 1) < x,; which exists by [111, Proposition I11.3.8].

The definition of f uses X and basically meets the overall goal by satisfying the re-
quirements (e, k) inductively.

(e, k): o, does not witness against F}, being hyperimmune, that is, either ¢, is
partial or there is some s with s,s 4+ 1,...,p.(s) € F.

Let x, be the largest member of X below s. One defines that

e Requirement (e, k) needs attention at stage s
if pes(x)d for all x < x,,.

e Requirement (e, k) is satisfied at stage s
if there is < x, with ¢ s(z)] < z, and f(y) = k whenever z < y < ¢, ((z).

e f(s) = k for the least requirement (e, k) < s which needs attention at stage s and
is not already satisfied at stage s. If every requirement below s either does not need
attention or is already satisfied then f(s) = 0 as a default-value.

125

It is easy to see that f <; X <, A. Assume now by way of contradiction that for
some total function ¢, some requirement (e, k) would never be satisfied, without loss of
generality all requirements (€', k') < (e, k) are either satisfied or belong to a partial function
e - The sequence xg, 1, ... dominates G and is hyperimmune. There is an x such that all
requirements (¢’, k') < (e, k) are either satisfied below x or have p.(y)1 for some y < z.
For input y, let g(y) take the value s 4+ ¢.(s) for the first stage s > y where ¢, 4(2) is
defined for all 2 < y. Since X is hyperimmune and since ¢ is a computable function there
are arbitrary large numbers n such that g(z,) < z,4,. Now taking n large enough and s
as above the following conditions are satisfied.

o v t+e<w, <s;
o v.s(y)) forally < xy;
i @6(3)¢< Tn+1-

Now the requirement (e, k) is the least one which needs attention at the stages t = s,s+1,
..., Zny1 — 1 and is not already satisfied. Therefore f(t) =k fort =s,s+1,..., 2,41 — 1,
in particular for t = 5,54 1,..., ve(s). Thus the requirement (e, k) is satisfied against the
assumption; in particular ¢, is not a witness against Fj, being hyperimmune.

It remains to be shown that for every k£ that f takes infinitely often the value k: For
every m there is a function ¢, such that ¢.(s) = s + m. Since the requirement (e, k) is
satisfied there is an s such that f(t) = k for t = s,s + 1,...,p.(s); so f takes at least
©e(s)+1—s=m++1 times the value k. Since this holds for every m, the value k is taken
infinitely often. So every set Fj is infinite and since the sets F} are disjoint, also every set
[}, is infinite since its subset Fj.,; is infinite.

So for all e and k, either ¢, is partial or ¢, is not a witness against Fj, being hyperim-
mune. All sets Fy, Fy,... are hyperimmune since they are infinite and no total-recursive
function witnesses the contrary. The sets F}, are also hyperimmune since they are infinite
and every Fj is a subset of the hyperimmune set Fy.q. |

Proposition 8.2.2 Let A, f and Fy, Fy, ... be defined as in Proposition 8.2.1. Further-
more, let G; = {(z, f(z)) : f(x) #i}. Then F; Ly G; & A.

Proof Assume by way of contradiction that F; <,; G; @ A on some infinite recursive set
Y, that is, assume that there is an infinite recursive set Y and a reduction such that

(Vo € Y) [Fi(z) = g(x, Gi(di(2)), . .., Gi(dm(7)), Aer (7)), - .., Alen()))]

where ¢,dy,...,dn,€1,...,¢e, are total recursive functions. The sum m + n is called the
norm of the reduction. The recursive set Y is chosen such that the reduction takes the
minimal possible norm. Furthermore, the following statements hold where Y may be
replaced by a suitable computable infinite subset if necessary.

(1): There is an a such that g(x,0,...,0) =a for all z € Y.

For b = 0,1, consider the two subsets Y, = {z € Y : ¢g(z,0,...,0) = b}, that is, ¥} is
the set of all x € Y such that the btt-reduction returns b whenever all queries to GG; and A
are answered by 0. If Y] is infinite, let « = 1 and replace Y by Y;. Otherwise Y} is infinite,
let @ = 0 and replace Y by Y.

(11): For no function dj there is an infinite recursive subset Y’ C Y such that G;(dx(z)) is
the same constant ¢ for all x € Y. The same holds for e, e5,...,e,. In particular, none of

126

the functions dy, ds, ..., d,,, e1,€a,...,¢e, takes the same value for infinitely many = € Y.
Assume by way of contradiction, that this would fail for some dj, or ey; say G;(di(z)) = ¢
for all z € Y'. Then let ¢'(x, by, ..., 0pmin) = g(x,¢,bo, ..., byiyn) and it follows that

(Vo € Y') [Fi(z) = ¢' (2, Gi(da(2)), ..., Gi(dm(2)), Aler(x)), ..., Alen(2)))]

in contradiction to the minimality of the norm m + n. The second statement is almost
obvious since if d; takes the constant y on Y’ then G,(d;(x)) = G;(y) for all z € Y.

(1r): n > 0.
Assume by way of contradiction that n = 0. Now it is shown that under this assumption
one of the sets {x : f(z) # j} is not hyperimmune in contradiction to the choice of f. So

for any y let
D(y) ={z: (32)[(2,7) € {di(y),d2(y), - -, du(¥) }]}-

Note that for every x the intersection {0,1,...,2} N D(y) is empty for almost all y € YV’
since one could otherwise use (11) in order to construct a contradiction: some function d
would infinitely often take some pair with the same coordinate z and one can then evaluate
Gi(di(y)) whenever it takes such a pair just by comparing the second component of the
pair with the constant f(z). So given any z one can find effectively a y(z) such that y(z)
and every value in D(y(z)) is greater than x. Note that y(x) is simply the first y > x with
y € Y in the case that m = 0. Now let I, = {z,z+1,...,y(x) + max(D(y(x)))} for m > 0
and I, = {x,x +1,...,y(x)} for m = 0. The set I, is effectively computable from x. The
further proof needs a case-distinction on the constant a from (1).

First the case a = 0. Now I, intersects Fj: If D(y(z)) C F; then G;(dy(y(x))) = 0 for
all k and so F(y(x)) = g(y(z),0,...,0) = a and therefore y(z) € F;. Since this holds for
all z, it follows that Fj is not hyperimmune in contradiction to the choice of Fj.

Second the case a = 1. Since N is infinite and {1,2,...,m} is finite, it is impossible
that for every j there is a k such that di(y) has the form (z,j) for almost all y € Y. So
there is an index j # i such that for infinitely many y € Y no pair di(y) has the form
(z,7). So one can find a j and replace Y by a suitable subset Y’ such that dy(y) # (z,j)
forall z € N, all k € {1,2,...,m} and all y € Y. Now one knows that every such interval
I, intersects Fj: either G;(dg(y(x))) = 1 and therefore the z with di(y(z)) = (z,2)
satisfies f(z) = 2/ # j or Fi(y(x)) = 1 and f(y(x)) =i # j. So it follows that Fj is not

hyperimmune, a contradiction.

(1v): For all u € A and almost all x € Y: u < ej(x) Au < ex(x) Ao Au = ey(z).

Assume that this would fail for one v € A. Since the finitely many values below u are
taken only finitely often, one of the values e;(z),...,e,(z), say e;(x), is incomparable to
u for infinitely many x € Y. The recursive set Y/ = {x € Y 1 e1(z) 2 uAu £ e;(x)} is
infinite and A(e;(z)) = 0 for all z € Y in contradiction to (I1).

(v): Forally € Y: ej(y) € AVes(y) € AV...Ve,(y) € A.

The proof of this fact is similar to the proof for (111). So assume by way of contradiction
that there are infinitely many y € Y with e;(y) ¢ AAea(y) € AN... Ney(y) ¢ A Again
let D(y) = {z: (3, k) [di(y) = (2,2")]}. Note that for each y with e;(y) ¢ A A ex(y) ¢
AN...Ney(y) ¢ Athereisay' €Y and u € A such that v’ £ e1(y), ea(y),. .., en(y) and
u = el(), ea(y’), ..., en(y’). So it is possible to compute for every given x two elements
y(x),y'(x) €Y and an interval I, = {x,z + 1,...,2'} such that 2’ > z, y(x),y'(z) € I,
D(y(z)) U D(y'(z)) C I, and either all values ey (y()) or all values ex(y'(x)) are not in A.
Since y(x) and y'(z) can be interchanged without changing the construction, one might fix
e1(y(z)), ea(y(x)), ..., em(y(x)) ¢ A for the verification that I, witnesses that either F; (in

////—\

) U
y
)

127

the case a = 0) or some Fj (in the case a = 1) is not hyperimmune.

The remaining part to show (v) can now be completed by copying word by word the
part beginning with the case distinction whether @ = 0 or @ = 1 in the proof of (111) where
of course the definitions of I, and y(z) have to follow those given in this part (v). One
obtains from the argumentation that in both cases there is a contradiction. So the converse
of the assumption holds, that is, for almost all y € Y, one of the values ex(y) is in A. By
removing the finitely many exceptions in Y one can conclude that this holds for all y € Y.

Now from the last two conditions (1v) and (V) it follows that A is recursive:

On input w find the first y € Y and v with |v] = |w| and v < e1(y), ..., e, (y).
If v = w then output “w € A” else output “w ¢ A”.

The algorithm terminates, since for every w there is an v € A of length |w| and this v
satisfies for some y € Y the search-condition. Furthermore, v € A since by the last item
one of the ¢;(y) is in A and A is closed under <. But A was chosen of hyperimmune and
therefore nonrecursive degree. By this contradiction, the proposition holds. |

Now the two propositions are put together to obtain the desired theorem. Recall that a
tt-degree is defined to be hyperimmune iff it is inside a hyperimmune Turing degree.

Theorem 8.2.3 Fvery hyperimmune tt-degree consists of infinitely many btt-degrees.

Proof Let A be the prefix-set inside the given tt-degree and f, Fy, F1,... as in Proposi-
tion 8.2.1. F, £ A ® F, for y # z by Proposition 8.2.2: note that every F, is a row of
Gy, that is, F, <, G, and the statement follows just from Fj, € A ® Gy. On the other
hand F, <;; A for all y. Thus the sets Ay, Ay, ... given by

Ay = Aok, = Ao{r: f(v) #y}

represent an antichain of infinitely many incomparable btt-degrees inside a given hyperim-
mune tt-degree. |

A direct corollary is an intermediate result which increases Dégtev’s lower bound from 2
to 3: Either A, B and C' represent three different btt-degrees inside the given tt-degree
or B is enumerable or coenumerable, in particular B has hyperimmune tt-degree. In this
latter case the previous result gives infinitely many and thus at least three btt-degrees.

A closely related question is to determine the quantity of enumerable btt-degrees in a
enumerable tt-degree. Dégtev [35] constructed a tt-degree, whose enumerable sets are all
in one m-degree and therefore also in one btt-degree. On the other hand Kallibekov [74]
and Kobzev [84] showed that the tt-degree of the halting problem K contains infinitely
many enumerable btt-degrees. The next theorem shows that both, the structures of btt-de-
grees inside hyperimmune tt-degrees and the structures of enumerable btt-degrees inside
the tt-degree of K, are rich.

Theorem 8.2.4 The inclusion-structure of the enumerable sets can be embedded into the
structures of

(a) the btt-degrees inside every hyperimmune tt-degree and

(b) the enumerable btt-degrees inside the tt-degree of the halting problem K.

Proof (a): Let A be a prefix-set representing a given hyperimmune tt-degree and define
the sets F, Fy, ... <4 A as in Proposition 8.2.2. Note that these sets and the sets H, are
uniformly recursive relative to A where the sets H, are given as

H,={(z,y,2) ;0 € Wey, Az € F};} (30)

128

These sets have the following properties:

o If W, C W, then H, is many-one-reducible to H,: Given (x,y, z) one first checks
whether z € W,. If so, one enumerates W, until the first stage y' is found with
x appears there at stage y' and then has in this case that H.(x,y,2) = F,(2) =
H.(z,y', z), so the many-one reduction maps (x,y, z) to (z,y, 2'). If not, one knows
that H.(z,y, 2z) = 0 and the reduction maps (z,y, 2) to some fixed nonelement of H,
which exists since the set H, is not recursive.

o If x € W, then F, is many-one reducible to H,.

e If = ¢ W, then F, is not bounded truth-table reducible to A @ H,: This follows from
the fact that F} is not btt-reducible to A & G, while H, is many-one reducible to
G, by the fact that H.(z',y,z) = 0 for 2/ ¢ W,, including the case 2’ = z and
H(x',y, 2) = Gy(2) for ' € W,,.

o If W, € W, then H, is not bounded truth-table reducible to A & H,. since there is
an v € W, — W, so that the corresponding set F), is many-one reducible to H, but
not bounded truth-table reducible to A & H,.

It follows that the ordering among the btt-degrees of the form A® H, is the same as among
the enumerable sets W,. The sets A @ H, have clearly the same tt-degree as A.

(b): Due to the infinite version of the Theorem of Friedberg and Muchnik [135, VII.2.2(a)]
there are uniformly enumerable and semirecursive sets By, By, ... such that no set B; is
computable relative to the join of the other sets B;. Furthermore, one can chose the
By, By, ... such that K is not computable relative to the join of all. Now one uses a
semirecursive set B with Turing degree K in place of A and B, in place of F,. The
equation corresponding to (30) gives

H, ={(z,y,2) : v € Wey A2z € B,} (31)

and from the four items the first, second and fourth hold immediately provided that the
third item can be reproven:

e If z ¢ W, then B, is not bounded truth-table reducible to B & H,.

The Turing degree of B, @ H, is properly between those of H, and B® H,.. By relativizing
Proposition 8.1.5 to H.-recursive computations, B, is not btt-reducible to the semirecursive
set B. Thus B, @ H, and, in particular, B, alone are not btt-reducible to B & H, in the
nonrelativized world.

As in case (a) one can now derive that the sets B@® H, represent enumerable btt-degrees
inside the tt-degree of K such that the ordering of the H, with respect to btt-reducibility
is the same as that of the sets W, under inclusion. |

8.3 Inside Truth-Table Degrees not Enumerable Relative to K

Miller and Martin [105] showed that every K-recursive set of hyperimmune-free Turing
degree is recursive. It is straightforward to see that also every set A enumerable relative to
K of hyperimmune-free Turing degree is also enumerable and thus by Miller and Martin’s
result as well recursive: Let A; be a recursive approximation of A such that A(x) = 1 iff

129

Ag(z) = 1 for almost all s. The function f# given as f4(z,s) = min{t > s : A;(z) = A(z)}
is total and A-recursive. Since A has hyperimmune-free Turing degree, a computable
function ¢ majorizes f*. Then the formula

r e A& (Is) (Vs <t < gz, s))[Ax) =1]

witnesses that A is enumerable. So, A <7 K and A is recursive.

This section deals with the second step to show the existence of infinitely many btt-de-
grees inside nonrecursive tt-degrees: A structural construction gives infinitely many btt-de-
grees inside every given tt-degree not enumerable relative to K and by the previously
mentioned fact, this construction covers the case of all hyperimmune-free nonrecursive
Turing degrees. The gap left in the previous section is closed. Again sets of a special form
are needed and these are based on a fixed truth-table reduction h from C' to A.

Definition 8.3.1 Let A be a tt-reduction from C' to A such that, for every finite tree
t C {0,1}* and every labeling d, € {0,1} of the leaves x of ¢, there is a number i such
that the tree t; = {x : hlz](i) =7} is equal to t and, for every leaf = of ¢, h[zd,](i) = 1
A hlz(1 —d,)](i) = 0. A recursive set D is compatible with C' iff, for every finite tree ¢,
either all or no 7 with ¢; = ¢ are in D.

The next result is the keystone of the proof since it maps down the argumentation to mere
topological arguments.

Theorem 8.3.2 Let D and E be recursive sets compatible with C. If C N D <, CNE
then there is a constant k and a coenumerable tree T such that A C T and, for every
1 € D where the leaves of t; are branching nodes of T', there are ji,jo,...,Jx € E with
t;i Ct;, Ut U...Ut;,.

Proof Let g, f1, fo, ..., fr define a btt-reduction from C'ND to CNE. Since every answer
to queries outside E is 0, one can assume without loss of generality that the range of each
of the functions fi, fa,..., fr is a subset of E and that g(i,as,as,...,ar) = 0 whenever
i¢ D.

Say that z is inconsistent iff there is an ¢ such that the assumption z € A would imply
that the given btt-reduction is incorrect. More formally, x is inconsistent iff there is a
number 7 € D such that the values h[z](i) and h[z](fi(7)), h[z](f2(7)),. .., hlz](fx(i)) are
all in {0,1} but hlz](i) # g(z, hlz](f1(2)), h[x](f2(2)),. .., h[z](fx(7))). These inconsistent
x cannot be members of A since the assumption x € A implies hlz](i) = C(i) = (CND)(3)
and hlz|(f;(7)) = (C N E)(fi(i)) for { =1,2,...,k. Now the complement of the coenum-
erable tree 1" is given as the downward closure of all inconsistent x. In particular, every
x ¢ T is either inconsistent or satisfies 20,21 ¢ T. Since every x € A has a successor
xzd € A for some d € {0, 1}, the tree T still contains every x € A.

Let ¢ be a finite tree such that 0,21 € T for every leaf x of ¢t and such that there is an
i € Dwitht; =t. Since all j with ¢; = ¢ are also in D, one can chose i such that hlzd](i) = d
for every leaf x of t and every d € {0,1}. Now the value h|xzd](i) depends on d, thus there
must be some query f;(i) where the answer depends on d, that is, satisfies h[yo](fi(7)) =
0 A h[ya](fi(7)) = 1 for two extensions yo,y1 = z. It follows that h[z](f;(7)) =7. It follows
that every leaf x of ¢; is a node of some tree t5,;) and thus the tree ¢; is covered by the
union of the k trees £, 5y, tp(i)s - - L) |

The next two results show that there are ascending and descending chains as well as
antichains of btt-degrees inside every nonrecursive tt-degree.

130

Theorem 8.3.3 There are infinite ascending and descending chains of btt-degrees inside
every nonrecursive tt-degree.

Proof Theorem 8.2.4 covers already the case of tt-degrees enumerable relative to K since
these tt-degrees are all either hyperimmune or recursive. So it is sufficient to consider the
case of tt-degrees not enumerable relative to K.

Let h, C', A and t; be as in Definition 8.3.1. Now let, for every rational ¢ > 1, the set
D, contain all indices of trees where, for every branching node z of ¢;, there are not more
than ¢/*! leaves above z0.

Clearly each set D, is compatible with C' and each set D, is computable. Furthermore,
whenever ¢ < r, then C'N D, is m-reducible to C'N D, via the following function f: In the
case that i € D,, then i is also in D, and one takes f(i) = i; in the case that ¢ ¢ D, then
there is some j ¢ C and f(i) = j for this j. So the main task is to show the following:

CND, £ CND, for qg>r.

A consequence of this result is that the ordering of the classes CN D, is dense. In particular,
there exist ascending and descending chains: they are given by the sequences ¢ = 2, 3,4, ...
and ¢ = 2,1.1,1.01,1.001, 1.0001, . . . for the parameter ¢ of the classes C'N D,.

Assume by way of contradiction that ¢ > r but CN D, <p, CND,. Let T" be the coenum-
erable tree and k be the constant from Theorem 8.3.2. Since A is not computable relative
to K, there is above every x € A a full binary tree s, of arbitrary finite depth embeddable
into T [87, Lemma 1]. Say that the depth of s, is so large that the number of its leafs m,
is between 2k - 7*l +2 and 4k - rl*l4+4. The set of all those z € T where such a tree s, exists
is enumerable relative to K. If, for all the € A with 20 ¢ A there would be only finitely
many z such that s,q exists then A would have a Turing degree enumerable relative to K:
there would be a largest node y € A such that there is an x € A with 20 ¢ A, s, exists
and y < z. It would follow that A is represented by the leftmost branch of the K-recursive
tree
{reT:2<yV(x=TNAs, exists)}

and thus the truth-table degree of A would be enumerable relative to K in contradiction
to the choice of A.

Note that, for sufficiently large z, the number ¢/*! is larger than the number of leafs of
Sz0 whenever s, exists. There are k£ nodes x1,xs,...,x; € A such that for all these nodes
x; the node 7,0 is not in A but the tree s, exists and has less than gl leaves. Let u
be a branching node of T" which is in A and above all ;1. The finite tree ¢ containing all
nodes y < u plus those which are below a branching node z of some s,, has the following
property: whenever a node x € t is a branching node of ¢ then the node x0 is in some tree
ss, and there are at most ¢/*! leaves above x0. So it follows that there is an i € D, with

By assumption, there are trees t; ,t;,,...,t; whose union covers t; and whose in-
dices ji,j2, ..., jk are in D,. For every x; € {x1,zs,...,x;} those trees among the trees
i tj,, - - -, having a branching node at x; cover at most rl#il leaves of the more than k-7l
leaves of t; above x;0; so for each z; some of the trees t; ,¢;,,...,t; must contain the node
x;0 without containing ;1. As a consequence, the node u is not contained in any of the
trees t;,,%;,, ..., t;, and their union does not cover t;. It follows that CND, £ CND, 1

Theorem 8.3.4 Fvery nonrecursive tt-degree contains an infinite antichain of btt-degrees.

Proof The case of hyperimmune tt-degrees enumerable relative to K is again covered
by Theorem 8.2.4. The case of hyperimmune-free tt-degrees is contained in the case of

131

AN
Ny O
Ny

L s
N\

Figure 2: (a) Some trees of rank 0, rank 1 and rank 2. (b) Embedding a binary tree.

tt-degrees which are not enumerable relative to K. For this case consider the sets F,, =
{1 € Dmy1y/m : rank(t;) < m+ 3} where t; has rank k or more iff the k-th full binary tree
can be embedded topologically into ¢; — Figure 2 (a) on page 132 gives some examples of
trees of small rank.

Now one shows that F,,NC and E, NC are btt-incomparable unless m = n. Let m < n.
The direction that E,, N C Ly E, N C needs one adaptation: the s, should be built as
trees of rank 2 so that the constructed tree ¢; has at most rank 3. This can be obtained by
first embedding a tree of depth 2+ into T above x and then taking for s, all nodes z for
which there is at most one node y < z which is a branching node but not on the left-most
branch. This subtree s, has then m, leaves. Still, every x € A has a tree s, and the rest of
the argumentation is absolutely parallel to Theorem 8.3.3. For the other direction, assume
by way of contradiction that E, N C <yym) En N C.

For every finite tree ¢ and every sufficiently large z, the expression (2l is greater
than the number of ¢’s leaves. So one can build a topologically equivalent copy of ¢t below
sufficiently large = and so obtain that this copy is in D(,41)/,. Thus one can reduce the
proof to the pure topological argument that there is a tree t of rank n + 3 which cannot be
covered by a union of k trees of rank n + 2; note that n > m + 1 and thus m +3 < n + 2.
For this abstract topological argumentation, the tree £ may be represented by some finite
set of strings, omitting nonbranching nodes. The arity of ¢ is increased by replacing each
string (/1 simply by j.

Now let ¢ contain all strings in {0, 1, ..., k}* whose length is at most n+3. A full binary
tree of rank n + 4 cannot be embedded into this tree since then one would need strings of
length n 4 4, so the rank of ¢ is at most n + 3. Assume now that k trees ty,ty,...,t of
rank n + 2 would cover the tree . Then each leaf y receives a colour j if y € ¢;. If there
are several possibilities, the choice is arbitrary. Now whenever all successors y0,y1,...,yk
of a node y have a colour, then at least two of them have the same colour. So one elects
for y a colour such that two successors ya, yb of y have the same colour. This procedure
is continued until the root has a colour j. Now it is immediate that each node of the tree
t; with colour j has at least two successors on the next level, so ¢; contains the n + 3-rd
full binary tree and has rank n + 3 in contradiction to the assumption. Figure 2 (b) on
page 132 illustrates this process.

This argumentation gives that F,, NC' Ly F,, NC. So the sequence E;NC, E,NC, ...
is an antichain of bounded truth-table degrees within any given tt-degree not enumerable
relative to K. 1

+1
)

Theorems 8.2.4 and 8.3.3 give either a m-reduction from one set to the other or show
that there is no btt-reduction from one set to the other. So they extend Jockusch’s result
[70] who constructed an infinite ascending chain of m-degrees within every given nonre-

132

cursive tt-degree in the way that there is also an infinite descending chain. Theorem 8.3.4
also shows that there is an infinite antichain of m-degrees solving a problem left open by
Jockusch [70].

Theorem 8.3.5 Every nonrecursive tt-degree contains an infinite antichain of m-degrees.

8.4 On Least Bounded Truth-Table Degrees

It was shown that tt-degrees contain infinite chains and antichains of btt-degrees. Further
it is well-known that every tt-degree contains a greatest btt-degree given by the tt-cylin-
der. Now the attention turns to the other side: Does every tt-degree also contain a least
btt-degree? The answer is: some do, but not all. Kobzev [84] already approximated this
question by showing that some tt-degrees have a minimal btt-degree — minimal in the
sense that there are no nontrivial btt-degrees below that but that there may still exist
some incomparable further btt-degrees. The first result of this section shows that this
can happen. The second result shows that on the other side there are tt-degrees which
have even a least btt-degree: every set tt-reducible to this btt-degree is either recursive
or above this btt-degree with respect to btt-reducibility. This second result will give a
hyperimmune-free tt-degree, therefore this tt-degree is already a Turing degree. So there
is a Turing degree with a least and a greatest btt-degree.

Example 8.4.1 There is a tt-degree which does not have a least btt-degree.

Proof Kobzev [84, Theorem 1] constructed a simple but not hypersimple set D which
has minimal btt-degree in the following sense: Every set E < D is either recursive or
btt-equivalent to D. Thus whenever the tt-degree has a least btt-degree, this btt-degree
must contain D. The tt-degree of D has a semirecursive set B. By Proposition 8.1.5, D is
not btt-reducible to B and therefore D does not have least btt-degree within its tt-degree.
In particular the tt-degree of D does not have a least btt-degree. |

So one has tt-degrees without a least btt-degree. The next result shows that some other
tt-degrees do have a least btt-degree.

Theorem 8.4.2 There is a nonrecursive set A such that A <) D for all sets D within
the same tt-degree.

Proof The main idea of the proof is the construction of a tree T" such that for a suitable
branch X of T the set A = {X(0)X(1)...X(n) : n € N} represents the least btt-degree
inside the tt-degree of X. It is equivalent to consider recursive or coenumerable trees —
the coenumerable trees are somehow more practical since one can assume that they do not
have dead ends: Each node € T' is on some infinite branch of 7T'.

The construction of 1" uses movable markers similar to the construction of maximal
sets [111, Theorem II1.4.18]. While in the construction of the maximal sets the markers
represent the intended nonelements of the enumerated set, the markers represent in this
context the intended branching nodes of the tree: A tree can be viewed as a function which
assigns to every o € {0,1}* a node T'(0) such that the branching nodes are exactly the
range of this function and that T'(ca) = T(o)a for all o € {0,1}* and a € {0,1}. This
function T associated with the tree 7" is partial K-recursive; within this chapter the only
such trees considered are where the associated function is also total.

Now h.[z]|(a) is defined as in Definition 8.1.2. The update-rule for the markers is that
they move either if the move is induced by some markers below which also move or if they

133

can increase their state where the [-th state in dependence of the current positions m, s
of all markers with o € {0,1}! is the number of all different functions «, : o € {0,1}' —
helmys)(a) where e < [, a < max({my, : 0 € {0,1}'}) and h.[m,,|(a) € {0,1} for all
o € {0,1}. Note that the [-th state is a natural number below (I + 1)22' and that the
markers with indices of length [have the [-th state in common which they maximize by
moving simultaneously. The markers with longer indices might be forced to move because of
moves below. Formally, these two types of moves are described by the following algorithm
executed at stage s:

First: the original moves. At stage s it is checked for each length [< s whether the
[-th state can be increased if the markers with indices of length [move from the current
position m,; to some position m, ; with 7 = o and |7| < s. If such [does not exist, nothing
is done and the algorithm proceeds with stage s+ 1. Otherwise one takes the shortest such
| and every m, moves to the corresponding node m,s: My 41 = My . So if [= 2 and if
for o = 00,01, 10, 11 the corresponding 7 are 0000,0101,1001,111 then mgg 541 = moo00,s,
mMo1,s+1 = Mo101,s, M10,5+1 = M1001,s and Mmi1,s+1 = Mi11,s-

Second: all markers with indices longer than [are adapted: If the marker m, moves from
the position m,s to m,, then my, 11 = mq,, for all n € {0,1}*. So myp1,541 = Migo11,s
for the example of the previous paragraph.

Third: the markers below level [do not move. With the movement of the markers, also
the enumeration of the complement of T is given. The tree T is a superset of T" which
corresponds directly to the positions of the markers at stage s:

€T, < (o € {0,1}1*) [z < m,,].

The sequence Ty, T1, ... is uniformly recursive, descending and converges pointwise to the
tree T: As in the original construction of maximal sets it can be shown that every marker
moves only finitely often and converges to a final position, this position is T'(o) for the
marker m,.

Given any path X through 7', given the corresponding A = {z : x < X} and given some
D <, A via some reduction h,, it can be shown that either D is recursive or there are,
for all sufficiently large x € A and for the shortest o with z < T'(0), two numbers a and b
such that

e h|T(0)](a) =0 and h.[T(0)](b) = 1;
o he[T(7)](a) = he[T(7)](b) for the other strings 7 of the same length as o.

Such a, b are said to isolate T (o) and x. Now it is shown that provided D is not recursive
almost all € A are isolated by some a and b. Let x be so large that the first o with
T(0) = x has at least length e. Now one of the following two cases hold:

(1): there are ¢ and y, z € T such that y, 2 = T(0), h.|y](c) = 0 and h.[z](c) = 1. Then
Y, z must be incomparable with respect to <. For each further 7 of the same length as o,
there is some z, € T, x, > T(7), such that h.[z.](c) € {0,1}. Since the marker m, and all
the markers m, remain on the positions T'(¢) and T'(T), respectively, they do not increase
their state by moving to the values y, z in case of m, and z, in the case of m,. So there
are a,b such that h.[T(7)](a) = he][T(7)](b) = helz;](c), he]T(0)](a) = hely](c) = 0 and
he[T'(0)](b) = he|z](c) = 1; that is, a, b isolate T'(0).

(11): for every ¢ and for all y, z = T'(0) such that y, z € T either the values h¢[y](c) and
he[z](¢) are equal or one of them is “?”. In this case D is recursive: There is some level
s such that no query at the computation of D(¢) is beyond s. So h.[y](c) € {0,1} for all

134

the y > x of this level and then the complement of T is enumerated until a stage ¢t > s is
found such that for all y = x with |y| = s and y € T}, the function h.[y](c) takes a unique
value which must be D(c).

Now it is shown that it is possible to give a sequence 7,7, ... such that for the infinite
branch X = lim,, T'(n,) and for set A = {x : < X} it holds that every D <; A either is
recursive or satisfies A <py(2) D. Let ny = 0.

Now for each 7, there are two cases: Either every x € T with x > T'(n,) is isolated by
some a and b. Then one just takes some arbitrary 7,11 = 1, whose length is at least n+ 1.
Or there is some x € T with z > T'(n,) which is not isolated by any a,b. Then one takes
Nnt1 = My such that @ < T(n,41) and |91 > n+ 1.

In the second case, D is recursive by the argument given in (11). In the first case one
knows that for every x € T with x = T,(n,) it is possible to find @ and b which isolate .
Since the condition of being isolated is only enumerable and not computable, one works
with the approximation that “a,b are isolated at stage s”. This notion is formalized by
requiring that

e h[T;(0)](a) =0 and h.[Ts(0)](b) = 1;
e h[T,(7)](a) = he[Ts(7)](b) for the other strings 7 of the same length as o.
This notion is used in the following algorithm.

Search for the first s, a, b such that one of the following cases holds.

e © ¢ T,. Then output “A(x) =0".

e 1 is incomparable to T'(n,), that is, x 2 T'(n,) Ax # T(n,). Then output
“A(x) =07.

x = T(n,). Then output “A(z) =1”.

x> T(n,) and x € Ty and a, b isolate x at stage s. Query D(a), D(b) and
output “A(z) = 0" if D(a) = D(b) and output “A(z) = 17 if D(a) # D(b).

The correctness of the algorithm in the first three cases is based on the observation that
T(n,) € A, ACT C T, and A contains the nodes z =< T'(1,) but no nodes incomparable
to T'(n,). Since every node in T above T'(n,,) is isolated by some a, b, the search terminates
and a, b, s are found such that the algorithm goes into the fourth case, that is, a, b isolate
x at stage s and still x € T;. The algorithm terminates always. The correctness of the
algorithm in the fourth case is verified by considering the following two subcases.

e © € A. Since a,b isolate x at stage s it holds that h.[z](a) = 0 and h.[z](b) = 1. It
follows that D(a) # D(b) and the algorithm returns the correct value for A(x).

e v ¢ A. There is an y € A such that he[y](a) = D(a) and h.[y](b) = D(b). This y is
in Ty and is incomparable to x. Thus he[y|(a) = h[y](b) and D(a) = D(b). Again
the algorithm returns the correct value for A(z).

This completes the proof that A <uu.) D. |

Corollary 8.4.3 There is a set A such that A <yyy D for all sets D within the same
Turing degree.

135

Proof This result is based on the fact that tt-degrees and Turing degrees are identical for
sets of hyperimmune-free Turing degree. So it is sufficient to show that the construction
in Theorem 8.4.2 can be adapted such that A has hyperimmune-free Turing degree.

First the notion of [-state is adapted. Now a more complicated [-state is defined by
adding at stage s to the original [-state the number of all triples (e, x,0) such that e,z <
lo| and the computation ¢ (z) terminates within |m, s| steps for some oracle X where
Mmes = X and the computation does not ask queries to X which are longer than |m, | —
that is these queries to X can be answered by using the current position m, ; so that X is
introduced here only for formal reasons.

As a consequence, the marker m, also moves if this move makes some value X (u)
defined for some e, u < |o|. From this behaviour it follows that whenever o (u) is undefined
for some u then there is some node y < X such that ¢} (u)?1 for all infinite branches Y = y
of T'.

Now the sequence ny, 11, . . . is replaced by a sequence 1o, 79, 1, 7}, - . . where 7., is always
an extension of 7, elected by the following condition: If there is a node x = T'(n,) in T
such that ¢ (u)1 for all infinite branches X of T extending z then 7. is taken to be the
shortest string extending 7, such that < T'(n.). Otherwise 1, = n.. After doing this step,
Net1 is derived from 7] in the same way as 7,41 is derived from 7, in Theorem 8.4.2.

The condition that A <y) D for every D in the tt-degree of A still holds. But now A
and X do also have hyperimmune-free Turing degree: If D <; X via ¢X then one knows
that) is also total for every infinite branch Y of T which extends T'(r.). So one can make
the computation total for all oracles by either taking) (u) or outputting just 0 in the case
that T'(n.) Z Y or that some prefix y < Y is enumerated into T before the computation
©Y (u) terminates. The computation remains unchanged for the oracle X. So D <r X by
a machine which terminates for every oracle and thus D <; X [109, 143]. It follows that
X has the greatest tt-degree among the tt-degrees inside X’s Turing degree. So X has
hyperimmune-free Turing degree [70, Theorem 8]. |

8.5 An Application of Least btt-Degrees

In the previous section a Turing degree was constructed such that it contains a retraceable
set A which is btt(2)-reducible to any set inside it. This result is used to answer an open
problem of Beigel, Gasarch and Owings [15], they asked whether every nonrecursive Turing
degree contains an objective set. Before indicating how this is refuted, the definitions of
k-subjective and objective sets from [15] are included.

Definition 8.5.1 A set D is k-subjective iff an algorithm ¢ is computing arbitrary large
parts of the characteristic function of D with £ nondeterministic queries. The nondeter-
minism can be brought into the algorithm 1) via an additional input z € IN:

The input is a list of inputs (x, z,...,x,) and a number z.

During the computation, ©» may make up to k queries to D.

For some numbers z, ¢ outputs (D(x1), D(z3), ..., D(z,)).

For all other numbers z, ¥ outputs the symbol “?” or does not terminate.

The opposite notion to k-subjective is that of an objective set: D is objective iff the
n-fold characteristic function (D(z1), D(x3),...,D(x,)) cannot be computed with n — 1
nondeterministic queries of the type above for any n. So every set is either k-subjective
for some k or objective, but never both.

136

Beigel, Gasarch and Owings [15] asked whether every Turing degree contains an objective
set. The next proposition is the key to decide this conjecture.

Proposition 8.5.2 If the retraceable set A = {X(0)X(1)...X(n) : n € IN} represents
the least btt-degree inside its Turing degree then the Turing degree of A does not contain
objective sets.

Proof Let D be an arbitrary set within the Turing degree of A. There is a k such that
A <puwy D, that is, A(x) = g(z, D(fi(z)), D(fo(2)), ..., D(fe(z))) for all . As already
mentioned in Definition 8.1.1 the sets {y : y < 2z} and A coincide below z for all z € A.
Let ¢(z, z) be the value of the Turing reduction from D to A if {y : y < z} instead of A is
used as an oracle and no arguments y > z are queried. Note that ¢(z,2) = D(z) if z € A
and ¢ is defined, that is, if no values y > z are queried. Now the following algorithm)
witnesses that D is indeed k-subjective.

W12, -5 9m) i g(2, D(f1(2)), D(f2(2)), ..., D(fe(2))) = 1
and ¢(x;, z) terminates within 2 stages
with output y; for all ¢;

? otherwise.

Y(x1, 29,y Tpy2) =

The k queries to D check whether z € A. If z ¢ A then ¢ outputs the symbol “?” and
so does not produce a wrong hypothesis in this case. If z is too small, that is, if some of
the computations for D(x;) do not terminate within z steps or need some query to some
value larger than z, then ¢ also outputs the symbol “?” and avoids to produce a wrong
hypothesis. In the remaining case that 2 € A and z is sufficiently large — such z exist
since A is infinite — the algorithm can completely simulate the Turing reduction of D to A
for all z; and output the correct values D(z;). So D is k-subjective and not objective. |

The set A from Corollary 8.4.3 has hyperimmune-free Turing degree, is not recursive and
is btt(2)-reducible to every set inside its Turing degree. Therefore one has according to
the previous proof that every set in the Turing degree of A is even 2-subjective.

Theorem 8.5.3 Some nonrecursive Turing degree consists only of 2-subjective sets. In
particular, it does not contain any objective set.

It is straightforward to show that every hyperimmune Turing degree contains an objective
set. Beigel, Gasarch and Owings have done this for nonrecursive enumerable Turing de-
grees [15, Theorem 24]. The following Theorem shows that no nonrecursive Turing degree
consists only of 1-subjective sets; thus the bound 2 in Theorem 8.5.3 is optimal.

Theorem 8.5.4 Every semirecursive 1-subjective set is enumerable or coenumerable. Ev-
ery nonrecursive Turing degree contains a set which is not 1-subjective.

Proof Let B be a semirecursive 1-subjective set. B is the initial segment of some linear
and recursive ordering C. Now two enumerable sets By C B and B; C B are constructed
with the intention that B = By or B = By. So either B, witnesses that B is coenumerable
or B, witnesses that B is enumerable.

Let f(x,y : z,¢) = (a,b) denote that there is a computation which queries B at z and
converges to (a,b) if the answer ¢ is supplied to the query. Now one defines

By = {y:(Fz,2Cy)[f(2,y:21) €{(0,0),(1,0)}]}
By = {z:(3y,232)[f(z,y:20)€{(1,0),(1,1)}}

137

If y € By then there are x,z C y such that f(z,y: 2,1) € {(0,0),(1,0)}. If 2 € B then
y ¢ B by the correctness of f. If 2 ¢ B then y ¢ Bby 2 C 3. So By C B and by a
symmetric argument B; C B.

Let € B and y ¢ B. Immediately it follows that 2 T y. There is a z such that
f(z,y : 2,B(2)) = (1,0). If B(x) = 1 then x,2 C y and y € By. If B(z) = 0 then
v C y,z and € B;. It follows that either By = B or B; = B. So B is enumerable or
coenumerable.

For the second statement of the theorem an arbitrary nonrecursive Turing degree is
considered. If it is an enumerable degree then it contains an objective set [15, Theorem 24|
and otherwise it contains a semirecursive set which is neither enumerable nor coenumerable.

This semirecursive set is also not 1-subjective. |

8.6 A Positive Result About Positive Degrees

The result that every tt-degree contains infinitely many btt-degrees seems to be natural
since for many notions the interrelation between two types of degrees is that the weaker one
consists of either one or infinitely many of the stronger degrees. A 1-degree is a degree in
which every two sets are many-one reducible to each other via a 1-1 function. Young [149]
showed that an m-degree consists of either one or of infinitely many 1-degrees. Jockusch
[70] showed that every nonrecursive tt-degree consists of infinitely many m-degrees and
that a Turing degree consists of either one (hyperimmune-free case) or infinitely many
(hyperimmune case) tt-degrees.

Dégtev [35] constructed an enumerable tt-degree which contains exactly one enumer-
able m-degree. So he shows that Jockusch’s result on infinitely many m-degrees inside
each tt-degree does not hold if one considers enumerable sets only. Cholak and Downey
(32, 39, 40] extended this result by showing that for each n there are infinitely many enum-
erable tt-degrees containing exactly n enumerable m-degrees.

Within this section, a similar result is shown for positive versus truth-table reducibility
within the general (nonenumerable) world. Jockusch [69, Corollary 4.3 (1v)] showed that
every nonrecursive tt-degree contains at least three positive degrees which are represented
by the sets A (or C), B and B. The main result of this section is that this lower bound
is optimal, that is, some nonrecursive tt-degree consists of exactly these three positive
degrees.

Theorem 8.6.1 Given n > 1, let m be the number of partial, transitive and irreflexive
orderings on {0,1,...,n}. Then there is a nonrecursive tt-degree consisting of exactly m
positive degrees. In particular, there are tt-degrees consisting of 3, 19, 219, 4231, 130023
and 6129859 positive degrees.

Proof The construction follows Spector’s basic way to construct minimal Turing degrees
[111, Chapter V.5] via a descending sequence Ty O T} O Ty D ... of trees such that the
intersection is then a retraceable set A = {X(0)X(1)...X(n) : n € N} given by the unique
common infinite branch X which is on all these trees. In each tree T, every node has one
or two successors and above each node there is some node with two successors. So 7, is a
full binary tree and may also be viewed as a function that maps binary strings ¢ to nodes
T.(o) in the way that T.(oca) > T,.(o)a for all strings o and a € {0,1}. The node T,(ca) is
in fact the first node above T,(0)a which has again two successors.

In the construction of minimal Turing degrees [111, Definition V.5.8] the notion of
e-splitting pairs (z,y) is important. Here (zq,x;) are e-splitting on T iff there is some

138

Number | Relations Representation

— 0142 () (recursive case)
1/0—-1—2 B()12

2|10 22—1 Boa:

311 —=0—2 Bio2

411 —=2—=0 B
5/]0—>2—1 Bgol
6/0—2-—=0 Bs1o

7 0—>1, 0—2 B[HQEBBUQI

8 1-)0, 1—2 BlOZ@BIQ[}
912—=0, 2—>1] By D B
101 —0, 2— 0| Biag P Baio
11{0—1, 2—= 1| By ® Bog1
12({0—2, 1= 2| Byio ® Bipo
13/]0—1 Byi12 ® Boo1 @ Baot
1410 — 2 Bio2 @ Boi2 @ Boyoi
15(1—=0 Big2 @ Biag @ Baig
161 —2 Byi12 ® Big2 @ Bigo
1712 —=0 Biag @ Baig @ Baoi
1812—1 Byo1 @ Bao1 @ Baio
19 | none joining all six sets

Figure 3: The nineteen positive degrees at n = 2

input u such that every X = zq and every Y = z satisfy o2 (u) # ¢} (u). The set V of all
triples (z, vy, 2) such that (z,y) is e-splitting, 20 < z and z1 < y is enumerable. In general
such a set V satisfies the following properties:

e 1/ is enumerable.
o If (z,21,y) € V then ya < x, for a =0, 1.
o If (zg,x1,y) € V and z, = x, for a = 0,1 then (29, 21,y) € V.

A tree T, is homogeneous for such a set V' if either no zq, 1,y € T, satisfy (z¢,z1,y) € V
or (T,(00),T.(01),T.(0)) € V for all o.

The main difference to the constructions of Spector [136] and Shoenfield [131] as presented
in [111, Chapter V.5] is now that the trees are not only made homogeneous for those sets
V' given by the notion of e-splitting but also for all others and so covering the necessary
steps for the requirements to obtain a tt-degree with only finitely many positive degrees.
This construction then automatically satisfies that no branch is recursive; so it is not
necessary to encode nonrecursiveness via an explicit separate requirement. Furthermore,
the construction uses n+1-ary trees T, C {0,1,...,n}* instead of binary trees. Also every
node x € T, either has exactly one successor in 7T, or all n 4+ 1 successors z0,z1,...,zn
of x are in T, — the latter type of node is called branching-node. Let Vg, Vi,... be an
enumeration all enumerable sets V, containing only legal n+2-tuples (zo, 21, ..., Z,,y) and
satisfying in addition (zg, 21, ..., 2p,y) € Ve whenever (xg,z1,...,%,,y) € Ve and x, < 2,
fora=0,1,...,n, where a tuple is called legal if x, > ya for a =0,1,...,n.

139

The formal construction of the trees T, is inductive over e = 0,1, ... and starts
with Ty = {0,1,...,n}*. The tree T,,; is chosen as a recursive subtree of T,
which is homogeneous for V, and which has above every node a branching node.

Such a tree T,,; exists and can be constructed from 7, in the same way as Spector’s
e-splitting requirements [136] are satisfied. The method chosen here follows Odifreddi’s
way to construct T,,q [111, Propositions V.5.5 and V.5.10] and is adapted to the case of

trees over {0,1,...,n}"

Now one defines that a legal tuple (x¢, z1,...,z,,y) is on a tree T, above u if all nodes
Zo,T1,.-.,%p,y arein T, and if y > u. The construction of the tree T, follows one of two
cases.

First: For every u € T, there is a tuple in V, on T}, above u. In this case one can construct
T, inductively starting with v = A which is a node in 7,. A node is a momentary leaf if
it is already fixed that u € T,,; but one did not yet care on the nodes above u. At stage
0, A is the momentary leaf. At stage s + 1 one takes the shortest momentary leaf u at
stage s and looks for the first legal tuple (xg, z1,...,z,,y) € V. which is on T, and above
w. Then one defines z € Ty for all z with u < z < z, for some a € {0,1,...,n} and one
defines z ¢ T, for all nodes z > u which are incomparable to all strings xg, z1,...,x,
with respect to <.

This construction satisfies the following observations: All added strings belong to T,
and so 1,1 C T,. T,+, has above every node z some node u which is a momentary leaf at
some stage s and above this node u a branching node, which is y in this construction. Other
branching nodes than these nodes y are not added to the tree T, 1, therefore if y = T, (o)
then 7., (0a) = x, and so every tuple (To11(00), Ter1(0l),...,Ter1(on), Teyi(0)) is in V.
Thus T,,; is homogeneous for the condition V.

Second: There is an u € T, such that no tuple in V, is on T, above u. Now one just
takes T,y ={r €T, :x SuVu=<zx}

The tree T, is also computable and is homogeneous for V, since every legal n+2-tuple
on T,.; is above u and so by the choice of v not in V,. In addition there is still above
each node = a branching node y in T;: If x > u then the property is just inherited from
T, since there is a branching node y above x in 7T, and this node is also in 7T,,; as well
as its successors y0 and y1. If z < u then there is some branching node y > v in T, and
therefore in 7,,; and this node is also in T, ,;. Nodes incomparable to u are not in 7,
by definition.

Note that for every k there is a set V, containing all legal n+2-tuples (xg, 21, ..., Z,, y) with
ly| > k. Now above every node there is a tuple in V, on T, and thus the algorithm goes
through the “First”-case. Then u = T,,1(\) has at least length k. Now wu is in all trees T,
with € > e the unique string of its length and thus © < X. So the obtained sequence of
trees has a unique common infinite branch X. From this X one defines A = {z : © < X}
and B = {z:x <., X}.

In order to see that X is not recursive, consider any recursive infinite string Y €
{0,1,...,n}> and the set V, containing all legal tuples (z¢,x1, ..., z,,y) with y <Y. The
tree T, contains a node u A Y since T, has incomparable nodes. Now above u there is no
tuple in V, and thus the tree T, is constructed according to the “Second”-case. It follows
that Y is not an infinite branch of 7,,; and so X # Y. In particular X is not recursive.

Now it is shown that the tt-degree of X contains m positive degrees. Recall that m is the
number of partial transitive and irreflexive orderings on {0,1,...,n}. This is shown by
demonstrating that every set D <, A can be associated with such an ordering and that
two sets D, E from the tt-degree of X are in the same positive degree iff they have the

140

same associate ordering.

For every D <, A, let hP denote an associated truth-table reduction from D to A
and define, for every x and a, the value h”[z](a) according Definition 8.1.2. Here the
superscript “D” is added since also for some further set the corresponding function h¥ is
considered below. For any two digits b and ¢ one enumerates a legal tuple (zg, x1, ..., Ty, y)
into a set Vj, . iff there is an a such that h”[xy](a) = 1 and hP[z.](a) = 0. Now there is
an e such that T, is homogeneous for all sets V}, . where b, ¢ are distinct digits from the set
{0,1,...,n}. Let b — ¢ denote that the implication

(Va) (Yy) (Yo, = yb) (Yo, = yc) [hP[1p](a) = 1 A 2y, 2. € T, = hP[z](a) € {?,1}] (32)

holds. The relation — defines a transitive ordering on {0,1,...,n}. Now the following is
shown: (1) If b — ¢ and ¢ — b then D is recursive. (11) If the ordering induced by D is
a subset of the ordering induced by FE, that is, if whenever b — ¢ holds for the ordering
induced by D then it also holds for the ordering induced by F, then E is positive reducible
to D. (111) If b — ¢ holds for the ordering induced by D but not for the one induced by
E then E is not positive reducible to D. (1v) For every transitive and irreflexive partial
ordering there is a set D which is associated to this ordering.

(1): Assume that b — ¢, ¢ — b but ¢ 4 d would hold for some pairwise different b, ¢, d €
{0,1,...,n}. Then there is an a such that h”[T,(cc)](a) = 1 and hP[T,(cd)](a) = 0. There
is some z = T,(b) such that x € T, and h”[z](a) = 1 since T,(cc) = T.(N)¢, = To(\)b,
¢ — b and hP[2'](a) =7 for only finitely many z/. By b — c it follows now also that
hP[T,(cd)](a) is either the symbol “?” or 1 in contradiction to the choice of a. So this case
cannot occur and one has for all a and for all © € T, that T,[z](a) is either D(a) or the
symbol “?”. Since the symbol “?” occurs only for finitely many x one can calculate D(a)
by just evaluating the computable function h”[z](a) for the x € T, until some value in
{0,1} is found. This completes (1).

A corollary of this result is that for nonrecursive D it never happens that there is a circle of
the form b — ¢ — ... — b. So one can redefine that b /4 b for all b € {0, 1,...,n} without
loosing transitivity and so link to every nonrecursive set D an irreflexive and transitive
ordering on {0,1,...,n}. The next steps (11) and (111) will show that every positive degree
corresponds to exactly one irreflexive and transitive ordering.

(11): Assume that whenever b — ¢ with respect to hA”, then the same implication would
also hold with respect to A¥. Furthermore, let E be nonrecursive, since otherwise E is
already clearly positive reducible to D. Now given any a, there is a level £ such that
hE[T.(o)](a) € {0,1} for all o of length k. So let the set One(a) contain all strings o of
length k with hZ[T,(0)](a) = 0 and the set Zero(a) contain all strings 7 of length k with
h¥[T,(7)](a) = 0. For each 0 € One(a), for each 7 € Zero(a) and for their longest common
prefix 7, there are two digits b, ¢ such that T,(n)b < T.(o) and T,(n)c < T(7). It follows
that b /4 ¢ for the ordering belonging to £. Now the same holds for the ordering belonging
to D and so there is an a,, such that hP[T,(c)](a,,) = 1 and hP[T,(7)](as,) = 0. So one
can define the following positive reduction from E to D at a:

E(a) = \/UEOne(a) /\TGZero(a) D(aU,T)' (33)

For the verification a case-distinction is made whether E(a) =0 or E(a) = 1.
In the case E(a) = 0 one has that T.(n) € A for some n € Zero(a). For any
given o the conjunction A;ezero(a) £(0o,r) is 0 since one of the 7 equals n and D(ae,) =

141

hP[T.(n)](as,) = 0. So all disjunctions in Equation (33) are evaluated to 0 and the equa-
tion is correct.

In the other case F(a) = 1 one has T.(n) € A for some n € One(a). Now the corre-
sponding conjunction A, ¢ zero(q) D(ay,r) ranges only over terms D(ay, ;) which are evaluated
to 1 and thus the whole conjunction is evaluated to 1. The preceding disjunction preserves
this 1 and so the equality above is correct also in this case.

The reduction given by Equation (33) is correct and positive for every a. The con-
struction is recursive in the parameters a and k. The parameter e is a constant and the
parameter k can be found effectively by inspecting one level after the other until all outputs
are either 0 or 1 but do not take the undefined value “?”. So one has a positive reduction
from E to D. This completes the proof of (11).

(11): Let b — c for the ordering linked to the set D but not for the ordering linked to the
set E. Assume by way of contradiction that F is positively reducible to D. For every o
there is an a such that h”[T,(ob)](a) = 1 and h¥[T.(0oc)](a) = 0. There is a level k such
that for every o' queried during the positive reduction from E(a) to D every expression
hP[T.(7)](a') is either 0 or 1 for all 7 € {0,1,...,n}*. So one can compute for every
7 € {0,1,...,n}* the value u, which the reducibility would take under the assumption
that T.(r) € A. If u, = 1 for some 7 > ob of length k then also u, = 1 for all n > oc
since for every a' it holds that hP[T,(7)](a’) < hP[T,(n)](a') and since the reduction is
positive. So one either has that for every 7 extending ob the reducibility returns under the
assumption that T,(ob) € A the wrong value 0 or one has that for every n extending oc
the reducibility returns under the assumption that T,(cc) € A the wrong value 1. So it
is possible to conclude that — depending on the actual value of the assumption — either
T.(ob) or T,(oc) is not in A. So there is an enumerable set W which contains only elements
x for which one knows that © ¢ A. The set W contains in particular every string o either
the value T,(ob) or the value T,(oc).

Now one defines V., such that V., contains every legal tuple above every element of W.
Since V. has infinitely many indices, one can without loss of generality assume that e’ > e.
Now every branching node T./(7) is equal to some T,(o) and so either T,(cob) or T,(oc),
say the first, belongs to W. It follows that T, (7b) > T.(ob) and therefore T, (7b) € W.
Therefore every legal tuple above T, (7h) and so also some legal tuple above T, (1) on T
is in V. So the algorithm to construct 7, ,; takes the “First”-case in the construction
above and every infinite branch on 7./, goes through a node which witnesses that the
given positive reduction from F to D fails. So the assumption that E is positive reducible
to D is false and (111) holds.

Putting (11) and (111) together one obtains that every two sets D and E which are associated
with the same partial and irreflexive ordering belong to the same positive degree but that
those belonging to different orderings belong to different positive degrees. It remains to
show that for every ordering there is also a set linked to it.

(1v): The ordering — on the digits can be extended to an ordering ~» on all strings x, y by
taking x ~ y if |x| = |y| and if either z = y or there is a z with zb <z, z¢ < y and b — c.
Now let a € D if 2 ~ a for some x € A and let a ¢ D otherwise. It remains to show that
the given ordering is just the one which is associated with D. According to Definition 8.1.2
it is possible to construct a tt-reduction from D to A and an associated function h” such
that the following holds: If = y and |y| = |a| then hP[z](a) = hP[y](a), hP[y](a) = 1 if
a ~ y and hP[y](a) = 0 if y % a. If |z| < |a| then hP[x](a) = hP[y](a) in the case that
this value is unique for all y = z of length |a| and hP[z](a) =? otherwise.

Now it is verified that for this particular function h” and for any of the trees V, the

142

implication b — ¢ holds iff Condition (32) is satisfied. So let b, ¢ be two different digits in
{0,1,...,n}.

If b — ¢, then consider any a and any node y. If |y| > |a| then one knows that
hP[z](a) = hP[y](a) for all z = y. So the implication hP[zy](a) = 1 = hP[z/](a) = 1 holds
for all z, > yb and z. > yc. Now consider the case that |y| < |a|. If both strings z, > yb
and x, = yc have the same length as a then hP[xy](a) = 1 if a ~ z;, and hP[zy)(a) = 0 if
a 7 xp. In the first case it also holds that a ~» x. by the transitivity of the relation ~» and
so a ~ x. follows. In particular if some x, = yb satisfies h”[z;](a) = 1, so does some
of the same length as a and therefore every z. = yc of length a and thus all z. > yc map
h”[x.](a) to 1. So Condition (32) is satisfied.

If b 4 c then let y = T.()\) and let @ = yb. Since y is a branching node, the nodes yb
and yc are both in T,. Furthermore, h”[yb](a) = 1 since yb = a. But hP[yc](a) = 0 since
a7 ye and |a| and |yc| have the same length. So Condition (32) is not satisfied.

From the case distinction it follows that b — ¢ holds for different b, ¢ € {0,1,...,n} if
and only if Condition (32) is satisfied. So — is the relation associated with D. Furthermore,
x € A iff the a € D of the same length as x are just those a with x ~» a. This definition
specifies a unique x since x ~ y Ay ~ x does not hold if x # y. So A <;; D and D has the
same tt-degree as A. Thus it follows that for every transitive and irreflexive ordering — on
the digits {0,1,...,n} there is a set D which is associate to this ordering. This completes
the proof of (1v).

Putting (1), (11), (111) and (1v) together one has that there are m positive degrees within
the tt-degree of X where m is the number of irreflexive and transitive partial orderings
on {0,1,...,n}. Sloane’s encyclopedia [133] gives for n = 1,2,...,13 the corresponding
numbers m: 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783,
1396281677105899, 414864951055853499, 171850728381587059351 and 98484324257128207
032183. 1

For n = 1 the 3 positive degrees are generated by A, B and B. For n = 2 there are already
19 positive degrees; Figure 3 on page 139 displays the orderings linked to these degrees
and also some representative sets. The six semirecursive sets denoted by By, are defined
by the underlying ordering a — b — ¢ of the digits 0,1,2 and the other positive degrees
can be represented by joins of some of these six semirecursive sets.

The next result extends the knowledge of the possible cardinalities of the positive de-
grees inside tt-degrees. It in particular shows that not all numbers m are possible: there
is no tt-degree consisting of an even and finite number of positive degrees.

Theorem 8.6.2 Fvery tt-degree consists of an odd number or an infinite number of positive
degrees. The recursive tt-degree consists of exactly one positive degree, some minimal tt-de-
grees consist of exactly three positive degrees and all other tt-degrees consist of at least five
positive degrees. The tt-degree of K consists of infinitely many positive degrees.

Proof Consider the mapping D — D which assigns to every set its complement. First
one should note that this mapping preserves degrees: If D =, F then also D =, E. The
main idea is that a positive formula to evaluate D(z) from F at xq, xo, ..., 2, can be turned
into a positive formula to compute D from E: The whole formula is negated at the output
and at each input. Then one can move the negations over all “and” and “or” gates using
the De Morgan Law and so obtain, that only double negations occur which can be left out.

143

The following example illustrates the procedure.

D(z) = E(z1) A (E(z2) V E(x3) &
D(z) = =(E(z1) A(E(z2) V E(z3))) &
D(z) = —(2E(z1) A (mE(22) V 2E(23)) &
D(z) B (21) V(2B (z2) V-E(z3) <
D(z) = —=E(@)V (-2E(r2) A -—E(x3)) &
D(zx) = E(z1)V (E(xo) N E(x3))

So one obtains that negating both sets preserves positive reducibility between them and
thus the negation maps positive degrees into positive degrees. Furthermore, the mapping
is one-one since it is the reverse of itself. There are two cases:

(1): A set D isin the greatest positive degree within its tt-degree. Then any tt-reduction
to D can be turned into a positive reduction to D and so D is positively reducible to D and
vice versa. Thus the greatest positive degree within some tt-degree is mapped into itself.

(11): A set D does not belong to the greatest positive degree of its tt-degree. Since every
set tt-reducible to D @ D is also positive reducible to D @ D it follows that D @ D belongs
to a positive degree different than that of D. Then D belongs neither to the positive degree
of D nor to that of D @ D but D is of course still in the same tt-degree as D.

Now let Dy be in the greatest positive degree and let Dy, D5, ..., Dy, be positive degrees
such that Ds,, = Ds,_1 for m = 1,2,...,n. If there is an other positive degree with
Dy, 1 representing it, then also the complement Dy,.o = Ds,,, is not in the positive
degrees generated by Dy, Dy,..., Dy, If, for example, Dy, 5 is in Dy then Dy, is in
the positive degree of the complement D, of D which was previously excluded. So either
Dy, Dy, ..., Dy, represent all positive degrees or there are at least two more represented
by Ds,11 and Doy, .o. Starting the induction with n = 0 one obtains that the number of
positive degrees inside a truth-table degree is either a finite odd number or infinite.

The recursive degree consists by definition of just one positive degree. Every further tt-de-
gree consists of at least three positive degrees [69, Corollary 4.3 (1v)] and by the preceding
Theorem 8.6.1, this bound is already optimal: some minimal nonrecursive truth-table
degree consists of three positive degrees. Now it is shown that nonminimal nonrecursive
truth-table degrees have at least five positive degrees.

Let B be a semirecursive set representing some given nonminimal tt-degree. Then there
is a nonrecursive set C' <; B which is a tt-cylinder. In the sequel it is shown that there is
a chain of three positive degrees inside the tt-degree of B: the one of B, the one of B & C'
and the one of B® B & C.

C' is not positive reducible to B since any positive reducibility to the semirecursive set
B can be turned into a many-one reducibility [69, Theorem 4.2 (11)], C' would have to be
semirecursive in contradiction to the choice of C' as a nonrecursive tt-cylinder. So B is
strictly below B & C.

The proof that B is not positive reducible B @ C' is a bit more complicated. B is an
initial segment of some recursive linear ordering . Assuming that B is positive reducible
to B @ C one replaces at the computation of B(x) every query to B(y) be the constant 1
if y C o and by the constant 0 if y 3 x. Call a the result of this procedure.

Now it is verified that B(z) = a: If B(x) = 0 then B(z) = 1 and thus whenever
B(y) was replaced by the answer 1 in the above algorithm, then this replacement was
correct. But the replacement was perhaps incorrect at some places y where it assumed
that B(y) = 0 — so the reduction replaced the queries to B by queries to some subset B
of B. Since the reducibility is positive, it follows that a < B(x) and since the reduction is
{0, 1}-valued, the output a takes the value B(z) which is 0. If B(z) = 1 then B(z) = 0 and

144

thus the algorithm computing a was correct when it assumed that B(y) = 0 but perhaps
incorrect at some y where it assumed that B(y) = 1. So the reduction replaces the queries
to B by queries to some superset B of B. Therefore a > B(z) which is 1 and a is also
correct in this case.

So a positive reduction from B to B @ C can be turned into one to C' alone. But then
B <, C and B <, C in contradiction to the choice of B and C. Thus one has that the
given three positive degrees are properly above each other.

Two further positive degrees within the tt-degree of B are given by B and B ® C. So
if B does not belong to a minimal tt-degree then it contains at least five positive degrees.

The last part is to show that the tt-degree of K contains infinitely many positive de-
grees: Let C; be the tt-cylindrifications of the uniformly enumerable sets G; from The-
orem 8.2.4 (b). Note that C; & K =, K since every enumerable set and thus also the
tt-cylinder of every enumerable set is tt-reducible to K. So the sets K & C; have all the
same tt-degree as K.

Relative to the oracle Cj, the set C; @ K is enumerable but not the set C; @ K for 7 # j
since the tt-cylinder C; is enumerable only relative to oracles above C;. Since positive re-
ducibility preserves enumerability [69, Proposition 3.5 (11)], it also preserves the property
to be “enumerable relative to C;” and so it follows that C; @ K is not positive reducible to
C; @ K. Thus the sets Cy @ K, C; @ K, ... form an infinite antichain of positive degrees
within the tt-degree of K. 1

The tt-degree constructed in Theorem 8.6.1 is hyperimmune-free. So it is in fact a Turing
degree.

Corollary 8.6.3 There are nonrecursive Turing degrees consisting only of finitely many
positive degrees.

This does not hold for hyperimmune Turing degrees since these consist of infinitely many
tt-degrees and thus also of infinitely many positive degrees. But it is natural to ask whether
the result carries over to some hyperimmune tt-degrees. The next result shows that there
are even enumerable tt-degrees consisting only of finitely many positive degrees.

Theorem 8.6.4 There is an enumerable tt-degree consisting of exactly three positive de-
grees.

Proof The construction consists of two major steps:

First a coenumerable tree T is constructed such that every node in it has either one
or two successors. Furthermore, T is locally homogeneous for requirements V, (as in
the previous proof) in the sense that if X generates an infinite branch through 7 then
Ve(T'(00),T(c1),T(0)) is the same value for almost all 0 < X. Again this is obtained by
using movable markers similar to the construction of maximal sets [111, Theorem I11.4.18].

Second it is shown that some set A <,, L where L = {x : (3k) [x < T(0*)]} represents
an enumerable tt-degree consisting of three positive degrees.

First, the construction of 7" is presented by describing how the markers move. The sets V,
are the same as in the proof of Theorem 8.6.1 (where the parameter n is fixed to 1) and
Ve,s is the set of all elements of V. enumerated within s steps plus all tuples (z',y/, z) for
which there are z < 2’ and y < ¢ with (z,y, z) € V.. The markers m, move on 7T in order
to maximize the following state:

State(ea T,Y,%, S) = Ze’:(),l,...,e 2878"/@’,8(‘7“7 Y, Z)

145

The tree T is initialized as {0, 1}* with m, o = o for all markers. At every stage s of coenu-
merating 7', the following things are done: If there are a marker m, s and nodes z,y,z € T'
with 20 < z, 21 <y, m,s X z and state(|o|,x,y,2,5) > state(|o], M5, Moo.5, Mo1,5, S)
then the marker with the first such o, z,y, 2 moves in stage s where the strings are ordered
A,0,1,00,01,10,11,000, ... in the standard way. The precise move of mgigm, is given by
the equation m, 411 = 2. Furthermore, mgyqy 541 = Mqy s for the first string 7 with m, ; =
if a = 0 and with m,, > y if a = 1. All nodes v > m, s which are incomparable to both,
x and y, with respect to <, are enumerated into the complement of T

As in the construction of the maximal set it can be verified that every marker m, moves
only finitely often and remains after these moves on the node equal to T'(¢). Furthermore,
for each e the sequence state(e, T(0%0), T (0%1), T (0%), c0) is descending for k =e,e+1,...
where the symbol oo means that V.(z,y, z) is taken instead of V, s(z,y, 2) in the definition
of the state above. Therefore the value V,(T'(0¥0), 7(01), T'(0%)) is the same constant c
for almost all k.

Second, let X be the lexicographic first branch on 7" and let L be the corresponding
retraceable subset of T: L = {z : 2 < X} = {z : (3k) [z < T(0)]}. Now the set of
all nodes lexicographic before those in L including those in L is enumerable and there
is a one-one enumeration f of these nodes which satisfies in addition that whenever z is
enumerated then all y < x have been enumerated before z.

Now the set A = {x : f(x) € L} is retraceable since it is one-one reduced to the
retraceable set L preserving the ordering <. The set B = {x : f(z) ¢ L} is also enumer-
able and is the complement of A. Furthermore, B is semirecursive since for every z,y it
holds that whenever z € B and f(y) <., f(z) then also y € B. Every set D tt-reducible
to A is also tt-reducible to L since A(z) = L(f(z)) for all x.

Now it is shown that the tt-degree of A consists of the three positive degrees given by
A, B = A and A® B. In particular it is shown that every D <, A is either in one of these
three positive degrees or is recursive.

So let h be a tt-reduction from D to L which is obtained by concatenating the original
tt-reduction h’' from D to A with the m-reduction f from A to L. For h there are two sets
V and W given as

Vo= {(z,y,2): 20 Kz Azl 2y A (Ja) [h]z](a) =0
W = {(z,y,2):20 <z Azl <yA(Ja)h[z](a) =1

There are now four cases which correspond to the positive degrees represented by the sets
A® B, A, B and () (belonging to the recursive positive degree).

(1): (T(0%0), T(0%1), T(0%)) € V,W for all k > [for some fixed [. It is shown that D is in
the positive degree of A ® B which is the greatest positive degree since B = A.

Now it is shown how to compute A(x) for any given z. For all k > [with T'(0%) < f(z)
there is a number a such that h[T(0¥0)](a) = 1 and h[T(0¥1)](a) = 0. Therefore it is
possible to give a positive reducibility from A to D:

(1 if f(z) < T(0");
0 if x is enumerated into B before the next
condition is satisfied;
A(z) = { min{D(a;)} where the i ranges over {I,1 +1,...,k}, (34)

k > la Mot ¢ = T(Ol)a f(l') = Moko,s,
himgi1 s](a;) = 0 and hmgig ¢](a;) = 1,
for the first stage s where this is possible.

146

The verification starts with showing that the computation terminates for all . Obviously
it terminates when x € B or when f(x) < T(0'). The remaining = are in A and satisfy
f(x) £ T(0Y. For such an z there is a unique k > [such that f(z) < T(0**') but
f(z) £ T(0F). Now there are a; for i = [,1 + 1,...,k such that h[T(0'1)](a;) = 0 and
h[T(01)](a;) = 1 otherwise. Then all D(a;) = 1 since T(0°0) € L and so also A(z) =1 is
the correct output. So the search terminates and outputs the correct value.

Somehow one cannot be sure when this situation is found and so has to work with
current marker positions as indicated in the Equation (34). Therefore it is necessary
to verify that A(x) is computed correctly whenever the value is computed by the third
condition in the case distinction. If A(z) = 1 then mqk, , € L and thus also myig s € L for all
i < k. Thus D(a;) = h[mgigs)(a;) = 1 and the computation of A(z) is correct. If A(z) =0
then mokg, ¢ L and some marker mygi; s is currently in L. Then D(a;) = h[mgi1|(a;) =0
for this marker and A(z) is also computed correctly. The case that the computation
terminates with A(x) = 0 by enumerating x into B is also correct since B = A and the
case that the algorithm outputs 1 because of f(x) < T(0') is also correct since T'(0') € L.
So the correctness of the given reduction from A to D is verified.

Similarly one can give a positive reducibility from B = A to D. Note that every set E
which is tt-reducible to A is also positive reducible to A @ A. Since both parts of the join
are positive reducible to D, F is also positive reducible to D itself. So D is in the greatest
positive degree inside the truth-table degree of A.

(11): (T(0%0), T(0%1),T(0%)) € V but (T(0k0), T(0*1),T(0%)) ¢ W for all k > [for some
fixed {. The construction of the reduction from A to D in the previous case only uses
the information that (7(0%0),T(0¥1),T(0%)) € V for k > [; this particular information
is necessary to establish the third case in the Equation (34). So this reduction exists
independently whether the triples (7°(0%0), T'(0%1), T'(0%)) are in W or not. So the same
reduction exists also in this case (I1) and it remains to show that D is positively reducible
to A.

Every query within the tt-reduction b’ of D to A which queries some x with f(x) < T(0%)
can be replaced by the constant 1 and which queries some x with f(x) incomparable to
T(0") can be replaced by 0. Furthermore, one can enumerate B and replace any query
to some x € B by 0 until a stage s is reached where there is a marker mg such that
all queries x to A satisfy mg, < f(z) < mge, and T(0') = mg,. Now one knows
that D(a) = h[mgi1](a) for some i € {l,l + 1,...,k}; formally also D(a) = h[mg:](a)
is possible but since this value is not “?”, it follows that h[mge](a) = h[mg|(a). From
the fact that no triple (z,y,z) with z = T(0%) for some k > [is in W, it follows that
h[T(0°1)](a) > h[T(071)](a) whenever [< i < j, so one can also continue the enumeration
process if also h{myiq (@) > himgiis|(a) for all 4,5 with [< i < j. Now either h[mqgi; 5|(a)
is a constant b for i = [,l + 1,...,k and one knows that D(a) = b or there is a maximal
i with hlmgiy4](a) = 0. There is a unique z with f(z) = mg 0. If € A then mgig,
must be in L and D(a) = 1. If © ¢ A then myg;, s € L for some j < i and D(a) = 0.
Putting all these things together, one can either compute D(a) directly or find an z such
that D(a) = A(z). Therefore D is positively reducible to A.

(1m): (T(0%0), T(0%1),T(0%)) ¢ V but (T(0%0), T(0*1),T(0%)) € W for all k > [for some
fixed [. If one interchanges the role of 0 and 1 in the given truth-table reduction then one
obtains a reduction from D to A where also the roles of V and W are interchanged. This
is then exactly the case (11) and one obtains that D and A are in the same positive degree.
It follows immediately that D and A and therefore also B have the same positive degree.

(1v): (T(0%0), T(0%1),T(0%)) ¢ V,W for all k > [for some fixed [. In this case one can

147

conclude that both, D and D, are positively reducible to B. Since B is enumerable, so are
D and D and therefore D is recursive.

This finishes the case distinction and thus one has exactly three positive degrees given by
the retraceable set A, the enumerable set B and the tt-cylinder C' which has the same
positive degree as A® B. 1

Enumerable tt-degrees consisting of three positive degrees have some beautiful properties.
The next theorem shows that such a tt-degree has a positive degree of enumerable semire-
cursive sets, a tt-degree of coenumerable semirecursive sets and a positive degree of sets
which are neither enumerable nor coenumerable nor semirecursive.

Theorem 8.6.5 Let B be an enumerable set whose tt-degree consists of three positive
degrees and let D =, B. For D the following holds:

(a) If D is semirecursive then D is either enumerable or coenumerable.

(b) If D is enumerable then D is semirecursive.

(c) If D is retraced by a total function then D is the difference of two enumerable sets.

Proof (a): Since D is semirecursive, D is not in the greatest positive degree [69, Corollary
4.3.(1v)]. If D is in the positive degree of B then D is enumerable since positive reducibility
preserves the property “enumerable” [69, Proposition 3.5.(11)]. If D is in the positive degree
of B then D is coenumerable.

(b): If D is in the greatest positive degree then D is positive reducible to D and thus
also enumerable in contradiction to the fact that D is not recursive. So D is either in the
positive degree of B or in that of B and so semirecursive [69, Theorem 4.2.(111)].

(c): The retracing-function defines a tree-structure on IN. Here a node z is a direct
successor of y if the retracing-function maps = to y. So D is an infinite branch of a tree 7.
The sets B; of all nodes lexicographic before some node on D and the set By = By — D are
both semirecursive. So B; and B, are enumerable or coenumerable. Since D = B; N By
either is the intersection of an enumerable and coenumerable and thus the difference of two
enumerable sets or is the intersection of two coenumerable sets and thus coenumerable or
— hypothetically — is the intersection of two enumerable sets and thus enumerable, one
has that D can always be represented as the difference of two enumerable sets. |

A careful analysis of the construction in Theorem 8.6.4 shows that the set B shares some
properties of that one constructed by Dégtev [35] in the sense that it is also semirecursive,
nonrecursive and n-maximal for some suitable equivalence-relation . Downey [40] showed
that in many Turing degrees there are enumerable tt-degrees having exactly one enumer-
able m-degree, in particular such a tt-degree exists within the Turing degree of K. The
next result shows that this is not true for enumerable tt-degrees consisting of three positive
degrees. So the next result indicates why some additional work was required to construct
them.

Theorem 8.6.6 If cvery semirecursive set in some given tt-degree is either enumerable or
coenumerable then this tt-degree belongs to a lowy, Turing degree.

Proof Let X represent a tt-degree in which all semirecursive sets are either enumer-
able or coenumerable. Relativizing a result of Arslanov [7, Theorem 7], there is a partial
X'-recursive {0, 1}-valued function ¢ which does not have a total extension which is com-
putable relative to some X’-enumerable degree Z <; X". An easy example for such a

148

function [135, Section V.5| is given by

h(z) = {905'(6) if X' (e) 1 < 1;

0 otherwise.

Let ¢ be a total function of X’-enumerable degree Z which extends . Every partial {0, 1}-
valued X'-recursive function is many-one reducible to). There is a computable function
w such that X'(z) = ¢(u(x))| and one knows that Z >; X'. Furthermore, by relativizing
Arslanov’s result [7, Theorem 1] one has that Z =4 X" for computations relative to X’
and since X" Z >r X', this equivalence also holds for nonrelativized computations.

The partial function ¢ has a X-recursive approximation f such that f(z,s) converges
to a for s — oo iff Y(z)] = a. Now the set Y, is given by

flx,y) ifa=0;
Y2y +a) = ¢ X(y) ifa=1and f(z,y) = 0;
1-X(y) ifa=1and f(z,y) =1.

In all cases the set Y, defines a semirecursive set B, as the set of all finite strings which
are lexicographic before Y,. Let ¢(0)| = 0. Now By is either enumerable or coenumerable,
say the first. If ¢)(z) = 0 then f(0,y) = f(x,y) for almost all y. It follows that Y and
Y, differ only on finitely many elements and that thus By =, B,. If ¢)(x) L= 1 then
Y.(y) =1 —Yj(y) for almost all y and B, is coenumerable. Now one defines:

(z) = {0 if B, is enumerable;
I =1 i B, is coenumerable.

Each B, is semirecursive and in the same tt-degree as X. So it follows that every B, is
either enumerable or coenumerable but not both. ¢ is well-defined and total, furthermore
g extends ¢. The following K'-recursive algorithm computes g: On input x, the algorithm
searches the first e such that either W, = B, or W, = B,. Such an e exists since B, is either
enumerable or coenumerable. The test whether W, = B, can be done using oracle K’ since
both arrays, the one of the B, and the one of the W,, are uniformly recursive in K. When
the e is found, then g(z) = 0 for the case B, = W, and g(z) = 1 for the case B, = W,. So
g is a K'-recursive function extending . K’ is enumerable relative to X’ and so K’ must
have the same Turing degree as X”. Thus X has lows Turing degree. |

8.7 Weak Truth-Table Degrees

Friedberg and Rogers [49] introduced the weak forms of truth-table and bounded truth-
table reducibility. While the functions f and fi,..., fr remain to be total-recursive, the
function g is replaced by a partial recursive function v, that is,

A<, B & (3f,7) (Vo) [A(z) = y(z, B(0), B(1),..., B(f(z)){ |.
A<y B & (3k)3fi, fos oo frry)
(Vz) [A(z) = v(z, B(fi(z)), B(f2()), ..., B(fe(z)))] |-

Kobzev [86] showed, that every enumerable weak truth-table degree contains infinitely
many enumerable weak bounded truth-table degrees (which he denoted as enumerable
“bw-degrees”). So Dégtev’s result that some enumerable tt-degree contains only one enum-
erable btt-degree does not generalize to wbtt-degrees versus wtt-degrees. But the results
on the nonenumerable btt-degrees transfer to results for wbtt-degrees:

149

Theorem 8.7.1 Fvery nonrecursive wtt-degree contains infinitely many wbtt-degrees.
The structure of the enumerable sets under inclusion can be embedded into the structure of
the wbtt-degrees inside any given hyperimmune wtt-degree.

Proof The proof of this theorem just uses the fact that whenever in Proposition 8.2.2,
Theorem 8.2.4 and Theorem 8.3.3 there occur two sets X, Xo with X; % X5 then in fact
X1 Lwbr X2 holds.

In Proposition 8.2.2 it is shown that for the two considered sets Xi, X, there is no
infinite recursive set Y such that X; is btt-reducible to X, on Y. This result can be
extended by showing:

If X, is wbtt-reducible to X5 then there is an infinite recursive set Y such that
X, is btt-reducible to X5 on Y.

Let Xo(z) = v(z, fi(2),..., fr(x)) for some k where ~ is partial-recursive and fi,..., fx
are total-recursive. For [= 0,1,...,2%F 2F 41 let

Y, ={x:y(x,b,...,b;) | for at least I tuples (by,...,b) € {0,1}*}.

All the Y] are enumerable sets. Since Yy = N and Yye; = () there is a maximal [< 2k
such that Y is infinite. Since Y;; is finite, the set Y; — Y}, is enumerable and has an
infinite recursive subset Y. On each z € Y, the first [k-tuples (by,...,b;) € {0,1}* such
that y(z,by,...,b;) | are enumerated and on these tuples one defines g(z,by,...,by) =
v(x,by,...,b). For the other 28 — [tuples (by,...,b) one knows that y(x,by,...,b) T
and therefore g can be made total on Y by just letting g(x,by,...,br) = 0. So fi,..., fk
and g witness that X; <,; X, on the infinite recursive set Y in contrary to the proof
of Proposition 8.2.2. So X; Lup Xo. It follows that even every hyperimmune tt-degree
intersects with infinitely many wbtt-degrees.

For the hyperimmune-free case, standard and weak (bounded) truth-table reducibility
coincide [111, Proof of Theorem IV.5.5] and so every hyperimmune-free tt-degree consists
of infinitely many wbtt-degrees.

The result that the structure of enumerable sets under inclusion can be embedded into
the structure of the wbtt-degrees inside a hyperimmune wtt-degree follows directly. |

It is also possible to define a positive version of weak truth-table reducibility. That is,
a set D is weak positive reducible to F via f and v iff

e f is total recursive and ~y is partial recursive.

o (V) [D(x) = (z, E(0), EQ1),..., E(f(x)))}].

o If y(x,a9,a1,...,054))=0and b, <a, fory=0,1,..., f(x)
then v(z, b, b1,...,bf) 4 =0.

o If y(z,a9,a1,...,a54))l=1and b, > a, fory=0,1,..., f(x)
then v(z,bo,b1,...,bpm)) L= 1.

Inside hyperimmune-free Turing degrees, the notions of weak positive degrees and positive
degrees coincide by the same argument that weak truth-table and truth-table degrees
coincide. So it follows directly from this argument that also some weak truth-table degrees
consist only of finitely many positive degrees. The more interesting question is what
happens on enumerable weak truth-table degrees. For them the next result shows that

150

they have exactly one enumerable weak positive degree but that they consist of infinitely
many weak positive degrees. Of these, all but one are not enumerable.

Theorem 8.7.2 Let B be a nonrecursive enumerable set.

(a) The weak positive degree of B contains exactly the enumerable sets within the weak
truth-table degree of B. In particular, wtt-reducibility and weak positive reducibility coincide
on enumerable sets.

(b) The inclusion-structure of the enumerable sets can be embedded into the structure of the
weak positive degrees inside the wtt-degree of B. In particular there are infinite ascending
and descending chains as well as infinite antichains of weak positive degrees inside the
wtt-degree of B.

Proof (a): Let D be weak positive reducible to B where the reduction is given as
D(x) = v(z, B(0),B(1),...,B(f(x))). Now one knows that

veD < (3s) (e, Bs(0), Bs(1), ..., Bs(f(2))) § = 1]

and thus D is also enumerable. So all sets in the weak positive degree of B are enumer-
able.

For the converse direction let D be an enumerable set which is weak truth-table re-
ducible to B via some functions 7" and f’. Now a further partial function 4" is constructed
such that D is positively reducible to B via 4" and f'. A stage s is called consistent at x if
Dy (z) = v4(z, Bs(0), Bs(1), ..., Bs(f'(z))); all sets S, of consistent stages are infinite and
uniformly recursive. Now

0 if (Is € S,) (Vy < f'(x)) [by <
Y@, b0, b1,y - b)) =41 i (Fs € S,) (Vy < f'(w)) [by > Bs(y) A Dy(z) =
1 otherwise.

defines together with f’ a weak positive reduction from D to B. Let s € S,. The re-
duction is positive and partial recursive by definition, nevertheless it has to be shown
that it is correct and that it is not ambiguous. For the correctness note that there is
an s such that Bs(y) = B(y) for all y < f'(x), v.(z, B(0), B(1),...,B(f'(z))) is de-
fined and such that D(z) = D,(z). It follows that then s € S, and therefore also
v (xz, B(0), B(1),...,B(f'(x))) is defined according to the first or second case.

Now assume by way of contradiction that the definition of ~” is ambiguous, that is,
that there are stages s,t € S, such that v"(z,bo,b1,...,bp(y)) is defined to be 0 at stage
s and defined to be 1 at stage t. It follows directly that Ds(z) = 0 and Dy(x) = 1. Fur-
thermore, B,(y) > B;(y) for all y. Since now b, < B,(y) and b, > B;(y) holds for all
y < f'(x) and since by the fact that B is enumerable it holds that Bs(y) < B(y) for
y=0,1,..., f'(x), it follows that b, = Bs(y) = B,(y) for y = 0,1,..., f'(z). The reduc-
tion given by 7' and f’ coincides with D,(z) at stage s and D;(z) at stage t by s,t € S,.
Therefore 0 = Dy(x) = o' (2,b0, b1, ..., bp(a)) and 1 = Dy(x) = v'(x, b, b1, ..., bpr(z)) which
shows that if 4" is ambiguous so is 7'. From this contradiction it follows that the definition
of v" is sound and D is weak positive reducible to B.

So one has on one hand that all sets D in the weak positive degree of B are enumerable
and on the other hand that if D is an enumerable set in the wtt-degree of B then D is
already weak positive reducible to B. Similarly B is weak positive reducible to D and so
all enumerable sets from the wtt-degree of B are also in the weak positive degree of B.

(b): Sack’s Splitting Theorem [135, Theorem VII.3.2] states that every nonrecursive enum-
erable set B is the disjoint union of two Turing incomparable enumerable sets, whose Turing

151

degrees then are also strictly below B. Sacks [125, page 70] and Robinson [122, Theorem 3|
present generalizations of the theorem by splitting B into a uniformly enumerable family
of sets By, By, ... such that no set B; is computable relative to the join of all others. Let
C, be the tt-cylinder of B, and let

H,={(z,y,2):x € Wey Az € Cy} (35)

As in Theorem 8.2.4 one can prove that H, is many-one reducible to H, if W, C W,.
Furthermore, C; is many-one reducible to H, if z € W,. But if z ¢ W, then C, is by choice
not computable relative to H, and, since C, is many-one equivalent to its complement, also
not enumerable relative to H,. It follows that C, & B is not weakly positive reducible to
H, ® B since H, ® B is enumerable relative to H, and the sets enumerable relative to H,
are closed under weak positive reducibility. If W, € W, then H,® B is not weakly positive
reducible to H. & B since there is some © € W, — W, and C, is weakly positive reducible
to W, but not to W,.

So one has that H, & B is weakly positive reducible to H., & B ifft W, C W,,. Since all
sets B, C, and H, are wtt-reducible to B, all sets H, & B are in the wtt-degree of B and
the structure of the enumerable sets under inclusion can be embedded to the structure of
the weak positive degrees inside the wtt-degree of B. The existence of infinite chains and
antichains follows from the corresponding result on the lattice of enumerable sets. |

9 Conclusion

The present work focuses on oracles, in particular on computation and learning with the
help of an oracle. Oracles allow the analysis of the difficulty of learning and computing
problems. For example, the difficulty to check whether a set W, given by its index e is
infinite needs an oracle of degree 0" or higher. In learning theory, Adleman and Blum [1]
showed that exactly the high oracles allow to Ex-learn the class REC of all total recur-
sive functions. Also the difference between learning models has been analyzed in terms
of the oracles necessary to make a problem S learnable with respect to some more pre-
tentious Model 2 provided that the S is already learnable without the help of any oracle
with respect to a less pretentious Model 1. The usefulness of the oracles with respect to a
computation or learning task induces canonically a degree-structure on the oracles. Such
degree-structures are research topics in their own right and there are numerous results on
the degree-structures induced by computing (mostly on Turing, enumeration and many-one
degrees). The present work (in particular in Chapter 2) gives an overview on the results
about the degree-structures induced by learning.

For Turing reducibility, the question whether B is at least as powerful than A is equiv-
alent to the question whether A can be computed relative to B, whence in this setting,
degrees and their closures downward are always countable. In learning, an oracle B might
be more powerful than A without giving any possibility to compute A relative to B, even
in the limit. For example, Ex-learning has one uncountably infinite degree, namely the one
of those oracles which allow to Ex-learn all classes of recursive functions. The structure of
Ex-degrees is coarser than that of the Turing degrees. Only very restricted learning models
like finite learning (Fin) generate the same degree-structure as the Turing reducibility.

Chapters 3 combines the notions of queries to oracles and of queries to teachers. Such a
teacher answers questions — posed in a specific query language — on the function f to be
learned. So the learner has more data on f as in the standard case. This extra-knowledge

152

can sometimes be non-trivially combined with an oracle: There is an oracle A of trivial
Ex-degree, which together with a teacher can learn a class S which can neither be learned
from the oracle A alone nor from the teacher alone (Theorem 3.3.5).

An important research topic is the question to which extent errors and false informa-
tion in the data-stream disturb learning. Many models of noisy data have the disadvantage
that the disturbances do not only make learning difficult but do also permit identical data-
streams for different concepts. Chapter 4 proposes a popular concept of noise [24, 27, 28, 58]
which solves this problem: the basic idea is that each correct data-item occurs infinitely
often while each incorrect one occurs only finitely often. Although each single item can be
false, the data-stream as a whole determines which items are correct and which incorrect
so that the function to be learned is uniquely determined by the data-stream. The central
result is that Ex-learning functions from such data has a nice characterization in terms
of learning with oracles: S is Ex-learnable from noisy data iff S is finitely learnable from
noise-free data with the help of the oracle K.

The topic of Chapters 5 and 6 is the learning of sets and functions with infinite addi-
tional information. In both cases, the additional information is required to describe the
whole class of languages to be learned and it must not be specific for a single set or function
in S. Chapter 5 deals with various types of index-sets for classes of languages: if a set B
contains for every language in S some index but no indices for languages outside S then a
learner of Turing degree 0” can learn S with access to this oracle B. Such a learner is even
class-independent since it works for every principally learnable S when the corresponding
B is supplied. If B is an index-set in the classical sense, that is, if e € B < W, € S,
then the learner can even be chosen to be recursive. In Chapter 5 it was required that the
algorithm is universal in the sense that it worked for every S which is principally learnable,
that is, learnable relative to some oracle. In contrast to this, the setting investigated in
Chapter 6 permits that the algorithms are specific for the class S to be learned. However,
the algorithms still have to be robust in the sense that they succeed with every oracle
meeting the specification. Degree-theoretic descriptions of the oracle do not help much: if
the learning-algorithm must be able to learn S with every oracle from a given m-degree
then one can learn S even without an oracle. In contrast to this, syntactic descriptions of
the class S turn out to be more helpful. The most powerful tools are lists of the functions
in S. The considered syntactic descriptions are related to learning criteria, whence Chapter
6 is also some kind of study to which extent it is possible to translate learners of one type
(represented by the oracle) uniformly into learners of an other type (represented by the
learning algorithm using the oracle).

Classification is related to learning in the sense that, like a learner, a classifyer reads
the characteristic function of the set as a learner but converges only to 1 or 0 standing for
“set is in the class” and “set is not in the class”. This notion of two-sided classification
can also be weakened to one-sided classification where the classifyer on sets outside the
class only outputs infinitely often a 0 without being required to converge to 0. Chapter 7
analyzes the relations between these two notions and the question, which oracles enable to
transform a given one-sided classifyer into a two-sided one.

While the preceding chapters focus on degree-structures more general than that of the
Turing reducibility, Chapter 8 investigates the structures induced by stronger reducibility
notions, mainly by those of truth-table reducibility and its even more restrictive variants.
The central question is whether there are always infinitely many positive and bounded
truth-table degrees inside a truth-table degree. Dégtev’s result [35] that the number of
bounded truth-table degrees inside a truth-table degree is at least two is improved by
showing that this number in fact is always infinite. Moreover, there are infinite chains and

153

antichains of bounded truth-table degrees inside every truth-table degree. The latter im-
plies an affirmative answer to a question of Jockusch [70] whether every truth-table degree
contains an infinite antichain of many-one degrees. Some but not all truth-table degrees
have a least bounded truth-table degree. The technique to construct such a degree is used
to solve an open problem of Beigel, Gasarch and Owings [15]: There are Turing degrees
(constructed as hyperimmune-free truth-table degrees) which consist only of 2-subjective
sets and do therefore not contain any objective set. Furthermore, a truth-table degree
consisting of three positive degrees is constructed where one positive degree consists of
enumerable semirecursive sets, one of coenumerable semirecursive sets and one of sets,
which are neither enumerable nor coenumerable nor semirecursive. So Jockusch’s result
[69] that there are at least three positive degrees inside a truth-table degree is optimal.
The number of positive degrees inside a truth-table degree can also be some other odd
integers as for example nineteen, but it is never an even finite number.

The following are the main questions which are still open within the field covered in
the present work: No characterization of the omniscient degree of BC-learning is known
(Section 2.5). Furthermore, it would be interesting to know whether the omniscient BC
degree coincides with the degree of all oracles permitting to learn the class of all functions
which are either self-describing or almost everywhere equal to 0. Concerning the combina-
tion of teachers and oracles, it is still open whether there is a non-recursive oracle A which
does not increase the learning power of the basic concepts QEx[Succ|, QEx[<] and QEx[+]
(Chapter 3). In the field of classification, a highly interesting problem is the following
stated by Case, Kinber, Sharma and Stephan [30] for the model where only computable
languages are considered (Section 7.6): Does every infinite one-sided class A have an infi-
nite two-sided subclass B? In Chapter 8 it is shown that there are infinitely many numbers
a such that some non-recursive tt-degree consists of a positive degrees. It is shown that
a < 3 and a is odd. But it is still open whether, for all odd numbers a > 3, there is a
tt-degree consisting of exactly a positive degrees.

References

[1] Lenny Adleman and Manuel Blum. Inductive inference and unsolvability. Journal of
Symbolic Logic, 56:891-900, 1991.

[2] Dana Angluin. Inductive inference of formal languages from positive data. Informa-
tion and Control, 45:117-135, 1980.

[3] Dana Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87-106, 1987.

[4] Andris Ambainis, Sanjay Jain and Arun Sharma: Ordinal mind change complexity
of language identification. Proceedings of the Third European Conference on Com-
putational Learning Theory, Jerusalem (1997), Springer Lecture Notes in Artificial
Intelligence 1208:301-316, 1997.

[5] Klaus Ambos-Spies. Sublattices of the polynomial time degrees. Information and
Control, 65(1):63-84, 1985.

[6] Klaus Ambos-Spies. Inhomogeneities in the polynomial time degrees: the degrees of
supersparse sets. Information Processing Letters, 22:113-117, 1986.

154

[7] Marat Arslanov. On some generalizations of a fixed-point theorem. Soviet Mathe-
matics (Iz. VUZ), Russian, 25(5):9-16, 1981, English translation, 25(5):1-10, 1981.

[8] Ganesh Baliga and John Case. Learning with higher order additional information.
Joint Proceedings of the Fourth International Workshop on Analogical and Inductive
Inference (AIL) and of the Fifth Workshop on Algorithmic Learning Theory (ALT)
Springer Lecture Notes in Artificial Intelligence 872:64-75, 1994.

[9] Ganesh Baliga, John Case and Sanjay Jain. Synthesizing enumeration techniques for
language learning. Proceedings of the Ninth Conference on Computational Learning

Theory (COLT), 169180, 1996.

[10] Ganesh Baliga, Sanjay Jain and Arun Sharma. Learning from multiple sources
of inaccurate data. Proceedings of the Third International Workshop on Analogi-
cal and Indcutiver Inference (AIL), Springer Lecture Notes in Artificial Intelligence
642:108-128, 1992.

[11] Janis Barzdins. Prognostication of automata and functions. Information Processing
71, (1) 81-84. Edited by C. P. Freiman, North-Holland, Amsterdam, 1971.

[12] Janis Barzdins and Rusins Freivalds. On the prediction of general recursive functions.
Soviet Mathematical Doklady, 13:1224-1228, 1972.

[13] Janis Barzdins and Karlis Podnieks. The theory of inductive inference. Proceedings
of the Conference on Mathematical Foundations of Computer Science (MFCS), 9-15,
1973.

[14] Richard Beigel, William Gasarch, John Gill and James Owings, Jr. Terse, superterse
and verbose sets. Information and Computation, 103:68-85, 1993.

[15] Richard Beigel, William Gasarch and James Owings, Jr. Nondeterministic bounded
query reducibilities. Annals of Pure and Applied Logic, 41:107-118, 1989.

[16] Richard Beigel, Martin Kummer and Frank Stephan. Quantifying the amount of
verboseness. Information and Computation, 118:73-90, 1995.

[17] Shai Ben-David. Can finite samples detect singularities of real-valued functions?
Proceedings of the 24th Annual ACM Symposium on the Theory of Computer Science,
Victoria, B.C., 390-399, 1992.

[18] Manuel Blum. A machine independent theory of the complexity of recursive func-
tions. Journal of the Association of Computing Machinery, 14:322-336, 1967.

[19] Lenore Blum and Manuel Blum. Towards a mathematical theory of inductive infer-
ence. Information and Control, 28:125-155, 1975.

[20] Ulrike Brandt. The position of index sets of identifiable sets in the arithmetical
hierarchy. Information and Control, 68:185-195, 1986.

[21] J. Richard Biichi. On a decision method in restricted second order arithmetic. Pro-
ceedings of the International Congress on Logic, Methodology and Philosophy of Sci-
ence, Standford University Press, Standford, California, 1960.

[22] J. Richard Biichi and Lawrence H. Landweber: Definability in the monadic second
order theory of successor. Journal of Symbolic Logic, 34:166-170, 1966.

155

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

Valery K. Bulitko. Reducibility by linear Zhegalkin tables. Siberian Mathematical
Journal, Russian, 21:23-31, 1980, English translation, 21:332—-339, 1980.

John Case and Sanjay Jain. Synthesizing learners tolerating computable noisy data.
Proceedings of the Ninth Annual Conference on Algorithmic Learning Theory (ALT),
Springer Lecture Notes of Artificial Intelligence 1501:205-219, 1998.

John Case, Sanjay Jain and Suzanne Ngo Manguelle. Refinements of inductive in-
ference by Popperian and reliable machines. Journal Kybernetika, 30:23-52, 1994.

John Case, Sanjay Jain and Arun Sharma. On learning limiting programs. Interna-
tional Journal of Foundations of Computer Science, 1:93-115, 1992.

John Case, Sanjay Jain and Arun Sharma. Synthesizing noise-tolerant language
learners. Proceedings of the Eighth Annual Workshop on Algorithmic Learning Theory
(ALT), Springer Lecture Notes in Artificial Intelligence 1316:228-243, 1997.

John Case, Sanjay Jain and Frank Stephan. Vacillatory and BC learning on noisy
data. Proceedings of the Seventh Annual Workshop on Algorithmic Learning Theory
(ALT), Springer Lecture Notes in Artificial Intelligence 1160:285-298, 1996. See also:
Electronic Archive for Computational Learning Theory eC-TR-96-002, Dortmund,
1996.

John Case, Susanne Kaufmann, Efim Kinber and Martin Kummer. Learning recur-
sive functions from approximations. Proceedings of the Second Furopean Conference
on Computational Learning Theory (EuroCOLT), 140-153, 1995.

John Case, Efim Kinber, Arun Sharma and Frank Stephan. On the classification of
computable languages. Proceedings of the 14th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), 225-236, 1997.

John Case and Carl Smith. Comparison of identification criteria for machine induc-
tive inference. Theoretical Computer Science, 25:193-220, 1983.

Peter Cholak and Rod Downey. Recursive enumerable m- and tt-degrees. Part III:
Realizing all finite distributive lattices. The Journal of the London Mathematical
Society, Second Series, 50:440-453, 1994.

Alonzo Church. An unsolvable problem of elementary number theory. The American
Journal of Mathematics, 58:345-363, 1936.

Martin Davis (editor). The Undecidable. Basic Papers on Undecidable Propositions,
Unsolvable Problems and Computable Functions. Raven Press, 1965.

Alexander Dégtev. tt- and m-degrees. Algebra and Logic, Russian, 12:143-161, 1973,
English translation, 12:78-89, 1973.

Alexander Dégtev. Three theorems on tt-degrees. Algebra and Logic, Russian,
17(3):270-281, 1978, English translation, 17:187-194, 1978.

Alexander Dégtev. Comparison of linear reducibility with other reducibilities of
tabular type. Algebra and Logic, Russian, 21:511-529, 1982, English translation,
21:339-353, 1982.

156

[38] James Dekker and John Myhill. Retraceable sets. Canadian Journal of Mathematics,
10:357-373, 1958.

[39] Rod Downey. Recursively enumerable m- and tt-degrees. Part I: The quantity of
m-degrees. The Journal of Symbolic Logic, 54:553-567. 1989.

[40] Rod Downey. Recursive enumerable m- and tt-degrees. Part II: The distribution of
singular degrees. Archive for Mathematical Logic, 27:135-148, 1988.

[41] Anna-Maria Emde and Britta Schinzel. Aggregating inductive expertise on partial
recursive functions. Information and Computation, 96:139-167, 1992.

[42] Lance Fortnow, Rusins Freivalds, William Gasarch, Martin Kummer, Steven Kurtz,
Carl Smith and Frank Stephan. On the relative size of learnable sets. Theoretical
Computer Science, 197:139-156, 1998.

[43] Lance Fortnow, William Gasarch, Sanjay Jain, Efim Kinber, Martin Kummer, Steven
Kurtz, Mark Pleszkoch, Theodore Slaman, Robert Solovay and Frank Stephan. Ex-
tremes in the degrees of inferability. Annals of Pure and Applied Logic, 66:231-276,
1994.

[44] Rusips Freivalds, Efim Kinber and Rolf Wiehagen. On the power of inductive infer-
ence from good examples. Theoretical Computer Science, 110:131-144, 1993.

[45] Risins Freivalds and Carl H. Smith: On the Role of procrastination for machine
learning, Information and Computation, 107:237-271, 1993.

[46] Rusins Freivalds and Rolf Wiehagen. Inductive inference with additional information.
Elektronische Informationsverarbeitung und Kybernetik 15:179-185, 1979.

[47] Richard Friedberg. Two recursively enumerable sets of incomparable degrees of un-
solvability. Proceedings of the National Academy of Sciences, 43:236-238, 1957.

[48] Richard Friedberg. A criterion for completeness of degrees of unsolvability. Journal
of Symbolic Logic, 22:159-160, 1957.

[49] Richard Friedberg and Hartley Rogers. Reducibilities and completeness for sets
of integers. Zeitschrift fir Mathematische Logik und Grundlagen der Mathematik,
5:117-125, 1959.

[50] Mark Fulk and Sanjay Jain. Learning in the presence of inaccurate information.
Theoretical Computer Science, 161:235-261, 1996.

[51] William Gasarch and Mark Pleszkoch. Learning via queries to an oracle. Proceed-
ings of the Second Annual Conference on Computational Learning Theory (COLT),
214-229, 1989.

[52] William Gasarch, Mark Pleszkoch and Robert Solovay. Learning via queries in [+, <].
Journal of Symbolic Logic, 57:53-81, 1992.

[53] William Gasarch, Mark Pleszkoch, Frank Stephan and Mahendran Velauthapillai.
Classification using information. Annals of Mathematics and Artificial Intelligence,
Selected papers from ALT 199/ and AII 1994, 23:147-168, 1998.

157

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

William Gasarch, Mark Pleszkoch and Mahendran Velauthapillai. Classification us-
ing information — conference version. Joint Proceedings of the Fourth International
Workshop on Analogical and Inductive Inference (AIl) and of the Fifth Workshop on
Algorithmic Learning Theory (ALT) Springer Lecture Notes in Artificial Intelligence
872:290-300, 1994.

William Gasarch and Carl Smith. Learning via queries. Journal of the Association
of Computing Machinery 39(3):649-676, 1992.

Mark Gold. Language identification in the limit. Information and Control,
10:447-474, 1967.

Sally Goldman and David Mathias. Teaching a smarter learner. Journal of Computer
and System Sciences, 52:255—-267, 1996.

Gunter Grieser and Steffen Lange. Iterative learning from noisy data. Tenth Con-
ference on Algorithmic Learning Theory (ALT), to appear, 1999.

Leo Harrington and Robert Soare. Post’s program and incomplete recursive enumer-
able sets. Proceedings of the National Academy of Science, U.S.A., 88:10242—10246,
1991.

Christine Ann Haught. The degrees below a 1-generic degree < 0'. Journal of
Symbolic Logic, 51:770-777, 1986.

Sanjay Jain. Program synthesis in the presence of infinite number of inaccuracies.
Journal of Computer and System Sciences, 53(3):583-591, 1996.

Sanjay Jain and Arun Sharma. Learning in the presence of partial explanations.
Information and Computation, 95:162—-191, 1991.

Sanjay Jain and Arun Sharma. Learning with the knowledge of an upper bound on
program size. Information and Computation, 102:118-166, 1993.

Sanjay Jain and Arun Sharma. On the non-existence of maximal inference degrees
for language identification. Information Processing Letters, 47:81-88, 1993.

Sanjay Jain and Arun Sharma. On monotonic strategies for learning r.e. languages.
Joint Proceedings of the Fourth International Workshop on Analogical and Inductive
Inference (All) and of the Fifth Workshop on Algorithmic Learning Theory (ALT)
Springer Lecture Notes in Artificial Intelligence 872:349-364, 1994.

Klaus-Peter Jantke. Automatic synthesis of programs and inductive inference of func-
tions. Proceedings of the International Conference on Fundamentals of Computation
Theory in Berlin/Wendisch-Rietz (FCT) 219-225, 1979.

Klaus-Peter Jantke. Natural properties of strategies identifying recursive functions.
Elektronische Informationsverarbeitung und Kybernetik 15:487-496, 1979.

Klaus-Peter Jantke. Monotonic and non-monotonic inductive inference. New Gen-
eration Computing, 8:349-360, 1991.

Carl Jockusch. Semirecursive sets and positive reducibility. Transactions of the
American Mathematical Society, 131:420-436, 1968.

158

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

78]
[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

Carl Jockusch. Relationships between reducibilities. Transactions of the American
Mathematical Society, 142:229-237, 1969.

Carl Jockusch. Degrees in which recursive sets are uniformly recursive. Canadian
Journal of Mathematics, 24:1092-1099, 1972.

Carl Jockusch. Degrees of generic sets. London Mathematical Society Lecture Notes,
45:110-139, 1981.

Carl Jockusch and Robert Soare. I19 classes and degrees of theories. Transactions of
the American Mathematical Society, 173:33-56, 1972.

Sejtnijas Kallibekov. On degrees of recursively enumerable sets. Siberian Mathemat-
ical Journal, 14(2):421-426, 1973, English translation, 14:200-203, 1973.

Shyam Kapur. Monotonic language learning. Proceedings of the Third Workshop on
Algorithmic Learning Theory (ALT) 147-158, 1992.

Shyam Kapur and Gianfranco Bilardi. On uniform learnability of language families.
Information Processing Letters, 44:35-38, 1992.

Susanne Kaufmann and Frank Stephan (1997): Robust learning with infinite addi-
tional information. Proceedings of the Third European Conference on Computational
Learning Theory (EuroCOLT), 316-330, 1997. Forschungsberichte Mathematische
Logik 23 / 1996, Mathematisches Institut, Universitdt Heidelberg, 1996.

Kevin Kelly. The Logic of Reliable Inquiry. Oxford University Press, Oxford, 1995.

Efim Kinber. Some problems of learning with an oracle. Proceedings of the Third
Conference on Computational Learning Theory (COLT), 178-186, 1990.

Efim Kinber and Frank Stephan. Language learning from texts: Mind changes,
limited memory and monotonicity. Information and Computation, 123:224-241, 1995.

Efim Kinber and Thomas Zeugmann One-sided error probabilistic inductive inference
and reliable frequency identification. Information and Computation, 92:253-284,
1991.

Ker-I Ko. Complexity Theory of Real Functions. Birkhauser, Boston, 1991.

Georgi Kobzev. On btt-Reducibilities I. Algebra and Logic, Russian, 12(2):190-204,
English translation, 12:107-115, 1973.

Georgi Kobzev. On btt-Reducibilities II. Algebra and Logic, Russian, 12(4):433-444,
English translation, 12:242-248, 1973.

Georgi Kobzev. On I'-separable sets. Studies in Mathematical Logic and the Theory
of Algorithms, Russian, 19-30. Tblisi 1975.

Georgi Kobzev. Recursive enumerable bw-degrees. Matematicheskie Zametki, Rus-
sian, 21(6):839-846, English translation, 21:473-477, 1977.

Martin Kummer. A proof of Beigel’s cardinality conjecture. The Journal of Symbolic
Logic, 57:677-681, 1992.

159

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

103]

Martin Kummer and Matthias Ott. Learning Branches and Learning to Win Closed
Games. Proceedings of Ninth Annual Conference on Computational Learning Theory

(COLT), 280291, 1996.

Martin Kummer and Frank Stephan. On the structure of degrees of inferability.
Journal of Computer and System Sciences, Special Issue COLT 1993, 52:214-238,
1996.

Martin Kummer and Frank Stephan. Recursion theoretic properties of frequency
computation and bounded queries. Information and Computation, 120:59-77, 1995.

Richard Ladner, Nancy Lynch and Alan Selman. Comparison of polynomial time
reducibilities. Theoretical Computer Science, 1:103-123, 1975.

Steffen Lange, Jochen Nessel and Rolf Wiehagen. Language learning from good
examples. Joint Proceedings of the Fourth International Workshop on Analogical
and Inductive Inference (AIl) and of the Fifth Workshop on Algorithmic Learning
Theory (ALT) Springer Lecture Notes in Artificial Intelligence 872:423-437, 1994.

Lawrence H. Landweber. Decision problems for w-automata. Mathematical Systems
Theory, 3:376-384, 1969.

Steffen Lange, Thomas Zeugmann and Shyam Kapur. Monotonic and dual monotonic
language learning. Theoretical Computer Science, 155:365-410, 1996.

Jack Lutz. Almost everywhere high nonuniform complexity. Journal of Computer
and Systems Science, 44:226-258, 1992.

Donald Martin. Completeness, the recursion theorem and effectively simple sets.
Proceedings or the American Mathematical Society, 17:838-842, 1966.

Donald Martin. Classes of recursively enumerable sets and degrees of unsolvability.
Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 12:295-310,
1966.

Yasuhito Mukouchi. Characterization of finite identification. Proceedings of the
Third International Workshop on Analogical and Inductive Inference (AIl), Springer
Lecture Notes in Artificial Intelligence 642:260-267, 1992.

Thomas McLaughlin. On a class of complete simple sets. Canadian Mathematical
Bulleting, 8:33-37, 1965.

Robert McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9:434-448, 1966.

Kurt Mehlhorn. On the size of sets of computable functions. Proceedings of the
Fourteenth Annual Symposium on Switching and Automata Theory, 190-196, IEEE
Computer Society, 1973.

Kurt Mehlhorn. Polynomial and abstract subrecursive classes. Journal of Computer
and System Sciences,12:147-178, 1978.

Wolfgang Merkle. A Generalized Account of Resource Bounded Reducibilities. Doc-
toral Dissertation, Universitat Heidelberg, 1997.

160

[104]

[105]

[106]

107]

[108]

109

[110]

[111]

[112]

[113]

114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Wolfgang Merkle and Frank Stephan. Trees and learning. Proceedings of the Ninth
Conference on Computational Learning Theory (COLT), 270-279, 1996.

Webb Miller and Donald Martin. The degrees of hyperimmune sets. Zeitschrift fir
Mathematische Logik und Grundlagen der Mathematik, 14:159-166, 1968.

Eliana Minicozzi. Some natural properties of strong-identification in inductive infer-
ence. Theoretical Computer Science, 2:345-360, 1976.

Al’bert Abramovich Muchnik. Negative answer to the problem of reducibility in the
theory of algorithms. Doklady Akademii Nauk S. S. S. R., 108:194-197, 1956.

Maurice Nivat and Dominique Perrin (editors): Automata on Infinite Words.
Springer Lecture Notes in Computer Science 192, 1984.

Anil Nerode. General topology and partial recursive functionals. Talks Cornell
Summ. Inst. Symb. Log., Cornell 247-257, 1957.

David B. Posner, Robert W. Robinson. Degrees joining to 0'. Journal of Symbolic
Logic, 46(4):714-722, 1981.

Piergiorgio Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.

Daniel Osherson, Dick de Jongh, Eric Martin and Scott Weinstein. Formal learning
theory. Handbook of Logic and Language, edited by J. van Benthem and A. ter
Meulen. Elsevier, 737-775, 1997.

Daniel Osherson, Michael Stob and Scott Weinstein. Systems That Learn, An Intro-
duction to Learning Theory for Cognitive and Computer Scientists. Bradford — The
MIT Press, Cambridge, Massachusetts, 1986.

Daniel Osherson, Michael Stob and Scott Weinstein. Synthesizing inductive expertise.
Information and Computation, 77(2):138-161, 1988.

Daniel Osherson, Michael Stob and Scott Weinstein. A universal inductive inference
machine. Journal of Symbolic Logic, 56:661-672, 1991.

Matthias Ott. Learning Strategies for Infinite Games. Doctoral Dissertation, Uni-
versitat Karlsruhe, 1998.

Matthias Ott and Frank Stephan. Structural measures for games and process control
in the branch learning model. Proceedings of the Third Furopean Conference on
Computational Learning Theory (EuroCOLT), 94-108, 1997. Interner Bericht 39 /
96, Fakultat fiir Informatik, Universitdt Karlsruhe, Karlsruhe, 1996.

J. C. Oxtoby. Maf$ und Kategorie. Springer-Verlag, Heidelberg, 1971.

Emil Post. Finite combinatory processes. Formulation 1. Journal of Symbolic Logic,
1:103-105, 1936.

Emil Post. Recursively enumerable sets of positive integers and their decision prob-
lems, Bulletin of the American Mathematical Society, 50:284-316, 1944.

H. Gordon Rice. Classes of enumerable sets and their decision problems. Transactions
of the American Mathematical Society 74:358-366, 1953.

161

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Robert W. Robinson. Interpolation and embedding in the recursive enumerable
degrees. Annals of Mathematics, Second Series, 93:285-314, 1971.

Robert W. Robinson. Jump restricted interpolation in the recursive enumerable
degrees. Annals of Mathematics, Second Series, 93:586-596, 1971.

Hartley Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

Gerald E. Sacks. Degrees of Unsolvability. Annals of Mathematics Studies 55, Prince-
ton University Press, Princeton, New Jersey, 1966.

Gerald E. Sacks. Higher Recursion Theory. Perspectives in Mathematical Logic,
Springer-Verlag, Heidelberg, 1990.

Gisela Schafer. Some results in the theory of effective program synthesis — learning
by defective information. Springer Lecture Notes in Computer Science 225:219-225,
1986.

Claus Peter Schnorr. Zufdilligkeit und Wahrscheinlichkeit. Springer Lecture Notes in
Mathematics, 1971.

Arun Sharma. A note on batch and incremental learnability. Journal of Computer
and System Sciences, 56:272-276, 1998

Joseph Shoenfield. On degrees of unsolvability. Annals of Mathematics, 69:644-653,
1959.

Joseph Shoenfield. A theorem on minimal degrees. The Journal of Symbolic Logic,
31:539-544, 1966.

Theodore Slaman and Robert Solovay. When oracles do not help. Proceedings of the
Fourth Conference on Computational Learning Theory (COLT), 379-383, 1991.

Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Homepage
http://www.research.att.com/ njas/sequences/index.html.

Carl H. Smith, Rolf Wiehagen and Thomas Zeugmann. Classifying predicates and
languages. International Journal of Foundations of Computer Science, 8(1):15-42,
1997.

Robert Soare. Recursively Enumerable Sets and Degrees. A Study of Computable
Functions and Computably Generated Sets. Springer-Verlag, Heidelberg, 1987.

Clifford Spector. On degrees of unsolvability. Annals of Mathematics, 64:581-592,
1956.

Frank Stephan. Learning via queries and oracles. Proceedings of the Eighth Annual
ACM Conference on Computational Learning Theory (COLT), 162-169, ACM-Press,
New York, 1995.

Frank Stephan. On one-sided versus two-sided classification. Forschungsberichte
Mathematische Logik 25 / 1996, Mathematisches Institut, Universitit Heidelberg,
1996.

162

[139]

[140]

141]

142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

Frank Stephan. Noisy inference and oracles. Theoretical Computer Science
185:129-157, 1997.

Frank Stephan. On the structures inside truth-table degrees. Forschungsberichte
Mathematische Logik 29 / 1997, Mathematisches Institut, Universitit Heidelberg,
Heidelberg, 1997.

Frank Stephan and Sebastiaan Terwijn. The complexity of universal text-learners.
Proceedings of the eleventh International Symposium on the Foundations of Com-
putation Theory (FCT), Springer Lecture Notes in Computer Science 1279:441-451,
1997.

S. Tennenbaum. Degrees of unsolvability and the rate of growth of functions. Pro-
ceedings of the Symposium on the Mathematical Theory of Automata, Microwave
Research Institute Symposium Series 12, Polytechnic Press, Brooklyn, New York
71-73, 1962.

Boris A. Trakhtenbrot. Tabular representation of recursive operators. Doklady
Akademii Nauk S. S. S. R., 101:417-420, 1955.

Boris A. Trakhtenbrot. Finite automata and the logic of one place predicates. Siberian
Mathematical Journal, 3:103-131, 1962 [in Russian].

Alan M. Turing. On computable numbers with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230-265, 1936
and correction, 43:544-546, 1937.

Rolf Wiehagen. A thesis in inductive inference. Proceedings First International
Workshop on Nonmonotonic and Inductive Logic, Springer Lecture Notes in Artificial
Intelligence 534:184-207, 1990.

Rolf Wiehagen and Carl Smith. Generalization versus classification. Proceedings
Fifth Annual Workshop on Computational Learning Theory (COLT), ACM-Press,
New York, 224-230, 1992.

Paul Young. On reducibility by recursive functions. Proceedings of the American
Mathematical Society, 15:889-892, 1964.

Paul Young. A theorem on recursively enumerable classes and splinters. Proceedings
of the American Mathematical Society, 17:1050-1056, 1966.

Thomas Zeugmann. Algorithmisches Lernen von Funktionen und Sprachen. Habili-
tationsschrift, Technische Hochschule Darmstadt, 1993.

Thomas Zeugmann and Steffen Lange. A guided tour across the boundaries of learn-
ing recursive languages. Algorithmic Learning for Knowledge-Based Systems, final
report on research project Gosler, edited by Klaus P. Jantke and Steffen Lange,
Springer Lecture Notes in Artificial Intelligence 961:193-262, 1995.

Thomas Zeugmann, Steffen Lange and Shyam Kapur. Characterizations of monotonic
and dual monotonic language learning, Information and Computation, 120:155-173,
1995.

163

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

