THE NUMBER OF IRREDUCIBLE POLYNOMIALS AND LYNDON WORDS WITH GIVEN TRACE*

F. RUSKEY ${ }^{\dagger}$, C. R. MIERS ${ }^{\ddagger}$, AND J. SAWADA ${ }^{\dagger}$

Abstract

The trace of a degree n polynomial $f(x)$ over $G F(q)$ is the coefficient of x^{n-1}. Carlitz [Proc. Amer. Math. Soc., 3 (1952), pp. 693-700] obtained an expression $I_{q}(n, t)$ for the number of monic irreducible polynomials over $G F(q)$ of degree n and trace t. Using a different approach, we derive a simple explicit expression for $I_{q}(n, t)$. If $t>0, I_{q}(n, t)=\left(\sum \mu(d) q^{n / d}\right) /(q n)$, where the sum is over all divisors d of n which are relatively prime to q. This same approach is used to count $L_{q}(n, t)$, the number of q-ary Lyndon words whose characters sum to $t \bmod q$. This number is given by $L_{q}(n, t)=\left(\sum \operatorname{gcd}(d, q) \mu(d) q^{n / d}\right) /(q n)$, where the sum is over all divisors d of n for which $\operatorname{gcd}(d, q) \mid t$. Both results rely on a new form of Möbius inversion.

Key words. irreducible polynomial, trace, finite field, Lyndon word, Möbius inversion
AMS subject classifications. 05T06, 11T06

PII. S0895480100368050

1. Introduction. The trace of a degree n polynomial $f(x)$ over $G F(q)$ is the coefficient of x^{n-1}. It is well known that the number of degree n irreducible polynomials over $G F(q)$ is given by

$$
\begin{equation*}
I_{q}(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}, \tag{1.1}
\end{equation*}
$$

where $\mu(d)$ is the Möbius function. Less well known is the formula

$$
\begin{equation*}
I_{2}(n, 1)=\frac{1}{2 n} \sum_{\substack{d \mid n \\ d \text { odd }}} \mu(d) 2^{n / d}, \tag{1.2}
\end{equation*}
$$

which is the number of degree n irreducible polynomials over $G F(2)$ with trace 1 (this can be inferred from results in Jungnickel [3, section 2.7]). One purpose of this paper is to refine (1.1) and (1.2) by enumerating the irreducible degree n polynomials over $G F(q)$ with a given trace. Carlitz [1] also solved this problem, arriving via a different technique at an expression that is different but equivalent to the one given below. Our version of the result is stated in Theorem 1.1.

Theorem 1.1. Let q be a power of prime p. The number of irreducible polynomials of degree $n>0$ over $G F(q)$ with a given nonzero trace t is

$$
\begin{equation*}
I_{q}(n, t)=\frac{1}{q n} \sum_{\substack{d \mid n \\ p \nless}} \mu(d) q^{n / d} . \tag{1.3}
\end{equation*}
$$

[^0]Note that the expression on the right-hand side of (1.3) is independent of t and that $I_{q}(n, 0)$ can be obtained by subtracting

$$
I_{q}(n, 0)=I_{q}(n)-(q-1) I_{q}(n, 1)
$$

A Lyndon word is the lexicographically smallest rotation of an aperiodic string. If $L_{q}(n)$ denotes the number of q-ary Lyndon words of length n, then it is well known that $L_{q}(n)=I_{q}(n)$. The trace of a Lyndon word is the sum of its characters mod q. Let $L_{q}(n, t)$ denote the number of Lyndon words of trace t. The second purpose of this paper is to obtain an explicit formula for $L_{q}(n, t)$. This result is stated in Theorem 1.2.

Theorem 1.2. For all integers $n>0, q>1$, and $t \in\{0,1, \ldots, q-1\}$,

$$
L_{q}(n, t)=\frac{1}{q n} \sum_{\substack{d|n \\ \operatorname{gcd}(d, q)| t}} \operatorname{gcd}(d, q) \mu(d) q^{n / d}
$$

Note that $I_{q}(n, t)=L_{q}(n, s)$ whenever $t \neq 0$ and $\operatorname{gcd}(n, s)=1$. In order to prove Theorems 1.1 and 1.2 we need a new form of Möbius inversion. This is presented in the next section.
2. A generalized Möbius inversion formula. The defining property of the Möbius functions is

$$
\begin{equation*}
\sum_{d \mid n} \mu(d)=\llbracket n=1 \rrbracket \tag{2.1}
\end{equation*}
$$

where $\llbracket P \rrbracket$ for proposition P represents the "Iversonian convention": $\llbracket P \rrbracket$ has value 1 if P is true and value 0 if P is false (see [4, p. 24]).

Definition 2.1. Let \mathcal{R} be a set, $\mathbb{N}=\{1,2,3, \ldots\}$, and let $\{X(d, t)\}_{t \in \mathcal{R}, d \in \mathbb{N}}$ be a family of subsets of \mathcal{R}. We say that $\{X(d, t)\}_{t \in \mathcal{R}, d \in \mathbb{N}}$ is recombinant if
(i) $X(1, t)=\{t\}$ for all $t \in \mathcal{R}$ and
(ii) $\left\{e^{\prime} \in X\left(d^{\prime}, e\right): e \in X(d, t)\right\}=\left\{e \in X\left(d d^{\prime}, t\right)\right\}$ for all $d, d^{\prime} \in \mathbb{N}, t \in \mathcal{R}$.

ThEOREM 2.2. Let $\{X(d, t)\}_{t \in \mathcal{R}, d \in \mathbb{N}}$ be a recombinant family of subsets of \mathcal{R}. Let $A: \mathbb{N} \times \mathcal{R} \rightarrow \mathcal{C}$ and $B: \mathbb{N} \times \mathcal{R} \rightarrow \mathcal{C}$ be functions, where \mathcal{C} is a commutative ring with identity. Then

$$
A(n, t)=\sum_{d \mid n} \sum_{e \in X(d, t)} B\left(\frac{n}{d}, e\right)
$$

for all $n \in \mathbb{N}$ and $t \in \mathcal{R}$ if and only if

$$
B(n, t)=\sum_{d \mid n} \mu(d) \sum_{e \in X(d, t)} A\left(\frac{n}{d}, e\right)
$$

for all $n \in \mathbb{N}$ and $t \in \mathcal{R}$.
Proof. Consider the sum, call it S, on the right-hand side of the first equation

$$
\begin{aligned}
S & =\sum_{d \mid n} \sum_{e \in X(d, t)} B\left(\frac{n}{d}, e\right) \\
& =\sum_{d \mid n} \sum_{e \in X(d, t)} \sum_{d^{\prime} \mid(n / d)} \sum_{e^{\prime} \in X\left(d^{\prime}, e\right)} \mu\left(d^{\prime}\right) A\left(\frac{n}{d d^{\prime}}, e^{\prime}\right) \\
& =\sum_{d \mid n} \sum_{d d^{\prime} \mid n} \mu\left(d^{\prime}\right) \sum_{e \in X(d, t)} \sum_{e^{\prime} \in X\left(d^{\prime}, e\right)} A\left(\frac{n}{d d^{\prime}}, e^{\prime}\right) .
\end{aligned}
$$

Now substitute $f=d d^{\prime}$ and use recombination to get

$$
\begin{aligned}
S & =\sum_{d \mid n} \sum_{f \mid n} \llbracket f=d d^{\prime} \rrbracket \mu\left(\frac{f}{d}\right) \sum_{e \in X(d, t)} \sum_{e^{\prime} \in X\left(d^{\prime}, e\right)} A\left(\frac{n}{f}, e^{\prime}\right) \\
& =\sum_{f \mid n} \sum_{d \mid f} \mu\left(\frac{f}{d}\right) \sum_{e \in X(f, t)} A\left(\frac{n}{f}, e\right) \\
& =\sum_{f \mid n} \sum_{e \in X(f, t)} A\left(\frac{n}{f}, e\right) \sum_{d \mid f} \mu\left(\frac{f}{d}\right) \\
& =\sum_{f \mid n} \sum_{e \in X(f, t)} A\left(\frac{n}{f}, e\right) \llbracket f=1 \rrbracket \\
& =A(n, t) .
\end{aligned}
$$

Verification in the other direction is similar and is omitted.
Lemma 2.3. Let $d \in \mathbb{N}$ and e, t be members of an additive monoid \mathcal{R}. The sets $\{e: d e=t\}$ form a recombinant family.

Proof. Here de means $e+e+\cdots+e$ (d terms). Suppose that $d e=t$ and $d^{\prime} e^{\prime}=e$. Clearly, $d d^{\prime} e^{\prime}=t$. Conversely, if $d d^{\prime} e^{\prime}=t$, then $d^{\prime} e^{\prime}$ is equal to some element of \mathcal{R}, call it e. Then $d^{\prime} e^{\prime}=e$ and $d e=t$.

Corollary 2.4. For a fixed prime power q, the sets $X_{q}(d, t)=\{e \in G F(q)$: $d e=t\}$ form a recombinant family of subsets of $G F(q)$.

Corollary 2.5. For a fixed integer q, the sets $X_{q}(d, t)=\left\{e \in \mathbb{Z}_{q}: d e \equiv t(q)\right\}$ form a recombinant family of subsets of \mathbb{Z}_{q}, where \mathbb{Z}_{q} are the integers mod q.
3. Irreducible polynomials with given trace. In this section, the irreducible polynomials with a given trace are counted. We begin by introducing some notation that will be used in the remainder of the paper. We use Jungnickel [3] as a reference for terminology and basic results from finite field theory.

The trace of an element $\beta \in G F\left(q^{n}\right)$ over $G F(q)$ is denoted $\operatorname{Tr}(\beta)$ and is given by

$$
\operatorname{Tr}(\beta)=\beta+\beta^{q}+\beta^{q^{2}}+\cdots+\beta^{q^{n-1}}
$$

If $\beta \in G F\left(q^{n}\right)$ and d is the smallest positive integer for which $\beta^{q^{d}}=1$, then $f(x)$ is the minimal polynomial of β, denoted $\operatorname{Min}(\beta)$, where

$$
f(x)=(x-\beta)\left(x-\beta^{q}\right) \cdots\left(x-\beta^{q^{d-1}}\right)
$$

The value of d must be a divisor of n.
Let $\operatorname{Irr}_{q}(n, t)$ denote the set of all monic irreducible polynomials over $G F(q)$ of degree n and trace t. By $a \cdot \operatorname{Irr}_{q}(n, t)$ we denote the multiset consisting of a copies of $\operatorname{Irr}_{q}(n, t)$. Classic results of finite field theory imply the following equality of multisets:

$$
\begin{equation*}
\bigcup_{\beta \in \mathrm{GF}\left(q^{n}\right)}\{\operatorname{Min}(\beta)\}=\bigcup_{d \mid n} d \cdot \operatorname{Irr}_{q}(d)=\bigcup_{d \mid n} \frac{n}{d} \cdot \operatorname{Irr}_{q}\left(\frac{n}{d}\right) \tag{3.1}
\end{equation*}
$$

where $\operatorname{Irr}_{q}(d)$ is the set of monic irreducible polynomials of degree d over $G F(q)$. From (3.1) it is easy to derive (1.1) via a standard application of Möbius inversion.

Now we restrict the equality (3.1) to trace t field elements to obtain

$$
\begin{align*}
\bigcup_{\substack{\beta \in \operatorname{GF}\left(q^{n}\right) \\
\operatorname{Tr}(\beta)=t}}\{\operatorname{Min}(\beta)\} & =\bigcup_{d \mid n} \frac{n}{d} \cdot\left\{f \in \operatorname{Irr}_{q}\left(\frac{n}{d}\right): \operatorname{Tr}\left(f^{d}\right)=t\right\} \tag{3.2}\\
& =\bigcup_{d \mid n} \frac{n}{d} \cdot\left\{f \in \operatorname{Irr}_{q}\left(\frac{n}{d}\right): d \cdot \operatorname{Tr}(f)=t\right\} \tag{3.3}\\
& =\bigcup_{d \mid n} \bigcup_{d e=t} \frac{n}{d} \cdot\left\{f \in \operatorname{Irr}_{q}\left(\frac{n}{d}\right): \operatorname{Tr}(f)=e\right\} \tag{3.4}\\
& =\bigcup_{d \mid n} \bigcup_{d e=t} \frac{n}{d} \cdot\left\{f \in \operatorname{Irr}_{q}\left(\frac{n}{d}, e\right)\right\} \tag{3.5}
\end{align*}
$$

Note that the equation $d e=t$ is asking whether the d-fold sum of $e \in G F(q)$ is equal to $t \in G F(q)$. We use the notation $G F\left(q^{n}, t\right)$ for the set of elements in $G F\left(q^{n}\right)$ with trace t, for $t=0,1, \ldots, q-1$, where $q=p^{m}$ and p is prime. Consider the map ρ that sends α to $\alpha+\gamma$, where $\gamma \in G F\left(q^{n}\right)$ has trace 1 . We claim that $\rho\left(G F\left(q^{n}, t\right)\right)=G F\left(q^{n}, t+1\right)$, and so the number of elements is the same for each trace value. Thus

$$
\left|G F\left(q^{n}, t\right)\right|=q^{n-1}
$$

Taking cardinalities in (3.5) gives

$$
q^{n-1}=\sum_{d \mid n} \sum_{d e=t} \frac{n}{d} I_{q}\left(\frac{n}{d}, e\right)
$$

From Theorem 2.2 and Corollary 2.4, we obtain

$$
I_{q}(n, t)=\frac{1}{q n} \sum_{d \mid n} \sum_{d e=t} \mu(d) q^{n / d}
$$

The equation $d e=t$ where d is an integer and $e, t \in G F(q)$ has a unique solution e if $t \neq 0$ and $p \nmid d$. If $t=0$, then there is one solution $e=0$ if $p \nmid d$ and there are q solutions if $p \mid d$. Thus, if $t \neq 0$, then

$$
I_{q}(n, t)=\frac{1}{q n} \sum_{\substack{d \mid n \\ p \nmid d}} \mu(d) q^{n / d}
$$

thereby proving Theorem 1.1. Otherwise, if $t=0$, then

$$
I_{q}(n, 0)=I_{q}(n, 1)+\frac{1}{n} \sum_{\substack{d|n \\ p| d}} \mu(d) q^{n / d}
$$

4. Lyndon words with given trace. If $\mathbf{a}=a_{1} a_{2} \cdots a_{n}$ is a word, then we define its trace $\bmod q, \operatorname{Tr}(\mathbf{a})$, to be $\sum a_{i} \bmod q$. Let $L_{q}(n, t)$ denote the number of q-ary Lyndon words of length n and trace $t \bmod q$. Note that any q-ary string of length n can be expressed as the concatenation of d copies of the rotation of some Lyndon word of length n / d for some $d \mid n$. Note further that there are precisely q^{n-1}
words of length n with trace t because any word of length $n-1$ can have a final nth character appended in only one way to have trace t. It therefore follows that

$$
\begin{equation*}
q^{n-1}=\sum_{d \mid n} \sum_{d e \equiv t(q)} \frac{n}{d} L_{q}\left(\frac{n}{d}, e\right) \tag{4.1}
\end{equation*}
$$

This can be solved using Theorem 2.2 and Corollary 2.5 to yield

$$
n L_{q}(n, t)=\sum_{d \mid n} \mu(d) \sum_{d e \equiv t(q)} q^{n / d-1}
$$

Hence

$$
\begin{equation*}
L_{q}(n, t)=\frac{1}{q n} \sum_{\substack{d|n \\ \operatorname{gcd}(q, d)| t}} \operatorname{gcd}(q, d) \mu(d) q^{n / d} \tag{4.2}
\end{equation*}
$$

Equation (4.2) is true because $d e \equiv t(q)$ has a solution if and only if $\operatorname{gcd}(d, q) \mid t$. If a solution exists, then it has precisely $\operatorname{gcd}(d, q)$ solutions (e.g., [2, Corollary 33.22, p. 821]). This proves Theorem 1.2.

We could also consider the more general question of computing $L_{q, r}(n, t)$, the number of q-ary Lyndon words with trace $\bmod r$, and derive similar but more complicated formulae. If $M_{q}(n, t)$ is the number of q-ary length n strings whose characters sum to t, then clearly $M_{q}(1, t)=\llbracket 0 \leq t<q \rrbracket$ and for $n>1$

$$
M_{q}(n, t)=\sum_{i=0}^{q} M_{q}(n-1, t-i)
$$

If $T_{q, r}(n, t)$ denotes the number of q-ary length n strings with trace $\bmod r$ equal to t, then

$$
T_{q, r}(n, t)=\sum_{s \equiv t(r)} M_{q}(n, s)
$$

Using the same approach as before

$$
L_{q, r}(n, t)=\frac{1}{n} \sum_{d \mid n} \mu(d) \sum_{d e \equiv t(r)} T_{q, r}\left(\frac{n}{d}, e\right)
$$

The equation for $L_{q, r}(n, t)$ seems to produce no particularly nice formulae, except in the case seen previously where $q=r$ or if $q=2$. When $q=2, M_{2}(n, t)=\binom{n}{t}$ and

$$
T_{2, r}(n, t)=\sum_{s \equiv t(r)}\binom{n}{s}
$$

However, in this case there is already a well-known formula for the number of Lyndon words with k 1's, namely,

$$
P_{2}(n, k)=\frac{1}{n} \sum_{d \mid \operatorname{gcd}(n, k)} \mu(d)\binom{n / d}{k / d}
$$

from which we obtain $L_{2, r}(n, t)=\sum_{s \equiv t(2)} P_{2}(n, s)$.
5. Final remarks. Our generalized Möbius inversion theorem can be extended to a Möbius inversion theorem on posets. Background material on Möbius inversion on posets may be found in Stanley [5]. We state here the modified definition of recombinant and the inversion theorem but omit the proof.

Definition 5.1. Let \mathcal{P} be a poset, let \mathcal{R} be a set, and let $\{X(y, x, t)\}_{x, y \in \mathcal{P}, y \preceq x, t \in \mathcal{R}}$ be a family of subsets of \mathcal{R}. The family $\{X(y, x, t)\}_{x, y \in \mathcal{P}, y \preceq x, t \in \mathcal{R}}$ is recombinant if
(i) $X(x, x, t)=\{t\}$ for all $t \in \mathcal{R}$ and
(ii) $\left\{e^{\prime} \in X(z, y, e): e \in X(y, x, t)\right\}=\{e \in X(z, x, t)\}$ for all $z \preceq y \preceq x \in$ $\mathcal{P}, t \in \mathcal{R}$.

We note that if \mathcal{P} is the divisor lattice and \mathcal{R} is an additive monoid, then the collection $\{X(x, y, t)\}_{x, y \in \mathcal{P}, x \leq y, t \in \mathcal{R}}$ where $X(x, y, t)=\{e \in \mathcal{R}:(y / x) e=t\}$ is recombinant, as per Lemma 2.3.

THEOREM 5.2. Let \mathcal{P} be a poset, let \mathcal{R} be a set, and let $\{X(y, x, t)\}_{x, y \in \mathcal{P}, y \preceq x, t \in \mathcal{R}}$ be a recombinant family. Let $A: \mathcal{P} \times \mathcal{R} \rightarrow \mathcal{C}$, and $B: \mathcal{P} \times \mathcal{R} \rightarrow \mathcal{C}$, be functions where \mathcal{C} is a commutative ring with identity. Then

$$
A(x, t)=\sum_{y \preceq x} \sum_{e \in X(y, x, t)} B(y, e)
$$

for all $x \in \mathcal{P}$ and $t \in \mathcal{R}$ if and only if

$$
B(x, t)=\sum_{y \preceq x} \mu(y, x) \sum_{e \in X(y, x, t)} A(y, e)
$$

for all $x \in \mathcal{P}$ and $t \in \mathcal{R}$. (Here $\mu(y, x)$ is the Möbius function of the poset \mathcal{P}.)
Tables of the numbers $I_{q}(n, t)$ and $L_{q}(n, t)$ for small values of q and n may be found on Frank Ruskey's combinatorial object server (COS) at www.theory.csc.uvic.ca/ $\sim \cos / \mathrm{inf} /\{$ lyndon.html, irreducible.html $\}$. They also appear in Neil Sloane's on-line encyclopedia of integer sequences (at http://www.research.att.com/ njas/sequences/) as $I_{2}(n, 0)=L_{2}(n, 0)=\mathrm{A} 051841, I_{2}(n, 1)=L_{2}(n, 1)=\mathrm{A} 000048, I_{3}(n, 0)=L_{3}(n, 0)=$ $\mathrm{A} 046209, I_{3}(n, 1)=L_{3}(n, 1)=\mathrm{A} 046211, L_{4}(n, 0)=\mathrm{A} 054664, I_{4}(n, 1)=L_{4}(n, 1)=$ $\mathrm{A} 054660, L_{5}(n, 0)=\mathrm{A} 054661, I_{5}(n, 1)=L_{5}(n, 1)=\mathrm{A} 054662, L_{6}(n, 0)=\mathrm{A} 054665$, $L_{6}(n, 1)=\mathrm{A} 054666, L_{6}(n, 2)=\mathrm{A} 054667, L_{6}(n, 3)=\mathrm{A} 054700$.

Acknowledgment. The authors wish to thank Aaron Gulliver for helpful discussions regarding this paper.

REFERENCES

[1] L. Carlitz, A theorem of Dickson on irreducible polynomials, Proc. Amer. Math. Soc., 3 (1952), pp. 693-700.
[2] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, McGraw-Hill, New York, 1990.
[3] D. Jungnickel, Finite Fields: Structure and arithmetics, B.I. Wissenschaftsverlag, Mannheim, Germany, 1993.
[4] D.E. Knuth, R.L. Graham, and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1989.
[5] R.P. Stanley, Enumerative Combinatorics, Vol. I, Cambridge University Press, Cambridge, UK, 1997.

[^0]: *Received by the editors January 10, 2000; accepted for publication (in revised form) January 2, 2001; published electronically April 3, 2001.
 http://www.siam.org/journals/sidma/14-2/36805.html
 ${ }^{\dagger}$ Department of Computer Science, University of Victoria, EOW 348, 3800 Finnerty Road, P.O. Box 3055-MS 7209, Victoria, BC V8W 3P6, Canada (fruskey@csr.uvic.ca, jsawada@csr.uvic.ca). The research of these authors was supported in part by NSERC.
 ${ }^{\ddagger}$ Department of Mathematics and Statistics, University of Victoria, Clearihue Building, Room D268, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada (crmiers@math.uvic.ca).

