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Abstract. The trace of a degree n polynomial f(x) over GF (q) is the coefficient of xn−1. Carlitz
[Proc. Amer. Math. Soc., 3 (1952), pp. 693–700] obtained an expression Iq(n, t) for the number
of monic irreducible polynomials over GF (q) of degree n and trace t. Using a different approach,
we derive a simple explicit expression for Iq(n, t). If t > 0, Iq(n, t) = (

∑

µ(d)qn/d)/(qn), where
the sum is over all divisors d of n which are relatively prime to q. This same approach is used to
count Lq(n, t), the number of q-ary Lyndon words whose characters sum to t mod q. This number is
given by Lq(n, t) = (

∑

gcd(d, q)µ(d)qn/d)/(qn), where the sum is over all divisors d of n for which
gcd(d, q)|t. Both results rely on a new form of Möbius inversion.
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1. Introduction. The trace of a degree n polynomial f(x) over GF (q) is the co-
efficient of xn−1. It is well known that the number of degree n irreducible polynomials
over GF (q) is given by

Iq(n) =
1

n

∑

d|n

µ(d)qn/d,(1.1)

where µ(d) is the Möbius function. Less well known is the formula

I2(n, 1) =
1

2n

∑

d|n
d odd

µ(d)2n/d,(1.2)

which is the number of degree n irreducible polynomials over GF (2) with trace 1 (this
can be inferred from results in Jungnickel [3, section 2.7]). One purpose of this paper
is to refine (1.1) and (1.2) by enumerating the irreducible degree n polynomials over
GF (q) with a given trace. Carlitz [1] also solved this problem, arriving via a different
technique at an expression that is different but equivalent to the one given below.
Our version of the result is stated in Theorem 1.1.

Theorem 1.1. Let q be a power of prime p. The number of irreducible polyno-
mials of degree n > 0 over GF (q) with a given nonzero trace t is

Iq(n, t) =
1

qn

∑

d|n
p-d

µ(d)qn/d.(1.3)
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Note that the expression on the right-hand side of (1.3) is independent of t and that
Iq(n, 0) can be obtained by subtracting

Iq(n, 0) = Iq(n) − (q − 1)Iq(n, 1).

A Lyndon word is the lexicographically smallest rotation of an aperiodic string.
If Lq(n) denotes the number of q-ary Lyndon words of length n, then it is well known
that Lq(n) = Iq(n). The trace of a Lyndon word is the sum of its characters mod
q. Let Lq(n, t) denote the number of Lyndon words of trace t. The second purpose
of this paper is to obtain an explicit formula for Lq(n, t). This result is stated in
Theorem 1.2.

Theorem 1.2. For all integers n > 0, q > 1, and t ∈ {0, 1, . . . , q − 1},

Lq(n, t) =
1

qn

∑

d|n
gcd(d,q)|t

gcd(d, q)µ(d)qn/d.

Note that Iq(n, t) = Lq(n, s) whenever t 6= 0 and gcd(n, s) = 1. In order to prove
Theorems 1.1 and 1.2 we need a new form of Möbius inversion. This is presented in
the next section.

2. A generalized Möbius inversion formula. The defining property of the
Möbius functions is

∑

d|n

µ(d) = [[n = 1]],(2.1)

where [[P ]] for proposition P represents the “Iversonian convention”: [[P ]] has value 1
if P is true and value 0 if P is false (see [4, p. 24]).

Definition 2.1. Let R be a set, N = {1, 2, 3, . . .}, and let {X(d, t)}t∈R,d∈N be a
family of subsets of R. We say that {X(d, t)}t∈R,d∈N is recombinant if

(i) X(1, t) = {t} for all t ∈ R and
(ii) {e′ ∈ X(d′, e) : e ∈ X(d, t)} = {e ∈ X(dd′, t)} for all d, d′ ∈ N, t ∈ R.

Theorem 2.2. Let {X(d, t)}t∈R,d∈N be a recombinant family of subsets of R.
Let A : N ×R → C and B : N ×R → C be functions, where C is a commutative ring
with identity. Then

A(n, t) =
∑

d|n

∑

e∈X(d,t)

B
(n

d
, e
)

for all n ∈ N and t ∈ R if and only if

B(n, t) =
∑

d|n

µ(d)
∑

e∈X(d,t)

A
(n

d
, e
)

for all n ∈ N and t ∈ R.
Proof. Consider the sum, call it S, on the right-hand side of the first equation

S =
∑

d|n

∑

e∈X(d,t)

B
(n

d
, e
)

=
∑

d|n

∑

e∈X(d,t)

∑

d′|(n/d)

∑

e′∈X(d′,e)

µ(d′)A
( n

dd′
, e′

)

=
∑

d|n

∑

dd′|n

µ(d′)
∑

e∈X(d,t)

∑

e′∈X(d′,e)

A
( n

dd′
, e′

)

.
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Now substitute f = dd′ and use recombination to get

S =
∑

d|n

∑

f |n

[[f = dd′]]µ

(

f

d

)

∑

e∈X(d,t)

∑

e′∈X(d′,e)

A

(

n

f
, e′

)

=
∑

f |n

∑

d|f

µ

(

f

d

)

∑

e∈X(f,t)

A

(

n

f
, e

)

=
∑

f |n

∑

e∈X(f,t)

A

(

n

f
, e

)

∑

d|f

µ

(

f

d

)

=
∑

f |n

∑

e∈X(f,t)

A

(

n

f
, e

)

[[f = 1]]

= A(n, t).

Verification in the other direction is similar and is omitted.
Lemma 2.3. Let d ∈ N and e, t be members of an additive monoid R. The sets

{e : de = t} form a recombinant family.
Proof. Here de means e+ e+ · · ·+ e (d terms). Suppose that de = t and d′e′ = e.

Clearly, dd′e′ = t. Conversely, if dd′e′ = t, then d′e′ is equal to some element of R,
call it e. Then d′e′ = e and de = t.

Corollary 2.4. For a fixed prime power q, the sets Xq(d, t) = {e ∈ GF (q) :
de = t} form a recombinant family of subsets of GF (q).

Corollary 2.5. For a fixed integer q, the sets Xq(d, t) = {e ∈ Zq : de ≡ t(q)}
form a recombinant family of subsets of Zq, where Zq are the integers mod q.

3. Irreducible polynomials with given trace. In this section, the irreducible
polynomials with a given trace are counted. We begin by introducing some notation
that will be used in the remainder of the paper. We use Jungnickel [3] as a reference
for terminology and basic results from finite field theory.

The trace of an element β ∈ GF (qn) over GF (q) is denoted Tr(β) and is given
by

Tr(β) = β + βq + βq2

+ · · · + βqn−1

.

If β ∈ GF (qn) and d is the smallest positive integer for which βqd = 1, then f(x)
is the minimal polynomial of β, denoted Min(β), where

f(x) = (x− β)(x− βq) · · · (x− βqd−1

).

The value of d must be a divisor of n.
Let Irrq(n, t) denote the set of all monic irreducible polynomials over GF (q) of

degree n and trace t. By a · Irrq(n, t) we denote the multiset consisting of a copies of
Irrq(n, t). Classic results of finite field theory imply the following equality of multisets:

⋃

β∈GF(qn)

{Min(β)} =
⋃

d|n

d · Irrq(d) =
⋃

d|n

n

d
· Irrq

(n

d

)

,(3.1)

where Irrq(d) is the set of monic irreducible polynomials of degree d over GF (q).
From (3.1) it is easy to derive (1.1) via a standard application of Möbius inversion.
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Now we restrict the equality (3.1) to trace t field elements to obtain

⋃

β∈GF(qn)
Tr(β)=t

{Min(β)} =
⋃

d|n

n

d
·
{

f ∈ Irrq

(n

d

)

: Tr(fd) = t
}

(3.2)

=
⋃

d|n

n

d
·
{

f ∈ Irrq

(n

d

)

: d · Tr(f) = t
}

(3.3)

=
⋃

d|n

⋃

de=t

n

d
·
{

f ∈ Irrq

(n

d

)

: Tr(f) = e
}

(3.4)

=
⋃

d|n

⋃

de=t

n

d
·
{

f ∈ Irrq

(n

d
, e
)}

.(3.5)

Note that the equation de = t is asking whether the d-fold sum of e ∈ GF (q)
is equal to t ∈ GF (q). We use the notation GF (qn, t) for the set of elements in
GF (qn) with trace t, for t = 0, 1, . . . , q − 1, where q = pm and p is prime. Consider
the map ρ that sends α to α + γ, where γ ∈ GF (qn) has trace 1. We claim that
ρ(GF (qn, t)) = GF (qn, t + 1), and so the number of elements is the same for each
trace value. Thus

|GF (qn, t)| = qn−1.

Taking cardinalities in (3.5) gives

qn−1 =
∑

d|n

∑

de=t

n

d
Iq

(n

d
, e
)

.

From Theorem 2.2 and Corollary 2.4, we obtain

Iq(n, t) =
1

qn

∑

d|n

∑

de=t

µ(d)qn/d.

The equation de = t where d is an integer and e, t ∈ GF (q) has a unique solution
e if t 6= 0 and p - d. If t = 0, then there is one solution e = 0 if p - d and there are q
solutions if p | d. Thus, if t 6= 0, then

Iq(n, t) =
1

qn

∑

d|n
p-d

µ(d)qn/d,

thereby proving Theorem 1.1. Otherwise, if t = 0, then

Iq(n, 0) = Iq(n, 1) +
1

n

∑

d|n
p|d

µ(d)qn/d.

4. Lyndon words with given trace. If a = a1a2 · · · an is a word, then we
define its trace mod q, Trq(a), to be

∑

ai mod q. Let Lq(n, t) denote the number
of q-ary Lyndon words of length n and trace t mod q. Note that any q-ary string of
length n can be expressed as the concatenation of d copies of the rotation of some
Lyndon word of length n/d for some d | n. Note further that there are precisely qn−1
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words of length n with trace t because any word of length n− 1 can have a final nth
character appended in only one way to have trace t. It therefore follows that

qn−1 =
∑

d|n

∑

de≡t(q)

n

d
Lq

(n

d
, e
)

.(4.1)

This can be solved using Theorem 2.2 and Corollary 2.5 to yield

nLq(n, t) =
∑

d|n

µ(d)
∑

de≡t(q)

qn/d−1.

Hence

Lq(n, t) =
1

qn

∑

d|n
gcd(q,d)|t

gcd(q, d)µ(d)qn/d.(4.2)

Equation (4.2) is true because de ≡ t(q) has a solution if and only if gcd(d, q) | t.
If a solution exists, then it has precisely gcd(d, q) solutions (e.g., [2, Corollary 33.22,
p. 821]). This proves Theorem 1.2.

We could also consider the more general question of computing Lq,r(n, t), the
number of q-ary Lyndon words with trace mod r, and derive similar but more compli-
cated formulae. If Mq(n, t) is the number of q-ary length n strings whose characters
sum to t, then clearly Mq(1, t) = [[0 ≤ t < q]] and for n > 1

Mq(n, t) =

q
∑

i=0

Mq(n− 1, t− i).

If Tq,r(n, t) denotes the number of q-ary length n strings with trace mod r equal to t,
then

Tq,r(n, t) =
∑

s≡t(r)

Mq(n, s).

Using the same approach as before

Lq,r(n, t) =
1

n

∑

d|n

µ(d)
∑

de≡t(r)

Tq,r

(n

d
, e
)

.

The equation for Lq,r(n, t) seems to produce no particularly nice formulae, except
in the case seen previously where q = r or if q = 2. When q = 2, M2(n, t) =

(

n
t

)

and

T2,r(n, t) =
∑

s≡t(r)

(

n

s

)

.

However, in this case there is already a well-known formula for the number of Lyndon
words with k 1’s, namely,

P2(n, k) =
1

n

∑

d|gcd(n,k)

µ(d)

(

n/d

k/d

)

,

from which we obtain L2,r(n, t) =
∑

s≡t(2) P2(n, s).
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5. Final remarks. Our generalized Möbius inversion theorem can be extended
to a Möbius inversion theorem on posets. Background material on Möbius inversion
on posets may be found in Stanley [5]. We state here the modified definition of
recombinant and the inversion theorem but omit the proof.

Definition 5.1. Let P be a poset, let R be a set, and let {X(y, x, t)}x,y∈P,y�x,t∈R

be a family of subsets of R. The family {X(y, x, t)}x,y∈P,y�x,t∈R is recombinant if
(i) X(x, x, t) = {t} for all t ∈ R and
(ii) {e′ ∈ X(z, y, e) : e ∈ X(y, x, t)} = {e ∈ X(z, x, t)} for all z � y � x ∈

P, t ∈ R.
We note that if P is the divisor lattice and R is an additive monoid, then the

collection {X(x, y, t)}x,y∈P,x≤y,t∈R where X(x, y, t) = {e ∈ R : (y/x)e = t} is recom-
binant, as per Lemma 2.3.

Theorem 5.2. Let P be a poset, let R be a set, and let {X(y, x, t)}x,y∈P,y�x,t∈R

be a recombinant family. Let A : P ×R → C, and B : P ×R → C, be functions where
C is a commutative ring with identity. Then

A(x, t) =
∑

y�x

∑

e∈X(y,x,t)

B(y, e)

for all x ∈ P and t ∈ R if and only if

B(x, t) =
∑

y�x

µ(y, x)
∑

e∈X(y,x,t)

A(y, e)

for all x ∈ P and t ∈ R. (Here µ(y, x) is the Möbius function of the poset P.)
Tables of the numbers Iq(n, t) and Lq(n, t) for small values of q and n may be found

on Frank Ruskey’s combinatorial object server (COS) at www.theory.csc.uvic.ca/

˜cos/inf/{lyndon.html,irreducible.html}. They also appear in Neil Sloane’s on-line
encyclopedia of integer sequences (at http://www.research.att.com/˜njas/sequences/)
as I2(n, 0) = L2(n, 0) = A051841, I2(n, 1) = L2(n, 1) = A000048, I3(n, 0) = L3(n, 0) =
A046209, I3(n, 1) = L3(n, 1) = A046211, L4(n, 0) = A054664, I4(n, 1) = L4(n, 1) =
A054660, L5(n, 0) = A054661, I5(n, 1) = L5(n, 1) = A054662, L6(n, 0) = A054665,
L6(n, 1) = A054666, L6(n, 2) = A054667, L6(n, 3) = A054700.
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