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Let S be a set with n elements. A subset R of S × S is a binary relation

(or relation) on S. The number of relations on S is 2n
2

. Equivalently, there are
2n

2

labeled bipartite graphs on 2n vertices, assuming the bipartition is fixed and
equitable.

A relation R on S is reflexive if for all x ∈ S, we have (x, x) ∈ R. The number
of reflexive relations on S is 2n(n−1).

A relation R on S is antisymmetric if for all x, y ∈ S, the conditions (x, y) ∈ R

and (y, x) ∈ R imply that x = y. The number of antisymmetric relations on S is
2n · 3n(n−1)/2.

A relation R on S is transitive if for all x, y, z ∈ S, the conditions (x, y) ∈ R and
(y, z) ∈ R imply that (x, z) ∈ R. There is no known general formula for the number
Tn of transitive relations on S. It is surprising that such a simply-stated counting
problem remains unsolved [1, 2, 3, 4, 5, 6].

A topology on S is a collection Σ of subsets of S that satisfy the following axioms:

• ∅ ∈ Σ and S ∈ Σ

• the union of any two sets in Σ is in Σ

• the intersection of any two sets in Σ is in Σ.

Note that since S is finite, our phrasing of the second axiom is correct. No one knows
a general formula for the number Un of topologies on S. Also, a topology on S is a
T0 topology if it additionally satisfies a (weak) separation axiom:

• for any pair of distinct points in S, there is a set in Σ containing one point but
not the other.

Again, no one knows a general formula for the number Vn of T0 topologies [7].
A quasi-order on S is a relation that is both reflexive and transitive. Let Qn

denote the number of such relations. Other uses of the phrase “quasi-order” exist
and so care must be taken when reviewing the literature. There is a one-to-one
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Figure 1: There are 19 labeled posets with 3 elements, that is, P3 = 19.

correspondence between the topologies on S and the quasi-orders on S; hence Qn =
Un.

A partial order on S is a quasi-order that is antisymmetric as well. Let Pn

denote the number of such relations. We usually write x ≤ y if (x, y) ∈ R and,
moreover, x < y if x �= y. There is a one-to-one correspondence between the T0
topologies on S and the partial orders on S; hence Pn = Vn.

Further connections between Pn and Qn, and between Pn and Tn, can be expressed
in terms of Stirling numbers of the second kind [1, 8]:

Qn =
n∑

k=1

Sn,kPk, Tn =
n∑

k=1




k∑
j=0

(
n

j

)
Sn−j,k−j


Pk

and hence [9, 10]
Qn ∼ Pn, Tn ∼ 2nPn

as n→∞. It is therefore sufficient to focus on just one of these sequences; we choose
{Pn}, which enumerates labeled posets (see Figure 1) as opposed to {pn}, which
enumerates unlabeled posets (see Figure 2). The existence of an edge (x, y) in any of
the graphs pictured here indicates that x < y and y is drawn above x.
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Figure 2: There are 16 unlabeled posets with 4 elements, that is, p4 = 16.

Even though a closed-form expression for Pn is unknown, progress has been made
in understanding the asymptotics of

{Pn}
∞

n=1 = {1, 3, 19, 219, 4231, 130023, 6129859, 431723379, . . .}

Kleitman & Rothschild [11] deduced that

ln(Pn)

ln(2)
=
n2

4
+O

(
n

3

2 ln(n)
)

and later sharpened this to [12]

ln(Pn)

ln(2)
=

n2

4
+

3n

2
+O (ln(n))

Building on their work, several authors [10, 13, 14, 15, 16] gave the following improve-
ment:

Pn ∼ Ca ·

√
2

π
· 2

n
2

4
+ 3n

2
+ 1

4 · n−
1

2

where n ≡ a mod 2 and a ∈ {0, 1}, and where

C1 =
∞∑

k=−∞

2−k
2

= 2.1289368272... = π · (0.8058800428...) · 2−
1

4

C0 =
∞∑

k=−∞

2−(k−
1

2
)2 = 2.1289312505... = π · (0.8058779318...) · 2−

1

4

It is interesting that the constant depends on the parity of n.
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Figure 3: There are 7 natural partial orders on {1, 2, 3}, that is, σ3 = 7.

The asymptotics of the unlabeled case [17, 18]:

{pn}
∞

n=1 = {1, 2, 5,16, 63, 318, 2045, 16999, . . .}

turn out to satisfy

pn ∼
Pn

n!
∼ Ca ·

1

π
· 2

n
2

4
+ 3n

2
+ 1

4 · en · n−n−1

thanks to a general result due to Prömel [19].
See [20, 21] for more appearances of the constants C0 and C1. It’s believed that, for

any asymptotic enumeration problem where a typical member is based on a bipartite
graph, these constants are likely to occur. Alternative representations include [16, 22]:

C1 =

√
π

ln(2)

∞∑
k=−∞

exp

(
−π2

ln(2)
k2
)
, C0 =

√
π

ln(2)

∞∑
k=−∞

(−1)k exp

(
−π2

ln(2)
k2
)

from which the strict inequality C0 < C1 becomes obvious.

0.1. Natural Partial Orders. Consider the set S = {1, 2, . . . n} equipped with
the usual total ordering ≤. A natural partial order � on S is a partial ordering
that is compatible with ≤ (meaning that if x � y, then x ≤ y). This is equivalent to
saying that (S,≤) is a linear extension of (S,�). Define σn to be the number of
natural partial orders on S, then [23, 24, 25]

{σn}
∞

n=1 = {1, 2, 7, 40, 357, 4824, 96428, 2800472, . . .}

(see Figure 3).
Brightwell, Prömel & Steger [16] proved that

σn ∼




1
2
η2 · C1 · 2

n
2

4 · n = (12.7636300229...) · 2
n
2

4 · n if n is even
1
2
η2 · C0 · 2

n
2

4 · n = (12.7635965889...) · 2
n
2

4 · n if n is odd
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where

η =
∞∏
j=1

(
1− 2−j

)
−1

= 3.4627466194...

is a digital search tree constant [26]. These constants also arise when determining the
average number λn of linear extensions of S, where S is a random poset on n points
[16, 27]:

λn ∼




η2C1

25/4C0

· (n
2
)!2 · n · 2−n/2 = (5.0414454338...) · (n

2
)!2 · n · 2−n/2

η2C0

25/4C1

· (n−1
2
)! · (n+1

2
)! · n · 2−n/2 = (5.0414190220...) · (n−1

2
)! · (n+1

2
)! · n · 2−n/2

when n is even, respectively, n is odd.
Consider instead the set S of all 2n subsets of {1, 2, . . . , n} equipped with the

usual partial ordering ⊆. Define τn in a manner analogous to σn. We observe that
λn · Pn ∼ n! · σn and wonder what the corresponding asymptotics for τn might be.

0.2. Evolving Posets. An interesting variation is as follows. What is the number
Nρ of partial orders on S with the property that a specified fraction ρ of the n(n−1)/2
pairs of distinct points are comparable? (If necessary, ρn(n− 1)/2 is rounded to the
nearest integer.) Dhar [28, 29] investigated this question in the limit as n→∞ and
proposed a lattice gas model (with infinitely many phase transitions) based on the
evolution of Nρ as ρ increases. Prömel, Steger, & Taraz [30, 31, 32] recently completed
a highly intricate analysis of Dhar’s model, and we hope to report on this later.
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[18] B. S. W. Schröder, Ordered Sets: An Introduction, Birkhäuser, 2003, pp. 277—
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