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Introduction. This is a story about

• Some surprising looking trigonometric and combinatorial sums.
• Some nice applications of elementary linear algebra.
• The way that computer algebra packages can change the way

that mathematics is done.

Before progressing we invite the reader to try to prove the following
facts.

(1)
99∑

m=1

sin
(

17mπ
100

)
sin
(

39mπ
100

)
1 + cos

(
mπ
100

) = 1037.

(2) If n ≡ 0 (mod 2) and 1 ≤ j ≤ k ≤ n then

n∑
m=1

sin
(

jmπ
n+1

)
sin
(

kmπ
n+1

)
cos
(

mπ
n+1

) = (n + 1) sin

(
jπ

2

)
sin

(
(k − 1)π

2

)
.

(3) If 1 ≤ j ≤ k ≤ n and β 6= 2 cos
(

mπ
n+1

)
is rational, then

n∑
m=1

sin
(

jmπ
n+1

)
sin
(

kmπ
n+1

)
2 cos

(
mπ
n+1

)
+ β

is rational.

(4) if n 6≡ 0 (mod 7) then

7

n

n∑
m=1

cos
(

2mπ
n

)
8 cos3

(
2mπ

n

)
+ 4 cos2

(
2mπ

n

)
− 4 cos

(
2mπ

n

)
− 1

≡ n5 (mod 7).

We came across these types of identities doing some research in Ba-
nach space geometry. In looking at certain bases, it became necessary

1
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to consider the following n× n matrix.

Tn =



1 1 0 0 . . . 0

1 1 1 0
. . .

0 1 1 1
. . .

0 0 1 1
. . .

...
. . . . . . . . . . . .

0 1


.

Maple checked the first few of these for invertibility and output the
inverses when these existed. The evidence was pretty convincing that

det(Tn) =


−1, if n ≡ 0 (mod 3)

1, if n ≡ 1 (mod 3)

0, if n ≡ 2 (mod 3).

and that if n 6≡ 2 (mod 3) then the entries of T−1
n are all either 0, 1

or −1. Actually, it isn’t too hard to write a recurrence for det(Tn).
The point however is that it is much easier to check that a matrix
S is the inverse of Tn than it is to algorithmically calculate S. Here
the computer algebra package is critical. Given T−1

3 , T−1
6 , T−1

9 and
T−1

12 , it is easy to guess the general form for T−1
n for n ≡ 0 (mod 3).

Calculating the small n cases by hand is possible, but in practice most
of us would not have had the patience to persist long enough to see the
patterns forming. In this particular case, if one lets

D =

 0 1 −1
1 −1 1

−1 1 0

 and U =

0 1 −1
0 −1 1
0 0 0


and then defines S3k to be the 3k × 3k matrix made up as

(1) S3k =


D U U . . . U
UT D U . . . U
UT UT D U
...

...
. . .

...
UT UT UT . . . D


then it is easy to check that S3kT3k = I and so S3k = T−1

3k .

Toeplitz matrices and trigonometric identities. Matrices like Tn

which are constant on all the diagonals are called Toeplitz matrices.
Toeplitz matrices and their infinite dimensional operator analogues ap-
pear in many areas of mathematics and in many applications (such
as signal processing, communications engineering and statistics). The
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links between these matrices and trigonometric series are well-known,
and so it should have come as no surprise to us that various trigono-
metric functions soon entered the picture.

You might also try to find the inverses of such matrices using el-
ementary linear algebra. Clearly Tn is self-adjoint for all n and so
there exists an orthogonal matrix Pn and a diagonal matrix E =
diag(λ1, . . . , λn) such that Tn = P ∗

nEPn. If Tn is invertible, then
T−1

n = P ∗
ndiag(λ−1

1 , . . . , λ−1
n )Pn.

Again, with a little enthusiasm, it is possible to find a recurrence
for the characteristic polynomials and solve this to find the eigenvalues
and eigenvectors1. What we actually did was to get the computer
to numerically calculate a few cases, and then stared at them! After
recognising that the eigenvalues had something to do with cos

(
jπ

n+1

)
it

didn’t take us long to guess that the eigenvalues are

λj = 1 + 2 cos

(
jπ

n + 1

)
, j = 1, . . . , n,

with corresponding eigenvectors

vj =

(
sin

(
jπ

n + 1

)
, sin

(
2jπ

n + 1

)
, . . . , sin

(
njπ

n + 1

))
.

Checking that our guesses were right was easy, since it only depends
on the identity

(2) sin((k − 1)θ) + sin(kθ) + sin((k + 1)θ) = (1 + 2 cos(θ)) sin(kθ).

Having identified n distinct eigenvalues, we have, of course, found all
of them. A small calculation shows that ||vj|| =

√
(n + 1)/2 for all j.

We now have a quite different way of expressing T−1
n . As long as n 6≡ 2

(mod 3) (in which case one of the eigenvalues is zero), then

(3) T−1
n =

n + 1

2
P diag

(
1

1 + cos
(

π
n+1

) , . . . , 1

1 + cos
(

nπ
n+1

)) P

where

P = P ∗ =


sin
(

π
n+1

)
sin
(

2π
n+1

)
. . . sin

(
nπ

n+1

)
sin
(

2π
n+1

)
sin
(

4π
n+1

)
. . . sin

(
2nπ
n+1

)
...

...
. . .

...

sin
(

nπ
n+1

)
sin
(

2nπ
n+1

)
. . . sin

(
n2π
n+1

)
 .

1We have tested this statement on some bright undergraduates.
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Multiplying out the expression in Equation (3) gives that the (j, k)th
element of T−1

n is

ajk =
n + 1

2

n∑
m=1

sin
(

jmπ
n+1

)
sin
(

kmπ
n+1

)
2 cos

(
mπ
n+1

)
+ 1

.

From Equation (1) it is not too hard to check that if n ≡ 0 (mod 3)
and we are in the top half of the matrix (that is j ≤ k), then ajk =
4
3
sin
(

2jπ
n+1

)
sin
(

2(k−1)π
n+1

)
, and so

n∑
m=1

sin
(

jmπ
n+1

)
sin
(

kmπ
n+1

)
2 cos

(
mπ
n+1

)
+ 1

=
2n + 2

3
sin

(
2jπ

n + 1

)
sin

(
2(k − 1)π

n + 1

)
.

At this stage we tried to prove this using other techniques, but this
seems, to us at least, to be quite difficult.

Having got this far, one obviously looks to see what other sorts of
identities might be proved in this way. For example, one can alter
Equation (2) slightly to get

sin((k − 1)θ) + β sin(kθ) + sin((k + 1)θ) = (β + 2 cos(θ)) sin(kθ).

As above then, we have all the eigenvalues and eigenvectors for the
Toeplitz matrices

Tβ,n =


β 1 0 . . . 0

1 β 1
. . .

0 1 β
. . .

...
. . . . . . . . .

0 β

 .

To get the process to work, you of course need to be able to guess
what T−1

β,n looks like. For many values of β (such as −2, −1, 0 or 2), a
few lines of Maple code were sufficient to have a guess, and, as before,
checking that the guess is right is easy. Some of the identities that
come from these values of β are given below.

• (β = 0) If j ≤ k ≤ n and n ≡ 0 (mod 2) then

n∑
m=1

sin
(

jmπ
n+1

)
sin
(

kmπ
n+1

)
cos
(

mπ
n+1

) = (n + 1) sin

(
jπ

2

)
sin

(
(k − 1)π

2

)
.

• (β = −2) If j ≤ k ≤ n then

n∑
m=1

sin
(

jmπ
n+1

)
sin
(

kmπ
n+1

)
2 cos

(
mπ
n+1

)
− 2

=
−j(n + 1− k)

2
.
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T−1
β,1 =

[
1

β

]

T−1
β,2 =


β

β2 − 1
− 1

β2 − 1

− 1

β2 − 1

β

β2 − 1



T−1
β,3 =



β2 − 1

β (β2 − 2)
− 1

β2 − 2

1

β (β2 − 2)

− 1

β2 − 2

β

β2 − 2
− 1

β2 − 2

1

β (β2 − 2)
− 1

β2 − 2

β2 − 1

β (β2 − 2)



T−1
β,4 =



β (β2 − 2)

β4 − 3 β2 + 1
− β2 − 1

β4 − 3 β2 + 1

β

β4 − 3 β2 + 1
− 1

β4 − 3 β2 + 1

− β2 − 1

β4 − 3 β2 + 1

β (β2 − 1)

β4 − 3 β2 + 1
− β2

β4 − 3 β2 + 1

β

β4 − 3 β2 + 1

β

β4 − 3 β2 + 1
− β2

β4 − 3 β2 + 1

β (β2 − 1)

β4 − 3 β2 + 1
− β2 − 1

β4 − 3 β2 + 1

− 1

β4 − 3 β2 + 1

β

β4 − 3 β2 + 1
− β2 − 1

β4 − 3 β2 + 1

β (β2 − 2)

β4 − 3 β2 + 1


Table 1. Inverses of Tβ,n for n = 1, 2, 3, 4.

• (β = −1) If j ≤ k ≤ n and n ≡ 0 (mod 3) then

n∑
m=1

sin
(

jmπ
n+1

)
sin
(

kmπ
n+1

)
2 cos

(
mπ
n+1

)
− 1

=
2(n + 1)

3
sin

(
jπ

3

)
sin

(
(k − 1)π

3

)
.

• (β = 2) If j ≤ k ≤ n then

n∑
m=1

sin
(

jmπ
n+1

)
sin
(

kmπ
n+1

)
cos
(

mπ
n+1

)
+ 1

= (−1)j+kj(n + 1− k).

Note that if β is rational and Tβ,n is invertible, then the Gaussian
Elimination algorithm implies that the entries in T−1

β,n are all rational.
This proves statement 3 at the beginning of the paper.

Being more optimistic, one might even try to find a formula for
general β ∈ R. Maple is of course quite happy to do all the algebra
to give you the first few cases of T−1

β,n; for n ≤ 4 these are given in
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Table 1. It is pretty clear from these matrices that there are some
special polynomials that are occuring in these formulae, the first 6 of
which are

p1(x) = x

p2(x) = x2 − 1

p3(x) = x3 − 2x

p4(x) = x4 − 3x2 + 1

p5(x) = x5 − 4x3 + 3x

p6(x) = x6 − 5x4 + 6x2 − 1

The coefficients appearing here are binomial coefficients, so for n ∈ N,
we define the polyomial pn by

pn(x) =

bn/2c∑
`=0

(−1)`

(
n− `

`

)
xn−2`.

The evidence from the first few cases is that if 1 ≤ j ≤ k ≤ n then
(j, k)th entry of T−1

β,n is

(−1)j+kpj−1(β)pn−k(β)

pn(β)
.

Since T−1
β,n must clearly be symmetric, this gives us our candidate for-

mula for this matrix. Again, one can now readily check that our can-
didate actually does the job. This depends on identities such as

β(pn−1(β)− pn−2(β)) = pn(β)

which follow easily from properties of binomial coefficients. It is not
surprising that the roots of pn are

{
2 cos

(
mπ
n+1

)}n

m=1
. We therefore have

that if β is not an element of this set of roots, and if 1 ≤ j ≤ k ≤ n
then

n∑
m=1

sin
(

jmπ
n+1

)
sin
(

kmπ
n+1

)
2 cos

(
mπ
n+1

)
+ β

=
(−1)j+k(n + 1)pj−1(β)pn−k(β)

2pn(β)
.

These same techniques will of course work with any matrix for which
you can both identify the some function of the matrix, and also identify
the eigenvalues and eigenvectors. It is not too hard (at least for small
` ∈ N) to write down the entries of T `

1,n. It is obvious that the entries
are all nonnegative integers. Thus, for all n ≥ 1, ` ≥ 0 and 1 ≤ j, k ≤ n,

2

n + 1

n∑
m=1

sin

(
jmπ

n + 1

)
sin

(
kmπ

n + 1

)
(2 cos

(
mπ

n + 1

)
+ 1)` ∈ N
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and consequently

2`+1

n + 1

n∑
m=1

sin

(
jmπ

n + 1

)
sin

(
kmπ

n + 1

)
cos`

(
mπ

n + 1

)
∈ Z.

With a little imagination one can think up different orthogonal ma-
trices to use. To simpify notation, for an (2n + 1)-tuple

c = (c−n, . . . , c−1, c0, c1, . . . , cn),

define the Toeplitz matrix Tc to be

Tc =


c0 c−1 c−2 . . . c−n

c1 c0 c−1
. . .

c2 c1 c0
. . .

...
. . . . . . . . .

cn . . . c0

 .

Thus, if c = (1, 0, . . . , 0, 1, 1, 1, 0, . . . , 0, 1) ∈ R2n+1, then knowing that

ei(k−1)θ + eikθ + e(ik+1)θ = (1 + 2 cos θ)eikθ

allows you to identify the eigenvalues for Tc as

λj = 1 + 2 cos

(
2jπ

n

)
, j = 1, . . . , n

with corresponding eigenvectors vj =
(
e2ijθ, e4ijθ, . . . , e2nijθ

)
. Here Tc

is invertible if n 6≡ 0 (mod 3). If S = (sjk) is the inverse matrix then
(by observing, guessing and checking)

sjk =


2(−1)n mod 3

3
, if |j − k|+ n ≡ 0 (mod 3),

(−1)1+(n mod 3)

3
, otherwise.

Using the diagonalization of Tc gives that

sjk =
1

n

n∑
m=1

ei(k−j)mπ/n

1 + cos
(

2mπ
n

)
so, on taking the real part and writing ` for k − j, we have that

3

n

n∑
m=1

cos(2`mπ/n)

1 + cos
(

2mπ
n

) =

{
2(−1)n mod 3, if |`|+ n ≡ 0 (mod 3),

(−1)1+(n mod 3), otherwise.
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In particular (on taking ` = 1) we see that for any n ≥ 1,

3

n

n∑
m=1

cos(2mπ/n)

1 + cos
(

2mπ
n

) ≡ 2 (mod 3).

Using the fact that

ei(k−`)θ + ei(k+`)θ = 2 cos(`θ)eikθ

we see that this same set of eigenvectors will diagonalise any Toeplitz
matrix Tc where c is of the form

(c1, . . . , c`, 0, . . . , 0, c2, c1, c0, c1, . . . , c`, 0, . . . , 0, c`, . . . , c1).

Choosing ` = 2 or 3 and cj = 1 for j ≤ ` then gives identities such as

5

n

n∑
m=1

cos(2mπ/n)

4 cos2
(

2mπ
n

)
+ 2 cos

(
2mπ

n

)
− 1

≡ n3 (mod 5)

for n 6≡ 0 (mod 5), and identity 4 at the start of this paper. (The
danger of guessing formulae is shown by the fact that the obvious guess
as to what happens if ` = 4 isn’t true!)

Stirling numbers and binomial coefficients. Moving away from
trigonometric functions, you can try your luck with other types of ma-
trices. For example, let Pn(a) denote the n × n matrix whose (j, k)th
entry is

(
j−1
k−1

)
aj−k. The powers of these ‘Pascal matrices’ were studied

in [1]. Let Bn = Pn(1) be the matrix whose entries are made of bi-
nomial coefficiants. This matrix is not diagonalizable, but Maple will
quickly find its Jordan form:

Bn = Un


1 1 0 . . . 0

0 1 1
. . .

...
. . . . . . . . . 0

...
. . . 1 1

0 . . . 0 1

U−1
n .
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For n = 6, the matrices U6 and U−1
6 are

U6 =



0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 2 1 0

0 0 6 6 1 0

0 24 36 14 1 0

120 240 150 30 1 0


, U−1

6 =



0 1
5

−5
12

7
124

−1
12

1
120

0 −1
4

11
24

−1
4

1
24

0

0 1
3

−1
2

1
6

0 0

0 −1
2

1
2

0 0 0

0 1 0 0 0 0

1 0 0 0 0 0


.

Actually, staring at the entries of these matrices didn’t immediately
lead us to any guesses as to the general formulae. Let ujk denote the
(j, k)th entry of Un. It appears that (n − k)! is a factor of ujk, so we
looked at what is left. Here we resorted to Neil Sloane’s wonderful
On-Line Encyclopedia of Integer Sequences [3] which quickly identified
the missing factors as Stirling numbers.

Let s(j, k) and S(j, k) denote the Stirling numbers of the first and
second kind. There are many fine references on these numbers (see, for
example [2] or [4] and [5]). We shall just give a quick definition. For
k ≥ 0 let (x)k denote the degree k polynomial x(x− 1) . . . (x− k + 1).
Then the Stirling numbers can be defined in terms of the following
generating functions

(x)j =

j∑
k=0

s(j, k)xk, xj =
k∑

k=0

S(j, k)(x)k

The conjecture then would be that

(4) ujk = (n− k)! S(j − 1, n− k).

Similar explorations concerning vjk = (j, k)th element of U−1
n leads one

to the belief that

vjk =
s(n− j, k − 1)

(n− j)!
.

Indeed, one can readily verify that the two matrices with these entries
are inverses using standard Stirling number identities.

Since Bn has only a one dimensional eigenspace, it is actually not too
hard to generate U . As Bn−I is a lower triangular matrix with positive
entries below the diagonal, (Bn − I)n−1 will just have a single nonzero
entry in the bottom left position. This says that the vector (1, 0, . . . , 0)
is in ker((Bn − I)n) \ ker((Bn − I)n−1). The orbit of this vector under
the matrix Bn − I will then generate a Jordan basis for Bn and hence
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give the transition matrix U . Let uk denote the vector whose jth entry
is give by the formula for ujk in (4). To check the above conjecture, one
therefore needs to check that for all k, uk−1 = (Bn − I)uk. In terms of
the entries this amounts to checking that for all j, k, n,

(n− k + 1)! S(j − 1, n− k + 1) =

j−1∑
`=1

(
j − 1

`− 1

)
(n− k)! S(`− 1, n− k),

or, on changing variables to make things look neater,

(k + 1)S(j, k + 1) =

j−1∑
`=0

(
j

`

)
S(`, k).

This is an easy consequence of the following two standard identities [2,
Section 6.1]:

S(n, m) = n S(n− 1, m) + S(n− 1, m− 1)

S(n + 1, m + 1) =
n∑

`=1

(
n

`

)
S(`, m).

Using that fact that S(j, `) = 0 for ` > j, then multiplying out
UnJU−1

n would then lead (after a small amount of simplification) to
the identity (

j

k

)
=

j∑
`=0

(s(`, k) + `s(`− 1, k)) S(j, `).

This is surely already known to those in the field, but it is interesting
to see what other identities this leads to. Formulae for powers of Bn

were given in [1]: Bm
n = Pn(m). The formula for the inverse of Pn gives

that (
j

k

)
(−1)j−k =

n∑
t=1

n∑
`=t

(−1)`−t (n− t)!

(n− `)!
s(n− `, k)S(j, n− t).

Taking mth powers of Pn then gives that (with suitable interpretation
of the factorials), for all j, k, m,(

j

k

)
mj−k =

j∑
`=0

m∑
t=0

(
m

t

)
`!

(`− t)!
s(`− t, k)S(j, `).
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Summing over k and putting m = 1 or 2 would, for example, give that

2j =

j∑
k=1

j∑
`=0

(s(`, k) + `s(`− 1, k))S(j, `)

3j =

j∑
k=0

j∑
`=0

(s(`, k) + 2`s(`− 1, k) + `(`− 1)s(`− 2, k))S(j, `).

Conclusion. As the examples in this paper show, many standard iden-
tities can be interpreted as statements about the eigenvalues (or gen-
eralized eigenvalues) of a matrix. Once one has a suitable matrix iden-
tity, then elementary linear algebra provides a powerful technique for
extracting new and more complicated identities from old ones.

Our little journey of discovery heavily underlined the power of a mod-
ern computer algebra package in providing inspiration in mathematical
investigations.
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