Unitarism and Infinitarism

Steven Finch

February 25, 2004
We will examine variations of four famous arithmetical functions. For a given function χ, let χ^{*} denote its unitary analog, $\tilde{\chi}$ its square-free analog, and χ^{\prime} its unitary square-free analog. The meanings of these phrases will be made clear in each case. At the end, the infinitary analog χ_{∞} will appear as well.
0.1. Divisor Function. If $d(n)$ is the number of distinct divisors of n, then

$$
\sum_{n=1}^{N} d(n)=N \ln (N)+(2 \gamma-1) N+O(\sqrt{N})
$$

as $N \rightarrow \infty$, where γ is the Euler-Mascheroni constant. Let us introduce a more refined notion of divisibility. A divisor k of n is unitary if k and n / k are coprime, that is, if $\operatorname{gcd}(k, n / k)=1$. This condition is often written as $k \| n$. The number $d^{*}(n)$ of unitary divisors of n is $2^{\omega(n)}$, where $\omega(n)$ is the number of distinct prime factors of n. This fact is easily seen to be true: If $p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ is the prime factorization of n, then the unitary divisors of n are of the form $p_{1}^{\varepsilon_{1} a_{1}} p_{2}^{\varepsilon_{2} a_{2}} \cdots p_{r}^{\varepsilon_{r} a_{r}}$, where each ε_{s} is either 0 or 1 . There are 2^{r} possible choices for the r-tuple $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r}\right)$; hence the result follows. We have $[1,2,3,4,5]$

$$
\sum_{n=1}^{N} d^{*}(n)=\frac{6}{\pi^{2}} N \ln (N)+\frac{6}{\pi^{2}}\left(2 \gamma-1-\frac{12}{\pi^{2}} \zeta^{\prime}(2)\right) N+O(\sqrt{N})
$$

where $\zeta(x)$ is the Riemann zeta function and $\zeta^{\prime}(x)$ is its derivative.
A divisor k of n is square-free if k is divisible by no square exceeding 1. The number $\tilde{d}(n)$ of square-free divisors of n is also $2^{\omega(n)}$; the divisors in this case are of the form $p_{1}^{\varepsilon_{1}} p_{2}^{\varepsilon_{2}} \cdots p_{r}^{\varepsilon_{r}}$. Therefore the same asymptotics apply for $\tilde{d}(n)$, but the underlying sets of numbers overlap only somewhat [6].

Define $d^{\prime}(n)$ to be the number of unitary square-free divisors of n. A more complicated asymptotic formula arises here [7, 8]:

$$
\sum_{n=1}^{N} d^{\prime}(n)=\frac{6 \alpha}{\pi^{2}} N \ln (N)+\frac{6 \alpha}{\pi^{2}}\left(2 \gamma-1-\frac{12}{\pi^{2}} \zeta^{\prime}(2)+X\right) N+O(\sqrt{N} \ln (N))
$$

[^0]where
$$
\alpha=\prod_{p}\left(1-\frac{1}{p(p+1)}\right)=0.7044422009 \ldots, \quad X=\sum_{p} \frac{(2 p+1) \ln (p)}{(p+1)\left(p^{2}+p-1\right)}
$$
and we agree that the product and sum extend over all primes p. The constant α is the same as what is called $\pi^{2} P / 6$ in [9].

We finally give corresponding reciprocal sums $[10,11,12]$:

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{\sqrt{\ln (N)}}{N} \sum_{n=1}^{N} \frac{1}{d(n)}=\frac{1}{\sqrt{\pi}} \prod_{p} \sqrt{p(p-1)} \ln \left(\frac{p}{p-1}\right)=\frac{0.9692769438 \ldots}{\sqrt{\pi}} \\
\lim _{N \rightarrow \infty} \frac{\sqrt{\ln (N)}}{N} \sum_{n=1}^{N} \frac{1}{d^{*}(n)}=\frac{1}{\sqrt{\pi}} \prod_{p} \sqrt{1+\frac{1}{4 p(p-1)}}=\frac{1.0969831191 \ldots}{\sqrt{\pi}}
\end{gathered}
$$

The former sum was mentioned in [13] with regard to the arcsine law for random divisors. It is not known what constant emerges for $1 / d^{\prime}(n)$.
0.2. Sum-of-Divisors Function. If $\sigma(n)$ is the sum of all distinct divisors of n, then

$$
\sum_{n=1}^{N} \sigma(n)=\frac{\pi^{2}}{12} N^{2}+O(N \ln (N))
$$

as $N \rightarrow \infty$. Let $\sigma^{*}(n)$ be the sum of unitary divisors of n and $\tilde{\sigma}(n)$ be the sum of square-free divisors of n. Although $d^{*}(n)=d(n)$ always, it is usually false that $\sigma^{*}(n)=\sigma(n)[14]$. We have $[15,16,17,18]$

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{n=1}^{N} \sigma^{*}(n)=\frac{\pi^{2}}{12 \zeta(3)}, \quad \lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{n=1}^{N} \tilde{\sigma}(n)=\frac{1}{2}
$$

Further, if $\sigma^{\prime}(n)$ is the sum of unitary square-free divisors of n, then [15]

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{n=1}^{N} \sigma^{\prime}(n)=\frac{1}{2} \prod_{p}\left(1-\frac{1}{p^{2}(p+1)}\right)=\frac{0.8815138397 \ldots}{2}
$$

a constant which appeared in [19] and turns out to be connected with class number theory $[20,21]$.

Corresponding reciprocal sums are [22, 23]

$$
\sum_{n=1}^{N} \frac{1}{\sigma(n)} \sim Y_{1} \ln (N)+Y_{1}\left(\gamma+Y_{2}\right), \quad \sum_{n=1}^{N} \frac{1}{\sigma^{*}(n)} \sim Y_{3} \ln (N)+Y_{3}\left(\gamma+Y_{4}-Y_{5}\right)
$$

where

$$
\begin{gathered}
Y_{1}=\prod_{p} f(p), \quad Y_{2}=\sum_{p} \frac{(p-1)^{2} g(p) \ln (p)}{p f(p)}, \\
Y_{3}=\prod_{p}\left(1-\frac{p}{p-1} \sum_{j=1}^{\infty} \frac{1}{p^{j}\left(p^{j}+1\right)}\right), \quad Y_{4}=\sum_{p}\left(\frac{p h(p) \ln (p)}{p-1} \sum_{j=1}^{\infty} \frac{j}{p^{j}\left(p^{j+1}+1\right)}\right), \\
Y_{5}=\sum_{p}\left(\frac{h(p) \ln (p)}{p^{2}} \sum_{j=0}^{\infty} \frac{1}{p^{j}\left(p^{j+1}+1\right)}\right), \quad f(p)=1-\frac{(p-1)^{2}}{p} \sum_{j=1}^{\infty} \frac{1}{\left(p^{j}-1\right)\left(p^{j+1}-1\right)}, \\
g(p)=\sum_{j=1}^{\infty} \frac{j}{\left(p^{j}-1\right)\left(p^{j+1}-1\right)}, \quad h(p)=1-\frac{p}{p-1} \sum_{j=1}^{\infty} \frac{1}{p^{j}\left(p^{j+1}+1\right)} .
\end{gathered}
$$

No one seems to have examined $1 / \tilde{\sigma}(n)$ or $1 / \sigma^{\prime}(n)$ yet.
0.3. Totient Function. If $\varphi(n)$ is the number of positive integers $k \leq n$ satisfying $\operatorname{gcd}(k, n)=1$, then $[24,25]$

$$
\sum_{n=1}^{N} \varphi(n)=\frac{3}{\pi^{2}} N^{2}+O(N \ln (N))
$$

as $N \rightarrow \infty$. Define $\operatorname{gcd}_{*}(k, n)$ to be the greatest divisor of k that is also a unitary divisor of n. Let $\varphi^{*}(n)$ be the number of positive integers $k \leq n$ satisfying $\operatorname{gcd}_{*}(k, n)=$ 1. Since gcd_{*} is never larger than gcd, it follows that φ^{*} is at least as large as φ. Also let $\tilde{\varphi}(n)$ be the number of positive square-free integers $k \leq n$ satisfying $\operatorname{gcd}(k, n)=1$. We have [15, 26]

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{n=1}^{N} \varphi^{*}(n)=\frac{1}{2} \alpha, \quad \lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{n=1}^{N} \tilde{\varphi}(n)=\frac{3}{\pi^{2}} \alpha
$$

where α is as defined earlier. The case for $\varphi^{\prime}(n)$ remains open.
Corresponding reciprocal sums are [22, 23, 27]

$$
\sum_{n=1}^{N} \frac{1}{\varphi(n)} \sim Z_{1} \ln (N)+Z_{1}\left(\gamma-Z_{2}\right), \quad \sum_{n=1}^{N} \frac{1}{\varphi^{*}(n)} \sim Z_{3} \ln (N)+Z_{3}\left(\gamma-Z_{4}+Z_{5}+Z_{6}\right)
$$

where

$$
\begin{gathered}
Z_{1}=\frac{315 \zeta(3)}{2 \pi^{4}}, \quad Z_{2}=\sum_{p} \frac{\ln (p)}{p^{2}-p+1}, \quad Z_{3}=\prod_{p} u(p), \\
Z_{4}=\sum_{p}\left(\frac{(p-1) \ln (p)}{p u(p)} \sum_{j=1}^{\infty} \frac{j}{p^{j}\left(p^{j}-1\right)}\right),
\end{gathered}
$$

$$
\begin{gathered}
Z_{5}=\sum_{p} \frac{\ln (p)}{p^{2}(p-1) u(p)}, \quad Z_{6}=\sum_{p} \frac{v(p) \ln (p)}{p^{2} u(p)} \\
u(p)=1+\frac{p-1}{p} \sum_{j=1}^{\infty} \frac{1}{p^{j}\left(p^{j}-1\right)}, \quad v(p)=\sum_{j=1}^{\infty} \frac{1}{p^{j}\left(p^{j+1}-1\right)} .
\end{gathered}
$$

0.4. Square-Free Core Function. If $\tilde{\kappa}(n)$ is the maximal square-free divisor of n (also called [9] the square-free kernel of n), then $[15,17,18,28,29,30]$

$$
\sum_{n=1}^{N} \tilde{\kappa}(n)=\frac{\alpha}{2} N^{2}+O\left(N^{3 / 2}\right)
$$

as $N \rightarrow \infty$, where α is as before. Assuming the Riemann hypothesis, the error term can be improved to $O\left(N^{7 / 5+\varepsilon}\right)$ for any $\varepsilon>0$. If $\kappa^{\prime}(n)$ is the maximal unitary square-free divisor of n, then [29, 30]

$$
\sum_{n=1}^{N} \kappa^{\prime}(n)=\frac{\beta}{2} N^{2}+O\left(N^{3 / 2}\right)
$$

where

$$
\beta=\prod_{p}\left(1-\frac{p^{2}+p-1}{p^{3}(p+1)}\right)=0.6496066993 \ldots
$$

0.5. Infinitary Arithmetic. We continue refining the notion of divisibility [31, 32]. A divisor k of n is biunitary if the greatest common unitary divisor of k and n / k is 1 , and triunitary if the greatest common biunitary divisor of k and n / k is 1 . More generally, for any positive integer m, a divisor k of n is m-ary if the greatest common $(m-1)$-ary divisor of k and n / k is 1 . We write $\left.k\right|_{m} n$. Clearly $\left.1\right|_{m} n$ and $\left.n\right|_{m} n$.

When introducing infinitary divisors, it is best to start with prime powers. Let p be a prime, and let $x \geq 0, y \geq 1$ be integers. It can be proved that, for any $m \geq y-1$, $\left.p^{x}\right|_{m} p^{y}$ if and only if $\left.p^{x}\right|_{y-1} p^{y}$. Thus we define $\left.p^{x}\right|_{\infty} p^{y}$ if $\left.p^{x}\right|_{y-1} p^{y}$. For fixed y, the number of integers $0 \leq x \leq y$ satisfying $\left.p^{x}\right|_{\infty} p^{y}$ is $2^{b(y)}$, where $b(y)$ is the number of ones in the binary expansion of y. Define as well $\left.1\right|_{\infty} 1$. The sum $\sum_{y=0}^{z-1} 2^{b(y)}$ is approximately $z^{\ln (3) / \ln (2)}$ but is not well behaved asymptotically [33].

We now allow n to be arbitrary. A divisor k of n is infinitary if, for any prime p, the conditions $p^{x}| | k$ and $p^{y}| | n$ imply that $\left.p^{x}\right|_{\infty} p^{y}$. We write $\left.k\right|_{\infty} n$. Clearly $\left.1\right|_{\infty} n$ and $\left.n\right|_{\infty} n$. Each $n>1$ has a unique factorization as a product of distinct elements from the set

$$
I=\left\{p^{2^{j}}: p \text { is prime and } j \geq 0\right\}
$$

each element of I in this product is called an I-component of n. It follows that $\left.k\right|_{\infty} n$ if and only if every I-component of k is also an I-component of n.

Assume that $n=P_{1} P_{2} \cdots P_{t}$, where $P_{1}<P_{2}<\cdots<P_{t}$ are the I-components of n. The infinitary analogs of the functions d and σ are defined by [34, 35]

$$
d_{\infty}(n)=2^{t}, \quad \sigma_{\infty}(n)=\prod_{i=1}^{t}\left(P_{i}+1\right)
$$

for $n>1$; otherwise $d_{\infty}(1)=\sigma_{\infty}(1)=1$. Two infinitary analogs of the function φ are known:

$$
\begin{gathered}
\varphi_{\infty}(n)=\text { the number of positive integers } k \leq n \text { satisfying } \operatorname{gcd}_{\infty}(k, n)=1 \\
\hat{\varphi}_{\infty}(n)=\prod_{i=1}^{t}\left(P_{i}-1\right)=n \prod_{i=1}^{t}\left(1-\frac{1}{P_{i}}\right) \text { for } n>1, \quad \hat{\varphi}_{\infty}(1)=1
\end{gathered}
$$

It is generally untrue that $\varphi_{\infty}(n)=\hat{\varphi}_{\infty}(n)$. No similar extension of the function $\tilde{\kappa}$ is known. Cohen \& Hagis [34, 36] proved that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{n=1}^{N} \sigma_{\infty}(n)=\frac{A}{2}=0.7307182421 \ldots, \\
& \lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{n=1}^{N} \hat{\varphi}_{\infty}(n)=\frac{B}{2}=0.3289358388 \ldots, \\
& \frac{1}{N^{2}} \sum_{n=1}^{N} d_{\infty}(n) \sim C N \ln (N)+D N \sim 2(0.3666252769 \ldots) N \ln (N)
\end{aligned}
$$

where

$$
A=\prod_{P \in I}\left(1+\frac{1}{P(P+1)}\right), \quad B=\prod_{P \in I}\left(1-\frac{1}{P(P+1)}\right), \quad C=\prod_{P \in I}\left(1-\frac{1}{(P+1)^{2}}\right)
$$

but no such expression for D yet exists. It is known that $\varphi_{\infty}(n)=n^{2} / \sigma_{\infty}(n)+O\left(n^{\varepsilon}\right)$ for any $\varepsilon>0$; reciprocal sums involving $d_{\infty}, \sigma_{\infty}$ and $\hat{\varphi}_{\infty}$ also remain open. Alternative generalizations of unitary divisor have been given $[37,38]$ but won't be discussed here.

REFERENCES

[1] F. Mertens, Über einige asymptotische Gesetze der Zahlentheorie, J. Reine Angew. Math. 77 (1874) 289-338.
[2] E. Cohen, The number of unitary divisors of an integer, Amer. Math. Monthly 67 (1960) 879-880; MR0122790 (23 \#A124).
[3] A. A. Gioia and A. M. Vaidya, The number of squarefree divisors of an integer, Duke Math. J. 33 (1966) 797-799; MR0202678 (34 \#2538).
[4] D. Suryanarayana and V. Siva Rama Prasad, The number of k-free divisors of an integer, Acta Arith. 17 (1970/71) 345-354; MR0327697 (48 \#6039).
[5] R. C. Baker, The square-free divisor problem, Quart. J. Math 45 (1994) 269277; part II, Quart. J. Math 47 (1996) 133-146; MR1295577 (95h:11098) and MR1397933 (97f:11080).
[6] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000005, A034444, and A056671.
[7] D. Suryanarayana, The number of unitary, square-free divisors of an integer. I, II, Norske Vid. Selsk. Forh. (Trondheim) 42 (1969) 6-21; MR0271048 (42 \#5931).
[8] D. Suryanarayana and V. Siva Rama Prasad, The number of k-ary, $(k+1)$-free divisors of an integer, J. Reine Angew. Math. 276 (1975) 15-35; MR0376574 (51 \#12749).
[9] S. R. Finch, Hafner-Sarnak-McCurley constant: Carefree couples, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 110-112.
[10] S. Ramanujan, Some formulae in the analytic theory of numbers, Messenger of Math. 45 (1916) 81-84; also in Collected Papers, ed. G. H. Hardy, P. V. Seshu Aiyar, and B. M. Wilson, Cambridge Univ. Press, 1927, pp. 133-135, 339-340.
[11] J.-M. De Koninck and J. Grah, Arithmetic functions and weighted averages, Colloq. Math. 79 (1999) 249-272; MR1670205 (2000b:11111).
[12] P. Sebah, Approximation of several prime products, unpublished note (2004).
[13] S. R. Finch, Multiples and divisors, unpublished note (2004).
[14] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000203, A034448, A048250 and A092261.
[15] E. Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Z. 74 (1960) 66-80; MR0112861 (22 \#3707).
[16] R. Sitaramachandrarao and D. Suryanarayana, On $\sum_{n \leq x} \sigma^{*}(n)$ and $\sum_{n \leq x} \varphi^{*}(n)$, Proc. Amer. Math. Soc. 41 (1973) 61-66; MR0319922 (47 \#8463).
[17] S. Wigert, Sur quelques formules asymptotiques de la théorie des nombres, Ark. Mat. Astron. Fysik, v. 22 (1931) n. 6, 1-6; v. 25 (1934) n. 3, 1-6.
[18] D. Suryanarayana, On the core of an integer, Indian J. Math. 14 (1972) 65-74; MR0330078 (48 \#8417).
[19] S. R. Finch, Artin's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 104-109.
[20] M. R. Khan, A variation on the divisor functions $\sigma_{a}(n)$, submitted (2004); available online at http://www.easternct.edu/depts/matcs/faculty/VarDiv.ps.
[21] K. A. Broughan, Restricted divisor sums, Acta Arith. 101 (2002) 105-114; MR1880301 (2002k:11155).
[22] V. Sita Ramaiah and D. Suryanarayana, Sums of reciprocals of some multiplicative functions, Math. J. Okayama Univ. 21 (1979) 155-164; MR0554306 (82d:10064a).
[23] V. Sita Ramaiah and D. Suryanarayana, Sums of reciprocals of some multiplicative functions. II, Indian J. Pure Appl. Math. 11 (1980) 1334-1355; MR0591410 (82d:10064b).
[24] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000010, A047994, A073311 and A091813.
[25] S. R. Finch, Euler totient constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 115-118.
[26] E. Kowalski, Asymptotic mean of square-free totients, unpublished note (2004).
[27] V. Sita Ramaiah and M. V. Subbarao, Asymptotic formulae for sums of reciprocals of some multiplicative functions, J. Indian Math. Soc. 57 (1991) 153-167; MR1161332 (93b:11122).
[28] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A007947 and A055231.
[29] E. Cohen, An elementary method in the asymptotic theory of numbers, Duke Math. J. 28 (1961) 183-192; MR0140496 (25 \#3916).
[30] E. Cohen, Some asymptotic formulas in the theory of numbers, Trans. Amer. Math. Soc. 112 (1964) 214-227; MR0166181 (29 \#3458).
[31] G. L. Cohen, On an integer's infinitary divisors, Math. Comp. 54 (1990) 395-411; MR0993927 (90e:11011).
[32] P. Hagis and G. L. Cohen, Infinitary harmonic numbers, Bull. Austral. Math. Soc. 41 (1990) 151-158; MR1043976 (91d:11001).
[33] S. R. Finch, Stolarsky-Harborth constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 145-151.
[34] G. L. Cohen and P. Hagis, Arithmetic functions associated with the infinitary divisors of an integer, Internat. J. Math. Math. Sci. 16 (1993) 373-383; MR1210848 (94c:11002).
[35] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A037445, A049417, A050376, A064380 and A091732.
[36] P. Sebah, Approximation of sums over $\left\{p^{2^{j}}: p\right.$ prime, $\left.j \geq 0\right\}$, unpublished note (2004).
[37] D. Suryanarayana, The number of k-ary divisors of an integer, Monatsh. Math. 72 (1968) 445-450; MR0236130 (38 \#4428).
[38] K. Alladi, On arithmetic functions and divisors of higher order, J. Austral. Math. Soc. Ser. A 23 (1977) 9-27; MR0439721 (55 \#12607).

[^0]: ${ }^{0}$ Copyright (c) 2004 by Steven R. Finch. All rights reserved.

