TILTING AND COTILTING FOR QUIVERS OF TYPE 4,
ASLAK BAKKE BUAN AND HENNING KRAUSE

ABSTRACT. Tilting and cotilting modules are classified for the completed path alge-
bra of a quiver of type A, with linear orientation. This classification problem arises
naturally in the classification of cotilting modules over certain associative algebras [5].
The combinatorics of the collection of all tilting and cotilting modules is described in
terms of Stasheff associahedra.

INTRODUCTION

Throughout we fix a field k. We consider the completion k[A] of the path algebra
of the following quiver.

More precisely, k[A] = Lmk[A] /m’ where m denotes the ideal of the path algebra
k[A] which is generated by all arrows in A. In this paper we classify all finitely
presented tilting modules and all locally finite cotilting modules over k[A]. The initial
motivation for this project is to complete the classification of all cotilting modules over
a tame hereditary algebra [5], which includes the classification of all cotilting modules
for quivers of type A, having non-linear orientation. To this end we are interested in
cotilting objects of certain Grothendieck categories which we call tubes.

Let C be an abelian Grothendieck category which is a k-category and has a generating
set of finite length objects. We say that C is a tube if the full subcategory fin C formed
by the finite length objects has the following properties:

— Hom(X,Y) and Ext'(X,Y) have finite k-dimension for all X,Y € finC;

— finC has Serre duality, that is, there is an equivalence 7: finC — finC and a
natural isomorphism D Ext'(X,Y) = Hom(Y,7X) for all X,V € finC, where
D = Homyg(—, k);

— there are only finitely many isomorphism classes of simple objects in fin C.

Note that the Auslander-Reiten quiver of finC has the shape of a tube [14] provided
that C is connected; this explains the terminology. The number of simple objects in
C is called the rank of C. Tubes arise in the category of regular modules over a tame
hereditary algebra, but also as subcategories of other abelian categories, see for instance
[2, 10]. We shall use that a tube of rank n is equivalent to the category of locally finite
k[A]-modules. Recall that a module is locally finite if it is a filtered colimit of finite
length modules.
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Next we recall the definition of a cotilting object [6] for any Grothendieck category
C. To this end we fix an object T"in C. We let Prod T" denote the category of all direct
summands in any product of copies of T. The object T is called cotilting object if the
following holds:

(C1) the injective dimension of T" is at most 1;

(02) Ext'(T*,T) = 0 for every cardinal o;

(C3) there is an exact sequence 0 — 773 — Ty — @ — 0 with each 7; in Prod T for
some injective cogenerator ().

By definition, two cotilting objects 1" and 17" are equivalent if ProdT" = Prod1”. Let
us mention a result from [5] which motivates the classification of cotilting objects.

For any locally finite Grothendieck category C, there exists a bijection between the set
of torsion pairs (T,F) for the category finC such that F generates finC, and the set
of equivalence classes of cotilting objects in C.

Our first result describes the structural properties of an arbitrary cotilting object in
a tube.

Theorem A. Let T be an object in a tube of rank n satisfying Ext"(T,T) = 0.

(1) T decomposes uniquely into a coproduct of indecomposable objects having local
endomorphism rings.

(2) T is a cotilting object if and only if the number of pairwise non-isomorphic inde-
composable direct summands of T equals n.

The classification of cotilting objects in a tube of rank n is the same as the classi-
fication of locally finite cotilting modules over k[A]. Note that k[A] is a noetherian
algebra over a complete local ring which is of artinian type, that is, each non-zero lo-
cally finite module has a non-zero artinian direct summand. For this class of algebras
we have the following.

Theorem B. Let A be a noetherian algebra over a complete local ring which is of
artinian type. Then the duality between A- and A°°-modules induces a bijection between
the equivalence classes of finitely presented A-tilting modules and the equivalence classes
of locally finite A°P-cotilting modules.

This result extends the bijection between finitely presented tilting and cotilting mod-
ules over artin algebras. It would be interesting to see a general correspondence be-
tween tilting and cotilting modules which does not depend on finiteness conditions on
the algebra.

The second part of this paper is devoted to the classification of all finitely presented
tilting modules over k[A]. It is somewhat surprising that all of them are induced from
tilting modules over the path algebra of the following quiver.

T 1 2 3 n
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The collection of all k[[']-tilting modules is best described in terms of the Stasheff
associahedron of dimension n — 1. Another connection between representations of
Dynkin quivers and generalized associahedra is discussed in [12].

Theorem C. The isomorphism classes of faithful and basic partial k[T]-tilting modules
correspond bijectively to the faces of the Stasheff associahedron of dimension n — 1.
This correspondence identifies the tilting modules with the vertices, and it identifies the
Hasse diagram of the lattice of all tilting modules with the 1-skeleton of the Stasheff
associahedron. Therefore the lattice of tilting modules is a Tamari lattice.

The collection of all faithful partial k[A]-tilting modules is obtained by glueing
together n copies of a Stasheff associahedron of dimension n — 1. This leads to a
combinatorial structure which seems to be new; it is discussed in an appendix which
is independent from the rest of this paper. It turns out that the tilting modules are
parametrized by integer sequences as follows.

Theorem D. The map sending a k[A]-module X to the sequence (ai, ... ,a,) where
a; denotes the number of composition factors of X/rad X isomorphic to the simple
with support i € A, induces a bijection between the isomorphism classes of finitely
presented basic k[A]-tilting modules and the sequences (ay,... ,a,) of non-negative
integers satisfying » . a; = n.

Acknowledgements. Work on this project started while both authors were visiting
the “Senter for Hgyere Studier” in Oslo. We would like to thank this institution for its
generous support and its hospitality. Also, we are grateful to Bill Crawley-Boevey for
suggesting the completed path algebra as the right set-up to study tubes, and we thank
Kiyoshi Igusa for pointing out the relevance of the Stasheff associahedra (cf. the formula
B.1). The idea for our classification of cotilting objects is based on a combinatorial
formula. The On-Line Encyclopedia of Integer Sequences [19] produced this formula
from the input 1,3, 10,35, which are the number of cotilting objects in tubes of rank
1,2,3,4.

1. COTILTING VERSUS TILTING

Let A be an associative R-algebra over a commutative ring R. We denote by Mod A
the category of (right) A-modules and mod A denotes the full subcategory formed by
the finitely presented A-modules. In this section we establish a connection between
cotilting objects for the category of locally finite A-modules and tilting modules over
A°P. We need to fix some notation and terminology.

Recall that a A-module is locally finite if it is a filtered colimit of finite length modules.
The full subcategory formed by the locally finite A-modules is denoted by Fin A. In
addition, we consider the full subcategories given by the noetherian A-modules (written
as noeth A), the artinian A-modules (written as art A), and the finite length A-modules
(written as fin A).

Next we recall the definition of a finitely presented tilting module. A module T" €
mod A is a tilting module if
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(T1) the projective dimension of T" is at most 1;

(T2) Exty(T,T) = 0;

(T3) there is an exact sequence 0 — A — Ty — T} — 0 with each T; in add 7.

A tilting module is called basic if each indecomposable direct summand occurs exactly
once in a direct sum decomposition. Two finitely presented tilting modules T,7T" are
equivalent if addT = add T".

Throughout this section we assume that A is a noetherian R-algebra and that R
is a complete local ring R. Let I be the injective envelope of R/rad R. The functor
D = Hompg(—,I): Mod R — Mod R induces functors between Mod A and Mod A°P
which become dualities on appropriate subcategories.

Lemma 1.1. The functor D induces inverse dualities noeth A — art A°° and art A°® —
noeth A.

We do not give the proof of this lemma but refer instead to [1, Section I1.5] for basic
facts about algebras over complete local rings.

The following characterization of a tilting module is classical. Bongartz proved it for
finite dimensional algebras [3], but the same proof works in our setting. We denote for
any module X by §(X) the number of pairwise non-isomorphic indecomposable direct
summands of X.

Lemma 1.2. A finitely presented A-module T 1is a tilting module if and only if the
following holds:

(1) the projective dimension of T is at most 1;
(2) Ext(T,T) = 0;
(3) 0(T) = n where n denotes the number of simple A-modules.
Moreover, each module satisfying (1) and (2) is a direct summand of a tilting module.

Next recall from [8] that an object X in a locally finite Grothendieck category is
endofinite if Hom(C, X') has finite length as End(X)-module for each finite length
object C'. All we need to know about endofinite objects is collected in the following
lemma.

Lemma 1.3. (1) Every endofinite object decomposes into indecomposable objects with
local endomorphism rings.
(2) A finite coproduct of endofinite objects is endofinite, and all coproducts of a fixed
endofinite object are endofinite.
(3) If X is indecomposable and endofinite, then Add X = Prod X.

Proof. See [7, Section 3] and [8, Section 3.6] O
Lemma 1.4. FEach artinian A-module is an endofinite object in Fin A.

Proof. Let X be artinian and C of finite length. One checks that Homyeo (DX, DC') has
finite length as a Endjer(DX)-module, for instance by induction on the composition
length of C'. Then apply the duality, to see that Hom, (C, X) is of finite length over
EndA(X) O



TILTING AND COTILTING FOR TYPE 4, 5

We say that the algebra A is of artinian type if each non-zero locally finite A-module
has a non-zero direct summand which is artinian. Note that ‘artinian type’ is equivalent
to ‘finite representation type’ in case A is artinian.

Proposition 1.5. Suppose A is of artinian type. Let X be a locally finite A-module
satisfying id X < 1 and Ext) (X, X) = 0.

(1) X decomposes into a coproduct of indecomposable modules with local endomor-
phism rings.

(2) 6(X) < n where n is the number of simple A-modules.

(3) Exty (X', X) = 0 for every product X' = X® taken in Fin A.

Proof. Up to isomorphism, X has only a finite number of indecomposable artinian
direct summands. This follows from Lemma 1.2, using the duality D. Label the
indecomposables X1, ..., X,. Using Zorn’s lemma, we find a maximal direct summand
X' of X which is a coproduct of modules in {X,,..., X,}. Clearly, X' = X since A is
of artinian type, and X is endofinite by Lemmas 1.3 and 1.4. Now all assertions follow
from the properties of endofinite objects. O

Lemma 1.6. Suppose A is of artinian type. Let T be a cotilting object in Fin A. Then
there exists an exact sequence 0 — Ty — Ty — D(A°®) — 0 such that T and Ty 1Ty
are equivalent cotilting objects and each T; belongs to art A N ProdT'.

Proof. We write () = D(A°P) and note that @ is an injective cogenerator for the
category Fin A. Next observe that for indecomposable objects X and Y in Fin A, we
have that Homy (X, Y) is finitely generated as End,(X)-module. This is because X
and Y are artinian by our assumption, and we have the duality art A — noeth A°P.
Now choose an exact sequence 0 — U; — Uy — (Q — 0 with U; € ProdT. We know
from Proposition 1.5 that T decomposes into a coproduct of indecomposable objects
and only finitely many isoclasses occur. We find therefore a map f: Ty — @ such
that Uy — @ factors through f and 7 decomposes into finitely many indecomposables
from ProdT. In particular, Ty € art A. We may assume that f is minimal, that is
every endomorphism ¢: Ty — Ty with fog = f is an isomorphism. Note that f factors
through Uy — @ since Ext} (Tp, U;) = 0. Thus Uy = Ty LIV} for some object Vj, and
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we obtain the following commutative diagram.

0 0

0 0

We conclude that U; =2 77 I1 V;. In particular, each T; belongs to art A N ProdT. It
remains to show that 7 I1 77 is a cotilting object which is equivalent to 7. However,
this follows from our construction, using for instance Proposition 3.1 in [5]. O

Lemma 1.7. Let Y € Mod A be artinian. Then the class of modules X satisfying
Ext} (X,Y) = 0 is closed under taking products.

Proof. We can decompose Y = Y' 11 Y” such that Y’ is injective and Y = DTrZ
for some Z € mod A°®. Now use the Auslander-Reiten formula Ext)(—, D TrZ) =
DHom,(Z,—) (see [1, Proposition 1.3.4]). Note that every map Z — [][, P, into a
product of projectives factors through a projective since [[, P; is flat. O

Lemma 1.8. Let T' € mod A°? be a tilting module. Then DT is a A-cotilting module.

Proof. Let T' € mod A°? be a tilting module. The conditions on 7" for a tilting module
translate via the duality D into the conditions on DT for a cotilting module. More
precisely, (C1) and (C3) follow immediately from (T1) and (T3). Condition (C2)
follows from (T2), using Lemma 1.7. Thus DT is a cotilting module. O

Lemma 1.9. Let A be any abelian Grothendieck category and A’ be a localizing sub-
category. If T is a cotilting object in A and belongs to A’, then T is also a cotilting
object in A'.

Proof. We use the well-known fact that in any Grothendieck category, 7' is a cotilting
object if and only if id7 < 1 and CogenT = *T, where CogenT is the class of
subobjects of products of copies of T, and T is the class of objects X satifying
Ext'(X,T) = 0.

Now assume that T is a cotilting object in A. Clearly, id 7T < 1 holds in A’ because
this is equivalent to Ext*(—,T) = 0. The inclusion functor A’ — A has a right adjoint
which preserves products. This implies that the condition CogenT = *T carries over
from A to A’ as well. In fact, Cogen ., T'= A'NCogen 4, 7. Thus T is a cotilting object
in A" O]
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Theorem 1.10. Let A be of artinian type. Then the following conditions are equivalent
for a locally finite A-module X :

(1) X is a cotilting object in Mod A.

(2) X is a cotilting object in Fin A.

(3) Prod X = Prod DT in Mod A for some finitely presented A°P-tilting module T
(4) Prod X = Prod DT in Fin A for some finitely presented A°P-tilting module T .

Moreover, the assignment T +— DT induces a bijection between the equivalence classes
of finitely presented A°P-tilting modules and the equivalence classes of locally finite A-
cotilting modules.

Proof. (1) = (2): First observe that the locally finite A-modules form a localizing
subcategory in Mod A. Now apply Lemma 1.9.

(2) = (3): Let X be a cotilting object for the category Fin A. Then X is equivalent
to an artinian cotilting object by Lemma 1.6, which is of the form DT for some tilting
module 7" € mod A°®. The proof shows that every indecomposable direct summand
of DT is a direct summand of X. Thus Prod DT C Prod X. On the other hand,
Ext} (X% X) = 0 for every product X® taken in Mod A, by Lemma 1.7, since X
decomposes into a coproduct of artinian objects. We know from Lemma 1.8 that
DT is a cotilting A-module, and combining this with Prod DT C Prod X, we obtain
Prod DT = Prod X, for instance by Proposition 3.1 in [5].

(3) = (4): This follows from the fact that the right adjoint of the inclusion Fin A —
Mod A preserves products.

(4) = (1): The module DT is a cotilting module by Lemma 1.8. The assumption
on X implies that it decomposes into indecomposables, and the isomorphism classes
which appear are precisely those appearing in a decomposition of DT. This follows
essentially from Proposition 1.5. Thus X is a cotilting module since we know it for
DT. O

Remark 1.11. The category of locally finite A-modules is usually not closed under
taking products. However, one checks easily for two locally finite tilting modules T
and 7", that Prod T = Prod T’ in Mod A if and only if Prod T = Prod 7" in Fin A.

2. TUBES

Let C be a tube of rank n and suppose that C is connected, that is, any decomposition
C = C, I C, into abelian categories implies C; = 0 or C; = 0. Note that any tube
decomposes into finitely many connected tubes. In this section we exhibit some basic
properties of C and establish an equivalence between C and the category of locally finite
An—modules.

First we recall the classification of finite length objects which is well-known: each
indecomposable object is uniserial and uniquely determinded by its socle and its com-
position length. For each simple object S and each n € N, we denote by S[n| the object
with socle S and composition length n. We obtain a chain of monomorphisms

S=851]—8(2] — -
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and denote by S[oo] the Prifer object lim S[n] which is independent of the choice of
maps. Note that each Priifer object is indecomposable injective.

Lemma 2.1. Every non-zero object in C has an indecomposable direct factor, and
every indecomposable object is of the form S[n] for some simple S and some n €
NU {oo}.

Proof. We use the fact that for each simple S and each n € N the natural map
S[n] — S[n+ 1] 11 S[n|/S

is left almost split. Now let X be a non-zero object, and fix a non-zero map f: S — X
for some simple S. Let n > 1 be the maximal number such that there is a factorization

f:8— S5 x
so that f’ is a monomorphism. We claim that f’ splits. If n = oo, then this is clear
since S[oo] is injective. Assume n < oo and f’ does not split. Then f’ factors through
the left almost split map starting in S[n]. The composite S[n] — S[n]/S — X kills S.

Therefore f factors through the natural map S — S[n + 1]. The corresponding map
S[n + 1] — X kills S by our choice of n and this is a contradiction. We conclude that

f splits. O
Denote by A, the completion of the path algebra of the following quiver.
\/

The center of A, contains a copy of the ring k[t] of power series. The generator of
this copy corresponds to the sum > . 1 Vi where ~; is the path of length n startmg
and ending in the vertex i. Note that A, is finitely generated over R so that A, is a
noetherian algebra over a complete local ring.

Lemma 2.2. The endomorphism ring of [Ig yimp. So0] is isomorphic to An.

Proof. Number the simples Si, ..., S, such that there are epimorphisms 7;: S;[oc] —
Siy1[oo] with simple kernel for each ¢ modulo n. The m; generate the endomorphism
ring of S; I1...11 S,, and we get an isomorphism onto A, by sending 7; to the arrow
P — 1+ 1. O
Proposition 2.3. The category C is equivalent to the category of locally finite A,-
modules.

Proof. The category art C is abelian and @ = [ [ 10 S[00] is an injective cogenerator.
Moreover, each object X € art C admits an injective copresentation 0 — X — Iy — I;
with each I; € add (). It follows that the opposite category is equivalent to the category
of finitely presented modules over End(Q)°P via the functor Hom(—, Q). Composing
this functor with the duality noeth A°* — art A,, induces an equivalence F': artC —
art An. This induces an equivalence C — Fin An by sending X = @Xa to @FXQ
since every object in C is a filtered colimit of finite length objects. O
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Using the equivalence between C and the category of locally finite A,-modules, we
obtain from Theorem 1.10 the following correspondence between tilting and cotilting
objects.

Corollary 2.4. The algebra A, is of artinian type. Therefore there are, up to equiva-
lence, canonical bijections between

(1) cotilting objects in a tube of rank n,

(2) locally finite cotilting modules over A,,,

(3) finitely presented tilting modules over A,,.

Proof. The bijections are established in Theorem 1.10. All we need to show is that A,
is of artinian type. However, this follows from Lemma 2.1. O

3. TILTING FOR QUIVERS OF TYPE A,

We fix a quiver of type A, with linear orientation

and denote by A, its path algebra over the field k. For each i € {1,...,n}, let P,
be the indecomposable projective A,-module having as a k-basis all paths ending in
the vertex i. Let Z(n) denote the set of intervals [i,j] in Z with 0 < i < j < n.
Each indecomposable A,-module is of the form M} ; = F; /radj _in, and we write
My = [[,cx M; for any X C Z(n). It easy to compute Exty (—,—) and we obtain the
following.

Lemma 3.1. Exty (M, M;) = 0= Exty (M, M;) if and only if the intervals I and
J are compatible, that is, I CJ or J C T orINJ = 0.

We denote for each module M by top M the factor M /rad M, and dim M denotes the
sequence (aq,...,a,) where a; is the number of composition factors of M isomorphic
to the simple P;/rad P;. The classification of the A, -tilting modules is well-known [4].

Proposition 3.2. The map sending a A,,-module M to dim(top M) induces a bijection
between the set of isomorphism classes of basic tilting modules over A,, and the set of
sequences (aq,...,a,) of non-negative integers such that Y . a; = n and Y . a; < p
foralll <p<n.

i<p

Proof. Lemma, 3.1 reduces the classification of tilting modules to the classification of
subsets X C Z(n) of cardinality n such that all elements in X are pairwise compatible.
Now everything follows from Lemma A.1 since we have for X C Z(n) that top X =
dim(top Mx). O

4. TILTING FOR QUIVERS OF TYPE fin

We fix a quiver of type A,_; with linear orientation

lsz2—>3———=>r
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and denote by A,, the completion of its path algebra over the field k. In this section the
finitely presented tilting modules over A, are classified. We present two approaches:
a reduction to the classification of the A,-tilting modules, and a reduction to the
classification of the /N\n,l—tilting modules.

For each i € {1,...,n}, we denote by P; the indecomposable projective A,-module
corresponding to the vertex i. The following figure shows the indecomposable A,,-
modules. The dots in the ith column represent the factors of P;, with Pi/raderl P,
sitting on top of Pi/radj P, for 1 <j < oc.

o 6|0 o O --- [
e o o o o --- [ J
o 6|0 o O --- [
o 6|0 o O --- [
e o o o o --- [ J
1 n

The cyclic group C,, of order n acts in an obvious way on A,, and therefore on mod A,,.
For each g € C,, and X € mod A,,, we denote by X9 the translate of X.

4.1. Classification via tilting modules over A,. Consider the embedding of quiv-
ers A, — A, 1 which sends the vertex i € A, tot € A, ;. This induces an embedding
A, — A,

Lemma 4.1. The functor

F: modA, — modA,, X X®,, A,

has the following properties:
(1) F is faithful, exact, and preserves indecomposability.
(2) Exty, (X,Y) = Ext; (FX,FY) for all X,Y € modA,.
(3) X € mod A,, belongs to the image of F iff EXt}\n (X, P,) =0.
(4) X € mod A, is tilting iff FX is tilting.

Proof. (1) This is straightforward. Note that A, is projective as a A,-module.

(2) Use the Auslander-Reiten formula Ext} (X,Y) = D Hom, (Y, D Tr X). Note that
F commutes with the Auslander-Reiten translate D Tr.

(3) An indecomposable module belongs to the image if and only if it is of the form
P;/rad’ P, with j < i. Now use again the Auslander-Reiten formula.

(4) A A-module X is a tilting module if and only if Ext} (X, X) = 0 and X has
n pairwise non-isomorphic indecomposable summands. Thus (4) follows from (1) and
(2). O
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The following figure describes the image of F'.

| o o o o --- [ J
O|O0O|O|OC | @] "" [
oO|o0o|OC|@® | @® | -"-- [ J
oO|0o || @ | @& --- [ J
oO|le | e & | @& |- [
1 n

Proposition 4.2. A A,-module is a tilting module if and only if it is isomorphic to
(F'T)¢ for some g € C,, and some A, -tilting module T. For fized g € C,,, two A, -tilting
modules T and T" are equivalent if and only if (FT)? and (FT')9 are equivalent.

Proof. We apply Lemma 4.1. There it is shown that F' preserves tilting modules. Now
suppose that T" € mod A,, is a tilting module. Then 7" has at least one indecomposable
projective summand because every module X of finite length satisfying Ethl"\n (X, X) =

0 has at most n — 1 pairwise non-isomorphic indecomposable summands. Let T =
T'IIT" and choose g € C), such that (7")9 = P,. Then TY belongs to the image of F'
by Lemma 4.1, since Ext}\ (T9,P,) = 0. Let T9 = FX. Then X is a tilting module,

again by Lemma 4.1, and T = (FX)gfl. This completes the proof. O

Corollary 4.3. The map sending a A,-module M to dim(top M) induces a bijection
between the set of isomorphism classes of basic tilting modules over A,, and the set of
sequences (a1, ..., a,) of non-negative integers such that ). a; = n.

Proof. This follows from the classification of tilting modules over A,, in Proposition 3.2,
using that top(F M) = F(top M). O

4.2. Classification via tilting modules over A,_;. Let

A,=pPI...1IP,_,UP, —PIO..IP_,IIP,=P
be the map sending (z1,...,2, 1,%,) to (z1,...,2, 1, p(z,)) with p: P, — P; be-
ing the monomorphism with simple cokernel. The composition of the induced map
HomAn(f\n, Ay) — Homjy (A, P) with the inverse of the isomorphism Homjy (P, P) —
HomAn(]\n, P) induces a ring homomorphism ¢: A, — End; (P). Clearly, End; (P)
is Morita equivalent to A,_1, and restriction of scalars along ¢ induces a fully faithful
functor ¢,: mod /~\n_1 — mod An with inverse ¢*: mod _/~\n — mod /~\n_1 induced by
P ®; —. Note that ¢ is a universal localization in the sense of Schofield [15], making
the arrow n — 1 in A, hence the map p: P, — P, in mod A, invertible. In particular,
the image of ¢, is the full subcategory of modules X in mod A,, with Homj (S1,X) =0
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and Ext}xn(Sl,X) = 0, since S; = Coker p. The following figure illustrates the image
of ¢,.

o o | o o o ® | O
® | 6| ® O | o ® | O
|| O e |0 ® | O
e | Ol @ | O ® | O
c|le|e | e | © ® | O
1 n

The embedding mod A1 — mod A, via ¢, is not appropriate for our purpose; we
need a slight modification. To this end we consider the full subcategory X of modules X
in mod A,, satisfying Extlﬂn (X,S;) =0 and Extlﬂn(Sl, X) = 0, which in addition have
no direct summand isomorphic to S;. We denote by I: X — mod A, the inclusion
functor.

Lemma 4.4. The functor ¢*oI: X — modA,_; is an equivalence.

Proof. The functor ¢* is a left adjoint of the embedding ¢,. Denoting by ) the image of
0., we see that the composite ¢, o ¢* leaves almost all indecomposables in X unchanged,
except the indecomposables X € X with soc X = Sy, which are sent to X/soc X. Thus
the following diagram commutes.

The assertion follows by composing ¢, - ¢* with ¢*, since ¢* o ¢, = id

mod /N\n,l :
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We denote by G = Io(¢*oI)"! the composite of I with an inverse of ¢*oI. The
following figure illustrates the image of G.

o o |0 o o - ® | O
® | 6|6 e O ® | O
| 6| ® O | e ® | O
|| O e |0 ® | O
oO|0O|e|@®@ | @ ® | O
1 n

Lemma 4.5. The functor G: mod A,_; — mod A, has the following properties:
(1) G is fully faithful. )
(2) Extlﬂn (X,Y) = Extlﬂn(GX, GY) for all X, Y € mod A,,_;.

—1
(3) X € mod A, belongs to the image of G iff Ext}\n (X,5)=0= Ext}xn(Sl,X) and
no direct summand of X is isomorphic to Si.

Proof. (1) and (3) follow immediately from the definition of G and Lemma 4.4. To
prove (2) one uses the Auslander-Reiten formula. O

Proposition 4.6. Letn > 1. A A,-module is a tilting module if and only if it is either
projective or isomorphic to (SILGT)? for some g € C,, some Ay _i-tilting module T,
and some non-zero S € add Sy. For fized g € C,, two An_y-tilting modules T and T"
are equivalent if and only if (S1 ILGT)? and (S; L1 GT")Y are equivalent.

Proof. Let T € mod A, be a tilting module and suppose for simplicity that 7" is basic.
Let dim(topT) = (ay,...,a,). Suppose first a; # 0 for all i. We claim that in this
case 1" is projective. In fact, T" has a projective indecomposable direct summand, say
P, since there is no tilting module of finite length. We have EXt,lgn(PiH/U, P) #0
for all proper factors P;11/U of P,y;. Thus P is a summand of 7. Proceeding
by induction, we see that T is projective. Now assume a, = 0 and a; # 0. It is
easily checked that this implies Extlﬂn (T,S1) = 0 and Ext}\n(Sl,T) = 0. Thus T
has a decomposition T' = T' I1 S; with 7" = GU for some module A,,_;-module U,
by Lemma 4.5. Moreover, U is a tilting module. Thus any non-projective A,-tilting
module is of the form (S I GU)? for some g € C),, some A,_1-tilting module U, and
some non-zero S € add S;. The converse of this statement is an immediate consequence
of Lemma 4.5. This completes the proof. O

5. THE COLLECTION OF ALL TILTING MODULES

In this section we study the collection of all tilting modules over a fixed algebra A.
We assume that mod A is a Krull-Schmidt category. Thus it is sufficient to study basic
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tilting modules. Recall that an object is basic, if each indecomposable direct summand
occurs exactly once in a direct sum decomposition. Let T" and U be finitely presented
tilting modules. One defines

T<U < T+-CcUt

where T+ = {X € mod A | Ext} (T, X) = 0}. This defines a partial ordering on the set
of isomorphism classes of basic tilting modules which we denote by T (A).

There is an alternative description of this partial ordering because T+ = GenT
where Gen T denotes all factors of finite coproducts of copies of 7" in mod A.

Lemma 5.1. Suppose every indecomposable A-module is uniserial, that is, the lattice
of submodules forms a chain. Then T < U if and only every indecomposable summand
of T is a factor of some indecomposable summand of U.

The poset T(A) has been studied by various authors. Recent work of Happel and
Unger [11] describes the Hasse diagram of this poset in terms of a graph defined by
Riedtmann and Schofield [13].

We are also interested in the set S(A) of isomorphism classes of finitely presented
A-modules which are faithful, basic, and selforthogonal. Recall that a module X is
selforthogonal if Ext) (X, X) = 0. For X,Y € S(A) we define X <Y if X is isomorphic
to a direct summand of Y.

From now on we fix n > 1 and assume that A is the completed path algebra of a
quiver of type A, or A,_; with linear orientation. Thus A = A, or A = A,. The
combinatorial analysis of 7(A) is based on the description of the indecomposable A-
modules via intervals. To each interval I in Z(n) or Z(n) we assign the indecomposable
M. This is by definition the factor of the projective P; of composition length [—1 where
t =sup I and [ = card I. Note that the M; provide a complete list of indecomposable
A-modules. In order to describe T (A), we use the Tamari lattice C(n) and its variation
C(n), which are defined and discussed in the appendix.

Theorem 5.2. The assignment X — My = ]_[IeX M7y induces isomorphisms
C(n) =5 T(A,) and C(n) = T(A,)

of partially ordered sets.
Proof. The fact that both maps are well-defined bijections follows from the classification
of the tilting modules for A, in Proposition 3.2, and for A, in Corollary 4.3. For the
partial ordering in 7 (A) we use the description given in Lemma 5.1. The lemma given
below translates the factor relation between indecomposable A-modules into a relation
between the corresponding intervals. The relation I — .J between intervals is precisely
the one used for the definition of the partial ordering on C(n) and C(n). Thus both
maps respect the poset structure and the proof is complete. O
Lemma 5.3. Let I,J € IZ(n) or I,J € I(n).

(1) There is a monomorphism M; — My if and only if I — J.



TILTING AND COTILTING FOR TYPE A, 15
(2) There is an epimorphism M; — My if and only if I — J.
Proof. Clear. U

Next we describe the cover relation in 7(A). This is based on the analysis of C(n)
and C(n) in the appendix.

Proposition 5.4. Let T,T7' € T(A). Then T covers T" or T" covers T if and only if
T and T' have precisely n — 1 indecomposable direct summands in common.

Proof. For A, apply Lemma A.4, and for A, use Proposition B.2 to reduce from C(n)
to C(n). O

Proposition 5.5. For T,T" € T(A) the following are equivalent:
(1) T covers T".
(2) There are decompositions T = To 1 X and T' = T{ 11 X such that Ty and T} are
indecomposable with a monomorphism Ty — X and an epimorphism X — Tj.
(3) There are decompositions T =Ty L1 X and T" = Ty 1 X such that Ty and T} are
indecomposable with a monomorphism Ty — Xo and an epimorphism Xo — T}
for some indecomposable summand Xy of X.

Proof. Apply Lemma A.5 and Proposition B.2. O

We end this section with a description of S(A) which is the analogue of our results
on 7 (A). We refer to the appendix for the definitions of B(n) and B(n).

Theorem 5.6. The assignment X +— My = [],. M induces isomorphisms
B(n) = S(A,) and B(n) = S(A,)
of partially ordered sets.

Proof. First observe that a A,-module is faithful if and only if the indecomposable
projective of maximal dimension appears as a direct summand. Thus a subset X C
Z(n) corresponds to a faithful and selforthogonal module My if and only if X belongs
to B(n). This follows from Lemma 3.1.

Now let A = /~\n. Observe that a /~\n—m0dule is faithful if and only if there is a non-
zero projective direct summand. Thus every faithful selforthogonal module lies, up to
a cyclic permutation, in the image of F', by Lemma 4.1. Note that F'(Mx) = M- (x)
for each X € B(n). Thus F commutes with the embedding B(n) — B(n). We conclude
that X — My induces an isomorphism B(n) — S(A,). O

APPENDIX A. STASHEFF ASSOCIAHEDRA

Fix an integer n > 1. The Stasheff associahedron of dimension n — 1 is a convex
polyhedron whose faces are indexed by the meaningful bracketings of a string of n + 1
letters [17, 20]. We shall identify the Stasheff associahedron with its poset of faces.
This can be described as follows. Let Z(n) be the set of intervals [i, j] = {4,i+1,...,j}
in Z with 0 < 7 < 7 < n. Two intervals I,.J are said to be compatible if I C J or
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J CTorINnJ = Denote by B(n) the set of all subsets X C Z(n) such that
[0,n] € X and all intervals in X are pairwise compatible. The set B(n) is ordered
by inclusion. In fact, B(n) is a lattice and we identify it with the lattice of faces
of the Stasheff associahedron of dimension n — 1 by identifying an interval [¢, j| with
the bracketing x¢ ... (x;...x;)...x, of the string ;. ..x,. This identification is order
reversing, that is, X C Y in B(n) if and only if the face corresponding to X contains
the face corresponding to Y. In particular, a set X € B(n) of cardinality p corresponds
to a face of dimension n — p. Note that the cardinality of a set in B(n) is bounded by
n.

A vertex of B(n) is by definition an element in B(n) having cardinality n. The set of
vertices of B(n) is denoted by C(n). Let us give an alternative description of the set of
vertices. To this end define top X for each X C Z(n) to be the sequence (ay,...,a,)
with a, = card{I € X |supl =p} for 1 <p < n.

Lemma A.1. The map sending X € C(n) to top X induces a bijection between C(n)
and the set of sequences (ay,...,a,) of non-negative integers such that » . a;, =n and
> icp @ < p for all1 < p < n. In particular, the cardinality of C(n) equals the Catalan

number C(n) = —=(*")

T nt+l\n

Proof. Identifying X € C(n) with a bracketing of a string zg...z,, the sequence
topX = (ai...,a,) represents the positions of the closing brackets. Clearly, top X
satisfies ) . a; = n and ZKp a; < p for all p. Moreover, each bracketing is determined
by this data. O

We define the following relations on the set Z(n) of intervals:
I —1I <= infl=infl and card ] < card I';
I I <= supl=supl and cardl > cardI'.

Given subsets X and X' of Z(n), we define X ~— X' if for each I € X there exists
I' € X' with I ~— I'. Analogously, X' — X if for each I € X there exists I' € X’ with
I'— 1.

Lemma A.2. The set C(n) is partially ordered via
X'>X <— X'+ X.
Proof. Transitivity is clear. Now suppose X > X’ > X. Both sets have cardinality

n. The assumption implies that all intervals in X U X' are pairwise compatible. Thus
X=X\ O
Remark A.3. Let X, X' € C(n). Then one can show that X’ — X if and only if
X' — X.

It turns out that C(n) is in fact a lattice, which appears as Tamari lattice in the
literature [18, 16]. The Tamari lattice can be described in many ways via the known
bijections between families of Catalan objects. Our description seems to be new. It is
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related to the usual definition via the covering relation in C(n). Recall that an element
x in a poset covers another element ' if {y | x >y > 2'} = {z,2'}.

Lemma A.4. Let X,X' € C(n). Then X covers X' or X' covers X if and only if
X N X' has cardinality n — 1.

Lemma A.5. Let X, X' € C(n) and Y = X N X'". Then the following are equivalent:
(1) X covers X'.
(2) Y has cardinalityn — 1 and X — Y — X'
(3) There are intervals I,1' such that X =Y U{I} and X' =Y U{I'}. Moreover,
[UI'eY and I — (IUT') — I

The proofs of Lemma A.4 and Lemma A.5 are elementary, but rather technical and
therefore omitted. A key observation is the following. Given I € X € C(n) with
I # [0, n], there exists I' € X \ {I} such that either I ~— I" or I' — 1.

Corollary A.6. The Hasse diagram of the Tamari lattice C(n) equals the 1-skeleton
of the Stasheff associahedron B(n).

The following figure shows the Hasse diagram of C(3).

(1,0,2) (0,2,1)

(0,0,3) ——— > (0,1,2)

APPENDIX B. CIRCULAR ASSOCIAHEDRA

Fix an integer n > 1. We need some notation. Given X C Z and z € Z, we define
X 42z ={x+ 2|z € X}. This definition extends to subsets X C 2% and X C 2(2).

Let Z be the set of possibly infinite intervals I C Z with sup I < co. Two intervals
I and J are said to be n-equivalent if there exists z € Z such that J = I + zn. We
denote by 7 (n) the set of equivalence classes of n-equivalent intervals from Z. Next
consider the projection

z if z >0,

7 {0.1.2.3.. .. —
T {0.1,2,3,...}, = {0 if 2 < 0.

This induces an injective map 7*: Z(n) — Z(n) which takes I € Z(n) to the equivalence
class of m~1(I). We define B(n) to be the set of subsets of Z(n) which are of the form
7(X) + z for some X € B(n) and some z € Z. Thus we have an injective map

B(n) — B(n), X = (X)),
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and viewing this as an identification, we get

We note that B(n) is partially ordered by inclusion.

A wvertex of B(n) is by definition an element in B(n) having cardinality n. The set
of vertices of B(n) is denoted by C(n). Each X € B(n) is a set of equivalence classes
of intervals in Z. Thus we can define top X = (a4, ..., a,) with a, = card{/ € X | p =
sup I (modn)} for 1 < p < n. Note that for each I € I(n), the values inf I and sup I
are well-defined modulo n.

Lemma B.1. The map sending X € C(n) to top X induces a bijection between C(n)

and the set of sequences (a1, ..., a,) of non-negative integers such that ) .a; = n. In

particular, the cardinality of é(n) equals (2::11).

Proof. We use the embedding C(n) — C(n) via 7* and the description of C(n) via integer
sequences in Lemma A.1. Given a sequence (ay,...,a,), there is a cyclic permutation
(ak,...,a_1) such that Y7  ap;1 < pforall 1 < p < n. Thus each sequence is of
the form top X for some X € C(n). On the other hand, two elements X, X’ in C(n)
get identified in C(n) after a cyclic permutation, that is 7*(X") = 7*(X) + p for some
p, if and only if top X' is a cyclic permutation of top X. O

We define the following relations on the set Z(n) of intervals:

I—1 <= infl=infl'(modn)and cardI < cardI’;
I -1 <= supl=supl'(modn)and card] > cardI'.

As in Section A, this induces relations X — X' and X — X' for subsets X, X’ of Z(n).
Moreover, one obtains a partial ordering on the set C(n) via

X'>X <— X' - X.

Next we describe the poset structure of C (n). We use two approaches: a description
via C(n) and a description via C(n — 1). It is convenient to identify each element X in
C(n) or C(n) with the integer sequence top X. We define 1 = (1,...,1) and for each
i € {1,...,n} we denote by 0; the sequence (ay,...,a,) with a; = n and a; = 0 for
J# .

Proposition B.2. The poset C(n) has the following properties:

(1) 1 is the unique mazimal element.

(2) {0; | 1 <i < n} is the set of minimal elements.
(3) Each set of elements has a supremum.
(4)

4) The natural embedding C(n) — C(n) induces an isomorphism of posets between
C(n) and the interval [0, 1].
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Proof. The assertions follow from some elementary properties of the embedding C(n) —
C(n). This embedding sends X to 7*(X) and we observe that top X = topa*(X).
Moreover X < Y in C(n) if and only if 7*(X) < #*(Y). Finally, we note that each
X € C(n) contains at least one infinite interval, say I with ¢ = sup I, and this implies
0, < X. 0

The following figure shows the Hasse diagram of C(3).

(3,0,0) (2,1,0) (1,2,0)
(2,0,1) (0,3,0)
\ (1,1,1) /

(1,0,2) (0,2,1)

N/

(0,0,3) ———— > (0,1,2)
Proposition B.3. Let n > 1. The map
Cin—1) —C(n), (ai,...,an_1)+— (a1 +1,az,...,0a,_1,0)

induces an isomorphism of posets onto its image. Moreover, the image is interval
closed.

Proof. The assertion follows from an explicit description of the embedding C(n —1) —
C(n). The map sends X € C(n—1) to a(X)U{S}, where S is the n-equivalence class
of the interval [0,1], and a: Z(n — 1) — Z(n) sends the n — l-equivalence class of an
interval I C Z with sup € {1,...,n — 1} to the n-equivalence class of the interval
I' C Z with sup I’ = sup [ and

card I' card if cardl <supl,
T =
1+ card I if card I > sup /.

Note that I — J if and only if a(I) — a(J). O

Corollary B.4. Viewing the injective maps C(n) — C(n) and C(n — 1) — C(n) as
identifications, we have

n—1

C(n) = UC(n)+p and  C(n)\ {1} = Oé(n—1)+p.

p=0
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The first equation says that the poset C~(n) is the union of n copies of the Tamari
lattice C(n). Kiyoshi Igusa pointed out to us that this fact can be expressed numerically
by the following inclusion-exclusion formula. Note that the cardinality of C(n) is (2"_1),

n—1
wheras the cardinality of C(n) is the Catalan number C(n) = 5 (*").

(B.1) (2”_ 1) =S )T E Y Cm)Cm) )

n—1 :
=1 ni+...+n;=n

Note that all n; in this formula are positive integers. We do not know whether the
Hasse diagram of C(n) arises as the 1-skeleton of a polytope.
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