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Abstract

Let G×
+ be the graph on the vertex-set the positive integers N, with n joined to m

if n 6= m and for some x, y ∈ N we have x+y = n and x ·y = m . A pair of triangles
sharing an edge (i.e., a K4 with an edge deleted) and containing three consecutive
numbers is called a 2-fan, and three triangles on five numbers having one number in
common and containing four consecutive numbers is called a 3-fan. It will be shown
that G×

+ contains 3-fans, infinitely many 2-fans and even arbitrarily large “bundles”
of triangles sharing an edge. Finally, it will be shown that χ

(
G×

+

) ≥ 4.

1 Motivation

If we colour the positive integers N with finitely many colours, then, by Ramsey’s Theorem,
we find two one-to-one sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 in N such that each set

{
xn + xm : n, m ∈ N, n 6= m

}
and

{
yn · ym : n, m ∈ N, n 6= m

}

is monochromatic. On the other hand, it is known (cf. [HS, Chapter 17.2]) that one can
colour the positive integers with finitely many colours in such a way that there is no
one-to-one sequence 〈xn〉∞n=1 such that

{
xn + xm : n, m ∈ N, n 6= m} ∪ {

xn · xm : n, m ∈ N, n 6= m
}

is monochromatic. However, it is not known if for any finite colouring of N there are
distinct x and y in N, such that x + y and x · y are monochromatic (see also [HS, Ques-
tion 17.18]). Moreover, it is not even known if there are x and y in N, not both equal to
2, such that x + y and x · y are monochromatic.
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Let us state this problem in terms of graphs: Let G×
+ = (N, E) be the graph on the

vertex-set the positive integers N, with (n, m) ∈ E if n 6= m and for some x, y ∈ N we
have n = x + y and m = x · y . Notice that for all n ∈ N, (n, n + 1) ∈ E (this is just
because n = 1 · n and n + 1 = 1 + n). If we colour N, then a monochromatic edge of
G×

+ is an edge (n, m) such that n has the same colour as m. Now, the question reads as
follows: If we colour N with finitely many colours, does G×

+ has a monochromatic edge?
If there would be a 2-colouring of N such that G×

+ has just finitely many monochromatic
edges, then we could easily construct a finite colouring of N such that no edge of G×

+ is
monochromatic. But it is not hard to show that G×

+ has arbitrarily “large” triangles,
and therefore, for any 2-colouring of N, G×

+ has arbitrarily “long” monochromatic edges.
In fact, for any positive integer m there are x0, y0, x1, y1, x2, y2 ∈ N such that m <
min{x0, y0, x1, y1, x2, y2} and x0 + y0 = x1 + y1, x1 · y1 = x2 + y2 and x0 · y0 = x2 · y2. To
see this, fix some positive integer m and let a ∈ N be such that a > m. Let h be any
positive integer and define x0, x1, x2, and n as follows: x0 = 2ha2, x1 = a, x2 = ha, and
n = 4ha2 − h − a. Further, let y0 = n − x0 = 2ha2 − h − a, y1 = n − x1 = 4ha2 − h − 2a,
and y2 = x1 · y1 − x2 = 2a(2ha2 − h − a). Now, by definition we have x0 + y0 = x1 + y1

and x1 · y1 = x2 + y2, and in addition we also get x0 · y0 = 2ha2(2ha2 − h − a) = x2 · y2,
and m < min{x0, y0, x1, y1, x2, y2}.

A pair of triangles sharing an edge (i.e., a K4 with an edge deleted) and containing
3 consecutive numbers is called a 2-fan, and three triangles on 5 numbers having one
number in common and containing 4 consecutive numbers is called a 3-fan. In the sequel
it will be shown that G×

+ contains 3-fans, infinitely many 2-fans and even arbitrarily large
“bundles” of triangles sharing an edge, and an algorithm is provided to generate such
“bundles”. Further, it will be shown that χ

(
G×

+

) ≥ 4.
Acknowledgement: I would like to thank Imre Leader who lighted my interest in this
topic by his excellent talk at the 15th September Meeting of the Cumann Matamaitice na
hÉireann in Cork (Ireland). Further, I would like to thank Stephanie Halbeisen for many
hints and fruitful discussions, and the referee for numerous extremely helpful suggestions
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2 Fans

For a positive integer `, an `-fan is a subgraph of G×
+ of the following type:

n //

%%LLLLLLLLLLLLLLLLLLLLLLLLL n − 1 //

��=
==

==
==

==
==

==
==

==
n − 2 //

��

. . . // n − `

yyrrrrrrrrrrrrrrrrrrrrrrr

m

where an arrow from n to m indicates that there are x, y ∈ N with x+y = n and x ·y = m
respectively.

The following result provides a characterization of `-fans.
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Theorem 2.1. For `, n, m ∈ N with n > `, the integers n, n − 1, . . . , n − `, m are the
vertices of an `-fan if and only if there are positive integers a and b with b ≤ a such
that n = a + b + 2ab + `, m = a(a + 1)b(b + 1), and for each t ∈ {1, 2, . . . , ` − 1},√

(a + b + t + 1)2 + 4abt is an integer.

Proof. Sufficiency: For each i ∈ {0, 1, . . . , `} let

ki =
(n − i) − √

(a + b + ` − i)2 + 4ab(` − 1 − i)

2
.

Then, by assumption, for i ∈ {0, 1, . . . , ` − 2}, ki is rational with denominator at most
2, and by definition, for i ∈ {0, 1, . . . , `}, ki(n − i − ki) = m. So, to complete the proof
of the sufficiency we only need to show that each ki is an integer. For this one has by
direct computation that k` = (a + 1)b and k`−1 = ab. For i ∈ {0, 1, . . . , ` − 2}, if one had
that ki were a fraction with denominator 2 (in lowest terms) one would conclude from the
equation ki(n− i− ki) = m that m is a fraction with denominator 4, which is impossible
since m is an integer.

Necessity: Given i ∈ {0, 1, . . . , `}. Since we have an arrow from n − i to m, there is a
positive integer ki ≤ (n − i)/2 such that ki(n − i − ki) = m. Solving this equation for ki

and using the fact that ki ≤ (n − i)/2 we get

ki =
(n − i) − √

(n − i)2 − 4m

2
. (1)

Let c =
√

(n − ` + 1)2 − 4m and let d =
√

(n − `)2 − 4m. Since k`−1 and k` are integers,
c and d are integers as well. Further we have c2−d2 = 2(n−`)+1, which shows that c−d
is odd. Notice also that n > `, so c− d > 1. Since every square is the sum of consecutive
odd numbers we have c2 =

∑c
j=1(2j − 1) and d2 =

∑d
j=1(2j − 1), and therefore

c2 − d2 =

c∑

j=d+1

(2j − 1) =

c−d∑

j=1

(2d + 2j − 1) .

Let b = (c − d − 1)/2 and let a = d + b, then

c2 − d2 =

2b+1∑

j=1

(2a − 2b + 2j − 1)

= (2a − 2b − 1)(2b + 1) + (2b + 1)(2b + 2)

= (2b + 1)(2a + 1) .

Since c2 − d2 = 2(n− `) + 1 we get n = a + b + 2ab + `, and since d2 = (n− `)2 − 4m and
d = a − b we get m = a(a + 1)b(b + 1). Finally, substituting the values of n and m in (1)
we get that for each i ∈ {0, 1, . . . , `},

ki =
(n − i) − √

(a + b + ` − i)2 + 4ab(` − 1 − i)

2
,

which implies that for each t ∈ {1, 2, . . . , `−1}, √
(a + b + t + 1)2 + 4abt is an integer. a
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Theorem 2.1 shows that each `-fan n, n− 1, . . . , n− `, m is characterized by a tuple (a, b),
and accordingly, let us call (a, b) the characteristic of the `-fan n, n − 1, . . . , n − `, m.
Further, let us say that an `-fan n, n − 1, . . . , n − `, m is of type d if d = a − b, where
(a, b) is its characteristic.

Certain types of 2-fans. In the following we will see that for d = 0, 1, 2, 3, the graph
G×

+ contains infinitely many 2-fans of type d.

Proposition 2.2. G×
+ contains infinitely many 2-fans of type 0.

Proof. By Theorem 2.1, n, n − 1, n − 2, m is a 2-fan of type 0 if and only if n = 2(a +
a2 + 1), m = a2(a + 1)2 and

√
(2a + 2)2 + 4a2 is an integer. Now,

√
(2a + 2)2 + 4a2 =

2
√

a2 + (a + 1)2, which is an integer if and only if there is an integer c such that

a2 + (a + 1)2 = c2 ,

or in other words, if (a, a + 1, c) is a Pythagorean triple. It is well-known that there are
infinitely many Pythagorean triples of this form (see [Sl, A001652&A001653]). Now, for
any Pythagorean triple (a, a + 1, c) we have a2 + (a + 1)2 = c2, which implies (2a + 1)2 =
2c2 − 1. This equation holds for all pairs aj , cj, where

a0 = 0, a1 = 3, aj = 6aj−1 − aj−2 + 2 ,

and

c0 = 1,
cj

2cj+1
+

cj+1

2cj
+

2

cjcj+1
= 3

(cf. [Sl, A001652&A001653]). So, for any positive integer j, nj , nj − 1, nj − 2, mj is a
2-fan of type 0, where nj = 2(aj + a2

j + 1) and mj = a2
j (aj + 1)2. By the way, also cj is

involved, namely kj
0 = (cj − 1)2/2, where kj

0(nj − kj
0) = mj . a

Proposition 2.3. G×
+ contains infinitely many 2-fans of type 1.

Proof. By Theorem 2.1, n, n − 1, n − 2, m is a 2-fan of type 1 if and only if n = 2a2 + 1,
m = a2(a2 − 1) and

√
8a2 + 1 is an integer. Now, 8a2 + 1 is odd, and thus, if 8a2 + 1

is a square, then there is a t such that 8a2 + 1 = (2t + 1)2. Consequently we get 8a2 =
4t2 + 4t = 4t(t + 1), which implies

a2 =
t(t + 1)

2
,

or in other words, a2 is a triangular number. The numbers aj such that a2
j is triangular

we get by the following recursion (cf. [Sl, A001109]):

a0 = 0, a1 = 1, aj = 6aj−1 − aj−2 .

So, for any integer j ≥ 2, nj , nj − 1, nj − 2, mj is a 2-fan of type 1, where nj = 2a2
j + 1

and mj = a2
j(a

2
j − 1). a
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Proposition 2.4. G×
+ contains infinitely many 2-fans of type 2.

Proof. By Theorem 2.1, n, n− 1, n− 2, m is a 2-fan of type 2 if and only if n = 2a(a− 1),
m = (a− 2)(a− 1)a(a+1) and

√
8a(a − 1) is an integer. Now, 8a(a− 1) = 16a(a− 1)/2,

and thus, if 8a(a− 1) is a square, then so is a(a− 1)/2 is a square as well, but a(a− 1)/2
is a triangular number. In other words, 8a(a− 1) is a square if and only if the triangular
number a(a − 1)/2 is a square. The numbers aj such that aj(aj − 1)/2 is a square are
given by the following recursion (cf. [Sl, A055997]):

a0 = 1, a1 = 2, aj = 6aj−1 − aj−2 − 2 .

So, for any integer j ≥ 2, nj, nj − 1, nj − 2, mj is a 2-fan of type 2, where nj = 2aj(aj − 1)
and mj = (aj − 2)(aj − 1)aj(aj + 1). a
Proposition 2.5. G×

+ contains infinitely many 2-fans of type 3.

Proof. By Theorem 2.1, n, n−1, n−2, m is a 2-fan of type 3 if and only if n = 2a(a−2)−1,
m = (a−3)(a−2)a(a+1) and

√
8a2 − 16a + 1 is an integer. Now, if 8a2−16a+1 = c2 for

some odd integer c = 2t + 1, then 8a2 − 16a = 4t(t + 1), and thus, a2 − 2a is a triangular
number. In other words, 8a2 − 16a + 1 is a square if and only if a2 − 2a is triangular. If
we set ã = a − 1, then ã2 − 1 = a2 − 2a, and thus, 8a2 − 16a + 1 is a square if and only
if ã2 − 1 is triangular. The numbers ãj such that ã2

j − 1 is triangular are given by the
following recursion (cf. [Sl, A006452]):

ã0 = 1, ã1 = 2, ã2 = 4, ã3 = 11, ãj = 6ãj−2 − ãj−4 .

So, if we put aj = ãj + 1, then for any integer j ≥ 2, nj , nj − 1, nj − 2, mj is a 2-fan of
type 3, where nj = 2aj(aj − 2) − 1 and mj = (aj − 3)(aj − 2)aj(aj + 1). a

On 3-fans. In order to find 3-fans, we have to find positive integers a and b with b ≤ a
such that

√
(a + b + 2)2 + 4ab and

√
(a + b + 3)2 + 8ab are simultaneously integers.

The following table gives a complete list of 3-fans for 1 ≤ a ≤ 104:

a b type n m
14 8 6 249 15120
51 35 16 3659 3341520
54 15 39 1692 712800
99 48 51 9654 23284800

132 24 108 6495 10533600
143 84 59 24254 147026880
160 81 79 26164 171097920
224 77 147 34800 302702400
260 35 225 18498 85503600
299 216 83 129686 4204418400
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a b type n m
344 285 59 196712 9673606800
407 299 108 244095 14895223200
440 116 324 102639 2633510880
450 48 402 43701 477338400
527 350 177 369780 34183749600
531 220 311 234394 13734761040
539 299 240 323163 26108082000
615 185 430 228353 13035884400
666 224 442 299261 22388788800
714 63 651 90744 2058376320

1025 511 514 1049089 275145292800
1064 80 984 171387 7342876800
1104 594 510 1313253 431156325600
1196 340 856 814819 165981095280
1287 425 862 1095665 300118618800
1295 230 1065 597228 89169141600
1420 836 584 2376499 1411933224240
1512 99 1413 300990 22647794400
2013 1679 334 6763349 11435712251040
2024 308 1716 1249119 390071959200
2024 1547 477 6265830 9815146941600
2070 120 1950 498993 62246804400
2133 559 1574 2387389 1424902358880
2184 510 1674 2230377 1243641344400
2484 868 1616 4315579 4656048400080
2716 2115 601 11493514 33025198686480
2750 143 2607 789396 155783628000
3024 402 2622 2434725 1481966085600
3311 2925 386 19375589 93853333173600
3375 3267 108 22058895 121648679064000
3401 1855 1546 12622969 39834817061760
3564 168 3396 1201239 360739098720
4047 999 3048 8090955 16365873744000
4224 3654 570 30876873 238345275168000
4514 2448 2066 22107509 122185454317920
4524 195 4329 1769082 782405442000
4575 902 3673 8258780 17051846011200
4895 805 4090 7886653 15549807873600
5031 930 4101 9363624 21919345353360
5301 3535 1766 37486909 351317029583520
5642 224 5418 2533485 1604625422400
5719 5300 419 60632422 919072558404000
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a b type n m
6062 5775 287 70027940 1225977990098400
6083 644 5439 7841634 15372786789360
6496 3249 3247 42220756 445647993336000
6699 4887 1812 65487615 1072156830544800
6930 255 6675 3541488 3135517862400
7314 4263 3051 62370744 972527330895120
7749 5312 2437 82338440 1694904550416000
8280 795 7485 13174278 43390366437600
8400 288 8112 4847091 5873549068800
8463 1359 7104 23012259 132390968935680
8700 3552 5148 61817055 955336972867200
9176 6699 2477 122955926 3779539748661600
9295 1701 7594 31632589 250155109844640

Thus, it seems that G×
+ contains quite a lot of 3-fans, and it is very likely that it

contains infinitely many 3-fans. It might even be possible that G×
+ contains infinitely

many 3-fans of a certain type. A short look at the table might suggest that the type 108
is a good candidate, but at least for a ≤ 109, there are just the three 3-fans of type 108
given in the table.

On the other hand, I could not find a single 4-fan in G×
+, even though there is no

obvious reason why 4-fans should not exist. However, for 1 ≤ a ≤ 106, there are at least
no 4-fans of type less than or equal to 5000.

3 Bundles

A set of triangles sharing an edge we call a bundle of triangles or just a bundle. If a
bundle contains ` triangles, then we call it an `-bundle. In the following we will show
that G×

+ contains `-bundles for arbitrarily large integers `.

Theorem 3.1. The graph G×
+ contains `-bundles for arbitrarily large integers `. In par-

ticular, for any positive integer `, the graph G×
+ contains subgraphs of the following type:

n

��

n1 ii

SSSSSSSSSSSSSSSSSSSSSSSS
uu

kkkkkkkkkkkkkkkkkkkkkkkkkk n2 ff

MMMMMMMMMMMMMMMMM
xx

pppppppppppppppppp
n3 __

??
??

??
??

??
?

��

~~~~~~~~~~~
. . . . . . . . . . . . n`

%%

LLLLLLLLLLLLLLLL
99

sssssssssssssss

n − 1

where an arrow from n to m indicates that there are x, y ∈ N with x+y = n and x ·y = m
respectively.
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Proof. Let ` ∈ N be given and let b ∈ N be any odd integer with b > 1. Let n = (b`+1)2/2
and note that n ∈ N since b` is odd. Further, let m = n − 1 and for each i ∈ {1, 2, . . . , `}
let

ki =
b2` − b2`−i + 2b` − 2b`−i + bi − 1

4

=
(b2`−i + 2b`−i + 1)(bi − 1)

4
,

hi =
b2` − b2`−i + 2b` − 2b`−i − bi + 1

4

=
(b2`−i + 2b`−i − 1)(bi − 1)

4
, and

ni = ki(m − ki) .

Then bi − 1, b2`−i + 2b`−i + 1, and b2`−i + 2b`−i − 1 are even, thus hi and ki are integers
for each i. Also, since b > 1 we have ki > hi > 0 for each i.

Next we claim that k1 < k2 < . . . < k` < m/2 (and consequently n1 < n2 < . . . < n`).
Indeed, for i ∈ {1, 2, . . . , ` − 1} we get

4ki+1 − 4ki = (b2`−i−1 + 2b`−i−1 + bi)(b − 1) > 0

and

k` =
b2` + 2b` − 3

4
<

b2` + 2b` − 1

4
=

m

2
.

To complete the proof we observe that for each i ∈ {1, 2, . . . , `} we have

ki(m − ki) =
b4` − b4`−2i + 4b3` − 4b3`−2i + 4b2` − 4b2`−2i − b2i + 1

16
= hi(n − hi) .

a

4 On χ
(
G×

+

)
and χ

(
Ġ×

+

)

In this section we will see that the chromatic number of G×
+ is at least 4. Moreover, even

if we delete the edges of the form (2x, x2), it can still not be 3-coloured. We show this by
giving two subgraphs with chromatic number 4, which we found with the help of Prolog.

Proposition 4.1. χ
(
G×

+

) ≥ 4.

Proof. Let G10 be the subgraph of G×
+ induced by the 10 vertices 6, 7, 8, 9, 12, 13, 14,

15, 20, and 36:
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7 //
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$$IIIIII
oo 14 9

{{vvvvvvvvvvvvvvvvv

ccHHHHHHHHHHHHHHHHH
oo

36

20

OO

where an arrow from n to m indicates that there are x, y ∈ N with x+y = n and x ·y = m
respectively.

Assume towards a contradiction that χ(G10) = 3. So, let us colour the vertices of
G10 with three colours, say x, y, and z. Without loss of generality, let us colour 8 with
colour x and 6 with colour y, denoted [8, x] and [6, y], respectively. Now, the edge (7, 6)
makes it impossible to colour 7 with y. To keep the notation short, let us write this in
the form 7 : (7, 6) → ¬y . Further, we have 7 : (8, 7) → ¬x , and thus, together with
7 : (7, 6) → ¬y , this implies [7, z].

Consequently we get the following:
12 : (7, 12) → ¬z ; 12 : (8, 12) → ¬x , thus [12, y];
9 : (9, 8) → ¬x ; 9 : (6, 9) → ¬y , thus [9, z];
20 : (9, 20) → ¬z ; 20 : (12, 20) → ¬y , thus [20, x];
36 : (12, 36) → ¬y ; 36 : (20, 36) → ¬x , thus [36, z];
13 : (13, 12) → ¬y ; 13 : (13, 36) → ¬z , thus [13, x];
14 : (9, 14) → ¬z ; 14 : (14, 13) → ¬x , thus [14, y];
15 : (8, 15) → ¬x ; 15 : (15, 14) → ¬y ; 15 : (15, 36) → ¬z ;
and thus, we get a contradiction at 15. a
Finally, let us also consider the subgraph Ġ×

+ of G×
+ defined as follows: The vertex-set

of Ġ×
+ is again the set of positive integers, and n joined to m if for some distinct x, y ∈ N

we have n = x + y and m = x · y .
Like for G×

+, we can show that the chromatic number of Ġ×
+ is at least 4, but the

subgraph which provides the counterexample is much larger.

Proposition 4.2. χ
(
Ġ×

+

) ≥ 4.

Proof. Let Ġ29 be the subgraph of Ġ×
+ induced by the 29 vertices 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 32, 33, 36, 40, 44, 45, 48, 72, 80, 84, 90, and 120.
Assume towards a contradiction that χ(Ġ29) = 3. So, let us colour the vertices of Ġ29

with three colours x, y, and z. Without loss of generality, let us colour 14 with colour
x. Since, the four numbers 13, 14, 22, and 40 form a pair of triangles sharing the edge
(13, 40), 22 must get the same colour as 14, so we have to colour 22 also with x. Now,
since 22, 23, and 120 form a triangle, 23 and 120 must get the colours y and z. Thus,
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without loss of generality, let us colour 23 with z and 120 with y. Finally, because of the
edges (24, 23) and (14, 24), and since 23 has colour z and 14 has colour x, 24 must get
colour y. So far, we have the following colouring: [14, x], [22, x], [23, z], [24, y], [120, y].

Consequently we get the following:
10 : (10, 24) → ¬y ; 11 : (11, 24) → ¬y ; 13 : (14, 13) → ¬x ; 15 : (15, 14) → ¬x ;
21 : (22, 21) → ¬x ; 25 : (25, 24) → ¬y ; 26 : (26, 120) → ¬y ; 33 : (14, 33) → ¬x ;
40 : (14, 40) → ¬x ; 44 : (24, 44) → ¬y ; 45 : (14, 45) → ¬x ; 48 : (14, 48) → ¬x ;
72 : (22, 72) → ¬x ; 80 : (24, 80) → ¬y ; 90 : (23, 90) → ¬z .

Now, let us consider the numbers 12 and 19. Each we can colour with x, y or z, thus,
there are 9 possible ways to colour these two numbers. We will see that in each case, we
get a contradiction.

[12, x], [19, x] :

11 : (12, 11) → ¬x ; 18 : (19, 18) → ¬x ; 32 : (12, 32) → ¬x ; 90 : (19, 90) → ¬x ;
33 : (33, 90) → ¬y ; 18 : (11, 18) → ¬z ; 32 : (18, 32) → ¬y ; 33 : (33, 32) → ¬z ;

and thus, we get a contradiction at 33.

[12, x], [19, y] :

20 : (12, 20) → ¬x ; 20 : (20, 19) → ¬y ; 48 : (19, 48) → ¬y ; 84 : (19, 84) → ¬y ;
84 : (20, 84) → ¬z ; 44 : (44, 84) → ¬x ; 15 : (15, 44) → ¬z ; 16 : (16, 48) → ¬z ;
16 : (16, 15) → ¬y ;

and thus, we get a contradiction at 16.

[12, x], [19, z] :

18 : (19, 18) → ¬z ; 20 : (12, 20) → ¬x ; 20 : (20, 19) → ¬z ; 21 : (21, 20) → ¬y ;
80 : (21, 80) → ¬z ; 84 : (19, 84) → ¬z ; 84 : (20, 84) → ¬y ; 44 : (44, 84) → ¬x ;
45 : (45, 44) → ¬z ; 18 : (18, 80) → ¬x ; 45 : (18, 45) → ¬y ;

and thus, we get a contradiction at 45.

[12, y], [19, x] :

20 : (12, 20) → ¬y ; 20 : (20, 19) → ¬x ; 21 : (21, 20) → ¬z ; 90 : (19, 90) → ¬x ;
90 : (21, 90) → ¬y ;

and thus, we get a contradiction at 90.

[12, y], [19, y] :

18 : (19, 18) → ¬y ; 48 : (19, 48) → ¬y ; 26 : (26, 48) → ¬z ; 84 : (19, 84) → ¬y ;
25 : (26, 25) → ¬x ; 16 : (16, 48) → ¬z ; 84 : (25, 84) → ¬z ; 44 : (44, 84) → ¬x ;
15 : (15, 44) → ¬z ; 16 : (16, 15) → ¬y ; 17 : (17, 16) → ¬x ; 10 : (10, 16) → ¬x ;
11 : (11, 10) → ¬z ; 18 : (11, 18) → ¬x ; 17 : (18, 17) → ¬z ; 72 : (17, 72) → ¬y ;
72 : (18, 72) → ¬z ;

and thus, we get a contradiction at 72.

[12, y], [19, z] :

18 : (19, 18) → ¬z ; 20 : (12, 20) → ¬y ; 20 : (20, 19) → ¬z ; 36 : (13, 36) → ¬z ;
36 : (20, 36) → ¬x ; 48 : (19, 48) → ¬z ; 15 : (15, 36) → ¬y ; 16 : (16, 48) → ¬y ;
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16 : (16, 15) → ¬z ; 17 : (17, 16) → ¬x ; 10 : (10, 16) → ¬x ; 11 : (11, 10) → ¬z ;
18 : (11, 18) → ¬x ; 17 : (18, 17) → ¬y ; 72 : (17, 72) → ¬z ; 72 : (18, 72) → ¬y ;

and thus, we get a contradiction at 72.

[12, z], [19, x] :

11 : (12, 11) → ¬z ; 20 : (12, 20) → ¬z ; 20 : (20, 19) → ¬x ; 21 : (21, 20) → ¬y ;
10 : (11, 10) → ¬x ; 21 : (10, 21) → ¬z ;

and thus, we get a contradiction at 21.

[12, z], [19, y] :

20 : (12, 20) → ¬z ; 20 : (20, 19) → ¬y ; 48 : (19, 48) → ¬y ; 26 : (26, 48) → ¬z ;
84 : (19, 84) → ¬y ; 84 : (20, 84) → ¬x ; 25 : (25, 84) → ¬z ; 26 : (26, 25) → ¬x ;

and thus, we get a contradiction at 26.

[12, z], [19, z] :

11 : (12, 11) → ¬z ; 18 : (19, 18) → ¬z ; 48 : (19, 48) → ¬z ; 10 : (11, 10) → ¬x ;
16 : (10, 16) → ¬z ; 18 : (11, 18) → ¬x ; 17 : (18, 17) → ¬y ; 16 : (16, 48) → ¬y ;
72 : (18, 72) → ¬y ; 17 : (17, 16) → ¬x ; 72 : (17, 72) → ¬z ;

and thus, we get a contradiction at 72. a
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