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Abstract

The aim of this paper is to develop a theory of linear codes over �nite chain

rings from a geometric viewpoint� Generalizing a well�known result for lin�

ear codes over �elds� we prove that there exists a one�to�one correspondence

between so�called fat linear codes over chain rings and multisets of points in pro�

jective Hjelmslev geometries� in the sense that semilinearly isomorphic codes

correspond to equivalent multisets and vice versa� Using a selected class of

multisets we show that certain MacDonald codes are linearly representable

over nontrivial chain rings�

� Introduction

In the past decade� a substantial research has been done on linear codes over �nite
rings� Traditionally authors used to focus their research on codes over integer residue
rings� especially Z�� Nowadays quite a few papers are concerned with linear codes
over other classes of rings cf� e� g� ��� 
� ��� ��� ��� �
� ��� �	� 	�� 	�� 		� �����
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The aim of this paper is to develop the fundamentals of the theory of linear codes
over the class of �nite chain rings� There are several reasons for choosing this class
of rings� First of all� it contains rings� whose properties lie closest to the properties
of �nite �elds� Hence a theory of linear codes over �nite chain rings is expected to
resemble the theory of linear codes over �nite �elds� Secondly� the class of �nite
chain rings contains important representatives like integer residue rings of prime
power order and Galois rings� Codes over such rings appeared in various contexts
in recent coding theory research� In third place� nontrivial linear codes over �nite
chain rings can be considered as multisets of points in �nite projective Hjelmslev
geometries thus extending the familiar interpretation of linear codes over �nite �elds
as multisets of points in classical projective geometries PGk� q� ����� However� there
are some di�erences between linear codes over �nite �elds and linear codes over �nite
chain rings� For instance� as a consequence of the existence of noncommutative �nite
chain rings� one is forced to distinguish between left and right linear codes� between
the left and right orthogonal of a given code etc�
In Sect� � we give some basic results on �nite modules over chain rings� In Sect� ��

we de�ne the notion of a linear code over a �nite chain ring R� along with some
basic concepts like orthogonal code� code automorphism etc� We introduce regular
partitions of Rn and prove MacWilliams�type identities for the spectra of linear codes
w� r� t� such partitions� Section 	 contains a brief introduction to projective Hjelmslev
geometries� In Sect� �� we prove that there is a one�to�one correspondence between
equivalence classes of so�called fat left linear codes over a chain ring and equivalence
classes of multisets of points in right projective Hjelmslev geometries over the same
ring� In Sect� �� we investigate codes which belong to a selected class of multisets�
We obtain chain ring analogues of the Simplex and Hamming codes and�as q�ary
images with respect to a generalized Gray map�codes with the same parameters as
the MacDonald codes�
An outline of some of the results of this paper appeared in �����

� Basic Facts on Finite Modules over Chain Rings

A ring� is called a left right� chain ring if its lattice of left right� ideals forms a
chain� The following result describes some properties of �nite left chain rings see
e� g� ��� ��� 	����

Theorem ���� For a �nite ring R with radical N �� � the following conditions are
equivalent�

�i� R is a left chain ring�

�ii� the principal left ideals of R form a chain�

�By the term �ring� we always mean an associative ring with identity � �� �� ring homomorphisms
are assumed to preserve the identity�
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�iii� R is a local ring� and N � R� for any � � N nN��

�iv� R is a right chain ring�

Moreover� if R satis�es the above conditions� then every proper left �right� ideal of R
has the form N i � R�i � �iR for some positive integer i�

In the sequel� we shall use the term chain ring to denote a �nite left and thus
right� chain ring� We shall always assume that for a chain ring R the letters N� � have
the same meaning as in Th� ���� In addition we denote by q � pr the cardinality of
the �nite �eld R�N thus R�N �� Fq � and by m the index of nilpotency of N � Since
for � � i � m � � the module N i�N i�� is a vector space of dimension � over R�N �
we have jN i�N i��j � q for � � i � m� �� and in particular jRj � qm�
The structure of chain rings can be very complicated� but the following two special

cases are worth to note� i� If R has characteristic p then R �� Fq �X� ���Xm� for some
� � Aut Fq � i� e� R is a truncated skew polynomial ring� and ii� if R has maximal�
characteristic pm then R �� GRqm� pm� is a Galois ring� cf� ���� ��� 	��� Thus the
smallest noncommutative chain ring has cardinality ��� It may be represented as
R � F��F� with operations a� b��c� d� � a�c� b�d�� a� b��c� d� � ac� ad�bc����

The upper Loewy series of a left R�module RM is the chain

M � ��M � ��M � � � � � �m��M � �mM � � ��

of submodules �iM � N iM � RM � Every quotient �
i��M��iM i � �� is a vector

space over the �eld R�N �� Fq � Similarly� the lower Loewy series of RM is the chain

M �M ��m� � � � � �M ���� � M ��� � M ��� � � ��

of submodules M ��i� � fx � M j �ix � �g� Again every quotient M ��i��M ��i���
is a vector space over R�N �� Fq � We say that �i is the period of x � M if i is
the smallest nonnegative integer such that �ix � �� and we write M� �

�
x � M j

x has period �mg� Similarly� the height of x is the largest integer i � m such that
x � �iM � If x has height i we write �i k x�
For i � N let �i � dimR�N �

i��M��iM�� Multiplication by � i� e� the map
M 	M � x	 �x� induces additive isomorphisms

�i��M�
�
M ��� � �iM

�
�� �iM��i��M� ��

Thus we have logqjM j � �� � �� � � � �� �m with �i � �i��� i� e� � � ��� ��� � � � � is
a partition of logqjM j into at most m parts� which we abbreviate as � 
 logqjM j�
In the sequel we shall write � � ��� � � � � �r� if �i � � for i � r and sometimes
� � �s��s��s� � � � if exactly sj parts of � are equal to j�

�This example is due to Kleinfeld ��	
�
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The following theorem generalizes the structure theorem for �nite Z�pmZ�modules
or equivalently� �nite Abelian p�groups of exponent not exceeding pm� to the case of
an arbitrary �nite chain ring R��

Theorem ���� Every �nite module RM over a chain ring R is a direct sum of cyclic
R�modules� The partition � � ��� � � � � �r� 
 logqjM j satisfying

RM �� R�N�� � � � � �R�N�r 	�

is uniquely determined by RM � More precisely� � � �� is conjugate to the partition
� � ��� ��� � � � � 
 logqjM j de�ned by �i � dim �i��M��iM �

De�nition ���� The partitions �� � de�ned in Th� ��� are called the shape resp�
conjugate shape of RM � The integer �

�
� � �� � dimR�N M��M� � dimR�N M ��� is

called the rank of RM and denoted by rkM �

Theorem ��� implies that any �nite module RM and its dual HomRM� RR�R have
the same shape�
A sequence x�� � � � � xr of elements of RM is said to be independent resp�� linearly

independent� if a�x�� � � �� arxr � � with aj � R implies ajxj � � resp�� aj � �� for
every j� A basis of RM is an independent set of generators which does not contain ��
By Th� ��� the cardinality of any basis of RM is equal to k � rkM � and the periods
of its elements are ��� � � � � � ��k in some order� Note that RM is a free module if and
only if RM has shape mk�
Recall that a module RM is projective resp�� injective� if RM is a direct summand

of a free module resp�� a direct summand of every module containing RM��

Theorem ���� For a �nite module RM over a chain ring R the following properties
are equivalent�

�i� RM is free�

�ii� RM is projective�

�iii� RM is injective�

�iv� There exists i � f�� �� � � � � m� �g such that M ��i� � �m�iM �

Proof� Since R is local� i� and ii� are equivalent� The equivalence of ii� and iii�
is due to the fact that R is a quasi�Frobenius ring� cf� ��� x���� Clearly i� implies
M ��i� � �m�iM for � � i � m and thus in particular iv�� Conversely� suppose that
iv� holds� The R�module M ��i� has conjugate shape ���� � � � � �

�
i� while �

m�iM has
conjugate shape ��m�i��� � � � � �

�
m�� Since both modules are equal and m � i � �� we

have ��s � ��m�i�s � ��s�� for � � s � i� � and hence ��� � ��� � � � � � ��i � ��m�

�The proof in ��� Ch� �� x �
 is easily adapted to the present situation� Theorem ��� holds
more generally for matrix rings over �nite chain rings�one only has to replace RR by its unique
indecomposable direct summand� cf� �� �� ��
�
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For partitions �� � with � � � de�ne

���� x� �
Y
j��

x�
�

j����
�

j��
�

j� �

�
��j � ��j��
��j � ��j��

�
x

��

where
�
n
k

�
x
�
Qk

s��
xn�s����

xs��
denotes a Gaussian polynomial�

Theorem ���� Let R be a �nite chain ring with residue �eld of order q� and let RM
be a �nite R�module of shape �� For every partition � satisfying � � � the module

RM has exactly ���� q� submodules of shape �� In particular� the number of free
rank � submodules of RM equals

q�
�

�����
�

���������
�

m���� �

�
��m
�

�
q

� ��

Proof� The theorem is well�known in the special case R � Zpm� cf� e� g� ���� The
general case follows from the results in ���� Ch� II� which remain valid for arbitrary
even noncommutative� chain rings�

Theorem ���� Let RH be a free module of rank n over the chain ring R� and let

RM be a submodule of RH of shape � and rank ��� � k�

�i� For every basis x�� � � � � xk of M there exists a basis y�� � � � � yn of H such that
xj � Ryj for � � j � k�

�ii� The quotient module H�M has shape m� �n� m� �n��� � � � � m� ��� and con�
jugate shape n���m� n���m��� � � � � n������ In particular� M is free if and only
if H�M is free if and only if rkH�M� � n� k�

�iii� If M� �� � �e� g� �� � m� then M is the sum of its free rank � submodules�

�iv� Dually� if H�M�� �� � �e� g� k 	 n� then M is the intersection of the free rank
n� � submodules of RH containing M �

Proof� Let fx�� � � � � xkg be a basis of M � We may assume the ordering is such that
xj has period �

�j � Since H��i� � �m�iH � � i � m�� there exist y�� � � � � yk � H�

such that xj � �m��jyj � � j � k�� The sequence y�� � � � � yk is linearly independent�
By Th� ���� it can be extended to a free� basis y�� � � � � yn of H proving i�� The
isomorphism H�M ��

Ln
j��R�N

m��j then gives ii�� If z � M� and xj �� M� then
z � xj � M� and xj � z � xj� � z� whence iii� holds� Finally� if z �� M but
z � Ry� � � � � � Ryn�� we have z � r�y� � � � � � rn��yn�� with rj not divisible by
�m��j � say� Let y�j � yj � ��jyn� y

�
t � yt if t �� j� The free rank n � � module

H � � Ry�� � � � �� ry�n�� contains M since �m��jy�j � �m��jyj � xj� But z � r�y
�
� �

� � �� rn��y
�
n�� � rj�

�jyn ��M � proving iv��
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Recall that a mapping 
 � RM 	 RM
� is semilinear if there exists a ring homo�

morphism � � R 	 R such that 
x � y� � 
x� � 
y� and 
rx� � �r�
x� for
x� y �M � r � R� If 
 is an isomorphism i� e� The set of all semilinear isomorphisms
i� e� bijective semilinear mappings� 
 � RM 	 RM is denoted by �LRM��
By Th� ��� the injective envelope of a �nite module RM cf� ��� x�
�� can be

characterized as a minimal free module RH containing RM � To be precise� we require
the existence of an R�linear embedding injective map� � � RM 	 RH such that no
proper free submodule of RH contains �M�� The minimality of RH is equivalent to
rkH � rkM �

Theorem ���� Let RM be a �nite module with M� �� � and RH a minimal free
module containg RM �

�i� Any semilinear embedding of RM into a free module RF can be extended to a
semilinear embedding of RH into RF �

�ii� If 
 � RM 	 RM
� is a semilinear isomorphism and RH

� a minimal free module

containing RM
�� then there exists a semilinear isomorphism e
 � RH 	 RH

�

which extends 
�

Proof� Given an R�semilinear map 
 � RM 	 RF with associated ring homomorphism
�� de�ne a new operation of R on F by rx �� �r�x� and denote the resulting module
by RF

�� Then 
 � RM 	 RF
� is linear� Since M� �� � and 
 is an embedding� we

have � � AutR� Hence RF
� is free� and i� reduces to a well�known property of the

injective envelope of an R�module� Assertion ii� follows from i��

� Linear Codes over Finite Chain Rings

In this section� we introduce the basic notions of the theory of linear codes over �nite
chain rings� With respect to component�wise addition and left�right multiplication�
the set Rn all n�tuples over R has the structure of an R�R��bimodule�

De�nition ���� A code C of length n over R is a nonempty subset of Rn� The
vectors of C are called codewords� The code C is left resp�� right� linear if it is an
R�submodule of RR

n resp�� of Rn
R�� A linear code is one which is either left or right

linear�

In places where this sounds ambiguous we make it precise by writing e� g� C � RR
n

if C is left linear� We formulate our results with a bias towards left modules� omitting
obvious right module counterparts�
By Th� ��� the periods of x � x�� � � � � xn� � Rn in RR

n and Rn
R coincide� whence

the sets C��i� in the lower Loewy series �� of a linear code C are de�ned unambiguously
even for bicodes� i� e� bimodules C � RR

n
R� The same holds a forteriori for the shape

of C�
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For two vectors u � u�� � � � � un� � Rn and v � v�� � � � � vn� � Rn we de�ne their
inner product u � v by

u � v �� u�v� � u�v� � � � �� unvn� 
�

Sending each v � Rn to the R�linear mapping �rv� � RR
n 	 RR� u	 u � v de�nes

an R�isomorphism Rn
R
�� HomRRn� RR�R�

For a code C � RR
n we de�ne

C� � fy � Rn j x � y � � for every x � Cg
�C � fy � Rn j y � x � � for every x � Cg�

��

The linear code C� � Rn
R resp��

�C � RR
n� is called the right resp�� left� orthogonal

code of C�

Theorem ���� Let C� C � � RR
n be left linear codes over R� Further� let C be of shape

� � ��� � � � � �n� and rank ��� � k� Then

�i� C� has shape m� �n� m� �n��� � � � � m� ��� and conjugate shape n� ��m� n�
��m��� � � � � n� ����� In particular� C is free as an R�module if and only if C� is
free if and only if rkC�� � n� k�

�ii� �C�� � C�

�iii� the map �r induces an isomorphism Rn
R�C

� �� HomRC� RR�R�

�iv� C  C ��� � C� � C ��� C � C ��� � C�  C ���

Proof� We prove iii� �rst� Restricting �ry� to the code C induces an isomorphism
from Rn

R�C
� onto a submodule W of HomRC� RR�R� Since RR is injective� every


 � HomRC� RR� can be extended to e
 � HomRRn� RR�� whence e
 � �ry� for
some y � Rn� This implies W � HomRC� RR� proving iii��
Since HomRC� RR�R has shape equal to that of RC� assertion i� follows from

the isomorphism in iii� and Th� ����ii�� Assertions ii� and iv� hold for any quasi�
Frobenius ring� cf� ��� x���� �����

Theorem ��� shows in particular that C �	 C� de�nes an antiisomorphism between
the lattices of left resp�� right linear codes of length n over R�

De�nition ��� �cf� 	��
�� A family S � Si j i � I� of nonempty subsets of Rn is
called a regular partition of Rn if the following conditions are satis�ed�

i� Rn �
S

i�I Sj�

ii� Si  Sj � � for all pairs i �� j�
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iii� for any two elements i� j � I and any � � R there exist constants ��ij� �
�
ij such

that for each x � Si there are exactly �
�
ij elements y � Sj with x � y � �� and

for each y � Sj exactly �
�
ij elements x � Si with x � y � ��

If x � Si we say that x has S�type i� We call a permutation 
 � SymRn� an
S�automorphism of Rn if x� y � Si implies 
x�� 
y� � Si i � I��
Regular partitions of Rn can be obtained as the set of orbits from certain sub�

groups G of �LRR
n�� Note that for every 
 � �LRR

n� there exist a uniquely
determined ring automorphism � � AutR and an invertible matrix A � GLn�R�
such that


x� � �x� � A x � Rn�� ��

In Sections � and � the following special case will be important� The orbits of the
group of all left semimonomial transformations of Rn� i� e� all maps 
 � �LRRn�
whose associated matrix A in �� is monomial� form a regular partition� They
are in one�to�one correspondence with the elements of the set I of m � ��tuples
w � w�� w�� � � � � wm� of nonnegative integers satisfying

Pm
i��wi � n� For x �

x�� � � � � xn� � Rn and � � i � m let

aix� � jfj j � � j � n and �i k xjgj ���

and de�ne

Sw �
�
x � Rn j aix� � wi for � � i � m

� �
w � I

�
� ���

For brevity we omit the letter �S� when referring to the special regular partition
S � Sw�w�I de�ned in ���� Thus the sequence

�
a�x�� � � � � amx�

�
is simply the

type of the word x� and a �code� automorphism of Rn is a permutation 
 � SymRn�
satisfying aix� y� � ai

�

x�� 
y�

�
for x�y � Rn� � � i � m�

De�nition ���� Two codes C�� C� � Rn are said to be isomorphic resp�� semilin�
early isomorphic� if there exists a code automorphism resp�� semilinear code auto�
morphism� 
 of Rn with 
C�� � C��

Thus two linear codes C�� C� � RR
n are semilinearly isomorphic if and only if

there exists a left semimonomial transformation 
 of Rn with 
C�� � C��
In the sense of ���� the type of x is essentially the symmetrized weight composition

of x with respect to the full group of units of R� A result in �	�� implies that every
semilinear permutation 
 � C 	 C of a linear code C � RR

n which preserves the type
of codewords x � C extends to a left semimonomial transformation of Rn� Extensions
of this result to general weight functions on �nite rings�with particular emphasis on
the case of commutative chain rings�have been investigated in �����
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Given a code C � Rn and a regular partition S � Si j i � I� of Rn we de�ne
integers Ai i � I� by Ai � jC Sij� The family Ai�i�I is called the S�spectrum of C�

We write B
�s�
i �i�I for the S�spectra of the codes

C��s� � fy � Rn j x � y � N s for every x � Cg � � s � m�

and abbreviate B
�m�
i � jC�  Sij as Bi�

The S�spectra of a linear code C � RR
n and its dual codes C��s� are related by

identities which are similar to theMacWilliams identities cf� ���� or ��
��� In order
to formulate this result� we de�ne functions s � R	 R� � � s � m� by

sx� �

�	
	�
� if x � N s�

���q � �� if x � N s�� nN s�

� if x �� N s���

���

These functions satisfy the following �orthogonality relations� for ideals A of R�

�

jAj
�
X
x�A

sx� �

�
� if A � N s�

� if A � N s�
���

Theorem ��� �MacWilliams identities�� Let S � Si j i � I� be a regular parti�
tion of Rn� and let C � RR

n be a linear code� The S�spectrum of the orthogonal codes
C��s� is obtained from the S�spectrum of C by

B
�s�
j �

�

jCj
�
X
i�I

Ai �
X
��R

��ij � s��
�
� �	�

Proof� Using ��� we haveX
x�C

sx � y� �

�
jCj if y � C��s��

� if y � Rn n C��s��
���

since the set fx � y j x � Cg is a left ideal of R which is contained in N s if and only
if y � C��s�� Thus

B
�s�
j � jC��s�  Sjj

�
�

jCj
�
X
y�Sj

X
x�C

sx � y�

�
�

jCj
�
X
i�I

X
x�C�Si

X
y�Sj

sx � y�

�
�

jCj
�
X
i�I

jC  Sij �
X
��R

��ij � s��
�

�
�

jCj
�
X
i�I

Ai �
X
��R

��ij � s��
�
�

���
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Regular partitions of Rn are Fourier�invariant partitions F�partitions� of the abelian
group Rn��� in the sense of ���� �	�� The link is provided by an additive character
� � R 	 C satisfying Nm�� � ker�� The pairing Rn � Rn 	 C � x�y� �	 �x � y�
can be used to de�ne a suitable Fourier transform F � CRn 	 CRn �
For the special case R � Fq of Th� ��� see ��	�� MacWilliams identities for F�

partitions are proved in ��	�� Other types of MacWilliams identities for codes over
�nite rings can be found e� g� in ���� �
� 	�� ����

� The projective Hjelmslev geometries PHG�Rk
R�

In this section� we introduce the projective Hjelmslev geometries PHGRk
R� and give

some results on their basic structure� For a rigorous approach to projective Hjelmslev
spaces the reader is referred to ���� ��� ��� 	
�� Consider a �nite free right module
HR where R is a chain ring� The elements of P � PHR� � fxR j x � H�g are
called points of HR� those of L � LHR� �

�
xR � yR j x� y linearly independent

�
are called lines of HR� The incidence relation I � P � L is de�ned in a natural way
by set�theoretical inclusion� As usual we identify lines with subsets of P�� Note that
any two di�erent points are joined by at least one line�

De�nition ���� The incidence structure � � P�L� I� together with the neighbour

relation ��� de�ned by

N�� the points X� Y are neighbours notation X��Y � if and only if there exist
di�erent lines s� t � L with X� Y � s  t�
N�� the lines s� t � L are neighbours if and only if for every point X � s there is

a point Y � t with X��Y and� conversely� for every Y � t there is an X � s with

Y ��X�

is called a projective Hjelmslev space and denoted by PHGHR��
	

The relation �� induces an equivalence relation on P as well as on L� The class

�X� of all points which are neighbours to the point X � xR consists of all free rank
� submodules contained in xR � H�� Similarly� the class �s� of all lines which are
neighbours to s � xR � yR� consists of all free rank � submodules contained in
xR � yR �H��

The point set T � P is called a Hjelmslev subspace of � if for every two points
X� Y � T � there exists a line s � T with X� Y � s� We write X��T if there exists a

point Y � T with X��Y � Every Hjelmslev subspace is a projective Hjelmslev space

�A line s � L is uniquely determined by fX � P j XIsg�
�If R is noncommutative PHG�HR� and PHG�RH� are in general not isomorphic� Working with

right instead of left modules will be justi�ed in Section ��
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and consists of the points contained in some free submodule ofHR�

 For every X � P

we de�ne the closure X as the intersection of all Hjelmslev subspaces containing X �
The set X � P is said to be independent if for any X � X we have X ���X n fXg�

and a basis of � if X is independent and X � P� The dimension of � is de�ned as
dim� � jBj � � where B is any basis of �� Equivalently� dim� � rkHR�� ��
An isomorphism between two projective Hjelmslev spaces � � PHGHR� and

�� � PHGH �
R� is a bijection � � P 	 P � which satis�es �L� � L�� The spaces �

and �� are isomorphic if and only if rkHR� � rkH
�
R�� Every semilinear isomorphism


 � HR 	 H �
R induces such an isomorphism since it maps xR � P onto 
xR� �


x�R � P �� The following theorems can be found in ���� ����

Theorem ���� If rkHR� � rkH
�
R� � � then for any isomorphism � � �	 �� there

exists a semilinear isomorphism 
 � HR 	 H �
R inducing ��

Theorem ���� Let fP�� P�� � � � � Pk��g � P and fQ�� Q�� � � � � Qk��g � P � be subsets
��frames	� such that any k of the points in each of the sets form a basis of � resp�� ���
Then there exists exactly one isomorphism � � �	 �� with �Pi� � Qi� � � i � k���

Projective Hjelmslev spaces can be de�ned axiomatically as incidence structures
� � P�L� I� with a neighbour relation �� on P and on L which satisfy certain
conditions� Without going into details we mention the following

Theorem ��� �	�� ��
�� For every projective Hjelmslev space � of dimension at
least 
� having on each line at least � points no two of which are neighbours� there
exists a free module HR over a chain ring R such that PHGHR� is isomorphic to ��

Remark ��� The incidence structure P�L� I� and Def� 	�� make sense for an arbi�
trary �nite module MR which is not a priori a submodule of some �nite free module�
We can embed MR into a �nite free module HR of rank rkHR� � rkMR� and view
P�L� I� as a substructure of the geometry PHGHR�� By Th� ����iii� a submodule
MR � HR is determined by its set of points� and if rkHR� � rkMR� then M is
closed by Th� ����iv�� According to Theorems ���� ��� and 	�� two �nite modules

RM and RM
� of rank at least � are semilinearly isomorphic if and only if they are

isomorphic as substructures of PHGHR� and PHGH
�
R�� respectively� assuming of

course that rkHR� � rkH
�
R�� Thus both viewpoints are essentially equivalent�

For simplicity we take HR � Rk
R in the sequel� The incidence structure PHGR

k
R�

is called the right� k � ��dimensional projective Hjelmslev geometry over R�
We shall need the following re�nement of the neighbour relation�

De�nition ���� Let  ��  � be Hjelmslev subspaces of PHGR
k
R� and � � i � m� We

say that  � is an i�neighbour to  �� and write  ��� i � in this case� if  � �  ��R
k�i�

�Needless to say we identify Hjelmslev subspaces of PHG�HR� with the corresponding free
submodules of HR�
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Denoting by ��i� � Rk 	 Rk�Rk�i the natural projection� we have  ��� i � if

and only if ��i� �� � ��i� ��� The relation �� i induces an equivalence relation on

Hjelmslev subspaces of equal dimension� The i�neighbour class of  is � �i � f � j

dim � � dim and  ��� i g�

For points X � xR� Y � yR we have X�� iY but X ��� i��Y if and only if

jX  Y j � qi if and only if xR � yR has shape m�m� i�� The neighbour class �X�i
coincides with the set of all free rank � submodules of xR � Rk�i� Similarly� for a
line s � xR � yR the neighbour class �s�i coincides with the set of all free rank �
submodules of xR � yR � Rk�i� Furthermore� lines s and t are i�neighbours if and
only if for every X � s there is a point Y � t with X�� iY and� conversely� for every

Y � t there is an X � s with Y �� iX� Clearly ��� coincides on points and on lines

with the neighbour relation �� introduced at the beginning of this section�

Let P�i� resp� L�i�� be the set of all i�neighbour classes of points resp� of lines�
in P�L� I��

Theorem ���� The incidence structure ��i� � P�i��L�i�� I�i�� with I�i� de�ned by

�X�i I
�i� �s�i �� �X � � �X�i� �s

� � �s�i � X
� I s� �
�

is isomorphic to PHG
�
Rk��iRk�R�N i

�
for all i � f�� � � � � mg� In particular� ���� is

isomorphic to the projective geometry PGk � �� q��

Proof� The image under ��i� of every free submodule of Rk
R is a free module over R�N

i

of the same rank� Hence� if we de�ne �X�iI
��s�i by �

�i�X� � ��i�s� then P�i��L�i�� I ��
is isomorphic to PHG

�
Rk��iRk�R�N i

�
� Let X � xR � P� s � yR � zR � L with

��i�X� � ��i�s�� i� e� xR � yR � zR � Rk�i� Since xR is free and hence a direct
summand of yR � zR � Rk�i� it is contained in some free rank � submodule of
yR � zR �Rk�i� This gives I � � I�i� as desired�

� Multisets in Projective Hjelmslev Geometries

and Linear Codes over Chain Rings

Let � � PHGHR� � P�L� I� be a �nite dimensional projective Hjelmslev geometry
over the chain ring R�

De�nition ���� A multiset in � is a mapping k � T 	 N� where T � P��

Often we tacitly assume T � P� de�ning kP � � � for P � P n T �

�A multiset k � T � N� is called a set if k�P � � f�� �g for any P � T �
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The mapping k is extended to the power set of P by

kQ� �
X
P�Q

kP � for Q � P � ���

The integer kP � is called the multiplicity of the point P � The integer kP� �P
P�T kP � is called the cardinality or length of the multiset k and is denoted by

jkj� The support of k is de�ned as Supp k � fP � T jkP � � �g and the hull of k as
the module

hki �
X

xR�Supp k

xR � HR� ���

The shape of k is the shape of its hull hkiR�

De�nition ���� Two multisets k in � and k
� in �� are said to be equivalent if there

exists a bijective R�semilinear mapping � � hki 	 hk�i such that kP � � k
�
�
�P �

�
for

every point P � xR � hki�

If dim� � dim��� say� then in view of Remark 	�� the multisets k� k� are equivalent
if and only if there exists an embedding � � � 	 �� such that k and k

�� coincide on
the points of ��

De�nition ���� A linear code C � RR
n is said to be fat if for every i � f�� � � � � ng

there exists a codeword c � c�� c�� � � � � cn� � C with ci � R��

Thus C � RR
n is fat if and only if the restriction to C of every projection map

�rej� � RR
n 	 RR� x �	 x � ej � xj is onto�

Let C � RR
n be a fat linear code� We intend to associate with C a certain multiset

of points in a projective Hjelmslev geometry over R which generalizes the familiar
correspondence between full�length linear �n� k��codes over Fq and multisets of points
in PGk��� q� of cardinality n obtained as columns of a generator matrix of the �n� k��
code� Since the dual HomRC� RR�R of RC need not be a free R�module� some extra
work is necessary� Let S � c�� � � � � ck� be a sequence of not necessarily independent�
generators for RC and G � Mk�nR� be the k�n�matrix with rows c�� � � � � ck� Denote
the columns of G by g�� � � � � gn� i� e� gj �

�
�rej�c��� � � � ��rej�ck�

�
� Note that gj

has period �m since �ej� is onto and c�� � � � � ck generate RC� and thus de�nes a point
in the projective right� Hjelmslev geometry P�L� I� � PHGRk

R�� We de�ne the
multiset kS induced by the generating sequence S of C as

kS �

�
P 	 N�

P �	 jfj j P � gjRgj�
���

We say that the multiset kS and the code C �
P

c�S Rc are associated� By de�nition
of kS we have jkSj � n� The following theorem is a generalization of a similar result
by Dodunekov and Simonis ���� about linear codes over �nite �elds�
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Theorem ���� For every multiset k of length n in PHGRk
R� there exists a fat linear

code C � RR
n and a generating sequence S � c�� � � � � ck� of RC which induces k�

Two multisets k� in PHGRk�
R � and k� in PHGRk�

R � associated with fat �left� linear
codes C� and C� over R� respectively� are equivalent if and only if the codes C� and C�
are semilinearly isomorphic�

Proof� To prove the �rst assertion� choose a list g�� � � � � gn� of vectors gj � Rk such
that for every point P of PHGRk

R�

kP � � jfj j � � j � n and P � gjRgj� ���

De�ne C � RR
n to be the code generated by the rows of the k�n�matrixG � Mk�nR�

with columns g�� � � � � gn� Every column of G contains at least one entry r � R��
Hence the code C is fat� Clearly� the sequence S � c�� � � � � ck� of rows of G induces
k in the sense of ���� i� e� kS � k�
To prove the second assertion� assume �rst that two semilinearly isomorphic codes

C�� C� � RR
n are associated with multisets k� in PHGR

k�
R � and k� in PHGR

k�
R ��

respectively� Let G� � Mk��nR� and G� � Mk��nR� be matrices whose sequences S�
and S� of rows generate C� resp�� C�� and induce k� resp�� k��� i� e� kSi � ki for i � �� ��
Let 
 � Rn 	 Rn be a semilinear code automorphism of RR

n with 
C�� � C�� The
sequence S �� � 
S�� also generates C�� Let G�

� � Mk��nR� be the matrix associated
with S �� and k

�
� the multiset in PHGR

k�
R � induced by S

�
�� There exist U � Mk��k�R��

V � Mk��k�R� with G�
� � UG�� G� � VG�

�� Let �U � R
k�
R 	 Rk�

R � g 	 Ug and
�V � R

k�
R 	 Rk�

R � g 	 Vg be the corresponding R�linear mappings� Then k� � k
�
��U

and k
�
� � k��V� FromG�

� � UVG�
��G� � VUG� we conclude that �U�V �xes k

�
� and

�V�U �xes k�� whence the restrictions of �U and �V to hk�i and hk
�
�i� respectively�

are mutually inverse R�isomorphisms� Thus k� and k
�
� are equivalent� Moreover� there

exists a monomial matrix M and a ring automorphism � such that 
x� � �x�M
for x � Rn� This shows G�

� � �G��M� The columns of G
�
� and �G�� represent the

multisets k
�
� and k��

��� respectively� Since M is monomial we have k
�
� � k��

�� and
thus k� � k

�
�� proving the equivalence of k� and k��

Conversely� suppose that k� and k� are equivalent and associated with C� and C��
Let G��G� have the same meaning as above� and let � � hk�i 	 hk�i be a bijective
semilinear mapping with k� � k��� Let H� � Rk�

R and H� � Rk�
R be minimal free

R�modules containing hk�i and hk�i� respectively� By Th� ��� � can be extended to a

bijective semilinear mapping e� � H� 	 H�� Since H� and H� are direct summands of
Rk�
R and R

k�
R � respectively� we can extend

e� to a mapping from Rk�
R into R

k�
R and

e��� to
a mapping from Rk�

R into R
k�
R � i� e� there exist matrices U � Mk��k�R�� V � Mk��k�R�

and a ring automorphism � of R such that �g� � �Vg� for every g � hk�i and
���h� � U���h� for every h � hk�i� The matrix G�

� � VG� � Mk��nR� generates
C� since UG�

� � G�� and for every point P of PHGR
k�
R � it contains exactly k�P � �

k�

�
�P �

�
columns h � Rk� with �h�R � �P �� Thus the columns of �G�

�� and G�

represent the same points of PHGRk�
R � when counted with their multiplicities� This
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clearly implies the existence of a monomial matrix M with G� � �G�
��M which in

turn yields that C� and C� are semilinearly isomorphic�

Remark ��� If one de�nes PHGRk
R� as a point�line incidence structure as we did

in Section 	� the restriction to fat linear codes in Th� ��� is a natural consequence�
Non�fat linear codes� however� do appear in some situations� for example in the
classi�cation of Z��linear codes of constant Lee or Euclidean weight �	��� It is possible
to circumvent the restriction to fat linear codes by viewing PHGRk

R� as a projective
lattice geometry �	� having additional non�free points� Theorem ��� can be proved in
this more general setting�

De�nition ���� Let k � P 	 N� be a multiset in � � PHGR
k
R�� A hyperplane  

in � is said to have the k�type a�� a�� � � � � am�� where ai �
P

P � P �� i� P ��� i��
kP ��

for i � �� �� � � � � m�

We shall often say �type� instead of �k�type�� if there is no doubt about the multiset
k we are referring to� By duality Th� ���� every hyperplane  in PHGRk

R� can be
considered as the set of points� whose homogeneous coordinates x�� � � � � xk� satisfy
a linear equation

r�x� � r�x� � � � �� rkxk � ��

where at least one of the ri�s is a unit inR� Let C be a fat linear code associated with k�
and letGS be a k�n�matrix whose sequence S of rows generates C and satis�es kS � k�
All codewords of C which belong to the cyclic submodule Rr�� � � � � rk�GS � RC
are called codewords associated with the hyperplane  relative to the choice of the
generating sequence S�� For di�erent generating sequences S� S � of C with kS � kS�

the matricesGS and GS� can di�er only by the ordering and scaling of their columns�
Thus as far as the number and type ��� of codewords associated with a hyperplane is
concerned� we may safely omit from now on any reference to the generating sequence�
There is a connection between the type of a hyperplane in � and the number of
codewords of a given type in C associated with that hyperplane�

Theorem ���� Let k be a multiset in PHGRk
R� and C a fat linear code over R

associated with k� For each hyperplane  of k�type

�� � � � � �� aj� aj��� � � � � am� with aj �� � � � j � m�

there exist exactly qm�s � qm�s�� codewords in C of type

�� � � � � �� �z �
s

� aj� � � � � am�j�s���
mX

i�m�j�s

ai� j � s � m� �� ���

which are associated with  �
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Proof� Fix a generating sequence S of C and let G � GS be as above� Let  �
Rr�� with r � r�� � � � � rk� � RR

k� The codeword c � r� � � � rk�G has exactly
the same type �� � � � � �� aj� aj��� � � � � am� as the hyperplane  � Since c has period
�m�j� we have jRcj � qm�j� The words in Rc with type as in ��� are exactly those
which generate the cyclic submodule Rc��m�s� � Rc of order qm�s� Their number is
therefore qm�s � qm�s�� as asserted�

Theorem ���� A multiset k in PHGRk
R� and its associated code have the same

shape� In particular� jhkij � jCj�

Proof� Choose a k � n�matrix G whose sequence S of rows generate RC and whose
columns g�� � � � � gn represent the points P as in ���� Since S generates RC� the
linear map HomRC� RR�R 	 hkiR which sends the restriction �rej�jC to gj is an
isomorphism� Thus hkiR� HomRC� RR�R and RC all have the same shape� cf� the
remark following Def� ����

� Linear Codes from SelectedMultisets in PHG�Rk
R�

In this section we discuss some classes of linear codes over chain rings which arise
from certain multisets of points in projective Hjelmslev geometries�

��� Simplex and Hamming Codes over Chain Rings

In ��� Blake introduced a generalization of the class of Hamming codes to the ring
of integers modulo q � pr� where p is prime� Below we suggest another de�nition�
which re!ects the geometric nature of the usual Hamming codes�
Consider the Hjelmslev geometry � � P�L� I� � PHGRk

R�� The linear code
C associated with the multiset k de�ned by kP � � � for all P � P� is called the
k�dimensional simplex code over R and is denoted by Simk� R�� By Th� ��	 the code
Simk� R� has length q�k����m���

�
k
�

�
q
� and by Th� ��� it has shape mk� in particular

jSimk� R�j � qkm� All hyperplanes  in � have the same k�type a�� a�� � � � � am��
where

a� � q�k����m���

��
k

�

�
q

�

�
k � �

�

�
q

�
� q�k���m�

aj � q�k����m���
�
k � �

�

�
q

�
qm�j � qm�j��

�
� j � �� � � � � m� ��

am � q�k����m���
�
k � �

�

�
q

�

���
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These numbers are obtained e� g� by observing that
P

s�j as is the number of free

rank � submodules contained in  � �jRk which has shape mk��m� j��� Thus

X
s�j

as � �mk���m�j��m
�� q� �

�
q�k����m���

�
k
�

�
q

if j � ��

q�k����m���
�
k��
�

�
q
� q��j if � � j � m��

The dual code Simk� R�� is called the k�th order Hamming code over R and is de�
noted by Hamk� R�� It is free of rank q�k����m���

�
k
�

�
q
�k� in particular jHamk� R�j �

q
mq�k����m����k��q�mk

� For example� Hamk�Z�� has parameters n�M�wLee� �
�
��k���

�k��� ��
�k��k��k� �

�
�

��� The Linearity of the MacDonald Codes

Let us �x a Hjelmslev subspace " of � with rk" � u� � � u � k � �� Let C be
associated with k � P 	 N� de�ned by

kP � �

�
� if P�� i"�

� otherwise�
�	�

where i � � is �xed� Since k is the set of points of the R�module "�Rk�i of conjugate
shape km�iui� we have by Th� ��	 and Th� ���

kP� � q�k����m�i���u����i��� �

�
u

�

�
q

� jCj � qk�m�i��ui� ���

Consider the mapping � � R	 Fmq cf� ���� Section ��� de�ned by the matrix

G � G�m� �

�
� � � � � �
a� a� � � � aqm��

�
� ���

where a�� a�� � � � � aqm�� are the elements of Fm��q taken in some order� By ��
� Th� ����
or ��	� Prop� ����

wHam

�
�x�� �y�

�
�

�	
	�
� if x � y�

qm�� if x� y � Nm�� n f�g�

qm�� � qm�� if x� y �� Nm���

Thus the q�ary image �C� is a possibly nonlinear� distance invariant code with
parameters N � qm��kP � � q�k�u��m�i��u�m���

�
u
�

�
q
� M � jCj � q�k�u��m�i��um�

The hyperplanes of � can be divided into i � � disjoint nonempty classes� which
we denote by Aj�� � � j � i�

�Note that ���m
�� q� is already determined by ��

m
and j�j �

P
�i�
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Aj� hyperplanes  with "�� j � and " ���j�� � � � j 	 i�

Ai� hyperplanes  with "�� i �

Denote by ��t� resp�� ��t�� the shape resp�� conjugate shape� of the module  �
Rk�t�  " �Rk�i�� � � t � m� The nonzero Hamming weights of �C� are

t��X
s��

asq
m�� � qm��� � at��q

m�� �

� �����m
�� q�qm�� � qm���� ���t�m

�� q�qm�� � ���t���m�� q�qm���

where a�� � � � � am� is one of the possible k�types of hyperplanes of � and j�� � t � m
if  is of class Aj�� � � j � i� If  is of class Ai� then

��t� �

�
km�iui � ���� if � � t � i�

km�tk � ��t�iui if i � t � m�
�
�

Hence ���t�m
�� q� � ���t���m�� q��q if i� � � t � m� and  produces codewords of

single nonzero weight

�����m
�� q�qm�� � qm��� � q�k�u��m�i��u�m�����qu � ��� ���

If  is of class Aj�� � � j � i� �� then

��t� �

�	
	�
km�iui if � � t � j�

km�iui�t�ju� ��t�j if j � t � i�

km�tk � ��t�iuju� ��i�j if i � t � m�

���

Equation ��� is derived e� g� using the formula jU  V j � jU jjV j�jU � V j with
U �  � Rk�t� V � " � Rk�i� and observing that  � " has shape mk��m � j���
Hence we have ���t�m

�� q� � ���t���m�� q��q if j � � � t � m� and thus  produces
nonzero codewords of weights ��� and

�����m
�� q�qm�� � qm���� ���j���m�� q�qm�� � ���j�m

�� q�qm�� �

�
�
�����m

�� q�� ���j���m�� q�
�
qm��

� q�k�u��m�i��u�m����u���

���

Let K � k� u�m� i� � um� U � k� u�m� i� � um� �� whence K � U � u��
The code �C� is a two�weight code over a q�ary alphabet of length N � minimum
distance D� and with weights W� and W�� where

N �
qK � qU

q � �
� j�C�j � qK� D �W� � qK�� � qU��� W� � qK��� ���
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Now we assume that R is one of the chain rings Fq �X� ���Xm� of characteristic p�
By Th� � from ����� the code �C� is linear over Fq � and it has the parameters ���
of a MacDonald code� Since MacDonald codes are uniquely determined by their
parameters cf� ���� 	���� we get that �C� is semilinearly isomorphic to a MacDonald
code� Choosing k� u� i appropriately� we can get all MacDonald codes with parameters
U � K�� ��m�� Hence we have the following theorem cf� ���� for the special case
m � ���

Theorem ���� A q�ary MacDonald code whose parameters K�U satisfy the condition
U � K����m� is linearly representable over any of the chain rings Fq �X� ���Xm��
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