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AN APPLICATION FOR THE CHEBYSHEV POLYNOMIALS

-Dur -de Cvijovi�c and Jacek Klinowski

Abstract. Two sequences of polynomials for which all zeros, regardless of degree n, can be
given by the following \simple formulae"

�n;m(�) = cot

�
(� +m)�

n

�
and �n;m(�) = tan

�
(� +m)�

n

�
(0 < � < 1)

(n = 1; 2; . . . ; m = 0; 1; . . . ; n � 1 and m 6= (n � 1)=2 when � = 1=2 and n is odd in the case of
�n;m) are obtained from the linear combination of the Chebyshev polynomials of the �rst and
second kind.

1. Introduction

In our recent work [1] on the Apostol formula for the Riemann zeta function [2]
the problem has arisen of the closed-form evaluation of the following �nite cotangent
sum

Sn(q; �) =
q�1P
p=0

cotn
�
(� + p)�

n

�
(0 < � < 1) (1)

for any positive integer n. It appears that this sum is known only when n = 1; 2; 4
([3], Section 4.4.7 and [4], Sections 29.1 and 30.1). In this note we shall establish
a simple way of its summation. Namely, Sn(q; �) can be evaluated for any n by
using the Newton identities (the Newton power sum formulae), since there exist
the sequence of polynomials of which the numbers

cot

�
(� + p)�

n

�
p = 0; 1; . . . ; q � 1

are zeros. The polynomials in question are constructed by making use of the Cheby-
shev polynomials of the �rst and the second kind. A similar procedure leads to the
analogous polynomials of which tan[(� + p)�=q] are zeros.
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2. Statement of results

Throughout the text Tn(x) and Un(x) are, respectively, the Chebyshev poly-
nomials of the �rst and second kind de�ned on [�1; 1] by [5, p. 776]

Tn(x) = cos(n arccosx) =
n

2

[n=2]P
k=0

(�1)k (n� k � 1)!

k! (n� 2k)!
(2x)n�2k (2a)

and

Un(x) =
sin((n+ 1) arccosx)p

1� x2
=

[n=2]P
k=0

(�1)k (n� k)!

k! (n� 2k)!
(2x)n�2k: (2b)

Further, [x] denotes the largest integer not exceeding x while the principal values
of arccot � and of arctan � are de�ned for any real � by 0 < arccot � < � and by
��=2 < arctan � < �=2. Our results are as follows.

Theorem. Assume that n is a positive integer and that � is a real, 0 < � < 1.
Let Tn(x) and Un(x) be the Chebyshev polynomials de�ned in (2a,b). Consider

Cn(x; �) = (1 + x2)n=2
�
Tn

� xp
1 + x2

�
� cot(��)p

1 + x2
Un�1

� xp
1 + x2

��
(3)

and

Kn(x; �) = (1 + x2)n=2
�
Tn

� 1p
1 + x2

�
� x

cot(��)p
1 + x2

Un�1

� 1p
1 + x2

��
: (4)

Then we have:

(1) Cn(x; �) and Kn(x; �) are polynomials (with a parameter �) in a variable x,
de�ned for any real x, such that:

(a) the polynomials Cn(x; �) are monic of degree exactly n, given by

Cn(x; �) =
nP

k=0

�
n

k

�
ck(�)x

n�k ; (5a)

(b) the polynomials Kn(x; �) are of degree n � 1 when � = 1=2 and n is odd
and of degree n otherwise, and they are given by

Kn(x; �) =
nP

k=0

�
n

k

�
ck(�)x

k : (5b)

Here, in (a) and (b), ck(�) has the same meaning:

c2r(�) = (�1)r; c2r+1(�) = (�1)r+1 cot(��) (0 < � < 1; r 2 N0): (5c)

(2) For any �xed n, all zeros of Cn(x; �) and Kn(x; �) are respectively given
by:

(a) �n;m(�) = cot

�
(� +m)�

n

�
, m = 0; 1; . . . ; n� 1;

(b) �n;m(�) = tan

�
(� +m)�

n

�
, m = 0; 1; . . . ; n � 1, m 6= (n � 1)=2 when

� = 1=2 and n is odd.
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3. Proof of the Theorem

(1a) and (2a). In order to prove these two parts of the theorem, we derive the
following formulae for any real x

Cn(x; �) = (1 + x2)n=2[cos(n arccotx)� cot(��) sin(n arccotx)] (6a)

= cscn(arccotx)[cos(n arccotx)� cot(��) sin(n arccotx)] (6b)

=
[n=2]P
k=0

(�1)k
�
n

2k

�
xn�2k � cot(��)

[(n�1)=2]P
k=0

(�1)k
�

n

2k + 1

�
xn�2k�1

(6c)

on the assumption that arccotx takes its principal value.

First, in view of (3), the formula in (6a) readily follows since it is easy to show,
starting from the de�nitions of the Chebyshev polynomials in (2a,b) and using the
relationship cos � = cot �(1 + cot2 �)�1=2 that the following holds

cos(n arccotx) = Tn

� xp
1 + x2

�
; sin(n arccotx) =

1p
1 + x2

Un�1

� xp
1 + x2

�

for any real x. Moreover, the formula in (6b) follows at once from (6a), considering
that for any real � and integer r we have csc � = (1 + cot2 �)1=2 when � 6= r�
(r 2 Z).

Next, from (2a,b) we also have

(1 + x2)
n
2 Tn

� xp
1 + x2

�
=

n

2

[n=2]P
k=0

(�1)k (n� k � 1)!

k! (n� 2k)!
(2x)n�2k(1 + x2)k;

(7a)

(1 + x2)
n�1
2 Un�1

� xp
1 + x2

�
=

[(n�1)=2]P
k=0

(�1)k (n� k � 1)!

k! (n� 1� 2k)!
(2x)n�2k�1(1 + x2)k;

(7b)

and it is thus clear that Cn(x; �) (see (3)) are polynomials in x of degree n which
can be expressed in terms of the �nite sums in (7a,b).

However, our polynomials can be represented in much simpler way as it is
suggested in (6c). Indeed, note that the real and imaginary parts of z = (x + i)n

are

Re z = (1 + x2)n=2 cos(n arccotx) and Im z = (1 + x2)n=2 sin(n arccotx):

On the other hand, upon setting z� = (x � i)n and making use of the binomial
theorem, we arrive at

Re z =
z + z�

2
=

[n=2]P
k=0

(�1)k
�
n

2k

�
xn�2k;

Im z =
z � z�

2i
=

[(n�1)=2]P
k=0

(�1)k
�

n

2k + 1

�
xn�2k�1

so that the formula in (6c) and the proposed formula in (5a), as its immediate
consequence, follow without di�culty. It is obvious from (5a) that Cn(x; �) are
monic polynomials of degree exactly n.
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Part (2a) is easily established by putting x = �n;m(�) in (6b) and showing
that Cn(�m;n(�); �) = 0 for any n and m = 0; 1; . . . ; n� 1.

Observe �rst that in general if k is an integer, then arccot(cotx) = x � k�,
k� < x < (k+1)�. Thus arccot(�n;m(�)) = (�+m)�=n, since 0 < (�+m)�=n < �
(m = 0; 1; . . . ; n � 1) provided that 0 < � < 1. Hence, on setting x = �n;m(�) in
(6b), we have after simpli�cation

Cn(�n;m(�); �) = (�1)m cscn
�
(� +m)�

n

�
[cos(��)� cot(��) sin(��)] = 0:

Since Cn(x; �) is of degree n, it has exactly n zeros, and so the numbers �n;m(�)
(m = 0; 1; . . . ; n � 1) are all zeros of Cn(x; �). In view of the properties of the
cotangent functions, these zeros are real and simple.

(1b), (2b). First, it can be shown working along the same lines as in the proof
of Part (1a) that for any real x we have

Kn(x; �) = (1 + x2)n=2[cos(n arctanx)� cot(��) sin(n arctanx)] (8a)

= secn(arctanx)[cos(n arctanx)� cot(��) sin(n arctanx)] (8b)

=
[n=2]P
k=0

(�1)k
�
n

2k

�
x2k � cot(��)

[(n�1)=2]P
k=0

(�1)k
�

n

2k + 1

�
x2k+1

(8c)

if arctanx takes its principal value. To do this, we need the relationship cos � =
(1+cot2 �)�1=2 and to note that the use of z = (xi+1)n leads to the desired result
in (8c).

Next, on rewriting (8c) the proposed formula for Kn(x; �) in (5b) is obtained
and it is trivial to verify that the polynomials Kn(x; �) are not monic; they are of
degree exactly n�1 when � = 1=2 and n is odd and of degree n otherwise. We also
have

Kn(x; �) = xnCn(1=x; �): (9)

To prove Part (2b) recall that, in general, if z0 is a non-vanishing zero of the
polynomial Pn(z), then 1=z0 is a zero of the polynomial znPn(1=z) (see for instance
[6], p. 180). Hence, because of (9) the zeros of Kn(x; �) are the reciprocals of the
zeros of Cn(x; �), i.e. the reciprocals of �n;m(�). Clearly, the case when �n;m(�) = 0
must be excluded.

This completes the proof of the Theorem.

4. Concluding remarks

An interesting application of the Chebyshev polynomials, which we have failed
to �nd in the literature (for instance, in the standard text on these \classical or-
thogonal polynomilas" [7]), is described in this note: two sequences of polynomials,
Cn(x; �) and Kn(x; �), are obtained, for which all zeros, regardless of the degree,
can be given by a single \simple formula". This porcedure, however, fails to give
similar polynomials when applied to the sine, cosine and their reciprocals.
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Recall that similarly all zeros �m and �m of the Chebyshev polynomilas Tn(x)
and Un(x) are also given by a \simple formula" (a single analytical expression)
[5, Entry 22.16.4] as follows:

�m = cos
(2m� 1)�

2n
; �m = cos

m�

n+ 1
(m = 1; 2; . . . ; n):

Several examples of Cn(x; �) and Kn(x; �), 0 < � < 1, are:

C1(x; �) = x� cot(��); K1(x; �) = � cot(��)x+ 1;

C2(x; �) = x2 � 2 cot(��)x� 1; K2(x; �) = �x2 � 2 cot(��)x + 1;

C3(x; �) = x3 � 3 cot(��)x2 � 3x+ cot(��);

K3(x; �) = cot(��)x3 � 3x2 � 3 cot(��)x + 1;

C4(x; �) = x4 � 4 cot(��)x3 � 6x2 + 4 cot(��)x + 1;

K4(x; �) = x4 + 4 cot(��)x3 � 6x2 � 4 cot(��)x + 1:

A straightforward consequence of the results is that the cotangent sum Sn(q; �) in
(1) is in fact the power sum of the zeros of Cq(x; �) and this enables the closed-
form evaluation of Sn(q; �) for any n by using the Newton identities [8, p. 179], for
instance. This gives for example

S3(q; �) = q3(cot3(��) + cot(��)) � q cot(��);

S5(q; �) = q5(cot5(��) + 5
3 cot

3(��) + 2
3 cot(��))

� q3( 53 cot
3(��) + 5

3 cot
3(��)) + q cot(��):

Finally, note that the sums deduced here

[n=2]P
k=0

(�1)k
�
n

2k

�
xn�2k = (1 + x2)n=2Tn

� xp
1 + x2

�

= (1 + x2)n=2 cos(n arccotx) = cscn(arccotx) cos(n arccotx)

and

[(n�1)=2]P
k=0

(�1)k
�

n

2k + 1

�
xn�2k�1 = (1 + x2)(n�1)=2Un�1

� xp
1 + x2

�

= (1 + x2)n=2 sin(n arccotx) = cscn(arccotx) sin(n arccotx)

(see (3) in conjunction with (6)) are not listed in [3, section 10.28], the most exten-
sive compilation of sums, and in [4, Section 4.2.3]. It is interesting that Ramanujan
[9, Entry 21, p. 32] showed the polynomial nature of (1 + x2)n=2 sin(n arctanx)
without deriving the summation formula

[(n�1)=2]P
k=0

(�1)k
�

n

2k + 1

�
x2k+1 = x(1 + x2)(n�1)=2Un�1

� 1p
1 + x2

�

(see (4) in conjunction with (8a) and (8c)).



110 -D. Cvijovi�c, J. Klinowski

REFERENCES

[1] -D. Cvijovi�c and J. Klinowski, Finite cotangent sums and the Riemann zeta function, Proc.
Royal Society, Section A (in press).

[2] T. M. Apostol, Another elementary proof of formula for �(2n), Am. Math. Monthly 80 (1973),
425{431.

[3] E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cli�s, N.J., 1975.

[4] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Vol. 1, Gordon
and Breach Science Publ., New York, 1986.

[5] M. Abramowitz and I. Stegun (eds), Handbook of Mathematical Functions with Formulas,

Graphs and Mathematical Tables, Dover Publ., New York, 1972.

[6] E. J. Barbeau, Polynomials, Springer-Verlag, New York, 1989.

[7] T. J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number

Theory, 2nd ed., John Willey, Chichester, 1990.

[8] P. M. Cohen, Algebra, Vol. 1, John Wiley, Chichester, 1982.

[9] B. C. Brendt, Ramanujan's Notebooks, Part IV, Springer, New York, 1994.

(received 13.01.1998.)

Department of Chemistry, University of Cambridge, Lens�eld Road, Cambridge CB2 1EW, U.K.

E-mail: dcl133@cam.ac.uk, jk18@cam.ac.uk


