a(n,m) tabf head (staircase) for A103921 Number of distinct parts of the partitions of n in Abramowitz-Stegun order a(n,m) tabf head (staircase) for A103921 n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 1 1 2 1 1 3 1 2 1 4 1 2 1 2 1 5 1 2 2 2 2 2 1 6 1 2 2 1 2 3 1 2 2 2 1 7 1 2 2 2 2 3 2 2 2 3 2 2 2 2 1 8 1 2 2 2 1 2 3 3 2 2 2 3 2 3 1 2 3 2 2 2 2 1 9 1 2 2 2 2 2 3 3 2 2 3 1 2 3 3 3 3 2 2 3 2 3 2 2 3 2 2 2 2 1 10 1 2 2 2 2 1 2 3 3 3 2 3 2 2 2 3 3 2 3 4 2 2 2 2 3 3 3 3 3 1 2 3 2 3 2 2 3 2 2 2 2 1 . . . n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 The sequence of row lengths is A000041: [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...] (partition numbers). One could add the row for n=0 with a 1, if the part 0 is considered for n=0, and only for this n. For the ordering of this tabf array a(n,m) see Abramowitz-Stegun ref. pp. 831-2. E.g. a(4,4) refers to the fourth partition of n=4 in this ordering, namely (1^2,3)=[1,1,3], whence a(4,4)=2 because as a set this list reads {1,2}, which is a 2-element set.