(as received from Steve Finch), Magata's constant 3.4070691656272561422194582628271806535540344380150321161910338275729699387 Starting with the dataset (1,2), (2,3), (3,5), (4,7), (5,11), (6,13), ..., (n,p_n) where p_n is the nth prime number, Frederick Magata (1998) used Newtonian interpolation to determine the coefficients b_k of a (n-1) degree polynomial fit b_0 + b_1*(x-1) + b_2*(x-1)*(x-2) + b_3*(x-1)*(x-2)*(x-3) + ... The sum of all the coefficients b_k, for arbitrarily large n, appears to converge to 3.407069... Here is a Mathematica program which verifies this claim, along with the values of b_k, 0<=k<=9. n:=100 Prms:=Array[Prime,n] P[y_]:=P[y]=InterpolatingPolynomial[Prms,x]/.x->y N[Sum[Level[P[y],{2*k-1}][[1]],{k,1,n-1}]+Level[P[y],{2*n-2}][[1]],75] 3.4070691656272561422194582628271806535540344380150321161910338275729699387 Do[Print[Level[P[y],{2*k-1}][[1]]], {k,1,10}] 2 1 1 - 2 1 -(-) 6 1 - 8 3 -(--) 40 23 --- 720 53 -(----) 5040 23 ---- 8064 79 -(------) 120960 # This is the electronic signature for Plouffe's Inverter # # Ceci est la signature électronique pour l'Inverseur de Plouffe # # Copyright : Simon Plouffe/Plouffe's Inverter (c) 1986. # # http://www.lacim.uqam.ca/pi #