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Abstract

We study a sequence, c, which encodes the lengths of blocks in the Thue-Morse
sequence. In particular, we show that the generating function for c is a simple
product.



Consider the sequence

c : c0, c1, c2, c3, . . . = 1, 3, 4, 5, 7, 9, 11, 12, 13, . . .

defined to be the lexicographically least sequence of positive integers satisfying
n ∈ c implies 2n /∈ c. In fact, the lexicographic minimality of c makes it possible
to replace the previous “implies” with “if and only if.” Equivalently, c is defined
inductively by c0 = 1 and

ck+1 =

{
ck + 1 if (ck + 1)/2 /∈ c
ck + 2 otherwise

(1)

for k ≥ 0. This sequence was the focus of a problem of C. Kimberling in the Amer-
ican Mathematical Monthly [6]. (In fact, he looked at the sequence 4c0, 4c1, 4c2, . . .)
The solution was given by D. Bloom [4]. Our Corollary 7 answers essentially the
same question. Related results have recently been announced by J. Tamura [9].

At the 4è Colloque Séries Formelles et Combinatoire Algébrique (Montréal,
June 1992) S. Plouffe and P. Zimmermann [8] posed the following problem. Show
that the generating function for c is∑

k≥0

ckx
k =

1

1− x
∏
j≥1

1− x2ej

1− xej
=

1

1− x
∏
j≥1

(1 + xej) (2)

the sequence of exponents being

e : e1, e2, e3, e4, . . . = 1, 1, 3, 5, 11, 21, 43, . . .

where e1 = 1 and

ej+1 =

{
2ej + 1 if j is even
2ej − 1 if j is odd

(3)

for j ≥ 1. They found this conjecture by using a method that goes back to Euler.
First they assumed that the generating function was of the form∏

j≥0

1− xaj
1− xbj

for a certain pair of sequences aj, bj. Then they took the logarithm to convert the
product into a sum. Finally they used Möbius inversion to determine the candidate
sequences. Details of this procedure can be found in the text of G. Andrews [2,
Theorem 10.3].

The purpose of this note is to prove (2). Before doing this, however, we will
show that c has a number of other interesting properties. Chief among these is
the fact that c is closely related to the famous Thue-Morse sequence, t. See the
survey article of J. Berstel [3] for more information about t.

First we need to have a characterization of the integers in the sequence c.
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Proposition 1 If n is any positive integer then n ∈ c if and only if n = 22i(2j+1)
for some nonnegative integers i and j.

Proof. Every positive integer n can be uniquely written in the form n = 2k(2j+1)
where k, j ≥ 0. We will proceed by induction on k.

If k = 0, then n is odd. But then n/2 is not an integer, and so n is in the
sequence by definition (1).

Now assume that k ≥ 1 and that the proposition holds for all powers less
than k of 2. If k = 2i is even, then by induction we have 22i−1(2j + 1) 6∈ c. So
n = 22i(2j+ 1) ∈ c by (1). On the other hand, if k = 2i+ 1 is odd, then induction
implies 22i(2j + 1) ∈ c. Thus n = 22i+1(2j + 1) 6∈ c as desired.

Let χ be the characteristic function of c, i.e.,

χ(n) =

{
1 if n ∈ c
0 otherwise.

Restating the previous proposition in terms of χ yields the next result.

Lemma 2 The function χ is uniquely determined by the equations

χ(2n+ 1) = 1

χ(4n+ 2) = 0

χ(4n) = χ(n).

Another way of obtaining the sequence χ(n) for n ≥ 1 is as follows. Starting
from the sequence

101 • 101 • 101 • 101 • . . .
defined on the alphabet {0, 1, •}, fill in the sucessive holes with the sucessive terms
of the sequence itself, obtaining:

101110101011101 • . . .

Iterating this process infinitely many times (by inserting the initial sequence into
the holes at each step), one gets a “Toeplitz transform” which is nothing but our
sequence χ. The proof of this fact is easily obtained using Lemma 2. See the
article of J.-P. Allouche and R. Bacher [1] for more information about Toeplitz
transformations.

The connection with the Thue-Morse sequence can now be obtained. This
sequence is

t : t0, t1, t2, t3, . . . = 0, 1, 1, 0, 1, 0, 0, 1, . . .
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defined by the conditions

t0 = 0

t2n+1 ≡ tn + 1 (mod 2)

t2n = tn.

We will need a lemma relating t and χ. All congruences in this and any future
results will be modulo 2.

Lemma 3 For every positive integer, n, we have

χ(n) ≡ tn + tn−1.

Proof. This is a three case induction based on Lemma 2 and the definitions of χ
and t. We will only do one of the cases as the others are similar.

t4n + t4n−1 ≡ t2n + t2n−1 + 1

≡ tn + tn−1 + 2

≡ χ(n)

= χ(4n).

Define dk to be the first difference sequence of ck, i.e., dk = ck− ck−1, for k ≥ 0
(c−1 = 0). So d is the sequence

d0, d1, d2, d3, d4, . . . = 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, . . .

Note that from the definition of c in (1), the value of dk is either 1 or 2. Write the
Thue-Morse sequence in term of its blocks

t = 011010011 . . . = 0d
′
01d

′
10d

′
21d

′
3 . . .

defining a sequence d′k. It is this sequence that is related to our original one via
the difference operator.

Theorem 4 For all k ≥ 0 we have dk = d′k.

Proof. Since both sequences consist of 1’s and 2’s, we need only verify that the
1’s appear in the same places in both. It will be convenient to let c′k =

∑
i≤k d

′
i.

We now proceed by induction on k, assuming that di = d′i for i ≤ k. Then, from
the definitions,

dk+1 = 1⇔ χ(ck + 1). (4)
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But by the induction hypothesis, ck =
∑
i≤k di =

∑
i≤k d

′
i = c′k. So, from equa-

tion (4),
dk+1 = 1 ⇔ χ(c′k + 1) = 1

⇔ tc′
k
+1 + tc′

k
≡ 1 (Lemma 3)

⇔ tc′
k
+1 6= tc′

k

⇔ d′k+1 = 1 (definitions).

S. Brlek [5] used the sequence d in calculating the number of factors of t of given
length. The paper of A. de Luca and S. Varricchio [7] attacks the same problem
in a different way.

Now if n ∈ c then we will consider its rank, r(n), which is the function satisfying
cr(n) = n. Note that r(n) is not defined for all positive integers n. In order to obtain
a formula for r(n), we will need a definition. Let the base 2 expansion of n be

n =
∑
i≥0

εi2
i

with the εi ∈ {0, 1} for all i. Define a function s by

s(n) =
∑
i≥0

(−1)iεi.

In other words, s(n) is the alternating sum of the binary digits of n.

Theorem 5 If n ∈ c then

r(n) = (2n+ s(n))/3− 1. (5)

Proof. The proof will be by induction. From Proposition 1, n ∈ c if and only if n
is odd or n = 22i(2j+ 1) where i > 0 and j ≥ 0. To facilitate the induction, it will
be convenient to split the odd numbers into two groups depending upon whether
the highest power of 2 dividing n+ 1 is even or odd. So there will be three cases

1. n = 22i(2j + 1)

2. n = 22i(2j + 1)− 1

3. n = 22i−1(2j + 1)− 1

where i > 0 and j ≥ 0. The arguments are similar, so we will only do the first
case.

4



So suppose n is even (remember that i > 0). Thus n + 1 is odd and, by
Proposition 1, we have n+ 1 ∈ c. Since both n and n+ 1 are in c, the left side of
equation (5) satisfies r(n+ 1) = r(n) + 1. So, by induction, it suffices to show that
r′(n+ 1) = r′(n) + 1 where r′(n) is the right side of this equation. Moreover, n is
a multiple of 4, hence s(n + 1) = s(n) + 1 (write down their binary expansions).
Thus

r′(n+ 1) = (2n+ 2 + s(n+ 1))/3− 1

= (2n+ 2 + s(n) + 1)/3− 1

= (2n+ s(n))/3

= r′(n) + 1.

As straightforward corollaries we have the next two results.

Corollary 6 If n ∈ c then

r(n) = 2n/3 +O(log n)

and r(n) takes the value 2n/3 infinitely often.

Corollary 7 For any nonnegative integer k

ck = 3k/2 +O(log k)

and ck = 3k/2 infinitely often.

We shall now prove the identity (2). First we note a property of the exponents
ej which is a simple consequence of their definition (3).

Lemma 8 For k ≥ 2, let fk =
∑

2≤j≤k ej. Then

fk =

 ek+1 − 2 if k is even
ek+1 − 1 if k is odd.

Finally, we come to the proof. We restate the generating function here for easy
reference.

Theorem 9 The generating function for c is

∑
k≥0

ckx
k =

1

1− x
∏
j≥1

(1 + xej).
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Proof. It suffices to show that if k ≥ 2 then

gk(x) =
1

1− x
(1 + x1)(1 + x1)(1 + x3) · · · (1 + xek)

is the generating function for the sequence

1, 3, 4, 5, 7, . . . , cfk , 2
k, 2k, 2k, . . .

with cfk = 2k−1. The proof is an induction, breaking up into two parts depending
on the parity of k. We will do the case where k is odd. (Even k is similar.) Now,
by Lemma 8, gk(x)(1 + xek+1) is the generating function for the sequence

1, 3, . . . , cfk , 2
k + 1, 2k + 3, . . . , 2k + cfk , 2

k+1, 2k+1, . . .

Using Proposition 1 and the fact that k is odd, we see that 2k + 1 = cfk+1 and
2k + cfk = 2k+1 − 1 = cfk+1

. So we want to show that

cfk+1, cfk+2, . . . , cfk+1
= 2k + c0, 2

k + c1, . . . , 2
k + cfk .

But if n < 2k, then the highest power of 2 dividing n is equal to the highest power
dividing 2k + n. Thus, by Proposition 1 again, n ∈ c if and only if 2k + n ∈ c.
This gives us the desired equality of the two sequences.

One possible generalization of c is the sequence c(α) defined by n ∈ c(α) if and
only if αn /∈ c(α). Thus c is the special case α = 2.

The following observation is a direct consequence of our definitions.

Proposition 10 If χ(α)(n) is the characteristic function of c(α), then the sequence
(χ(α)(n)) is the unique fixed point of the morphism

1 → 1α−10

0 → 1α−11

which begins with 1.

One can also see that c(α) satisfies analogs of many of our previous theorems.
For example, if one defines e

(α)
1 = 1 and

e
(α)
j+1 =

{
αe

(α)
j + 1 if j is even

αe
(α)
j − 1 if j is odd

for j ≥ 1, then the following result is a generalization of Theorem 9 and has an
analogous proof.

Theorem 11 The generating function for c(α) is

1

1− x
∏
j≥1

1− xαe
(α)
j

1− xe
(α)
j

.
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Combinatoire Algébrique,” P. Leroux and C. Reutenauer eds., Publications
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