
An efficient algorithm for the computation of

Bernoulli numbers

Greg Fee
Centre for Constructive and Experimental Mathematics

Simon Fraser University
Vancouver, Canada
gfee@cecm.sfu.ca

Simon Plouffe
Montréal, Canada

mailto:simon.plouffe@gmail.com

Abstract

This article gives a direct formula for the computation of B (n) using the asymptotic
formula

B (n) ≈ 2
n!

πn2n

where n is even and n ≫ 1. This is simply based on the fact that ζ (n) is very near

1 when n is large and since B (n) = 2 ζ(n)n!
πn2n

exactly. The formula chosen for the Zeta
function is the one with prime numbers from the well-known Euler product for ζ (n).
This algorithm is far better than the recurrence formula for the Bernoulli numbers even
if each B(n) is computed individually. The author could compute B (750, 000) in a few
hours. The current record of computation is now (as of Feb. 2007) B (5, 000, 000) a
number of (the numerator) of 27332507 decimal digits is also based on that idea.

1 The need for a single computation

This algorithm came once in 1996 when the authors wanted to compute large Bernoulli num-
bers using a well-known computer algebra system system like Maple or Mathematica. These
programs used Faulhaber’s recurrence [2, 5] formula which is nice but unsuitable for large
computations. We quickly came to the conclusion that B(10000) was out of reach even with
a powerful computer. This is where we realized that for n large the actual formula is simply
B (n) = 2 n!

πn2n
where n is even and not counting the sign, for n=1000 the approximation is

good to more than 300 decimal digits where B (1000) is of the order of 1770 digits. To carry
out the exact computation of B (1000) one has only to compute first the principal term in the
asymptotic formula and secondly just a few terms in the Euler product (up to p = 59). The
second idea was that the fractional part of the Bernoulli numbers can also be computed very
fast with the help of the Von Staudt-Clausen formula. So finally, the need is only to compute
Bn with enough precision so that the remainder is < 1 and apply the Von Staudt-Clausen

1

mailto:gfee@cecm.sfu.ca
mailto:simon.plouffe@gmail.com

formula for the fractional part to finally add the 2 results. Note : Mathematica now uses a
much more efficient algorithm partly due to these results presented here.

2 The Von Staudt-Clausen formula

The formula is, for k ≥ 1,

(−1)k B2k ≡
∑

(

1

p

)

mod 1.

The sum being extended over primes p such that (p − 1)|2k [5]. In other words, for B(10)
the sum is

B(10) = 1 − 1/2 − 1/3 − 1/11 = 5/66.

In terms of computation, when n is of the order of 1000000 it goes very fast to compute the
fractional part of Bn. The only thing that remains to be done then is the principal part or
integer part of Bn.

3 The Euler product

The Euler product of the zeta function is

∞
∑

n=1

1

ns
=

∏

p∈P

1

1 − p−s
.

Where s > 1 and p is prime. This is the error term in Bn. For any given n there are n
ln(n)

primes compared to n. Translated into the program it means less operations to carry, the
program stops when pk is of the order of B (n).

4 The final program

The Maple program uses a high precision value of 2π and a routine for the Von Staudt-
Clausen formula. That program held the record of the computation of Bernoulli Numbers
from 1996 to 2002, after that others made more efficient programs using C++ and high
precision packages like Kellner and Pavlyk (see table 1) and could reach B(5, 000, 000).
The program was used in 2003 to verify Agoh’s conjecture up to n=49999 by the authors.
Agoh’s conjecture is

pBp−1 ≡ −1 mod p

2

is true iff p is prime. The congruence is not obvious since pBp−1 is a fraction. The standard
method reduces first the numerator mod p, then re-evaluates the fraction, then reduces the
numerator mod p. The final fraction is always smaller than 1 and the result of a/b mod p
is solved by finding k such that a ≡ bk mod p. There are 3 parts in the main program
which may take time. First the computation of (2π)n and n!. Secondly, the evaluation of
the Von Staudt-Clausen formula and thirdly the computation of the Euler product. On a
medium sized computer (Pentium 2.4 Ghz with Maple 10 and 1 gigabyte of memory). The
run time for B(20000) is about 9 seconds and the number is 61382 digits long including 1 sec-
ond to read the value of π to high-precision from the disk. Here are the timings for that run :

- Product with primes up to 1181 at 61382 digits of precision : 7 seconds.
- Exponentiation of 2π and n! : less than 1 second.
- Computation of 20000! : negligible.
- Computation of Von Staudt-Clausen expression : negligible.

When n increases the time taken to evaluate the product with primes is what takes the most.
A value of π to several thousands digits is necessary. Maple can supply many thousands but
a file containing 1 million is easily found on the internet and is much faster. In this program
π is renamed pi with no capitals. The Bernoulli numbers up to n = 100 are within the
program mainly for speed when n is small.

BERN:=proc(n::integer)

local d, z, oz, i, p, pn, pn1, f, s, p1, t1, t2;

global Digits;

lprint(‘start at time‘ = time());

if n = 1 then -1/2

elif n = 0 then 1

elif n < 0 then ERROR(‘argument must be >= 0‘)

elif irem(n, 2) = 1 then 0

elif n <= 100 then op(iquo(n, 2), [1/6, -1/30, 1/42, -1/30,

5/66, -691/2730, 7/6, -3617/510, 43867/798, -174611/330,

854513/138, -236364091/2730, 8553103/6, -23749461029/870,

8615841276005/14322, -7709321041217/510, 2577687858367/6,

-26315271553053477373/1919190, 2929993913841559/6,

-261082718496449122051/13530, 1520097643918070802691/1806,

-27833269579301024235023/690, 596451111593912163277961/282,

-5609403368997817686249127547/46410,

495057205241079648212477525/66,

-801165718135489957347924991853/1590,

3

29149963634884862421418123812691/798,

-2479392929313226753685415739663229/870,

84483613348880041862046775994036021/354,

-1215233140483755572040304994079820246041491/56786730,

12300585434086858541953039857403386151/6,

-106783830147866529886385444979142647942017/510,

1472600022126335654051619428551932342241899101/64722,

-78773130858718728141909149208474606244347001/30,

1505381347333367003803076567377857208511438160235/4686,

-5827954961669944110438277244641067365282488301844260429/

140100870,

34152417289221168014330073731472635186688307783087/6,

-24655088825935372707687196040585199904365267828865801/30,

414846365575400828295179035549542073492199375372400483487/

3318, -46037842994794576469355749690190468497942578727512\

88919656867/230010, 1677014149185145836823154509786269900\

207736027570253414881613/498, -20245761959352903602311311\

60111731009989917391198090877281083932477/3404310, 660714\

61941767865357384784742626149627783068665338893176199698\

3/6, -131142648867401750799551142401931184334575027557202\

8644296919890574047/61410, 117905727902108279988412335124\

9215083775254949669647116231545215727922535/272118, -1295\

58594820753752798942782853857674965934148371943514302331\

6326829946247/1410, 1220813806579744469607301679413201203\

958508415202696621436215105284649447/6, -2116004495972665\

13097597728109824233673043954389060234150638733420050668\

349987259/4501770, 67908260672905495624051117546403605607\

342195728504487509073961249992947058239/6, -9459803781912\

21252952274330694937218727028415330669361333856962043113\

95415197247711/33330])

else

d := 4

+ trunc(evalhf((lnGAMMA(n + 1) - n*ln(2*Pi))/ln(10)))

+ length(n);

lprint(‘using ‘ . d . ‘ Digits‘);

s := trunc(evalhf(exp(0.5*d*ln(10)/n))) + 1;

Digits := d;

p := 1;

t1 := 1.;

t2 := t1;

4

lprint(‘start small prime loop at time‘ = time());

while p <= s do

p := nextprime(p);

pn := p^n;

pn1 := pn - 1;

t1 := pn*t1;

t2 := pn1*t2

end do;

gc();

lprint(status);

lprint(‘used primes up to and including ‘ . p);

lprint(‘finish small prime loop at time‘ = time());

z := t1/t2;

gc();

lprint(status);

lprint(‘finish full prec. division at time‘ = time());

oz := 0;

while oz <> z do

oz := z;

p := nextprime(p);

Digits := max(d - ilog10(pn), 9);

pn := Float(p,0);

pn := p^n;

pn1 := z/pn;

Digits := d;

z := z + pn1

end do;

gc();

lprint(status);

lprint(‘used primes up to and including ‘ . p);

lprint(‘finish big prime loop at time‘ = time());

p := evalf(2*pi);

gc();

lprint(status);

lprint(‘finish 2*Pi at time‘ = time());

f := n!;

gc();

lprint(status);

lprint(‘finish factorial at time‘ = time());

pn := p^n;

5

gc();

lprint(status);

lprint(‘finish (2*Pi)^n at time‘ = time());

z := 2*z*f/pn;

gc();

lprint(status);

lprint(

‘finish 2*z*n!/(2*Pi)^n (multiply and divide) at time‘

= time());

s := 0;

for p in numtheory[divisors](n) do

p1 := p + 1; if isprime(p1) then s := s + 1/p1 end if

end do;

gc();

lprint(status);

lprint(‘finish divisors of n loop at time‘ = time());

s := frac(s);

if irem(n, 4) = 0 then

if s < 1/2 then z := -round(z) - s

else z := -trunc(z) - s

end if

else

s := 1 - s;

if s < 1/2 then z := round(z) + s

else z := trunc(z) + s

end if

end if;

gc();

lprint(status);

lprint(‘done at time‘ = time());

z

end if

end:

6

Who when highest Bn

Bernoulli 1713 10
Euler 1748 30
J.C. Adams 1878 62
D.E. Knuth and Buckholtz 1967 360
Greg Fee and Simon Plouffe 1996 10000
Greg Fee and Simon Plouffe 1996 20000
Greg Fee and Simon Plouffe 1996 30000
Greg Fee and Simon Plouffe 1996 50000
Greg Fee and Simon Plouffe 1996 100000
Greg Fee and Simon Plouffe 1996 200000
Simon Plouffe 2001 250000
Simon Plouffe 2002 400000
Simon Plouffe 2002 500000
Simon Plouffe 2002 750000
Berndt C. Kellner 2002 1000000
Berndt C. Kellner 2003 2000000
Pavlyk O. 2005 5000000

Table 1: History of the computation of Bernoulli numbers

References

[1] N. J. A. Sloane, “The On-Line Encyclopedia of Integer Sequences,” available at
http://www.research.att.com/∼njas/sequences/.

[2] M. Abramowitz and I. Stegun, editors.
Handbook of Mathematical Functions. Dover, New York, 1970.

[3] K. Dilcher, , A Bibliography of Bernoulli Numbers,
http://www.mscs.dal.ca/ dilcher/bernoulli.html.

[4] Xavier Gourdon et Patrick Sebah, , Introduction to Bernoulli Numbers,
http://numbers.computation.free.fr/Constants/Miscellaneous/bernoulli.html.

[5] G. H. Hardy and E. L. Wright, An Introduction to the Theory of Numbers, Oxford
University Press, 1979.

[6] Kellner, B. C. ber irregulre Paare hherer Ordnungen. Diplomarbeit. Gttingen, Ger-
many: Mathematischen Institut der Georg August Universitt zu Gttingen, 2002.
http://www.bernoulli.org/ bk/irrpairord.pdf.

7

http://www.research.att.com/~njas/sequence/
http://www.mscs.dal.ca/~dilcher/bernoulli.html
http://numbers.computation.free.fr/Constants/Miscellaneous/bernoulli.html
http://www.bernoulli.org/~bk/irrpairord.pdf

[7] Kellner, B. C. The Equivalence of Giuga’s and Agoh’s Conjectures. 15 Sep 2004.
http://arxiv.org/abs/math.NT/0409259/.

[8] D. E. Knuth, The Art of Computer Programming vol. 2, Addison-Wesley, Reading, MA,
1981 and 1997.

[9] S. Plouffe, The computation of big Bernoulli numbers, from 1996 to 2002, on the author
web site at http://www.lacim.uqam.ca/∼plouffe/Bigfiles/.

[10] S. Ramanujan, Some properties of Bernoulli’s numbers, J. Indian Math. Soc., (1911),
vol. 3, pp. 219-234.

[11] P. Ribenboim, The new Book of Prime Number Records, Springer, (1996).

[12] Neil J.A. Sloane and Simon Plouffe,, The Encyclopedia of Integer Sequences, Academic
Press, San Diego 1995, 587 pp.

[13] Neil Sloane and al. The On-Line Encyclopedia of Integer Sequences, available at
http://www.research.att.com/ njas/sequences/.

[14] Eric Weisstein, Agoh’s conjecture,
http://mathworld.wolfram.com/AgohsConjecture.html.

[15] Eric Weisstein, Bernoulli Numbers,
http://mathworld.wolfram.com/BernoulliNumber.html.

2000 Mathematics Subject Classification: Primary 11B68; Secondary 05A10, 11A07, 11B64.
Keywords: Bernoulli numbers, Euler product, Zeta function.

(Concerned with sequences A000367, A000928, A000928, A002445, A027641, A027642)

Return to Journal of Integer Sequences home page.

8

http://arxiv.org/abs/math.NT/0409259/
http://www.lacim.uqam.ca/$\sim $plouffe/Bigfiles/
http://www.research.att.com/~njas/sequences/
Mathworld, http://mathworld.wolfram.com/AgohsConjecture.html
Mathworld, http://mathworld.wolfram.com/BernoulliNumber.html
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000367
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000928
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000928
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A002445
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A027641
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A027642

	The need for a single computation
	The Von Staudt-Clausen formula
	The Euler product
	The final program

