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WORDS AND TRANSCENDENCE

MICHEL WALDSCHMIDT

Dedicated to the 80th birthday of Professor K.F. Roth

Abstract. Is it possible to distinguish algebraic from transcendental real
numbers by considering the b-ary expansion in some base b > 2? In 1950,

É. Borel suggested that the answer is no and that for any real irrational alge-
braic number x and for any base g > 2, the g-ary expansion of x should satisfy
some of the laws that are shared by almost all numbers. For instance, the
frequency where a given finite sequence of digits occurs should depend only on
the base and on the length of the sequence.

We are very far from such a goal: there is no explicitly known example of
a triple (g, a, x), where g > 3 is an integer, a a digit in {0, . . . , g − 1} and x

a real irrational algebraic number, for which one can claim that the digit a

occurs infinitely often in the g-ary expansion of x.
Hence there is a huge gap between the established theory and the expected

state of the art. However, some progress has been made recently, thanks mainly
to clever use of Schmidt’s subspace theorem. We review some of these results.

1. Normal Numbers and Expansion of Fundamental Constants

1.1. Borel and Normal Numbers. In two papers, the first [28] published in 1909
and the second [29] in 1950, Borel studied the g-ary expansion of real numbers,
where g > 2 is a positive integer. In his second paper he suggested that this
expansion for a real irrational algebraic number should satisfy some of the laws
shared by almost all numbers, in the sense of Lebesgue measure.

Let g > 2 be an integer. Any real number x has a unique expansion

x = a−kgk + . . . + a−1g + a0 + a1g
−1 + a2g

−2 + . . . ,

where k > 0 is an integer and the ai for i > −k, namely the digits of x in the
expansion in base g of x, belong to the set {0, 1, . . . , g − 1}. Uniqueness is subject
to the condition that the sequence (ai)i>−k is not ultimately constant and equal to
g − 1. We write this expansion

x = a−k . . . a−1a0.a1a2 . . . .

Example. We have
√

2 = 1.41421356237309504880168872420 . . .

in base 10 (decimal expansion), whereas
√

2 = 1.01101010000010011110011001100111111100111011110011 . . .

in base 2 (binary expansion).

The first question in this direction is whether each digit always occurs at least
once.

Conjecture 1.1. Let x be an real irrational algebraic number, g > 3 a positive

integer and a an integer in the range 0 6 a 6 g − 1. Then the digit a occurs at

least once in the g-ary expansion of x.
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For g = 2 it is plain that each of the two digits 0 and 1 occurs infinitely often
in the binary expansion of an irrational algebraic number. The same is true for
each of the sequences of two digits 01 and 10. Conjecture 1.1 implies that each
of the sequences of digits 00 and 11 should also occur infinitely often in such an
expansion; apply Conjecture 1.1 with g = 4. There is no explicitly known example
of a triple (g, a, x), where g > 3 is an integer, a a digit in {0, . . . , g − 1} and x a
real irrational algebraic number, for which one can claim that the digit a occurs
infinitely often in the g-ary expansion of x. Another open problem is to produce
an explicit pair (x, g), where g > 3 is an integer and x a real irrational algebraic
number, for which we can claim that the number of digits which occur infinitely
many times in the g-ary expansion of x is at least 3. Even though few results are
known and explicit examples are lacking, something is known. For any g > 2 and
any k > 1 there exist real algebraic numbers x such that any sequence of k digits
occurs infinitely often in the g-ary expansion of x. However the connection with
algebraicity is weak: indeed Mahler proved in 1973 more precisely that for any real
irrational number α and any sequence of k digits in the set {0, . . . , g − 1}, there
exists an integer m for which the g-ary expansion of mα contains infinitely many
times the given sequence; see [3, Theorem M] and [50]. According to Mahler, the
smallest such m is bounded by g2k+1. This estimate has been improved by Berend
and Boshernitzan [26] to 2gk+1 and one cannot get better than gk − 1.

If a real number x satisfies Conjecture 1.1 for all g and a, then it follows that for
any g, each given sequence of digits occurs infinitely often in the g-ary expansion
of x. This is easy to see by considering powers of g.

Borel asked more precise questions on the frequency of occurrences of sequences
of binary digits of real irrational algebraic numbers. We need to introduce some
definitions.

Firstly, a real number x is called simply normal in base g if each digit occurs
with frequency 1/g in its g-ary expansion. A very simple example in base 10 is

x = 0.123456789012345678901234567890 . . . ,

where the sequence 1234567890 is repeated periodically, but this number is rational.
We have

x =
1 234 567 890

9 999 999 999
=

137 174 210

1 111 111 111
.

Secondly, a real number x is called normal in base g or g-normal if it is simply
normal in base gm for all m > 1. Hence a real number x is normal in base g if and
only if, for all m > 1, each sequence of m digits occurs with frequency 1/gm in its
g-ary expansion.

Finally, a number is called normal if it is normal in all bases g > 2.
Borel suggested in 1950 that each real irrational algebraic number should be

normal.

Conjecture 1.2 (Borel, 1950). Let x be a real irrational algebraic number and

g > 2 a positive integer. Then x is normal in base g.

As shown by Borel [28], almost all numbers, in the sense of Lebesgue measure, are
normal. Examples of computable normal numbers have been constructed by Sier-
pinski, Lebesgue, Becher and Figueira; see [24]. However, the known algorithms to
compute such examples are fairly complicated; indeed, “ridiculously exponential”,
according to [24].

An example of a 2-normal number is the binary Champernowne number, obtained
by concatenation of the sequence of integers

0. 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 . . . ;
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see [35, 54, 22]. A closed formula for this number is

∑

k>1

k2−ck , ck = k +

k
∑

j=1

⌊log2 j⌋;

see [22, page 183].
Another example is given by Korobov, Stoneham, and others: if a and g are

coprime integers greater than 1, then
∑

n>0

a−ng−an

is normal in base g; see [20].
A further example, due to Copeland and Erdős in 1946, of a normal number in

base 10 is
0.23571113171923 . . . ,

obtained by concatenation of the sequence of prime numbers.
As pointed out to the author by Tanguy Rivoal, a definition of what it means

for a number to have a random sequence of digits is given in [33], the first concrete
example being Chaitin’s omega number which is the halting probability of a universal

self-delimiting computer with null-free data. This number, which is normal and
transcendental, appears also to be a good candidate for being a non-period in the
sense of Kontsevich and Zagier [43].

1.2. BBP Numbers. An interesting approach towards Conjecture 1.2 is provided
by Hypothesis A of Bailey and Crandall [22], who relate the question whether
numbers like π, log 2 and other constants are normal to the following hypothesis
involving the behaviour of the orbits of a discrete dynamical system.

Hypothesis A. Let

θ :=
∑

n>1

p(n)

q(n)
g−n,

where g > 2 is an integer, R = p/q ∈ Q(X) a rational function with q(n) 6= 0 for

n > 1 and deg p < deg q. Set y0 = 0 and

yn+1 = gyn +
p(n)

q(n)
mod 1.

Then the sequence (yn)n>1 either has finitely many limit points or is uniformly

distributed modulo 1.

A connection with special values of G-functions has been noted by Lagarias [44].
In his paper, Lagarias defines BBP numbers, with reference to the paper [21] by
Bailey, Borwein and Plouffe, as numbers of the form

∑

n>1

p(n)

q(n)
g−n,

where g > 2 is an integer, p and q relatively prime polynomials in Z[X ] with
q(n) 6= 0 for n > 1.

Here are a few examples from [19]. Since
∑

n>1

1

n
xn = − log(1 − x) and

∑

n>1

1

2n − 1
x2n−1 =

1

2
log

1 + x

1 − x
,

it follows that log 2 is a BBP number in base 2 as well as in base 9, since

log 2 =
∑

n>1

1

n
2−n =

∑

n>1

6

2n − 1
3−2n. (1)
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Also log 3 is a BBP number in base 4, since

log 3 = 2 log 2 + log
3

4
=

∑

n>0

1

22n

1

2n + 1
;

and π is a BBP number in base 16, since

π =
∑

n>0

(

4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)

2−4n. (2)

Further examples are π2 in base 64 and in base 81, (log 2)2 in base 64, and ζ(3) in
base 212 = 4096.

1.3. Number of 1’s in the Binary Expansion of a Real Number. Denote
by B(x, n) the number of 1’s among the first n binary digits of an irrational real
number x.

If x, y and x + y are positive and irrational, then for all sufficiently large n,

B(x + y, n) 6 B(x, n) + B(y, n) + 1.

If x, y and xy are positive and irrational, then for all sufficiently large n,

B(xy, n) 6 B(x, n)B(y, n) + log2⌊x + y + 1⌋.
If x is positive and irrational, then for each integer A > 0, the bound

B(x, n)B

(

A

x
, n

)

> n − 1 −
⌊

log2

(

x +
A

x
+ 1

)⌋

holds for all sufficiently large n; see [20, 56].
A consequence is that if a and b are two integers, both at least 2, then none of

the powers of the transcendental number

ξ =
∑

n>1

a−bn

is simply normal in base 2. Also the lower bound

B(
√

2, n) > n1/2 + O(1)

can be deduced [56]. In [20, Theorem 7.1], Bailey, Borwein, Crandall and Pomerance
have obtained a similar lower bound valid for all real irrational algebraic numbers.

Theorem 1.3 (Bailey, Borwein, Crandall, and Pomerance, 2004). Let x be a real

algebraic number of degree at least 2. Then there is a positive number C, which

depends only on x, such that the number of 1’s among the first N digits in the

binary expansion of x is at least CN1/d.

Further results related to Theorem 1.3 are given by Rivoal [56], Bugeaud [31],
and Bugeaud and Evertse [32].

As pointed out by Bailey, Borwein, Crandall and Pomerance, it follows from
Theorem 1.3 that for each d > 2, the number

∑

n>0

2−dn

is transcendental. The transcendence of the number
∑

n>0

2−2n

(3)

goes back to Kempner in 1916; see [15, Section 13.10]. Other proofs are available,
which rest either on Mahler’s method, to be discussed in Section 3.1, or on the
approximation theorem of Thue-Siegel-Roth-Ridout, to be discussed in Section 4;
see also [61, Section 1.6], and [57, 58, 1].
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Another consequence of Theorem 1.3 is the transcendence of the number

∑

n>0

g−Fn , (4)

for any integer g > 2, where (Fn)n>0 is the Fibonacci sequence, with F0 = 0, F1 = 1
and Fn+1 = Fn + Fn−1 for n > 1. Again, the transcendence of this number also
follows from Mahler’s method [20] as well as from the theorem of Thue-Siegel-Roth-
Ridout [57, 58, 1].

2. Words and Automata

2.1. Words. We recall some basic facts from language theory; see for instance
[15, 46].

We consider an alphabet A with g letters. The free monoid A∗ on A is the set
of finite words a1 . . . an where n > 0 and ai ∈ A for 1 6 i 6 n. The law on A∗ is
called concatenation.

The number of letters of a finite word is its length: the length of a1 . . . an is n.
The number of words of length n is gn for n > 0. The single word of length 0 is

the empty word e with no letter. It is the neutral element for the concatenation.
We shall consider infinite words w = a1a2a3 . . . . A factor of length m of such a

word w is a word of the form akak+1 . . . ak+m−1 for some k > 1.
The complexity of an infinite word w is the function p(m) which counts, for each

m > 1, the number of distinct factors of w of length m. Hence for an alphabet
A with g elements we have 1 6 p(m) 6 gm, and the function m 7→ p(m) is non-
decreasing. Conjecture 1.1 is equivalent to the assertion that the complexity of the
sequence of digits in base g of an irrational algebraic number should be p(m) = gm.

An infinite word is periodic if and only if its complexity is bounded. If the
complexity p(m) of a word satisfies p(m + 1) = p(m) for one value of m, then
p(m + k) = p(m) for all k > 0, hence the word is periodic. It follows that the
complexity of a non-periodic word satisfies p(m) > m + 1. Following Morse and
Hedlund, a word of minimal complexity p(m) = m + 1 is called a Sturmian word.
Sturmian words are those which encode with two letters the orbits of square billiard
starting with an irrational angle; see [16, 17, 62]. It is easy to check that on the
alphabet {a, b}, a Sturmian word w is characterized by the property that for each
m > 1, there is exactly one factor v of w of length m for which both va and vb are
factors of w of length m + 1.

Let A and B be two finite sets. A map from A to B∗ can be uniquely extended
to a homomorphism between the free monoids A∗ and B∗. We call such a homo-
morphism a morphism from A to B. The morphism is uniform if all words in the
image of A have the same length.

Let ϕ be a morphism from A into itself. Assume that there exists a letter a
for which ϕ(a) = au, where u is a non-empty word satisfying ϕk(u) 6= e for every
k > 0. Then the sequence of finite words (ϕk(a))k>1 converges in AN, endowed
with the product topology of the discrete topology on each copy of A, to an infinite
word w = auϕ(u)ϕ2(u)ϕ3(u) . . . . This infinite word is clearly a fixed point for ϕ
and we say that w is generated by the morphism ϕ.

If, moreover, every letter occurring in w occurs at least twice, then we say that
w is generated by a recurrent morphism.

If the alphabet A has two letters, then we say that w is generated by a binary

morphism.
More generally, an infinite sequence w in AN is said to be morphic (respec-

tively uniformly morphic) if there exist a sequence u generated by a morphism
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(respectively a uniform morphism) defined over an alphabet B and a morphism
(respectively a uniform morphism) ϕ from B to A such that w = ϕ(u).

2.2. Finite Automata and Automatic Sequences. A formal definition of a
finite automaton is given, for instance, in [15, Section 4.1], [46, Section 1.3.2], [12,
Section 3.3] and [5, Section 3]. We do not give the exact definition but we propose
a number of examples in Section 2.3. It suffices to say that a finite automaton
consists of the following elements:

• the input alphabet, which is usually the set of g > 2 digits {0, 1, . . . , g − 1};
• the set of states Q, usually a finite set of 2 or more elements, with one

element, called the initial state and denoted by i, singled out; the elements
of Q will be denoted by letters {i, a, b, . . .};

• the transition map Q×{0, 1, . . . , g−1} → Q : (a, n) 7→ n[a] which associates
to every state a a new state n[a] depending on the current input n;

• the output alphabet A, together with the output map Q → A.

We extend the transition map to a map (a, n) 7→ n[a] from Q × N → Q as
follows: let (a, n) ∈ Q × N, replace n by its g-ary expansion n = ekek−1 . . . e1e0

and define inductively n[a] = ekek−1 . . . e1[b], where b = e0[a] is the image of (a, e0)
under the transition map. Hence an automaton produces an infinite sequence

0[i], 1[i], 2[i], 3[i], . . . , n[i], . . .

of elements of Q. We take the images of the elements of this sequence under the
transition map, and this gives rise to the output sequence. Such a sequence is called
g-automatic. In other words, for an integer g > 2, an infinite sequence (an)n>0 of
elements of {0, 1, . . . , g− 1} is said to be g-automatic if an is a finite-state function
of the representation of n in base g.

For instance let us explain why the characteristic function of the sequence 20 = 1,
21 = 2, 22 = 4, . . . of powers of 2 is 2-automatic. Take g = 2, Q = {i, a, b}, and
define the transition map by

0[i] = i, 0[a] = a, 0[b] = b,
1[i] = a, 1[a] = b, 1[b] = b.

A convenient notation is given by the following diagram.

��
��

i ��
��

a ��
��

b-
1

-
1

��
?

0 ��
?

0 ��
?

0

��6

1

One easily checks, on writing the sequence of positive integers in base 2, that

0[i] = i, 1[i] = a, 10[i] = a, 11[i] = b,

100[i] = a, 101[i] = b, 110[i] = b, . . . .

Next define f(i) = 0, f(a) = 1 and f(b) = 0. The output sequence

a0a1a2 . . . = 01101000100000001000 . . .

is given by

an =

{

1 if n is a power of 2,
0 otherwise.
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According to Cobham [39], automatic sequences have complexity p(m) = O(m);
see also [15, Section 10.3]. Also, automatic sequences are the same as uniform

morphic sequences ; see for instance [15, Section 6.3] and [8, Theorem 4.1].
Automatic sequences are between periodicity and chaos. They occur in con-

nection with harmonic analysis, ergodic theory, fractals, Feigenbaum trees, quasi-
crystals, transition phases in statistical mechanics, and others; see [14, 34, 12] and
[15, Chapter 17].

2.3. Examples.

2.3.1. The Fibonacci Word. Consider the alphabet A = {a, b}. Start with f1 = b,
f2 = a and define fn = fn−1fn−2. Then

f3 = ab, f4 = aba, f5 = abaab, f6 = abaababa, f7 = abaababaabaab, . . . .

There is a unique word

w = abaababaabaababaababaabaababaabaab . . .

in which fn is the prefix of length Fn, the Fibonacci number of index n, for n > 2.
This is the Fibonacci word ; it is generated by a binary recurrent morphism [15,
Section 7.1] and is the fixed point of the morphism a 7→ ab, b 7→ a; under this
morphism, the image of fn is fn+1.

Let us check that the Fibonacci word is not periodic. Indeed, the word fn has
length Fn, and consists of Fn−1 letters a and Fn−2 letters b. Hence the proportion
of a in the Fibonacci word w is 1/Φ, where Φ is the golden number

Φ =
1 +

√
5

2
which is an irrational number. On the other hand, for a periodic word the propor-
tion of each letter is a rational number.

Remark. The proportion of b in w is 1/Φ2, with 1/Φ + 1/Φ2 = 1, as expected!

Proposition 2.1. The Fibonacci word is Sturmian.

We write the factors of length 1, 2, 3, 4, 5, . . . of the Fibonacci word in columns
as shown.

aabaa . . .ր
a → aa → aab → aaba → aabab . . .

ց ab → aba → abaa → abaab . . .
ց abab → ababa . . .

b → ba → baa → baab → baaba . . .
ց bab → baba → babaa . . .

The k-th column contains k + 1 elements: one of them has two right extensions
to a factor of length k + 1, and all remaining k factors of length k have a single
extension. This is easily seen to be a characterization of Sturmian words.

Concerning the sequence

(vn)n>0 = (0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, . . .), (5)

derived from the Fibonacci word on the alphabet {0, 1}, a result of Danilov [41] in
1972 states that for all integers g > 2, the number

∑

n>0

vng−n

is transcendental; see also [11, Theorem 4.2].

Proposition 2.2. The Fibonacci word is not automatic.
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Proposition 2.2 follows from a result of Cobham [39] which shows that the fre-
quency of a letter in an automatic word, if it exists, is a rational number.

The origin of the Fibonacci sequence is a model of growth of a population of
rabbits. Denote a pair of young rabbits by Y and a pair of adults by A. From one
year to the next, the young pair become adult, which we write as Y → A, while the
adult pair stay alive and produce a young pair, which we write as A → AY . This
gives rise to the dynamical system

Y → A → AY → AY A → AY AAY → AY AAY AY A → . . . ,

and the sequence (R1, R2, R3, . . .) of Fibonacci rabbits

A, Y, A, A, Y, A, Y, A, A, Y, A, A, Y, A, . . . .

Replacing Y by 1 and A by 0 produces the sequence (5) considered by Danilov.
Any integer n > 2 has a unique representation as the sum of distinct Fibonacci

numbers Fm, m > 2, with the property that no Fibonacci numbers with consecutive
indices occur in the sum. This representation yields the following algorithm to
decide whether Rn is A or Y . If the smallest index in the decomposition of n is even,
then Rn = A. If it is odd, then Rn = Y . For instance, for 51 = F9 + F7 + F4 + F2,
the smallest index, namely 2, is even, so R51 = A.

Recall that Φ = (1+
√

5)/2 denotes the golden number. The sequence of indices
n for which Rn = A is

⌊Φ⌋ = 1, ⌊2Φ⌋ = 3, ⌊3Φ⌋ = 4, ⌊4Φ⌋ = 6, . . . ,

while the sequence of indices n for which Rn = Y is

⌊Φ2⌋ = 2, ⌊2Φ2⌋ = 5, ⌊3Φ2⌋ = 7, ⌊4Φ2⌋ = 8, . . . .

For instance, 32Φ = 51.77 . . ., so ⌊32Φ⌋ = 51 and R51 = A.
This sequence (Rn)n>1 of rabbits is an example of a Beatty sequence.

2.3.2. The Prouhet-Thue-Morse word abbabaabbaababbab . . . . The finite automaton

��
��

i ��
��

a
-

1

�
1

��
?

0 ��
?

0

with f(i) = 0 and f(a) = 1 produces the sequence a0a1a2 . . . , where an = f(n[i]).
For instance, with n = 9, since 9 is 1001 in binary notation,

1001[i] = 100[a] = 10[a] = 1[a] = i,

and f(i) = 0, we have a9 = 0.
This is the Prouhet-Thue-Morse sequence

01101001100101101 . . . ,

where the (n + 1)-th term an is 1 if the number of 1’s, which is the same as the
sum of the binary digits, in the binary expansion of n is odd, and is 0 otherwise;
see [15, Section 1.6].

If, in the Prouhet-Thue-Morse sequence, we replace 0 by a and 1 by b, we obtain
the Prouhet-Thue-Morse word on the alphabet {a, b}, and this starts with

w = abbabaabbaababbab . . . .

This word is generated by a binary recurrent morphism; see [15, Section 6.2]. It is
the fixed point of the morphism a 7→ ab, b 7→ ba.
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An interesting observation, due to Thue in 1906, is that if w is a finite word and
a a letter for which wwa is a factor of the Prouhet-Thue-Morse word, then a is
not the first letter of w. Therefore, in the Prouhet-Thue-Morse sequence, no three
consecutive identical blocks such as 000 or 111 or 010101 or 101010 or 001001001
can occur.

2.3.3. The Baum-Sweet Sequence. For n > 0, let an = 1 if the binary expansion of
n contains no block of consecutive 0’s of odd length, and an = 0 otherwise. The
Baum-Sweet sequence (an)n>0 starts with

110110010100100110010 . . . .

This sequence is automatic, associated with the automaton

��
��

i ��
��

a ��
��

b
-

0

�
0

-
1

��
?

1 ��
?

0

��6

1

with f(i) = 1, f(a) = 0 and f(b) = 0; see [15, Example 5.1.7].

2.3.4. Powers of 2. As we have seen, the binary number

ξ :=
∑

n>0

2−2n

= 0.1101000100000001000 . . . = 0.a1a2a3 . . .

is 2-automatic. The associated infinite word

v = v1v2v3 . . . = bbabaaabaaaaaaabaaa . . . ,

where

vn =

{

b if n is a power of 2,
a otherwise,

has complexity p(m) bounded by 2m; the initial values are given below.

m 1 2 3 4 5 6 . . .
p(m) 2 4 6 7 9 11 . . .

2.3.5. The Rudin-Shapiro Word. For n > 0, let rn ∈ {a, b} satisfy rn = a (re-
spectively rn = b) if the number of occurrences of the pattern 11 in the binary
representation of n is even (respectively odd). This produces the Rudin-Shapiro

word

aaabaabaaaabbbab . . . .

Let σ be the morphism defined from the monoid B∗ on the alphabet B =
{1, 2, 3, 4} into B∗ by σ(1) = 12, σ(2) = 13, σ(3) = 42 and σ(4) = 43. Let

u = 121312421213 . . .

be the fixed point of σ beginning with 1 and let ϕ be the morphism defined from
B∗ to {a, b}∗ by ϕ(1) = aa, ϕ(2) = ab, ϕ(3) = ba and ϕ(4) = bb. Then the
Rudin-Shapiro word is ϕ(u), hence it is morphic.
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2.3.6. Paper Folding. Folding a strip of paper always in the same direction, and
then opening it up, yields a sequence of folds which can be encoded using the digits
0 and 1. The resulting sequence (un)n>0, given by

1101100111001001 . . . ,

satisfies

u4n = 1, u4n+2 = 0, u2n+1 = un,

and is produced by the automaton

��
��

i ��
��

a

��
��

b

��
��

c

-
0 ������10

PPPPPPq1

��
?

1

��
?

0

�
��

1

��6

0

�
�

�
1

with f(i) = f(a) = f(b) = 1 and f(c) = 0.
An equivalent definition for this sequence is given as follows: the sequence an =

un+1, n > 1, is defined recursively by an = 1 if n is a power of 2, and

a2k+a = 1 − a2k−a, 1 6 a < 2k;

see [15, Example 5.1.6].
For a connection between the paper folding sequence and the Prouhet-Thue-

Morse sequence, see [18].

2.4. Complexity of the g-ary Expansion of an Algebraic Number. The
transcendence of a number whose sequence of digits is Sturmian has been proved
by Ferenczi and Mauduit [42] in 1997. The point is that such sequences contain
sequences of digits which bear similarities, and yields the existence of very sharp
rational approximations which do not exist for algebraic numbers.

It follows from their work that the complexity of the g-ary expansion of every
irrational algebraic number satisfies

lim inf
m→∞

(p(m) − m) = +∞;

see [10]. The main tool for the proof is a p-adic version of the Thue-Siegel-Roth
theorem due to Ridout in 1957; see Theorem 4.3 below as well as [3].

Several papers have been devoted to the study of the complexity of the g-ary
expansions of real algebraic numbers, in particular by Allouche and Zamboni in
1998, Risley and Zamboni in 2000, and Adamczewski and Cassaigne in 2003. For
a survey, see [3]. The main recent result is the following [5].

Theorem 2.3 (Adamczewski and Bugeaud, 2007). The complexity p(m) of the

g-ary expansion of a real irrational algebraic number satisfies

lim inf
m→∞

p(m)

m
= +∞.
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In 19681, Cobham [38] claimed that automatic irrational numbers are transcen-
dental. This follows from Theorem 2.3, since automatic numbers have a complexity
O(m).

Corollary 2.4 (Conjecture of Cobham). If the sequence of digits of an irrational

real number x is automatic, then x is transcendental.

The main tool for the proof of Theorem 2.3 is a new, combinatorial transcendence
criterion obtained by Adamczewski, Bugeaud and Luca [7] as an application of
Schmidt’s subspace theorem; see Theorem 4.4 and [60].

In 1979, Christol [36] proved that when p is a prime and

f(X) =
∑

k>1

ukXk ∈ Fp[[X ]]

a power series with coefficients in the finite field Fp, then f is algebraic if and only
if the sequence of coefficients (uk)k>1 can be produced by a p-automaton.

According to Cobham, a sequence can be simultaneously k-automatic and ℓ-
automatic with k and ℓ multiplicatively independent if and only if it is ultimately
periodic. Christol, Kamae, Mendès France and Rauzy [37] have shown that a power
series with coefficients in a finite set can be algebraic over two different finite fields
if and only if it is rational.

In this context Theorem 2.3 implies the following statement.

Corollary 2.5. Let p be a prime number, g > p an integer and (uk)k>1 a sequence

of integers in the range {0, . . . , p − 1}. The formal power series
∑

k>1

ukXk

and the real number
∑

k>1

ukg−k

are simultaneously algebraic over Fp(X) and over Q respectively if and only if they

are rational.

As an example, taken from [11, Section 6] and [12, Section 2.4]), consider the
Prouhet-Thue-Morse sequence (an)n>0. The series

F (X) =
∑

n>0

anXn

is algebraic over F2(X), as it is a root of (1+X)3F 2+(1+X)2F +X = 0. Since F is
not a rational function, Corollary 2.5 gives another proof of Mahler’s transcendence
result on the number

∑

n>0

ang−n.

The following result related to Theorem 2.3 has been obtained subsequently by
Bugeaud and Evertse [32] by means of a refinement of the so-called Cugiani-Mahler
theorem. The main tool is again a quantitative version of Schmidt’s subspace
theorem [60].

Theorem 2.6 (Bugeaud and Evertse, 2007). Let b > 2 be an integer and ξ an

irrational algebraic number with 0 < ξ < 1. Then for any real number η < 1/11,
the complexity p(m) of the b-ary expansion of ξ satisfies

lim sup
m→+∞

p(m)

m(log m)η
= +∞.

1The author is grateful to Boris Adamczewski for this reference.
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Further developments of the method of [7, 5] have recently been achieved by
Adamczewski and Rampersad [9] who have shown that the binary expansion of an
algebraic number contains infinitely many occurrences of 7/3-powers. Here, for a
positive real number w, a w-th power is a word of the form W ⌊w⌋W ′, where W is
a word of length |W |, say, and W ′ is the prefix of W of length ⌈(w − ⌊w⌋)|W |⌉.
For instance with w = 7/3 and W = 011010 we have |W | = 6, ⌊w⌋ = 2 and
⌈(w − ⌊w⌋)|W |⌉ = 2, so 011010 011010 01 is a 7/3-th power.

Adamczewski and Rampersad deduce from their result that the binary expansion
of an algebraic number contains infinitely many occurrences of overlaps, where an
overlap is a pattern of the form xXxXx, where x is a letter and X a word.

3. Analytic Methods

3.1. Mahler’s Method. Mahler [48] initiated a new transcendence method in
1929 for studying values of functions satisfying certain functional equations. His
work was not widely known and in 1969 he published [49] which was the source of
a revival of this method; see [47, 52].

A first example [52, Theorem 1.1.2] is the function

f(z) =
∑

n>0

z−dn

, d > 2,

which satisfies the functional equationf(zd) + z = f(z) for |z| < 1. Mahler proved
that it takes transcendental values at algebraic points in the domain 0 < |z| < 1.
A special case is (3).

Mahler also proved in 1929 that the so-called Prouhet-Thue-Morse-Mahler num-

ber in base g > 2, given by

ξg =
∑

n>0

an

gn
,

where(an)n>0 is the Prouhet-Thue-Morse sequence, is transcendental; see [52] and
[15, Section 13.4]. The idea of proof is as follows; see [15, Section 13.4] and [52,
Example 1.3.1], where the complete proof is given. Consider the function

f(z) =
∏

n>0

(1 − z2n

) which satisfies f(z) =
∑

n>0

(−1)anzn.

For a ∈ {0, 1}, we can write (−1)a = 1 − 2a. Hence

f(z) =
∑

n>0

(1 − 2an)zn =
1

1 − z
− 2

∑

n>0

anzn.

Using the functional equation f(z) = (1 − z)f(z2), Mahler proves that f(α) is
transcendental for all algebraic numbers α satisfying 0 < |α| < 1.

Another application [20] of Mahler’s method is the transcendence of the number
(4) whose digits in a given base g are 1 at the Fibonacci indices 1, 2, 3, 5, 8, . . . , and
0 elsewhere.

After Cobham [39], Loxton and van der Poorten also tried2 in 1982 and 1988
to use Mahler’s method to prove Cobham’s conjecture, now Corollary 2.4 of The-
orem 2.3 of Adamczewski and Bugeaud. Becker [25] pointed out in 1994 that
Mahler’s method yields only a weaker result so far, that for any given non-eventually
periodic automatic sequence u = (u1, u2, u3 . . .), the real number

∑

k>1

ukg−k

2See [47] and [15, Section 13.10].



WORDS AND TRANSCENDENCE 13

is transcendental, provided that the integer g is sufficiently large in terms of u; see
also [5]. It is yet a challenge to extend Mahler’s method in order to prove Cobham’s
conjecture.

There is a further very interesting development of Mahler’s method which we
only allude to here without entering the subject. It is due to Denis and deals
with transcendence problems in finite characteristic; see Pellarin’s report [53] in
the Bourbaki Seminar.

3.2. Nesterenko’s Theorem and Consequences. The transcendence of the
Liouville-Fredholm number (7) below was studied only ten years ago by Bertrand
in 1997, and Duverney, Nishioka as well as Nishioka and Shiokawa in 1998, as a
consequence of the results due to Nesterenko’s work in 1996 on the transcendence
of values of theta series at rational points involving modular functions; see [51,
Chapter 3, Section 1.3]. It follows from these works that for algebraic α in the
domain 0 < |α| < 1, the three numbers

∑

n>0

α−n2

,
∑

n>0

n2α−n2

,
∑

n>0

n4α−n2

are algebraically independent.
A related example from [5] is the number

η =
∑

k>1

uk3−k

which is associated to the word

u = 0121122123124125126127 . . . ,

where, for instance, 24 denotes 2222, generated by the non-recurrent morphism
0 7→ 012, 1 7→ 12, 2 7→ 2. Using

η = 1 −
∑

n>1

3−n(n+1)/2,

one deduces from Nesterenko’s result that it is transcendental. For this number the
growth of complexity p(m) is quadratic in m, so Theorem 2.3 does not apply.

4. Diophantine Approximation

4.1. Liouville, Thue, Siegel, Roth, Ridout, Schmidt. Diophantine approxi-
mation theory yields information on the arithmetic nature of numbers of the form

∑

n>0

g−un . (6)

For instance, if the sequence satisfies

un+1 − un → +∞, n → +∞,

then the number given by (6) is irrational. This follows from the fact that a real
number is rational if and only if its g-ary expansion is ultimately periodic. It also
follows from Diophantine analysis. As a special case take un = n2. The irrationality
of the Liouville-Fredholm number

θ =
∑

n>0

g−n2

(7)

follows.
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Here is the very simple proof, which goes back to Liouville in 1851; see [51,
Chapter 3, Section 1.3]. Let ǫ > 0. Let N be a sufficiently large integer. Set

q = aN2

and p =
N

∑

n=0

aN2−n2

.

Then

0 < qθ − p =
∑

n>N+1

1

an2−N2
=

∑

k>1

1

a2Nk+k2
<

θ − 1

a2N
.

For N sufficiently large the right hand side is less than ǫ and the irrationality of θ
is proved.

That θ is not a quadratic irrationality follows from the work of Bailey and Cran-
dall [22]. See Section 3.2 for the transcendence of this number θ.

The first transcendence statement on numbers given by a series (6), assuming
that the sequence (un)n>0 is increasing and grows sufficiently fast, goes back to
Liouville in 1844.

Theorem 4.1 (Liouville, 1844). For any real algebraic number α, there exists a

constant c > 0 such that the set of p/q ∈ Q with |α − p/q| < q−c is finite.

Liouville’s theorem yields the transcendence of the value of a series like (6),
provided that the increasing sequence (un)n>0 satisfies

lim sup
n→∞

un+1

un
= +∞.

For instance, un = n! satisfies this condition, so the number
∑

n>0

g−n!

is transcendental.

Theorem 4.2 (Thue, Siegel, Roth [57, 58], 1955). For any real algebraic number

α and any ǫ > 0, the set of p/q ∈ Q with |α − p/q| < q−2−ǫ is finite.

From Theorem 4.2, one deduces the transcendence of the series (6) under the
weaker hypothesis

lim sup
n→∞

un+1

un
> 2.

The sequence un = ⌊κn⌋ satisfies this condition as soon as κ > 2. For example,
the transcendence of the number

∑

n>0

g−3n

follows from Theorem 4.2.
A stronger result follows from Theorem 4.3 below due to Ridout (see, for instance,

[15, Section 13.5]), using the fact that the denominators gun are powers of g. The
condition

lim sup
n→∞

un+1

un
> 1

is sufficient to imply the transcendence of the sum of the series (6); see [1]. An
example is the transcendence of

∑

n>0

g−2n

;

see also (3) above.

Theorem 4.3 (Ridout, 1957). For any g > 2, any real algebraic number α and

any ǫ > 0, the set of p/q ∈ Q with q = gk and |α − p/q| < q−1−ǫ is finite.
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The theorems of Thue-Siegel-Roth and Ridout are very special cases of Schmidt’s
subspace theorem [60], established in 1972, together with its p-adic extension by
Schlickewei in 1976. We state only a simplified version; see Bilu’s Bourbaki lecture
[27] for references and further recent achievements based on this fundamental result.

For x = (x0, . . . , xm−1) ∈ Zm, let |x| = max{|x0|, . . . , |xm−1|}.
Theorem 4.4 (Schmidt’s subspace theorem). Let m > 2 be an integer, S a finite

set of places of Q containing the infinite place. For each v ∈ S, let L0,v, . . . , Lm−1,v

be m independent linear forms in m variables with algebraic coefficients in the

completion of Q at v. Let ǫ > 0. Then the set of x = (x0, . . . , xm−1) ∈ Zm for

which
∏

v∈S

|L0,v(x) . . . Lm−1,v(x)|v 6 |x|−ǫ

is contained in the union of finitely many proper subspaces of Qm.

Theorem 4.2 due to Thue-Siegel-Roth follows from Theorem 4.4 if one takes

S = {∞}, m = 2, L0(x0, x1) = x0, L1(x0, x1) = αx0 − x1.

Theorem 4.3 due to Ridout is also a consequence of Theorem 4.4 if one takes

S = {∞} ∪ {ℓ : ℓ prime and ℓ | g}
and

L0,∞(x0, x1) = x0, L1,∞(x0, x1) = αx0 − x1,

L0,ℓ(x0, x1) = x0, L1,ℓ(x0, x1) = x1.

Since there is no loss of generality to assume that g is squarefree, so that

g =
∏

ℓ|g

ℓ,

for (x0, x1) = (q, p) with q = gk, we have

|L0,∞(x0, x1)|∞ = q, |L1,∞(x0, x1)|∞ = |qα − p|,
∏

ℓ|g

|L0,ℓ(x0, x1)|ℓ = q−1,
∏

ℓ|g

|L1,ℓ(x0, x1)|ℓ = |p|ℓ 6 1.

Further applications of the Subspace theorem to transcendence questions have
been obtained by Corvaja and Zannier [40].

4.2. Irrationality and Transcendence Measures. The previous results can be
made effective in order to reach irrationality measures or transcendence measures
for automatic numbers.

In 2006, Adamczewski and Cassaigne [8] solved a conjecture of Shallit in 1999 by
proving that the sequence of g-ary digits of a Liouville number cannot be generated
by a finite automaton. They obtained irrationality measures for automatic numbers.
Recall that the irrationality exponent of an irrational real number x is the least
upper bound of the set of numbers κ for which the inequality

∣

∣

∣

∣

x − p

q

∣

∣

∣

∣

<
1

qκ

has infinitely many solutions p/q.
For instance, a Liouville number is a number whose irrationality exponent is

infinite, while a real irrational algebraic number has irrationality exponent 2 by
Theorem 4.2, as do almost all real numbers.

An explicit upper bound for the irrationality exponent for automatic irrational
numbers is given by [8, Theorem 2.2]. For the Prouhet-Thue-Morse-Mahler numbers
for instance, the exponent of irrationality is at most 5. However there is no uniform
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upper bound for such exponents, as pointed out to the author by Adamczewski.
The irrationality exponent for the automatic number associated with σ(0) = 0n1
and σ(1) = 1n0 is at least n.

Recently Adamczewski and Bugeaud [6] have obtained transcendence measures
for automatic numbers. They show that automatic irrational numbers are either S-
or T -numbers in Mahler’s classification of transcendental numbers; see [30]. This
is a partial answer to a conjecture of Becker [8] which states that all automatic
irrational numbers are S-numbers.

5. Continued Fractions

We discussed above some Diophantine problems which are related with the g-
ary expansion of a real number. Similar questions arise with the continued fraction
expansion of real numbers.

5.1. Complexity of the Continued Fraction Expansion of an Algebraic

Number. In 1949, Khinchin asked the following question: Are the partial quo-
tients of the continued fraction expansion of a real non-quadratic irrational alge-
braic number bounded? So far no example is known. It is not yet ruled out that
all these partial quotients are bounded for all such x, or that they are unbounded
for all such x. The common expectation seems to be that they are never bounded.
The situation in finite characteristic is quite different. In 1976, Baum and Sweet
[23] constructed a formal series which is cubic over the field F2(X), the continued
fractions of which have partial quotients of bounded degree.

We give here only a very short historical account. The very first transcendence
results for numbers given by their continued fraction expansions are due to Liouville
in 1844. This topic was extensively developed by Maillet in 1906 and later by Per-
ron in 1929. In 1955, the Thue-Siegel-Roth theorem enabled Davenport and Roth
to obtain deeper results. Further investigations are due to Baker in 1962 and 1964.
The approximation results on real numbers by quadratic numbers due to Schmidt in
1967 are a main tool for the next steps by Davison in 1989, and by Queffélec [55] who
established in 1998 the transcendence of the Prouhet-Thue-Morse continued frac-
tion; see also [15, Section 13.7]. There are further papers by Liardet and Stambul
in 2000 and by Baxa in 2004. In 2001, Allouche, Davison, Queffélec and Zamboni
[13] proved the transcendence of Sturmian continued fractions, namely continued
fractions whose sequence of partial quotients is Sturmian. The transcendence of
the Rudin-Shapiro and of the Baum-Sweet continued fractions was proved in 2005
by Adamczewski, Bugeaud and Davison. In 2005, Adamczewski and Bugeaud [2]
showed that the continued fraction expansion of an algebraic number of degree at
least three cannot be generated by a binary morphism.

5.2. The Fibonacci Continued Fraction. The Fibonacci word discussed in Sec-
tion 2.3.1 enabled Roy [59] to construct transcendental real numbers ξ for which ξ
and ξ2 are surprisingly well simultaneously and uniformly approximated by rational
numbers.

Recall once more that Φ denotes the golden number, so that

Φ−1 = Φ − 1 =

√
5 − 1

2
= 0.618 . . . .

Theorem 5.1 (Roy, 2003). Let A and B be two distinct positive integers. Let

ξ ∈ (0, 1) be the real number whose continued fraction expansion is obtained from

the Fibonacci word w by replacing the letters a and b by A and B respectively to
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obtain

[0; A, B, A, A, B, A, B, A, A, B, A, A, B, A, B, A, A, B, A, B, A,

A, B, A, A, B, A, B, A, A, B, A, A, B . . .].

Then there exists c > 0 such that the inequalities

0 < x0 6 X, |x0ξ − x1| 6 cX−Φ−1

, |x0ξ
2 − x2| 6 cX−Φ−1

have a solution in Z3 for all sufficiently large values of X.

The arguments of Roy provide simplified proofs of Queffélec’s results on the
transcendence of the Thue-Morse and Fibonacci continued fractions.

Using Theorem 5.1, together with ideas of Davenport and Schmidt involving a
transference theorem concerning Mahler’s convex bodies, Roy also produced tran-
scendental numbers which are surprisingly badly approximated by cubic algebraic
integers.

Further results on Diophantine approximation of Sturmian continued fractions
and on the simultaneous approximation of a number and its square have been ob-
tained by Bugeaud and Laurent, Fischler, Roy, and more recently by Adamczewski
and Bugeaud [6].

For further references on Diophantine approximation, we refer the reader to
Bugeaud’s recent book [30].

6. Open problems

Many problems related to the present topic are open. To trace their original
sources would require more thorough bibliographical investigation. While the ori-
gins of these questions are most often much older, we give references to recent
papers where they are quoted.

Among the open questions raised in [2] is the following:

• Does there exist an algebraic number of degree at least 3 whose continued
fraction expansion is generated by a morphism?

In the same vein the next question is open:

• Do there exist an integer g > 3 and an algebraic number of degree at least
3 whose expansion in base g is generated by a morphism?

Two open questions, for which positive answers are expected, are proposed in [9]:

• Is it true that the binary expansion of every algebraic number contains
arbitrarily large squares?

• Is it true that the binary expansion of every algebraic number contains
arbitrarily large palindromes?

Recall that a square is nothing other than a 2-power, namely a pattern XX where
X is a word, while a palindrome is a word W = w1w2 . . . wr which is invariant under
reversal: if W denotes the word wr . . . w2w1, then W = W . Hence a palindrome is
either of the form XX or of the form XxX where X is a word and x a letter.

Other problems are suggested by Rivoal [56]:

• Let g > 2 be an integer. Give an explicit example of a real number x > 0
which is simply normal in base g and for which 1/x is not simply normal
in base g.

• Let g > 2 be an integer. Give an explicit example of a real number x > 0
which is normal in base g and for which 1/x is not normal in base g.

• Give an explicit example of a real number x > 0 which is normal and for
which 1/x is not normal.
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Remark. In [45], there is a construction of an automatic number, the inverse of
which is not automatic. This answers by anticipation [15, Section 13.9, Problem 2].

From the open problems in [15, Section 13.9], we select the following two:

• Show that the number log 2 is not 2-automatic; see (1).
• Show that the number π is not 2-automatic; see (2).

We conclude this paper with one last open problem, attributed to Mahler; see
for instance [4]:

• Let (en)n>1 be an infinite sequence over {0, 1} that is not ultimately peri-
odic. Is it true that at least one of the two numbers

∑

n>1

en2−n and
∑

n>1

en3−n

is transcendental?

From Conjecture 1.1 with g = 3 and a = 2, it follows that the second number
should be always transcendental.
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pp. 5–9 (Courrier du CNRS, supplément au numéro 69, Centre National de la Recherche
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Notes in Mathematics 1752, Springer-Verlag, 2001).

[52] K. Nishioka. Mahler Functions and Transcendence (Lecture Notes in Mathematics 1631,
Springer-Verlag, 1996).
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59é année (2006-2007).
[54] S.S. Pillai. On normal numbers. Proc. Indian Acad. Sci. A, 10 (1939), 13–15; 12 (1940),

179–184.
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