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Abstract

A re-calculation of a known family of formulas of π is carried out, revisiting the old
Archimedes’ algorithm. This allows to identify a general family equation and three new
simple formulas of π in terms of the golden ratio Φ in the form of infinite nested square
roots, with some geometrical properties that enhance the link between the circle and the
golden ratio. Applying the same criteria, a fourth formula is given, that brings to the
known Dixon’s squaring the circle approximation, thus an easier approach to this problem
is suggested, by a rectangle with both sides proportional to the golden ratio Φ.
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Introduction
In last century it was challenging and interesting to find formulas of π in terms of the golden
ratio Φ (so involving together two of most famous irrational constants), without transcendental
functions, as the well known π = 10

3 arcsin
(

ϕ
2

)
. Among these works, few examples are here

reported:

π =
5
√
2 + ϕ

2ϕ

∞∑
n=0

(
1

2ϕ

)5n(
1

5n+ 1
+

1

2ϕ2 (5n+ 2)
− 1

22ϕ3(5n+ 3)
− 1

23ϕ3(5n+ 4)

)
(1)

Equation (1) has been presented by Chan in [1], inspired by the work of Bailey, Borwein and
Plouffe (so called BBP-formulas) in [2].

π2

50
=

∞∑
k=0

(
ϕ2

(5k + 1)
2 − ϕ

(5k + 2)
2 − ϕ2

(5k + 3)
2 +

ϕ5

(5k + 4)
2 +

2ϕ2

(5k + 5)
2

)
ϕ−5k (2)

Equation (2) has been discovered by B. Cloitre and reported by Chan in [3], also inspired by
BBP-formulas.

The aim of this work, presented in next pages, is focused on identifying other simpler formulas
of π in terms of Φ.

Nested square roots formulas of π
In order to show other simple formulas of π in terms of Φ, first it needs to easily share the
calculation behind the family of the known formulas of π in the form of nested square roots.
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Figure 1: Iterative halfway bisection of chord and arc - example on a pentagon

The approach starts from the idea of Archimedes, resumed several centuries later by F. Viete
(as reported by Beckmann in [4]), then more recently completely restructured by Servi in [5].

Let us start considering a regular polygon inscribed in a circle with unitarian radius, with N
sides (NϵN, N ≥ 3) of length L1(L1 = 2 sin α

2 , α = 2π
N ), with perimeter P1 = NL1, as in Figure

1 (where, as example, is represented a pentagon).

With the polygon obtained doubling the sides, considering a1 =

√
1−

(
L1

2

)2
, d1 = 1 − a1,

the perimeter become P2 = N2L2 with

L2 =

√√√√L2
1

4
+

(
1−

√
1− L2

1

4

)2

=

√
2− 2

√
1− L2

1

4
=

√
2−

√
4− L2

1 (3)

Re-iterating the process, doubling the polygon at each step, from Equation (3) the following
succession is obtained 

L1 = 2 sin π
N NϵN, N ≥ 3

Ln =

√
2−

√
4− L2

n−1 nϵN, n ≥ 2

π = N limn→∞ 2n−2Ln

(4)

Expanding Equations (3) and (4):

L3 =

√
2−

√
4− L2

2 =

√√√√2−

√
4−

(
2−

√
4− L2

1

)
=

√
2−

√
2 +

√
4− L2

1

2



L4 =

√
2−

√
4− L2

3 =

√√√√√2−

√√√√4−

(
2−

√
2 +

√
4− L2

1

)
=

√√√√
2−

√
2 +

√
2 +

√
4− L2

1

Ln =

√√√√√√2−

√√√√√
2 +

√√√√
2 +

√
2 + . . .

√
2 +

√
4− L2

1 n square roots (5)

Using the results of Equation (5), the known family of equations of π in the form of continued
square roots follows, valid for any regular polygons with N sides and side length L1.


L1 = 2 sin π

N NϵN, N ≥ 3

π = N limn→∞ 2n−1

√√√√√2−

√√√√
2 +

√
2 +

√
2 + . . .

√
2 +

√
4− L2

1 n+ 1 square roots
(6)

Now we would like to extend this approach, freeing from the regular polygons.

Let us focus on the arc
⌢
AB = α < π rad , implied with the chord AB = 2 sin α

2 (Figure 1);

with this in mind, we can call µϵR the ratio between the circumference length and the arc
⌢
AB:

µ =
2π

α
↣ π =

1

2
µα with 0 < α < π ↣ 2 < µ < +∞ (7)

Applying a similar strategy, it is proven that, dividing iteratively halfway the arc
⌢
AB (as in

Figure 1), the sum of the chords implied converge to the length of the arc
⌢
AB = α , thus{

µ = 2π
α 0 < α < π

π = µ limn→∞ 2n sin
(

α
2n

) (8)

Applying several times the goniometric bisection formulas sin γ
2 =

√
1−cos γ

2 , cos γ
2 =

√
1+cos γ

2 ,
and ones the formula sin2 γ + cos2 γ = 1 to the expression sin α

2n we obtain:

sin
( α

2n

)
= sin

( α
2n−1

2

)
=

√
1− cos

(
α

2n−1

)
2

=
1

2

√
2− 2 cos

( α

2n−1

)
=

1

2

√
2− 2 cos

( α
2n−2

2

)
=

=
1

2

√√√√
2− 2

√
1 + cos

(
α

2n−2

)
2

=
1

2

√
2−

√
2 + 2 cos

( α

2n−2

)
=

=
1

2

√√√√√2−

√√√√
2 +

√
2 + . . .

√
2 + 2cos

(α
2

)
=

1

2

√√√√√√2−

√√√√√2 +

√√√√
2 + . . .

√
2 + 2

√
1− sin2

(α
2

)
=

3



=
1

2

√√√√√√2−

√√√√√2 +

√√√√
2 + . . .

√
2 +

√
4−

[
2 sin

(α
2

)]2
Using this result in Equation (8), noting that L1 = AB = 2 sin

(
α
2

)
, finally the following

general formula is obtained:


µ = 2π

α 0 < α < π , µϵR, µ > 2

L1 = 2 sin
(
α
2

)
π = µ limn→∞ 2n−1

√√√√
2−

√
2 +

√
2 + . . .

√
2 +

√
4− L2

1 n+ 1 square roots

(9)

Equation (9) generalizes and confirms Equation (6). Equation (9) coincides with Equation
(6) when µ = NϵN, or in other words when α is an integer divisor of the circle, and in this case
L1 = 2 sin

(
α
2

)
= 2 sin

(
π
N

)
. Also the succession in Equation (4) can be extended substituting N

with µ = 2π
α and L1 with L1 = 2 sin

(
α
2

)
for values not integer of 2π

α , with αϵ (0, π).
Equation (9), as Equation (6), arises some interest when applied for values not transcendental

of sin
(
α
2

)
. Some of these instances follow.

Applying Equation (6) to an equilateral triangle (N = 3, L1 = 2 sin π
3 =

√
3) or an hexagon

(N = 6, L1 = 2 sin π
6 = 1), or a dodecagon (N = 12, L1 = 2 sin π

12 =
√
6−

√
2

2 ) the following
Equation (10), coinciding with the formula (3) presented by Servi in [5], is obtained:

π = 3 lim
n→∞

2n−1

√√√√
2−

√
2 +

√
2 + . . .

√
2 +

√
3 , n square roots (10)

Applying Equation (6) to a square (N=4, L1 = 2 sin π
4 =

√
2), it is possible to obtain the

following Equation (11), coinciding with the formula (1) presented by Servi in [5]:

π = lim
n→∞

2n+1

√√√√
2−

√
2 +

√
2 + . . .

√
2 +

√
2 , n+ 1 square roots (11)

Applying Equation (9) to the arc
⌢
AB = α = 3

4π (135°), µ = 2π
α = 8

3 , calculating L1 =

2 sin
(
α
2

)
=
√
2 +

√
2 and the last square root in Equation (9)

√
4− L2

1 =
√
4− (2 +

√
2) =√

2−
√
2, the following Equation (12), coinciding with the formula (2) presented by Servi in [5],

is obtained:

π =
1

3
lim
n→∞

2n+2

√√√√√
2−

√√√√
2 +

√
2 + . . .

√
2 +

√
2−

√
2 n+ 2 square roots (12)

Applying Equation (9) to the arc
⌢
AB = α = 5

6π (150°), µ = 2π
α = 12

5 , calculating L1 =

2 sin
(
α
2

)
= 2

√
6+

√
2

4 =
√
6+

√
2

2 and the last square root in Equation (9)
√

4− L2
1 =

√
4− (

√
6+

√
2)

2

4 =

4



√
4− 6+2+2

√
12

4 = 1
2

√
8− 4

√
3 =

√
2−

√
3, the following Equation (12), coinciding with the for-

mula (4) presented by Servi in [5], is obtained:

π =
3

5
lim
n→∞

2n+1

√√√√√
2−

√√√√
2 +

√
2 + . . .

√
2 +

√
2−

√
3 n+ 2 square roots (13)

New simple formulas of π in terms of ϕ
Now applying specifically Equations (6) and (9), the following three simple formulas of π in terms
of Φ are identified:

π =
5

2
lim
n→∞

2n

√√√√
2−

√
2 +

√
2 + . . .

√
2 +

√
2 + ϕ n square roots (14)

π =
5

3
lim
n→∞

2n

√√√√
2−

√
2 +

√
2 + . . .

√
2 +

√
3− ϕ n+ 1 square roots (15)

π =
5

4
lim
n→∞

2n

√√√√
2−

√
2 +

√
2 + . . .

√
2 +

√
2− ϕ n+ 1 square roots (16)

Equation (14) is obtained applying the Equation (6) to a pentagon inscribed in the cir-
cumference (as in Figure 1) with unitarian radius (N = 5, α = 2

5π, with simple passages

L1 = 2 sin
(
π
5

)
= 2

√
10−2

√
5

4 =

√
10−2

√
5

4 =

√
5−

√
5

2 =

√
3− 1+

√
5

2 =
√
3− ϕ). From Equation

(6), and remembering that ϕn = ϕn−1+ϕn−2 , the last two square roots become
√
2 +

√
4− L2

1 =√
2 +

√
4− (3− ϕ) =

√
2 +

√
1 + ϕ =

√
2 + ϕ. Since between the diagonal D and the side L of

a pentagon results D = ϕL (Ghyka in [6]), it is noted the fact quite singular that in this case
the last square root in Equation (14) represents exactly the length of the diagonal D1 = ϕL1 =

ϕ
√
3− ϕ =

√
3ϕ2 − ϕ3 =

√
3ϕ2 − (ϕ2 + ϕ) =

√
2ϕ2 − ϕ =

√
2 (ϕ+ 1)− ϕ =

√
2 + ϕ.

Equation (15) is obtained applying the Equation (9) to the arc
⌢
AB = α = 3

5π (108°),
µ = 2π

α = 5
2 . Calculating L1 = 2 sin

(
α
2

)
= 2 1+

√
5

4 = 1+
√
5

2 = ϕ (in fact in this case the chord AB
with two radius forms the triangle gnomon of the golden triangle), thus the last square root in
Equation (9) become

√
4− L2

1 =
√
4− ϕ2 =

√
4− (ϕ+ 1) =

√
3− ϕ. It is noted the fact quite

singular that in this case the last square root in the formula Equation (16) represents exactly
the length of the side of a pentagon inscribed in the circle.

Equation (16) is obtained applying the Equation (9) to the arc
⌢
AB = α = 4

5π (144°),

µ = 2π
α = 10

3 . Calculating L1 = 2 sin
(
α
2

)
= 1

2

√
10 + 2

√
5 =

√
4+1+

√
5

2 =
√
2 + ϕ (coinciding

with the diagonal of a pentagon inscribed in the circle), thus the last square root in Equation (9)
become

√
4− L2

1 =
√
2− ϕ. It is noted the fact quite singular that in this case the last square

root in Equation (16) represents exactly the length of the side of a decagon inscribed in the circle

(as 2 sin 36◦

2 = 1
2

(√
5− 1

)
=

√(√
5−1
2

)2
=

√
6−2

√
5

4 =

√
4−1−

√
5

2 =
√
2− ϕ).

5



Figure 2: Geometrical properties between the circle, π and ϕ

Geometrical properties
Figure 2 helps to understands the singularities pointed out in last square root of Equations (14),
(15) and (16).

For Equation (14), as L1 = AB =
√
3− ϕ (side of the pentagon inscribed in a circle with

unitarian radius), applying the last square root
√

4− L2
1 means finding the other cathetus BF of

the right triangle ABF, being the hypotenuse AF = 2, then BF =
√
4− (3− Φ) =

√
1 + Φ = Φ

(also as side of a gnomon triangle OBF of the golden triangle). Then, for the following square
root

√
2 + ϕ, with the graphical approach it is possible to construct the segment AG with length

2 + ϕ, then drawing half a circle with center in H e diameter AG, AL results the square root of
AG (from the equivalence of the right triangles AGL and AOL, with AO = 1); finally we get the
diagonal AD = AL =

√
2 + Φ.

For Equation (15), as L1 = BF = ϕ (side of the gnomon triangle), applying the last square
root

√
4− L2

1 means finding the other cathetus AB of the right triangle ABF, of length
√
3− ϕ

(side of the penthagon).
For Equation (16), as L1 = AD =

√
2 + ϕ (diagonal of the pentagon), applying the last

square root
√
4− L2

1 means finding the other cathetus DF of the right triangle AFD, then
DF =

√
4− (2 + Φ) =

√
2− Φ (side of the decagon).

From this geometrical approach it is evident that, if we apply Equation (9) with L1 = DF =√
2− Φ (side of a decagon), applying the last square root

√
4− L2

1 means finding the other

6



Figure 3: Relations in Pythagorean pentagram

cathetus AD of the right triangle AFD, of length
√
2 + ϕ (diagonal of the pentagon), thus with

the same result obtained in Equation (14) starting with L1 = AB =
√
3− Φ (side of a pentagon),

as we could expect by doubling the sides of the pentagon on the first iteration of Equation (4).
Referring to Figure 2, it should be noted that AB, BF , AD are diagonals of the decagon

inscribed in the circle, with side DF.
Equations (14), (15), (16) and geometrical properties in Figure 2, identified in a circle with

unitarian radius and its inscribed pentagon (and decagon), arise some relationships between the
circle, π and Φ, extending the relations inside the pentagon and its pentagram constructed with
its diagonals (in Figure 3), well known since Pythagoras ancient times (Ghyka in [6]).

New approximate “squaring” the circle proposal

Let us consider a particular angle, the arc
⌢
AB = α = 2π

ϕ2 (≂ 137.5° called also “golden angle”,
that is found many times in nature, for instance in phyllotaxis), with µ = 2π

α = ϕ2.

Calculating L1 = 2 sin
(
α
2

)
= 2 sin

(
π
ϕ2

)
≃ 1.86406485, Equation (9) becomes:

π = ϕ2 lim
n→∞

2n−1

√√√√√
2−

√√√√
2 +

√
2 + . . .

√
2 + 2

√
1− L2

1 n+ 1 square roots (17)

The interest on this formula arises noticing that the limit converges to a number 1.199981546...,
thus can be approximate to 1.2 with an error lower than 0.00005.

The approximation of Equation (17) provides a mathematical source to the well known ap-
proximate formula in following Equation (18) between π and ϕ:

π ≃ 6

5
ϕ2 =

6

5
(1 + Φ) = 3, 141640... err < 0.00005 (18)

7



Figure 4: Approximate squaring the circle by R. A. Dixon

This approximation has been pointed out by Dixon in [7], also showing an interesting proce-
dure to draw a square with an area of 6

5 (1 + ϕ) ≃ π with an error lower than 0.00005 (in Figure
4). It could be interesting to mention that the relation in Equation (18) is known at least from
the 12th century by the French master masons that built the gothic cathedrals, as proved by
Frederic in [8].

Procedure for the constructions just by rule and compass (Figure 4): 1. draw a
circle with radius = 1; 2. trace the golden rectangle OEID; 3. apply the rule to
divide a segment in five equal parts with segment AG, identifying the fifth part HE
of AE = AO + OE = 1 + ϕ, then add this 1/5 to the right, in order to identify the
segment AL with length 6

5 (1 + ϕ); 4. trace half a circle on the diameter AL finding
point M as the intersection with the vertical line from the centre O; 5. construct
the square AMNP on the segment AM. As the triangles ALM and AOM are similar,
AL : AM = AM : AO → AM

2
= AL → AM =

√
AL =

√
6
5 (1 + ϕ) ≃

√
π.

We propose here another easier way to approximate the “squaring” the circle based on Equation
(18) with not a square but a rectangle, with sides length ϕ and 6

5ϕ, whose area 6
5ϕ

2 is quite close
(with error lower than 0.00005) to the area π of the circle, as in Figure 5.

Procedure for the constructions just by rule and compass (Figure 5): 1-2. apply the
same previous steps; 3. apply the rule to divide a segment in five equal parts with
segment OG, identifying the fifth part HE of OE = ϕ, then add this 1/5 to the right,
in order to identify the segment OL with length 6

5ϕ; 4. trace the arc with center on
O from E in order to identify the point N as intersection with the vertical line from

8



Figure 5: Approximate “squaring” the circle by a “π ∼ rectangle”

O, so ON = ϕ; 5. Trace the rectangle OLMN, (that we can call the “π ∽rectangle”),
that has sides length ϕ x 6

5ϕ , thus with area 6
5ϕ

2 ≃ π.

Conclusions
After sharing the calculation behind the family of the known formulas of π in the form of nested
square roots, with the presented general formula in Equation (9) three new simple formulas of
π in terms of Φ are given in Equations (14), (15) and (16), arising some interesting geometrical
properties (in Figure 2), that enhance the link between the circle and the golden ratio; these
relationships could be deeper investigated in the future. A mathematical basis, in Equation (17),
is provided for the well known approximation of π in terms of Φ in Equation (18); a so called
“π ∽ rectangle”, that has sides length ϕ x 6

5ϕ , is suggested as an approximated “squaring” the
circle problem (Figure 5).
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