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Abstract

Special functions like the polygamma, Hurwitz zeta, and Lerch
zeta functions have sporadically been connected with the nth deriva-
tives of trigonometric functions. We show the polylogarithm Lis(z),
a function of complex argument and order z and s, encodes the nth
derivatives of the cotangent, tangent, cosecant and secant functions,
and their hyperbolic equivalents, at negative integer orders s = −n.
We then show how at the same orders, the polylogarithm represents
the nth application of the operator x

d
dx

on the inverse trigonometric
and hyperbolic functions. Finally, we construct a sum relating two
polylogarithms of order −n to a linear combination of polylogarithms
of orders s = 0,−1,−2, ...,−n.

1 Introduction

The polylogarithm, or polylog, is defined as

Lis(z) =

∞
∑

k=1

zk

ks
. (1.1)

The order and argument s and z can be complex. The function converges
absolutely inside the unit disk |z| ≤ 1 (except at z = 1 for ℜ(s) ≤ 1)
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and can be extended to |z| > 1 via analytic continuation. It is principally
valued on the complex plane with a branch cut along the positive real axis
1 ≤ ℜ(z) <∞.

Higher order polylogarithms, like the dilogarithm Li2(z) and trilogarithm
Li3(z), which cannot be written in terms of elementary functions, have been
of interest since at least the mid-eighteenth century [1]. Conversely, the
negative integer order polylogarithms are simply rational functions in z

Li−n(z) =

(

z
d

dz

)n
z

1− z
=

n
∑

k=0

k!

{

n+ 1

k + 1

}(

z

1− z

)k+1

(1.2)

where
{

n

k

}

are Stirling numbers of the second kind. Its simplicity likely
explains the little discussion of these cases in the literature; Kummer was
the only scholar of the polylogarithm Truesdell notes who considered the
function at negative integer orders [2]. These cases also receive no mention in
Lewin’s authoritative text on the subject [3]. Negative order polylogarithms
were reintroduced by Wood [4], and found by Lee [5], who deemed them
“polypseudologs,” in his study of statistical mechanics. Cvijovic derived
multiple explicit formulas, one novel, of these functions [6].

Here, we demonstrate how the polylogarithm at negative integer orders
is a unifying structure behind the nth derivatives of the cotangent, tangent,
cosecant, and secant functions, and their hyperbolic cousins. The polyloga-
rithm also underlies the action of the operator

(

x d
dz

)n
on all twelve of the in-

verse trigonometric and hyperbolic functions. These results are easy to state:
simply check Section 2 for the elementary trigonometric derivatives barring
sin x and cos x, Section 4 for the hyperbolic derivatives barring sinh x and
cosh x, and Section 5 for all the inverse trigonometric and hyperbolic func-
tions. Eq. 1.2 simplifies the derivation as well. Simply find the proper
substitution, and voilá. What sets the polylogarithm apart is its flexibility
to represent these 20 functions more simply than other special functions like
the Lerch zeta or polygamma functions.

Consider Eq. 1.2 under the transformation z → eix, x ∈ R/{2πℓ}, ℓ ∈ Z.
Then d

dz
→ (−i)n d

dx
, Li0(z) =

z
1−z

→ 1
2

(

i cot x
2
− 1

)

, and for n ≥ 1,
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Li−n(e
ix) =

i1−n

2

(

d

dx

)n

cot
x

2

=

n
∑

k=0

k!

2k+1

{

n + 1

k + 1

}

(

i cot
x

2
− 1

)k+1

(1.3)

This is just one of many connections of nth cotangent derivative with special
functions. Apostol wrote it in terms of the Lerch zeta function ℓ1−n(z) =

i
2(2πi)n−1

dn−1

dzn−1 cot πz at negative integer orders [7], a special case of the Lerch

transcendent [8]. It can be written as a polygamma reflection formula ψn(x)−
(−1)nψn(1 − x) = −π

(

d
dx

)n
cotπx [9, 10], or a Hurwitz zeta reflection for-

mula ζ(n, x) + (−1)nζ(n, 1− x)

= − π
(n−1)!

(

d
dx

)n−1
cotπx [11]. But note how Eq. 1.3 more succinctly repre-

sents the cotangent derivative. Two instances of the polygamma or Hurwitz
zeta functions are needed where one polylogarithm would suffice. Only one
Lerch transcendent is required, but with more degrees of freedom (three pa-
rameters) than the polylogarithm (two parameters).

The Lerch zeta function and the polylogarithm comparably represent the
cotangent derivatives because the polylogarithm substitution z → eix nearly
equates the two special functions: ℓs(z) =

∑

∞

k=1
e2πikz

ks
= Lis(e

2πiz). But the
Lerch zeta function is too overconstrained to represent inverse trigonomet-
ric and hyperbolic function derivatives. For example, Li−n(x) − Li−n(x) =

2
(

x d
dx

)n+1
arctanhx. To write the left-hand side with Lerch zeta functions,

we must undo the complex exponential with a natural logarithm to get a
gnarly ℓs(

1
2πi

log x). But the insertion of the logarithm restricts the Lerch
zeta function to exist only over the positive reals, whereas the domain of
Li−n(x) is x ∈ R/{1}. With only one Lerch zeta function per side of the
origin, it cannot represent the arctanh x derivative. The polylogarithm pre-
vails.

We note the nth trigonometric derivatives were connected to negative
integer order polylogarithms in [8] and negative integer order Lerch zeta and
Legendre chi functions in [12].

The rest of the paper works through the various trigonometric, hyperbolic,
inverse trigonometric, and inverse hyperbolic derivatives. As the difference
of mirrored polylogarithms becomes increasingly common in these relations,
in Section 3, we define the Legendre chi function χs(z) and the inverse tan-
gent integral Tis(z), special functions which abbreviate these differences. In
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Section 6, we use trigonometric derivative polynomials to construct a sum
relating two polylogarithms of order −n with a linear combination of all
polylogarithms of lesser magnitude negative integer orders.

2 Trigonometric Derivative Polynomials

Trigonometric derivatives and their resulting derivative polynomials have
long been a problem of interest [13–15], and received a flurry of attention
in the late 2000s [10, 11, 16–18]

To get the nth tangent derivative, substitute z → −eix into Eq. 1.2 so
for n ≥ 1,

−Li−n(−eix) =
i1−n

2

(

d

dx

)n

tan
x

2
(2.1)

(

d

dx

)n

tan x = 2nin−1
n

∑

k=0

(−1)kk!

2k

{

n + 1

k + 1

}

(1 + i tanx)k+1 . (2.2)

The sum of Eqs. 1.3 and 2.1 is proportional to the nth derivative of
cot x

2
+ tan x

2
= 2 csc x, so

Li−n(e
ix)− Li−n(−eix) = i1−n

(

d

dx

)n

csc x. (2.3)

Expanding both (1+i tan x)k+1 and (i cotx−1)k+1 by the Binomial Theorem
gives

(

d

dx

)n

csc x =
in−1

2

n
∑

k=0

(−1)kk!

2k

{

n + 1

k + 1

}

×
k+1
∑

j=0

(

k + 1

j

)

ij
[

tanj x

2
− (−1)j cotj

x

2

]

. (2.4)

This is similar to the polylogarithm duplication formula Lis(z) + Lis(−z) =
21−s Lis(z

2) which under the same substitution z → eix proves a cotangent
double angle formula 2 cot 2x = cot x− tanx.

Taking advantage of csc
(

x+ π
2

)

= sec x, we get our final trig derivative
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Li−n(ie
ix)− Li−n(−ieix) = i1−n

(

d

dx

)n

sec x. (2.5)

Because the identities for tan
(

θ + π
4

)

= tan θ+1
1−tan θ

and cot
(

θ + π
4

)

= cot θ−1
1+cot θ

are not simply linear combinations of other trig functions, the nth secant
derivative can be written more succinctly as Eq. 2.4 with x

2
→ x

2
+ π

4
.

Alternatively, combining the fractional forms of the quarter-period-shifted
tangent and cotangent, then binomially expanding (sec x± tan x)j , produces
the following three sum equation

2i1−n

(

d

dx

)n

sec x =

n
∑

k=0

(−1)kk!

2k

{

n + 1

k + 1

} k+1
∑

j=0

ij
(

k + 1

j

) j
∑

ℓ=0

(

j

ℓ

)

tanj−ℓ x secℓ x(1− (−1)ℓ).

(2.6)

Two polylogarithms is likely the fewest needed to build the cosecant and
secant derivatives because one, these even functions are constructed from the
odd cotangent and tangent, and two, there is no generic identity to reduce
the form Lis(z)− Lis(−z), as it itself is a special function, the Legendre chi
function χs(x).

3 Legendre chi function and Inverse tangent

integral

As infinite sums, the Legendre chi function

χs(z) =
∞
∑

k=0

z2k+1

(2k + 1)s
=

1

2
[Lis(z)− Lis(−z)] (3.1)

and inverse tangent integral

Tis(z) =

∞
∑

k=0

(−1)k
z2k+1

(2k + 1)s
=

1

2i
[Lis(iz)− Lis(−iz)] (3.2)
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converge on the unit disk for all s, except at z = ±1 for χs(z), and z = ±i
for Tis(z) when s ≤ 1. The functions are the real and imaginary parts
of the polylogarithm, and are related by Tis(z) = −iχs(iz). The inverse
tangent integral is so named because Ti2(z) =

∫ x

0
arctan t

t
dt. Consequently,

Ti1(z) = arctan z and χ1(z) = arctanh z. The first few functions of zeroth
and negative integer order are

n χn(z) Tin(z)
0 z

1−z2
z

1+z2

-1 z+z3

(1−z2)2
z−z3

(1+z2)2

-2 z+6z3+z5

(1−z2)3
z−6z3+z5

(1+z2)3

-3 z+23z3+23z5+z7

(1−z2)4
z−23z3+23z5−z7

(1+z2)4

-4 z+76z3+230z5+76z7+z9

(1−z2)5
z−76z3+230z5−76z7+z9

(1+z2)5

A check of the OEIS finds that the coefficients of the numerator poly-
nomial in the Legendre chi function S(n, k) is sequence A060187, describing
the Eulerian numbers of type B [19]. This pairs nicely with the similar coef-
ficients in the numerator of the polylogarithm being the Eulerian numbers of
type A (often just called the Eulerian numbers). A single sum form provided
by the OEIS is

S(n, k) =

k
∑

j=1

(−1)k−j

(

n+ 1

k − j

)

(2j − 1)n. (3.3)

Closed forms of the Legendre chi function and inverse tangent integral
over non-positive integers n ≤ 0 are

χ−n(z) =
1

(1− z2)n+1

n+1
∑

k=1

S(n, k)z2k−1 (3.4)

Ti−n(z) = − 1

(1 + z2)n+1

n+1
∑

k=1

(−1)kS(n, k)z2k−1. (3.5)

Using these to clean up Eqs. 2.4 and 2.6, we get
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(

d

dx

)n

csc x =
(−1)n

2n
e−2ix cscn+1 x

n+1
∑

k=1

S(n, k)e−i(n−2k)x (3.6)

(

d

dx

)n

sec x = − in

2n
e−2ix secn+1 x

n+1
∑

k=1

(−1)kS(n, k)e−i(n−2k)x (3.7)

4 Hyperbolic Function Derivatives

The hyperbolic functions have similar, but simpler, derivatives compared to
the trigonometric functions, lacking coefficients with n dependence because
the substitution of the real exponential takes

(

z d
dz

)n
to

(

exe−x d
dx

)n
= dn

dxn ,
with no extra factor of −in. These equations hold over x ∈ R.

Li−n(e
x) = −1

2

(

d

dx

)n

coth
x

2
(4.1)

Li−n(−ex) = −1

2

(

d

dx

)n

tanh
x

2
(4.2)

Li−n(e
x)− Li−n(−ex) = 2χ−n(e

x) = −
(

d

dx

)n

csch x, (4.3)

Li−n(ie
x)− Li−n(−iex) = 2iTi−n(e

x) = i

(

d

dx

)n

sech x, (4.4)

(

d

dx

)n

coth x = 2n
n

∑

k=0

(−1)kk!

2k

{

n + 1

k + 1

}

(1 + coth x)k+1 (4.5)

(

d

dx

)n

tanh x = 2n
n

∑

k=0

(−1)kk!

2k

{

n + 1

k + 1

}

(1 + tanh x)k+1 (4.6)

(

d

dx

)n

csch x =
(−1)n

2n
e2x cschn+1 x

n+1
∑

k=1

S(n, k)e(n−2k)x (4.7)

(

d

dx

)n

sech x = −(−1)n

2n
e2x sechn+1 x

n+1
∑

k=1

(−1)kS(n, k)e(n−2k)x (4.8)
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5 Inverse Trig and Hyperbolic Functions

The substitution of exponentials in the previous sections are useful because it
reduces the operator z d

dz
to a derivative, but are not the sole use cases of Eq.

1.2. We can build the nth application of x d
dx

to inverse trigonometric and
hyperbolic functions from Ti0(x) = x d

dx
arctanx and χ0(x) = x d

dx
arctanh x

for n ≥ 0 and, unless otherwise noted, x ∈ R.

χ−n(x) =

(

x
d

dx

)n+1

arctanh x (5.1)

χ−n

(

1

x

)

=

(

−x d
dx

)n+1

arccoth x (5.2)

χ−n

(

x√
1 + x2

)

=

(

(x+ x3)
d

dx

)n+1

arcsinh x (5.3)

χ−n

(

1

x
√
1 + x−2

)

=

(

−
(

x+
1

x

)

d

dx

)n+1

arccsch x (5.4)

Note for x < 0, x
√
1 + x−2 = −

√
1 + x2.

χ−n

(
√
x2 − 1

x

)

=

(

x
(

x2 − 1
) d

dx

)n+1

arccosh x, x ≥ 1 (5.5)

χ−n

(√
1− x2

)

=

((

x− 1

x

)

d

dx

)n+1

arccosh x, 0 < x ≤ 1. (5.6)

Ti−n(x) =

(

x
d

dx

)n+1

arctan x (5.7)

Ti−n(x) = −
(

x
d

dx

)n+1

arccotx (5.8)

Ti−n

(

x√
1− x2

)

=

(

(x− x3)
d

dx

)n+1

arcsin x, |x| ≤ 1 (5.9)

Ti−n

(
√
1− x2

x

)

=

(

(x3 − x)
d

dx

)n+1

arccosx, |x| ≤ 1 (5.10)
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Ti−n

(

1

x
√
1− x−2

)

=

((

1

x
− x

)

d

dx

)n+1

arccsc x, |x| ≥ 1 (5.11)

Ti−n

(

x
√
1− x−2

)

=

((

x− 1

x

)

d

dx

)n+1

arcsec x, |x| ≥ 1 (5.12)

Alternatively, one could simplify the operand of
(

z d
dz

)n
at the expense

of complicating the operator. To transform the operand into a generic f(x),

choose z → f(x)
1+f(x)

so

Li−n

(

f(x)

1 + f(x)

)

=

(

f(x)

f ′(x)
(1 + f(x))

d

dx

)n

f(x)

=

n
∑

k=0

k!

{

n + 1

k + 1

}

f(x)k+1. (5.13)

Lin(z) diverges for z = 1, but f(x)
1+f(x)

can never be unitary. Li−n

(

f(x)
1+f(x)

)

does

diverge when f(x) = −1.
As an example, we will choose operands f(x) = sin x and cosx.

Li−n

(

sin x

1 + sin x

)

=

(

tanx(1 + sin x)
d

dx

)n

sin x

=

n
∑

k=0

k!

{

n + 1

k + 1

}

sink+1 x (5.14)

Li−n

(

cosx

1 + cosx

)

=

(

− cotx(1 + cosx)
d

dx

)n

cosx

=

n
∑

k=0

k!

{

n + 1

k + 1

}

cosk+1 x. (5.15)
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6 A New Ladder-like Sum

Polylogarithmic ladders are extraordinary numerical connections between lin-
ear combinations of polylogarithms of fixed order n evaluated at different
powers of some x with the natural logarithm log(y) = −Li1(1 − y). [20]
provides the example

− π2 log(2) =
35

2
Li3(1) + 36 Li3

(

1

2

)

− 18 Li3

(

1

4

)

− 4 Li3

(

1

8

)

+ Li3

(

1

64

)

.

We will instead bridge two (fixed) negative integer order polylogarithms −n
to a linear combination of individual polylogarithms of each integer order
from s = 0 to s = −n. An illustrating example is

z

2
(Li−6(z)− Li−6(−z)) =

Li0(z
2)− 12 Li−1(z

2) + 60 Li−2(z
2)− 160 Li−3(z

2)

+ 240 Li−4(z
2)− 192 Li−5(z

2) + 64 Li−6(z
2). (6.1)

We derive the general form by combining Eq. 2.3 with an alternate way
Risomar Sousa used get the nth derivative of csc x [8]: apply the General
Leibniz rule to csc x = e−ix(i+ cotx) so

(

d

dx

)n

csc x = 2in−1e−ix

n
∑

k=0

(

n

k

)

(−1)n−k2k Li−n(e
2ix). (6.2)

The combination is

Li−n(e
ix)− Li−n(−eix) = 2e−ix

n
∑

k=0

(

n

k

)

(−1)n−k2k Li−k(e
2ix), (6.3)

which holds for n ≥ 0. eix → z gives the final relation

Li−n(z)− Li−n(−z) =
2

z

n
∑

k=0

(

n

k

)

(−1)n−k2k Li−k(z
2). (6.4)

10



This could be interpreted as the negative integer version of

Lin(z) =
(−1)n−1

(n− 2)!

∫ z

1

log(tn−2) log(1− t)

t
dt+ Lin(1)

+
n−2
∑

k=1

(−1)k−1

k!
Lin−k(z) log

k(z) (6.5)

from [21].
The first few sums are

Li0(z)− Li0(−z) =
2

z
Li0(z

2) (6.6)

Li−1(z)− Li−1(−z) =
2

z

[

−Li0(z
2) + 2 Li−1(z

2)
]

(6.7)

Li−2(z)− Li−2(−z) =
2

z

[

Li0(z
2)− 4 Li−1(z

2) + 4 Li−2(z
2)
]

(6.8)

Li−3(z)− Li−3(−z) =
2

z

[

−Li0(z
2) + 6 Li−1(z

2)− 12 Li−2(z
2) + 8 Li−3(z

2)
]

(6.9)

Li−4(z)− Li−4(−z) =
2

z

[

Li0(z
2)− 8 Li−1(z

2) + 24 Li−2(z
2)− 32 Li−3(z

2) + 16 Li−4(z
2)
]

(6.10)

The same approach replicated on sec x = e−ix(1 + i tan x) gives a near-
identical result

Li−n(ie
ix)− Li−n(−ieix) = −2ie−ix

n
∑

k=0

(

n

k

)

(−1)n−k2k Li−k(−e2ix), (6.11)

which is Eq. 6.3 under eix → ieix (z → iz). Writing Eq. 6.4 as a Legendre
chi function

11



zχ−n(z) =
n

∑

k=0

(

n

k

)

(−1)n−k2k Li−k(z
2) (6.12)

demonstrates we have overcomplicated the same identity derivation for the
inverse tangent integral

zTi−n(z) = −
n

∑

k=0

(

n

k

)

(−1)n−k2k Li−k(−z2). (6.13)
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