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Abstract

Plouffe conjectured rapidly converging series formulas for π2n+1 and ζ(2n + 1) for
small values of n. We find the general pattern for all nonnegative integer values of n
and offer a proof.

1 Introduction

It took nearly one hundred years for the Basel Problem — finding a closed form solution to
∑

∞

k=1
1/k2 — to see a solution. Euler solved this in 1735 and essentially solved the problem

where the power of two is replaced with any even power. This formula is now usually written
as

ζ(2n) = (−1)n+1
B2n(2π)

2n

2(2n)!
,

where ζ(s) is the Riemann zeta function and Bk is the k-th Bernoulli number, defined by
the generating function

x

ex − 1
=

∞
∑

n=0

Bnx
n

n!
, |x| < 2π,

whose first few values are 0,−1/2, 1/6, 0,−1/30, . . . . However, finding a closed form for
ζ(2n+1) has remained an open problem. Only in 1979 did Apéry show that ζ(3) is irrational.
His proof involved the snappy acceleration

ζ(3) =
5

2

∞
∑

n=1

(−1)n−1

n3
(

2n
n

) .
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This tidy formula does not generalize to the other odd zeta values, but other representations,
such as nested sums or integrals, have been well studied. The hunt for a clean result like
Euler’s has largely been abandoned, leaving researchers with the goal of finding formulas
which either converge quickly or have an elegant form.

Following his success in discovering a new formula for π, Simon Plouffe [5] conjectured
several identities which relate either πm or ζ(m) to three infinite series. Letting

Sn(r) =
∞
∑

k=1

1

kn(eπrk − 1)
,

the first few examples are1

π = 72S1(1)− 96S1(2) + 24S1(4)

π3 = 720S3(1)− 900S3(2) + 180S3(4)

π5 = 7056S5(1)− 6993S5(2)− 63S5(4)

π7 =
907200

13
S7(1)− 70875S7(2) +

14175

13
S5(4).

and

ζ(3) = 28S3(1)− 37S3(2) + 7S3(4)

ζ(5) = 24S5(1)−
259

10
S5(2)−

1

10
S5(4)

ζ(7) =
304

13
S7(1)−

103

4
S7(2).+

19

52
S7(4).

Plouffe conjectured these formulas by first assuming, for example, that there exist constants
a, b, and c such that

π = aS1(1) + bS1(2) + cS1(4).

By obtaining accurate approximations of each the three series, he wrote some computer code
to postulate rational values for a, b, c. Today, such integer relations algorithms have been
used to discover many formulas. The widely used PSLQ algorithm, developed by Ferguson
and Bailey [4], is implemented in Maple. The following Maple code solves the above problem:

> with(IntegerRelations):

> Digits := 100;

> S := r -> sum( 1/k/( exp(Pi*r*k)-1 ), k=1..infinity );

> PSLQ( [ Pi, S(1), S(2), S(4) ] );

The PSLQ command returns the vector [−1, 72,−96, 24], producing the first formula.
While the computer can be used to conjecture the coefficients for a specific power, finding

the general sequences of rationals has remained an open problem. This note finds these
sequences and offers formal proofs.

1There is a typographical error in the sign of the last coefficient in the formula for π5 in [5], which is
corrected here.
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2 Exact Formulas

While it does not seem that ζ(2n+1) is a rational multiple of π2n+1, a result in Ramanujan’s
notebooks gives a relationship with rapidly convergent infinite series. See Entry 21(i) in
Chapter 14 of [2], and see [3] for additional commentary.

Theorem 1 (Ramanujan). If α > 0, β > 0, and αβ = π2, then

α−n

{

1

2
ζ(2n+ 1) + S2n+1(2α/π)

}

=

(−β)−n

{

1

2
ζ(2n+ 1) + S2n+1(2β/π)

}

− 4n
n+1
∑

k=0

(−1)k
B2kB2n+2−2k

(2k)!(2n+ 2− 2k)!
αn+1−kβk.

Using α = β = π in Proposition 1 and defining

Fn =

n+1
∑

k=0

(−1)k
B2kB2n+2−2k

(2k)!(2n+ 2− 2k)!
,

we have
(

π−n − (−π)−n
)

(

1

2
ζ(2n+ 1) + S2n+1(2)

)

= −4nπn+1Fn.

To find formulas for the odd zeta values and powers of π, we will divide these into two
classes: ζ(4m− 1) and ζ(4m+ 1). Such distinctions can be seen in other studies; see [1, pp.
137–139].

First, we find the formulas for π4m−1 and ζ(4m− 1). If n is odd, then

1

2
ζ(2n+ 1) + S2n+1(2) =

−4n

2
π2n+1Fn. (1)

Using α = π/2 and β = 2π in Theorem 1 and defining

Gn =
n+1
∑

k=0

(−4)k
B2kB2n+2−2k

(2k)!(2n+ 2− 2k)!
,

one has

ζ(2n+ 1) = −
2 · 4nS2n+1(1) + 2S2n+1(4) + 4nπ2n+1Gn

4n + 1
.

Combining this with equation (1) yields

4nS2n+1(1)− (4n + 1)S2n+1(2) + S2n+1(4)
4n

2
(4n + 1)Fn −

4n

2
Gn

= π2n+1.

Substituting n = 2m− 1 and defining

Dm =
42m−1

[

(42m−1 + 1)F2m−1 −G2m−1

]

2
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produces

π4m−1 =
42m−1

Dm
S4m−1(1)−

42m−1 + 1

Dm
S4m−1(2) +

1

Dm
S4m−1(4).

This identity may be combined with equation (1) to give

ζ(4m− 1) = −
F2m−14

4m−2

Dm
S4m−1(1) +

G2m−14
2m−1

Dm
S4m−1(2)−

F2m−14
2m−1

Dm
S4m−1(4).

To obtain formulas for the 4m+ 1 cases, set α = 2π, β = π/2, and n = 2m in Theorem
1 to obtain

ζ(4m+ 1) =
−2 · 16mS4m+1(1) + 2S4m+1(4)− 16mπ4m+1G2m

16m − 1
. (2)

Define Tn(r) by

Tn(r) =

∞
∑

k=1

1

kn(eπrk + 1)
,

and another finite sum of Bernoulli numbers by

Hn =
n

∑

k=0

(−4)n+k B4kB4n+2−4k

(4k)!(4n+ 2− 4k)!
.

We begin with the case m ≥ 1. Under this hypothesis, Vepstas established the follow-
ing expression (refer to the calculation following [6, Theorem 7], and the statement in the
introduction of [6]):

(1 + (−4)m − 24m+1)ζ(4m+ 1) =

2T4m+1(2) + 2(24m+1 − (−4)m)S4m+1(2) + 24m+1π4m+1Hm + 24mπ4m+1G2m.

Vepstas also gave a formula relating Tk and Sk:

Tk(x) = Sk(x)− 2Sk(2x).

Combining the last two equations produces

1 + (−4)m − 24m+1

1

2
(1− 42m)

(

42m

2
π4m+1G2m − S4m+1(4) + 42mS4m+1(1)

)

=

2[24m+1 − (−4)m + 1]S4m+1(2)− 4S4m+1(4) + 24m+1π4m+1Hm + 24mπ4m+1G2m.

Letting

Km =
1

2
(1− 42m)

1 + (−4)m − 24m+1
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and

Em =
42m

2
G2m − 24m+1KmHm − 24mKmG2m,

one finds

π4m+1 = −
42m

Em
S4m+1(1) +

2Km[2
4m+1 − (−4)m + 1]

Em
S4m+1(2) +

(1− 4Km)

Em
S4m+1(4).

Substituting this into equation (2) produces

ζ(4m+ 1) = −
16m(2Em − 16mG2m)

(16m − 1)Em
S4m+1(1)

−
2 · 16mG2mKm(2 · 16

m − (−4)m + 1)

(16m − 1)Em

S4m+1(2)

−
16mG2m(1− 4Km)− 2Em

(16m − 1)Em
S4m+1(4).

It remains to consider the case m = 0 and establish the formula for π stated in the
introduction. This formula is a consequence of classical results about q-series, which permit
the direct evaluation of S1(1), S1(2), and S1(4). First, note that [2, Equation (22.11)] gives

S1(2) =
1

4
log

(

4

π

)

−
π

12
+ log Γ

(

3

4

)

,

where log denotes the natural logarithm. A straightforward adaptation of the proof of this
formula in [2] yields, after using the tables of Zucker cited therein with the choice c2 = 4,

S1(4) = −
1

6
log(2−33/4) +

1

6
log(π9/2)− log Γ

(

1

4

)

−
π

6
.

Further, [3, Equation (2.4)] gives

S1(1) = S1(4) +
1

4
log

(

1

4

)

+
π

8
.

Substituting these expressions into the claimed formula for π and simplifying completes the
proof.
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