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A NUMBER FIELD ANALOGUE OF RAMANUJAN’S IDENTITY
FOR ζ(2m+ 1)

DIKSHA RANI BANSAL AND BIBEKANANDA MAJI

Dedicated to Professor Bruce Berndt on the occasion of his 85th birthday

Abstract. Ramanujan’s famous formula for ζ(2m+1) has captivated the attention

of numerous mathematicians over the years. Grosswald, in 1972, found a simple

extension of Ramanujan’s formula which in turn gives transformation formula for

Eisenstein series over the full modular group. Recently, Banerjee, Gupta and Kumar

found a number field analogue of Ramanujan’s formula. In this paper, we present a

new number field analogue of the Ramanujan-Grosswald formula for ζ(2m + 1) by

obtaining a formula for Dedekind zeta function at odd arguments. We also obtain

a number field analogue of an identity of Chandrasekharan and Narasimhan, which

played a crucial role in proving our main identity. As an application, we generalize

transformation formula for Eisenstein series G2k(z) and Dedekind eta function η(z).

A new formula for the class number of a totally real number field is also obtained,

which provides a connection with the Kronceker’s limit formula for the Dedekind zeta

function.

1. Introduction

The theory of the Riemann zeta function ζ(s) is a central object of study in number

theory that holds a substantial place in the mathematical landscape. The nature of

special values of ζ(s) has a rich history. Euler gave an exact evaluation for ζ(2k) in

1734, which establishes a relation between Bernoulli numbers and even zeta values.

More precisely, for every positive integer k,

ζ(2k) = (−1)k+1 (2π)
2kB2k

2(2k)!
, (1.1)

where B2k denotes 2kth Bernoulli number. The above formula instantly implies that

even zeta values are transcendental. However, we have very little information about

algebraic nature of positive odd zeta values. In 1979, Apery [1, 2] achieved a break-

through by proving the irrationality of ζ(3). In 2001, Rivoal [31], Ball and Rivoal [3]
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proved that there exist infinitely many odd zeta values which are irrational. A result

due to Zudilin [34], states that at least one of ζ(5), ζ(7), ζ(9) and ζ(11) are irrational,

which is the most notable achievement in this area as of now. Prior to all these re-

sults, Ramanujan in his Notebook [28, p. 173, Ch. 14, Entry 21(i)] as well as in Lost

Notebook [29, p. 319, Entry (28)] gave an intriguing formula involving odd zeta val-

ues, that has drawn the attention of many mathematicians. For any α, β > 0 with

αβ = π2, k ∈ Z \ {0}, we have

H2k+1(α) + (−1)k+1H2k+1(β) =

k+1
∑

j=0

(−1)j−1 B2j

(2j)!

B2k+2−2j

(2k + 2− 2j)!
αk+1−jβj, (1.2)

where

H2k+1(x) = (4x)−k

(

1

2
ζ(2k + 1) +

∞
∑

n=1

σ−(2k+1)(n)e
−2xn

)

,

and the generalized divisor function σz(n) =
∑

d|n d
z, z ∈ C.

Over the years, numerous mathematicians have generalized Ramanujan’s formula in a

variety of ways. Ramanujan [28, Ch. 14, Entry 8(iii)] himself gave a huge generalization

of (1.2). An analogue of Ramanujan’s formula (1.2) for L-functions associated to

modular forms was discussed by Razar [30, Theorem 2] and Weil [35] independently.

An extension for Dirichlet L-function, Lerch zeta function, and more generally for any

Dirichlet series with periodic coefficients was given by Bradley [10] in 2002. Quite

surprisingly, in 1977, Berndt [8] showed that Euler’s formula (1.1) and Ramanujan’s

formula (1.2) are branches of a bigger tree, that is, they can be obtained from a single

transformation formula for a generalized Eisenstien series. Recently, Dixit and the

second author [16] found an interesting one variable generalization of (1.2), and later

Dixit et. al. [18] and Chavan [12] established different generalizations of (1.2) for the

Hurwitz zeta function. To know more detailed information about the Ramanujan’s

formula (1.2), we refer to [5, p. 276] and a survey article by Berndt and Straub [9], and

an expository paper by Dixit [15] where one can find recent developments. Readers are

also encouraged to see [6, 7, 13, 14, 20, 21, 22].

Ramanujan’s formula (1.2) exhibits a profound correlation with Eisenstein series.

Let H be the upper half plane. For z ∈ H and an integer k ≥ 2, we define the

holomorphic Eisenstein series G2k(z) of weight 2k for the full modular group SL2(Z),

G2k(z) =
∑

(m,n)∈Z2\{(0,0)}

1

(m+ nz)2k
.
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For a, b, c, d ∈ Z with ad− bc = 1, it satisfies the following modular transformation:

G2k

(

az + b

cz + d

)

= (cz + d)2kG2k(z). (1.3)

Then the Fourier series expansion of G2k(z) is given by

G2k(z) = 2ζ(2k)

(

1 +
2

ζ(1− 2k)

∞
∑

n=1

σ2k−1(n)e
2πinz

)

.

In particular, G2k(z) satisfies the following two main transformation formulae,

G2k(z + 1) = G2k(z), (1.4)

G2k

(

−1

z

)

= z2kG2k(z), (1.5)

which yield (1.3). We now introduce a simple extension of (1.2) given by Grosswald

[19], in 1972, which shows how the above transformation formula (1.5) of G2k(z) is

connected to Ramanujan’s identity. It states that for z ∈ H, k ∈ Z \ {0},

F2k+1(z)− z2kF2k+1

(

−1

z

)

=
1

2
ζ(2k + 1)(z2k − 1) +

(2πi)2k+1

2z
R2k+1(z), (1.6)

where

Fk(z) =

∞
∑

n=1

σ−k(n)e
2πinz (1.7)

and R2k+1(z) is the Ramanujan polynomial, introduced by Gun, Murty and Rath [20],

defined as

R2k+1(z) =
k+1
∑

j=0

z2k+2−2j B2j

(2j)!

B2k+2−2j

(2k + 2− 2j)!
. (1.8)

More about the above polynomial (1.8) can be seen in the paper by Murty, Smyth

and Wang [26]. Setting z = iβ/π, αβ = π2, with α, β > 0, Grosswald’s identity

immediately gives Ramanujan’s formula (1.2). If k < −1 in (1.6), then

F2k+1(z)− z2kF2k+1

(

−1

z

)

=
1

2
ζ(2k + 1)(z2k − 1). (1.9)

One can easily check that the above formula is nothing but the transformation for-

mula (1.5) of the Eisenstien series G2k(z). We further note that the above formula is

equivalent to an identity of Ramanujan [5, p. 261, Entry 13].

In the literature, there are several generalizations of ζ(s), however, the Dedekind

zeta function is considered as one of the most noteworthy generalizations of ζ(s) to

the number fields. In this paper, our main aim is to establish a new generalization of
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Ramanujan’s formula (1.2) for Dedekind zeta function. Before delving deeper, we first

define the Dedekind zeta function.

1.0.1. Dedekind zeta function. Let F be a number field with the degree [F : Q] = d =

r1 + 2r2, where r1 and r2 denote the number of real and complex embeddings (upto

conjugates) of F. Let D be the absolute value of the discriminant DF of F. Let OF be

the ring of integers and N be the norm map of F over Q. Let aF(n) be the number of

ideals in OF with norm n. Then the Dedekind zeta function associated to F is defined

by the following Dirichlet series:

ζF(s) =
∑

a⊂OF

1

N(a)s
=

∞
∑

n=1

aF(n)

ns
, Re(s) > 1, (1.10)

where a runs over the non-zero integral ideals of OF. It is well known that ζF(s) has a

simple pole at s = 1 and the residue is given by the class number formula:

lim
s→1

(s− 1)ζF(s) =
2r1(2π)r2√

D

RFhF

wF

:= HF, (1.11)

where wF denotes the number of roots of unity contained in OF, hF is the class number,

and RF denotes the regulator of F. Throughout the paper, for simplicity, we denote

the above residue as HF. Further, we know that r = r1 + r2 − 1 is the rank of the unit

group of F and ζF(s) has a zero of order r at s = 0 with

lim
s→0

ζF(s)

sr
= −RFhF

wF

:= CF. (1.12)

Note that the constants HF and CF are related by the relation
√
DHF = −2r1(2π)r2CF.

Now we define a generalized divisor function attached to a given number field F, which

was recently studied by Gupta and Pandit [23, Equation (1.5)]:

σF,ℓ(n) =
∑

d|n
aF(d)aF

(n

d

)

dℓ. (1.13)

In their paper, they investigated Riesz sum associated to σF,ℓ(n). One can check that

the Dirichlet series associated to σF,ℓ(n) is given by

∞
∑

n=1

σF,ℓ(n)

ns
= ζF(s)ζF(s− ℓ), Re(s) > max{1, 1 + Re(ℓ)}. (1.14)

A number field analogue of Euler’s identity (1.1) has been given by Klingen [25] and

Siegel [32]. It states that for any totally real number field F of degree n, we have

ζF(2m) =
qmπ

2mn

√
D

, m ∈ N, (1.15)
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where qm is some fixed non-zero rational number. From the above identity, we notice

that like ζ(2m), even zeta values over totally real number fields are also transcendental.

Recently, Murty and Pathak [27] have also studied the arithmetic nature of Dedekind

zeta function at odd positive integers. Their result states that for a given integer n ≥ 1,

at most one of ζF(2n + 1) is rational when F runs over all imaginary quadratic fields.

Recently, Banerjee, Gupta and Kumar [4] have studied transformation formula for

Dedekind zeta function at odd integers which gives a generalization of (1.2). However,

our generalization is different from their result.

Now we discuss the Steen function before mentioning the main result. The Steen

function V (z|a1, a2, . . . , an) is defined by

V (z|a1, a2, . . . , an) =
1

2πi

∫

(c)

n
∏

j=1

Γ(s+ aj)z
−sds. (1.16)

Here and throughout the article the symbol (c) denotes the vertical line from c − i∞
to c+ i∞. We assume that all the poles of Γ(s+ aj) lie on one side of the vertical line

(c). One can check that this function is a particular case of Meijer G-function. Special

cases of Steen function are associated to many other well-known functions such as,

V (z|0) = e−z, if c > 0, (1.17)

V (z|a, b) = 2z
1
2
(a+b)Ka−b(2z

1
2 ), if c > max{−a,−b}, (1.18)

where Kν denotes the modified Bessel function of the second kind. Further information

about Steen function can be found in [33], [24, p. 63].

Recall that Ramanujan’s formula (1.2) as well as Grosswald’s identity (1.6) has an

infinite series (1.7) containing the divisor function σz(n) and the exponential function,

that is, for k ∈ Z, z ∈ H,

Fk(z) =

∞
∑

n=1

σ−k(n)e
2πinz. (1.19)

In the current paper, we are interested to study transformation formula for the following

infinite series:

FF,k(z) :=
∞
∑

n=1

σF,−k(n)V

(

−(2π)dniz

D

∣

∣

∣

∣

0̄d

)

. (1.20)

One can easily check that the above series (1.20) reduces to (1.19) when F = Q. Now

we are ready to state the main results of this paper in the next section.
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2. Main Results

Theorem 2.1. Let F be a number field of degree d = r1+2r2 and ζF(s) be the Dedekind

zeta function defined in (1.10). We consider r = r1 + r2 − 1. For any non-zero integer

k, we define

ΛF,k(s) := Γ(s)dζF(s)ζF(s+ 2k + 1)

(

(2π)d

D

)−s

. (2.1)

Let FF,k(z) be the infinite series defined as in (1.20). Then for any z ∈ H and k > 0,

we have

SF,2k+1(z) = (−1)k(r1+1)+r2z2kSF,2k+1

(

−1

z

)

+

k
∑

j=1

R−(2j−1)(z) +

k−1
∑

j=1

R−2j(z), (2.2)

where

SF,2k+1(z) := FF,2k+1(z)−R0(z)−R1(z),

and the residual terms are defined as

R0(z) =
1

(r2)!
lim
s→0

dr2

dsr2

(

sr2+1ΛF,k(s)(−iz)−s
)

,

R1(z) = HFζF(2k + 2)
iD

(2π)dz
,

R−(2j−1)(z) =
1

(r)!
lim

s→−(2j−1)

dr

dsr
(

(s+ 2j − 1)r+1ΛF,k(s)(−iz)−s
)

,

R−2j(z) =
1

(r2 − 1)!
lim

s→−2j

dr2−1

dsr2−1

(

(s+ 2j)r2ΛF,k(s)(−iz)−s
)

.

Again, for k < 0, we have

UF,2k+1(z) = (−1)k(r1+1)+r2z2kUF,2k+1

(

−1

z

)

+R(z), (2.3)

where

UF,2k+1(z) := FF,2k+1(z)−
CFζ

(r2)
F (2k + 1)

(r2)!
,

and

R(z) =















− i
4πz

, if (k, r1, r2) = (−1, 1, 0),
HFζF(0)Di
(2π)2z

, if (k, r1, r2) = (−1, 0, 1),

0, otherwise.

(2.4)
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Remark 1. We note that an explicit evaluation of the terms R0(z),R−(2j−1)(z) and

R−2j(z) is not easy as it involves higher derivatives. However, we can say that R0(z) is

a polynomial in C[log(z)] of degree r2, whereas R−(2j−1)(z) and R−2j(z) are polynomials

of the form z2j−1g(log(z)) and z2jh(log(z)), where g(z) and h(z) are some polynomials

of degree r = r1 + r2 − 1 and r2 − 1, respectively.

Corollary 2.2. For F = Q, Theorem 2.1 reduces to the Ramanujan-Grosswald formula

(1.6).

In the next subsection, we highlight some of the intriguing identities that are by

product of our main result in the case of totally real number field.

2.1. Transformation formulae for totally real number fields. The next impli-

cation of Theorem 2.1 is stated as a separate theorem since it can be regarded as a

formula for ζF(2k + 1) over a totally real number field.

Theorem 2.3. Let F be a totally real number field of degree r1 and k be a positive

integer. Then we have

SF,2k+1(z) = (−1)k(r1+1)z2kSF,2k+1

(

−1

z

)

+
k
∑

j=1

R−(2j−1)(z), (2.5)

where

SF,2k+1(z) = FF,2k+1(z)− CFζF(2k + 1)−HFζF(2k + 2)
iD

(2π)r1z
,

and the residual term is given by

R−(2j−1)(z) =
1

(r1 − 1)!
lim

s→−(2j−1)

dr1−1

dsr1−1

(

(s+ 2j − 1)r1ΛF,k(s)(−iz)−s
)

.

In particular, for the real quadratic fields we obtain the following identity.

Corollary 2.4. Let k > 0, and F be a real quadratic field i.e. F = Q(
√
m) where m is

a positive square free integer. Then we have

SF,2k+1(z) = (−1)kz2kSF,2k+1

(

−1

z

)

+

k
∑

j=1

R−(2j−1)(z), (2.6)

where

SF,2k+1(z) = 2

∞
∑

n=1

σF,−2k−1(n)K0

(

2π

√

nz

m
e−

iπ
4

)

− ζ
′

F(0)ζF(2k + 1)− HFζF(2k + 2)im

π2z
.

The term R−(2j−1)(z) in (2.6) is given by

R−(2j−1)(z) = lim
s→−(2j−1)

d

ds

(

(s+ 2j − 1)2ΛF,k(s)(−iz)−s
)

.
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Next, we present identities for Dedekind zeta function over totally real number fields

at negative odd integers.

Theorem 2.5. Let k be a positive integer and F be a totally real number field of degree

r1. Then, we have

z2k {FF,−2k+1(z)− CFζF(1− 2k)}

= (−1)k(r1+1)

{

FF,−2k+1

(

−1

z

)

− CFζF(1− 2k)

}

+







z2k

4πzi
, if (k, r1, r2) = (1, 1, 0),

0, otherwise.

Remark 2. When (r1, r2) = (1, 0) and k > 1, then the above formula immediately

transforms into the Grosswald’s identity (1.9). In particular, when (k, r1, r2) = (1, 1, 0),

the above formula yields the well known transformation formula for the Eisenstein

series of weight 2, that is,

E2

(

−1

z

)

= z2
(

E2(z) +
6

πiz

)

.

The next result gives an explicit evaluation of the infinite series FF,−2k+1(z) at z = i

that involves the class number and value of the Dedekind zeta function at negative odd

integers.

Corollary 2.6. Let k ≥ 3 and r1 ≥ 1 be odd integers. Then for a totally real field F

of degree r1, we have

∞
∑

n=1

σF,2k−1(n)V

(

(2π)r1n

D

∣

∣

∣

∣

0̄r1

)

= −hFRFζF(1− 2k)

wF

. (2.7)

This gives a new identity for the class number of a totally real field. Using functional

equation (3.4) and Siegel’s identity (1.15), one can check that ζF(1− 2k) is a non-zero

rational number.

Remark 3. In particular, when F = Q, Corollary 2.6 gives an exact evaluation of the

following well-known Lambert series

∞
∑

n=1

σ2k−1(n)e
−2πn = −ζ(1− 2k)

2
=

B2k

4k
.

This identity was first obtained by Glaisher and later rediscovered by Ramanujan

[5, p. 262, Equation (13.1)].

Next, we provide an interesting analogue of the transformation formula (1.5) for

Eisenstien series G2k(z), namely, a transformation formula that sends z → −1
z
for real

quadratic fields.
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Corollary 2.7. Let m be a positive square free integer and F = Q(
√
m). Then for

z ∈ H and k ∈ N, we have

(iz)2kGF,2k(z) = GF,2k

(

−1

z

)

,

where

GF,2k(z) := 1− 2

ζ ′F(0)ζF(1− 2k)

∞
∑

n=1

σF,2k−1(n)K0

(

2π

√

nz

m
e−

iπ
4

)

.

Further, as an application of Theorem 2.1, we give number field analogue of Ramanujan-

Grosswald identity for imaginary number fields.

2.2. Transformation formulae for imaginary number fields.

Theorem 2.8. Let F be a purely imaginary number field with degree of extension 2r2
over Q. Then for k > 0, z ∈ H, we have

SF,2k+1(z) = (−1)k+r2z2kSF,2k+1

(

−1

z

)

+

k
∑

j=1

R−(2j−1)(z) +

k−1
∑

j=1

R−2j(z), (2.8)

where

SF,2k+1(z) = FF,2k+1(z)−R0(z)−R1(z),

and the residual terms are defined as

R0(z) =
1

(r2)!
lim
s→0

dr2

dsr2

(

sr2+1ΛF,k(s)(−iz)−s
)

,

R1(z) = HFζF(2k + 2)
iD

(2π)2r2z
,

R−(2j−1)(z) =
1

(r2 − 1)!
lim

s→−(2j−1)

dr2−1

dsr2−1

(

(s+ 2j − 1)r2ΛF,k(s)(−iz)−s
)

,

R−2j(z) =
1

(r2 − 1)!
lim

s→−2j

dr2−1

dsr2−1

(

(s+ 2j)r2ΛF,k(s)(−iz)−s
)

.

Again, for k < 0, we have

UF,2k+1(z) = (−1)k+r2z2kUF,2k+1

(

−1

z

)

+R(z), (2.9)

where

UF,2k+1(z) := FF,2k+1(z)−
CFζ

(r2)
F (2k + 1)

(r2)!
, (2.10)
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and

R(z) =







HFζF(0)Di
(2π)2z

, if (k, r1, r2) = (−1, 0, 1),

0, otherwise.
(2.11)

In particular, for quadratic imaginary fields we obtain the following transformation

formula.

Corollary 2.9. Let m be a positive square free integer and F = Q(
√
−m) be a quadratic

imaginary number field. Then for k > 0, we have

SF,2k+1(z) = (−1)k+1z2kSF,2k+1

(

−1

z

)

+

k
∑

j=1

R−(2j−1)(z) +

k−1
∑

j=1

R−2j(z), (2.12)

where

SF,2k+1(z) = 2

∞
∑

n=1

σF,−2k−1(n)K0

(

2π

√

nz

m
e−

iπ
4

)

−R0(z)−R1(z),

and the residual terms are defined as

R0(z) = lim
s→0

d2

ds2
(

s2ΛF,k(s)(−iz)−s
)

,

R1(z) = HFζF(2k + 2)
im

π2z
,

R−(2j−1)(z) = − ζ
′

F(1− 2j)

[(2j − 1)!]2
ζF(2k − 2j + 2)

(

π2iz

m

)2j−1

,

R−2j(z) =
ζ

′

F(−2j)

[(2j)!]2
ζF(2k − 2j + 1)

(

π2iz

m

)2j

.

The next result also gives another modular transformation property associated to

quadratic imaginary fields.

Corollary 2.10. Let m be a square free positive integer and F = Q(
√
−m). Then for

z ∈ H, we have

z2UF,−1(z) = UF,−1

(

−1

z

)

+
HFζF(0)izm

π2
, (2.13)

where

UF,−1(z) = FF,−1(z)− ζF(0)ζ
′

F(−1).

Moreover, letting z = i in (2.13), we obtain the following exact evaluation:

∞
∑

n=1

σF,1(n)K0

(

2π

√

n

m

)

=
1

2
ζF(0)ζ

′
F(−1) +

HFζF(0)m

4π2
. (2.14)
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The below identity holds for any purely imaginary number field.

Corollary 2.11. Let F be a purely imaginary field of degree 2r2 and k be a positive

integer. If (k, r2) 6= (1, 1), then we have

z2kUF,1−2k(z) = (−1)k+r2UF,1−2k

(

−1

z

)

, (2.15)

where

UF,1−2k(z) = FF,1−2k(z)−
CFζ

(r2)
F (1− 2k)

(r2)!
.

Remark 4. Moreover, substituting z = i in (2.15) and considering r2 as an odd positive

integer, we obtain the following interesting exact evaluation:

∞
∑

n=1

σF,2k−1(n)V

(

(2π)2r2n

D

∣

∣

∣

∣

0̄2r2

)

= −hFRFζ
(r2)
F (1− 2k)

wF(r2)!
. (2.16)

This result is true for purely imaginary number fields and it can be considered as an

analogue of Corollary 2.6, which is true only for real number fields. In particular, when

F = Q(
√
−m), then for k ≥ 3, we have

∞
∑

n=1

σF,2k−1(n)K0

(

2π

√

n

m

)

=
1

2
ζF(0)ζ

′
F(1− 2k). (2.17)

2.3. A number field analogue of transformation formula for Dedekind eta

function. One of the key observations is that our main result, i.e., Theorem 2.1 loses

its validity for k = 0 as ζF(2k+1) exhibits a simple pole at 1. Therefore, corresponding

k = 0, we must handle it separately. Quite interestingly, in this case, we will derive a

number field analogue of transformation formula for Dedekind eta function η(z), which

is a half integral weight modular form.

Theorem 2.12. Let F be a number field of degree d and FF,1(z) be the infinite series

defined as in (1.20). Then we have

TF(z) = (−1)r2TF

(

−1

z

)

+R0(z),

where

TF(z) := FF,1(z)−R1(z),

with

R0(z) =
1

(r2 + 1)!
lim
s→0

dr2+1

dsr2+1

(

sr2+2ΛF,0(s)(−iz)−s
)

, R1(z) = HFζF(2)
iD

(2π)dz
.

In particular, we have the following modular transformation property for totally real

number fields.
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Corollary 2.13. Let F be a totally real number field of degree r1 and FF,1(z) be the

infinite series defined in (1.20). Let HF, γF be the constants defined in (3.5). Then we

have

FF,1(z)− FF,1

(

−1

z

)

= a0γF − a0HF

{

r1γ + log

(

−(2π)r1iz

D

)}

+ a1HF

+R1(z)−R1

(

−1

z

)

, (2.18)

where

R1(z) =
iDHFζF(2)

(2π)r1z
, a0 =

ζ
(r1−1)
F (0)

(r1 − 1)!
= CF, a1 =

ζ
(r1)
F (0)

(r1)!
.

Remark 5. Quite surprisingly, substituting z = i in (2.18) and using the relation

between HF and CF, we obtain a connection between class number of a totally real

number field of degree r1 and the constant term γF of the Laurent series expansion

(3.5) of the Dedekind zeta function at s = 1. Mainly, we obtain

CF =
a1 − AγF

r1γ + log
(

(2π)r1

D

) , (2.19)

where A =
√
D

2r1 (2π)r2
. This suggests that finding a fomula for class number is also

connected with the Kronceker’s limit formula for the Dedekind zeta function.

Further, letting F = Q in Corollary 2.13, we have the following result.

Corollary 2.14. For any complex number z ∈ H, we have

∞
∑

n=1

σ(n)

n
e2πinz −

∞
∑

n=1

σ(n)

n
e−

2πin
z =

iπz2 + iπ

12z
+

1

2
log(−iz), (2.20)

which is equivalent to the logarithm of the transformation formula for the Dedekind eta

function η(z), namely,

η

(

−1

z

)

=
√
−iz η(z).

3. Required Tools

In this section, we state a few essential results which will be frequently used in the

proof of the main results. The gamma function Γ(z) satisfies the following functional
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equation and reflection formula:

Γ(z + 1) = zΓ(z), z ∈ C, (3.1)

Γ(z)Γ(1− z) =
π

sin πz
, z ∈ C\Z (3.2)

Γ(z)Γ

(

z +
1

2

)

= 21−2z
√
πΓ(2z). (3.3)

We now discuss analytic properties of the Dedekind zeta function ζF(s).

Lemma 3.1. The Dedekind zeta function ζF(s) has an analytic continuation in the

whole complex plane except for a simple pole at s = 1. It also satisfies the following

functional equation relating its values at s and 1− s,

ΩF(s) = ΩF(1− s), (3.4)

where ΩF(s) =
(

D
πd4r2

)
s
2 Γ
(

s
2

)r1
Γ(s)r2ζF(s).

The Dedekind zeta function ζF(s) satisfies the following Laurent series expansion at

s = 1:

ζF(s) =
HF

s− 1
+ γF +O(s− 1). (3.5)

Utilizing functional equation (3.4) of ζF(s), one can verify that it has a zero at s = 0

of order r = r1 + r2 − 1. Therefore, the following Laurent series expansion at s = 0

holds:

ζF(s) = a0s
r1+r2−1 + a1s

r1+r2 +O
(

sr1+r2+1
)

, (3.6)

where a0 = ζ(r1+r2−1)(0)
(r1+r2−1)!

and a1 = ζ(r1+r2)(0)
(r1+r2)!

. From (1.12), one can observe that a0 is

nothing but the constant CF.

Now we mention an interesting identity due to Chandrasekharan and Narasimhan

[11, Equation (57)]. For any integer k, one can prove that

Λk(s) = (−1)kΛk(−s− 2k),

where Λk(s) = (2π)−sΓ(s)ζ(s)ζ(s+ 2k + 1). We generalize this identity for Dedekind

zeta function ζF(s). Mainly, we prove the below result, which will play a crucial role

in proving our main identity.

Lemma 3.2. Let F be a number field of degree d and ζF(s) be the Dededkind zeta

function defined in (1.10). For any k ∈ Z, we have

ΛF,k(s) = (−1)kr1+r2ΛF,k(−s− 2k),

where ΛF,k(s) = Ds(2π)−dsΓ(s)dζF(s)ζF(s+ 2k + 1).
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Proof. We first prove this identity for any non-negative integer k. From the functional

equation (3.4) of ζF(s), we have

(

D

πd4r2

)
s
2

Γ
(s

2

)r1
Γ(s)r2ζF(s) =

(

D

πd4r2

)
1−s
2

Γ

(

1− s

2

)r1

Γ(1− s)r2ζF(1− s). (3.7)

Replace s by s+ 2k + 1 in (3.7) to see that

(

D

πd4r2

)
s+2k+1

2

Γ

(

s+ 2k + 1

2

)r1

Γ(s+ 2k + 1)r2ζF(s+ 2k + 1)

=

(

D

πd4r2

)
−s−2k

2

Γ
(

−s

2
− k
)r1

Γ(−s− 2k)r2ζF(−s− 2k). (3.8)

Now we multiply (3.7) and (3.8) to get

(

D

πd4r2

)2s+2k {

Γ
(s

2

)

Γ

(

s+ 1

2
+ k

)}r1

{Γ(s)Γ(s+ 2k + 1)}r2 ζF(s)ζF(s+ 2k + 1)

=

{

Γ

(

1

2
− s

2

)

Γ
(

−s

2
− k
)

}r1

{Γ(1− s)Γ(−s− 2k)}r2 ζF(1− s)ζF(−s− 2k). (3.9)

To simplify the above equation further, we use the functional equation (3.1) of Γ(s)

repeatedly and find that, for any non-negative integer k,

Γ

(

s+ 1

2
+ k

)

=
1

2k
(s+ 2k − 1)(s+ 2k − 3) · · · (s + 1)Γ

(

s

2
+

1

2

)

. (3.10)

Again, using (3.1) repeatedly, one can show that

Γ
(

−s

2
− k
)

=
(−2)kΓ

(

− s
2

)

(s+ 2k)(s+ 2k − 2) · · · (s+ 2)
. (3.11)

Utilize (3.10), (3.11) and duplication formula (3.3) for Γ(s) to derive

Γ
(s

2

)

Γ

(

s+ 1

2
+ k

)

=
2

2s+k

√
π(s+ 2k − 1)(s+ 2k − 3) · · · (s+ 1)Γ(s), (3.12)

Γ

(

1

2
− s

2

)

Γ
(

−s

2
− k
)

=
(−1)k21+s+k

√
πΓ(−s)

(s+ 2k)(s+ 2k − 2) · · · (s+ 2)
. (3.13)

We again employ (3.1) to see that, for any non-negative integer k,

Γ(s)Γ(s+ 2k + 1) = s(s+ 1) · · · (s+ 2k)Γ(s)2, (3.14)

Γ(−s− 2k)Γ(1− s) =
−s(Γ(−s))2

(s+ 2k)(s+ 2k − 1) · · · (s+ 1)
. (3.15)
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Now substituting expressions from (3.12)-(3.15) in (3.9) and upon simplification, we

have
(

D

(2π)d

)2s+2k

{(s+ 1)(s+ 2) · · · (s+ 2k)}d Γ(s)dζF(s)ζF(s+ 2k + 1)

= (−1)kr1+r2(Γ(−s))dζF(1− s)ζF(−s− 2k). (3.16)

Here we have used the fact that r1+2r2 = d. Applying (3.1) again, one can check that

Γ(−s)

(s+ 2k)(s+ 2k − 1) . . . (s+ 2)(s+ 1)
= Γ(−s− 2k). (3.17)

Using (3.17) in (3.16), we obtain
(

D

(2π)d

)2s+2k

Γ(s)dζF(s)ζF(s+ 2k + 1)

= (−1)kr1+r2Γ(−s− 2k)dζF(1− s)ζF(−s− 2k).

Now letting ΛF,k(s) = Ds(2π)−dsΓ(s)dζF(s)ζF(s+2k+1), the above identity reduces to

ΛF,k(s) = (−1)kr1+r2ΛF,k(−s− 2k).

This completes the proof of this lemma for any non-negative integer k. In a similar

fashion, one can prove that this identity also holds for any negative integer as well. �

In the next section, we present proofs of our main results.

4. Proof of Main Results

Proof of Theorem 2.1. Using the definition (1.16) of the Steen function, for y > 0, we

write
∞
∑

n=1

σF,−2k−1(n)V

(

(2π)dny

D

∣

∣

∣

∣

0̄d

)

=
∞
∑

n=1

σF,−2k−1(n)
1

2πi

∫

(c)

Γ(s)d
(

(2π)dny

D

)−s

ds

=
1

2πi

∫

(c)

Γ(s)d
∞
∑

n=1

σF,−2k−1(n)

ns

(

(2π)dy

D

)−s

ds,

(4.1)

where we choose the line of integration as max{1,−2k} < Re(s) = c < max{1,−2k}+ǫ,

with 0 < ǫ < 1, so that the above Dirichlet series converges absolutely and uniformly.

Hence, the interchange of summation and integration is justifiable. Now utilize the

definition of the Dirichlet series (1.14) in (4.1), to see that

∞
∑

n=1

σF,−2k−1(n)V

(

(2π)dny

D

∣

∣

∣

∣

0̄d

)

=
1

2πi

∫

(c)

Γ(s)dζF(s)ζF(s+ 2k + 1)

(

(2π)dy

D

)−s

ds.

(4.2)
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Now our aim is to study the following vertical line integral,

JF,k(y) =
1

2πi

∫

(c)

Γ(s)dζF(s)ζF(s+ 2k + 1)

(

(2π)dy

D

)−s

ds.

From the definition (2.1) of ΛF,k(s), it is clear that the above integral can be rewritten

as

JF,k(y) =
1

2πi

∫

(c)

ΛF,k(s)y
−sds.

We now set up a rectangular contour C made up of the vertices c− iT, c + iT, α + iT

and α − iT taken in counter-clockwise direction. We already have c > max{1,−2k}
with T being some large positive quantity and we wisely choose

min{−1,−2k − 2} < α < min{0,−2k − 1}.

Before applying Cauchy’s residue theorem, we need to examine all the poles of ΛF,k(s)

inside the contour C. We know that Γ(s)d has poles of order d at non-positive integers.

Other poles will depend upon the value of k which will affect location of vertices of C.
Here we divide in two cases.

Case I) Suppose k > 0.

c− iT

c+ iT
α+ iT

α− iT

0-1-2-3−2k 1−2k − 1−2k − 2 Re(s)

Im(s)

Now inside the contour C, for ζF(s), s = 0 is a zero of order r1 + r2 − 1, s ∈
{−2,−4, . . . ,−2k} are zeros of order r1 + r2, s ∈ {−1,−3, . . . ,−2k − 1} are zeros

of order r2 and s = 1 is a simple pole. For ζF(s+2k+1), s = −2k−1 is a zero of order

r1+ r2 − 1 and s = −2k is a simple pole. Hence final poles of ΛF,k(s) are at s = 0,−2k

of order r2 + 1, s = 1, −2k − 1 are simple poles, s ∈ {−2,−4, . . . ,−2k + 2} are poles

of order r2 and s ∈ {−1,−3, . . . ,−2k + 1} are poles of order r1 + r2.

Case II) When k < 0.
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c− iT

c+ iT
α + iT

α− iT

0 1 2 3 −2k−2k − 1−1 Re(s)

Im(s)

We see that s = 0 is a zero of order r1 + r2 − 1 for ζF(s) and a zero of order r2 for

ζF(s+ 2k+1). Note that s = 1 is a simple pole for ζF(s) and s = −2k is a simple pole

for ζF(s + 2k + 1). Hence final poles for ΛF,k(s), when k < 0, are at s = 0, 1, −2k,

which are all simple poles.

Now, considering the above two cases and applying Cauchy’s residue theorem, we

have

1

2πi

∫

C
ΛF,k(s)y

−sds = R, (4.3)

where ΛF,k(s) = Γ(s)dζF(s)ζF(s+ 2k + 1)(2π)−sDs and the residual term is given by

R =



































R
(r2+1)
0 (y) +R

(1)
1 (y) +R

(r2+1)
−2k (y) +R

(1)
−2k−1(y) +

k
∑

j=1

R
(r1+r2)
−(2j−1)(y)

+
k−1
∑

j=1

R
(r2)
−2j(y), for k > 0,

R
(1)
0 (y) +R

(1)
1 (y) +R

(1)
−2k(y), for k < 0,

(4.4)

where R
(l)
γ (y) denotes the residue of ΛF,k(s)y

−s of order l at s = γ. Letting T → ∞
and making use of Stirling’s formula for Γ(s), we can show that both the horizontal

integrals vanish. Now, after taking the left vertical integral to the right side and using

(4.2) in (4.3), we are left with

∞
∑

n=1

σF,−2k−1(n)V

(

(2π)dy

D

∣

∣

∣

∣

0̄d

)

= R+
1

2πi

∫

(α)

ΛF,k(s)y
−sds. (4.5)
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Now our main aim is to simplify the above vertical integral, which we defined as

IF,k(y) :=
1

2πi

∫

(α)

ΛF,k(s)y
−sds. (4.6)

Replace s by −t − 2k, so that Re(t) = −Re(s) − 2k = −α − 2k > max{1,−2k}. Let
β = Re(t) = −α− 2k. After this change of variable, the above integral becomes

IF,k(y) =
1

2πi

∫

(β)

ΛF,k(−t− 2k)yt+2kdt.

Now we bring in use of Lemma 3.2 to write as

IF,k(y) = (−1)kr1+r2y2k
1

2πi

∫

(β)

ΛF,k(t)y
tdt

= (−1)(kr1+r2)y2k
∞
∑

n=1

σF,−2k−1(n)V

(

(2π)dn

Dy

∣

∣

∣

∣

0̄d

)

, (4.7)

where we have used (4.2) in the last step. Now substituting (4.7) in (4.5), we obtain
∞
∑

n=1

σF,−2k−1(n)V

(

(2π)dny

D

∣

∣

∣

∣

0̄d

)

= (−1)kr1+r2y2k
∞
∑

n=1

σF,−2k−1(n)V

(

(2π)dn

Dy

∣

∣

∣

∣

0̄d

)

+R.

(4.8)

Now we are left with calculating the term R containing all the residual terms.

Case 1: Let k > 0. In this case we need to calculate the following terms:

R = R
(r2+1)
0 (y) +R

(1)
1 (y) +R

(r2+1)
−2k (y) +R

(1)
−2k−1(y) +

k
∑

j=1

R
(r1+r2)
−(2j−1)(y) +

k−1
∑

j=1

R
(r2)
−2j(y).

Using the definition of residue calculation, one can check that

R
(r2+1)
0 (y) =

1

(r2)!
lim
s→0

dr2

dsr2

(

sr2+1ΛF,k(s)y
−s
)

, (4.9)

R
(1)
1 (y) = lim

s→1
(s− 1)ΛF,k(s)y

−s

= lim
s→1

(s− 1)Γ(s)dζF(s)ζF(s+ 2k + 1)

(

(2π)dy

D

)−s

= HFζF(2k + 2)
D

(2π)dy
, (4.10)

in the last step we have used the class number formula (1.11). Further, we have

R
(r2+1)
−2k (y) =

1

(r2)!
lim

s→−2k

dr2

dsr2

(

(s+ 2k)r2+1ΛF,k(s)y
−s
)

. (4.11)

Now using Lemma 3.2, the above residual term can be rewritten as follows

R
(r2+1)
−2k (y) =

(−1)kr1+r2

(r2)!
lim

s→−2k

dr2

dsr2

(

(s+ 2k)r2+1ΛF,k(−s− 2k)y−s
)

,
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=
(−1)kr1+r2+1y2k

(r2)!
lim
s→0

dr2

dsr2

(

sr2+1ΛF,k(s)y
s
)

,

= (−1)kr1+r2+1y2kR
(r2+1)
0

(

1

y

)

. (4.12)

This shows that the residue at s = 0 and s = −2k are linked by the above relation.

Next, the residue at s = −2k − 1 is given by

R
(1)
−2k−1(y) = lim

s→−2k−1
(s+ 2k + 1)ΛF,k(s)y

−s.

Further, use Lemma 3.2 to see that

R
(1)
−2k−1(y) = (−1)kr1+r2 lim

s→−2k−1
(s+ 2k + 1)ΛF,k(−s− 2k)y−s

= (−1)kr1+r2+1y2k lim
s→1

(s− 1)ΛF,k(s)y
s

= (−1)kr1+r2+1y2kR
(1)
1

(

1

y

)

(4.13)

= (−1)kr1+r2+1y2kHFζF(2k + 2)
Dy

(2π)d
. (4.14)

The above relation indicates the connection between the residues at s = 1 and s =

−2k − 1. The remaining residues at s = −(2j − 1) and s = −2j can be evaluated as

follows:

R
(r1+r2)
−(2j−1)(y) =

1

(r1 + r2 − 1)!
lim

s→−(2j−1)

dr1+r2−1

dsr1+r2−1

(

(s+ 2j − 1)r1+r2ΛF,k(s)y
−s
)

,

=
1

(r)!
lim

s→−(2j−1)

dr

dsr
(

(s+ 2j − 1)r+1ΛF,k(s)y
−s
)

, (4.15)

R
(r2)
−(2j)(y) =

1

(r2 − 1)!
lim

s→−2j

dr2−1

dsr2−1

(

(s+ 2j)r2ΛF,k(s)y
−s
)

. (4.16)

As we know the poles of ΛF,k(s)y
−s at s = −(2j − 1) and s = −2j are of higher order,

so it is a difficult task to simplify the above residual terms. However, one can say that

these residual terms will be polynomials in C[y, log(y)] with degree being 2j+r1+r2−2

and 2j + r2 − 1, respectively. This is because for the residual term (4.15) the highest

degree of y will be 2j − 1 and the highest power of log(y) will be r = r1 + r2 − 1.

Similarly, for the residual term (4.16) the highest degree of y will be 2j and the highest

degree of log(y) will be r2 − 1. In a similar fashion, one can verify that the residue

at s = 0, i.e., the residual term (4.9) is a polynomial in C[log(y)] of degree r2. This

completes the calculations of all residues for k > 0. Now we shall compute residues for

k < 0.
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Case 2: When k < 0, from (4.4), we know that the residual term R is given by

R = R
(1)
0 (y) +R

(1)
1 (y) +R

(1)
−2k(y).

Recall that, in this case, poles of ΛF,k(s) are at 0, 1,−2k and all are simple. Therefore,

we have

R
(1)
0 (y) = lim

s→0
sΛF,k(s)y

−s = lim
s→0

sΓ(s)dζF(s)ζF(s+ 2k + 1)

(

(2π)dy

D

)−s

= lim
s→0

(sΓ(s))d
ζF(s)

sr1+r2−1

ζF(s+ 2k + 1)

sr2

(

(2π)dy

D

)−s

= lim
s→0

Γ(s+ 1)d
ζF(s)

sr1+r2−1

ζF(s+ 2k + 1)

sr2

(

(2π)dy

D

)−s

=
CFζ

(r2)
F (2k + 1)

(r2)!
. (4.17)

To obtain the final step we used (1.12) and s = 0 is a zero of order r2 for ζF(s+2k+1)

as k < 0 and negative odd integers are zeros of ζF(s) of order r2. Now we calculate the

residual term, at s = −2k, which is given by

R
(1)
−2k(y) = lim

s→−2k
(s+ 2k)ΛF,k(s)y

−s.

To obtain a simplified form, we use Lemma 3.2. Thus, we get

R
(1)
−2k(y) = (−1)kr1+r2 lim

s→−2k
(s+ 2k)ΛF,k(−s− 2k)y−s

= (−1)kr1+r2+1y2k lim
s→0

sΛF,k(s)y
s

= (−1)kr1+r2+1y2kR
(1)
0

(

1

y

)

= (−1)kr1+r2+1y2k
CFζ

(r2)
F (2k + 1)

(r2)!
, (4.18)

here in the penultimate step and final step, we have used the definition of R1
0(y) and

its final expression (4.17). This indicates that the residues at s = 0 and s = −2k are

associated with each other. Thus, from (4.17) and (4.18), we have

R
(1)
0 (y) +R

(1)
−2k(y) =

{

1 + (−1)kr1+r2+1y2k
} CFζ

(r2)
F (2k + 1)

(r2)!
. (4.19)

Finally, the residue at s = 1, a simple pole of ΛF,k(s)y
−s, can be evaluated as follows:

R
(1)
1 (y) = lim

s→1
(s− 1)ΛF,k(s)y

−s = lim
s→1

(s− 1)Γ(s)dζF(s)ζF(s+ 2k + 1)

(

(2π)dy

D

)−s

= HFζF(2k + 2)
D

(2π)dy
,
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=















− 1
4πy

, if (k, r1, r2) = (−1, 1, 0),
HFζF(0)D
(2π)2y

, if (k, r1, r2) = (−1, 0, 1),

0, otherwise.

(4.20)

Till now, we assumed that y > 0. However, by analytic continuation, one can show

that the identity can be extended for Re(y) > 0. Thus, we substitute y = −iz with

z ∈ H in (4.8) to get the following form, for z ∈ H,

∞
∑

n=1

σF,−2k−1(n)V

(−(2π)dniz

D

∣

∣

∣

∣

0̄d

)

= (−1)k(r1+1)+r2z2k
∞
∑

n=1

σF,−2k−1(n)V

(

(2π)dni

Dz

∣

∣

∣

∣

0̄d

)

+R,

where, for k > 0, the term R is given by

R =
{

R
(r2+1)
0 (−iz) + (−1)k(r1+1)+r2+1z2kR

(r2+1)
0

(

i

z

)

}

+
{

R
(1)
1 (−iz) + (−1)k(r1+1)+r2+1z2kR

(1)
1

(

i

z

)

}

+
k
∑

j=1

R
(r1+r2)
−(2j−1)(−iz) +

k−1
∑

j=1

R
(r2)
−2j(−iz).

Here we note that to get the above form we have used the relations (4.12) and (4.13)

among residues. To simplicity further, we define

R0(z) := R
(r2+1)
0 (−iz),R1(z) := R

(1)
1 (−iz),

R−(2j−1)(z) := R
(r1+r2)
−(2j−1)(−iz),R−(2j)(z) := R

(r2)
−2j(−iz).

Then the above the term R becomes, for k > 0,

R =
{

R0(z) + (−1)k(r1+1)+r2+1z2kR0

(

−1

z

)

}

+
{

R1(z) + (−1)k(r1+1)+r2+1z2kR1

(

−1

z

)

}

k
∑

j=1

R−(2j−1)(z) +

k−1
∑

j=1

R−(2j)(z).

In a similar way, after substituting y = −iz, for k < 0, from (4.17)-(4.19), the residual

term R can be written as

R =
{

1 + (−1)k(r1+1)+r2+1z2k
}CFζ

(r2)
F (2k + 1)

(r2)!

+R(z),
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where the term R(z) is given by

R(z) =















− i
4πz

, if (k, r1, r2) = (−1, 1, 0),
HFζF(0)Di
(2π)2z

, if (k, r1, r2) = (−1, 0, 1),

0, otherwise.

Finally, combining all these residual terms and using the definition (1.20) of FF,k(z),

we obtain the final identity. �

Proof of Corollary 2.2. If we consider F = Q, then one can easily check that

(r1, r2, d,D,HF, CF) = (1, 0, 1, 1, 1,−1/2).

Moreover, the number field analogous generalized divisor function σF,−k(n) reduces to

the usual generalized divisor function σ−k(n). Therefore, for k > 0, we have

FF,2k+1(z) =

∞
∑

n=1

σ−(2k+1)(n)e
2πinz,

SF,2k+1(z) =
∞
∑

n=1

σ−(2k+1)(n)e
2πinz −R0(z)−R1(z),

where R0(z) = − ζ(2k+1)
2

and R1(z) =
iζ(2k+2)

2πz
= (2πi)2k+1

2z
B2k+2

(2k+2)!
. Again, one can check

that

R−(2j−1)(z) = lim
s→−(2j−1)

(s+ 2j − 1)Γ(s)ζ(s)ζ(s+ 2k + 1)(−2πiz)−s

=
(2πi)2k+1

2z

B2j

(2j)!

B2k−2j+2

(2k − 2j + 2)!
z2j .

Here we have used the fact that ζ(1− 2j) = − B2j

(2j)!
and Euler’s formula (1.1). Substi-

tuting these values in Theorem 2.1, we get

∞
∑

n=1

σ−(2k+1)(n)e
2πinz +

ζ(2k + 1)

2
− (2πi)2k+1

2z

B2k+2

(2k + 2)!

= z2k

{ ∞
∑

n=1

σ−(2k+1)(n)e
−2πin/z +

ζ(2k + 1)

2
+

(2πi)2k+1

2z

z2B2k+2

(2k + 2)!

}

+
(2πi)2k+1

2z

k
∑

j=1

B2j

(2j)!

B2k−2j+2

(2k − 2j + 2)!
z2j .
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This implies that

∞
∑

n=1

σ−(2k+1)(n)e
2πinz +

ζ(2k + 1)

2
= z2k

{ ∞
∑

n=1

σ−(2k+1)(n)e
−2πin/z +

ζ(2k + 1)

2

}

+
(2πi)2k+1

2z

k+1
∑

j=0

B2j

(2j)!

B2k−2j+2

(2k − 2j + 2)!
z2j ,

which is exactly same as the identity (1.6). This completes the proof. �

Proof of Theorem 2.3. Given that F is a totally real number field of degree r1, so we

have r2 = 0 and d = r1. Thus, in Theorem 2.1, we have

R0(z) = lim
s→0

sΓr1(s)ζF(s)ζF(s+ 2k + 1)

(

−(2π)r1iz

D

)−s

= lim
s→0

Γr1(s+ 1)
ζF(s)

sr1−1
ζF(s+ 2k + 1)

(

−(2π)r1iz

D

)−s

= CFζF(2k + 1),

R1(z) = HFζF(2k + 2)
iD

(2π)r1z
,

R−(2j−1)(z) =
1

(r1 − 1)!
lim

s→(1−2j)

dr1−1

dsr1−1

(

(s + 2j − 1)r1ΛF,k(s)(−iz)−s
)

.

Note that we have used (1.12) to evaluate R0(z). Moreover, we point out that the

terms R−2j(z) would not appear in this case since we are dealing with totally real

fields. Substituting the above values in Theorem 2.1, we finish the proof of Theorem

2.3. �

Proof of Corollary 2.4. Given thatm is a square-free positive integer and F = Q(
√
m).

In this case, we have r1 = 2, r2 = 0, d = 2 and D = 4m. In this case, we use (1.18) to

see that

V

(

−(2π)2niz

4m

∣

∣

∣

∣

0̄2

)

= 2K0

(

2π

√

nz

m
e−

iπ
4

)

. (4.21)

Moreover, the residual terms become

R0(z) = ζ
′

F(0)ζF(2k + 1),

R1(z) = HFζF(2k + 2)
im

π2z
,

R−(2j−1)(z) = lim
s→(1−2j)

d

ds

(

(s+ 2j − 1)2ΛF,k(s)(−iz)−s
)

.

To calculateR0(z) we have used the fact CF = ζ
′

F(0) as we are working on real quadratic

field. Putting these terms in Theorem 2.3, one can complete the proof of this result. �
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Proof of Theorem 2.5. This is result is an implication of our main Theorem 2.1 for

negative integers k and totally real fields. Mainly, from (2.3) with r2 = 0, we have

FF,2k+1(z)− CFζF(2k + 1) = (−1)k(r1+1)z2k
{

FF,2k+1

(

−1

z

)

− CFζF(2k + 1)

}

+







− i
4πz

, if (k, r1, r2) = (−1, 1, 0),

0, otherwise.

Now replacing k by −k and simplifying, we complete the proof. �

Proof of Corollary 2.6. Given that k ≥ 3 and r1 both are positive odd integers. Sub-

stituting z = i in Theorem 2.5, we obtain

FF,−2k+1(i) = CFζF(1− 2k).

Now the proof of this corollary follows by using the value (1.12) of CF and the definition

(1.20) of FF,−2k+1(i). �

Proof of Corollary 2.7. Substituting F = Q(
√
m), i.e., r1 = 2, r2 = 0, D = 4m in

Theorem 2.5, we can see that

(iz)2k
{

FF,−2k+1(z)− ζ
′

F(0)ζF(1− 2k)
}

=

{

FF,−2k+1

(

−1

z

)

− ζ
′

F(0)ζF(1− 2k)

}

,

(4.22)

where

FF,−2k+1(z) =

∞
∑

n=1

σF,2k−1(n)V

(

−(2π)2niz

4m

∣

∣

∣

∣

0̄2

)

.

Now employing the expression (4.21) for V

(

− (2π)2niz
4m

∣

∣

∣

∣

0̄2

)

in the above series and then

putting it in (4.22), the proof of Corollary 2.7 follows. �

Proof of Theorem 2.8. In this case, we have taken F to be a purely imaginary number

field with degree d = 2r2. Thus, the proof of this theorem immediately follows by

substituting r1 = 0 in Theorem 2.1. �

Proof of Corollary 2.9. Given that F = Q(
√
−m) is a quadratic imaginary field and

k > 0. Therefore, substituting (r1, r2, d,D) = (0, 1, 2, 4m) in Theorem 2.8, it yields

that

SF,2k+1(z) = (−1)k+1z2kSF,2k+1

(

−1

z

)

+
k
∑

j=1

R−(2j−1)(z) +
k−1
∑

j=1

R−2j(z),
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where

SF,2k+1(z) =

∞
∑

n=1

σF,−2k−1(n)V

(

−π2niz

m

∣

∣

∣

∣

0̄2

)

−R0(z)−R1(z),

and the residual terms are defined as

R0(z) = lim
s→0

d2

ds2
(

s2ΛF,k(s)(−iz)−s
)

,

R1(z) = HFζF(2k + 2)
im

π2z
,

R−(2j−1)(z) = lim
s→−(2j−1)

(

(s+ 2j − 1)ΛF,k(s)(−iz)−s
)

,

= lim
s→−(2j−1)

(

(s+ 2j − 1)2Γ(s)2
ζF(s)

s+ 2j − 1
ζF(s+ 2k + 1)

(−iπ2z

m

)−s
)

= − ζ
′

F(1− 2j)

((2j − 1)!)2
ζF(2k − 2j + 2)

(

π2iz

m

)2j−1

.

In a similar way, one can show that

R−2j(z) =
ζ

′

F(−2j)

((2j)!)2
ζF(2k − 2j + 1)

(

π2iz

m

)2j

.

Now combining all these residual terms and using the expression (4.21) for Steen func-

tion, we complete the proof of (2.12). �

Proof of Corollary 2.10. Substitute k = −1 and F = Q(
√
−m), that is, r1 = 0, r2 = 1

in Theorem 2.8. Thus, from (2.9)-(2.11), we arrive at

UF,−1(z) = z−2UF,−1

(

−1

z

)

+
HFζF(0)im

π2z
, (4.23)

where

UF,−1(z) = FF,−1(z)− ζF(0)ζ
′

F(−1).

Here we used (3.6) with the fact that CF = ζF(0) as F is quadratic imaginary field.

Now multiplying by z2 on both sides of (4.23), we finish the proof of (2.13). Further,

to obtain (2.14), substituting z = i in (4.23) it yields that

FF,−1(i) = ζF(0)ζ
′

F(−1) +
HFζF(0)m

2π2
.

Now using the definition (1.20) of FF,−1(i) we derive that

∞
∑

n=1

σF,1(n)V

(

nπ2

m
|0̄2
)

= ζF(0)ζ
′

F(−1) +
HFζF(0)m

2π2
.
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Finally, using the fact that V
(

nπ2

m
|0̄2
)

= 2K0

(

2π
√

n
m

)

, we complete the proof of

(2.14). �

Proof of Corollary 2.11. The proof of this corollary immediately follows from (2.9)-

(2.11) by replacing k by −k. As it is given that (k, r2) 6= (1, 1), so we have to use

the fact that R(z) = 0 and multiply by z2k on both sides of (2.9) after replacing k by

−k. �

Proof of Theorem 2.12. The proof of this theorem goes along the same line as in

Theorem 2.1, however, we give brief outline. This identity is due to the case k = 0. In

the way as we proceeded in (4.1) and (4.2), one can show that

∞
∑

n=1

σF,−1(n)V

(

(2π)dny

D

∣

∣

∣

∣

0̄d

)

=
1

2πi

∫

(c)

Γ(s)dζF(s)ζF(s+ 1)

(

(2π)dy

D

)−s

ds

=
1

2πi

∫

(c)

ΛF,0(s)y
−sds, (4.24)

where ΛF,0(s) = Γ(s)dζF(s)ζF(s + 1)(2π)−dsDs, which is exactly same as we defined in

(2.1), and 1 < Re(s) = c < 1 + ǫ with 0 < ǫ < 1. Further proceeding in a similar way

as in Theorem 2.1, here also we set up a rectangular contour C made up of the vertices

c − iT, c + iT, α + iT and α − iT , with −2 < α < −1 and T is some large positive

quantity.

c− iT

c + iT
α + iT

α− iT

0 1-1 2-2 Re(s)

Im(s)

We now examine the poles of our integrand function ΛF,0(s). At s = 0, Γ(s)d has

a pole order d, ζF(s) has a zero of order r1 + r2 − 1, and ζF(s + 1) has a simple

pole. Therefore, the order of the pole of the integrand function ΛF,0(s) at s = 0

is d − (r1 + r2 − 1) + 1 = r2 + 2 since d = r1 + 2r2. It is easy to see that the

integrand function has a simple pole at s = 1. From Lemma 3.2, we can see that

ΛF,0(s) = (−1)r2ΛF,0(−s). This indicates that s = −1 is also a simple pole of the
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integrand function. Now utilizing Cauchy residue theorem, we arrive
∞
∑

n=1

σF,−1(n)V

(

(2π)dny

D

∣

∣

∣

∣

0̄d

)

= (−1)r2
∞
∑

n=1

σF,−1(n)V

(

(2π)dn

Dy

∣

∣

∣

∣

0̄d

)

+R, (4.25)

where the residual term R is given by

R = R
(r2+2)
0 (y) +R

(1)
1 (y) +R

(1)
−1(y). (4.26)

The above term R makes the main difference with Theorem 2.1, see (4.4). The terms

of R can be calculated as follows:

R
(r2+2)
0 (y) =

1

(r2 + 1)!
lim
s→0

dr2+1

dsr2+1

(

sr2+2ΛF,0(s)y
−s
)

, (4.27)

R
(1)
1 (y) = lim

s→1
(s− 1)ΛF,0(s)y

−s

= lim
s→1

(s− 1)Γ(s)dζF(s)ζF(s+ 1)(2π)−dsDsy−s

=
HFζF(2)D

(2π)dy
, (4.28)

R
(1)
−1(y) = lim

s→−1
(s+ 1)ΛF,0(s)y

−s

= lim
s→−1

(s+ 1)(−1)r2ΛF,0(−s)y−s

= (−1)r2+1 lim
s→1

(s− 1)ΛF,0(s)y
s

= (−1)r2+1HFζF(2)Dy

(2π)d
. (4.29)

Here we used class number formula (1.11) and Lemma 3.2 to simplify the above residual

terms R
(1)
1 (y) and R

(1)
−1(y). Substituting the above residual terms in (4.26) and together

with (4.25), we get

∞
∑

n=1

σF,−1(n)V

(

(2π)dny

D

∣

∣

∣

∣

0̄d

)

− HFζF(2)D

(2π)dy

= (−1)r2

{ ∞
∑

n=1

σF,−1(n)V

(

(2π)dn

Dy

∣

∣

∣

∣

0̄d

)

− HFζF(2)Dy

(2π)d

}

+
1

(r2 + 1)!
lim
s→0

dr2+1

dsr2+1

(

sr2+2ΛF,0(s)y
−s
)

.

The above identity holds for y > 0, however, by analytic continuation, one can show

that this identity is also true for Re(y) > 0. We substitute y = −iz to get the following

form, for z ∈ H,
∞
∑

n=1

σF,−1(n)V

(

−(2π)dniz

D

∣

∣

∣

∣

0̄d

)

− HFζF(2)iD

(2π)dz
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= (−1)r2

{ ∞
∑

n=1

σF,−1(n)V

(

(2π)dni

Dz

∣

∣

∣

∣

0̄d

)

+
HFζF(2)Diz

(2π)d

}

+
1

(r2 + 1)!
lim
s→0

dr2+1

dsr2+1

(

sr2+2ΛF,0(s)(−iz)−s
)

.

Now if we use the definition (1.20) of FF,1(z), then the above expression can be rewrit-

ten as

FF,1(z)−R1(z) = (−1)r2
{

FF,1

(

−1

z

)

−R1

(

−1

z

)}

+R0(z),

where

R1(z) =
HFζF(2)iD

(2π)dz
, and R0(z) =

1

(r2 + 1)!
lim
s→0

dr2+1

dsr2+1

(

sr2+2ΛF,0(s)(−iz)−s
)

.

Letting TF(z) := FF,1(z)−R1(z), one can complete the proof of Theorem 2.12. �

Proof of Corollary 2.13. Letting F to be a totally real number field of degree d = r1

in Theorem 2.12, we get

FF,1(z)− FF,1

(

−1

z

)

= R1(z)−R1

(

−1

z

)

+R0(z), (4.30)

where

R1(z) =
HFζF(2)iD

(2π)r1z
, R0(z) = lim

s→0

d

ds

(

s2Γr1(s)ζF(s)ζF(s+ 1)

(

−(2π)r1iz

D

)−s
)

.

Now we shall try to simplify the term R0(z). Utilizing the fact that

Γ(s) =
1

s
− γ +O(s),

one can see that

(sΓ(s))r1 = 1− r1γs+O(s2). (4.31)

Since F is a totally real number field of degree r1, so from (3.6), the Laurent series

expansion of ζF(s) at s = 0, one has

ζF(s)

sr1−1
= a0 + a1s+O(s2), (4.32)

where

a0 =
ζ
(r1−1)
F (0)

(r1 − 1)!
= CF, a1 =

ζ
(r1)
F (0)

(r1)!
.

Further, utilizing (3.5), the Laurent series expansion of ζF(s), it yields that

sζF(s+ 1) = HF + γFs+O(s2). (4.33)



A NUMBER FIELD ANALOGUE OF RAMANUJAN’S IDENTITY FOR ζ(2m+ 1) 29

Moreover, we have

(

−(2π)r1iz

D

)−s

= 1− s log

(

−(2π)r1iz

D

)

+O(s2). (4.34)

Now combining all the above Laurent series expansions (4.31)-(4.34), one can check that

the coefficient of s in the Laurent series expansion of s2Γr1(s)ζF(s)ζF(s + 1)(−2πiz)−s

is a0γF − a0HF

{

r1γ + log
(

− (2π)r1 iz
D

)}

+ a1HF, which shows that

R0(z) = a0γF − a0HF

{

r1γ + log

(

−(2π)r1iz

D

)}

+ a1HF.

Finally, substituting the above value ofR0(z) in (4.30), we complete the proof of (2.18).

�

Proof of Corollary 2.14. We know that ζQ(s) = ζ(s). Therefore, considering F = Q,

Corollary 2.13 reduces to

FQ,1(z)− FQ,1

(

−1

z

)

= R1(z)−R1

(

−1

z

)

+R0(z), (4.35)

where

FQ,1(z) =

∞
∑

n=1

σQ,−1(n)V

(

−2πniz

∣

∣

∣

∣

0̄

)

=

∞
∑

n=1

σ−1(n) exp(2πinz),

R1(z) =
HQζQ(2)iD

2πz
=

iπ

12z
,

R0(z) = a0γQ − a0HQ {r1γ + log(−2πiz)} + a1HQ =
1

2
log(−iz).

The above simplified forms have been obtained by using the following well-known

values:

HQ = 1, γQ = γ, ζQ(2) =
π2

6
, a0 = ζ(0) = −1

2
, a1 = ζ ′(0) = −1

2
log(2π).

Eventually, putting the above values of FQ,1(z),R1(z),R0(z) in (4.35) and using the

fact that nσ−1(n) = σ(n), one can finish the proof of (2.20). �

5. Concluding Remarks

Ramanujan’s formula (1.2) involves the following Lambert series

∞
∑

n=1

n−k

eny − 1
=

∞
∑

n=1

σ−k(n)e
−ny, Re(y) > 0, (5.1)
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associated with the generalized divisor function σk(n) =
∑

d|n d
k, k ∈ C. Upon suitable

change of variable, one can easily observe that the above series is exactly same as the

following series:

Fk(z) =
∞
∑

n=1

σ−k(n)e
2πinz, z ∈ H, (5.2)

which is also present in Grosswald’s identity (1.6). Recently, Banerjee, Gupta and Ku-

mar [4, Equation (1.7)] have generalized the above Lambert series (5.1), while obtaining

a number field analogue of Ramanujan’s identity, in the following way:

∑

a⊂OK

N(a)kΩF

(

N(a)y

D

)

=

∞
∑

n=1

aF(n)n
kΩF

(ny

D

)

,

where the function ΩF(x), which involves the Meijer G-function, is defined as

ΩF(x) :=
21−r1−r2

π1− r1
2

∞
∑

j=1

aF(j)G
d+1,0
0,2d

(

−
(0)r1+r2,

(

1
2

)

r2+1
;
(

1
2

)

r1+r2−1
, (0)r2

∣

∣

∣

∣

x2j2

4d

)

,

with d = r1 + 2r2 (the degree of the field F over Q), and D is the absolute value

of the discriminant of F. In this paper, we obtained a new number field analogue of

Ramanujan’s identity by generalizing the Lambert series Fk(z), defined in (5.2), in a

different way than Banerjee et. al. Mainly, we studied modular transformation formula

for the following infinite series:

FF,k(z) =
∞
∑

n=1

σF,−k(n)V

(

−(2π)dniz

D

∣

∣

∣

∣

0̄d

)

,

where σF,k(n) is the number field analogue (1.13) of the generalized divisor function

σk(n) and V (z|0̄d) is the Steen function (1.16). By obtaining a number field analogue

of Ramanujan-Grosswald identity for odd zeta values, we are able to find a formula

for Dedekind zeta function at odd arguments. As an application our main identity

i.e., Theorem 2.1, we obtain many interesting modular transformation formulae that

are true for totally real number fields and purely imaginary fields, see Theorem 2.3,

Theorem 2.8. In particular, for real quadratic fields and imaginary quadratic fields, we

obtained modular transformation formulae, i.e., Corollary 2.7, Corollary 2.11 that are

perfect analogue of the transformation formula (1.5) for the Eisenstien series. Further,

we found an exact evaluation of FF,2k−1(i) in terms of class number and the values of the

Dedekind zeta function at negative odd integers, see (2.7), (2.16) and (2.17). We also

obtain a modular transformation formula which generalizes transformation formula for

the Dedekind eta function η(z), see Theorem 2.12. As one of the interesting applications

of Theorem 2.12, we derived a formula (2.19) for the class number of a totally real field

which also indicates a relation with the Kronceker’s limit formula for the Dedekind
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zeta function. This observation might be of an independent interest to the readers of

this article.
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