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Abstract. In this article we apply an L-system to prove a recurrence formula for the length of
the boundary of iterands Cn of the well known Harter-Heighway dragon curve, a space filling curve
with fractal boundary. This leads to finding formulas for related sequences of certain binary strings
and ternary matrices. This proves some long standing conjectures for the recurrence relation for
the number of terms in the boundary of the dragon curve, first stated in unpublished work Daykin
and Tucker from 1975 [3].

1. Introduction

This article proves some results about two sequences, which count the number of components on
the left and right sides of the iterands of the Harter-Heighway dragon. The sequences appear in [7]
as sequences A227036 and A203175, but formulas given there are conjectural. We provide proofs
of the formulas, which give the sequences in terms of generating function, appearing in [8].

The Harter-Heighway dragon curve, also known as the Heighway dragon, or the dragon curve
was discovered in 1967 by John Heighway and William Harter [9], [5, 1.5]. It is a fascinating curve,
since it is plane-filling and has a fractal boundary. There are many variations on this curve. See
e.g., [4], [2]. This curve, which we refer to as C∞, is given as the limit of a sequence of curves, Cn
for non-negative integers n. The curve Cn is formed of 2n equal length line segments, which we also
will refer to as the edges, of Cn, with a 90◦ angle between each edge. The curves can be described
in various ways, as follows.

1.1. Construction (A): paper folding. The Harter-Heighway curve was first obtained by re-
peatedly folding a strip of paper in half n times, and then opening out all the folds to have angle
90◦. The first few cases are shown in Figure 1.
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Figure 1. Iterates C0 to C6 of Heighway’s dragon curve.

1.2. Construction (B): alternating triangles. The dragon curve may be described by setting
C0 to be a unit line. Then Cn is obtained from Cn−1 as follows. Place right angle isosceles triangles
on each edge of Cn−1, with hypotenuse along the edge, with the triangles on alternating sides of
the curve. Then remove the edges of the original curve, as shown in Figure 1, where Cn−1 is shown
in gray, under Cn in black, so the triangles are formed with two black sides, and a gray hypotenuse.

1.3. Construction (C): L-systems. Another method of describing the curves Cn is by the use
of turtle geometry [1] and L-systems [6]. This is the method used in this article.

An L-system L = (Ω, A, P ) is a rewriting system, defined to be a triple, consisting of an alphabet
of symbols, Ω; a starting symbol A ∈ Ω∗, called an axiom; and a function P : Ω → Ω∗, from Ω
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to the set Ω∗ of of finite length words with letters in Ω. This induces a function P : Ω∗ → Ω∗;
each letter x of a word in Ω∗ is replaced by P (x). In the case of the Heighway dragon, we have
Ω = {A,B,+,−}, the axiom is A, and the function is given by

P (A) = A+B,P (B) = A−B,P (+) = +, P (−) = −.

The curve Cn is defined to be the path corresponding to the word Pn(A), by following the letters
of Pn(A) as instructions for building a curve according to a turtle geometry construction [1], with
the symbols of Ω interpreted as

A make a horizontal unit move
B make a vertical unit move
+ turn 90◦ clockwise (no move)
− turn 90◦ counterclockwise (no move)

For example, labels in Ω are drawn on Cn for n = 0, 1, 2 in Figure 1.

1.4. The L-system for the boundary of Cn. In [10], it is shown that the boundary of the curve
Cn, or more accurately, the boundary of a polyomino Sn containing Cn, can be described by an
L-system. The polyomino Sn is defined to be the union of a collection of squares, each having
diagonal one edge of Cn, as shown in Figure 2.

The L-system L1 = (Ω1, Rr, P1) for the boundary of Sn is given by taking Ω = {R, r, L, l, S, s},
with P1 given by

(1) R 7→ Rr, r 7→ S, L 7→ S, l 7→ Ll, S 7→ Rl, s 7→ Lr.

We consider an element (x, y) of Z2 to be even or odd according to whether the parity of x+ y is
even or odd. Each symbol of Ω1 corresponds to a path element in the turtle geometry sense, which
consists of (1) starting from a point (x, y) ∈ Z2, a diagonal movement of length 1/

√
2, continuing

in an already specified direction, (2) no turn, or a turn of 90◦ left or right (3) another diagonal
movement of length 1/

√
2, resulting in the path which ends at one of the eight neighbouring points

of Z2, i.e., (x+ ϵ, y+ δ) for ϵ, δ ∈ {−1, 0, 1}, not both zero. Additional positional information gives
the parity of the starting vertex. The symbols of Ω1 correspond to two halves of an edge of Sn,
rather than straight line edge segments in the case of Cn and letters in Ω. The direction of turn, or
lack of turn, for each symbol, and the starting parities, are as follows:

R right turn in the middle of the path, starting point even
r right turn in the middle of the path, starting point odd
L left turn in the middle of the path, starting point even
l left turn in the middle of the path, starting point odd
S no turn in the middle of the path, starting point even
s no turn in the middle of the path, starting point odd

Figure 2 illustrates the relationship between Cn and Sn. In the figure, in passing from Cn to
Sn+1, the unit lengths are drawn scaled down by a factor of

√
2, and the unit grid rotates by 45◦

counterclockwise. The starting point is always (0, 0), which is even. The parity of the vertices of
the grid through which Cn and the boundary of Sn passes are marked by black and white dots for
even and odd vertices respectively. For example, the left boundary of S4 is described by the word
RrSRlRrLl.



ON THE BOUNDARY OF THE HARTER-HEIGHWAY DRAGON CURVE 3

R

L

R r

S

R

l

R

r

S

R

r S R

l
R r

L r
R

r

S

R

l

R

r

L
l

Figure 2. Iterates of the boundary of Sn, for n = 0 to 5 and 8. The left boundary
is in blue, the right boundary is in red, and the curve Cn is in gray. The red and
blue curves together form the boundary of the polyomino Sn.

In [10] it is shown that this construction produces a self-avoiding description of the boundary of
Sn. Thus the number of edges of Sn is equal to the number of letters in Pn(Rr). We also write
||w|| to mean the number of letters in w for w a word with letters in some alphabet.

The L-system L1 gives a sequence of words Pn(Rr) describing the complete boundary of Sn.
However, since Cn is a curve with different start and end points, it is considered to have two sides,
a left and right side. So we also consider the curves defined by the L-systems LL = (Ω1, R, P1) and
LR = (Ω1, L, P1), which describe the left and right boundaries of Sn respectively.

In this paper we consider the boundary of the curves to be the boundary of the polyomino, Sn.
In the limit as n tends to infinity, the shapes Sn and Cn are the same. However, the actual unit
length of the boundary is different for these two curves. The difference between the two boundaries
can be observed in Figure 2, where the gray curve is Cn, and the red curve the boundary of Sn.

2. The left side of the Heighway dragon Cn
Given the L-system description of the boundary (1), we can prove the following result, which has

been a long standing conjecture on the length of the boundary of the Heighway dragon, a sequence
starting 2, 4, 8, 16, 28, . . . , [7, A227036].

Theorem 1. The length of the boundary of the Heighway dragon curve Cn, that is, the number of
horizontal and vertical line segments on the left side of the curve Cn, is equal to the coefficients of
the expansion of the Taylor series about x = 0 of

(2)
2(1 + x2)

(1− x)(1− x− 2x3)
=

∞∑
n=0

anx
n = 2 + 4x+ 8x2 + 16x3 + 28x4 + 48x5 + 84x6 + · · · .

Proof. For w ∈ Ω∗
1 and X ∈ Ω1 let aX denote the number of times X occurs in w. Set

v(w) := (aR, ar, aL, al, aS),

which gives a count of the number of times each letter of Ω1 occurs in w. Note that we do not include
as since it is not in the image of any element of Ω1 under the action of P1, where P1 is the map
corresponding to the L-system for the boundary of the polyomino containing the Harter-Heighway
dragon curve, as in 1. Define a matrix M , with columns v(P (X)) for X = R, r, L, l, S, s, so that

v(P (w)) = Mv(w).

We have

(3) M =


1 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 0 0 1 1
0 1 1 0 0

 .

Note that the left side of S0 corresponds to the word R, as illustrated in Figure 2. Since M(v(w))
counts the occurrences of each letter in P (w), we have that the components of Mn(v(R)) count the
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number of occurrences of each letter of Ω1. The total number of edges of the left boundary of Pn

is thus given by the sum of these components, i.e., since v(R) = (1, 0, 0, 0, 0), the value

(1, 1, 1, 1, 1)Mn(1, 0, 0, 0, 0)T .

Examining the relationship between the curve Cn and the polyomino Sn, shown in Figure 2, we see
that we have a correspondence:

segment in left side of Sn A or B segment in left side boundary of Cn
R or r → 1
S or s → 2
L or l → 3.

Therefore, given that our L-system gives us the matrix M := MP1 in (3), we must have that the
number of A and B segments comprising the left boundary of Cn is given by

bn := (1, 1, 3, 3, 2)Mn
P1
(1, 0, 0, 0, 0)T .

We compute that the first few terms of this sequence are 1, 2, 4, 8, 16, 28. The characteristic poly-
nomial of M is

x5 − 2x4 + x3 − 2x2 + 2x = x(x− 1)(x3 − x2 − 2).

So we have

(4)
0 = (1, 1, 3, 3, 2)(M5+n − 2M4+n +M3+n − 2M2+n + 2Mn+1)(1, 0, 0, 0, 0)T

= bn+5 − 2bn+4 + bn+3 − 2bn+2 + 2bn+1

from which we obtain, for n ≥ 5 the relationship

(5) bn = 2bn−1 − bn−2 + 2bn−3 − 2bn−4.

Now we turn to the Taylor series. With the an as in (14), and an = 0 for n < 0, we have

2(1 + x2) =

∞∑
n=0

an(1− x)(1− x− 2x3)xn

=

∞∑
n=0

an(2x
4 − 2x3 + x2 − 2x+ 1)xn

=

∞∑
n=4

(2an−4 − 2an−3 + an−2 − 2an−1 + an)x
n.

Therefore, equating coefficients of xn, we have

2 = a0(n = 0)

0 = −2a0 + a1(n = 1)

2 = a0 − 2a1 + a2(n = 2)

0 = 2an−4 − 2an−3 + an−2 − 2an−1 + an(n ≥ 3).

So, we have that the an satisfy a recurrence relation,

(6) an = 2an−1 − an−2 + 2an−3 − 2an−4

with the initial terms given by
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an = 0 for n < 0

a0 = 2

a1 = 4

a2 = 8

a3 = 16

Comparing equations (5) and (6) we see that the the two sequences satisfy the same recurrence
relation. Also the first few terms are the same, up to an offset, with an = bn+1. Therefore, the two
sequences are equal (up to the offset). □

3. Right side boundary of Sn and A203175.

In this section we discuss the number of edges of the right side boundary of Sn, and find that this
is the same as the sequence [7, A203175]. In [7, A203175], this sequence has several conjectured
descriptions, which with our L-system (Ω1, R, P1) from Section 1.4 can now be proved. We will
consider each description in turn, and show that in each case we have the same recurrence relation
satisfied, and the same first few terms, so the sequences are the same.

3.1. Right side boundary of Sn. In the notation of Section 1.3, the right side of the boundary
of the polyomino Sn is described by the word Pn

1 (L), for n ≥ 0. We define a sequence

(7) an = |Pn
1 (L)|,

which by [10] counts the length of the right side of the boundary of Sn. The first few words Pn
1 (L)

are L, S, Rl, RrLr, RrSSLl, RrSRlRlSLl, corresponding to the red (lower) sides of the polyominos in
Figure 2. So the first few terms of the sequence an are

(8) 1, 1, 2, 4, 6, 10.

Theorem 2. The length of the right side boundary of the polyomino Sn, containing the Harter-
Heighway dragon curve Cn is given by the sequence an with

(9)
an = an−1 + 2an−3 for n ≥ 4
a0 = 1, a1 = 1, a2 = 2.

Proof. As in the proof of Theorem 1, there is a matrix M , given by (3) such that Mn(v(L)) counts
the number of each kind of right boundary unit of Sn. Since v(L) = (0, 0, 1, 0, 0), the total number
of right edges is

(10) an = (1, 1, 1, 1, 1)Mn(0, 0, 1, 0, 0)T .

Note that P1 in (1) is invariant under switching L ↔ r, R ↔ l (in domain and image), which
corresponds to conjugating M by the permutation matrix

(11) P =


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

 ,

i.e., PMP = M , and so we also have

|Pn
1 (r)| = (1, 1, 1, 1, 1)Mn(0, 1, 0, 0, 0)T = (1, 1, 1, 1, 1)PMnP (0, 1, 0, 0, 0)T

= (1, 1, 1, 1, 1)Mn(0, 0, 1, 0, 0)T = an = |Pn
1 (L)|.

So we can write
an = |Pn

1 (L)|+ |Pn
1 (r)| = (1, 1, 1, 1, 1)Mn(0, 1, 1, 0, 0)T .
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Now notice that

M3 −M2 − 2I =


−1 0 0 1 0
0 −1 1 0 0
0 1 −1 0 0
1 0 0 −1 0
0 0 0 0 0

 ,

and that (0, 1, 1, 0, 0) = v(r) + v(L) is in the kernel of this matrix. Thus

(12) (1, 1, 1, 1, 1)Mn(M3 −M2 − 2I)(0, 1, 1, 0, 0)T = 0,

from which we obtain

(13) an − an−1 − 2an−3 = 0.

Together with the first few terms, given in (8), we obtain the recurrence relation (9). □

3.2. Generating function. For integers n ≥ 1, let bn be the coefficients of the Taylor series
expansion of x(1 + x2)/(1− x− 2x3), which is the generating function for these coefficients, and is
taken from [8] and [7, A203175]. By definition we have,

(14)
x(1 + x2)

1− x− 2x3
=

∞∑
n=1

bnx
n = x+ x2 + 2x3 + 4x4 + 6x5 + 10x6 + 18x7 + · · · .

Theorem 3. The coefficients bn of the Taylor series expansion of x(1 + x2)/(1− x− 2x3) satisfy

(15)
bn = bn−1 + 2bn−3 for n ≥ 4
b1 = 1, b2 = 1, b3 = 2.

Proof. Multiplying both sides of (14) by (1− x− 2x3), we have

x+ x3 =

∞∑
n=0

bn(1− x− 2x3)xn

=
∞∑
n=0

bn(1− x− 2x3)xn

=

∞∑
n=4

(bn − bn−1 − 2bn−3)x
n.

Therefore, by comparing coefficients of xn, we see that the bn satisfy the given recurrence relation.
The initial terms are taken from the expansion in (14). □

3.3. Binary sequences without certain runs of zeros. We now consider binary sequences
without runs of zeros of length 1 mod 3, following the definition of Milan Janjic in the entry [7,
A203175].

Definition 1. Sn is the set of binary sequences of length n with no run of zeros of length 1 mod 3.
Let

cn := |Sn|.

Note that here the length of a run of zeros means the maximum length of any substring of zeros,
not the possible lengths of substrings of zeros, for for example 00000 ∈ S5. For example, Sn and
cn for 1 to 5 are shown in the Table 1.



ON THE BOUNDARY OF THE HARTER-HEIGHWAY DRAGON CURVE 7

n 1 2 3 4 5
cn 1 2 4 6 10

1(C) 11(E) 111(E) 1111(E) 11111(E)
11100(B)

1100(B) 11001(D)
11000(A)

Sn 100(B) 1001(D) 10011(E)
1000(A) 10001(C)

00(B) 001(D) 0011(E) 00111(E)
00100(B)

000(A) 0001(C) 00011(E)
00000(B)

Table 1. Elements of Sn for n = 1, . . . , 5, arranged according to the appending
rules in Table 3. Each sequence is followed by its type in brackets, according to
Table 2.

Definition 2. We define six types of sequences, as in Table 2.

name description example
A sequences ending in a string of 0 < m ≡ 0 mod 3 zeros 1011000
B sequences ending in a string of 0 < m ≡ 2 mod 3 zeros 10100000
C sequences ending in a string of 0 < m ≡ 0 mod 3 zeros, followed by 1 10001
D sequences ending in a string of 0 < m ≡ 2 mod 3 zeros, followed by 1 001
E sequences ending in 11 100111

Table 2. Types of elements of Sn.

Now we define rules for building sequences of length n + 1 from sequences of length n, as in
Table 3.

A add 1 to get a sequence of type C
B add 0 to get a sequence of type A

or add 1 to get a sequence of type D
C add 1 to get a sequence of type E

or remove the last 1 and add 00 to get a sequence of type B
D add 1 to get a sequence of type E
E add 1 to get a sequence of type E

or remove the last 1, and add 00 to get a sequence of type B

Table 3. how to transform elements of Sn to elements of Sn+1.

We denote the power set of Sn+1 by P(Sn+1). The rules in Table 3. can be used to define a
function as follows, where v denotes a binary sequence of length n, and w denotes a binary sequence
of length n− 2.
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(16)

fn : Sn → P(Sn+1)

v 7→



{v1} if v has type A (image type C)

{v0,v1} if v has type B (image types A, D)

{w011,w000} if if v = w01 has type C (image types E, B)

{v1} if v has type D (image type E)

{w111,w100} if v = w11 has type E (image types E, B)

Lemma 1. We have a disjoint union

Sn+1 =
⋃

v∈Sn

fn(v)

and

|Sn+1| =
∑
v∈Sn

|fn(v)|.

Proof. We must show that each element x ∈ Sn+1 is contained in exactly one of the sets of the
form fn(v) for some v ∈ Sn. First we prove existence of some v with x ∈ fn(v).

Suppose that x = v1. Then v must be in Sn, and can have any type, and we have x ∈ fn(v),
since we can always add 1 to any element of Sn to obtain an element of Sn+1. In other words, if x
ends in a 1, we can always remove it to obtain an element of Sn.

Suppose that x = v0. Then either v ends in a string of zeros of length 1 or 2 mod 3.

(1) In the case that v ends in a string of 3k+2 zeros (for some k ∈ Z), v ∈ Sn has type B, and
x ∈ fn(v). I.e., v is obtained from x precisely by removing the last 0 from x.

(2) If v ends in a string of 3k + 1 zeros, for example if x = 100, then v ̸∈ Sn. In this case, we
have that x ends in at least two zeros. Either these are immediately preceded by a 1 or a
0. Suppose we have x = y100 for some word y. Then x ∈ fn(y11), where y11 has type E.
E.g., 00100 ∈ fn(0011).

(3) If we are the the case where x = y000, then x ∈ fn(y01), where y01 has type C. E.g.,
001100000 ∈ fn(00110001).

Now we must show that x is in fn(v) for some unique v ∈ Sn.

(1) For the case that x ends in 1, this is because we only obtain elements of Sn+1 in fn(v) by
adding 1 to the end of elements of Sn.

(2) In the case that x ends in a zero, considering the definition, and (16), x must be in fn(v)
for some v of type B, C, or E, corresponding to x having type A, B, B respectively.

(3) In the case where x has type A, ending in 3k zeros, we can only obtain x from an element
of Sn by removing the last 0, to obtain an element of type B. So this gives a unique element
v with x ∈ fn(v).

(4) In the case where x has type B, and ends in at least two zeros, in which case v is obtained
uniquely from x by removing the last two zeros and replacing with 1, resulting in a uniquely
defined element either of type C or E.

Thus we obtain the stated equalities. □

Theorem 4. The sequence cn = |Sn| satisfies a recurrence relation

(17)
cn = cn−1 + 2cn−3 for n ≥ 4
c1 = 1, c2 = 2, c3 = 4
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Proof. We can rewrite the map in (16) as follows:

A 7→ C

B 7→ AD

C 7→ EB

D 7→ E

E 7→ EB

By Lemma 1, any element of Sn is obtained uniquely from some element of Sn−1. Define a transition
matrix

(18) M =


0 1 0 0 0
0 0 1 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 1 1


with columns corresponding to A,B,C,D,E. This tells us how to pass from elements of Sn to
elements of Sn+1 by type. So we have that the size of Sn is given by

(19) |Sn| = (1, 1, 1, 1, 1)Mn−1(0, 0, 1, 0, 0)T

where the vector (0, 0, 1, 0, 0) corresponds to the initial string 1 of length one. We compute that
the characteristic polynomial of M is x2(x3 − x2 − 2), and then, as in the computation in (4), we
find that

(20) cn = cc−1 + 2cn−3.

The initial terms are as given in Table 1. □

3.4. Certain arrays with elements 0, 1, 2. Sequence [7, A203175] has description as follows.

Definition 3. Let An be the set of n× 2 arrays, containing only elements of the set {0, 1, 2}, such
that

• every 1 is immediately preceded by 0 to the left or above,
• no 0 is immediately preceded by a 0, either above or to the left,
• every 2 is immediately preceded by 0 1, in the two rows above.

I.e., if m ∈ An has elements mi,j, with m0,0 = 0, then mi,j = 1 ⇒ mi−1,j = 0 (and i > 0) or
mi,j−1 = 0 (and j > 0); mi,j = 0 ⇒ mi−1,j ̸= 0 (if i > 0) and mi,j−1 ̸= 0 (if j > 0); and
mi,j = 2 ⇒ mi,j−1 = 1 and mi,j−2 = 0 (and j > 1). Let

(21) dn = |An|.

For example, A1 = {(0, 1)}, A2 =

{(
0 1
1 0

)}
so d1 = d2 = 1. The elements of A5 are shown in

Figure 3, and d5 = 6.
Just as we constructed Sn+1 from Sn in the previous section, we can construct An+1 from An as

follows. We define ten different types of arrays, depending on the last two rows:

Definition 4. An n×2 array of elements 0, 1, 2 is said to have type A,B,C,D,E, F,G,H depending
on the last row, according to the following table

type A B C D E F G H
row (0, 10) (0, 1x) (0, 2) (1, 0) (1, 2) (2, 0) (2, 10) (2, 1x)
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Here, in the second entry, 10 means 1 with a 0 above it, and 1x means a 1 with a 1 or 2 above
it. In the first column, 1 always has a 0 above it. We can never have a row of the form (1, 1),
since this would have to be preceded by a row (0, 0), and 0 is not allowed to be next to 0, so this
is impossible. Similarly, (2, 2) would have to be preceded by (1, 1) so is not allowed. So the above
list contains all the possible last rows of elements of An for all n (not all of which will be achieved
for all n). We also refer to the last row as having the given type.

In the definition of An, we see that the elements are built up in terms of the previous rows, so all
elements of An+1 can be obtained from an element of An by adding one more row which satisfies
the rules in Definition 3.

Each type of matrix in An can be extended to a matrix in An+1 by adding a row, with type
E.g., suppose a matrix m in An has type A, and so ends with a row mn = (mn,1,mn,2) = (0, 10).
Then for the next row, with new elements (mn+1,1,mn+1,2), we must have mn+1,1 = 1, since 0 in
the first column can only be followed by a 1 below it. Since mn,2 has a 0 above it, we could have
mn+1,2 = 2. Since mn+1,1 ̸= 0, and mn,2 ̸= 0, we could have mn+1,2 = 0, but we can’t obtain
mn+1,2 = 1. So type A can be followed by type D or E. By similar considerations, we obtain the
following table, which shows all the possible ways of extending a matrix of a given type in An to a
matrix of a given type in An+1. We define a corresponding function f on {A,B,C,D,E, F,G,H}
as in the column on the right in Table 4.

type of mn possible type of mn+1 f
A D,E f(A) = {D,E}
B D f(B) = {D}
C D f(C) = {D}
D A,G f(D) = {A,G}
E B,F f(E) = {B,F}
F A f(F ) = {A}
G B,C f(G) = {B,C}
H B f(H) = {B}

Table 4. Rules for elements of An+1 following from elements of An.

Theorem 5. The number of elements of An in Definition 3 is given by

(22)
dn = dn−1 + 2dn−3 for n ≥ 4
d1 = 1, d2 = 1, d3 = 2.

Proof. We have discussed above how rows A,B,C,D,E, F,G,H of an element of An transition to
the next possible row of an element of An+1, as shown in Table 4. Since row type H never occurs
in the image of f , we will leave this out from now on. The transition function f in Table 4 can be
represented by the matrix

(23) N =



0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 0 1
1 1 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0


with rows and columns corresponding to A to G in alphabetical order. Since (0, 1, 0, 0, 0, 0, 0)
corresponds to B, in the initial set A1 = {B}. We have that the number of elements of each type
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(0, 1x)
B

(1, 0)
D

(0, 10)
A

(2, 10)
G

(1, 0)
D

(1, 2)
E

(0, 1x)
B

(0, 2)
C

(0, 10)
A

(2, 10)
G

(0, 1x)
B

(2, 0)
F

(1, 0)
D

(1, 0)
D


0 1
1 0
0 1
1 0
0 1




0 1
1 0
0 1
1 0
2 1




0 1
1 0
0 1
1 2
0 1




0 1
1 0
0 1
1 2
2 0




0 1
1 0
2 1
0 1
1 0




0 1
1 0
2 1
0 2
1 0

d1 = 1 d2 = 1 d3 = 2 d4 = 4 d5 = 6

Figure 3. Construction of elements of A5, row by row, using the rules in Table 4

in An is given by the corresponding component of the vector Nn−1(0, 1, 0, 0, 0, 0, 0)T , and the count
of all of these is

(24) dn = (1, 1, 1, 1, 1, 1, 1)Nn−1(0, 1, 0, 0, 0, 0, 0)T .

The matrix N has characteristic polynomial x(x3 − x2 − 2)(x3 + x2 − 1). The factor (x3 − x2 − 2)
corresponds to our expected recurrence relation. However, (0, 1, 0, 0, 0, 0, 0, 0), does not belong to
the kernel of this matrix, so we can’t immediately conclude our proof.

The kernel ofN(N3+N2−I) is spanned by (1, 0, 0,−1, 0, 0, 0), (0, 0, 0, 0, 1, 0,−1), (0, 1,−1, 0, 0, 0, 0),
(0, 1, 0, 0, 0,−1, 0), which corresponds to a partition of {A,B, . . . , G} into the sets

X = {A,D}, Y = {E,G}, Z = {B,C, F}.
We can rewrite Table 4 in terms of X,Y, Z:

type of mn possible type of mn+1

X X,Y
Y Z,Z
Z X

Table 5. Rules for elements of An+1 following from elements of An, in terms of
types X,Y, Z.

This table shows how each type of matrix in An can be extended to a matrix of some type in
An+1, in terms of the types X,Y, Z. For example, the initial element (0, 1) ∈ A1 has type Z, and
can only be followed by an element in A2 of type X, which can be followed in A3 by elements of
type X and Y . For example, to obtain the elements of A5, we have sequences corresponding to
elements of A5 as in Table 6. We can rewrite Table 5 as a function
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applications of f resulting sequence sequence in terms of A to G.
X X ZXXXX BDADA

X Y ZXXXY BDADG
Z X Y Z ZXXY Z BDAEB

Z ZXXY Z BDAEF
Y Z X ZXY ZX BDGBD

Z X ZXY ZX BDGCD

Table 6. Example of words in X,Y, Z, and the corresponding words in A,B,C,D,E, F,G.

(25) f(X) = {X,Y }, f(Y ) = {Z,Z}, f(Z) = {X},

where the images are not sets, but ordered lists of elements of the set {X,Y, Z}. The map f (25)
can now be written in matrix format as

P =

1 0 1
1 0 0
0 2 0

 ,

where the first, second and third rows and columns correspond to the sets X,Y, Z respectively.
Since P tells us how we can continue sequences of the rows of elements of An to An+1, and the
starting element B is contained in Z, which corresponds to the vector (0, 0, 1), heuristically, we
have that

(26) dn = (1, 1, 1)Pn−1(0, 0, 1)T .

To prove more formally that (26) holds, we view R3 as a quotient of R7 by the kernel of N(N3 +
N2 − I). Corresponding to this description, we find a quotient map, V : R7 → R3, and a right
inverse inclusion map U : R3 ↪→ R7. For simplicity of notation, we denote the corresponding
matrices by the same symbols. The maps U and V are given by the matrices

(27) U =



1 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0


, V =

1 0 0 1 0 0 0
0 0 0 0 1 0 1
0 1 1 0 0 1 0

 .

We have P = V NU , and can also verify that V U = I3. (the identity in GL(n) is denoted by I for
all n, or In for clarity.) Define linear maps Q : R → R3, R : R → R7, S : R3 → R and T : R7 → R
by

(28) R =



0
1
0
0
0
0
0
0


, Q =

0
0
1

 , T = (1, 1, 1, 1, 1, 1, 1), S = (1, 1, 1).

Then the RHS of (24) is the value of TNn−1R(1), and the RHS of (26) is the value of SPn−1Q(1).
So to prove that (26) holds, we must check that TNn−1R = SPn−1Q for all n ≥ 1. This is
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equivalent to showing that the following diagram commutes, that is, the top row is the same map
as the bottom row:

(29)

R R7 R7 R7 R7 R7 R

R R3 R3 R3 R3 R3 R

R N

V

N

V V

Nn−4 N

V V

T

Q P P Pn−4 P S

To see this, first note that we have equalities

(30) Q = V R, T = SV, PV = V N,

which can be checked computationally. Then by an inductive argument, we have for i = 0, . . . , n−1
that TNn−1R = SV Nn−1R = SP iV Nn−1−iR = SPn−1V R = SPn−1Q, which just corresponds to
following through the diagram, and we see that (29) does commute. So (26) does indeed hold. We
find that the matrix P has characteristic polynomial x3 − x2 − 2, so P 3 − P 2 − 2I = 0. Thus from
(26), using the same method as in (12), we obtain the recurrence

dn − dn−1 − 2dn−3 = 0, for n ≥ 3

with initial terms d1 = d2 = 1 and d3 = 2 as in Figure 3. □

Corollary 1. We have an = bn−1 = cn = dn−1, with an, bn, cn, dn as defined in (7), (14), Defini-
tion 1, and (21) respectively.

Proof. The first few terms, 1, 1, 2, 4, 6, of these sequences are given in (8), (15), Table 1, and Figure 3
respectively. The only difference is that an starts from n = 0, bn starts from n = 1, cn starts from
n = 0, (inserting an extra c0 = 1 term) and dn starts from n = 1. We showed that they all satisfy
the same recurrence relation, in Theorems 2, 3, 4, and 5 respectively. Thus the result follows. □

4. Conclusions

By using the L-system for the boundary of the Harter-Heighway dragon curve, we have been
able to prove results not only about the dragon curve, but also related sequences, found in [7], by
also viewing them in terms of transition matrices inspired by L-systems. Given that the sequences
in Section 3 count sizes of various sets, which all turn out to have the same size, we have actually
constucted bijections between these sets. The L-system for the Heighway dragon results in a word,
with letters in an order which is lost by just using the matrix M , which only counts the total
number of letters. The elements of the sets in Sn and An in Sections 3.3 and 3.4 do not a proiri
have a natural ordering, but we can use the L-system for the right side of the dragon curve to
impose an ordering on the elements of the sets Sn and An (Definitions 3 and 1), though we must
make a choice, e.g., lexicographical on the elements A, . . . , G in Definition 4. This gives orderings
for example as in Table 1 and Figure 3. Given such a choice, this results in a corresponding bijection
between the elements of the sets An and Sn and the edges of the right side of the dragon curve
Sn. This may well just be numerology, but perhaps there is an interesing geometrical or number
theoretical meaning waiting to be discovered.
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