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A BBP-style computation for π in base 5

Wadim Zudilin

Abstract. We joke about how to compute (promptly) the digits of π, in base 5,
from a given place without computing preceding ones.

1. The BBP algorithm

Given a base b ∈ Z≥2 and a ‘related to the base’ series expansion of constant ξ ∈ R

(a BBP-type formula), the Bailey–Borwein–Plouffe algorithm [1] computes r base b
digits of ξ beginning at the position d + 1 after the floating point. A traditional
illustrative example is the constant

log 2 =

∞
∑

n=1

1

n2n

and b = 2. To access what begins at the binary position d + 1, we look for the
fractional part of

2d log 2 =
d

∑

n=1

2d−n

n
+

∞
∑

n=d+1

2d−n

n
.

In the first (finite) sum fractional parts of individual terms are computed using

2d−n

n
mod Z =

2d−n mod n

n
,

with 2d−n mod n calculated with the help of fast modular exponentiation; the second
sum—the tail— converges quickly at rate 1/2, so that its first few digits can be
easily computed.

On the other hand, one can vary this recipe slightly by writing

2d log 2 =

d
∑

n=1

2d−n

n
+

d+2r
∑

n=d+1

2d−n

n
+

∞
∑

n=d+2r+1

2d−n

n
.

For the first sum here we do exactly the same as before—compute individual frac-
tional parts with the help of fast exponentiation. For the second sum we just sum
up the corresponding 2r fractions, each being the reciprocal of an integer, while for
the third sum we use the estimate

∣

∣

∣

∣

∞
∑

n=d+2r+1

2d−n

n

∣

∣

∣

∣

<
1

d+ 2r + 1

∞
∑

n=d+2r+1

2d−n =
2−2r

d+ 2r + 1
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showing that this tail will not in general affect the first r binary digits of {2d log 2}.

2. A BBP-type formula for π

Several BBP-type formulae for π are known for bases which are powers of 2.
This gives access, for example, to computing hexadecimal digits of π starting at a
particular far-away position without computing predecessors. It is an open question
whether this type of computation is possible for π related to other bases.

In what follows i stands for
√
−1.

Rational approximations to π constructed by Salikhov in [2, 3] and later refined
by Zeilberger and this author in [4] are based on the representation

∞
∑

n=0

1

2n+ 1

(

1

1− 2i

)2n+1

−
∞
∑

n=0

1

2n+ 1

(

1

1 + 2i

)2n+1

=
πi

4
. (1)

Because the norm of the quadratic irrationalities 1 ± 2i is 5, one can think of the
expansion as of ‘base

√
5’ BBP-type formula for π—in fact ‘base 5’ as we encounter

the powers of (1 ± 2i)2 rather than of 1 ± 2i. Can it be used for computing base 5
digits of π?

Before proceeding with this, we make some related comments about computation
of powers (1±2i)n. Their real and imaginary parts are read off from the 2×2 matrix
(

1 −2
2 1

)n
; they are also generated via the recurrence equation an = 2an−1 − 5an−2.

The latter circumstance leads to the following interpretation of identity (1): Define
the sequence bn through the recursion bn = −6bn−1 − 25bn−2 for n ≥ 2 and initial
data b0 = 1, b1 = −1. Then

∞
∑

n=0

1

2n+ 1

bn
52n

=
5π

16

and |bn| < 2 · 5n for all n.
Formula (1) allows one to cast π as the imaginary part of

ξ = 8

∞
∑

n=0

1

2n+ 1

(

1

1− 2i

)2n+1

,

and we can use the BBP strategy to compute the base 5 expansion for both its real
and imaginary parts beginning at the position d+1 till the position d+r, say, under
a mild condition we give below (see condition (2)). This demands for computing
first r base 5 digits after the floating point of the number 5dξ (again we do this for
both real and imaginary parts!). Because |1− 2i| =

√
5, the tail

8 · 5d
∞
∑

n=d+2r

1

2n + 1

(

1

1− 2i

)2n+1

is bounded above by

8 · 5d
2d+ 4r + 1

∞
∑

n=d+2r

1

5n+1/2
=

2 · 51/2−2r

2d+ 4r + 1
,
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which means that the positions before the position r + 1 in the base 5 expansion of
5dξ are hardly affected, and we look for the first r digits of

d+2r−1
∑

n=0

8 · 5d
2n+ 1

(

1

1− 2i

)2n+1

.

We are only interested in this expression in Q[i] modulo 1 for real and imaginary
parts. Assuming that

log(2d+ 4r − 1)

log 5
≤ d (2)

and writing 2n+1 = 5k ·m with (m, 5) = 1 for the nth term in the sum, we look for

8 · 5d
2n+ 1

(

1

1− 2i

)2n+1

mod Z[i] =
8 · 5d−k(1− 2i)−(2n+1) mod m

m
; (3)

thus, we only need executing fast exponentiation for 5d−k mod m and (1−2i)2n+1 mod
m in Z[i], and then computing the reciprocal of the latter modulo m. The latter
inversion is possible because m is coprime with the norm of any power of 1 − 2i;
alternatively, one can take an integer a such that a ≡ 1

5
mod m, with the motive that

(1− 2i)−1 = 1
5
+ 2

5
i ≡ a(1 + 2i) mod mZ[i], and compute a2n+1(1 + 2i)2n+1 mod m.

3. An obvious flaw

The equality in (3) is incorrect when 2n + 1 > d − k, since the left-hand side
in the latter case has the denominator 52n+1−d+km, while the denominator of the
right-hand side is m. Using a shorter finite sum over n to meet this constraint is
not an option either, because there is no bound for (the fractional part of) the tail
in such cases. Are there more suitable formulae for π or other interesting constants,
defined over quadratic or more general algebraic extensions, that could be of use?
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