
On the Existential Theory of the Reals Enriched
with Integer Powers of a Computable Number
Jorge Gallego-Hernandez #�

IMDEA Software Institute, Madrid, Spain

Alessio Mansutti #�

IMDEA Software Institute, Madrid, Spain

Abstract
This paper investigates ∃R(ξZ), that is the extension of the existential theory of the reals by an
additional unary predicate ξZ for the integer powers of a fixed computable real number ξ > 0. If all
we have access to is a Turing machine computing ξ, it is not possible to decide whether an input
formula from this theory is satisfiable. However, we show an algorithm to decide this problem when

ξ is known to be transcendental, or
ξ is a root of some given integer polynomial (that is, ξ is algebraic).

In other words, knowing the algebraicity of ξ suffices to circumvent undecidability. Furthermore, we
establish complexity results under the proviso that ξ enjoys what we call a polynomial root barrier.
Using this notion, we show that the satisfiability problem of ∃R(ξZ) is

in ExpSpace if ξ is an algebraic number, and
in 3Exp if ξ is a logarithm of an algebraic number, Euler’s e, or the number π, among others.

To establish our results, we first observe that the satisfiability problem of ∃R(ξZ) reduces in
exponential time to the problem of solving quantifier-free instances of the theory of the reals where
variables range over ξZ. We then prove that these instances have a small witness property: only finitely
many integer powers of ξ must be considered to find whether a formula is satisfiable. Our complexity
results are shown by relying on well-established machinery from Diophantine approximation and
transcendental number theory, such as bounds for the transcendence measure of numbers.

As a by-product of our results, we are able to remove the appeal to Schanuel’s conjecture from
the proof of decidability of the entropic risk threshold problem for stochastic games with rational
probabilities, rewards and threshold [Baier et al., MFCS, 2023]: when the base of the entropic risk is
e and the aversion factor is a fixed algebraic number, the problem is (unconditionally) in Exp.

2012 ACM Subject Classification Computing methodologies → Symbolic and algebraic algorithms

Keywords and phrases Theory of the reals with exponentiation, decision procedures, computability

Funding This work is part of a project that is partially funded by the Madrid Regional Government
(César Nombela grant 2023-T1/COM-29001), and by MCIN/AEI/10.13039/501100011033/FEDER,
EU (grant PID2022-138072OB-I00).

Acknowledgements We would like to thank Michael Benedikt and Dmitry Chistikov for the insightful
discussions on the paper [Avigad and Yin, Theor. Comput. Sci., 2007], and Andrew Scoones and
James Worrell for providing guidance through the number theory literature. We are also grateful to
the anonymous referees of the STACS’25 conference for their comments and corrections.ar

X
iv

:2
50

2.
02

22
0v

2
 [

cs
.L

O
]

 6
 F

eb
 2

02
5

mailto:jorge.gallego@imdea.org
mailto:alessio.mansutti@imdea.org

2 On the Existential Theory of the Reals with Integer Powers of a Computable Number

1 Introduction

Tarski’s exponential function problem asks to determine the decidability of the validity
problem from the first-order (FO) theory of the structure (R; 0, 1,+, ·, ex, <,=). This theory,
hereinafter denoted R(ex), extends the FO theory of the reals (a.k.a. Tarski arithmetic) with
the exponential function x 7→ ex. A celebrated result by Macintyre and Wilkie establishes an
affirmative answer to Tarski’s problem conditionally to the truth of Schanuel’s conjecture, a
profound conjecture from transcendental number theory [24]. Recent years have seen this
result being used as a black-box to establish conditional decidability results for numerous
problems stemming from dynamical systems [14, 2] automata theory [15, 13], neural networks
verification [19, 21], the theory of stochastic games [5], and differential privacy [7].

As it is often the case when appealing to a result as a black-box, some of the computa-
tional tasks resolved by relying on the work in [24] do not require the full power of R(ex).
Consequently, it is natural to ask whether some of these tasks can be tackled without relying
on unproven conjectures, perhaps by reduction to tame fragments or variants of R(ex).
A few results align with this question:

In the papers [3, 1, 28], Achatz, Anai, McCallum and Weispfenning introduce a procedure
to decide sentences of the form ∃x∃y : y = trans(x) ∧ φ(x, y), where φ is a formula from
Tarski arithmetic, and x 7→ trans(x) is any analytic and strongly transcendental function
(see [28, Section 2] for the precise definition). Since x 7→ ex enjoys such properties,
this result shows a non-trivial fragment of R(ex) that is unconditionally decidable. The
procedure is implemented in the tool Redlog [16]. No complexity bound is known.
In [17], van den Dries proves decidability of the extension of Tarski arithmetic with
the unary predicate 2Z interpreted as the set {2i : i ∈ Z}, i.e., the set of all integer
powers of 2. While this result is achieved by model-theoretic arguments, an effective
quantifier elimination procedure was later given by Avigad and Yin [4]. Their procedure
runs in Tower, and in fact it requires non-elementary time already for the elimination
of a single quantified variable. The choice of the base 2 for the integer powers is
somewhat arbitrary: in [18], the decidability is extended to any fixed algebraic number
(i.e., a number that is root of some polynomial equation; see Section 3 for background
knowledge on computable, algebraic and transcendental numbers), and in fact Avigad
and Yin’s procedure is also effective for any such number. Considering any two α, β ∈ R
satisfying αZ ∩ βZ = {1} yields undecidability, as shown by Hieronymi in [20].

When comparing the two lines of work discussed above, it becomes apparent that there is
a balance to be struck between reasoning about transcendental numbers, the path followed
by the first set of works, and developing algorithms that are well-behaved from a complexity
standpoint, the path taken in particular in [4]. Our aim with this paper is to somewhat
bridge this gap: we add to the second line of work by studying predicates for integer powers
of bases that may be transcendental, all the while maintaining complexity upper bounds.

From now on, we write ∃R(ξZ) to denote the existential fragment of the FO theory of
the structure (R; 0, 1, ξ,+, ·, ξZ, <,=), where ξ > 0 is a fixed real number. In this paper, we
examine the complexity of deciding the satisfiability problem of ∃R(ξZ) for different choices
of the number ξ. The following theorem summarises our results.

▶ Theorem 1. Fix a real number ξ > 0. The satisfiability problem for ∃R(ξZ) is
1. in ExpSpace whenever ξ is an algebraic number;
2. in 3Exp if ξ ∈ {π, eπ, eη, αη, ln(α), ln(α)

ln(β) : α, β, η algebraic with α > 0 and 1 ̸= β > 0};
3. decidable whenever ξ is a computable transcendental number.

J. Gallego-Hernandez and A. Mansutti 3

Theorem 1 has a catch, however. To be effective, the algorithm for deciding ∃R(ξZ) requires:
For Theorem 1.1, to have access to a canonical representation (see Section 3) of ξ.
In the cases covered by Theorem 1.2, to have access to representations of α, β, and η.
In the case of ξ computable transcendental number (Theorem 1.3), to have access to a
Turing machine T that computes ξ (that is, given an input n ∈ N written in unary, T
returns a rational number Tn such that |ξ − Tn| ≤ 2−n).

In summary, Theorem 1 shows that ∃R(ξZ) is decidable for every fixed computable number
ξ > 0, as long as it is known whether ξ is algebraic or transcendental, and in the former case
having access to a canonical representation of ξ.

The results in Theorem 1 are obtained by (i) reducing the satisfiability problem for ∃R(ξZ)
to the problem of solving instances of ∃R(ξZ) where all variables range over ξZ, and (ii) show-
ing that a solution over ξZ can be found by only looking at a “small” set of integer powers
of ξ (a small witness property). In proving Step (ii), we also obtain a quantifier elimination
procedure for sentences of ∃R(ξZ), that is formulae where no variable occurs free. This
procedure provides a partial answer to the question raised in [4] regarding the complexity of
removing a single existential variable in Tarski arithmetic extended with 2Z: within sentences
of the existential fragment, such an elimination step can be performed in elementary time.

Coming back to our initial question on identifying computational tasks that might not
need the full power of R(ex), as a by-product of our results we show that the entropic risk
threshold problem for stochastic games studied by Baier, Chatterjee, Meggendorfer and
Piribauer [5] is unconditionally decidable in Exp even when the base of the entropic risk is e
(or algebraic) and the aversion factor is any (fixed) algebraic number.

2 Approaching complexity bounds with root barriers

Theorems 1.1 and 1.2 are instances of a more general result concerning classes of computable
real numbers. To properly introduce this result, it is beneficial to go back to Macintyre and
Wilkie’s work on R(ex). The exact statement made in [24] is that R(ex) is decidable as soon
as the following computational problem, implied by Schanuel’s conjecture, is established:

▶ Conjecture 2. There is a procedure that for input f1, . . . , fn, g ∈ Z[x1, . . . , xn, e
x1 , . . . , exn],

with n ≥ 1, returns a positive integer t with the following property: for every non-singular1

solution α ∈ Rn of the system of equalities
∧n
i=1 fi(x) = 0, either g(α) = 0 or |g(α)| > t−1.

Above, Z[x1, . . . , xn, e
x1 , . . . , exn] is the set of all n-variate exponential-polynomials with

integer coefficients. As remarked in [24], t is guaranteed to exist by Khovanskii’s theorem [22],
hence the crux of the problem concerns how to effectively compute such a number starting
from f1, . . . , fn and g. The purpose of the dichotomy “either g(α) = 0 or |g(α)| > t−1”
is in part to resolve what is a fundamental problem when working with computable real
numbers. Let α to be a vector of computable numbers. Consider the problem of establishing,
given in input a polynomial p with integer coefficients, whether p(α) is positive, negative, or
zero. This polynomial sign evaluation task is a well-known undecidable problem. Intuitively,
the undecidability arises from the possibility that any approximation α∗ of α might yield
p(α∗) ̸= 0, even though p(α) = 0. However, when working under the hypothesis that
either p(α) = 0 or |p(α)| > t−1, the problem becomes decidable: it suffices to compute an

1 A solution α of
∧n

i=1 fi(x) = 0 is said to be non-singular whenever the determinant of the n×n Jacobian
matrix ∂(f1,...,fn)

∂(x1,...,xn) is, once evaluated at α, non-zero. We give this definition only for completeness of
the discussion on Conjecture 2. It is not used in this paper.

4 On the Existential Theory of the Reals with Integer Powers of a Computable Number

approximation α∗ enjoying |p(α)−p(α∗)| < (2t)−1, and then check whether |p(α∗)| ≤ (2t)−1.
If the answer is positive, then p(α) = 0, otherwise p(α) and p(α∗) have the same sign.

The same issue occurs in ∃R(ξZ): under the sole hypothesis that ξ is computable, we
cannot even check if ξ = 2 holds. However, what we can do is to draw some inspiration
from Conjecture 2, and introduce as a further assumption the existence of what we call a
root barrier of ξ. Below, N≥1 = {1, 2, 3, . . . }, and given a polynomial p we write deg(p) for
its degree and h(p) for its height (i.e., the maximum absolute value of a coefficient of p).

▶ Definition 3. A function σ : (N≥1)2 → N is a root barrier of ξ ∈ R if for every non-constant
polynomial p(x) with integer coefficients, p(ξ) = 0 or ln |p(ξ)| ≥ −σ(deg(p),h(p)).

To avoid non-elementary bounds on the runtime of our algorithms, we focus on com-
putable numbers having root barriers σ(d, h) that are polynomial expressions of the form
c · (d+ ⌈ln h⌉)k, where c, k ∈ N are some positive constants and ⌈·⌉ is the ceiling function.
We call such functions polynomial root barriers, highlighting the fact that then σ(deg(p),h(p))
in Definition 3 is bounded by a polynomial in the bit size of p. The aforestated Theorem 1.2
is obtained by instantiating the following Theorem 4.2 to natural choices of ξ.

▶ Theorem 4. Let ξ > 0 be a real number computable by a polynomial-time Turing machine,
and let σ(d, h) := c · (d+ ⌈ln h⌉)k be a root barrier of ξ, for some c, k ∈ N≥1.
1. If k = 1, then the satisfiability problem for ∃R(ξZ) is in 2Exp.
2. If k > 1, then the satisfiability problem for ∃R(ξZ) is in 3Exp.

As we will see in Section 6, whenever algebraic, the base ξ has a root barrier with expo-
nent k = 1, and the related satisfiability problem for ∃(ξZ) thus lie in 2Exp. However, a small
trick will allow us to further improve this result to ExpSpace, establishing Theorem 1.1.

3 Preliminaries

In this section, we fix our notation, introduce background knowledge on computable, algebraic
and transcendental numbers, and define the existential theory ∃R(ξZ).

Sets, vectors, and basic functions. Given a finite set S, we write |S| for its cardinality.
Given a, b ∈ R, we write [a, b] for the closed interval {c ∈ R : a ≤ c ≤ b}. We use parenthesis
(and) for open intervals, hence writing, e.g., [a, b) for the set {c ∈ R : a ≤ c < b}. We write
[a..b] for the set of integers [a, b] ∩ Z. Given A ⊆ R, c ∈ R, and a binary relation ∼ (e.g., ≥),
we define A∼c := {a ∈ A : a ∼ c}. The endpoints of A are its supremum and infimum, if they
exist. For instance, the endpoints of the interval [a, b) are the numbers a and b, while the
endpoints of [a..b] are the numbers ⌈a⌉ and ⌊b⌋, where ⌊·⌋ stands for the floor function.

Given a positive real number b with b ̸= 1, we write logb(·) for the logarithm function of
base b. We abbreviate log2(·) and loge(·) as log(·) and ln(·), respectively.

Unless stated explicitly, all integers encountered by our algorithms are encoded in binary;
note that n ∈ Z can be represented using 1 + ⌈log(n+ 1)⌉ bits. Similarly, each rational is
encoded as a ratio n

d of two coprime integers n and d encoded in binary, with d ≥ 1.

Integer polynomials. An integer polynomial in variables x = (x1, . . . , xn) is an expression
p(x) :=

∑m
j=1(aj ·

∏n
i=1 x

dj,i

i), where aj ∈ Z and dj,i ∈ N for every j ∈ [1..m] and i ∈ [1..n].
In the context of algorithms, we assume the coefficients aj to be given in binary encoding,
and the exponents di,j to be given in unary encoding. We rely on the following notions:

The height of p, denoted h(p), is defined as max{|aj | : j ∈ [1..m]}.

J. Gallego-Hernandez and A. Mansutti 5

The degree of p, denoted deg(p), is defined as max{
∑n
i=1 dj,i : j ∈ [1..m]}.

Given i ∈ [1..n], the partial degree of p in xi, denoted deg(xi, p), is max{dj,i : j ∈ [1..m]}.
The bit size of p, denoted size(p), is defined as m · (⌈log(h(p) + 1)⌉+ n · deg(p)).

Computable numbers, and algebraic and transcendental numbers. A real number ξ ∈ R
is said to be computable whenever there is a (deterministic) Turing machine T : N → Q
that given in input n ∈ N written in unary (e.g., over the alphabet {1}∗) returns a rational
number Tn (represented as described above) such that |ξ − Tn| ≤ 2−n. We thus have
ξ = limn→∞ Tn, and for this reason ξ is said to be computed by T (or T computes ξ).
The computable numbers form a field [32]; we will later need the following two statements
regarding their closure under product and reciprocal (see Appendix A for standalone proofs).

▶ Lemma 5. Given Turing machines T and T ′ computing reals a and b, one can construct
a Turing machine T ′′ computing a · b. If T and T ′ run in polynomial time, then so does T ′′.

▶ Lemma 6. Given a Turing machine T computing a non-zero real number r, one can
construct a Turing machine T ′ computing 1

r . If T runs in polynomial time, then so does T ′.

A real number ξ is algebraic if it is a root of some univariate non-zero integer polynomial.
Otherwise, ξ is transcendental. We often denote algebraic numbers by α, β, η, Throughout
the paper, we consider the following canonical representation: an algebraic number α
is represented by a triple (q, ℓ, u) where q is a non-zero integer polynomial and ℓ, u are
(representations of) rational numbers such that α is the only root of q belonging to [ℓ, u].

The existential theory ∃R(ξZ). Let ξ > 0 be a computable real number. We consider the
structure (R; 0, 1, ξ,+, ·, ξZ, <,=) extending the signature of the FO theory of the reals with
the constant ξ and the unary integer power predicate ξZ interpreted as {ξi : i ∈ Z}. Formulae
from the existential theory of this structure, denoted ∃R(ξZ), are built from the grammar

φ,ψ ::= p(ξ,x) ∼ 0 | ξZ(x) | ⊤ | ⊥ | φ ∨ ψ | φ ∧ ψ | ∃xφ ,

where ∼ belongs to {<,=}, the argument x of the predicate ξZ(x) is a variable, and p is
an integer polynomial involving ξ and variables x. For convenience of notation, ξ is in this
context seen as a variable of the polynomial p, so that we can rely on the previously defined
notions of height, degree and bit size. We remark that, then, h(p) is independent of ξ whereas
deg(p) depends on the integers occurring as powers of ξ. The bit size of a formula φ, denoted
as size(φ), is the number of bits required to write down φ (where ξ is stored symbolically,
using a constant number of symbols). Similarly, we write deg(φ) and h(φ) for the maximum
degree and height of polynomials occurring in φ, respectively.

The semantics of formulae from ∃R(ξZ) is standard; it is the one of the FO theory of
the reals, plus a rule stating that ξZ(x) is true whenever x ∈ R belongs to the set ξZ. The
grammar above features disjunctions (∨), conjunctions (∧), true (⊤) and false (⊥), but it
does not feature negation (¬) on top of atomic formulae. This restriction is w.l.o.g.: ¬ξZ(x)
is equivalent to the formula x ≤ 0 ∨ ∃y : ξZ(y) ∧ y < x ∧ x < ξ · y stating that x is either
non-positive or strictly between two successive integer powers of ξ, whereas ¬(p(ξ,x) < 0)
and ¬(p(ξ,x) = 0) are equivalent to p(ξ,x) = 0∨−p(ξ,x) < 0, and p(ξ,x) < 0∨−p(ξ,x) < 0,
respectively. We still sometimes write negations in formulae, but these occurrences should
be seen as shortcuts. The grammar also avoids polynomials in the scope of ξZ(·), since
ξZ(p(ξ,x)) is equivalent to ∃y : y = p(ξ,x) ∧ ξZ(y). We write φ |= ψ whenever φ entails ψ.

6 On the Existential Theory of the Reals with Integer Powers of a Computable Number

Algorithm 1 A procedure deciding the satisfiability problem for ∃R(ξZ).

Fixed: ξ > 1 computable number that is transcendental or has a polynomial root barrier.
Input: φ(x1, . . . , xn) : quantifier-free formula from ∃R(ξZ).
Output: True (⊤) if φ is satisfiable, and otherwise False (⊥).

1: for i ∈ [1..n] do
2: let ui and vi be two fresh variables
3: update φ: replace every occurrence of ξZ(xi) with vi = 1
4: update φ: replace every occurrence of xi with ui · vi
5: φ← φ ∧ (vi = 0 ∨ 1 ≤ |vi| < ξ)
6: ψ(u1, . . . , un)← RealQE(∃v1 . . . ∃vn : φ) ▷ eliminate v1, . . . , vn (see Theorem 7)
7: for i ∈ [1..n] do ▷ gi below is encoded in unary
8: guess gi ← an element of Pψ ▷ Pψ ⊆ Z is the set from in Proposition 8
9: return evaluate whether the assignment (u1 = ξg1 , . . . , un = ξgn) is a solution to ψ

Algorithm 2 Algorithm for solving Signξ when ξ has a root barrier.

Fixed: A number ξ ∈ R computed by a Turing machine T and having a root barrier σ.
Input: A univariate integer polynomial p(x) of degree d and height h.
Output: The symbol ∼ from {<,>,=} such that p(ξ) ∼ 0.

1: n← 1 + 2σ(d, h) + 3d ⌈log(h+ 4)⌉
2: if |p(Tn)| ≤ 2−2σ(d,h)−1 and |Tn| < h+ 2 then return the symbol =
3: else return the sign of p(Tn)

4 An algorithm for deciding ∃R(ξZ)

Fix a computable number ξ > 0 that is either transcendental or has a polynomial root barrier.
In this section, we discuss our procedure for deciding the satisfiability of formulae in ∃R(ξZ).
For simplicity, we assume for now ξ > 1. The general case of ξ > 0 is handled in Section 4.5.

The pseudocode of the procedure is given in Algorithm 1. To keep it as simple as possible,
we use nondeterminism in line 8 instead of implementing, e.g., a routine backtracking
algorithm. The procedure assumes the input formula φ(x1, . . . , xn) to be quantifier-free (this
is without loss of generality, since ∃R(ξZ) is an existential theory), and it is split into three
steps, which we discuss in the forthcoming three subsections.

4.1 Step I (lines 1–6): reducing the variables to integer powers of ξ

The first step reduces the problem of finding a solution over R to the problem of find-
ing a solution over ξZ. Below, we denote by ∃ξZ the existential theory of the structure
(ξZ; 0, 1, ξ,+, ·, <,=). Formulae from this theory are built from the grammar of ∃R(ξZ),
except they do not feature predicates ξZ(x), as they are now trivially true.

For reducing ∃R(ξZ) to ∃ξZ, we observe that every x ∈ R can be factored as u · v where u
belongs to ξZ and v is either 0 (if x = 0) or it belongs, in absolute value, to the interval [1, ξ).
In the case of x ≠ 0, this factorisation is unique, and u corresponds to the largest element of
ξZ that is less or equal to the absolute value of x, i.e., u ≤ |x| < ξ ·u. The procedure uses this
fact to replace every occurrence of a variable xi in the input formula φ(x1, . . . , xn) with two
fresh variables ui and vi (see the for loop of line 1), where vi is set to satisfy either vi = 0 or

J. Gallego-Hernandez and A. Mansutti 7

1 ≤ |vi| < ξ (the latter is short for the formula (1 ≤ vi < ξ) ∨ (−ξ < vi ≤ −1)), and ui is
(implicitly) assumed to belong to ξZ. This allows to replace all occurrences of the predicate
ξZ(xi) with vi = 1 (line 3). We obtain in this way an equivalent formula from the existential
theory of the reals, but where the variables u1, . . . , un are assumed to range over ξZ.

After the updates performed by the for loop, the procedure eliminates the variables
v1, . . . , vn by appealing to a quantifier elimination procedure for the FO theory of the reals,
named RealQE in the pseudocode. We remind the reader that a quantifier elimination
procedure is an algorithm that, from an input (quantified) formula, produces an equivalent
quantifier-free formula. Since such a procedure preserves formula equivalence, we can use it to
eliminate v1, . . . , vn even if u1, . . . , un are assumed to range over ξZ. The constant ξ appearing
in the formula is treated as an additional free variable by RealQE. The output formula
ψ(u1, . . . , un) belongs to ∃ξZ, as required. This concludes the first step of the algorithm.

To perform the quantifier elimination step, we rely on the quantifier elimination procedure
for the (full) FO theory of the reals developed by Basu, Pollack and Roy [8]. This procedure
achieves the theoretically best-known bounds for the output formula, not only for arbitrary
quantifier alternation but also for the existential fragment (i.e., when taking ω = 1 below).

▶ Theorem 7 ([8, Theorem 1.3.1]). There is an algorithm with the following specification:
Input: A formula φ(y) from the first-order theory of (R; 0, 1,+, ·, <,=).
Output: A quantifier-free formula γ(y) =

∨I
i=1

∧J
j=1 pi,j(y) ∼i,j 0 equivalent to φ,

where every ∼i,j is from {<,=}.

Suppose the input formula φ to be of the form Q1x1 ∈ Rn1 . . . Qωxω ∈ Rnω : ψ(y,x1, . . . ,xω),
where y = (y1, . . . , yk), every Qi is ∃ or ∀, and ψ is a quantifier-free formula with m atomic
formulae gi ∼ 0 satisfying deg(gi) ≤ d and h(gi) ≤ h. Then, the output formula γ satisfies

I ≤ (m · d+ 1)(k+1)Πω
i=1O(ni) , deg(pi,j) ≤ dΠω

i=1O(ni) ,

J ≤ (m · d+ 1)Πω
i=1O(ni) , h(pi,j) ≤ (h+ 1)d

(k+1)Πω
i=1O(ni)

,

and the algorithm runs in time size(φ)O(1)(m · d+ 1)(k+1)Πω
i=1O(ni).

4.2 Step II (lines 7 and 8): solving ∃ξZ

The second step of the procedure searches for a solution to the quantifier-free formula ψ in
line 6. For every variable ui in ψ, the algorithm guesses an integer gi, encoded in unary,
from a finite set Pψ. Implicitly, this guess is setting ui = ξgi . The next proposition shows
that Pψ can be computed from ψ and the base ξ, i.e., ∃ξZ has a small witness property.

▶ Proposition 8. Fix ξ > 1. There is an algorithm with the following specification:
Input: A quantifier-free formula ψ(u1, . . . , un) from ∃ξZ.
Output: A finite set Pψ ⊆ Z such that ψ is satisfiable if and only if

ψ has a solution in the set {(ξj1 , . . . , ξjn) : j1, . . . , jn ∈ Pψ}.
To be effective, the algorithm requires knowing either that ξ is a computable transcendental
number, or two integers c, k ∈ N≥1 for which σ(d, h) := c · (d+ ⌈ln(h)⌉)k is a root barrier of ξ.
In the latter case, the elements in Pψ are bounded in absolute value by (2c ⌈ln(H)⌉)D25n2

kD8n

,
where H := max(8,h(ψ)) and D := deg(ψ) + 2.

We defer a sketch of the proof of Proposition 8 (perhaps the main technical contribution of the
paper) to Section 5. Note that the bound on Pψ given in the final statement of Proposition 8
is in general triply exponential in size(ψ), but it becomes doubly exponential if the root
barrier σ is such that k = 1. The two statements in Theorem 4 stem from this distinction.

8 On the Existential Theory of the Reals with Integer Powers of a Computable Number

4.3 Step III (line 9): polynomial sign evaluation
The last step of the procedure checks if the assignment u1 = ξg1 , . . . , un = ξgn is a solution
to ψ(u1, . . . , un). Observe that ψ(ξg1 , . . . , ξgn) is a Boolean combination of polynomial
(in)equalities p(ξ) ∼ 0, where ξ may occur with negative powers (as some gi may be negative).
This is unproblematic, as one can make all powers non-negative by rewriting each (in)equality
p(ξ) ∼ 0 as ξ−d · p ∼ 0, where d is the smallest negative integer occurring as a power of ξ
in p (or 0 if such an integer does not exist). After this small update, line 9 boils down to
determining the sign that each polynomial in the formula has when evaluated at ξ. This
enables us to simplify all inequalities to either ⊤ or ⊥, to then return ⊤ or ⊥ depending on
the Boolean structure of ψ. Let us thus focus on the required sign evaluation problem, which
we denote by Signξ. Its specification is the following:

Input: A univariate integer polynomial p(x).
Output: The symbol ∼ from {<,>,=} such that p(ξ) ∼ 0.

Solving Signξ when ξ ∈ R is transcendental. It is a standard fact that Signξ becomes
solvable whenever ξ is any computable transcendental number. Indeed, in this case p(ξ)
must be different from 0, and one can rely on the fast-convergence sequence of rational
numbers T0, T1, . . . to find n ∈ N such that |p(ξ) − p(Tn)| is guaranteed to be less than
|p(Tn)|. The sign of p(ξ) then agrees with the sign of p(Tn), and the latter can be easily
computed. In general, the asymptotic running time of this algorithm cannot be bounded.

Solving Signξ when ξ ∈ R has a (polynomial) root barrier. A similar algorithm as the
one given for transcendental numbers can be defined for numbers with a polynomial root
barrier; and in this case its running time can be properly analysed. The pseudocode of such a
procedure is given in Algorithm 2, and it should be self-explanatory. We stress that running
this algorithm requires access to the root barrier σ and the Turing machine T .

▶ Lemma 9. Algorithm 2 respects its specification.

Proof sketch. If |Tn| ≥ h+ 2, then p(ξ) and p(Tn) have the same sign, because h+ 1 is an
upper bound to the absolute value of every root of p(x) [31, Chapter 8]. If |Tn| < h + 2
instead, by studying the derivative of p in the interval [−(h+ 3), h+ 3] containing ξ, one finds
|p(ξ)− p(Tn)| ≤ 2−2σ(d,h)−1, with n defined as in line 1. Then, either |p(Tn)| ≤ 2−2·σ(d,h)−1

and p(ξ) = 0, or |p(Tn)| > 2−2·σ(d,h)−1 and p(ξ) and p(Tn) have the same sign. ◀

When σ is a polynomial root barrier, the integer n from line 1 can be written in unary
using polynomially many digits with respect to size(p). This yields the following lemma.

▶ Lemma 10. Let ξ ∈ R be a number computed by a Turing machine T and having a
polynomial root barrier σ. If T runs in polynomial time, then so does Algorithm 2.

4.4 Correctness and running time of Algorithm 1
Since lines 1–5 preserve the satisfiability the input formula, by chaining Theorem 7, Proposi-
tion 8, and Lemma 9, we conclude that Algorithm 1 is correct.

▶ Lemma 11. Algorithm 1 respects its specification.

This establishes Theorem 1.3 restricted to bases ξ > 1. Analogously, when ξ is a number
with a polynomial root barrier σ(d, h) := c · (d+ ⌈loge h⌉)k, by pairing Lemma 11 with a

J. Gallego-Hernandez and A. Mansutti 9

complexity analysis of Algorithm 1, one shows Theorem 4 restricted to bases ξ > 1. In
performing this analysis, we observe that the bottleneck of the procedure is given by the
guesses of the integers gi performed lines 7 and 8. The absolute value of these integers
is either doubly or triply exponential in the size of the input formula φ, depending on
whether k = 1. A deterministic implementation of the procedure can iterate through all their
values in doubly or triply exponential time.

4.5 Handling small bases

We now extend our algorithm so that it works assuming ξ > 0 instead of just ξ > 1, hence
completing the proofs of Theorem 1.3 and Theorem 4. Let ξ be computable and either
transcendental or with a polynomial root barrier. First, observe that we can call the procedure
for Signξ on input x− 1 in order to check if ξ ∈ (0, 1), ξ = 1 or ξ > 1.

If ξ = 1, we replace in the input formula φ every occurrence of ξZ(x) with x = 1, obtaining
a formula from the existential theory of the reals, which we can solve by Theorem 7. If ξ > 1,
we call Algorithm 1. Suppose then ξ ∈ (0, 1). In this case, we replace every occurrence of ξZ(x)
with

(1
ξ

)Z(x), and opportunely multiply by integer powers of 1
ξ both sides of polynomials

inequalities in order to eliminate the constant ξ. In this way, we obtain from φ an equivalent
formula in ∃R(

(1
ξ

)Z). Since 1
ξ > 1, we can now call Algorithm 1; provided we first establish

the properties of 1
ξ required to run this algorithm. These properties indeed hold:

1. If ξ is transcendental, then so is 1
ξ . This is because the algebraic numbers form a field.

2. If ξ has a polynomial root barrier σ, then σ is also a root barrier of 1
ξ . Indeed, consider

an integer polynomial p(x) =
∑d
i=0 ai · xi with height h, and assume p(1

ξ) ̸= 0. Since
σ is a root barrier of ξ, we have ξd · |p(1

ξ)| = |
∑d
i=0 ai · ξd−i| ≥ e−σ(h,d), which in turns

implies that |p(1
ξ)| ≥ e−σ(h,d) · ξ−d ≥ e−σ(h,d), where the last inequality uses 1

ξ ≥ 1.

3. From a Turing machine T computing ξ, we can construct a Turing machine T ′ computing 1
ξ .

Lemma 6 gives this construction, and shows that T ′ runs in polynomial time if so does T .

5 Finding solutions over integer powers of ξ

In this section we give a sketch of the proof of Proposition 8, i.e., we show that ∃ξZ has
a small witness property. The proof is split into two parts:
1. We first give a quantifier-elimination-like procedure for ∃ξZ. Instead of targeting formula

equivalence, we only focus on equisatisfiability: given a formula ∃y φ(y,x), with φ

quantifier-free, the procedure derives an equisatisfiable quantifier-free formula ψ(x).
Preserving equisatisfiability, instead of equivalence, is advantageous complexity-wise.
(Our procedure preserves equivalence for sentences, as these are equivalent to ⊤ or ⊥.)

2. By analysing our quantifier elimination procedure, we derive the bounds on the set Pψ
from Proposition 8 that are required to complete the proof. This step is similar to the
quantifier relativisation technique for Presburger arithmetic (see, e.g., [35, Theorem 2.2]).

Some of the core mechanisms of our quantifier-elimination-like procedure follow observations
done by Avigad and Yin for their (equivalence-preserving) quantifier elimination procedure [4].
Apart from targeting equisatisfiability, a key property of our procedure is that it does not
require appealing to a quantifier elimination procedure for the theory of the reals. The
procedure in [4] calls such a procedure once for each eliminated variable instead.

10 On the Existential Theory of the Reals with Integer Powers of a Computable Number

5.1 Quantifier elimination
Fix a real number ξ > 1. In this section, we rely on some auxiliary notation and definitions:

We often see an integer polynomial p(ξ,x) as a polynomial in variables x = (x1, . . . , xm)
having as coefficients univariate integer polynomials on ξ, i.e., p(ξ,x) =

∑n
i=1 qi(ξ) · xdi ,

where the notation xdi is short for the monomial
∏m
j=1 x

di,j

j , with di = (di,1, . . . , di,m).
We sometimes write polynomial (in)equalities using Laurent polynomials, i.e., polynomials
with negative powers. For instance, Lemma 12 below features equalities with monomials
ξg · xdi where g may be a negative integer. Laurent polynomials are just a shortcut for
us, as one can opportunely manipulate the (in)equalities to make all powers non-negative
(as we did in Section 4.3): a polynomial (in)equality p(ξ, x1, . . . , xm) ∼ 0 is rewritten as
p(ξ, x1, . . . , xm) · ξ−d · x−d1

1 · . . . · x−dm
m ∼ 0, where di (resp. d) is the smallest negative

integer occurring as a power of xi (resp. ξ) in p (or 0 if such a negative integer does not
exist). Observe that this transformation does not change the number of monomials nor
the height of the polynomial p, but it may double the degree of each variable and of ξ.
Given a formula φ, a variable x and a Laurent polynomial q(y), we write φ[q(y) / x]
for the formula obtained from φ by replacing every occurrence of x by q(y), and then
updating all polynomial (in)equalities with negative degrees in the way described above.
We write λ : R>0 → ξZ for the function mapping a ∈ R>0 to the largest integer power of ξ
that is less or equal than a, i.e., λ(a) is the only element of ξZ satisfying λ(a) ≤ a < ξ ·λ(a).

The relation λ(p(ξ,x)) = y, where p is an integer polynomial, is definable in ∃ξZ as
p(ξ,x) > 0 ∧ y ≤ p(ξ,x) < ξ · y. To obtain a quantifier elimination procedure, we must first
understand what values can y take given p(ξ,x). The next lemma answers this question.

▶ Lemma 12. Let p(ξ,x) :=
∑n
i=1(qi(ξ)·xdi), where each qi is a univariate integer polynomial.

In the theory ∃ξZ, the formula p(ξ,x) > 0 entails the formula
∨n
i=1

∨
g∈G λ(p(ξ,x)) = ξg ·xdi ,

for some finite set G ⊆ Z. Moreover:
I. If ξ is a computable transcendental number, there is an algorithm computing G from p.

II. If ξ has a root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k, for some c, k ∈ N≥1, then

G := [−L..L] , where L :=
(
23cD ⌈ln(H)⌉

)6nk3n

,

with H := max{8,h(qi) : i ∈ [1, n]}, and D := max{deg(qi) + 2 : i ∈ [1, n]}.

Proof sketch. A suitable set G can be found as follows. Let Q be the set of all univariate
integer polynomials Q(z) for which there are j ≤ ℓ ∈ [1..n], numbers gj , . . . , gℓ−1 ∈ N, and
integer polynomials Qj(z), . . . , Qℓ(z) such that Qℓ = Q and
1. the polynomials Qj , . . . , Qℓ are recursively defined as

Qj(z) := qj(z),
Qr(z) := Qr−1(z) · zgr−1 + qr(z), for every r ∈ [j + 1, ℓ],

2. the real numbers Qj(ξ), . . . , Qℓ−1(ξ) are all non-zero, and Qℓ(ξ) is (strictly) positive,
3. for every r ∈ [j..ℓ− 1], the number ξgr belongs to the interval

[
1 , |qr+1(ξ)|+···+|qn(ξ)|

|Qr(ξ)|
]
.

Items 1–3 ensure the set Q to be finite. We define the (finite) set

B :=
{
β ∈ Z : there is Q ∈ Q such that ξβ ∈

{
λ(Q(ξ)), λ(Q(ξ)·(ξ−1))

ξ , λ(Q(ξ)·(ξ+1))
ξ

}}
.

By induction on n, one can prove that any finite set G that includes [minB..maxB] respects
the property in the first statement of the lemma. To prove the remaining statements of

J. Gallego-Hernandez and A. Mansutti 11

|
1
ξ3

|
1
ξ2

|
1
ξ

|
1

|
ξ

|
ξ2

|
ξ3

q(u∗) = 0 p(w∗) = 0

λ(u∗) ξ · λ(w∗)

Figure 1 High-level idea of the quantifier elimination procedure. Dashed rectangles are intervals
corresponding to the set of solutions over R of a (univariate) formula φ. To search for a solution
over ξZ, it suffices to look for elements of ξZ that are close to the endpoints of these intervals. At
each endpoint, a polynomial in φ must evaluate to zero (since around endpoints the truth of φ

changes), so it suffices to look for integer powers of ξ that are close to roots or polynomials in φ.

the lemma (Items (I) and (II)) one shows how to effectively compute an overapproximation
of the set B. In the case of ξ having a polynomial root barrier, this overapproximation is
obtained by bounding the values of λ(Q(ξ)), λ(Q(ξ)·(ξ−1))

ξ , and λ(Q(ξ)·(ξ+1))
ξ , for every Q ∈ Q.

See Appendix C for the complete proof. ◀

We now give the high-level idea of the quantifier elimination procedure, which is also
depicted in Figure 1. Let ψ(u,y) be a quantifier-free formula of ∃ξZ, and u be the variable we
want to eliminate. Suppose to evaluate the variables y with elements in ξZ, hence obtaining
a univariate formula φ(u). The set of all solutions over the reals of φ(u) can be decomposed
into a finite set of disjoint intervals. (This follows from the o-minimality of the FO theory of
the reals [26, Chapter 3.3].) Figure 1 shows these intervals as dashed rectangles. Around the
endpoints of these intervals the truth of φ changes, and therefore for each such endpoint u∗

there must be a non-constant polynomial in φ such that q(u∗) = 0. If an interval with
endpoint u∗ ∈ R>0 contains an element of ξZ, then it contains one that is “close” to u∗:

If u∗ ∈ R>0 is the right endpoint of an interval, at least one among λ(u∗) and ξ−1 · λ(u∗)
belongs to the interval. The first case is depicted in Figure 1. The latter case occurs
when u∗ belongs to ξZ but not to the interval.
If u∗ is the left endpoint of an interval, then ξ · λ(u∗) of λ(u∗) belongs to the interval.
The latter case occurs when u∗ belongs to ξZ and also to the interval.

Note that we have restricted the endpoint u∗ to be positive, so that λ(u∗) is well-defined. The
only case were we may not find such an endpoint is when φ(u) is true for every u > 0. But
finding an element of ξZ is in this case simple: we can just pick 1 ∈ ξZ. Since u∗ is positive,
we can split it into x∗ · v∗ with x∗ ∈ ξZ and 1 ≤ v∗ < ξ (so, λ(u∗) = x∗). To obtain quantifier
elimination, our goal is then to characterise, symbolically as a finite set of polynomials τ(y),
the set of all possible values for x∗. In this way, we will be able to eliminate the variable u by
considering the polynomials ξ−1 · τ(y), τ(y) and ξ · τ(y) representing the integer powers of ξ
that are “close” to endpoints. The following lemma provides the required characterisation.

▶ Lemma 13. Let r(x, v,y) :=
∑n
i=0 pi(ξ,y) · (x · v)i, where each pi is an integer polynomial,

M be the set of monomials yℓ occurring in some pi, and N := {yℓ1−ℓ2 : yℓ1 ,yℓ2 ∈M}. Then,

ξZ(x) ∧ 1 ≤ v < ξ ∧ r(x, v,y) = 0 ∧
(n∨
i=0

pi(ξ,y) ̸= 0
)
∧

∧
y from y

ξZ(y) |=
∨

(j,g,yℓ)∈F

xj = ξg · yℓ

holds (in the theory ∃R(ξZ)) for some finite set F ⊆ [1..n]× Z×N . Moreover:
I. If ξ is a computable transcendental number, there is an algorithm computing F from r.

II. If ξ has a root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k, for some c, k ∈ N≥1, then,

F := [1..n]× [−L..L]×N, where L := n
(
24cD ⌈ln(H)⌉

)6|M |·k3|M|

,

12 On the Existential Theory of the Reals with Integer Powers of a Computable Number

with H := max{8,h(pi) : i ∈ [1, n]}, and D := max{deg(ξ, pi) + 2 : i ∈ [0, n]}.

Proof sketch. By following the arguments in [4, Lemma 3.9], one shows that the premise of
the entailment in the statement entails a disjunction over formulae of the form

xk−j = ξs·λ(±pj(ξ,y))
λ(∓pk(ξ,y)) ∧ ±pj(ξ,y) > 0 ∧ ∓pk(ξ,y) > 0,

where 0 ≤ j < k ≤ n, s ∈ [−g..g] with g := 1 +
⌈
logξ(n)

⌉
, and m ≤ n2 ·

(
2 ·

⌈
logξ(n)

⌉
+ 3

)
.

Afterwards, we rely on Lemma 12 to remove the occurrences of λ from the above formulae,
establishing in this way the first statement of the lemma. Items (I) and (II) follow from the
analogous items in Lemma 12. To achieve the bounds in Item (II) we also rely on the fact
that

⌈
logξ(n)

⌉
≤ 22c ⌈ln(n)⌉. This follows from a simple computation, noticing that since ξ

is not a root of the polynomial x− 1, by the definition of root barrier we have ξ > 1 + 1
ec . ◀

By relying on the characterisation, given in Lemma 13, of the values that λ(u∗) can take,
where u∗ > 0 is the root of some polynomial, and by applying our previous observation
that satisfiability can be witnessed by picking elements of ξZ that are “close” to u∗ (i.e., the
numbers ξ−1 · λ(u∗), λ(u∗) or ξ · λ(u∗)), we obtain the following key lemma.

▶ Lemma 14. Let φ(u,y) be a quantifier-free formula from ∃ξZ. Then, ∃uφ is equivalent to∨
ℓ∈[−1..1]

∨
q∈Q

∨
(j,g,yℓ)∈Fq

∃u : uj = ξj·ℓ+g · yℓ ∧ φ (†)

where Q is the set of all polynomials in φ featuring u, plus the polynomial u−1, and each Fq is
the set obtained by applying Lemma 13 to r(x, v,y) := q[x ·v / u], with x and v fresh variables.

To eliminate the variable u, we now consider each disjunct ∃u
(
uj = ξk · yℓ ∧ φ

)
from

Formula (†) and, roughly speaking, substitute u with j
√
ξk · yℓ. We do not need however to

introduce jth roots, as shown in the following lemma.

▶ Lemma 15. Let φ(u,y) be a quantifier-free formula from ∃ξZ, with y = (y1, . . . , yn). Let
j ∈ N≥1, k ∈ Z and ℓ := (ℓ1, . . . , ℓn) ∈ Z. Then, ∃y∃u : uj = ξk · yℓ ∧ φ is equivalent to

∨
r:=(r1,...,rn)∈R ∃z : φ[zji · ξri / yi : i ∈ [1..n]][ξ

k+ℓ·r
j · zℓ / u],

where R :=
{

(r1, . . . , rn) ∈ [0..j − 1]n : j divides k +
∑n
i=1 ri · ℓi

}
, ℓ · r :=

∑n
i=1 ri · ℓi, and

z := (z1, . . . , zn) is a vector of fresh variables.

Proof sketch. Consider a solution to the equality uj = ξk ·yℓ. Each yi evaluates to a number
of the form ξqi·j+ri , with qi ∈ Z and ri ∈ [0..j−1]. Since uj is of the form ξj·q for some q ∈ Z,
we must have that k+

∑n
i=1 ri · ℓi is divisible by j. Observe that the set R in the statement of

the lemma contains all possible vectors r = (r1, . . . , rn) satisfying this divisibility condition.
At the formula level, consider a vector r = (r1, . . . , rn) ∈ R, and replace in uj = ξk · yℓ ∧ φ

every variable yi with the term zji · ξri . After this replacement, the equality uj = ξk · yℓ can
be rewritten as u = ξ

k+ℓ·r
j · zℓ, where the division is without remainder. We can therefore

substitute u with ξ
k+ℓ·r

j · zℓ in φ, eliminating it. ◀

By chaining Lemmas 14 and 15, one can eliminate all variables from a quantifier-free
formula φ(x), obtaining an equisatisfiable formula with no variables.

J. Gallego-Hernandez and A. Mansutti 13

5.2 Quantifier relativisation
Looking closely at how a quantifier-free formula φ(u1, . . . , un) of ∃ξZ evolves as we chain Lem-
mas 14 and 15 to eliminate all variables, we see that the resulting variable-free formula is a
finite disjunction

∨
i ψi of formulae ψi that are obtained from φ via a sequence of substitutions

stemming from Lemma 15. As an example, for a formula in three variables φ(u1, u2, u3),
each ψi is obtained by applying a sequence of substitutions of the form:

elimination of u1 elimination of z1 elimination of z3

u1 = ξk1 · zℓ1

1 · z
ℓ2
2

u2 = zj1
1 · ξr1

u3 = zj1
2 · ξr2

{
z1 = ξk2 · zℓ3

3

z2 = zj2
3 · ξr3

{
z3 = ξk3

We can “backpropagate” these substitutions to the initial variables u1, . . . , un, associating to
each one of them an integer power of ξ. In the above example, we obtain the system

u1 = ξk1 · (ξk2 · (ξk3)ℓ3)ℓ1 · ((ξk3)j2 · ξr3)ℓ2

u2 = (ξk2 · (ξk3)ℓ3)j1 · ξr1

u3 = ((ξk3)j2 · ξr3)j1 · ξr2

By Lemmas 13 to 15, we can restrict the integers occurring as powers of ξ in the resulting
system of substitutions to a finite set. Since the disjunction

∨
i ψi is finite, this implies

that, under the hypothesis that ξ is a computable number that is either transcendental or
has a polynomial root barrier, it is possible to compute a finite set Pφ ⊆ Z witnessing the
satisfiability of φ. That is, the sentence ∃u1 . . . ∃un φ is equivalent to

∃u1 . . . ∃un
∨

(g1,...,gn)∈(Pφ)n (φ ∧
∧n
i=1 ui = ξgi) .

Proposition 8 follows (in particular, the bound on Pφ for the case of ξ with a polynomial
root barrier is derived by iteratively applying the bounds in Lemmas 13 to 15).

6 Proof of Theorem 1: classical numbers with polynomial root barriers

In this section, we complete the proof of Theorem 1 by establishing Theorem 1.1 and The-
orem 1.2. Following Theorem 4, we discuss natural choices for the base ξ > 0 that (i) can be
computed with polynomial-time Turing machines and (ii) have polynomial root barriers.

The case of ξ algebraic. Let ξ be a fixed algebraic number represented by (q, ℓ, u). The
following two results (the first one based on performing a dichotomy search to refine the
interval [ℓ, u]) show that one can construct a polynomial-time Turing machine for ξ, and
that ξ has a polynomial root barrier where the integer k from Theorem 4 equals 1.

▶ Lemma 16. Given an algebraic number α represented by (q, ℓ, u), one can construct a
polynomial-time Turing machine computing α.

▶ Theorem 17 ([10, Theorem A.1]). Let α ∈ R be a zero of a non-zero integer polyno-
mial q(x), and consider a non-constant integer polynomial p(x). Then, either p(α) = 0 or
ln |p(α)| ≥ −deg(q) ·

(
ln(deg(p) + 1) + ln h(p)

)
− deg(p) ·

(
ln(deg(q) + 1) + ln h(q)

)
.

By applying Theorem 4.1, Lemma 16 and Theorem 17, we deduce that the satisfiability
problem for ∃R(ξZ) is in 2Exp. However, for algebraic numbers it is possible to obtain a
better complexity result (ExpSpace) by slightly modifying Steps II and III of Algorithm 1.

14 On the Existential Theory of the Reals with Integer Powers of a Computable Number

Number Transcendence measure from [34] Simplified bound (α, β, η fixed)

π 240d(ln h+ d ln d)(1 + ln d) O(d2(ln d)2 ln h)
eπ 260d2(ln h+ ln d)(ln ln h+ ln d)(1 + ln d) O(d2(ln d)3(ln h)(ln ln h))
eη cη · d2(ln h+ ln d)

(ln lnh+ln d
ln lnh+ln max(1,ln d)

)2
O(d2(ln d)3(ln h)(ln ln h)2)

αη cα,η · d3(ln h+ ln d) ln lnh+ln d
(1+ln d)2 O(d3(ln d)2(ln h)(ln ln h))

lnα cα · d2 lnh+d ln d
1+ln d O(d3(ln d) ln h)

lnα
ln β cα,β · d3 lnh+d ln d

(1+ln d)2 O(d4(ln d) ln h)

Table 1 Transcendence measures for some classical real numbers. For convenience only, the table
assumes h ≥ 16 (so that ln ln h ≥ 1; replace h by h + 15 to avoid this assumption). The numbers
α > 0, β > 0 and η are fixed algebraic numbers, with β ̸= 1. The integers cη, cα,η, cα and cα,β are
constants that depend on, and can be computed from, polynomials representing α, β and η. In the
case of αη, η is assumed to be irrational. In the last line of the table, ln α

ln β
is assumed to be irrational.

Proof of Theorem 1.1. Let φ be a formula in input of Algorithm 1, and ψ(u1, . . . , un) to
be the formula obtained from φ after executing lines 1–6. In lines 7 and 8, guess the
integers g1, . . . , gn in binary, instead of unary. These numbers have at most m bits where,
by Theorem 7 and proposition 8, m is exponential in size(φ). Let gi = ±i

∑m−1
j=0 di,j2j , with

di,j ∈ {0, 1} and ±i ∈ {+1,−1}, so that ξgi =
∏m−1
j=0 ξ±idij2j . Note that the formula

γ(x0, . . . , xm−1) := q(x0) = 0 ∧ ℓ ≤ x0 ≤ u ∧
∧m−1
i=1 xi = (xi−1)2

has a unique solution: for every j ∈ [0..m − 1], xj must be equal to ξ2j . The formula ψ

is therefore equisatisfiable with the formula ψ′ := ψ[x0 / ξ] ∧ γ ∧
∧n
i=1 ui =

∏m−1
j=0 x

±idij

j ,
which (after rewriting ui =

∏m−1
j=0 x

±idij

j into ui
∏m−1
j=0 x

dij

j = 1 when ±i = −1) is a formula
from the existential theory of the reals of size exponential in size(φ). Since the satisfiability
problem for the existential theory of the reals is in PSpace [12], we conclude that checking
whether ψ′ is satisfiable can be done in ExpSpace. Accounting for Steps I and II, we thus
obtain a procedure running in non-deterministic exponential space (because of the guesses in
lines 7 and 8), which can be determinised by Savitch’s theorem [33]. ◀

The case of ξ among some classical transcendental numbers (proof sketch of Theorem 1.2).
In the context of transcendental numbers, root barriers are usually called transcendence
measures. Several fundamental results in number theory concern deriving a transcendence
measure for “illustrious” numbers, such as Euler’s e, π, or logarithms of algebraic numbers [30,
25, 34]. A few of these results are summarised in Table 1, which is taken almost verbatim
from [34, Fig. 1 and Corollary 4.2]. All transcendence measures in the table are polynomial
root barriers. Note that in the cases of αη and lnα

ln β , the transcendence measures hold under
further assumptions, which are given in the caption of the table.

Following Theorem 4.2, to prove Theorem 1.2 it suffices to show how to construct a
polynomial-time Turing machine for every number in Table 1, and derive polynomial root
barriers for the cases ξ = αη and ξ = lnα

ln β without relying on the additional assumptions in
the table. The following two results solve the first of these two issues.

▶ Theorem 18 ([6]). One can construct a polynomial-time Turing machine computing π.

▶ Lemma 19. Given a polynomial-time Turing machine computing r ∈ R,
1. one can construct a polynomial-time Turing machine computing er;

J. Gallego-Hernandez and A. Mansutti 15

2. if r > 0, one can construct a polynomial-time Turing machine computing ln(r).

Proof idea. The two Turing machines use the power series in the identities ex =
∑∞
j=0

xj

j!

and ln(x) = 2
∑∞
j=0

(1
2j+1

(
x−1
x+1

)2j+1)
, truncated to obtain the required accuracy. ◀

As an example, to construct the Turing machine for ln(α)
ln(β) we construct machines for the

following sequence of numbers: α and β (applying Lemma 16), ln(α) and ln(β) (Lemma 19.2),
1

ln(β) (Lemma 6) and 1
ln(β) · ln(α) (Lemma 5). For αη, we follow the operations in eη·ln(α).

Let us now discuss how to derive polynomial root barriers when ξ = αη or ξ = ln(α)
ln(β) .

In the case ξ = αη, Table 1 assumes η to be irrational. To check whether an algebraic number
represented by (q, ℓ, u) is rational, it suffices to factor q(x) into a product of irreducible
polynomials with rational coefficients, and test for any degree 1 factor n · x −m whether
the rational number m

n belongs to [ℓ, u]. The factorisation of q can be computed (in fact,
in polynomial time) using LLL [23]. If such a rational number does not exist, then η is
irrational and the polynomial root barrier for αη is given in Table 1. Otherwise, η = m

n

and the number αm
n is algebraic. In this case, rely on the following lemma to construct a

representation of αm
n , and then derive a polynomial root barrier by applying Theorem 17.

▶ Lemma 20. There is an algorithm that given a rational r and an algebraic number α > 0
represented by (q, ℓ, u), computes a representation (q′, ℓ′, u′) of the algebraic number αr.

We move to the case ξ = ln(α)
ln(β) , which Table 1 assumes to be irrational. Since ξ is positive,

α, β ̸∈ {0, 1}. We observe that for every m
n ∈ Q, we have ξ = m

n if and only if αnβ−m = 1.
(In other words, ln(α)

ln(β) ∈ Q if and only if α and β are multiplicatively dependent.) From a
celebrated result of Masser [27], the set {(m,n) ∈ Z2 : αnβ−m = 1} is a finitely-generated
integer lattice for which we can explicitly construct a basis K (see [11] for a polynomial-time
procedure). If K = {(0, 0)}, then ξ is irrational and its polynomial root barrier is given
in Table 1. Otherwise, since α, β ̸∈ {0, 1}, there is (m,n) ∈ K with n ̸= 0, and ξ = m

n . We
can then derive a polynomial root barrier by applying Theorem 17.

7 An application: the entropic risk threshold problem

We now apply some of the machinery developed for ∃R(ξZ) to remove the appeal to Schanuel’s
conjecture from the decidability proof of the entropic risk threshold problem for stochastic
games from [5]. Briefly, a (turn-based) stochastic game is a tuple G = (Smax, Smin, A,∆)
where Smax and Smin are disjoint finite set of states controlled by two players, A is a function
from states to a finite set of actions, and ∆ is a function taking as input a state s and an
action from A(s), and returning a probability distribution on the set of states. Below, we
write ∆(s, a, s′) for the probability associated to s′ in ∆(s, a), and set S := Smax ∪ Smin.

Starting from an initial state ŝ, a play of the game produces an infinite sequence of
states ρ = s1s2s3 . . . (a path), to which we associate the total reward

∑∞
i=1 r(si), where

r : S → R≥0 is a given reward function. A classical problem is to determine the strategy
for one of the players that optimises (minimises or maximises) its expected total reward.
Instead of expectation, the entropic risk yields the normalised logarithm of the average of the
function b−ηX , where the base b > 1 and the risk aversion factor η > 0 are real numbers, and
X is a random variable ranging over total rewards. We refer the reader to [5] for motivations
behind this notion, as well as all formal definitions.

Fix a base b > 1 and a risk aversion factor η ∈ R. The entropic risk threshold problem
ERisk[b−η] asks to determine if the entropic risk is above a threshold t. The inputs of this

16 On the Existential Theory of the Reals with Integer Powers of a Computable Number

problem are a stochastic game G having rational probabilities ∆(s, a, s′), an initial state ŝ, a
reward function r : S → Q≥0 and a threshold t ∈ Q. In [5], this problem is proven to be in
PSpace for b and η rationals, and decidable subject to Schanuel’s conjecture if b = e and
η ∈ Q (both results also hold when b and η are not fixed). We improve upon the latter result,
by establishing the following theorem (that assumes having representations of α and η):

▶ Theorem 21. The problems ERisk[e−η] and ERisk[α−η] are in Exp for every fixed algeb-
raic numbers α, η. When α, η are not fixed but part of the input, these problems are decidable.

Proof sketch. Ultimately, in [5] the authors show that the problem ERisk[b−η] is reducible
in polynomial time to the problem of checking the satisfiability of a system of constraints of
the following form (see [5, Equation 7] for an equivalent formula):

v(ŝ) ≤ (b−η)t ∧
∧
s∈T

v(s) = ds ∧
∧
s∈S

v(s) = ⊕a∈A(s)

(
(b−η)r(s)

∑
s′∈S

∆(s, a, s′) · v(s′)
)
, (1)

where T is some subset of the states S of the game, ds ∈ {0, 1}, and in the notation ⊕a∈A(s)
the symbol ⊕ stands for the functions min or max, depending on which of the two players
controls s. The formula has one variable v(s) for every s ∈ S, ranging over R.

Since z = max(x, y) is equivalent to z ≥ x∧ z ≥ y ∧ (z = x∨ z = y), and z = min(x, y) is
equivalent to z ≤ x ∧ z ≤ y ∧ (z = x ∨ z = y), except for the rationality of the exponents t
and r(s) (which we handle below), Formula 1 belongs to ∃R((b−η)Z).

Fix b > 1 to be either e or algebraic, and η > 0 to be algebraic. Assume to have access
to representations for these algebraic numbers, so that if η is represented by (q(x), ℓ, u), then
−η is represented by (q(−x),−u,−ℓ). Consider the problem of checking whether a formula φ
of the form given by Formula 1 is satisfiable. Since φ does not feature predicates (b−η)Z, but
only the constant b−η, instead of Algorithm 1 we can run the following simplified procedure:

I. Update all exponents t and r(s) of φ to be over N and written in unary. (1) Compute
the l.c.m. d ≥ 1 of the denominators of these exponents. (2) Rewrite every term (b−η)

p
q ,

where p
q is one such exponent, into (b

−η
d)

p·d
q . Note that p·d

q ∈ Z. (3) Rewrite φ into
φ[x / b

−η
d]∧xd = b−η∧x ≥ 0, with x fresh variable. (4) Opportunely multiply both sides

of inequalities by integer powers of x to make all exponents range over N. (5) Change
to a unary encoding for the exponents by adding further variables, as done in the proof
of Theorem 1.1 (Section 6). Overall, this step takes polynomial time in size(φ).

II. Eliminate x and all variables v(s) with s ∈ S. This is done by appealing to Theorem 7,
treating b−η as a free variable. The result is a Boolean combination ψ of polynomial
inequalities over b−η. This step runs in time exponential in size(φ).

III. Evaluate ψ. Call Algorithm 2 on each inequality, to then return ⊤ or ⊥ according to
the Boolean structure of ψ. Since we can construct a polynomial-time Turing machine
for b−η (Section 6), by Lemma 10 this step takes polynomial time in size(ψ). ◀

8 Conclusion and future directions

With the goal of identifying unconditionally decidable fragments or variants of R(ex), we
have studied the complexity of the theory ∃R(ξZ) for different choices of ξ > 0. Particularly
valuable turned out to be the introduction of root barriers (Definition 3): by relying on this
notion, we have established that ∃R(ξZ) is in ExpSpace if ξ is algebraic, and in 3Exp for
natural choices of ξ among the transcendental numbers, such as e and π.

A first natural question is how far are we from the exact complexity of these existential
theories, considering that the only known lower bound is inherited from the existential theory

J. Gallego-Hernandez and A. Mansutti 17

of the reals, which lies in PSpace [12]. While we have no answer to this question, we remark
that strengthening the hypotheses on ξ may lead to better complexity bounds. For example,
we claim that our ExpSpace result for algebraic numbers improves to Exp when ξ is an
integer (we aim at including this result in an extended version of this paper).

We have presented natural examples of bases ξ having polynomial root barriers. More
exotic instances are known: setting ξ = q(π,Γ(1

4)), where q is an integer polynomial and Γ is
Euler’s Gamma function, results in one such base. This follows from a theorem by Bruiltet [9,
Theorem B′] on the algebraic independence of π and Γ(1

4). This leads to a second natural
question: are there real numbers a, b satisfying aZ ∩ bZ = {1} for which the existential theory
of the reals enriched with both the predicates aZ and bZ is decidable? The undecidability
proof of the full FO theory proven in [20] relies heavily on quantifier alternation.

References
1 Melanie Achatz, Scott McCallum, and Volker Weispfenning. Deciding polynomial-exponential

problems. In ISSAC, pages 215–222, 2008. doi:10.1145/1390768.1390799.
2 Shaull Almagor, Dmitry Chistikov, Joël Ouaknine, and James Worrell. O-minimal invariants

for discrete-time dynamical systems. ACM Trans. Comput. Log., 23(2), 2022. doi:10.1145/
3501299.

3 Hirokazu Anai and Volker Weispfenning. Deciding linear-trigonometric problems. In ISSAC,
pages 14–22, 2000. doi:10.1145/345542.345567.

4 Jeremy Avigad and Yimu Yin. Quantifier elimination for the reals with a predicate for the
powers of two. Theor. Comput. Sci., 370(1-3):48–59, 2007. doi:10.1016/J.TCS.2006.10.005.

5 Christel Baier, Krishnendu Chatterjee, Tobias Meggendorfer, and Jakob Piribauer. Entropic
risk for turn-based stochastic games. In MFCS, volume 272, pages 15:1–15:16, 2023. doi:
10.4230/LIPICS.MFCS.2023.15.

6 David H. Bailey, Peter B. Borwein, and Simon Plouffe. On the rapid computation
of various polylogarithmic constants. Math. Comput., 66:903–913, 1997. doi:10.1090/
S0025-5718-97-00856-9.

7 Gilles Barthe, Rohit Chadha, Paul Krogmeier, A. Prasad Sistla, and Mahesh Viswanathan.
Deciding accuracy of differential privacy schemes. Proc. ACM Program. Lang., 5(POPL):1–30,
2021. doi:10.1145/3434289.

8 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. On the combinatorial and algebraic
complexity of quantifier elimination. J. ACM, 43(6):1002–1045, 1996. doi:10.1145/235809.
235813.

9 Sylvain Bruiltet. D’une mesure d’approximation simultanée à une mesure d’irrationalité: le
cas de Γ(1/4) et Γ(1/3). Acta Arith., 104(3):243–281, 2002. doi:10.4064/aa104-3-3.

10 Yann Bugeaud. Approximation by Algebraic Numbers. Cambridge Tracts in Mathematics.
Cambridge University Press, 2004. doi:10.1017/CBO9780511542886.

11 Jin-yi Cai, Richard J. Lipton, and Yechezkel Zalcstein. The complexity of the A B C problem.
SIAM J. Comput., 29(6):1878–1888, 2000. doi:10.1137/S0097539794276853.

12 John Canny. Some algebraic and geometric computations in PSPACE. In STOC, pages
460–467, 1988. doi:10.1145/62212.62257.

13 Dmitry Chistikov, Stefan Kiefer, Andrzej S. Murawski, and David Purser. The big-o problem.
Log. Methods Comput. Sci., 18(1), 2022. doi:10.46298/LMCS-18(1:40)2022.

14 Mohan Dantam and Amaury Pouly. On the decidability of reachability in continuous time
linear time-invariant systems. In HSCC, 2021. doi:10.1145/3447928.3456705.

15 Laure Daviaud, Marcin Jurdziński, Ranko Lazić, Filip Mazowiecki, Guillermo A. Pérez, and
James Worrell. When are emptiness and containment decidable for probabilistic automata?
JCSS, 119:78–96, 2021. doi:10.1016/j.jcss.2021.01.006.

16 Andreas Dolzmann and Thomas Sturm. REDLOG: computer algebra meets computer logic.
SIGSAM Bull., 31(2):2–9, 1997. doi:10.1145/261320.261324.

https://doi.org/10.1145/1390768.1390799
https://doi.org/10.1145/3501299
https://doi.org/10.1145/3501299
https://doi.org/10.1145/345542.345567
https://doi.org/10.1016/J.TCS.2006.10.005
https://doi.org/10.4230/LIPICS.MFCS.2023.15
https://doi.org/10.4230/LIPICS.MFCS.2023.15
https://doi.org/10.1090/S0025-5718-97-00856-9
https://doi.org/10.1090/S0025-5718-97-00856-9
https://doi.org/10.1145/3434289
https://doi.org/10.1145/235809.235813
https://doi.org/10.1145/235809.235813
https://doi.org/10.4064/aa104-3-3
https://doi.org/10.1017/CBO9780511542886
https://doi.org/10.1137/S0097539794276853
https://doi.org/10.1145/62212.62257
https://doi.org/10.46298/LMCS-18(1:40)2022
https://doi.org/10.1145/3447928.3456705
https://doi.org/10.1016/j.jcss.2021.01.006
https://doi.org/10.1145/261320.261324

18 On the Existential Theory of the Reals with Integer Powers of a Computable Number

17 Lou van den Dries. The field of reals with a predicate for the powers of two. Manuscripta
Math., 54:187–196, 1986. doi:10.1007/BF01171706.

18 Lou van den Dries and Ayhan Günaydin. The fields of real and complex numbers with a small
multiplicative group. Proc. London Math. Soc., 2006. doi:10.1017/S0024611506015747.

19 Teemu Hankala, Miika Hannula, Juha Kontinen, and Jonni Virtema. Complexity of neural
network training and ETR: extensions with effectively continuous functions. In AAAI, pages
12278–12285, 2024. doi:10.1609/AAAI.V38I11.29118.

20 Philipp Hieronymi. Defining the set of integers in expansions of the real field by a closed discrete
set. Proc. Am. Math. Soc., 138(6):2163–2168, 2010. doi:10.1090/S0002-9939-10-10268-8.

21 Omri Isac, Yoni Zohar, Clark W. Barrett, and Guy Katz. DNN verification, reachability,
and the exponential function problem. In CONCUR, pages 26:1–26:18, 2023. doi:10.4230/
LIPICS.CONCUR.2023.26.

22 A. G. Khovanskii. Fewnomials. Transl. Math. Monogr., 88, 1991. Translated by Smilka
Zdravkovska. doi:10.1090/mmono/088.

23 Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with
rational coefficients. Math. Ann., 261:515–534, 1982. doi:10.1007/bf01457454.

24 Angus Macintyre and Alex J. Wilkie. On the decidability of the real exponential field. In
Piergiorgio Odifreddi, editor, Kreiseliana. About and Around Georg Kreisel, pages 441–467. A
K Peters, 1996.

25 Kurt Mahler. Zur approximation der exponentialfunktion und des logarithmus. Teil I. Journal
für die reine und angewandte Mathematik, 166:118–150, 1932.

26 David Marker. Model Theory: An Introduction. Graduate Texts in Mathematics. Springer,
2002. doi:10.1007/b98860.

27 D. W. Masser. Linear relations on algebraic groups, pages 248–262. Cambridge University
Press, 1988.

28 Scott McCallum and Volker Weispfenning. Deciding polynomial-transcendental problems. J.
Symb. Comput., 47(1):16–31, 2012. doi:10.1016/J.JSC.2011.08.004.

29 Frank W. J. Olver, , Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark. The NIST
Handbook of Mathematical Functions. Cambridge University Press, 2010.

30 J. Popken. Zur transzendenz von e. Mathematische Zeitschrift, 29:525–541, 1929.
31 Q. I. Rahman and G. Schmeisser. Analytic Theory of Polynomials. Oxford University Press,

09 2002. doi:10.1093/oso/9780198534938.001.0001.
32 H. G. Rice. Recursive real numbers. Proc. Am. Math. Soc., 5(5):784–791, 1954. doi:

10.2307/2031867.
33 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.

JCSS, 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.
34 Michel Waldschmidt. Transcendence measures for exponentials and logarithms. J. Aust. Math.

Soc., 25(4):445–465, 1978. doi:10.1017/S1446788700021431.
35 Volker Weispfenning. The complexity of almost linear diophantine problems. 10(5):395–404,

1990. doi:10.1016/S0747-7171(08)80051-X.

https://doi.org/10.1007/BF01171706
https://doi.org/10.1017/S0024611506015747
https://doi.org/10.1609/AAAI.V38I11.29118
https://doi.org/10.1090/S0002-9939-10-10268-8
https://doi.org/10.4230/LIPICS.CONCUR.2023.26
https://doi.org/10.4230/LIPICS.CONCUR.2023.26
https://doi.org/10.1090/mmono/088
https://doi.org/10.1007/bf01457454
https://doi.org/10.1007/b98860
https://doi.org/10.1016/J.JSC.2011.08.004
https://doi.org/10.1093/oso/9780198534938.001.0001
https://doi.org/10.2307/2031867
https://doi.org/10.2307/2031867
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1017/S1446788700021431
https://doi.org/10.1016/S0747-7171(08)80051-X

J. Gallego-Hernandez and A. Mansutti 19

A Proofs of the statements in Section 3

▶ Lemma 5. Given Turing machines T and T ′ computing reals a and b, one can construct
a Turing machine T ′′ computing a · b. If T and T ′ run in polynomial time, then so does T ′′.

Proof. Let ℓ := ⌈log(|T0|+ |T ′
0|+ 3)⌉. We define T ′′ as the Turing machine that on input

n returns the rational number Tn+ℓ · T ′
n+ℓ. Clearly, T ′′ runs in time polynomial in n. We

show that |a · b− T ′′| ≤ 1
2n for every n ∈ N, i.e., T ′′ computes a · b. Let ϵ1 := Tn+ℓ − a and

ϵ2 := T ′
n+ℓ − b. Recall that |ϵ1| , |ϵ2| ≤ 1

2n+ℓ . Then,

|a · b− T ′′| =
∣∣a · b− Tn+ℓ · T ′

n+ℓ
∣∣ = |a · b− (a+ ϵ1) · (b+ ϵ2)|

= |a · ϵ2 + b · ϵ1 + ϵ1 · ϵ2|
≤ |a| · |ϵ2|+ |b| · |ϵ1|+ |ϵ1| · |ϵ2|

<
|a|+ |b|+ 1

2n+ℓ since |ϵ1| , |ϵ2| ≤
1

2n+ℓ

= |a|+ |b|+ 1
2n+⌈log(|T0|+|T ′

0|+3)⌉ def. of ℓ

≤ 1
2n
|a|+ |b|+ 1
|T0|+ |T ′

0|+ 3

≤ 1
2n
|a|+ |b|+ 1
|a|+ |b|+ 1 since |a| ≤ |T0|+ 1 and |b| ≤ |T ′

0|+ 1

≤ 1
2n ◀

▶ Lemma 6. Given a Turing machine T computing a non-zero real number r, one can
construct a Turing machine T ′ computing 1

r . If T runs in polynomial time, then so does T ′.

Proof. Compute the smallest k ≥ 2 such that 1
2k < |Tk|; its existence follows from the fact

that limn→∞ Tn = r ̸= 0, whereas limn→∞
1

2n = 0. Since |r − Tk| ≤ 1
2k , we have that and Tk

and r have the same sign, and 0 < |Tk| − 1
2k ≤ |r|. Let Tk = p

q , where p ∈ Z \ {0} and q ≥ 1,
and define ℓ := 2(k + ⌈log(q)⌉).

For the time being, let us give a construction of T ′ that depends on the sign of Tk.

case: Tk > 0. We define T ′ as the Turing machine that on input n returns the rational
1

max(|Tn+ℓ|,Tk−2−k) . Clearly, if T runs in time polynomial in n, so does T ′. We prove that
T ′ computes 1

r . First, observe that |r − Tn+ℓ| ≤ 1
2n+ℓ and r > 0 imply |r − |Tn+ℓ|| ≤ 1

2n+ℓ .
Then, because 0 < Tk − 2k ≤ r, we have

∣∣r −max(|Tn+ℓ| , Tk − 2−k)
∣∣ ≤ 1

2n+ℓ .
For every n ∈ N,∣∣∣∣1

r
− T ′

n

∣∣∣∣ =
∣∣∣∣r −max(|Tn+ℓ| , Tk − 2−k)
r ·max(|Tn+ℓ| , Tk − 2−k)

∣∣∣∣
≤ 1

2n+ℓ ·
1

r ·max(|Tn+ℓ| , Tk − 2−k)

≤ 1
2n+ℓ · (Tk − 2−k)2 since 0 < Tk − 2−k ≤ r

≤ 1
2n+ℓ+2 log(Tk−2−k)

To conclude the proof it suffices to show ℓ+ 2 log(Tk − 2−k) ≥ 0:

ℓ+ 2 log(Tk − 2−k)

20 On the Existential Theory of the Reals with Integer Powers of a Computable Number

= ℓ+ 2 log((2kTk − 1)2−k) = ℓ+ 2 log
((2kp− q

q

)
2−k

)
= ℓ+ 2 log(2kp− q)− 2 log(q)− 2k
≥ ℓ− 2 log(q)− 2k since 2kp− q is an integer,

from 1
2k < Tk we get log(2kp− q) ≥ 0

= 2(k + ⌈log(q)⌉ − log(q)− k) by def. of ℓ
≥ 0.

case: Tk < 0. Since |r| is computed by the machine that on input n returns |Tn|, by following
the previous case of the proof we conclude that 1

|r| is computed by the Turing machine that
on input n returns the positive rational 1

max(|Tn+ℓ|,|Tk|−2−k) . Then, the Turing machine
that on input n returns the negative rational −1

max(|Tn+ℓ|,|Tk|−2−k) computes 1
r .

Putting the two cases together we conclude that 1
r is computed by the Turing machine that

on input n returns the non-zero rational number s
max(|Tn+ℓ|,|Tk|−2−k) , where s = +1 if Tk > 0,

and otherwise s = −1. ◀

B Proofs of the statements in Section 4 (except for Proposition 8
which is proven in Appendix C) and proof of Theorem 4

▶ Lemma 22. Let p(x) be an integer polynomial, and let r ∈ R with |r| ≤ K for some K ≥ 1.
Consider L,M ∈ N satisfying M ≥ L + log(h(p) + 1) + 2 deg(p) · log(K + 1). For every
r∗ ∈ R, if |r − r∗| ≤ 2−M , then |p(r)− p(r∗)| ≤ 2−L.

Proof. Let p(x) :=
∑d
j=0 ai · xj , and suppose |r − r∗| ≤ 2−M . If d = 0, then p is a constant

polynomial and |p(r)− p(r∗)| = 0, which proves the lemma. Below, we assume d ≥ 1.
To show that |p(r)− p(r∗)| ≤ 2−L, let us start by bounding the maximum of the

absolute value that the first derivative p′(x) =
∑d
j=1 aj · j · xj−1 of p takes in the interval

I := [−(K + 1),K + 1]. For every x ∈ R, |p′(x)| ≤ g(x) :=
∑d
j=1

∣∣aj · j · xj−1
∣∣. Since the

function g is monotonous over R≥0, and g(y) = g(−y) for every y ∈ R, we conclude that for
every x ∈ I, |p′(x)| ≤ g(K + 1) =

∑d
j=1 |aj | · j · (K + 1)j−1 ≤ d2h(p)(K + 1)d−1.

From |r| ≤ K and |r − r∗| ≤ 2−M , where M ≥ 0, we have that both r and r∗ belong to I.
This implies |p(r)−p(r∗)|

|r−r∗| ≤ max{|p′(x)| : x ∈ I} ≤ d2h(p)(K + 1)d−1. So,

|p(r)− p(r∗)|
≤ d2h(p)(K + 1)d−1 |r − r∗|

≤ 22 log(d)2log(h(p))2(d−1) log(K+1)2−M

≤ 22 log(d)+log(h(p))+(d−1) log(K+1)−(L+log(h(p)+1)+2d·log(K+1)) bound on M

≤ 22 log(d)−L−(d+1)·log(K+1)

≤ 2−L. since 2 log(d) ≤ d and log(K + 1) ≥ 1 ◀

▶ Lemma 9. Algorithm 2 respects its specification.

Proof. Let p(x) =
∑d
j=0 aj · xj be input integer polynomial, having degree d = deg(p) ≥ 1

and height h = h(p). Recall that, from the definition of root barrier, whenever p(ξ) ̸= 0
we have |p(ξ)| ≥ e−σ(d,h) > 2−2σ(d,h), where the last inequality follows from σ(d, h) ≥ 0.
Following line 1, define n := 1 + 2σ(d, h) + 3d ⌈log(h+ 4)⌉. Note that n ≥ 5.

J. Gallego-Hernandez and A. Mansutti 21

Let us first assume that |Tn| ≥ h+ 2. In this case, the algorithm returns the sign of p(Tn)
(line 3). We show that p(Tn) and p(ξ) have the same sign. Since |ξ − Tn| ≤ 2−1, we have
|ξ| > h+ 1. By a result of Cauchy [31, Chapter 8], h+ 1 is an upper bound to the absolute
value of every root of p. This implies that there are no root of p in the interval [ξ, Tn], so in
particular ξ and Tn are not roots of p, and p(ξ) and p(Tn) have the same sign.

Let us consider now the case |Tn| < h+2, and so |ξ| ≤ K := h+3. From the definition of n
and the fact that |ξ − Tn| ≤ 2−n, by Lemma 22 we conclude that |p(ξ)− p(Tn)| ≤ 2−2σ(d,h)−1.
This implies that if |p(Tn)| ≤ 2−2σ(d,h)−1 then p(ξ) = 0, and otherwise p(Tn) and p(ξ) have
the same sign; which concludes the proof of the lemma (see lines 2 and 3). Indeed,

If p(ξ) = 0 then |p(Tn)| ≤ 2−2σ(d,h)−1 (from |p(ξ)− p(Tn)| ≤ 2−2σ(d,h)−1).
If p(ξ) ̸= 0, then |p(Tn)| > 2−2σ(d,h)−1 :

|p(Tn)| ≥ |p(ξ)| − |p(ξ)− p(Tn)| from properties of the absolute value

> 2−2σ(d,h) − 2−2σ(d,h)−1 bounds on |p(ξ)| and |p(ξ)− p(Tn)|

= 2−2σ(d,h)−1.

Moreover, |p(ξ)− p(Tn)| ≤ 2−2σ(d,h)−1 and |p(Tn)| > 2−2σ(d,h)−1 imply that p(ξ) > 0 if
and only if p(Tn) > 0. ◀

▶ Lemma 10. Let ξ ∈ R be a number computed by a Turing machine T and having a
polynomial root barrier σ. If T runs in polynomial time, then so does Algorithm 2.

Proof. When encoded in unary, the number n defined in line 1 has size polynomial in the
size of the input polynomial p. Then, to compute Tn only requires polynomial time in
size(p). Observe that this implies Tn = q

d for some integers q and d encoded in binary using
polynomially many bits with respect to size(p). Evaluating a polynomial at such a rational
point can be done in polynomial time in the size of the polynomial and of the bit size of the
rational. This means that also lines 2 and 3 run in polynomial time in size(p). ◀

▶ Lemma 11. Algorithm 1 respects its specification.

Proof. Consider an input formula φ(x1, . . . , xn), and let φ′(u1, . . . , un, v1, . . . , vn) be the
formula obtained from it at the completion of the for loop of line Algorithm 1. Note that if
φ and φ′ are equisatisfiable, then the lemma follows. Indeed,

By Theorem 7, the formula ψ(u1, . . . , un) in line 6 is equisatisfiable with φ′,
By Proposition 8, ψ is satisfiable if and only if it has a solution from the set S =
{(ξj1 , . . . , ξjn) : j1, . . . , jn ∈ P}, where P is the set from Proposition 8. Lines 7 and 8,
search for such an element of S.
Following line 9, the algorithm returns ⊤ if and only if ψ evaluates to true on a point
from the set S. For this evaluation step, one consider all polynomials inequalities
p(ξ, ξg1 , . . . , ξgn) ∼ 0 in ψ(ξg1 , . . . , ξgn), and evaluate its sign using the algorithm for
Signξ. As a result of this operation, ψ(ξg1 , . . . , ξgn) is updated into a Boolean combination
of ⊤ and ⊥, reduces to just ⊤ or ⊥ after all Boolean connectives are evaluated.

So, to conclude the proof we just have to formally prove that φ and φ′ are equisatisfiable.
Recall that for every real number r ∈ R there is a pair of numbers (u, v) such that

x = u · v, u ∈ ξZ and either v = 0 or 1 ≤ |v| < ξ. If r ̸= 0, the pair (u, v) is unique. Then,
the formula φ is equisatisfiable with

φ[ui · vi / xi : i ∈ [1..n]] ∧
n∧
i=1

(ξZ(ui) ∧ (vi = 0 ∨ 1 ≤ |v| < ξ)) (2)

22 On the Existential Theory of the Reals with Integer Powers of a Computable Number

where u1, . . . , un, v1, . . . , vn are fresh variables. The formula φ[ui · vi / xi : i ∈ [1..n]] features
atomic formulae ξZ(ui · vi). Under the assumption that ξZ(ui) ∧ (vi = 0 ∨ 1 ≤ |v| < ξ)
holds, note that ξZ(ui · vi) is equivalent to vi = 1. Then, we can replace in the formula
from Equation (2) every occurrence of ξZ(ui · vi) with vi = 1, preserving equivalence. The
formula we obtain is exactly the formula φ′, which is thus equisatisfiable with φ. ◀

▶ Theorem 4. Let ξ > 0 be a real number computable by a polynomial-time Turing machine,
and let σ(d, h) := c · (d+ ⌈ln h⌉)k be a root barrier of ξ, for some c, k ∈ N≥1.
1. If k = 1, then the satisfiability problem for ∃R(ξZ) is in 2Exp.
2. If k > 1, then the satisfiability problem for ∃R(ξZ) is in 3Exp.

Proof. As discussed in Section 4.5, it suffices to consider instances of the problem where
ξ > 1. We solve these instances with Algorithm 1, which he have proven correct in Lemma 11.
Below, we analyse the complexity of this algorithm, considering the three steps separately.

Consider an input formula φ(x1, . . . , xn) with m1 occurrences of polynomial (in)equalities
g ∼ 0, all with deg(g) ≤ d and h(g) ≤ h, and m2 occurrences of the predicate ξZ.

We run Algorithm 1 on φ:
Step I (runtime: exponential in size(φ)). Lines 1–5 update φ by (1) replacing the occur-

rences of ξZ(xi) with vi = 1, (2) replacing the occurrences of xi with ui ·vi and (3) adding
constraints vi = 0 and 1 ≤ |vi| < ξ. Let φ′ be the formula obtained after these updates.
The size of φ′ is polynomial in size(φ). Moreover, φ′ has:
1. at most 2n variables,
2. at most m1 +m2 + 5n polynomial (in)equalities (recall that 1 ≤ |vi| < ξ is a shortcut

for the formula −ξ < vi ≤ 1 ∨ 1 ≤ vi < ξ),
3. and all its polynomials (in)equalities g ∼ 0 are such that deg(g) ≤ 2d and h(g) ≤ h.

The increase in the degree is due to the replacements of variables xi with ui · vi.
The procedure then eliminates the variables v1, . . . , vn by calling RealQE (line 6).
Following Theorem 7, the runtime of RealQE is exponential in size(φ), and therefore ψ
has size exponential in size(φ). More precisely ψ has
4. at most n variables,
5. at most ((m1 +m2 + 5n) · 2 · d+ 1)O(n2) polynomial (in)equalities,
6. and all its (in)equalities g ∼ 0 are s.t. deg(g) ≤ (2d)O(n) and h(g) ≤ (h+ 1)(2d)O(n2) .

Step II (runtime: 2-exp. or 3-exp. in size(φ), depending on the value of k).
For each variable ui, the algorithm guesses an integer gi written in unary (lines 7 and 8).
Let H := max(8, h(ψ)) and D := deg(ψ) + 2. By Proposition 8,

|gi| ≤ (2c ⌈lnH⌉)D
25n2

·kD8n

≤
(

2c
⌈
ln

(
(2(h+ 1))(2d)O(n2))⌉)(2d)O(n3)·k(2d)O(n2)

,

that is, if k = 1 then |gi| is doubly exponential in size(φ), and otherwise, for every k ≥ 2,
|gi| is triply exponential in size(ψ). We can implement lines 7–9 deterministically in the
following naïve way:

7: for (g1, . . . , gn) ∈ Pn do
8: if the assignment (u1 = ξg1 , . . . , un = ξgn) is a solution to ψ then
9: return ⊤

10: return ⊥
Since each gi is stored in unary encoding, the number of iterations of the for loop above
is either doubly or triply exponential in size(φ), depending on whether k = 1.

J. Gallego-Hernandez and A. Mansutti 23

Step III (runtime: 2-exp. or 3-exp. in size(φ), depending on the value of k).
The algorithm evaluates whether (u1 = ξg1 , . . . , un = ξgn) is a solution to ψ. As
discussed in the body of the paper, ψ(ξg1 , . . . , ξgn) is a Boolean combination of polynomial
(in)equalities p(ξ) ∼ 0, where ξ may occur with negative powers (as some gi may be
negative). We rewrite each (in)equality p(ξ) ∼ 0 as ξ−d · p ∼ 0, where d is the smallest
negative integer occurring as a power of ξ in p (or 0 if such an integer does not exists), thus
obtaining a formula where all polynomials have non-negative degrees. Let us denote by ψ′

this formula. Note that this update takes polynomial time in the size of ψ(ξg1 , . . . , ξgn);
that is doubly or triply exponential time in size(φ), depending on which case among k = 1
or k ≥ 2 we are considering.
After this update, we determine the sign that each inequality in ψ′. These inequalities
are of the form p(ξ) ∼ 0, and hence this problem can be solved with Algorithm 2. (Note
that the degree p depends on g1, . . . , gn.) By Lemma 10, the runtime of this algorithm
is polynomial in the size of p; which again is doubly or triply exponential in size(φ),
depending on k. This enables us to simplify all inequalities to either ⊤ or ⊥, to then
return ⊤ or ⊥ depending on the Boolean structure of ψ′. Observe that ψ and ψ′ have
the same Boolean structure. Then, since ψ has size exponential in size(φ), evaluating the
Boolean structure of ψ′ takes exponential time.

Putting all together, we conclude that Algorithm 1 runs in doubly exponential time if k = 1,
and in triply exponential time if k ≥ 2. ◀

C Proofs of the statements in Section 5 and proof of Proposition 8

Throughout this appendix, we write =⇒ and ⇐⇒ for the Boolean connectives of
implication and double implication. Observe that, when φ and ψ are quantifier-free formulae
from ∃R(ξZ), φ =⇒ ψ and φ ⇐⇒ ψ can be seen as shortcuts for formulae of ∃R(ξZ) given
in the grammar from Section 3. Despite this, sometimes it is more convenient to apply these
Boolean connectives also on quantified formulae, and for these reasons in this appendix we
often look at the full first-order theory of R(ξZ), instead of just ∃R(ξZ). The grammar of
R(ξZ) is obtained from the one of ∃R(ξZ) by adding arbitrary negations.

We start with an auxiliary technical lemma that implies Lemma 12.

▶ Lemma 23. Let p(z) :=
∑n
i=1 qi(ξ) · ξzi , where z = (z1, . . . , zn) and each qi(x) is an

integer polynomial. There is a finite set G ⊆ Z with the following property: for every z∗ ∈ Zn,
if p(z∗) > 0 then λ(p(z∗)) = ξg · ξz∗

i for some g ∈ G and i ∈ [1..n]. Moreover:
I. If ξ is a computable transcendental number, there is an algorithm computing G from p.

II. If ξ has a root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k, for some c, k ∈ N≥1, then,

G := [−L..L], where L :=
(
23cD ⌈ln(H)⌉

)6nk3n

,

with H := max{8,h(qi) : i ∈ [1, n]}, and D := max{deg(qi) + 2 : i ∈ [1, n]}.

Proof. Note that for n = 0 we have p(z∗) = 0 for every z∗ ∈ Zn, and we can take G = ∅.
Therefore, throughout the proof, we assume n ≥ 1. We start by considering the first statement
of the lemma, which requires showing the existence of the finite set G. To prove this, we
first fix a vector z∗ = (z∗

1 , . . . , z
∗
n) ∈ Zn such that p(z∗) > 0, and use it to derive a definition

for G that does not, in fact, depend on z∗. Without loss of generality, we work under the
additional assumption that z∗

1 ≥ · · · ≥ z∗
n.

The following claim provides an analysis on the value of λ(p(z∗)).

24 On the Existential Theory of the Reals with Integer Powers of a Computable Number

▷ Claim 24. There is a non-empty interval [j..ℓ], with j, ℓ ∈ [1..n], and natural numbers
gj , . . . , gℓ−1 with respect to which the recursively defined polynomials Qj , . . . , Qℓ given by

Qj(x) := qj(x),
Qr(x) := Qr−1(x) · xgr−1 + qr(x), for every r ∈ [j + 1, ℓ],

satisfy the following properties:
A. the numbers Qj(ξ), . . . , Qℓ−1(ξ) are all non-zero, and Qℓ(ξ) is (strictly) positive,
B. for every r ∈ [j..ℓ−1], the number ξgr belongs to the interval

[
1 , |qr+1(ξ)|+···+|qn(ξ)|

|Qr(ξ)|
]
, and

C. either λ(p(z∗)) = λ(Qℓ(ξ)) · ξz
∗
ℓ or λ(Qℓ(ξ)·(ξ−1))

ξ · ξz∗
ℓ ≤ λ(p(z∗)) ≤ λ(Qℓ(ξ)·(ξ+1))

ξ · ξz∗
ℓ .

Proof. The proof is by induction on n.
base case: n = 1. In this case, p(z1) is the expression q1(ξ) · ξz1 . By definition of λ,

λ(p(z∗
1)) = λ(q1(ξ)) · ξz∗

1 . Observe that p(z∗
1) > 0 implies q1(ξ) > 0, and thus λ(q1(ξ)) is

a defined integer power of ξ. Taking the interval [1..1] shows Claim 24.
induction step: n ≥ 2. Below, we assume q1(ξ) to be non-zero. Indeed, if q1(ξ) = 0, we

can then apply the induction hypothesis on p̂(z2, . . . , zn) :=
∑n
i=2 qi(ξ) · ξzi , concluding

the proof (since p(z∗) = p̂(z∗
2 , . . . , z

∗
n)).

We split the proof depending on whether ξz∗
1 ≥

∑n

i=2
|qi(ξ)|

|q1(ξ)| · ξz∗
2 +1 holds.

case: ξz∗
1 ≥

∑n

i=2
|qi(ξ)|

|q1(ξ)| · ξz∗
2 +1. Observe that in this case, q1(ξ) must be positive. We

show that λ(q1(ξ)·(ξ−1))
ξ · ξz∗

1 ≤ λ(p(z∗)) ≤ λ(q1(ξ)·(ξ+1))
ξ · ξz∗

1 , thus establishing that
taking the interval [1..1] proves Claim 24 also in this case. For the lower bound:

p(z∗) ≥ q1(ξ) · ξz
∗
1 −

n∑
i=2
|qi(ξ)| · ξz

∗
i by def. of p

≥ q1(ξ) · ξz
∗
1 − ξz

∗
2 ·

n∑
i=2
|qi(ξ)| z∗

2 ≥ z∗
i for all i ∈ [2, n]

≥ q1(ξ) · ξz
∗
1 − q1(ξ) · ξz

∗
1 −1 assumption of this case and q1(ξ) > 0

≥ q1(ξ) · (ξ − 1) · ξz
∗
1 −1.

Since a ≥ b implies λ(a) ≥ λ(b), we thus obtain λ(p(z∗)) ≥ λ(q1(ξ)·(ξ−1))
ξ · ξz∗

1 .
For the upper bound:

p(z∗) ≤ q1(ξ) · ξz
∗
1 +

n∑
i=2
|qi(ξ)| · ξz

∗
2 by def. of p, and z∗

2 ≥ z∗
i for all i ∈ [2, n]

≤ q1(ξ) · ξz
∗
1 + q1(ξ) · ξz

∗
1 −1 assumption of this case and q1(ξ) > 0

≤ q1(ξ) · (ξ + 1) · ξz
∗
1 −1,

and again from the properties of λ, we obtain λ(p(z∗)) ≤ λ(q1(ξ)·(ξ+1))
ξ · ξz∗

1 .

case: ξz∗
1 <

∑n

i=2
|qi(ξ)|

|q1(ξ)| · ξz2+1. We have ξz∗
1 ≤

∑n

i=2
|qi(ξ)|

|q1(ξ)| · ξz2 . Since z∗
1 ≥ z∗

2 , there

must be g1 ∈ N such that ξg1 ∈
[
1,

∑n

i=2
|qi(ξ)|

|q1(ξ)|
]

and ξz
∗
1 = ξg1 · ξz∗

2 . We define

q′
2(x) := q1(x) · xg1 + q2(x), p′(z2, . . . , zn) := q′

2(ξ) · ξz2 +
n∑
i=3

qi(ξ) · ξzi .

J. Gallego-Hernandez and A. Mansutti 25

Therefore, p(z∗) = p′(z∗
2), where z∗

2 := (z∗
2 , . . . , z

∗
ℓ). By induction hypothesis, there is

a non-empty interval [j..ℓ], with j, ℓ ∈ [2..n], and natural numbers gj , . . . , gℓ−1 with
respect to which the recursively defined polynomials Qj , . . . , Qℓ given by

Qj(x) :=
{
q′

2(x) if j = 2
qj(x) otherwise

Qr(x) := Qr−1(x) · xgr−1 + qr(x), for every r ∈ [j + 1..ℓ],

satisfy that (A′) Qj(ξ), . . . , Qℓ−1(ξ) are all non-zero and Qℓ(ξ) is positive, (B′) for
every r ∈ [j, ℓ− 1], the number ξgr belongs to

[
1 , |qr+1(ξ)|+···+|qn(ξ)|

|Qr(ξ)|
]
, and (C′) either

λ(p′(z∗
2)) = λ(Qℓ(ξ)) · ξz

∗
ℓ or λ(Qℓ(ξ)·(ξ−1))

ξ · ξz∗
ℓ ≤ λ(p′(z∗

2)) ≤ λ(Qℓ(ξ)·(ξ+1))
ξ · ξz∗

ℓ .
If j ̸= 2, then Qj(x) = qj(x), and thus from p(z∗) = p′(z∗

2) we conclude that the
interval [j..ℓ] and the numbers gj , . . . , gℓ−1 defined for p′ also establish the claim for p.
Otherwise, when j = 2 we have Qj(x) = q′

2(x) = q1(x) · xg1 + q2(x). Recall that q1(ξ)

is non-zero and that, by definition of g1, we have ξg1 ∈
[
1,

∑n

i=2
|qi(ξ)|

|q1(ξ)|
]
. Therefore,

taking the interval [1..ℓ] and the numbers g1, . . . , gℓ−1 proves the claim for p. ◁

With Claim 24 at hand, we now argue that the finite set G ⊆ Z required by the lemma
exists. The key observation is that the definition of Qℓ from Claim 24 does not depend on z∗.
Hence, a suitable set G can be defined as follows. Let Q be the set of all polynomials Q for
which there are j ≤ ℓ ∈ [1..n], gj , . . . , gℓ−1 ∈ N, and polynomials Qj , . . . , Qℓ such that:
1. the polynomial Q is equal to Qℓ,
2. the polynomials Qj , . . . , Qℓ are defined as

Qj(x) := qj(x),
Qr(x) := Qr−1(x) · xgr−1 + qr(x), for every r ∈ [j + 1, ℓ],

3. the numbers Qj(ξ), . . . , Qℓ−1(ξ) are all non-zero, and Qℓ(ξ) is (strictly) positive,
4. for every r ∈ [j..ℓ− 1], and the number ξgr belongs to the interval

[
1 , |qr+1(ξ)|+···+|qn(ξ)|

|Qr(ξ)|
]
.

In a nutshell, Q contains all polynomials Qℓ that might be considered in Claim 24 as the
vector z∗ varies. Items 2–4 ensure that Q is a finite set. We define G := [minB..maxB],
where B is defined as the set

B :=
{
β ∈ Z : there is Q ∈ Q such that ξβ ∈

{
λ(Q(ξ)), λ(Q(ξ)·(ξ−1))

ξ , λ(Q(ξ)·(ξ+1))
ξ

}}
.

Since Q is finite, then so are B and G.
It is now simple to see that G satisfies the property required by the first statement of the

lemma. Indeed, consider a vector z∗ = (z∗
1 , . . . , z

∗
n) ∈ Zn such that p(z∗) > 0 (this is not

necessarily the vector we have fixed at the beginning of the proof). By definition of Q and
by Claim 24, there is a polynomial Q in Q such that

Q(ξ) is strictly positive (and so λ(Q(ξ)) is well-defined). Since ξ > 1, observe that this
means that also Q(ξ) · (ξ − 1) and Q(ξ) · (ξ + 1) are strictly positive.
Either λ(p(z∗)) = λ(Q(ξ)) · ξz∗

i or λ(Q(ξ)·(ξ−1))
ξ · ξz∗

i ≤ λ(p(z∗)) ≤ λ(Q(ξ)·(ξ+1))
ξ · ξz∗

i , for
some i ∈ [1, n] (this follows by Property C of Claim 24).
In the latter case of λ(Q(ξ)·(ξ−1))

ξ · ξz∗
i ≤ λ(p(z∗)) ≤ λ(Q(ξ)·(ξ+1))

ξ · ξz∗
i , observe that

λ(p(z∗)) = ξβ · ξz∗
i , for some ξβ ∈ [λ(Q(ξ)·(ξ−1))

ξ , λ(Q(ξ)·(ξ+1))
ξ].

By definition of B and G, we conclude that λ(p(z∗)) = ξg · ξz∗
i for some g ∈ G and i ∈ [1..n].

This concludes the proof of the first statement of the lemma.

26 On the Existential Theory of the Reals with Integer Powers of a Computable Number

We move to the second part of the lemma, which adds further assumptions on ξ. This
part still relies on the definitions of the sets Q, B and G above.
Case: ξ is a computable transcendental number (Item (I)). Assume ξ a transcendental
number computed by a Turing machine T . We provide an algorithm for computing a superset
of the set G. Here is a high-level pseudocode of the algorithm:

1: compute a finite set of polynomials Q′ that includes all polynomials in Q
2: remove from Q′ all polynomials Q such that Q(ξ) ≤ 0
3: compute rationals ℓ, u > 0 such that ℓ ≤ Q(ξ)·(ξ−1)

ξ2 and Q(ξ) · (ξ+ 1) ≤ u, for all Q in Q′

4: return a superset of {β ∈ Z : ℓ ≤ ξβ ≤ u}
The correctness of this algorithm is immediate from the definition of the sets Q, B and G. In
particular, note that {ξβ : β ∈ B} ⊆ [ℓ..u], because for every α > 0 we have α

ξ < λ(α) ≤ α
(by definition of λ), and moreover Q(ξ)·(ξ−1)

ξ2 ≤ Q(ξ)
ξ ≤ Q(ξ) ≤ Q(ξ) · (ξ + 1) (recall that

Q(ξ) > 0 and ξ > 1). Therefore, G is a subset of the set in output of the algorithm, as
required. Below, we give more information on how to implement each line of the algorithm
(starting for simplicity with line 2), showing its effectiveness. We will often rely on the
following claim:

▷ Claim 25. Given an integer polynomial p(x), one can compute
1. a rational number ℓ′ such that 0 < ℓ′ ≤ |p(ξ)|;
2. a rational number u′ such that |p(ξ)| ≤ u′.

Proof. Recall that |T0| + 1 is an upper bound to the transcendental number ξ > 1. By
iterating over the natural numbers, we find the smallest L ∈ N such that |q(TM)| > 1

2L ≥
|q(ξ)− q(TM)|, where M := L + ⌈log(h(p) + 1)⌉ + 2 deg(p) · ⌈log(|T0|+ 2)⌉. The existence
of such an L is guaranteed from Lemma 22 (for the second inequality) together the fact
that q(ξ) ̸= 0, and so limn→∞ |q(Tn)| ≠ 0 whereas limm→∞

1
2m = 0 (which implies the first

inequality). For Item 1, we can take ℓ′ to be |q(TM)| − 1
2L . For Item 2, we can take u′ to be

|q(TM)|+ 1
2L . ◁

Here is the argument for the effectiveness of the algorithm:
line 2. In general, to evaluate the sign of a polynomial p at ξ, one relies on the fact
that p(ξ) must be different from 0 (because ξ is transcendental). Then, we can rely on
the fast-convergence sequence of rational numbers T0, T1, . . . to find n ∈ N such that
|p(ξ)− p(Tn)| is guaranteed to be less than |p(Tn)|. The sign of p(ξ) then agrees with the
sign of p(Tn), and the latter can be easily computed.
line 1. By definition of Q, the fact that such a set Q′ can be computed follows from the
fact that we can compute an upper bound, for every j ≤ ℓ ∈ [1..n] and r ∈ [j..ℓ − 1],
to the maximum gr such that ξgr ∈

[
1 , |qr+1(ξ)|+···+|qn(ξ)|

|Qr(ξ)|
]
, where Qr is any polynomial

that can be defined in terms of gj , . . . , gr−1 following the recursive definition of Item 2.
It suffices to find a positive lower bound ℓ′ ∈ Q to |Qr(ξ)|, as well as upper bounds
u′
i ∈ Q to every |qi(ξ)|, with i ∈ [r + 1..n]. The rationals ℓ′, u′

r+1, . . . , u
′
n are computed

following Claim 25. Then, |qr+1(ξ)|+···+|qn(ξ)|
|Qr(ξ)| ≤ u′

r+1+···+u′
n

ℓ′ ≤
⌈
u′

r+1+···+u′
n

ℓ′

⌉
=: D ∈ N.

To bound gr it now suffices to find the largest integer power of ξ that is less or equal
to D. This can be done using the algorithm for the sign evaluation problem described for
line 2: iteratively, starting at i = 0, we test whether ξi −D is non-positive; we increase i
by 1 if this test is successful, and return i− 1 otherwise.
line 3. Recall that Q(ξ) is positive and ξ > 1. Following Claim 25, we can find positive
rationals ℓ′, u′

1, u
′
2 such that ℓ′ < Q(ξ) · (ξ − 1), ξ2 ≤ u′

1 and Q(ξ) · (ξ + 1) ≤ u′
2. The first

J. Gallego-Hernandez and A. Mansutti 27

two inequalities imply 0 < ℓ′

u′
1
< Q(ξ)·(ξ−1)

ξ2 . We can then take ℓ := ℓ′

u′
1

and u := u′
2. Note

that we have Q(ξ)·(ξ−1)
ξ2 < Q(ξ) · (ξ + 1), and therefore ℓ < u.

line 4. Given ℓ and u, we can compute a superset of those β ∈ Z such that ℓ ≤ ξβ ≤ u by
iterated calls to the algorithm for the sign evaluation problem. First, we can extend the
interval [ℓ, u] to always include 1: if ℓ > 1, update ℓ to 1; if u < 1, update u to 1. This
ensures ξ0 ∈ [ℓ, u]. We can then find the largest ξi that is less or equal to u by testing
whether ξi − u is non-positive for increasing i starting at 0, as we did in line 1 for finding
the largest integer powers less or equal to D. Similarly, we can find the smallest integer
power ξ−i that is greater or equal than ℓ by testing whether 1− ℓ · ξi is non-negative for
increasing i starting at 0.

Case: ξ has a polynomial root barrier (Item (II)). Assume now ξ to have a polynomial
root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k, with c, k ∈ N≥1. In this case, we need to provide an
explicit set G. We do so by analysing the polynomials Qj , . . . , Qℓ and the natural numbers
gj , . . . , gℓ−1 introduced in Claim 24 and used in the definition of the set Q, and by providing
both lower and upper bounds for the positive numbers Qℓ(ξ), Qℓ(ξ) ·(ξ−1) and Qℓ(ξ) ·(ξ+1).
These bounds entail bounds on the integers occurring in the set B introduced at the end of
the proof of the first statement of the lemma.

We start by providing a bound on the degrees and heights of Qj , . . . , Qℓ:

▷ Claim 26. For every r ∈ [j..ℓ], deg(Qr) ≤ D +
∑r−1
s=j gs and h(Qr) ≤ (r − j + 1) ·H.

Proof. By a straightforward induction on r, using the definitions of Qj , . . . , Qℓ. ◁

In Claim 26, note that (r − j + 1) ·H ≤ n ·H, and therefore we obtain a bound on h(Qℓ)
that does not depend on the previous Qr. Below, we prove a similar bound for deg(Qℓ).

▷ Claim 27. The degree of Qℓ is bounded as follows:

deg(Qℓ) ≤
(

2c ·D · ln(H)
ln(1 + 1

ec)

)5nkn+1

.

Proof. By Property A, Qj(ξ), . . . , Qℓ(ξ) are non-zero. Then, Claim 26 and the fact that σ is
a root barrier for ξ entail

ln |Qr(ξ)| ≥ −c ·
(
D + ⌈ln(n ·H)⌉+

r−1∑
s=j

gs

)k
. (3)

Analogously, since ξ > 1, we can consider the polynomial x− 1 in order to obtain a lower
bound on ξ, via the root barrier σ. We obtain

ξ ≥ 1 + 1
ec
. (4)

Given r ∈ [1, n], we also have

|qr(ξ)| ≤ H ·
d∑
i=0

ξi ≤ H ·D · ξD. (5)

We use Inequalities (3) and (5) to bound the values of gj , . . . , gℓ−1. By Property B, ξgr ≤
|qr+1(ξ)|+···+|qn(ξ)|

|Qr(ξ)| , and therefore

gr

28 On the Existential Theory of the Reals with Integer Powers of a Computable Number

≤ logξ(|qr+1(ξ)|+ · · ·+ |qn(ξ)|)− logξ(|Qj(ξ)|)

≤ 1
ln(ξ) (ln(|qr+1(ξ)|+ · · ·+ |qn(ξ)|)− ln(|Qr(ξ)|)) change of base

≤ 1
ln(ξ) (ln(H ·D · ξD · n)− ln(|Qr(ξ)|)) by Inequality (5)

≤ 1
ln(ξ)

(
ln(H ·D · ξD · n) + c ·

(
D + ⌈ln(nH)⌉+

r−1∑
s=j

gs
)k)

by Inequality (3)

≤ 1
ln(ξ)

(
D · ln(ξ) + ln(nH ·D) + c ·

(
D + ⌈ln(nH)⌉+

r−1∑
s=j

gs
)k)

≤ 1
ln(ξ)

(
D · ln(ξ) + 2c ·

(
D + ⌈ln(nH)⌉+

r−1∑
s=j

gs
)k)

as D + ⌈ln(nH)⌉ ≥ ln(nH ·D)

≤ 1
ln(ξ)

(
D

ln(ξ)
ln(1 + 1

ec)
+ 2c ·

(
D + ⌈ln(nH)⌉+

r−1∑
s=j

gs
)k)

as 1
ln(1 + 1

ec)
> 1

≤ 1
ln(ξ)

(
D

ln(ξ)
ln(1 + 1

ec)
· 2c ·

(
D + ⌈ln(nH)⌉+

r−1∑
s=j

gs
)k)

as ln(ξ)
ln(1 + 1

ec)
≥ 1

by (4), and D ≥ 2

≤ 2cD
ln(1 + 1

ec)
(
D + ⌈ln(nH)⌉+

r−1∑
s=j

gs
)k
.

Let us inductively define the following numbers Bj , . . . , Bℓ:

Bj := 2cD
ln(1 + 1

ec)
(
D + ⌈ln(nH)⌉

)k
Br := 2cD

ln(1 + 1
ec)

(
D + ⌈ln(nH)⌉+

r−1∑
s=j

Bs
)k for r ∈ [j + 1..ℓ].

From the previous inequalities, gr ≤ Br for every r ∈ [j..ℓ]. Moreover, observe that, since
1

ln(1+ 1
ec) > 1, for every r ∈ [j + 1..ℓ] we have Br ≥ D + ⌈ln(nH)⌉+

∑r−1
s=j Bs, and therefore

Bℓ ≥ deg(Qℓ). We proceed by bounding Br with respect to Br−1:

Br = 2cD
ln(1 + 1

ec)
(
D + ⌈ln(nH)⌉+

r−1∑
s=j

Bs
)k

= 2cD
ln(1 + 1

ec)
(
Br−1 +D + ⌈ln(nH)⌉+

r−2∑
s=j

Bs
)k

≤ 2cD
ln(1 + 1

ec)
(
2 ·Br−1

)k
≤ 2k+1cD

ln(1 + 1
ec)

(Br−1)k.

Let A := 2k+1cD
ln(1+ 1

ec) . Hence, Br ≤ A · (Br−1)k for every r ∈ [j + 1..ℓ]. We show by induction

that Br ≤ Amax(r−j,kr−j−1)Bk
r−j

j for every r ∈ [j..ℓ].

J. Gallego-Hernandez and A. Mansutti 29

base case: r = j. In this case the inequality is trivially satisfied.
induction step: r > j. We divide the proof depending on whether k = 1.

If k = 1, then max(r − j, kr−j − 1) = r − j and we need to prove that Br ≤ Ar−jBj .
Because k = 1, the induction hypothesis simplifies to Br−1 ≤ Ar−1−jBj , and the
bound Br ≤ A · (Br−1)k becomes Br ≤ A ·Br−1. Hence, Br ≤ Ar−jBj follows.
If k ≥ 2, then max(r − j, kr−j − 1) = kr−j − 1 and therefore we need to prove that
Br ≤ Ak

r−j−1Bk
r−j

j . By induction hypothesis Br−1 ≤ Amax(r−1−j,kr−1−j−1)Bk
r−1−j

j .
Here note that if r − 1 = j then r − 1− j = 0 = kr−1−j − 1, and otherwise max(r −
j, kr−j − 1) = kr−j − 1; hence Br−1 ≤ Ak

r−1−j−1Bk
r−1−j

j . Then,

Br ≤ A · (Br−1)k

≤ A · (Ak
r−1−j−1Bk

r−1−j

j)k by induction hypothesis

= Ak
r−j−k+1Bk

r−j

j

≤ Ak
r−j−1Bk

r−j

j since k ≥ 2.

We can now compute the aforementioned bound on deg(Qℓ):

deg(Qℓ) ≤ Bℓ
≤ Amax(n,kn−1)Bk

n

j remark: ℓ− j < n

≤
(

2k+1cD

ln(1 + 1
ec)

)max(n,kn−1)

·
(

2cD
ln(1 + 1

ec)
(
D + ⌈ln(nH)⌉

)k)kn

def. of A and Bj

≤ 2(k+1)(n+kn)+kn

(
cD

ln(1 + 1
ec)

)n+2kn(
D + ⌈ln(nH)⌉

)kn+1

≤ 2(k+1)(n+kn)+kn

(
c

ln(1 + 1
ec)

)n+2kn

Dn+2kn+kn+1
ln(nH)1+kn+1

since D ≥ 2 and H ≥ 8

≤
(

2cD ln(H)
ln(1 + 1

ec)

)5nkn+1

since ln(nH) ≤ ln(H)2n,
and then all exponents are bounded by 5nkn+1.

This concludes the proof of the claim. ◁

We are now ready to derive an explicit characterisation for the set G. Consider the sets
Q and B defined during the proof of the first statement of the lemma. In particular,

B :=
{
β ∈ Z : there is Q ∈ Q such that ξβ ∈

{
λ(Q(ξ)), λ(Q(ξ)·(ξ−1))

ξ , λ(Q(ξ)·(ξ+1))
ξ

}}
.

and G can be set to be any finite set satisfying [minB..maxB] ⊆ G. We also recall that every
polynomial Q in the set Q is such that the numbers Q(ξ), Q(ξ) · (ξ− 1) and Q(ξ) · (ξ+ 1) are
all strictly positive; and so, in particular, for these numbers λ is well-defined. By definition
of Q and from Claims 26 and 27, we deduce that the heights and degrees of the univariate
polynomials Q, Q · (x− 1) and Q · (x+ 1) are bounded as follows:

h(Q) ≤ n ·H, h(Q(x− 1)) ≤ 2n ·H, h(Q(x− 1)) ≤ 2n ·H,
deg(Q) ≤ E, deg(Q(x− 1)) ≤ E + 1, deg(Q(x− 1)) ≤ E + 1,

30 On the Existential Theory of the Reals with Integer Powers of a Computable Number

where E :=
(

2cD ln(H)
ln(1+ 1

ec)

)5nkn+1

. Let P be a number among Q(ξ), Q(ξ)·(ξ−1) and Q(ξ)·(ξ+1).
An upper bound to P is given by

P ≤ 2n ·H · (E + 2) · ξE+2,

whereas a lower bound follows by relying on the root barrier σ:

P ≥ 1
ec(E+1+⌈ln(2nH)⌉)k .

Recall that, for every α > 0, the definition of λ implies α
ξ < λ(α) ≤ α. We conclude that, for

every integer β ∈ B,

1
ξ2 · ec(E+1+⌈ln(2nH)⌉)k ≤ ξβ and ξβ ≤ 2n ·H · (E + 2) · ξE+2.

Applying the logarithm base e to both inequalities shows:

− ln(ξ2 · ec(E+1+⌈ln(2nH)⌉)k

) ≤ β · ln(ξ) and β · ln(ξ) ≤ ln(2n ·H · (E + 2) · ξE+2).

This implies that taking G to be the interval [− ln(ξ2·ec(E+1+⌈ln(2nH)⌉)k
)

ln(ξ) .. ln(2n·H·(E+2)·ξE+2)
ln(ξ)]

suffices. In the statement of the lemma we provide however a slightly larger set with an
easier-to-digest bound, that is, [−L..L], where L :=

(
23cD ⌈ln(H)⌉

)6nk3n

. To conclude the

proof, below we show that [− ln(ξ2·ec(E+1+⌈ln(2nH)⌉)k
)

ln(ξ) .. ln(2n·H·(E+2)·ξE+2)
ln(ξ)] ⊆ [−L..L].

upper bound: We show that ln(2n·H·(E+2)·ξE+2)
ln(ξ) ≤ L:

ln(2n ·H · (E + 2) · ξE+2)
ln(ξ)

≤ ln(2n ·H · (E + 2))
ln(ξ) + 2 + E by properties of ln

≤ ln(2n ·H · (E + 2))
ln(1 + 1

ec)
+ 2 + E since ξ ≥ 1 + 1

ec

≤ ln(2n ·H)
ln(1 + 1

ec)
+ ln(E + 2)

ln(1 + 1
ec)

+ 2 + E by properties of ln

≤ 2 · ln(2n ·H)
ln(1 + 1

ec)
+ ln(E + 2)

ln(1 + 1
ec)

+ E we have ln(2n ·H)
ln(1 + 1

ec)
≥ 2

≤ 2 · E + ln(E + 2)
ln(1 + 1

ec)
we have 2 · ln(2n ·H)

ln(1 + 1
ec)

≤ E

≤ 2 · E + E

ln(1 + 1
ec)

we have E ≥ ln(E + 2) since E ≥ 2

≤ 3 · E
ln(1 + 1

ec)
as 1

ln(1 + 1
ec)
≥ 1

≤ 3
ln(1 + 1

ec)

(
2cD ln(H)
ln(1 + 1

ec)

)5nkn+1

def. of E

≤
(

2cD ln(H)
ln(1 + 1

ec)

)6nkn+1

as 2cD ln(H)
ln(1 + 1

ec)
≥ 3

ln(1 + 1
ec)

≤
(
2c · 22cD ln(H)

)6nkn+1

as 1
ln(1 + 1

ec)
≤ 22c

J. Gallego-Hernandez and A. Mansutti 31

≤
(
23cD ln(H)

)6nkn+1

since 2c ≤ 2c

≤ L by def. of L.

lower bound: We show that ln(ξ2·ec(E+1+⌈ln(2nH)⌉)k
)

ln(ξ) ≤ L (so, −L ≤ − ln(ξ2·ec(E+1+⌈ln(2nH)⌉)k
)

ln(ξ)):

ln(ξ2 · ec(E+1+⌈ln(2nH)⌉)k)
ln(ξ)

≤ 2 + c(E + 1 + ⌈ln(2nH)⌉)k

ln(ξ) by properties of ln

≤ 2 + c(E + 1 + ⌈ln(2nH)⌉)k

ln(1 + 1
ec)

since ξ ≥ 1 + 1
ec

≤ 2 + c(E + 2 + ln(H)4n)k

ln(1 + 1
ec)

as ⌈ln(2nH)⌉ ≤ 1 + ln(H)4n

≤ 2 + c(2E)k

ln(1 + 1
ec)

since E ≥ 2 + ln(H)4n

≤ 2 · c(2E)k

ln(1 + 1
ec)

since c(2E)k

ln(1 + 1
ec)
≥ 2

= 2k+1c

ln(1 + 1
ec)
· Ek

≤ 2k+1c

ln(1 + 1
ec)

(
2cD ln(H)
ln(1 + 1

ec)

)5nkn+2

def. of E

≤
(

2cD ln(H)
ln(1 + 1

ec)

)5nkn+2+k
note: D ≥ 2

≤
(

2cD ln(H)
ln(1 + 1

ec)

)6nkn+2

≤
(
23cD ln(H)

)6nkn+2

as in the previous case, 2c
ln(1 + 1

ec)
≤ 23c

≤ L. ◀

▶ Lemma 12. Let p(ξ,x) :=
∑n
i=1(qi(ξ)·xdi), where each qi is a univariate integer polynomial.

In the theory ∃ξZ, the formula p(ξ,x) > 0 entails the formula
∨n
i=1

∨
g∈G λ(p(ξ,x)) = ξg ·xdi ,

for some finite set G ⊆ Z. Moreover:
I. If ξ is a computable transcendental number, there is an algorithm computing G from p.

II. If ξ has a root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k, for some c, k ∈ N≥1, then

G := [−L..L] , where L :=
(
23cD ⌈ln(H)⌉

)6nk3n

,

with H := max{8,h(qi) : i ∈ [1, n]}, and D := max{deg(qi) + 2 : i ∈ [1, n]}.

Proof. This lemma follows by Lemma 23: it suffices to replace every monomial
∏m
j=1 x

di,j

j

with a term ξzi , where zi is a fresh variable ranging over Z. ◀

The next lemma provides a first step for proving Lemma 13.

▶ Lemma 28. Fix ξ > 1. Let r(x,y) :=
∑n
i=0 pi(ξ,y) · xi, where each pi(z,y) is an integer

polynomial in variables y and z. Then, the formula

ξZ(x) ∧ r(x,y) = 0 ∧
(n∨
i=0

pi(ξ,y) ̸= 0
)

=⇒
m∨
ℓ=1

θℓ(x,y) ,

32 On the Existential Theory of the Reals with Integer Powers of a Computable Number

is a tautology of ∃R(ξZ), where each θℓ is a formula of the form either

xk−j = ξs·λ(−pj(ξ,y))
λ(pk(ξ,y)) ∧ pj(ξ,y) < 0 ∧ pk(ξ,y) > 0 or

xk−j = ξs·λ(pj(ξ,y))
λ(−pk(ξ,y)) ∧ pj(ξ,y) > 0 ∧ pk(ξ,y) < 0 ,

with 0 ≤ j < k ≤ n, s ∈ [−g..g] with g := 1 +
⌈
logξ(n)

⌉
, and m ≤ n2 ·

(
2 ·

⌈
logξ(n)

⌉
+ 3

)
.

Proof. The proof follows somewhat closely the arguments in [4, Lemmas 3.9 and 3.10].
Observe that the lemma is trivially true for n = 0, as in this case the antecedent of the
implication is false (from the formulae r(x, v,y) = 0 and p0(ξ,y) ̸= 0). Below, assume n ≥ 1.

Pick x ∈ R and y ∈ R making the antecedent of the implication of the formula true, that
is, we have ξZ(x), r(x,y) = 0 and pi(y) ̸= 0 for some i ∈ [0, n]. We show that x and y satisfy
one of the formulae θ1, . . . , θm.

We can write r(x,y) as pk(ξ,y) · xk + pj(ξ,y) · xj + r∗(x,y) where pk(ξ,y) · xk and
pj(ξ,y) · xj are respectively the largest and smallest monomial in r(x,y), and r∗(x,y) is
the sum of all the other monomials. Since we are assuming r(x,y) = 0 and pi(ξ,y) ̸= 0, we
conclude that pk(ξ,y) · xk > 0 and pj(ξ,y) · xj < 0. This also entails that k ̸= j. We have,

pk(ξ,y) · xk

ξ
< pk(ξ,y) · xk − r(x,y) since ξ > 1 and r(x,y) = 0

= −pj(ξ,y) · xj − r∗(x,y) by def. of pj , pk and r∗

≤ −n · pj(ξ,y) · xj by def. of pj , pk and r∗. (6)

Observe that ξZ(x) implies x > 0, and therefore pj(ξ,y) · xj < 0 implies pj(ξ,y) < 0. From
Equation (6) we then obtain pk(ξ,y)

−pj(ξ,y)x
k−j ≤ n · ξ. Moreover, from r(x,y) = 0 we have

−pj(ξ,y) · xj ≤ n · pk(ξ,y) · xk, i.e., 1
n ≤

pk(ξ,y)
−pj(ξ,y) · x

k−j , and therefore

0 < ξ−⌈logξ(n)⌉ ≤ ξ− logξ(n) = 1
n
≤ pk(ξ,y)
−pj(ξ,y) · x

k−j ≤ n · ξ = ξ1+logξ(n) ≤ ξ1+⌈logξ(n)⌉ .

The above chain of inequalities shows that −pj(ξ,y)
pk(ξ,y) ·ξ

−⌈logξ(n)⌉ ≤ xk−j ≤ −pj(ξ,y)
pk(ξ,y) ·ξ

⌈logξ(n)⌉+1.
Since λ is a monotonous function, this implies

λ

(
−pj(ξ,y)
pk(ξ,y) · ξ

−⌈logξ(n)⌉
)
≤ λ(xk−j) ≤ λ

(
−pj(ξ,y)
pk(ξ,y) · ξ

1+⌈logξ(n)⌉
)
.

By definition of λ, for every a ∈ R we have a
ξ ≤ λ(a) ≤ a. Moreover, since x is an integer

power of ξ, xk−j = λ(xk−j), and therefore the above inequalities can entail

λ(−pj(ξ,y))
λ(pk(ξ,y)) · ξ

−(1+⌈logξ(n)⌉) ≤ xk−j ≤ λ(−pj(ξ,y))
λ(pk(ξ,y)) · ξ

⌈logξ(n)⌉+1

Let g := 1 +
⌈
logξ(n)

⌉
. We conclude that xk−j = ξs · λ(−pj)

λ(pk) , for some integer s ∈ [−g..g]. To
conclude the proof we analyse two cases, depending on whether k − j > 0 (recall: k ̸= j).

case k − j > 0. We have xk−j = ξs · λ(−pj(ξ,y))
λ(pk(ξ,y)) , with pk(ξ,y) > 0 and pj(ξ,y) < 0. We

have thus obtained the first of the two forms in the statement of the lemma.
case k − j < 0. We have xj−k = ξ−s · λ(pk(ξ,y))

λ(−pj(ξ,y)) with pj(ξ,y) < 0 and pk(ξ,y) > 0. This
corresponds to the second of the two forms in the statement of the lemma. For convenience,
in the statement we have swapped the symbols j and k, and wrote s instead of −s (since
both these integers belongs to [−g..g]). ◀

J. Gallego-Hernandez and A. Mansutti 33

▶ Lemma 13. Let r(x, v,y) :=
∑n
i=0 pi(ξ,y) · (x · v)i, where each pi is an integer polynomial,

M be the set of monomials yℓ occurring in some pi, and N := {yℓ1−ℓ2 : yℓ1 ,yℓ2 ∈M}. Then,

ξZ(x) ∧ 1 ≤ v < ξ ∧ r(x, v,y) = 0 ∧
(n∨
i=0

pi(ξ,y) ̸= 0
)
∧

∧
y from y

ξZ(y) |=
∨

(j,g,yℓ)∈F

xj = ξg · yℓ

holds (in the theory ∃R(ξZ)) for some finite set F ⊆ [1..n]× Z×N . Moreover:
I. If ξ is a computable transcendental number, there is an algorithm computing F from r.

II. If ξ has a root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k, for some c, k ∈ N≥1, then,

F := [1..n]× [−L..L]×N, where L := n
(
24cD ⌈ln(H)⌉

)6|M |·k3|M|

,

with H := max{8,h(pi) : i ∈ [1, n]}, and D := max{deg(ξ, pi) + 2 : i ∈ [0, n]}.

Proof. The lemma is trivially true for n = 0, as in this case the premise of the entailment is
equivalent to ⊥ (from the formulae r(x, v,y) = 0 and p0(ξ,y) ̸= 0). Below, assume n ≥ 1.

We start by showing the existence of the finite set F (first statement of the lemma).
Assume the premise of the entailment of the lemma, i.e.,

ξZ(x) ∧ 1 ≤ v < ξ ∧
(d∧
i=1

ξZ(yi)
)
∧ r(x, v,y) = 0 ∧

(n∨
i=0

pi(ξ,y) ̸= 0
)
, (7)

to be satisfied. We see the polynomial r(x, v,y) as a polynomial in the variable x with
coefficients of the form pi(ξ,y) ·vi. By applying Lemma 28, we deduce that the above formula
entails a finite disjunction

∨m
u=1 θu(x, v,y) where the formulae θu(x, v,y) are of the form

xµ = ξs · λ(±pj(ξ,y)vj)
λ(∓pw(ξ,y)vw) ∧ ±pj(ξ,y)vj > 0 ∧ ∓pw(ξ,y)vw > 0, (8)

where µ ∈ [1..n] and j, w ∈ [0..n] with j ̸= w. Moreover, the number m of disjuncts θu is
bounded by n2 · (2 ·

⌈
logξ(n)

⌉
+ 3), and s ∈ [−(1 +

⌈
logξ(n)

⌉
)..(1 +

⌈
logξ(n)

⌉
)].

By definition of λ, for every a, b ∈ R, either λ(a · b) = λ(a) ·λ(b) or λ(a · b) = ξ ·λ(a) ·λ(b).
Moreover, vj and vw are positive numbers, and therefore Formula (8) is equivalent to

∨
t∈{−1,0,1}

xµ = ξs+t · λ(±pj(ξ,y)) · λ(vj)
λ(∓pw(ξ,y)) · λ(vw) ∧ ±pj(ξ,y) > 0 ∧ ∓pw(ξ,y) > 0. (9)

Next, we bound the terms λ(vj) and λ(vw). Since Formula (7) asserts 1 ≤ v < ξ, we have
λ(vj) = ξα for some α ∈ [0, j − 1]; and similarly λ(vw) = ξβ for some α ∈ [0, w − 1]. Given
that j and w belong to [0..n], Formula (9) (or, equivalently, Formula (8)) then entails

n∨
t=−n

xµ = ξs+t · λ(±pj(ξ,y))
λ(∓pw(ξ,y)) ∧ ±pj(ξ,y) > 0 ∧ ∓pw(ξ,y) > 0. (10)

Let p(ξ,y) be a polynomial among ±pj(ξ,y) and ∓pw(ξ,y). This polynomial can be seen as
having variables in y, and having as coefficients polynomial expressions in ξ, that is,

p(ξ,y) =
|M |∑
ℓ=1

qℓ(ξ) · yeℓ .

34 On the Existential Theory of the Reals with Integer Powers of a Computable Number

where each yeℓ is a monomial from M . Since Formula (7) asserts that every variable in y

is an integer power of ξ, given ℓ ∈ [1, |M |] we can introduce an integer variable zℓ and set
ξzℓ = yeℓ . That is, Formula (7) entails the following formula of R(ξZ)

p(ξ,y) > 0 ⇐⇒ ∃z1 . . . z|M | ∈ Z
(|M |∑
ℓ=1

qℓ(ξ) · ξzℓ > 0 ∧
|M |∧
ℓ=1

ξzℓ = yeℓ

)
. (11)

We apply Lemma 23 on
∑|M |
ℓ=1 qℓ(ξ) · ξzℓ > 0: there is a finite set Gp such that

|M |∑
ℓ=1

qℓ(ξ) · ξzℓ > 0 =⇒
∨
g∈Gp

|M |∨
ℓ=1

λ
(|M |∑
ℓ=1

qℓ(ξ) · ξzℓ

)
= ξg · ξzℓ .

Then, by Formula (11), substituting ξzℓ for yeℓ we obtain

p(ξ,y) > 0 =⇒
∨
g∈Gp

∨
yℓ∈M

λ (p(ξ,y)) = ξg · yℓ. (12)

From Formulas (10) and (12), we conclude that Formula (8) entails

n∨
t=−n

∨
(g1,g2)∈(G±pj

×G∓pw)

∨
yℓ1 ,yℓ2 ∈M

xµ = ξs+t+g1−g2 · yℓ1−ℓ2 . (13)

Above, note that yℓ1−ℓ2 belongs to the set N in the statement of the lemma. Since Formula (7)
entails a finite disjunction of formulae of the form shown in (8), and the disjunctions in
Formula (13) are over finite sets, this completes the proof of the first statement of the lemma.
In particular, one can take as F the set

F := [1..n]× [−L..L]×N

where L := max{1 +
⌈
logξ(n)

⌉
+ n+ 2 |g′| : g′ ∈ G±pj for some j ∈ [0..n]}.

We move to the second part of the lemma, which adds further assumptions on ξ.
Case: ξ is a computable transcendental number (Item (I)). From Item (I) in Lemma 12,
we conclude that the sets G±pj

can be computed. Moreover,
⌈
logξ(n)

⌉
can be computed by

iterating through the natural numbers, finding α ∈ N such that ξα−1 < n ≤ ξα. Checking
these inequalities can be done by opportunely iterating the algorithm for the sign evaluation
problem for transcendental numbers already discussed in the proof of Lemma 23.
Case: ξ has a polynomial root barrier (Item (II)). Assume now ξ to have a polynomial
root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k, with c, k ∈ N≥1. We provide an explicit upper bound
to the set L defined above, so that replacing L with this upper bound in the definition of F
yield the last statement of the lemma. For this, it suffices to upper bound

⌈
logξ(n)

⌉
as well

as |g′|, where g′ ∈ G±pj with j ∈ [0..n].
For the upper bound to

⌈
logξ(n)

⌉
, as done in the proof of Lemma 23, we can consider

the polynomial x − 1 in order to obtain a lower bound on the number ξ > 1 via the root
barrier σ. We have ξ ≥ 1 + 1

ec . Then,

⌈
logξ(n)

⌉
=

⌈
ln(n)
ln(ξ)

⌉
by properties of ln

≤
⌈

ln(n)
ln(1 + 1

ec)

⌉
since ξ ≥ 1 + 1

ec

J. Gallego-Hernandez and A. Mansutti 35

≤
⌈
ln(n) · 22c⌉ since 1

ln(1 + 1
ec)
≤ 22c

≤ 22c ⌈ln(n)⌉ . (14)

For the bound on the elements in G±pj , recall that this set has been computed following
Lemma 12. The polynomial ±pj is of the form

∑|M |
ℓ=1 qℓ(ξ) · yeℓ , where h(qℓ) ≤ H and

deg(qℓ) ≤ D. Therefore, by Lemma 12, G±pj can be taken to be the interval [−L′..L′] where

L′ :=
(
23cD ⌈ln(H)⌉

)6|M |·k3|M|

. We can now conclude the proof:

L = max{1 +
⌈
logξ(n)

⌉
+ n+ 2 |g′| : g′ ∈ G±pj

for some j ∈ [0..n]}

≤ 1 +
⌈
logξ(n)

⌉
+ n+ 2

(
23cD ⌈ln(H)⌉

)6|M |·k3|M|

bound on G±pj

≤ 1 + 22c ⌈ln(n)⌉+ n+ 2
(
23cD ⌈ln(H)⌉

)6|M |·k3|M|

by Equation 14

≤ 22c+1n+ 2
(
23cD ⌈ln(H)⌉

)6|M |·k3|M|

since c, n ≥ 1

≤ 3n
(
23cD ⌈ln(H)⌉

)6|M |·k3|M|

≤ n
(
24cD ⌈ln(H)⌉

)6|M |·k3|M|

. ◀

▶ Lemma 14. Let φ(u,y) be a quantifier-free formula from ∃ξZ. Then, ∃uφ is equivalent to∨
ℓ∈[−1..1]

∨
q∈Q

∨
(j,g,yℓ)∈Fq

∃u : uj = ξj·ℓ+g · yℓ ∧ φ (†)

where Q is the set of all polynomials in φ featuring u, plus the polynomial u−1, and each Fq is
the set obtained by applying Lemma 13 to r(x, v,y) := q[x ·v / u], with x and v fresh variables.

Proof. The right-to-left implication is trivial. Let us show the left-to-right implication.
Below, let ψ(u,y) := φ ∧ ξZ(u) ∧

∧
y∈y ξ

Z(y). For simplicity of the argument, instead of the
left-to-right implication in the statement, we consider the following formula of R(ξZ):

(∃uψ) =⇒
1∨

ℓ=−1

∨
q∈Q

∨
(j,g,yℓ1 ,yℓ2)∈Fq

∃u
(
uj = ξj·ℓ+g · yℓ1−ℓ2 ∧ ψ

)
. (15)

Since in this implication all variables are constrained to be integer powers of ξ, this formula
is equivalent to the left-to-right implication of the equivalence in the statement of the lemma.
We show Formula (15) by relying on a series of tautologies.

▷ Claim 29. Let Q′ be the set of all polynomials in φ featuring u. The following formula is
a tautology of R(ξZ):

(∃uψ) =⇒
((
∀u (u > 0 =⇒ φ)

)
∨∨

r∈Q′

∃w
(
w > 0 ∧ r(w,y) = 0 ∧ (

n∨
i=0

pr,i(ξ,y) ̸= 0) ∧ ∃u(w · ξ−1 ≤ u ≤ w · ξ ∧ ψ)
))
,

where r ∈ Q′ is of the form r(x,y) =
∑n
i=0 pr,i(ξ,y) · xi.

Proof. Let y∗ be real numbers that are a solution to the formula (∃uψ)∧¬∀u (u > 0 =⇒ φ).
To prove the claim, it suffices to show that then y∗ is a solution to the formula∨

r∈Q′

∃w
(
w > 0 ∧ r(w,y) = 0 ∧ (

n∨
i=0

pr,i(ξ,y) ̸= 0) ∧ ∃u(w · ξ−1 ≤ u ≤ w · ξ ∧ ψ)
)
. (16)

36 On the Existential Theory of the Reals with Integer Powers of a Computable Number

Let S := {u ∈ R : φ(u,y∗) ∧ u > 0} be the set of positive real numbers satisfying φ with
respect to the vector y∗ we have picked. Since y∗ satisfies ¬∀u(u > 0 =⇒ φ), we have
S ⊊ R>0. Since S is the set of solutions of over R>0 of a formula in the language of Tarski
arithmetic, it is a finite union

⋃
j∈J Ij of disjoint (open, closed or half-open) intervals with

endpoints in R ∪ {+∞}. This follows directly from the fact that Tarski arithmetic is an
o-minimal theory [26, Chapter 3.3]. Without loss of generality, we can assume {Ij}j∈J to
be a minimal family of intervals characterising S; in other words, we can assume that for
every two distinct intervals Ij and Ik, the set Ij ∪ Ik is not an interval. Since y∗ satisfies
∃uψ, there is j ∈ J such that Ij contains an integer power of ξ, ξij . The interval Ij is of
the form (a, b), [a, b), (a, b] or [a, b], for some a ∈ R>0 and b ∈ R>0 ∪ {+∞}. We divide the
proof in two cases, depending on whether b = +∞.
case: b ̸= +∞. There is an interval (c, d) around b such that (c, b) and (b, d) are non-empty,

(c, d) ⊆ Ij , and (b, d) ∩ S = ∅. That is, the truth of the formula φ(u,y∗) ∧ u > 0
changes around b. Since φ(u,y) is a quantifier-free formula from ∃ξZ, this means that
the truth value of a polynomial inequality r(u,y∗) ∼ 0 changes around b, which in
turn implies both r(b,y∗) = 0 (since polynomials are continuous functions) and that
r(b,y∗) is non-constant, i.e.,

∨n
i=0 pr,i(ξ,y∗) ̸= 0. At this point we have established that

b > 0∧ r(b,y∗) = 0∧ (
∨n
i=0 pr,i(ξ,y) ̸= 0) holds, and hence to conclude that Formula (16)

holds we must now show that there is u∗ ∈ ξZ such that (b · ξ−1 ≤ u∗ ≤ b · ξ ∧ ψ(u∗,y∗))
also holds. Observe that, since y∗ satisfies ∃uψ, each entry in y∗ is an integer power of ξ,
and therefore it suffices to show that u∗ ∈ ξZ such that b · ξ−1 ≤ u∗ ≤ b · ξ and u∗ ∈ Ij .
This follows from the case analysis below:
case: b ∈ Ij and b ∈ ξZ. In this case, u∗ = b.
case: b ̸∈ Ij and b ∈ ξZ. We have λ(b) = b. Since we are assuming that Ij contains an

integer power of ξ, we must have that ξ−1 · b, which is the largest integer power of ξ
that is strictly below the endpoint b, belongs to Ij . Hence, we can take u∗ = ξ−1 · b.

case: b ̸∈ ξZ. We have λ(b) < b, and λ(b) is the largest integer power of ξ that is strictly
below b is λ(b). We have λ(b) ∈ Ij and b · ξ−1 ≤ λ(b), and so we can take u∗ = λ(b).

case: b = +∞. In this case, instead of the right endpoint b we consider the left endpoint a.
Since S if a strict subset of R>0, we must have a > 0. By the same arguments as in the
previous case, φ must feature a polynomial inequality r(u,y) ∼ 0 such that r(a,y∗) = 0.
We thus have a > 0∧r(a,y∗) = 0∧(

∨n
i=0 pr,i(ξ,y) ̸= 0), and to conclude that Formula (16)

holds it suffices to show that there is u∗ ∈ ξZ such that a · ξ−1 ≤ u∗ ≤ a · ξ and u∗ ∈ Ij .
This is shown with a case analysis that is analogous to the one above:
case: a ∈ Ij and a ∈ ξZ. In this case, u∗ = a.
case: a ̸∈ Ij and a ∈ ξZ. We have λ(a) = a. Since we are assuming that Ij contains an

integer power of ξ, we must have that a · ξ, which is the largest integer power of ξ that
is strictly above the endpoint a, belongs to Ij . Hence, we can take u∗ = a · ξ.

case: a ̸∈ ξZ. We have λ(a) < a. In this case, the largest power of ξ that is strictly
above the endpoint a is λ(a) · ξ. We have λ(a) · ξ ∈ Ij and a < λ(a) · ξ ≤ a · ξ, and so
we can take u∗ = λ(a) · ξ.

In both the cases above, we have shown that y∗ is a solution to Formula (16). ◁

▷ Claim 30. The following formula is a tautology of R(ξZ):

(∀u(u > 0 =⇒ ψ)) =⇒ ∃w(w = 1 ∧ ∃u(w · ξ−1 ≤ u ≤ w · ξ ∧ ψ)).

Proof. First, observe that ∃w(w = 1 ∧ ∃u(w · ξ−1 ≤ u ≤ w · ξ ∧ ψ)) is trivially equivalent to
∃u(ξ−1 ≤ u ≤ ξ ∧ ψ). (The addition of the variable w assigned to 1 is convenient for the
forthcoming arguments of the proof of Lemma 14.)

J. Gallego-Hernandez and A. Mansutti 37

Let y be real numbers satisfying the antecedent (∀u(u > 0 =⇒ ψ)) of the implication.
Since ξ > 1, the non-empty interval [ξ−1, ξ] is included in R>0. Therefore, from the antecedent
of the implication we deduce that y satisfies ∃u(ξ−1 ≤ u ≤ ξ ∧ ψ). ◁

By Claims 29 and 30, the following formula is a tautology of R(ξZ):

(∃uψ) =⇒
∨
r∈Q
∃w

(
w > 0 ∧ r(w,y) = 0 ∧ (

n∨
i=0

pr,i(ξ,y) ̸= 0)

∧ ∃u(w · ξ−1 ≤ u ≤ w · ξ ∧ ψ)
)
.

Since every w > 0 can be uniquely decomposed into x · v, with x being an integer power of ξ
and 1 ≤ v < ξ, the above formula can be rewritten as follows:

(∃uψ) =⇒
∨
r∈Q
∃x∃v

(
ξZ(x) ∧ 1 ≤ v < ξ ∧ r(x · v,y) = 0 ∧ (

n∨
i=0

pr,i(ξ,y) ̸= 0)

∧ ∃u((x · v) · ξ−1 ≤ u ≤ (x · v) · ξ ∧ ψ)
)
.

Hence, by applying Lemma 13, we conclude the following formula is a tautology of R(ξZ):

(∃uψ) =⇒
∨
r∈Q
∃x∃v

(
ξZ(x) ∧ 1 ≤ v < ξ ∧

(∨
(j,g,yℓ)∈Fr

xj = ξg · yℓ
)

∧ ∃u((x · v) · ξ−1 ≤ u ≤ (x · v) · ξ ∧ ψ)
)
. (17)

We now simplify the inequalities (x · v) · ξ−1 ≤ u ≤ (x · v) · ξ:

▷ Claim 31. The following formula is a tautology of ∃R(ξZ):

(ξZ(u) ∧ ξZ(x) ∧ 1 ≤ v < ξ ∧ (x · v) · ξ−1 ≤ u ≤ (x · v) · ξ) =⇒
1∨

ℓ=−1
u = ξℓ · x.

Proof. Let (u, v, x) be three real numbers satisfying the antecedent of the implication. By
properties of λ, (x · v) · ξ−1 ≤ u ≤ (x · v) · ξ implies λ(x · v) · ξ−1 ≤ λ(u) ≤ λ(x · v) · ξ. Since
the antecedent of the implication imposes u and x to be integer powers of ξ, and 1 ≤ v < ξ,
we have λ(u) = u and λ(x · v) = x. We conclude that x · ξ−1 ≤ u ≤ x · ξ, or equivalently
u = ξℓ · x for some ℓ ∈ [−1, 1], as required. ◁

We apply Claim 31 to Equation 17, obtaining the following tautology of R(ξZ):

(∃uψ) =⇒
∨
r∈Q
∃x

(
ξZ(x) ∧

(∨
(j,g,yℓ)∈Fr

xj = ξg · yℓ
)
∧ ∃u(

(1∨
ℓ=−1

u = ξℓ · x
)
∧ ψ)

)
.

Lastly, in the above formula, we can exponentiate both sides of u = ξℓ ·x by j and eliminate x.
That is, the following entailment with formulae from ∃R(ξZ) holds:

∃uψ |=
1∨

ℓ=−1

∨
q∈Q

∨
(j,g,yℓ)∈Fq

∃u
(
uj = ξj·ℓ+g · yℓ ∧ ψ

)
. ◀

38 On the Existential Theory of the Reals with Integer Powers of a Computable Number

▶ Lemma 15. Let φ(u,y) be a quantifier-free formula from ∃ξZ, with y = (y1, . . . , yn). Let
j ∈ N≥1, k ∈ Z and ℓ := (ℓ1, . . . , ℓn) ∈ Z. Then, ∃y∃u : uj = ξk · yℓ ∧ φ is equivalent to∨

r:=(r1,...,rn)∈R ∃z : φ[zji · ξri / yi : i ∈ [1..n]][ξ
k+ℓ·r

j · zℓ / u],

where R :=
{

(r1, . . . , rn) ∈ [0..j − 1]n : j divides k +
∑n
i=1 ri · ℓi

}
, ℓ · r :=

∑n
i=1 ri · ℓi, and

z := (z1, . . . , zn) is a vector of fresh variables.

Proof. We first prove the right-to-left direction of the lemma. Consider r ∈ R such that the
sentence ∃z : φ[zji · ξri / yi : i ∈ [1..n]][ξ

k+ℓ·r
j · zℓ / u] is a tautology of ∃ξZ. The following

sequence of implications (in the language of R(ξZ)) establishes the right-to-left direction:

∃z : φ[zji · ξ
ri / yi : i ∈ [1..n]][ξ

k+ℓ·r
j · zℓ / u]

=⇒ ∃z∃y∃u : φ(u,y) ∧
(n∧
i=1

yi = zji · ξ
ri

)
∧ u = ξ

k+ℓ·r
j · zℓ def. of substitution

=⇒ ∃z∃y∃u : φ(u,y) ∧
(n∧
i=1

yℓi
i = zjℓi

i · ξ
riℓi

)
∧ uj = ξk+ℓ·r · zℓ·j

=⇒ ∃z∃y∃u : φ(u,y) ∧
(n∧
i=1

yℓi
i = zjℓi

i · ξ
riℓi

)
∧ uj = ξk ·

n∏
i=1

(zjℓi

i · ξ
riℓi)

=⇒ ∃y∃u : φ(u,y) ∧ uj = ξk · yℓ1
1 · · · · · yℓn

n .

We move to the left-to-right direction. Suppose ∃y∃u : uj = ξk · yℓ ∧ φ to be a tautology
of ∃ξZ. For every i ∈ [1..n], we have yi = ξαi for some i ∈ Z. We consider the quotient βi ∈ Z
and remainder ri ∈ [0..j − 1] of the integer division of αi modulo j, that is, αi = βi · j + ri.
Setting zi = ξβi , we have yi = zji · ξri . Therefore, the following sentence is a tautology of ∃ξZ:

∃y∃u∃z
∨

(r1,...,rn)∈[0..j−1]n

uj = ξk · yℓ ∧ φ ∧
n∧
i=1

yi = zji · ξ
ri .

By distributing existential quantifiers over disjunctions and eliminating y by performing the
substitutions [zji · ξri / yi], we conclude that the following sentence is also tautological:∨

(r1,...,rn)∈[0..j−1]

∃u∃z : uj = ξk ·
n∏
i=1

(zℓij
i · ξ

ℓiri) ∧ φ[zji · ξ
ri / yi : i ∈ [1..n]]. (18)

Since all the zi and u are powers of ξ, there are α, β ∈ Z such that zℓ·j = ξα·j and uj = ξβ·j .
Observe that then, in order for uj = ξk ·

∏n
i=1 z

ℓij
i ·ξℓiri to hold, we must have βj = k+αj+ℓ·r.

This implies that j divides k + ℓ · r. Therefore, we can update Formula (18) as follows:
instead of a disjunction over all elements in [0..j − 1]n, consider the set

R :=
{

(r1, . . . , rn) ∈ [0..j − 1]n : j divides k +
∑n
i=1 ri · ℓi

}
;

in the disjunct corresponding to r := (r1, . . . , rn) ∈ R, replace uj = ξk ·
∏n
i=1(zℓij

i · ξℓiri)
with u = ξ

k+ℓ·r
j · zℓ.

We conclude that the following sentence is a tautology of ∃ξZ:∨
r:=(r1,...,rn)∈R

∃u∃z : u = ξ
k+ℓ·r

j · zℓ ∧ φ[zji · ξ
ri / yi : i ∈ [1..n]].

From the sentence above, we eliminate u from each disjunct corresponding to r ∈ R by
performing the substitution [ξ

k+ℓ·r
j · zℓ / u]. In doing so, we obtain the formula in the

statement of the lemma. ◀

J. Gallego-Hernandez and A. Mansutti 39

▶ Proposition 8. Fix ξ > 1. There is an algorithm with the following specification:

Input: A quantifier-free formula ψ(u1, . . . , un) from ∃ξZ.
Output: A finite set Pψ ⊆ Z such that ψ is satisfiable if and only if

ψ has a solution in the set {(ξj1 , . . . , ξjn) : j1, . . . , jn ∈ Pψ}.

To be effective, the algorithm requires knowing either that ξ is a computable transcendental
number, or two integers c, k ∈ N≥1 for which σ(d, h) := c · (d+ ⌈ln(h)⌉)k is a root barrier of ξ.
In the latter case, the elements in Pψ are bounded in absolute value by (2c ⌈ln(H)⌉)D25n2

kD8n

,
where H := max(8,h(ψ)) and D := deg(ψ) + 2.

Proof. The proposition is clearly true for n = 0, hence below we assume n ≥ 1. By repeatedly
applying Lemmas 14 and 15 we conclude that there is a sequence S0, . . . , Sn−1 of finite sets
of integers, and a sequence φ0, φ1, . . . , φn of equisatisfiable quantifier-free formulae such that
A. for every r ∈ [0..n], the variables occurring in φr are among ur+1, . . . , un,
B. φ0 = ψ, and
C. for all r ∈ [0..n− 1], φr+1 = φr[ujr

i · ξfr,i / ui : i ∈ [r+ 2..n]][ξgr ·uℓr,r+2
r+2 · . . . ·uℓr,n

n / ur+1],
for some integers jr, fr,i, gr, ℓr,r+2, . . . , ℓr,n taken from the set Sr.

Above, observe that for convenience and differently from Lemma 15 we are reusing the
variables u2, . . . , un instead of introducing fresh variables z. Without loss of generality, we
assume Sr to always contain 0 and 1. In this way, if ur+1 does not occur in φr (e.g., because
it has been “accidentally” eliminated together with a previous variable), then we can pick
jr = 1 and fr,i = 0, for every i ∈ [r + 2..n], in order to obtain φr+1 = φr.

From Lemmas 13 and 14, for every r ∈ [0..n− 1], we have:
1. If ξ is a computable transcendental number, there is an algorithm computing Sr from ψr.
2. If ξ has a root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k, for some c, k ∈ N≥1, then,

jr ∈ [1..deg(ur+1, φr)],
fr,i ∈ [0..jr − 1] and |ℓr,i| ≤ deg(ui, φr), for every i ∈ [r + 2..n],

|gr| ≤ deg(ur+1, φr) · ((24cDr · ⌈ln(Hr)⌉)6Mrk
3Mr+ n ·max{deg(ui, φr) : i ∈ [r + 2..n]}).

where Hr := max{8,h(φr)}, Dr := deg(ξ, φr) + 2, and Mr is the maximum number of
monomials occurring in a polynomial of φr. Here, deg(ui, φr) (resp. deg(ξ, φr)) stands
for the maximum degree that the variable ui (resp. ξ) has in a polynomial occurring in
φr, which in this proof we always assume to be at least 1 without loss of generality.

As explained in Section 5.2, we can “backpropagate” the substitutions performed to define
the formulae φ1, . . . , φn (Item C) in order to obtain a solution for ψ. Formally, we consider
the set of integers {di,h : i ∈ [1..n], h ∈ [0..i− 1]} given by the following recursive definition:

di,i−1 := gn−i +
i−2∑
h=0

(di−1,h · ℓn−i,n−h),

di,h := di−1,h · jn−i + fn−i,n−h, for every h ∈ [0..i− 2]. (19)

Observe that d1,0 = gn−1, and that all integers di,h are ultimately defined in terms of integers
from the sets S0, . . . , Sn−1. We prove the following claim:

▷ Claim 32. Suppose ψ to be satisfiable. Then, for every i ∈ [0..n], the assignment{
un−h = ξdi,h for every h ∈ [0..i− 1]

is a solution of φn−i.

40 On the Existential Theory of the Reals with Integer Powers of a Computable Number

Proof. The proof is by induction on i.

base case: i = 0. By Item C, the formula φn does not feature any variable, and, accordingly,
the assignment in the claim is empty. Since φn is equisatisfiable with φ0, and φ0 = ψ

by Item C, we conclude that φn is equivalent to ⊤.
induction step: i ≥ 1. By induction hypothesis, the assignment{

un−h = ξdi−1,h for every h ∈ [0..i− 2]

is a solution of φn−(i−1). By Item C, we have

φn−(i−1) = φn−i[ujn−i

t ·ξfn−i,t / ut : t ∈ [n− i+2..n]][ξgn−i ·uℓn−i,n−i+2
n−i+2 ·. . .·uℓn−i,n

n / un−i+1].

Therefore, the following assignment is a solution of φn−i:

un−(i−1) = ξgn−i · (ξdi−1,i−2)ℓn−i,n−i+2 · . . . · (ξdi−1,0)ℓn−i,n

un−(i−2) = (ξdi−1,i−2)jn−i · ξfn−i,n−i+2

un−(i−3) = (ξdi−1,i−3)jn−i · ξfn−i,n−i+3

...
un = (ξdi−1,0)jn−i · ξfn−i,n

that is,{
un−(i−1) = ξgn−i+Σi−2

h=0(di−1,h·ℓn−i,n−h)

un−h = ξdi−1,h·jn−i+fn−i,n−h for every h ∈ [0..i− 2]

and the statement follows by definition of di,i−1, . . . , di,0. ◁

Let us move back to the proof of Proposition 8. Given the finite sets S0, . . . , Sn−1, we
can compute an upper bound U ∈ N to the absolute value of the largest integer among
dn,0, . . . , dn,n−1. Let Pψ := [−U..U]. By Claim 32 and we conclude that, whenever satisfiable,
the formula ψ has a solution in the set {(ξj1 , . . . , ξjn) : j1, . . . , jn ∈ Pψ}. Now, thanks to
Items 1 and 2 above, the finite sets S0, . . . , Sn−1 can be computed in both the cases where
either ξ is a computable transcendental number or ξ is a number with a polynomial root
barrier. The set Pψ can thus be computed in both these cases, which implies the effectiveness
of the procedure required by Proposition 8.

To conclude the proof, we derive an upper bound on U in the case where ξ is a number
with a polynomial root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k for some c, k ∈ N≥1. We start by
expressing, for every r ∈ [0..n − 1], the bounds from Item 2 in terms of parameters of φ0.
Below, let Er := max{deg(ui, φr) : i ∈ [r + 1..n]}.

▷ Claim 33. For every r ∈ [0..n− 1], we have

Mr ≤M0,

Hr ≤ 2r ·H0,

Er ≤ 42r−1 · (E0)2r

, and
deg(ξ, φr) ≤ (Gr)I

r−1 · deg(ξ, φ0)I
r

,

where Gr := n · 26·2r (E0)3·2r (
2r+4c+2 ⌈ln(H0)⌉

)I and I := 6M0k
3M0 .

J. Gallego-Hernandez and A. Mansutti 41

Proof. For r = 0 the claim is trivially true. Below, let us assume the claim to be true for
r ∈ [0..n− 2], and show that it then also holds for r + 1. Recall that, by Item C, we have

φr+1 = φr[ujr

i · ξ
fr,i / ui : i ∈ [r + 2..n]][ξgr · uℓr,r+2

r+2 · . . . · uℓr,n
n / ur+1]. (20)

Recall that the integers ℓr,i and gr might be negative, and thus the substitutions performed
in Equation (20) may require to update the polynomials in the formula so that they do not
contain negative degrees for ξ and each ui. As described in Section 5.1, these updates do not
change the number of monomials nor the height of the polynomials, but might double the
degree of each variable and of ξ. Hence, of the four bounds in the statement, which we now
consider separately, these updates only affects the cases of Er+1 and deg(ξ, φr+1).
case: Mr+1. The substitutions done to obtain φr+1 from φr replace variables with monomi-

als. These type of substitutions do not increase the number of monomials occurring in
the polynomials of a formula. (They may however decrease, causing an increase in the
height of the polynomials, see below.) Therefore, we have Mr+1 ≤Mr ≤M0.

case: Hr+1. The substitutions [ujr

i · ξfr,i / ui : i ∈ [r + 2..n]] do not increase the heights of
the polynomials in the formula. Indeed, consider a polynomial of the form

p(ξ,u) + a · ξe1 · ud1 + b · ξe2 · ud2 , (21)

where u = (ur+1, . . . , un), and ξe1 · ud1 and ξe2 · ud2 are two syntactically distinct
monomials (i.e., either e1 ̸= e2 or d1 ̸= d2). Given i ∈ [r+ 2..n], consider the substitution
[ujr

i · ξfr,i / ui]. We have three cases:
If ui occurs with different powers in the two monomials ξe1 · ud1 and ξe2 · ud2 , then it
will still occur with different powers in the monomials (ξe1 · ud1)[ujr

i · ξfr,i / ui] and
(ξe2 · ud2)[ujr

i · ξfr,i / ui] obtained after replacement.
If ui occurs with the same power d̂ in the two monomials, and e1 ̸= e2, then, after
replacement, ξ occurs with different powers in the obtained monomials e1 + d̂ · fr,i and
e2 + d̂ · fr,i respectively.
If ui occurs with the same power in the two monomials, and e1 = e2, then there is a
variable ut with t ̸= i that, in the two monomials, occurs with different powers, say
d̂1 and d̂2. (Note: one among d̂1 or d̂2 may be 0.) This variable is unchanged by the
substitution [ujr

i · ξfr,i / ui], and thus in the resulting monomials ut still occurs with
powers d̂1 and d̂2.

We move to the substitution [ξgr ·uℓr,r+2
r+2 ·. . .·u

ℓr,n
n / ur+1], which may increase the height of

polynomials. Consider again a polynomial as in Equation (21). Observe that if ur+1 occurs
with a non-zero power in both the monomials ξe1 ·ud1 and ξe2 ·ud2 , then the two monomials
(ξe1 ·ud1)[ξgr · uℓr,r+2

r+2 · . . . · uℓr,n
n / ur+1] equals to (ξe2 ·ud2)[ξgr · uℓr,r+2

r+2 · . . . · uℓr,n
n / ur+1]

obtained after replacement are still different (a formal proof of this fact follows similarly
to the one we have just discussed for the substitution [ujr

i · ξfr,i / ui]). The same holds
true if ur+1 does not occur in any of the two monomials. If instead ur+1 occurs with a
non-zero power only in one monomial, say ξe1 · ud1 , we might have

(ξe2 ·ud2)[ξgr ·uℓr,r+2
r+2 ·. . .·uℓr,n

n / ur+1] = (ξe1 ·ud1)[ξgr ·uℓr,r+2
r+2 ·. . .·uℓr,n

n / ur+1] = ξe1 ·ud1 .

Hence, after replacement, the coefficient of ξe1 · ud1 is updated from a to (a+ b). Note
that no further increase are possible. Indeed, suppose p(ξ,u) contains a third monomial
ξe3ud3 in which ur+1 has a non-zero power. By the arguments above, we have

(ξe2 · ud2)[ξgr · uℓr,r+2
r+2 · . . . · uℓr,n

n / ur+1] ̸= (ξe3 · ud3)[ξgr · uℓr,r+2
r+2 · . . . · uℓr,n

n / ur+1],

and therefore no other monomial from p can be updated to ξe1 · ud1 after replacement.
Since |a| , |b| ≤ Hr, we have |a+ b| ≤ 2 ·Hr. This shows Hr+1 ≤ 2 ·Hr ≤ 2r+1 ·H0.

42 On the Existential Theory of the Reals with Integer Powers of a Computable Number

case: Er+1. Consider ui with i ∈ [r+ 2..n]. We show deg(ui, φr+1) ≤ 4(Er)2, which implies
Er+1 ≤ 4(42r−1(E0)2r)2 = 42r+1−1(E0)2r+1 , as required. Consider a monomial occurring
in φr and let d1 and d2 be the non-negative integers occurring as powers of ui and
ur+1 in this monomial. The substitutions performed to obtain φr+1 (Equation (20))
update the power of ui in the monomial from d1 to d1 · jr + d2 · ℓr,i. By Item 2,
jr ∈ [1..deg(ur+1, φr)] and |ℓr,i| ≤ deg(ui, φr), and therefore jr, |ℓr,i| ≤ Er. We conclude
that |d1 · jr + d2 · ℓr,i| ≤ 2 · (Er)2. Lastly, we need to account for the updates performed
to the formula in order remove the negative integers that occur as powers of the variables
and of ξ. As already stated, in the worst case, these updates double the degree of each
variable, and so Er+1 ≤ 4(Er)2.

case: deg(ξ, φr+1). We start by reasoning similarly to the previous case. Consider a
monomial ξd · udr+1

r+1 · . . . · udn
n occurring in φr. The substitutions performed to obtain

φr+1 update the power of ξ from d to d+ gr · dr+1 +
∑n
i=r+2 fr,i · di. Observe that∣∣∣∣∣d+ gr · dr+1 +

n∑
i=r+2

fr,i · di

∣∣∣∣∣
≤ deg(ξ, φr) +

(
|gr|+

n∑
i=r+2

|fr,i|
)
· Er

≤ deg(ξ, φr) +
(
|gr|+

n∑
i=r+2

Er

)
· Er by Item 2.

Accounting for the updates performed to the formula in order to remove negative powers,
we conclude that deg(ξ, φr+1) is bounded by 2 · (deg(ξ, φr) + (|gr|+

∑n
i=r+2 Er) ·Er). We

further analyse this quantity as follows:

2 · (deg(ξ, φr) + (|gr|+
n∑

i=r+2
Er) · Er)

≤ 2 deg(ξ, φr) + 2
(
Er((24cDr ⌈ln(Hr)⌉)6Mrk

3Mr+ nEr) +
n∑

i=r+2
Er

)
Er by Item 2

≤ 2 deg(ξ, φr) + 4n · (Er)3 · (24cDr · ⌈ln(Hr)⌉)6Mrk
3Mr

≤ 2 deg(ξ, φr) + 4n · (Er)3 · (24c(deg(ξ, φr) + 2) · ⌈ln(Hr)⌉)6Mrk
3Mr def. of Dr

≤ 2 deg(ξ, φr) + 4n · (Er)3 · (24c(deg(ξ, φr) + 2) · ⌈ln(Hr)⌉)6Mrk
3Mr def. of Dr

≤ 2 deg(ξ, φr) + 4n · (Er)3(24c+2 deg(ξ, φr) · ⌈ln(Hr)⌉)6Mrk
3Mr deg(ξ, φr) ≥ 1

≤ 5n · (Er)3(24c+2 · ⌈ln(Hr)⌉)6Mrk
3Mr deg(ξ, φr)6Mrk

3Mr

≤ 5n(42r−1(E0)2r

)3(24c+2 ⌈ln(2rH0)⌉)6M0k
3M0 deg(ξ, φr)6M0k

3M0

bounds on Er, Hr and Mr

≤ n26·2r

(E0)3·2r

(2r+4c+2 ⌈ln(H0)⌉)6M0k
3M0 deg(ξ, φr)6M0k

3M0

≤ Gr · deg(ξ, φr)I def. of Gr and I

≤ Gr · ((Gr)I
r−1 · deg(ξ, φ0)I

r

)I bound on deg(ξ, φr)

≤ (Gr)I
r+1−I+1 · deg(ξ, φ0)I

r+1

≤ (Gr+1)I
r+1−1 · deg(ξ, φ0)I

r+1
since I ≥ 2 and Gr+1 ≥ Gr.

This completes the proof of the claim. ◁

J. Gallego-Hernandez and A. Mansutti 43

We use the bounds in Claim 33 to also bound the quantities jr, fr,i, |ℓr,i| and |gr|.

▷ Claim 34. For every r ∈ [0..n− 1] and i ∈ [r + 2..n], we have

jr, fr,i, |ℓr,i| ≤ 42r

(E0)2r

, and

|gr| ≤
(
n · 22r+4+4c(E0)2r+3

⌈ln(H0)⌉ · deg(ξ, φ0)
)(6M0k

3M0)r+2

.

Proof. By Item 2, the numbers jr, fr,i and |ℓr,i| are all bounded by Er, which in turn is
bounded by 42r (E0)2r (by Claim 33). Let us now consider |gr|. Observe that deg(ξ, φr) and
|gr| are mutually dependant, and in particular that in the proof of Claim 33 we have bounded
deg(ξ, φr+1) with a long chain of manipulations establishing, among other inequalities,

2 · (deg(ξ, φr) + (|gr|+
n∑

i=r+2
Er) · Er) ≤ (Gr+1)I

r+1−1 · deg(ξ, φ0)I
r+1

,

where Gr+1 := n · 26·2r+1(E0)3·2r+1(
2r+4c+3 ⌈ln(H0)⌉

)I and I := 6M0k
3M0 . Since |gr| is

smaller than (deg(ξ, φr) + (|gr|+
∑n
i=r+2 Er) · Er), we conclude that

|gr| ≤ (Gr+1)I
r+1−1 · deg(ξ, φ0)I

r+1

≤
(
n · 26·2r+1

(E0)3·2r+1(
2r+4c+3 ⌈ln(H0)⌉

)I · deg(ξ, φ0)
)Ir+1

≤
(
n · 26·2r+1+r+4c+3(E0)3·2r+1

⌈ln(H0)⌉ · deg(ξ, φ0)
)Ir+2

≤
(
n · 22r+4+4c(E0)2r+3

⌈ln(H0)⌉ · deg(ξ, φ0)
)(6M0k

3M0)r+2

. ◁

Next, we bound the integers di,h, with i ∈ [1..n] and h ∈ [0..i−1], introduced in Equation (19).

▷ Claim 35. For every i ∈ [1..n] and h ∈ [0..i− 1] we have

|di,h| ≤ 2h(2A)i−1B,

where A := 42n(E0)2n and B :=
(
n · 22n+3+4c(E0)2n+2 ⌈ln(H0)⌉ · deg(ξ, φ0)

)(6M0k
3M0)n+1

.

Proof. By Claim 34, for every r ∈ [0..n− 1] and i ∈ [r+ 2..n], jr, fr,i, |ℓr,i| ≤ A and |gr| ≤ B.
Following the definition of di,h given in Equation (19), we have that for every i ∈ [1..n]

and h ∈ [0..i− 2], |di,h| is bounded by the positive integer Di,h that is recursively defined as
follows. For every i ∈ [1..n],

Di,i−1 := B +
i−2∑
h=0

Di−1,h ·A,

Di,h := (Di−1,h + 1) ·A, for every h ∈ [0..i− 2].

Observe that D1,0 = B and that, more generally, every Di,h is greater or equal to B. Since
B ≥ 1, for h ̸= i − 1 we have Di,h ≤ 2 · Di−1,h · A. To complete the proof, we show
Di,h ≤ 2h(2A)i−1B by induction on i.
base case: i = 1. In this case we only need to consider D1,0, which as already states is

equal to B. The base case thus follows trivially.

44 On the Existential Theory of the Reals with Integer Powers of a Computable Number

induction step: i ≥ 2. Let h ∈ [0..i − 2]. We consider two cases, depending on whether
h = i − 1. If h ≠ i − 1, then by definition of Di,h we have Di,h ≤ 2 ·Di−1,h · A. Then,
from the induction hypothesis,

Di,h ≤ 2
(
2h(2A)i−2B

)
A ≤ 2h(2A)i−1B.

If h = i−1, then by definition of Di,h we have Di,i−1 = B+
∑i−2
h=0 Di−1,h ·A. By applying

the induction hypothesis, we obtain:

Di,i−1 ≤ B +
i−2∑
h=0

(2h(2A)i−2B) ·A ≤ B + 2i−2Ai−1B ·
i−2∑
h=0

2h

≤ B + 2i−2Ai−1B · 2i−1 ≤ 2i−1(2A)i−1B. ◁

Together, Claim 32 and Claim 35 show that, whenever satisfiable, ψ(u1, . . . , un) (that
is, φ0) has a solution assigning to each variable an integer power of ξ of the form ξβ with
|β| ≤ 22nAnB, where A and B are defined as in Claim 35. We conclude the proof by
simplifying this bound to improve its readability, obtaining the one in the statement. Recall
that H := max{8,h(ψ)}, D := deg(ψ) + 2 (where deg(ψ) also account for the degree of ξ),
E0 = max{deg(ui, ψ) : i ∈ [1..n]} and M0 is the number of monomials in a polynomial of ψ,
which can be crudely bounded as Dn+1 (the monomials also contain ξ).

|β| ≤ 22nAnB

≤ 22n(
42n

(E0)2n)n(
n · 22n+3+4c(E0)2n+2

⌈ln(H0)⌉ · deg(ξ, φ0)
)(6M0k

3M0)n+1

≤ 22n(
42n

D2n)n(
n · 22n+3+4cD2n+2

⌈ln(H)⌉ ·D
)(6Dn+1k3Dn+1

)n+1

≤ 22n(2n+1)Dn2n
(

22n+3+log(n)+4cD2n+2+1 ⌈ln(H)⌉
)(6Dn+1k3Dn+1

)n+1

≤
(

24cD2n(2n+1)+n2n+2n+3+log(n)+2n+2+1 ⌈ln(H)⌉
)(6Dn+1k3Dn+1

)n+1

as D ≥ 2

≤
(

24cD18n2n

⌈ln(H)⌉
)(6Dn+1k3Dn+1

)n+1

as n ≥ 1

≤
(

24c+18n2n log(D) ⌈ln(H)⌉
)(6Dn+1k3Dn+1

)n+1

≤
(

2c ⌈ln(H)⌉
)72n2n log(D)·(6Dn+1k3Dn+1

)n+1

,

and the exponent in the last expression can be upper bounded as

72n2n log(D) · (6Dn+1k3Dn+1
)n+1

≤ 2log(72n)+n+log(6)(n+1)Dn2+2n+2(k3Dn+1
)n+1

≤ 213nD5n2
(k3Dn+1

)n+1 ≤ D18n2
k12nD4n

≤ D25n2
kD

8n

.

Therefore, one can set U := (2c ⌈ln(H)⌉)D25n2
kD8n

when defining Pψ := [−U..U]. ◀

D Proofs of the statements in Section 6

Representation for the algebraic numbers involved in the definition of ξ. Before moving
to the proofs of the statements in Section 6, let us come back to the representation of

J. Gallego-Hernandez and A. Mansutti 45

algebraic numbers. As written in the body of the paper, an algebraic number α can be
represented as a triple (q, ℓ, u) where q is a non-zero integer polynomial and ℓ, u are rational
numbers such that α is the only root of q that belongs to the interval [ℓ, u]. Since, in our
case, we are fixing the base ξ of ∃R(ξZ), it is convenient to improve this representation for
fixed algebraic numbers (i.e. those that do not depend from the input of our procedures, as
for instance numbers that may be involved in the definition of ξ). In these cases, we impose
the following restriction on ℓ and u: either ℓ = u, or α ∈ (ℓ, u) and (ℓ, u) ∩ Z = ∅ (note: this
is in addition to the property that α is the only root of q in [ℓ, u]). This restriction is without
loss of generality. Indeed, given a triple (q, ℓ, u) not satisfying it, we can apply dichotomy
search to refine the interval [ℓ, u] to an interval [ℓ′, u′] such that u′ − ℓ′ < 1. This refinement
is done by tests of the form ∃x : q(x) = 0 ∧ ℓ < x ≤ u−ℓ

2 , which can be performed (in fact, in
polynomial time) by, e.g., Theorem 7. After computing [ℓ′, u′], we reason as follows:

if [ℓ′, u′] does not contain an integer, (q, ℓ′, u′) is the required representation of α.
if [ℓ′, u′] contains k ∈ Z and q(k) = 0, then (q, k, k) the required representation of α.
if [ℓ′, u′] contains k ∈ Z and q(k) ̸= 0, then one among (q, ℓ, k) and (q, k, u) is the required
representation of α. It then suffices to check where α lies, which can be done by testing
∃x : q(x) = 0 ∧ ℓ < x ≤ k, again with, e.g., the algorithm in Theorem 7.

Once more, we stress the fact that this representation is only used for algebraic numbers
that are fixed, and so the above refinement of ℓ and u takes constant time.

Proofs of the statements in the paragraph “The case of ξ algebraic”. We need to establish
Lemma 16, which follows as a simple corollary of the following lemma.

▶ Lemma 36. Let ξ be a (fixed) algebraic number represented by (q, ℓ, u). There is an
algorithm that given as input L ∈ N written in unary computes in time polynomial in L two
rational numbers ℓ′ and u′ such that (q, ℓ′, u′) is a representation of α and 0 ≤ u′ − ℓ′ ≤ 2−L.

Proof. Since ξ is fixed, following the text above, we can assume without loss of generality
that either ℓ = u or ξ ∈ (ℓ, u) and (ℓ, u) ∩ Z = ∅, which implies u− ℓ < 1. Once more, we
remark that without this assumption, one such interval containing ξ can be computed in
constant time. The algorithm refines further refine the interval [ℓ, u] to an accuracy that
depends on L by performing a dichotomy search:

1: while u− ℓ > 2−L do
2: m← u−ℓ

2
3: if q(m) = 0 then return (q,m,m)
4: if ∃x : ℓ < x < m ∧ q(x) = 0 then u← m

5: else ℓ← m

6: return (q, ℓ, u)
The correctness of the algorithm is immediate: at each iteration of the while loop of line 1,
after defining m as u−ℓ

2 , one of the following three cases holds: ξ = m, ℓ < ξ < m, or
m < ξ < u. Lines 3 and 4 check which of the three cases holds, by relying on the fact
that ξ is the only root of q(x) in the interval [ℓ, u]. We can implement the test in line 4 by
relying, e.g., on the procedure form Theorem 7, which runs in polynomial time when the
input formula has a fixed number of variables.

Observe that at each iteration of the while loop the distance between ℓ and u is halved.
Since initially u− ℓ < 1, this means that the while loop of line 1 iterates at most L times.
Therefore, in order to argue that the procedure runs in polynomial time it suffices to track
the growth of the numbers ℓ and u across L iterations of the while loop.

46 On the Existential Theory of the Reals with Integer Powers of a Computable Number

Below, we see ℓ, u and m as standard programming variables, all storing pairs of integers
representing rational numbers. We also let (a, b) and (c, d) be the content of the variables ℓ
and u, respectively, at the beginning of the algorithm. These two pairs encode the rationals
a
b and c

d . We assume a, c ∈ Z and b, d ∈ N≥1.
To analyse the growth of the numbers stored in ℓ and u throughout the execution of the

algorithm, let us make a simplifying assumption. Whereas throughout the rest of the paper
we have encoded rational numbers as pairs of coprime integers, throughout the run of this
algorithm we do not force coprimality. In particular, if at the beginning of some iteration of
the while loop the variables ℓ and u store the pairs (ℓ1, ℓ2) and (u1, u2), respectively, with
ℓ1, u1 ∈ Z and ℓ2, u2 ∈ N≥1, then in line 2 the algorithm assigns to the variable m the pair
of numbers (m1,m2), encoding m1

m2
, such that

m1 := lcm(ℓ2, u2)
u2

u1 −
lcm(ℓ2, u2)

ℓ2
ℓ1 and m2 := 2 · lcm(ℓ2, u2),

where we remark that lcm(ℓ2,u2)
u2

and lcm(ℓ2,u2)
ℓ2

are integers (hence m1 ∈ Z), and m2 ∈ N≥1.
Note that this correctly capture the assignment done in line 2:

m = m1

m2
=

lcm(ℓ2,u2)
u2

u1 − lcm(ℓ2,u2)
ℓ2

ℓ1

2 · lcm(ℓ2, u2) =
u1
u2
− ℓ1

ℓ2

2 = u− ℓ
2 .

Coprimality can be restored when the algorithm returns.
We show the following loop invariant:

After the Mth iteration of the while loop, the program variables ℓ and u store
pairs (ℓ1, ℓ2) and (u1, u2), respectively, such that (ℓ1, ℓ2) ∈ SM ∪ {(a, b)} and
(u1, u2) ∈ SM ∪ {(c, d)} where

SM :=
{

(v1, v2) ∈ Z× N≥1 : |v1| ≤ 2j(|a · d|+ |c · b|) and v2 = 2j lcm(b, d)
for some j ∈ [0..M]

}
.

Observe that the invariant trivially holds after the 0th iteration of the while loop, since
at that point ℓ stores (a, b) and u stores (c, d). Consider now the (M + 1)th iteration of
the while loop, with M ≥ 0. Let (ℓ1, ℓ2) and (u1, u2) be the pairs assigned to ℓ and u,
respectively, at the beginning of this iteration. If the test performed in line 3 is successful,
then the algorithm returns and we do not have anything to prove. Below, assume the test
in line 3 to be unsuccessful, so that the algorithm completes the (M + 1)th iteration of the
loop. Let (m1,m2) be the pair of integers defined as

m1 = lcm(ℓ2, u2)
u2

u1 −
lcm(ℓ2, u2)

ℓ2
ℓ1 and m2 = 2 · lcm(ℓ2, u2).

At the end of the iteration of the loop, one of the following two possibility occur:
ℓ stores (ℓ1, ℓ2) and u stores (m1,m2) (this occurs if the assignment in line 4 is executed),
ℓ stores (m1,m2) and u stores (u1, u2) (this occur if the assignment in line 5 is executed).

By induction hypothesis (ℓ1, ℓ2) ∈ SM ∪{(a, b)} and (u1, u2) ∈ SM ∪{(c, d)}, and to conclude
the proof it suffices to show that (m1,m2) ∈ SM+1. We split the proof into four cases:
case: (ℓ1, ℓ2) = (a, b) and (u1, u2) = (c, d). We have m1 = lcm(b,d)

d c − lcm(b,d)
b a and

m2 = 2·lcm(b, d). The first equation yields |m1| ≤
∣∣∣ lcm(b,d)

d c
∣∣∣ +

∣∣∣ lcm(b,d)
b a

∣∣∣ ≤ |c · b| − |a · d|.
We conclude that (m1,m2) ∈ SM+1.

J. Gallego-Hernandez and A. Mansutti 47

case: (ℓ1, ℓ2) ∈ SM and (u1, u2) = (c, d). By definition of SM , there is j ∈ [0..M] such
that |ℓ1| ≤ 2j(|a · d|+ |c · b|) and ℓ2 = 2j lcm(b, d). By definition of (m1,m2),

m2 = 2 · lcm(2j lcm(b, d), d) = 2j+1lcm(b, d),

and

|m1| =
∣∣∣∣2j lcm(b, d)

d
c− 2j lcm(b, d)

2j lcm(b, d)ℓ1

∣∣∣∣ =
∣∣∣∣2j lcm(b, d)

d
c− ℓ1

∣∣∣∣
≤

∣∣2jc · b∣∣ + |ℓ1| ≤
∣∣2jc · b∣∣ + 2j(|a · d|+ |c · b|) ≤ 2j+1(|a · d|+ |c · b|).

Since j + 1 ∈ [0..M + 1], we conclude (m1,m2) ∈ SM+1.
case: (ℓ1, ℓ2) = (a, b) and (u1, u2) ∈ SM . This case is analogous to the previous one.
case: (ℓ1, ℓ2) ∈ SM and (u1, u2) ∈ SM . There are j1, j2 ∈ [0..M] such that

|ℓ1| ≤ 2j1(|a · d|+ |c · b|) and ℓ2 = 2j1 lcm(b, d)
|u1| ≤ 2j2(|a · d|+ |c · b|) and u2 = 2j2 lcm(b, d).

By definition of (m1,m2),

m2 = 2 · lcm(2j1 lcm(b, d), 2j2 lcm(b, d)) = 2max(j1,j2)+1lcm(b, d),

and

|m1| =
∣∣∣∣2max(j1,j2)lcm(b, d)

2j2 lcm(b, d) u1 −
2max(j1,j2)lcm(b, d)

2j1 lcm(b, d) ℓ1

∣∣∣∣
=

∣∣∣2max(j1,j2)−j2u1 − 2max(j1,j2)−j1ℓ1

∣∣∣
≤

∣∣∣2max(j1,j2)−j2u1

∣∣∣ +
∣∣∣2max(j1,j2)−j1ℓ1

∣∣∣
≤

∣∣∣2max(j1,j2)−j22j2(|a · d|+ |c · b|)
∣∣∣ +

∣∣∣2max(j1,j2)−j12j1(|a · d|+ |c · b|)
∣∣∣

≤ 2max(j1,j2)+1(|a · d|+ |c · b|).

Since max(j1, j2) + 1 ∈ [0..M + 1], we conclude (m1,m2) ∈ SM+1.

Having established the above loop invariant, it is now clear that, after L executions of the
while loop, to the variables ℓ and u are assigned pairs of numbers of bit size linear in L.
Therefore, the algorithm runs in polynomial time. ◀

Proofs of the lemmas in “The case of ξ among some classical transcendental numbers”.
We work towards a proof of Lemma 19. First of all, we establish two lemmas on approximations
of er and ln(r) by truncation of standard power series.

▶ Lemma 37. Let r ∈ R and k ≥ 1 with |r| ≤ k, and let tn(x) :=
∑n
j=0

xj

j! . For every
L,M ∈ N satisfying M ≥ L+ 8k2, we have |er − tM (r)| ≤ 2−L.

Proof. Following the identity ex =
∑∞
j=0

xj

j! , whose right hand side is the Maclaurin series
for ex (see, e.g., [29, Equation 4.2.19]), we have

|er − tM (r)| =

∣∣∣∣∣∣
∞∑

j=M+1

rj

j!

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
j=0

rM+1+j

(M + 1 + j)!

∣∣∣∣∣∣ =

∣∣∣∣∣∣rM+1
∞∑
j=0

rj

(M + 1 + j)!

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣ rM+1

(M + 1)!

∞∑
j=0

rj

(M + 1 + j) · . . . · (M + 2)

∣∣∣∣∣∣ ≤ kM+1

(M + 1)!e
k ,

48 On the Existential Theory of the Reals with Integer Powers of a Computable Number

where in the last inequalities we used |r| ≤ k. Let us show that the hypothesis M ≥ L+ 8k2

in the statement of the lemma implies kM+1

(M+1)!e
k ≤ 1

2L , concluding the proof. Below, note

that M ≥ 23k2 implies log(M2) ≥ 2 + 2 log(k), and so log(M
2)

2 − log(k) ≥ 1. We have the
following chain of implications:

M ≥ L+ 23k2

=⇒ M ≥ L+ log(k) + k log(e) and M ≥ 23k2 since 23k2 ≥ log(k) + k log(e)

=⇒ M
(log(M2)

2 − log(k)
)
≥ L+ log(k) + k log(e)

=⇒ M

2 log
(
M

2

)
≥ L+M log(k) + log(k) + k log(e)

=⇒ log((M + 1)!) ≥ L+ (M + 1) log(k) + k log(e) since (M + 1)! ≥ M

2

M
2

=⇒ (M + 1)! ≥ 2LkM+1ek

=⇒ kM+1

(M + 1)!e
k ≤ 1

2L . ◀

▶ Lemma 38. Let r > 0, and let tn(x) := 2 ·
∑n
j=0

(1
2j+1

(
x−1
x+1

)2j+1)
. Consider L,M ∈ N.

If r = 1 or M ≥ (L+ log |ln(r)|)
(
−2 log

∣∣∣ r−1
r+1

∣∣∣)−1, then |ln(r)− tM (r)| ≤ 2−L.

Proof. If r = 1, observe that ln(r) = 0 and tn(r) = 0 for every n ∈ N, so |ln(r)− tM (r)| = 0
and the statement trivially follows.

Below, assume r ̸= 1. We follow the identity ln(x) = 2
∑∞
j=0

(1
2j+1

(
x−1
x+1

)2j+1)
, which

holds for every x > 0, see [29, Equation 4.6.4]. We have:

|ln(r)− tM (r)|

=

∣∣∣∣∣∣
∞∑

j=M+1

1
2j + 1

(
r − 1
r + 1

)2j+1
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∞∑
j=0

1
2j + 2M + 3

(
r − 1
r + 1

)2j+2M+3
∣∣∣∣∣∣

=

∣∣∣∣∣∣
(
r − 1
r + 1

)2M+2 ∞∑
j=0

1
2j + 2M + 3

(
r − 1
r + 1

)2j+1
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
(
r − 1
r + 1

)2M+2 ∞∑
j=0

1
2j + 1

(
r − 1
r + 1

)2j+1
∣∣∣∣∣∣ note: r − 1

r + 1 ,
(r − 1
r + 1

)3
,
(r − 1
r + 1

)5
, . . .

all have the same sign

≤ 1
2

∣∣∣∣r − 1
r + 1

∣∣∣∣2M+2
|ln(r)| .

Let us now show that the hypothesis M ≥ (L+ log |ln(r)|)
(
−2 log

∣∣∣ r−1
r+1

∣∣∣)−1 in the statement

of the lemma implies 1
2

∣∣∣ r−1
r+1

∣∣∣2M+2
|ln(r)| ≤ 1

2L , concluding the proof. Below, note that r > 0

and r ̸= 1 imply that
∣∣∣ r−1
r+1

∣∣∣ ∈ (0, 1), so log
∣∣∣ r−1
r+1

∣∣∣ < 0.

M ≥ (L+ log(|ln(r)|))
(
−2 log

∣∣∣∣r − 1
r + 1

∣∣∣∣)−1

J. Gallego-Hernandez and A. Mansutti 49

=⇒ 2M + 2 ≥ L+ log |ln(r)|
− log

∣∣∣ r−1
r+1

∣∣∣
=⇒ (2M + 2) log

∣∣∣∣r − 1
r + 1

∣∣∣∣ + log |ln(r)| ≤ −L since log
∣∣∣ r−1
r+1

∣∣∣ < 0

=⇒
∣∣∣∣r − 1
r + 1

∣∣∣∣2M+2
|ln(r)| ≤ 2−L

=⇒ 1
2

∣∣∣∣r − 1
r + 1

∣∣∣∣2M+2
|ln(r)| ≤ 2−L. ◀

To prove Lemma 19 we will also use the following technical lemma.

▶ Lemma 39. Let δ(x) be an integer polynomial. Consider a function p : R→ R such that
δ(x) · p(x) equals an integer polynomial q(x). Let d, h ∈ N such that max(deg(δ),deg(q)) ≤ d
and max(h(δ),h(q)) ≤ h. Let r ∈ R such that max(|r| , |p(r)|) ≤ K for some K ≥ 1. Consider
L,M ∈ N satisfying

M ≥ L+ log(h+ 1) + (2d+ 1)(log(K + 1)).

For every r∗ ∈ R satisfying δ(r∗) ≥ 1, if |r − r∗| ≤ 2−M then |p(r)− p(r∗)| ≤ 2−L.

Proof. By applying Lemma 22 to both δ and q, from |r − r∗| ≤ 2−M we derive

|δ(r)− δ(r∗)| ≤ 2−L′
and |q(r)− q(r∗)| ≤ 2−L′

,

where L′ = L+ log(K + 1). We show that these two inequalities imply |p(r)− p(r∗)| ≤ 2−L.
Define ϵ := δ(r)− δ(r∗). The following chain of implications holds

|q(r)− q(r∗)| ≤ 2−L′

=⇒ |δ(r) · p(r)− δ(r∗) · p(r∗)| ≤ 2−L′
by hypotheses

=⇒ |(δ(r∗) + ϵ) · p(r)− δ(r∗) · p(r∗)| ≤ 2−L′

=⇒ |δ(r∗)(p(r)− p(r∗)) + ϵ · p(r)| ≤ 2−L′

=⇒ |δ(r∗)(p(r)− p(r∗))| ≤ 2−L′
+ |ϵ · p(r)|

=⇒ |δ(r∗)(p(r)− p(r∗))| ≤ 2−L′
+ 2−L′

|p(r)| bound on ϵ

=⇒ |δ(r∗)(p(r)− p(r∗))| ≤ 2−L′
(K + 1) bound on |p(r)|

=⇒ |(p(r)− p(r∗))| ≤ 2−L′(K + 1)
|δ(r∗)|

=⇒ |(p(r)− p(r∗))| ≤ 2−L′
(K + 1) since δ(r∗) ≥ 1.

It then suffices to check that 2−L′(K+1) ≤ 2−L, which follows from L′ = L+log(K+1). ◀

▶ Lemma 19. Given a polynomial-time Turing machine computing r ∈ R,
1. one can construct a polynomial-time Turing machine computing er;
2. if r > 0, one can construct a polynomial-time Turing machine computing ln(r).

Proof of Lemma 19.1. Let T be the polynomial-time Turing machine computing r. Follow-
ing Lemma 37, for n ∈ N we define tn(x) :=

∑n
j=0

xj

j! , which we see as a polynomial with
rational coefficients encoded in binary (as a pair of integers). The pseudocode of the Turing
machine for computing er is the following:

50 On the Existential Theory of the Reals with Integer Powers of a Computable Number

Input: A natural number n written in unary
Output: A rational b (given as a pair of integers written in binary) such that |er − b| ≤ 2−n.

1: let J := |T0|+ 1 ▷ recall: T0 computed in constant time, and |r| ≤ |T0|+ 1
2: let M := n+ 1 + 8 ⌈J⌉2

3: let N := n+ 1 + 9M2(⌈log(J)⌉+ 1)
4: return evaluation of tM (TN) ▷ TN computed in polynomial-time in N

Below, we prove that this algorithm computes er and that it runs in polynomial time with
respect to the input n.
Correctness of the algorithm. From Lemma 37, we have |er − tM (r)| ≤ 1

2n+1 , where
M is the value defined in line 2. Below, we apply Lemma 39 in order to conclude that
|tM (r)− tM (TN)| ≤ 1

2n+1 . Observe that this concludes the proof of correctness, since we get:

|er − tM (TN)| = |er − tM (r) + tM (r)− tM (TN)| ≤ |er − tM (r)|+|tM (r)− tM (TN)| ≤ 2−n.

Let δ(x) := M ! (δ is a constant integer polynomial) and q(x) :=
∑M
j=0((j+ 1) · . . . ·M ·xj).

Observe that δ(x)·tM (x) equals q(x), and that δ(TN) ≥ 1. We have max(deg(δ),deg(q)) ≤ M

and max(h(δ),h(q)) ≤M ! . Lastly, let us define K := 3JM , so that max(|r| , |tM (r)|) ≤ K.
(Indeed, observe that |tM (r)| =

∣∣∣∑M
j=0

rj

j!

∣∣∣ ≤ |r|M ∑M
j=0

1
j! ≤ e |r|

M ≤ 3JM .) By Lemma 39,
|tM (r)− tM (TN)| ≤ 1

2n+1 holds as soon as |r − TN | ≤ 1
2L , where L is any integer satisfying

L ≥ n+ 1 + log(M ! + 1) + (2M + 1)(log(K + 1)). Since |r − TN | ≤ 1
2N , it then suffices to

show that N defined in line 3 corresponds to such an integer L:

n+ 1 + log(M ! + 1) + (2M + 1)(log(K + 1))
≤ n+ 1 + log(M ! + 1) + (2M + 1)(log(3JM + 1)) by def. of K
≤ n+ 1 + log(M ! + 1) + (2M + 1)(log(4JM))
≤ n+ 1 + log(M ! + 1) + (2M + 1)(M log(J) + 2)
≤ n+ 1 +M2 + (2M + 1)(M log(J) + 2) since M ≥ 1, and so log(M ! + 1) ≤M2

≤ n+ 1 + 9M2(log(J) + 1)
≤ n+ 1 + 9M2(⌈log(J)⌉+ 1) = N.

Running time of the algorithm. Line 1 does not depend on the input n and thus its
computation takes constant time. Lines 2 and 3 compute in polynomial time the numbers
M and N , which are written in unary and have size in O(n2).

To conclude the proof, we show that the computation done in line 4 takes time polynomial
in n. One of the steps of this line is to compute the number TN , which can be done in
time poly(n) because of the O(n2) bound on N . This also means that TN is of the form ℓ1

ℓ2
where ℓ1, ℓ2 are integers written in binary with bit size polynomial in n. The last step of the
algorithm is to evaluate the expression

∑M
j=0

(ℓ1)j

(ℓ2)j ·j! , which equals the rational number b1
b2

where b1 and b2 are the following integers:

b1 :=
M∑
j=0

(ℓ1)j · (ℓ2)M−j · (j + 1) · . . . ·M,

b2 := (ℓ2)M ·M ! .

Therefore, we can have the algorithm return b = b1
b2

. Both b1 and b2 have a bit size polynomial
in n. Indeed, for b2 we have

1 + ⌈log(b2 + 1)⌉ bit size of b2

J. Gallego-Hernandez and A. Mansutti 51

≤ 2 + log((ℓ2)M ·M ! + 1)
≤ 2 + log(2(ℓ2)M ·M !) since M ≥ 1
≤ 3 +M · (log(ℓ2) + log(M)) since M ≥ 1
≤ 3 +M · (poly(n) + log(M)) the bit size of ℓ2 is polynomial in n

≤ 3 +O(n2) · (poly(n) + log(O(n2))) since M (written in unary) has size in O(n2)
≤ poly(n).

The analysis for b1 is similar. Analogously, all intermediate computations done to produce
b1 and b2 are arithmetic operations on numbers whose bit size can be bounded in poly(n).
Since these arithmetic operations require polynomial time with respect to the size of their
input, we conclude that b1 and b2 can be computed in polynomial time in n. This shows
that also line 4 takes time polynomial in n, concluding the proof. ◀

For the forthcoming proof of Lemma 19.2, we need the following simple fact.

▶ Lemma 40. For every real number x ∈ (0, 1) we have − log(x) > −x+ 1 > 0.

Proof. The inequality −x + 1 > 0 is direct from the fact that x ∈ (0, 1). To prove the
inequality − log(x) > −x+ 1, consider the identity ln(x) =

∑∞
j=1(−1)j+1 (x−1)j

j , which holds
for every x ∈ (0, 1), see e.g. [29, Equation 4.6.3]. By truncating the power series in this
identity to the first term, we see that ln(x) < x− 1; indeed note that x ∈ (0, 1) implies that
all terms in this power series are negative. Then, we have

− log(x) = − ln(x)
ln(2) > − ln(x) > −x+ 1. ◀

Proof of Lemma 19.2. Let T be the polynomial-time Turing machine computing r > 0.
Following Lemma 38, for n ∈ N we define tn(x) := 2 ·

∑n
j=0

(1
2j+1

(
x−1
x+1

)2j+1)
, in which we

see the rational numbers 1
2j+1 as encoded in binary (as a pair of integers). The pseudocode

of the Turing machine for computing ln(r) is the following:
Input: A natural number n written in unary
Output: A rational b (given as a pair of integers written in binary) s.t. |ln(r)− b| ≤ 2−n.

1: let k be the the smallest natural number such that 1
2k < Tk.

▷ recall: k and Tk are computed in constant time
2: let L := Tk − 1

2k

3: let U := Tk + 1
2k ▷ note: 0 < L ≤ r ≤ U

4: let Z1 := ⌈max(|ln(L)|, |ln(U)|)⌉ ▷ Z1 is a positive integer
5: let Z2 := 1 + min(−

∣∣∣L−1
L+1

∣∣∣ ,− ∣∣∣U−1
U+1

∣∣∣) ▷ Z2 is a positive rational number

6: let M :=
⌈
n+1+Z1

2·Z2

⌉
▷ M is a positive integer written in unary

7: let N := n+ 2 + 15M · ⌈log(U + 4M)⌉ ▷ N is a positive integer written in unary
8: return evaluation of tM (|TN |) ▷ |TN | computed in polynomial-time in N

Below, we prove that this algorithm computes ln(r) and that it runs in polynomial time with
respect to the input n.
Correctness of the algorithm. We start with three observations:

the number k computed in line 1 exists, since limn→∞ Tk = r > 0 whereas limn→∞
1

2k = 0.
the values Z1 and Z2 are properly defined and positive, because U > L > 0, which in
turns implies that also M and N are properly defined. To prove that Z2 > 0, observe
that for every y ≥ 0 we have

∣∣∣y−1
y+1

∣∣∣ < 1, hence 1−
∣∣∣y−1
y+1

∣∣∣ > 0.

52 On the Existential Theory of the Reals with Integer Powers of a Computable Number

The Turing machine that on input n returns |Tn| is a machine running in polynomial
time and computing r. The latter property follows from the fact that r > 0 and therefore,
for every n ∈ N, if Tn < 0 we get a better accuracy by considering |Tn| instead. Note
that this machine is used in line 8.

Below, we show (1) that |ln(r)− tM (r)| ≤ 1
2n+1 , where M is the value defined in line 6, and

(2) that |tM (r)− tM (|TN |)| ≤ 1
2n+1 , where N is the value defined in line 7. Note that this

concludes the proof of correctness, since we get:

|ln(r)− tM (|TN |)| = |ln(r)− tM (r) + tM (r)− tM (|TN |)|
≤ |ln(r)− tM (r)|+ |tM (r)− tM (|TN |)| ≤ 2−n.

1. Proof of |ln(r)− tM (r)| ≤ 1
2n+1 . We apply Lemma 38. If r = 1, the inequality we

want to prove trivially holds. Otherwise, when r ̸= 1, this inequality holds as soon as
M ≥ (n+ 1 + log |ln(r)|)

(
−2 log

∣∣∣ r−1
r+1

∣∣∣)−1. Following the definition of M from line 6, it
suffices then to show that⌈

n+ 1 + Z1

2 · Z2

⌉
≥ n+ 1 + log |ln(r)|

−2 log
∣∣∣ r−1
r+1

∣∣∣ .

We do so by establishing that Z1 ≥ log |ln(r)| and Z2 ≤ − log
∣∣∣ r−1
r+1

∣∣∣.
Proof of Z2 ≤ − log

∣∣∣ r−1
r+1

∣∣∣. Note that
∣∣∣ r−1
r+1

∣∣∣ ∈ (0, 1), since r > 0 and r ̸= 1;

hence − log
∣∣∣ r−1
r+1

∣∣∣ > 0. By Lemma 40, − log
∣∣∣ r−1
r+1

∣∣∣ > − ∣∣∣ r−1
r+1

∣∣∣ + 1. By definition of

Z2 in line 5, it suffices to prove −
∣∣∣ r−1
r+1

∣∣∣ ≥ min(−
∣∣∣L−1
L+1

∣∣∣ ,− ∣∣∣U−1
U+1

∣∣∣), or, equivalently,∣∣∣ r−1
r+1

∣∣∣ ≤ max(
∣∣∣L−1
L+1

∣∣∣ , ∣∣∣U−1
U+1

∣∣∣). Recall that 0 < L ≤ r ≤ U . The first derivative f ′ of

the function f(x) :=
∣∣∣x−1
x+1

∣∣∣ is f ′(x) = 2(x−1)
(x+1)3| x−1

x+1 |
. Observe that for x ∈ (0, 1), f ′ is

always negative, whereas for x > 1, f ′ is always positive. Therefore, if r < 1 we have∣∣∣ r−1
r+1

∣∣∣ ≤ ∣∣∣L−1
L+1

∣∣∣, whereas for r > 1 we have
∣∣∣ r−1
r+1

∣∣∣ ≤ ∣∣∣U−1
U+1

∣∣∣.
Proof of Z1 ≥ log |ln(r)|. Recall that 0 < L ≤ r ≤ U and that Z1 is define in line 4
as ⌈max(|ln(L)| , |ln(U)|)⌉. Since log(x) ≤ x for every x > 0, it suffices to show
max(|ln(L)| , |ln(U)|) ≥ |ln(r)|. This is immediate. If r < 1, then 0 < L ≤ r implies
|ln(L)| ≥ |ln(r)|. Otherwise, if r > 1, then r ≤ U implies |ln(U)| ≥ |ln(r)|.

2. Proof of |tM (r)− tM (|TN |)| ≤ 1
2n+1 . Recall that tM (x) = 2 ·

∑M
j=0

(1
2j+1

(
x−1
x+1

)2j+1)
.

With the aim of applying Lemma 39, let us define:

δ(x) := (x+ 1)2M+1
M∏
j=0

(2j + 1) ,

q(x) := 2 ·
M∑
j=0

(
(x− 1)2j+1(x+ 1)2(M−j)

M∏
k=0
k ̸=j

(2k + 1)
)
.

Note that δ(x) · tM (x) is equivalent to q(x), and that δ(|TN |) ≥ 1 (since |TN | ≥ 0), as
required by the lemma. Moreover, note that δ and q can be rewritten as integer polynomials
by simply expanding products such as (x+1)2M+1 and (x−1)2j+1. We analyse the degree
and heights of δ and q in this expanded form (as integer polynomials). The computation
of the degree is straightforward, and yields max(deg(δ),deg(q)) ≤ d := 2M + 1. (Note
that (x− 1)2j+1(x+ 1)2(M−j) in the definition of q(x) expands to a polynomial in degree

J. Gallego-Hernandez and A. Mansutti 53

2j+1+2(M−j) = 2M+1.) For the height, we show that max(h(δ),h(q)) ≤ h := (3M)8M .
Recall that given m ∈ N and a, b ∈ R, we have (a+ b)m =

∑m
j=0

(
d
j

)
a(m−j)bj , which as a

corollary also shows
(
d
j

)
≤ 2m (by setting a = b = 1). Therefore,

h(δ) ≤ 22M+1 ∏M
j=0(2j + 1) ≤ 22M+1(2M + 1)M

≤ 23M (3M)M since M ≥ 1
≤ (3M)8M .

Similarly, for the summand qj(x) := (x−1)2j+1(x+1)2(M−j) ∏M
k=0
k ̸=j

(2k+1) in the definition

of q(x) we have

h(qj) ≤ 22M+122M ∏M
j=0(2j + 1) ≤ 24M+1(2M + 1)M ,

and therefore h(q) ≤ 2(M + 1)24M+1(2M + 1)M ≤ (3M)8M .
Lastly, let us define K := max(U, 2(M +1)). Note that K ≥ 1 and max(|r| , |tM (r)|) ≤ K,
since 0 < r < U and |tM (r)| =

∣∣∣2 ·∑M
j=0

(1
2j+1

(
r−1
r+1

)2j+1)∣∣∣ ≤ 2 ·
∑M
j=0

1
2j+1 ≤ 2(M + 1),

because r−1
r+1 ∈ (−1, 1).

Following the fact that |r − |TN || ≤ 1
2N , by applying Lemma 39 with respect to the above-

defined objects δ(x), q(x), d, h and K, and conclude that |tM (r)− tM (|TN |)| ≤ 1
2n+1

holds as soon as N ≥ n+1+log(h+1)+(2d+1)(log(K+1)). From the definition of N in
line 7, it thus suffices to show log(h+1)+(2d+1)(log(K+1)) ≤ 1+15M · ⌈log(U + 4M)⌉.
This inequality indeed holds (recall: U > 0 and M ≥ 1):

log(h+ 1) + (2d+ 1)(log(K + 1))
≤ log((3M)8M + 1) + (2(2M + 1) + 1)(log(max(U, 2(M + 1)) + 1))
≤ log(2(3M)8M) + 7M · log(U + 4M)
≤ 1 + 8M · log(3M) + 7M · log(U + 4M)
≤ 1 + 15M · ⌈log(U + 4M)⌉ .

Running time of the algorithm. Lines 1–5 do not depend on the input n, and therefore the
computation of k, L, U , Z1 and Z2 takes constant time. Line 6 computes in polynomial time
in n the number M , which is written in unary and has size O(n). Similarly, line 7 computes
in polynomial time in n the number N , which is written in unary and has size O(n logn).

To conclude the proof, we show that the computation done in line 8 takes time polynomial
in n. The arguments are analogous to the one used at the end of the proof of Lemma 19.1.
First, line 8 compute the number |TN |; this can be done in time poly(n) because of the
O(n logn) bound on N . This also means that |TN | is of the form ℓ1

ℓ2
where ℓ1, ℓ2 are non-

negative integers written in binary with bit size polynomial in n, and ℓ2 ≥ 1. The last step
of the algorithm is to evaluate the expression 2 ·

∑M
j=0

(1
2j+1

(ℓ1
ℓ2

−1
ℓ1
ℓ2

+1

)2j+1)
, which equals the

rational number b1
b2

, where b1 and b2 are the following integers:

b1 :=
M∑
j=0

(ℓ1 + ℓ2)2(M−j)(ℓ1 − ℓ2)2j+1
M∏
k=0
k ̸=j

(2k + 1)

 ,

b2 := (ℓ1 + ℓ2)2M+1
M∏
j=0

(2j + 1).

54 On the Existential Theory of the Reals with Integer Powers of a Computable Number

Therefore, we can have the algorithm return b = b1
b2

. Both b1 and b2 have a bit size polynomial
in n. Indeed, for b2 we have

1 + ⌈log(b2 + 1)⌉ bit size of b2

≤ 2 + log
(

(ℓ1 + ℓ2)2M+1
M∏
j=0

(2j + 1) + 1
)

≤ 2 + log
(

2(ℓ1 + ℓ2)2M+1
M∏
j=0

(2j + 1)
)

since M ≥ 1

≤ 3 + (2M + 1) log(ℓ1 + ℓ2) +M log(2M + 1) since
∏M
j=0(2j + 1) ≤ (2M + 1)M

≤ 3 + (2M + 1) · poly(n) +M log(2M + 1) the bit sizes of ℓ1 and ℓ2 are in poly(n)
≤ 3 +O(n) · poly(n) +O(n) log(O(n)) as M (written in unary) has size in O(n)
≤ poly(n).

The analysis for b1 is similar. Moreover, all intermediate computations done to produce b1
and b2 are arithmetic operations on numbers whose bit size is in poly(n). As these arithmetic
operations require polynomial time with respect to the size of their input, we conclude that
b1 and b2 can be computed in polynomial time in n. This concludes the proof. ◀

▶ Lemma 41. There is an algorithm deciding whether an input algebraic number β represented
by (q, ℓ, u) is rational. When β is rational, the algorithm returns m,n ∈ Q such that β = m

n .

Proof. By relying on the LLL-based algorithm from [23], we can compute (in fact, in
polynomial time) a decomposition of the univariate polynomial q into irreducible polynomials
(below, factors) with rational coefficients. Let E be the (finite) set of those factors having
degree 1. Since β is a root of q, we have that β is rational if and only if it is a root of a
polynomial in E. Every element of E is a linear polynomial of the form n · x −m, where
n,m ∈ Q, having root m

n . Recall that β is the only root of q in the interval [ℓ, u], and therefore,
in order to check whether β is rational, it suffices to check whether there is (n · x−m) ∈ E
such that ℓ ≤ m

n ≤ u. If the answer is positive, β = m
n . Otherwise, β is irrational. ◀

▶ Lemma 20. There is an algorithm that given a rational r and an algebraic number α > 0
represented by (q, ℓ, u), computes a representation (q′, ℓ′, u′) of the algebraic number αr.

Proof. Let r = m
n with m ∈ Z and n ≥ 1, and let q(x) =

∑d
i=0 ai · xi, with deg(q) = d, and

h := h(q). Since we are not interested in the runtime of this algorithm, we can apply the
procedure explained at the beginning of Appendix D to impose that (in addition to α being
the only root of q in the interval [ℓ, u]) either ℓ = u or α ∈ (ℓ, u) and (ℓ, u) ∩ Z = ∅ holds.
Since α > 0, by applying Theorem 17 to the polynomial x we derive α ≥ 2−d(h(d+ 1))−1,
and so we can update ℓ and u to be both strictly positive.

First, let us reduce the problem to the case m ≥ 1. If m = 0 or then α0 = 1 and we can
simply return (x− 1, 1, 1). To handle the case m < 0, we remark that α−1 is a root of the
Laurent polynomial

∑d
i=0 ai · x−i, and thus also of xd ·

∑d
i=0 ai · x−i. So, the polynomial

q′′(x) :=
∑d
i=0 ai · xd−i is such that (q′′, u−1, ℓ−1) represents α−1 (note that no root β of q′′

that is distinct from α−1 can lie in the interval [u−1, ℓ−1], else β−1 ̸= α would lie in [ℓ, u]).
We can then compute the representation of αr starting from (q′′, u−1, ℓ−1), and considering
the positive rational −r instead of r.

J. Gallego-Hernandez and A. Mansutti 55

Below, assume m,n ≥ 1. We start by computing a polynomial Q(x) having αm as a root.
Since q(α) = 0, for every j ∈ N, we can express αj as a rational linear combination µ(j) of
the terms 1, α, . . . , αd−1:

µ(j) :=

αj if j ∈ [0..d− 1]∑d−1
i=0

−ai

ad
αi if j = d

bd−1µ(d) +
∑d−2
i=0 biα

i+1 if j > d, where µ(j − 1) =
∑d−1
i=0 biα

i.

(Note that the last line in the definition of µ(j) is obtained by multiplying µ(j − 1) by α, to
then replace αd, which is the only monomial with degree above d− 1, by µ(d).)

We can represent the polynomial µ(j) =
∑d−1
i=0 biα

i as the vector (b0, . . . , bd−1) ∈ Qd.
Consider now the family of polynomials µ(0), µ(m), µ(2m), . . . , µ(i ·m), . . . , µ(d ·m). These
correspond to a set of d+ 1 vectors in Qd, and therefore they are rationally dependent: there
is a non-zero vector (k0, . . . , kd) ∈ Qd+1 such that

k0 · µ(0) + k1 · µ(m) + · · ·+ kd · µ(d ·m) = 0.

Since µ(j) = αj for all j ∈ N, we then conclude that
∑d
j=0 kjα

j·m = 0. Let g be the least
common multiple of the denominators of the rational numbers k0, . . . , kd, and define k̂j = g ·kj
for all j ∈ [0..d]. Then, αm is a root of the non-zero integer polynomial Q(x) :=

∑d
j=0 k̂j · xj .

We can now take q′(x) := Q(xn) in order to obtain a polynomial having αm
n as a root.

Now we move on to the problem of isolating αm
n from all other roots of q′(x) by opportunely

defining a separating interval [ℓ′, u′] where ℓ′, u′ ∈ Q.
If q′ has degree 1, then α

m
n is its only root and it is rational. Finding an interval is in

this case trivial: given q′(x) = b · x − a, we have αm
n = a

b and so we can take ℓ′ = u′ = a
b .

Hence, below, let us assume deg(q′) ≥ 2. To compute ℓ′ and u′ we need the following result.

▷ Claim 42. Let 0 < ℓ ≤ u be rational numbers. Consider a function f(x) that is both
increasing and continuously differentiable in the interval [ℓ, u]. Let δ > 0 be an upper bound
to the maximum of its derivative over [ℓ, u]. If |u− ℓ| ≤ D

δ , then |f(ℓ)− f(u)| ≤ D.

Proof. Since f(x) is continuously differentiable over [ℓ, u], by the mean value theorem we have
f(u)−f(ℓ)

u−ℓ ≤ δ. Moreover, since f(x) is increasing inside [ℓ, u], then f(u)−f(ℓ)
u−ℓ = |f(u)−f(ℓ)|

|u−ℓ| .
We conclude that |f(u)− f(ℓ)| ≤ δ · |u− ℓ| ≤ δ · Dδ ≤ D. ◁

Below, let h′ := h(q′) and deg(q′) := d′. By applying [10, Theorem A.2], any two distinct
roots α1 and α2 of q′ satisfy:

|α1 − α2| > D := 2−d′−1(d′)−4d′
(h′)−2d′

. (22)

Let δ := maxx∈{ℓ,u}{r · xr−1}, which is maximum of the derivative of f(x) := xr in the
interval [ℓ, u]. Let us apply the algorithm in Lemma 36 in order to refine the interval [ℓ, u]
containing α so that we achieve

|ℓ− u| ≤ D

2δ .

Note that, since r > 0, the function f is increasing and continuously differentiable in
[ℓ, u], from α ∈ [ℓ, u] we have αr ∈ [ℓr, ur]. Moreover, by Claim 42, we have |ur − ℓr| ≤ D

2 .
From Equation (22), we conclude that αr is the only root in the interval [ℓr, ur].

Note that, in general, ℓr and ur are not rational numbers, hence we cannot use (q′, ℓr, ur)
in order to represent αr. Instead, we now compute two rational numbers ℓ′ < ℓr and u′ > ur

56 On the Existential Theory of the Reals with Integer Powers of a Computable Number

such that αr ∈ [ℓ′, u′] and, crucially, |u′ − ℓ′| ≤ D. Again, by Equation (22), we will conclude
that αr is the only root of q′ in [ℓ′, u′], and therefore (q′, ℓ′, u′) represents αr.

In order to compute ℓ′ and u′, we rely on two Turing machines T and T ′ computing ℓr
and ur, respectively. To construct these machines, we simply apply Lemma 5 and Lemma 19,
seeing ℓr as er·ln(ℓ) and ur as er·ln(u) (note that ℓ, u > 0, hence the two logarithms are
well-defined). Since ℓr and ur are positive, w.l.o.g. we can assume the outputs of T and T ′

to be always non-negative. Indeed, to force this condition on, e.g., T , we can consider a new
Turing machine that on input n ∈ N returns |Tn|; this new Turing machine still computes ℓr.
Let M := −⌊log(D)⌋, and observe that M ≥ 1, since D ∈ (0, 1).

We are now ready to define the rationals ℓ′ and u′:

ℓ′ := TM+3 −
1

2M+3 and u′ := T ′
M+3 + 1

2M+3 .

Recall that |ℓr − TM+3| ≤ 1
2M+3 , and similarly |ur − TM+3| ≤ 1

2M+3 . Therefore, ℓ′ ≤
ℓr ≤ ur ≤ u′, which in turn implies that αr ∈ [ℓ′, u′]. Moreover, we also conclude that
ℓr − 1

2M+2 ≤ ℓ′ and u′ ≤ ur + 1
2M+2 . At last, let us show that |u′ − ℓ′| ≤ D:

|u′ − ℓ′| ≤
∣∣∣∣ur + 1

2M+2 −
(
ℓr − 1

2M+2

)∣∣∣∣ since ℓr − 1
2M+2 ≤ ℓ

′ ≤ u′ ≤ ur + 1
2M+2

≤ |ur − ℓr|+ 1
2M+1

≤ D

2 + 1
2−⌊log(D)⌋+1 by def. of M and since |ur − ℓr| ≤ D

2

≤ D

2 + D

2 ≤ D. ◀

▶ Lemma 43. Let α and β be two algebraic numbers different from 0 and 1. Then, α and β
are multiplicatively dependent if and only if ln(α)

ln(β) is rational.

Proof. Let n,m ∈ Z. With either n or m distinct from zero. We have

αn = βm ⇐⇒ ln(αn) = ln(βm) ⇐⇒ n ln(α) = m ln(β) ⇐⇒ ln(α)
ln(β) = m

n
,

where we note that one of the two sides of the equality n ln(α) = m ln(β) must be non-zero
(because n or m are non-zero, and α, β ̸= 1) which makes non-zero also the other side. ◀

▶ Theorem 1. Fix a real number ξ > 0. The satisfiability problem for ∃R(ξZ) is
1. in ExpSpace whenever ξ is an algebraic number;
2. in 3Exp if ξ ∈ {π, eπ, eη, αη, ln(α), ln(α)

ln(β) : α, β, η algebraic with α > 0 and 1 ̸= β > 0};
3. decidable whenever ξ is a computable transcendental number.

Proof. The proof of Theorem 1.1 is given in Section 6. Theorem 1.3 follows from Lemma 11
for bases ξ > 1. The case for bases ξ ∈ (0, 1] can be reduced to the case for bases ξ > 1, as
discussed in Section 4.5.

Below, let us focus on Theorem 1.2. Following Theorem 4.2, it suffices to show that all
bases considered in this case (1) are computable by a polynomial-time Turing machine, and
(2) have a polynomial root barrier.

case: ξ = π.
Polynomial-time Turing machine: By Theorem 18.
Polynomial root barrier: See Table 1.

J. Gallego-Hernandez and A. Mansutti 57

case: ξ = eπ.
Polynomial-time Turing machine: By Theorem 18 and Lemma 19.1.
Polynomial root barrier: See Table 1.

case: eη.
Polynomial-time Turing machine: By Lemma 16 and Lemma 19.1.
Polynomial root barrier: See Table 1.

case: αη with α > 0.
Polynomial-time Turing machine: Consider eη·ln(α), and construct the Turing machine
by applying Lemma 16, Lemma 5 and Lemma 19.1.
Polynomial root barrier: Use Lemma 41 to check if η is rational. If it is, apply Lemma 20
to obtain a representation of the algebraic number αη, followed by Theorem 17 to obtain
a root barrier for it. If instead η is irrational, use Table 1.

case: ξ = ln(α) with α > 0.
Polynomial-time Turing machine: By Lemma 16 and Lemma 19.2.
Polynomial root barrier: See Table 1.

case: ξ = ln(α)
ln(β) with α, β > 0 (and β ̸= 1).

Polynomial-time Turing machine: By Lemma 16 and Lemma 19.2 and Lemma 6.
Polynomial root barrier: From Lemma 43, ξ > 0 is rational if and only if α and β are
multiplicatively dependent. Use the procedure from [11] to compute a basis K of the
finitely-generated integer lattice {(m,n) ∈ Z2 : αnβ−m = 1}. If K = {(0, 0)} then ξ is
irrational and its root barrier is given in Table 1. Otherwise there is (m,n) ∈ K with
n ̸= 0, and ξ = m

n . We then derive a polynomial root barrier of ξ by applying Theorem 17
to the polynomial n · x−m. ◀

	1 Introduction
	2 Approaching complexity bounds with root barriers
	3 Preliminaries
	4 An algorithm for deciding the existential theory
	4.1 Step I (lines 1–6): reducing the variables to integer powers of the base
	4.2 Step II (lines 7 and 8): solving the existential theory over integer powers of the base
	4.3 Step III (line 9): polynomial sign evaluation
	4.4 Correctness and running time of Algorithm 1
	4.5 Handling small bases

	5 Finding solutions over integer powers of the base
	5.1 Quantifier elimination
	5.2 Quantifier relativisation

	6 Proof of Theorem 1: classical numbers with polynomial root barriers
	7 An application: the entropic risk threshold problem
	8 Conclusion and future directions
	A Proofs of the statements in Section 3
	B Proofs of the statements in Section 4 (except for Proposition 8 which is proven in Appendix C) and proof of Theorem 4
	C Proofs of the statements in Section 5 and proof of Proposition 8
	D Proofs of the statements in Section 6

