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Abstract

BBP-type formulas are usually discovered experimentally, through com-

puter searches. In this paper, however, starting with two simple gen-

erators, and hence without doing any computer searches, we derive a

wide range of BBP-type formulas in general bases. Many previously

discovered BBP-type formulas turn out to be particular cases of the

formulas derived here.
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1 Introduction

The study of BBP-type (Bailey, Borwein and Plouffe, 1997) formulas has
continued to attract attention, mainly because they facilitate digit extraction
through a simple algorithm not requiring multiple-precision arithmetic (Bai-
ley, 2013). Experimentally, these formulas are usually discovered by using
Bailey and Ferguson’s PSLQ (Partial Sum of Squares – Lower Quadrature)
algorithm (Ferguson et. al., 1999) or its variations. A downside is that
PSLQ and other integer relation finding schemes typically do not suggest
proofs (Bailey, 2006). Formal proofs must be developed after the formulas
have been discovered. There have been attempts in the past to give general
formulas which include the proofs, as can be found, for example, in the fol-
lowing references: (Bellard, 1997), (Broadhurst, 1998) and (Adamchik and
Wagon, 1996). In this paper we give two identities which generate a wide
range of BBP-type formulas in arbitrary bases. Many BBP-type formulas
that are known in the literature turn out to be mere particular instances of
the more general formulas presented here.

2 Generators of BBP-type formulas

Consider the Taylor series expansion

− ln(1− z) =

∞
∑

k=1

zk

k
, (2.1)
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valid for |z| ≤ 1, z 6= 1. Choosing z = p cosx + ip sin x in (2.1), for real p
and x, allows one to write

− ln(1− z) ≡ − ln

[

√

(1− 2p cosx+ p2) exp

(

i arctan

( −p sin x

1− p cosx

))]

= −1

2
ln(1− 2p cosx+ p2) + i arctan

(

p sin x

1− p cosx

)

(2.2)

and, using De Moiver theorem,

∞
∑

k=1

zk

k
≡

∞
∑

k=1

(p cosx+ ip sin x)k

k
=

∞
∑

k=1

pk cos kx

k
+ i

∞
∑

k=1

pk sin kx

k
.

(2.3)

Equating real and imaginary parts of (2.2) and (2.3) leads to the following
identities:

arctan

(

p sin x

1− p cosx

)

=

∞
∑

k=1

pk sin kx

k
(2.4)

and

− 1

2
ln(1− 2p cosx+ p2) =

∞
∑

k=1

pk cos kx

k
. (2.5)

In the rest of this paper we demonstrate that careful choices of p and x
in (2.4) and (2.5) lead to interesting BBP-type series, for |p| < 1.

3 Arctangent formulas

3.1 BBP-type formulas generated by x = π/2 in identity (2.4)

The choice x = π/2 in (2.4) gives the identity

arctan p =
∞
∑

k=1

pk sin(kπ/2)

k
. (3.1)
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Since

sin

(

kπ

2

)

=











1 if k = 1, 5, 9, 13, 17, . . .

0 if k = 2, 4, 6, 8, 10, . . .

−1 if k = 3, 7, 11, 15, 19, . . .

,

the identity (3.1) can be written as

arctan p =
∞
∑

k=0

p4k
[

p

4k + 1
− p3

4k + 3

]

.

Setting p = 1/u, the above identity can be written as

u3 arctan
1

u
=

∞
∑

k=0

1

u4k

[

u2

4k + 1
− 1

4k + 3

]

,

which is a BBP-type formula if u2 is a positive integer. Thus, with u2 = n,
we have:

√
n arctan

(

1√
n

)

=
1

n

∞
∑

k=0

1

(n2)k

[

n

4k + 1
− 1

4k + 3

]

, n ∈ Z
+ . (3.2)

In the notation employed in the BBP Compendium (Bailey, 2013),

√
n arctan(

1√
n
) =

1

n
P (1, n2, 4, (n, 0,−1, 0)) .

We note that the particular case n = 2 is a base-4 version of formula (21) of
the Compendium. To see this we write the base n2, length 4 formula (3.2)
as a base n4, length 8 formula as follows:

∞
∑

k=0

1

(n2)k

[

n

4k + 1
− 1

4k + 3

]

=
∑

k even

() +
∑

k odd

()

=

∞
∑

k=0

1

(n2)2k

[

n

4(2k) + 1
− 1

4(2k) + 3

]

+

∞
∑

k=0

1

(n2)2k+1

[

n

4(2k + 1) + 1
− 1

4(2k + 1) + 3

]

=
1

n2

∞
∑

k=0

1

(n4)k

[

n3

8k + 1
− n2

8k + 3
+

n

8k + 5
− 1

8k + 7

]

,
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so that in base n4, length 8 we have

√
n arctan

(

1√
n

)

=
1

n3

∞
∑

k=0

1

(n4)k

[

n3

8k + 1
− n2

8k + 3
+

n

8k + 5
− 1

8k + 7

]

=
1

n3
P (1, n4, 8, (n3, 0,−n2, 0, n,−1)) .

(3.3)

The particular case n = 2 in (3.3) recovers formula (21) of the Compendium.

Similarly, the particular case n = 3 in (3.2) is a base-9 length 4 version of
formula (66) of the Compendium.

In general a formula with base b and length l can be rewritten as a formula
with base br and length rl (Bailey, 2013).

Identity (3.1) can also be written as

arctan p = p

∞
∑

k=0

(−p2)k

2k + 1
,

which gives the alternating base n version of (3.2) as

√
n arctan

(

1√
n

)

=
∞
∑

k=0

1

(−n)k

[

1

2k + 1

]

, n ∈ Z
+

= P (1,−n, 2, (1, 0)) .

3.2 BBP-type formulas generated by x = π/3 in identity (2.4)

Putting x = π/3 in (2.4) gives

arctan

(

p
√
3

2− p

)

=

∞
∑

k=1

pk sin(kπ/3)

k
.

Noting that

sin

(

kπ

3

)

=

√
3

2











1 k=1,2,7,8,13,14,. . .

0 k=0,3,6,9,12,15,. . .

−1 k=4,5,10,11,16,17,. . .

,
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we have the following identity:

√
3 arctan

(

p
√
3

2− p

)

=
3

2

∞
∑

k=0

(−1)kp3k
[

p

3k + 1
+

p2

3k + 2

]

,

which is a BBP-formula if p = 1/ ± n, n a positive integer. The choice
p = 1/n leads to

n2
√
3 arctan

( √
3

2n− 1

)

=
3

2

∞
∑

k=0

1

(−n3)k

[

n

3k + 1
+

1

3k + 2

]

, n ∈ Z
+ ,

(3.4)
while the choice p = −1/n gives

n2
√
3 arctan

( √
3

2n+ 1

)

=
3

2

∞
∑

k=0

1

(n3)k

[

n

3k + 1
− 1

3k + 2

]

, n ∈ Z
+ . (3.5)

That is

n2
√
3 arctan

( √
3

2n− 1

)

=
3

2
P (1,−n3, 3, (n, 1, 0))

and

n2
√
3 arctan

( √
3

2n+ 1

)

=
3

2
P (1, n3, 3, (n,−1, 0)) .

A particular case of (3.5) is formula (65) in the BBP Compendium, corre-
sponding to n = 3 here. n = 2 in (3.4) also gives a formula that is equivalent
to formula (18) in the Compendium.

3.3 BBP-type formulas generated by x = π/4 in identity (2.4)

x = π/4 in (2.4) gives

arctan

(

p√
2− p

)

=
∞
∑

k=1

pk sin(kπ/4)

k
.
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Observing that

sin

(

kπ

4

)

=































1 k=2,10,18,26,34,. . .

1/
√
2 k=1,3,9,11,17,19,. . .

0 k=0,4,8,12,16,20,. . .

−1/
√
2 k=5,7,13,15,21,23,. . .

−1 k=6,14,22,30,38,46,. . .

,

we obtain

arctan

(

p√
2− p

)

=
∞
∑

k=0

p8k
[

p√
2

1

8k + 1
+

p2

8k + 2
+

p3√
2

1

8k + 3

− p5√
2

1

8k + 5
− p6

8k + 6
− p7√

2

1

8k + 7

]

.

On setting p =
√
2/u, the above identity can be written as

u7 arctan

(

1

u− 1

)

=

∞
∑

k=0

1

(u
/√

2)8k

[

u6

8k + 1
+

2u5

8k + 2
+

2u4

8k + 3

− 4u2

8k + 5
− 8u

8k + 6
− 8

8k + 7

]

,

(3.6)

while p = −
√
2/u gives

u7 arctan

(

1

u+ 1

)

=

∞
∑

k=0

1

(u
/√

2)8k

[

u6

8k + 1
− 2u5

8k + 2
+

2u4

8k + 3

− 4u2

8k + 5
+

8u

8k + 6
− 8

8k + 7

]

.

(3.7)

Identities (3.6) and (3.7) are BBP-type series if u is an even integer. Thus,
setting u = 2n in both identities, we obtain the following BBP-type formulas:

n7 arctan

(

1

2n− 1

)

=
1

16

∞
∑

k=0

1

(16n8)k

[

8n6

8k + 1
+

8n5

8k + 2
+

4n4

8k + 3

− 2n2

8k + 5
− 2n

8k + 6
− 1

8k + 7

]

, n ∈ Z
+

(3.8)
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and

n7 arctan

(

1

2n+ 1

)

=
1

16

∞
∑

k=0

1

(16n8)k

[

8n6

8k + 1
− 8n5

8k + 2
+

4n4

8k + 3

− 2n2

8k + 5
+

2n

8k + 6
− 1

8k + 7

]

, n ∈ Z
+ .

(3.9)

In the P-notation then,

n7 arctan

(

1

2n− 1

)

=
1

16
P (1, 16n8, 8, (8n6, 8n5, 4n4, 0,−2n2,−2n,−1, 0))

and

n7 arctan

(

1

2n+ 1

)

=
1

16
P (1, 16n8, 8, (8n6,−8n5, 4n4, 0,−2n2, 2n,−1, 0)) .

Formula (15) of the Compendium is a particular case of (3.8), with n = 1.

Adding (3.6) and (3.7), we obtain

u7 arctan

(

2u

u2 − 2

)

= 2
∞
∑

k=0

1

(u
/√

2)8k

[

u6

8k + 1
+

2u4

8k + 3
− 4u2

8k + 5
− 8

8k + 7

]

,

which is a BBP-series only if u2 is an even integer. Thus, setting u2 = 2n in
the above identity, we obtain the BBP-type formula

n3
√
2n arctan

( √
2n

n− 1

)

= 2

∞
∑

k=0

1

n4k

[

n3

8k + 1
+

n2

8k + 3
− n

8k + 5
− 1

8k + 7

]

,

that is

n3
√
2n arctan

( √
2n

n− 1

)

= 2P (1, n4, 8, (n3, 0, n2, 0,−n, 0,−1, 0)) .

The particular case n = 2 corresponds to formula (8) in the Compendium.

Subtracting (3.7) from (3.6) gives a formula which is equivalent to (3.2) and
therefore contains no new information.
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3.4 BBP-type formulas generated by x = π/6 in identity (2.4)

With x = π/6 in (2.4), we have

arctan

(

2p+ p2
√
3

4− 3p2

)

=

∞
∑

k=1

pk sin(kπ/6)

k
.

Noting that

sin

(

kπ

6

)

=



















































1 k=3,15,27,39,51,. . .√
3/2 k=2,4,14,16,26,28,. . .

1/2 k=1,5,13,17,25,29,37,41. . .

0 k=6,12,18,24,30,36. . .

−1/2 k=7,11,19,23,31,35,. . .

−
√
3/2 k=8,10,20,22,32,34,. . .

−1 k=9,21,33,45,57,. . .

,

we obtain

arctan

(

2p+ p2
√
3

4− 3p2

)

=

∞
∑

k=0

(−p6)k

[

1

2

p

6k + 1
+

√
3

2

p2

6k + 2
+

p3

6k + 3
+

√
3

2

p4

6k + 4
+

1

2

p5

6k + 5

]

.

p =
√
3/u and p = −

√
3/u in the above identity yield the following series:

u5
√
3 arctan

( √
3

2u− 3

)

=
3

2

∞
∑

k=0

1

(−u6/27)k

[

u4

6k + 1
+

3u3

6k + 2
+

6u2

6k + 3
+

9u

6k + 4
+

9

6k + 5

]

and

u5
√
3 arctan

( √
3

2u+ 3

)

=
3

2

∞
∑

k=0

1

(−u6/27)k

[

u4

6k + 1
− 3u3

6k + 2
+

6u2

6k + 3
− 9u

6k + 4
+

9

6k + 5

]

,
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which are BBP-type series if u is a multiple of 3. Thus, with u = 3n, we
obtain the following BBP-type series:

27n5
√
3 arctan

(

1√
3

1

2n− 1

)

=
3

2

∞
∑

k=0

1

(−27n6)k

[

9n4

6k + 1
+

9n3

6k + 2
+

6n2

6k + 3
+

3n

6k + 4
+

1

6k + 5

]

=
3

2
P (1,−27n6, 6, (9n4, 9n3, 6n2, 3n, 1, 0))

(3.10)

and

27n5
√
3 arctan

(

1√
3

1

2n+ 1

)

=
3

2

∞
∑

k=0

1

(−27n6)k

[

9n4

6k + 1
− 9n3

6k + 2
+

6n2

6k + 3
− 3n

6k + 4
+

1

6k + 5

]

=
3

2
P (1,−27n6, 6, (9n4,−9n3, 6n2,−3n, 1, 0)) .

(3.11)

Formula (66) of the Compendium is a particular case of formula (3.10), cor-
responding to setting n = 1.

Addition of (3.10) and (3.11) gives the following BBP-type series

n2
√
n arctan

( √
n

n− 1

)

=
∞
∑

k=0

1

(−n3)k

[

n2

6k + 1
+

2n

6k + 3
+

1

6k + 5

]

= P (1,−n3, 6, (n2, 0, 2n, 0, 1, 0) .

(3.12)

Subtraction of (3.10) and (3.11) yields (3.4) and therefore does not give new
information.

4 Logarithm formulas

Working in a similar fashion to that in the previous section, we present the
following BBP-type formulas for logarithm.
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4.1 BBP-type formulas generated by x = π/2 in identity (2.5)

ln

(

n+ 1

n

)

=
1

n2

∞
∑

k=0

1

(n2)k

[

n

2k + 1
− 1

2k + 2

]

=
1

n2
P (1, n2, 2, (n,−1)) .

(4.1)

ln

(

n− 1

n

)

= − 1

n2

∞
∑

k=0

1

(n2)k

[

n

2k + 1
+

1

2k + 2

]

= − 1

n2
P (1, n2, 2, (n, 1)) .

(4.2)

Addition of (4.1) and (4.2) gives

ln

(

n− 1

n

)

= −1

n

∞
∑

k=0

1

nk

[

1

k + 1

]

= −1

n
P (1, n, 1, (1)) .

(4.3)

Fomula (81) of the BBP Compendium is a particular case of (4.3), with
n = 10.

Subtraction of (4.2) from (4.1) gives

√
n ln

(√
n+ 1√
n− 1

)

= 2

∞
∑

k=0

1

nk

[

1

2k + 1

]

= 2P (1, n, 2, (1, 0)) .

(4.4)

Formula (6) of the Compendium is a particular case of (4.4), with n = 4,
while Formula (64) of the Compendium is another particular case, with n = 9.
n = 2 in (4.4) gives a length 2 version of formula (20) in the Compendium.

4.2 BBP-type formulas generated by x = π/3 in identity (2.5)

ln

(

n2 − n+ 1

n2

)

= − 1

n3

∞
∑

k=0

1

(−n3)k

[

n2

3k + 1
− n

3k + 2
− 2

3k + 3

]

= − 1

n3
P (1,−n3, 3, (n2,−n,−2)) .

11



ln

(

n2 + n+ 1

n2

)

=
1

n3

∞
∑

k=0

1

(n3)k

[

n2

3k + 1
+

n

3k + 2
− 2

3k + 3

]

=
1

n3
P (1, n3, 3, (n2, n,−2)) .

4.3 BBP-type formulas generated by x = π/4 in identity (2.5)

ln

(

2n2 − 2n+ 1

2n2

)

= − 1

2n4

∞
∑

k=0

1

(−4n4)k

[

2n3

4k + 1
− n

4k + 3
− 1

4k + 4

]

= − 1

2n4
P (1,−4n4, 4, (2n3, 0,−n,−1)) .

ln

(

2n2 + 2n+ 1

2n2

)

=
1

2n4

∞
∑

k=0

1

(−4n4)k

[

2n3

4k + 1
− n

4k + 3
+

1

4k + 4

]

=
1

2n4
P (1,−4n4, 4, (2n3, 0,−n, 1)) .

n

√
n√
2
ln

(

n +
√
2
√
n+ 1

n−
√
2
√
n + 1

)

= 2

∞
∑

k=0

1

(−n2)k

[

n

4k + 1
− 1

4k + 3

]

= 2P (1,−n2, 4, (n, 0,−1, 0)) .

(4.5)

Note that n = 2 in (4.5) gives a binary BBP-type formula for log 5.

4.4 BBP-type formulas generated by x = π/6 in identity (2.5)

ln

(

3n2 − 3n+ 1

3n2

)

= − 1

27n6

∞
∑

k=0

1

(−27n6)k

[

27n5

6k + 1
+

9n4

6k + 2
− 3n2

6k + 4
− 3n

6k + 5
− 2

6k + 6

]

= − 1

27n6
P (1,−27n6, 6, (27n5, 9n4, 0,−3n2,−3n,−2)) .

ln

(

3n2 + 3n+ 1

3n2

)

=
1

27n6

∞
∑

k=0

1

(−27n6)k

[

27n5

6k + 1
− 9n4

6k + 2
+

3n2

6k + 4
− 3n

6k + 5
+

2

6k + 6

]

=
1

27n6
P (1,−27n6, 6, (27n5,−9n4, 0, 3n2,−3n, 2)) .
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n2

√
n√
3
ln

(

n +
√
3
√
n + 1

n−
√
3
√
n + 1

)

= 2

∞
∑

k=0

1

(−n3)k

[

n2

6k + 1
− 1

6k + 5

]

= 2P (1,−n3, 6, (n2, 0, 0, 0,−1, 0)) .

(4.6)

The particular case n = 3 of (4.6) is equivalent to the series obtained for
log 7 in reference (Adamchik and Wagon, 1996).

5 Summary

Starting with two simple generators, we have derived a wide range of BBP-type
formulas in general bases, namely,

√
n arctan

(

1√
n

)

=
1

n
P (1, n2, 4, (n, 0,−1, 0))

n2
√
3 arctan

( √
3

2n− 1

)

=
3

2
P (1,−n3, 3, (n, 1, 0))

n2
√
3 arctan

( √
3

2n+ 1

)

=
3

2
P (1, n3, 3, (n,−1, 0))

n7 arctan

(

1

2n− 1

)

=
1

16
P (1, 16n8, 8, (8n6, 8n5, 4n4, 0,−2n2,−2n,−1, 0))

n7 arctan

(

1

2n+ 1

)

=
1

16
P (1, 16n8, 8, (8n6,−8n5, 4n4, 0,−2n2, 2n,−1, 0))

n3
√
2n arctan

( √
2n

n− 1

)

= 2P (1, n4, 8, (n3, 0, n2, 0,−n, 0,−1, 0))

9n5
√
3 arctan

(

1√
3

1

2n− 1

)

=
1

2
P (1,−27n6, 6, (9n4, 9n3, 6n2, 3n, 1, 0))

9n5
√
3 arctan

(

1√
3

1

2n+ 1

)

=
1

2
P (1,−27n6, 6, (9n4,−9n3, 6n2,−3n, 1, 0))

n2
√
n arctan

( √
n

n− 1

)

= P (1,−n3, 6, (n2, 0, 2n, 0, 1, 0)
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ln

(

n + 1

n

)

=
1

n2
P (1, n2, 2, (n,−1))

ln

(

n− 1

n

)

= − 1

n2
P (1, n2, 2, (n, 1))

√
n ln

(√
n+ 1√
n− 1

)

= 2P (1, n, 2, (1, 0))

ln

(

n2 + n + 1

n2

)

=
1

n3
P (1, n3, 3, (n2, n,−2))

ln

(

n2 − n + 1

n2

)

= − 1

n3
P (1,−n3, 3, (n2,−n,−2))

ln

(

2n2 − 2n+ 1

2n2

)

= − 1

2n4
P (1,−4n4, 4, (2n3, 0,−n,−1))

ln

(

2n2 + 2n+ 1

2n2

)

=
1

2n4
P (1,−4n4, 4, (2n3, 0,−n, 1))

n

√
n√
2
ln

(

n+
√
2
√
n+ 1

n−
√
2
√
n+ 1

)

= 2P (1,−n2, 4, (n, 0,−1, 0))

ln

(

3n2 ± 3n+ 1

3n2

)

= ± 1

27n6
P (1,−27n6, 6, (27n5,∓9n4, 0,±3n2,−3n,±2))

n2

√
n√
3
ln

(

n+
√
3
√
n+ 1

n−
√
3
√
n+ 1

)

= 2P (1,−n3, 6, (n2, 0, 0, 0,−1, 0))

Many previously discovered BBP-type formulas turn out to be particular
cases of the above formulas.
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