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Abstract. Let an interval I ⊂ IR and subsets D0; D1 ⊂ I with D0 ∪ D1 = I

and D0 ∩ D1 = ∅ be given, as well as functions r0 : D0 → I, r1 : D1 → I .

We investigate the system (S) of two functional equations for an unknown

function f : I → [0; 1]:

2f (x) = f(r0(x)) if x ∈ D0;

2f(x) − 1 = f(r1(x)) if x ∈ D1:
(S)

We derive conditions for the existence, continuity and monotonicity of a solu-

tion. It turns out that the binary expansion of a solution can be computed in

a simple recursive way. This recursion is algebraic for, e.g., inverse trigono-

metric functions, but also for the elliptic integral of the first kind. Moreover,

we use (S) to construct two kinds of peculiar functions: surjective functions

whose intervals of constancy are residual in I , and strictly increasing func-

tions whose derivative is 0 almost everywhere.
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cursions.
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1 Introduction

We begin with an introductory example. Let x ≥ 0. Set

a0 = x and an+1 =
2an

1 − a2
n

(with an+1 = −∞ if an = ±1):

Then
∑

an<0
n≥0

1
2n+1 =

arctan x

…
:

Simon Plouffe (Université Bordeaux-I) detected this identity numerically;

the purpose of the present paper is to explain why it is true and how the

underlying method can be used to get similar recursions for other functions.

Let us observe two things: First, the above series is just the binary expansion

of arctan(x)=…. Second, the recursion formula corresponds in a certain way

to the addition theorem for 2 arctan x. In the present paper we will explore

how addition theorems of this type can be used to compute similar binary

expansions for a wide class of functions.

More precisely, we will deal with the following type of functional equations.

Let an interval I ⊆ IR and subsets D0; D1 ⊆ I with D0 ∪ D1 = I and

D0 ∩ D1 = ∅ be given, as well as functions r0 : D0 → I, r1 : D1 → I .

Then consider the system (S) of the following two functional equations for

an unknown function f : I → [0; 1].

2f(x) = f(r0(x)) if x ∈ D0, (S0)

2f(x) − 1 = f(r1(x)) if x ∈ D1. (S1)

Stating the functional equations in this way implies that for each solution f
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the following must be true: x ∈ D0 ⇒ f(x) ∈ [0; 1=2] and x ∈ D1 ⇒

f (x) ∈ [1=2; 1].

Why are we interested in this system of functional equations? The reason

is that on the one hand there are many interesting functions which can be

shown to solve the system, and that on the other hand the system links these

functions to Plouffe iterations like the one described for the arctan. In fact,

as we will see in the next section of this paper, Plouffe’s iteration for the

arctan is proved upon the observation that

f (x) =
{

arctan(x)=… if x ∈ [0; ∞)
1 + arctan(x)=… if x ∈ [−∞; 0)

satisfies (S) on I = IR∪{−∞} with D0 = [0; ∞), D1 = [−∞; 0), r0(x) = 2x
1−x2 ,

r0(1) = −∞, r1(x) = 2x
1−x2 , r1(−1) = −∞. Other interesting functions which

satisfy the system (S) are the logarithm, inverse trigonometric and hyperbolic

functions and even the elliptic integral of the first kind. Moreover, it is also

possible to describe quite peculiar functions as solutions of the system. If

we choose D0 = [0; 1=2), D1 = [1=2; 1], r0(x) = 4x2, r1(x) = 1 − 4(x − 1)2,

then the solution of (S) is surjective but has intervals of constancy which

are residual in I . If we choose D0 = [0; 3=4), D1 = [3=4; 1], r0(x) = 4x=3,

r1(x) = 4x − 3, then the solution is strictly increasing but has derivative 0

almost everywhere (it is the inverse of a function with the same property

constructed by G. de Rham in [?]). We will prove these two statements in

somewhat greater generality in Section 3, after having given conditions for

the existence, continuity and monotonicity of a solution in Section 2 of this

paper.

We conclude the introduction with two basic observations about the func-
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tional equations. Firstly, we have that f ≡ 0 if and only if D1 = ∅. (Indeed,

assume D0 = I and x0 ∈ D0 with f(x0) 6= 0. Iterate equation (S0) un-

til 2nf(x0) = f((r0 ◦ : : : ◦ r0)(x0)) = f(rn
0 (x0)) > 1=2. This contradicts

rn
0 (x0) ∈ D0 ⇒ f(rn

0 (x0)) ∈ [0;1=2]. If, on the other hand, f ≡ 0, then

D1 6= ∅ would yield a contradiction.) Similarly, f ≡ 1 if and only if D0 = ∅.

Secondly, the requirement that a given function f is the solution of a system

of type (S) is not very restrictive. Indeed, the following is a necessary and

sufficient condition for f to satisfy such a system: For each x ∈ I with

f (x) < 1=2, there must exist a y(x) ∈ I with 2f(x) = f(y(x)); for each

x ∈ I with f(x) > 1=2 there must exist a y(x) ∈ I with 2f(x)− 1 = f (y(x));

and for each x ∈ I with f(x) = 1=2 there must exist a y(x) ∈ I with

f (y(x)) = 0 or f(y(x)) = 1. Necessity is obvious. On the other hand, if

this condition is satisfied (with, say, f(y(x)) = 0 if f (x) = 1=2), then we

can define D0 := f−1([0; 1=2)), D1 := f−1([1=2; 1]), and the functions r0; r1

can be set equal to this y on I . So, each function from which this can be

reasonably expected satisfies a system of type (S). The challenge is, of course,

to find functions r0; r1 which are ”simpler” than f (e.g., f transcendental and

r0; r1 algebraic).

For x ∈ [0; 1], we will always denote the binary expansion of x by (0; ”0”1 : : :)2;

this means x =
∞∑

n=0
”n=2n+1 with ”0; ”1; : : : ∈ {0; 1}.

2 Properties of solutions of (S)

Theorem 1. The system (S) has exactly one solution f : I → [0; 1].

4



Proof. First we show that there is at most one solution. For each solution f ,

there is only one possible value for f(x) at a point x ∈ I. This value is

determined by the following recursion: Set

a0 = x and an+1 =
{

r0(an) if an ∈ D0,
r1(an) if an ∈ D1.

(1)

Then for each solution f we have

f(an+1) =
{

f(r0(an)) = 2f(an) if an ∈ D0,
f(r1(an)) = 2f(an) − 1 if an ∈ D1.

Compare this with how we compute the binary expansion of y ∈ [0;1]. With

y0 := y; yn+1 :=





2yn if yn ∈ [0; 1
2),

2yn − 1 if yn ∈ (1
2 ; 1],

2yn or 2yn − 1 if yn = 1
2 ,

we get y =
∑

yn+1=2yn−1
n≥0

1
2n+1 . Since yn and f(an) obey the same recursion (recall

that an ∈ D0 implies f (an) ∈ [0; 1=2] while f(an) ∈ [0; 1=2) implies an ∈ D0,

and similarly for an ∈ D1), we can identify yn = f(an) and get

f(a0) = f(x) =
∑

an∈D1
n≥0

1
2n+1 : (2)

On the other hand, define a function f by this recursion. Then f indeed

maps I into [0; 1], and f satisfies the equations (S0),(S1): x ∈ D0 implies,

by (??), f(x) ≤ 1=2 and

f(r0(x)) = f (a1) =
∑

an∈D1
n≥1

1
2n

= 2
∑

an∈D1
n≥1

1
2n+1 = 2

∑

an∈D1
n≥0

1
2n+1 = 2f(x):

Similarly, x ∈ D1 implies f(r1(x)) = 2f(x) − 1. k
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The recursion (??),(??) is important throughout this paper; we will con-

stantly make use of it. In the arctan example, it is exactly Plouffe’s itera-

tion. Note that in the statement of Theorem ?? no regularity other than the

boundedness is required or asserted.

Under which conditions is the solution f continuous? First of all, continuity

of f does not imply the existence of continuous r0; r1. Consider, e.g.,

f(x) =





2x if x ∈ [0; 1=4],
3=4 − x if x ∈ [1=4; 1=2],
3=2x − 1=2 if x ∈ [1=2; 1].

Then, necessarily, r0(x) = 2x if x ∈ [0; 1=16) and r0(x) = 8=3x + 1=3 if

x ∈ (1=8; 1=4], but between 1=16 and 1=8, there must be at least one point

of discontinuity.

However, if we assume continuity of r0; r1, we can give a sufficient and neces-

sary condition for f to be continuous. In the following Theorem ??, closure

and interior of D0 and D1 are taken in I.

Theorem 2. Let r0; r1 be continuous. Then the solution f of (S) is contin-

uous if and only if

for each x0 ∈ D0 ∩ D1: ∀n ∈ IN0 : rn
1 (r0(x0)) ∈

◦
D1 and

∃–(n) > 0 : ∀y ∈ D1 with |x0 − y| < –(n) we have rn
0 (r1(y)) ∈

◦
D0;

for each x0 ∈ D0 ∩ D1: ∀n ∈ IN0 : rn
0 (r1(x0)) ∈

◦
D0 and

∃–(n) > 0 : ∀y ∈ D0 with |x0 − y| < –(n) we have rn
1 (r0(y)) ∈

◦
D1.

Proof. Assume that f is continuous. Without loss of generality (wlog), take

any x0 ∈ D0 ∩ D1. Then 2f(x0) = f(r0(x0)) and

lim
x→x0
x∈D1

f(r1(x)) = 2 lim
x→x0
x∈D1

f(x) − 1 = 2f(x0) − 1 = f(r0(x0)) − 1:

6



Since f (I) ⊆ [0; 1], we must have f(r0(x0)) = 1 and lim
x→x0
x∈D1

f (r1(x)) = 0. Thus,

r0(x0) ∈ D1. Since 2f(r0(x0)) − 1 = 1 = f(r1(r0(x0))), we get r1(r0(x0)) ∈

D1, and, inductively, rn
1 (r0(x0)) ∈ D1.

Observe that for any x ∈ @D0 (which equals @D1 = (D0 ∩ D1) ∪ (D0 ∩ D1)),

f (x) = 1=2. Choose – > 0 such that f(y) − f(x0) = f(y) − 1=2 < 1=2n+2

for y ∈ D1 with |x0 − y| < –. Then we have f(y) < 1=2 + 1=2n+2, therefore

2f(y) − 1 = f (r1(y)) < 1=2n+1, thus 2nf(r1(y)) = f (rn
0 (r1(y))) < 1=2; and

that means rn
0 (r1(y)) ∈ D0.

Lastly, since f(rn
1 (r0(x0))) = 1 and f(rn

0 (r1(y))) < 1=2, it follows that

rn
1 (r0(x0)) ∈

◦
D1 and rn

0 (r1(y)) ∈
◦
D0. (Recall that f(@D0) = f (@D1) =

{1=2}.)

On the other hand, assume that the condition holds. Take any x ∈ I ,

n ∈ IN , and set " := 1=2n−1. Consider the numbers a0; a1; : : : ; an where

ak = (r”k−1 ◦ : : : ◦ r”0)(x) and ”k =
{

0 if ak ∈ D0

1 if ak ∈ D1
. Take

k0 :=
{

min{k ∈ {0; : : : ; n} : ak ∈ @D0(= @D1)} if this set is not empty,
n + 1 otherwise.

Since r0; r1 are continuous and ak ∈
◦
D”k

for k = 0; : : : ; k0 − 1, there is a

–1 > 0 such that |x − y| ≤ –1 implies that (r”k−1 ◦ : : : ◦ r”0)(y) ∈
◦
D”k

for

k = 0; : : : ; k0 − 1.

Assume (wlog) ak0 ∈ D0; then f(x) = (0; ”0 : : : ”k0−1011 : : :)2.

Again, since r0; r1 are continuous and ak0+1; : : : ; an ∈
◦
D1, there is a –1 ≥

–2 > 0 such that |x − y| ≤ –2 and (r”k0−1 ◦ : : : ◦ r”0)(y) ∈ D0 imply that

(rm
1 ◦ r0 ◦ r”k0−1 ◦ : : : ◦ r”0)(y) ∈ D1 for m = 0; : : : ; n − k0 − 1. This means

that f(y) = (0; ”0 : : : ”k0−101 : : : 1„n+1„n+2 : : :)2.
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Lastly, we have a –1 ≥ –3 > 0 such that |x−y| ≤ –3 and (r”k0−1 ◦ : : :◦r”0)(y) ∈

D1 imply that |(r”k0−1◦: : :◦r”0)(x)−(r”k0−1◦: : :◦r”0)(y)| < –(n−k0−1), which

in turn means that (rm
0 ◦r1◦r”k0−1 ◦ : : :◦r”0)(y) ∈ D0 for m = 0; : : : ; n−k0−1.

This means that f(y) = (0; ”0 : : : ”k0−110 : : : 0„n+1„n+2 : : :)2.

Now, if we choose – := min{–2; –3}, then |x − y| ≤ – implies that |f(x) −

f (y)| ≤ ". k
Observation. If the solution f of (S) is continuous and neither f ≡ 0 nor

f ≡ 1 then it is ”almost surjective”: f(I) ⊇ [0; 1]\{p} where p = 0 or p = 1.

Proof. As has been seen in section 1, we have D0; D1 6= ∅. Moreover,

there is an x ∈ I with f (x) ∈ (0; 1). Assume (wlog) x ∈ D0. As above,

iterate equation (S0) until 2nf(x) = f((r0 ◦ : : : ◦ r0)(x)) ∈ [1=2; 1]. Since

f is continuous, there is an x0 ∈ I with f(x0) = 1=2. If x0 ∈ D0, then

2f(x0) = 1 = f (r0(x0)), and there is an x1 ∈ D1 with f (x1) = 1=2. It follows

that

2 lim
x→x1
x∈D1

f(x) − 1 = 0 = lim
x→x1
x∈D1

f(r1(x)):

If x0 ∈ D1, then the same reasoning leads to f(r1(x0)) = 0 and the existence

of an x1 ∈ D0 with lim
x→x1
x∈D1

f(r0(x)) = 1. k
We are now interested in monotonic solutions.

Observation. If f is injective, then so are r0; r1. The converse is not true,

not even when assuming continuity and strict monotonicity for r0; r1.

Proof. If r0(x) = r0(y), then f(r0(x)) = f(r0(y)) and, by (S0), 2f(x) =

2f(y). If f is injective, then x = y follows. The same for r1.

On the other hand, consider f(x) = x2 on I = [−1; 1] which is not injective.
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But f satisfies the system (S), with D0 = [−1=
√

2; 1=
√

2], D1 = I \ D0,

and r0(x) =
√

2x, r1(x) =
{ √

2x2 − 1 if x > 0
−

√
2x2 − 1 if x < 0

which are continuous and

strictly monotonic. k
Theorem 3. Assume that r0; r1 are increasing and that D0 < D1 (x ∈ D0,

y ∈ D1 implies x < y). Then f is increasing. Similarly, f is decreasing if

r0; r1 are increasing and D1 < D0.

Proof. We only prove the first part here. Take x; y ∈ I with x ≤ y. As in

the proof of Theorem ??, consider the numbers ak = (r”k−1 ◦ : : :◦r”0)(x), bk =

(r„k−1 ◦ : : : ◦ r„0)(y). There are two possibilities: Either ak ∈ D0 ⇔ bk ∈ D0

for all k ∈ IN , which implies f(x) = f(y). Or there exists a k0 such that for

all k < k0, ak ∈ D0 ⇔ bk ∈ D0, and ak0 ∈ D0, bk0 ∈ D1. (We have ak0 ≤ bk0

since r0; r1 are increasing.) This implies f(x) = (0; ”0 : : : ”k0−10”k0+1 : : :)2 ≤

(0; ”0 : : : ”k0−11„k0+1 : : :)2 = f(y). k
In Section 3, we will see that strict monotonicity of r0; r1 does not imply

strict monotonicity of f .

By inspecting the recursion formula (1),(2), one would guess that it allows

statements on the points in I which are mapped by f to a rational value. The

last theorem in this section addresses this possibility. The interiors of D0,

D1 and I are to be taken in IR.

Define a function r : I → I by r(x) =
{

r0(x) if x ∈ D0

r1(x) if x ∈ D1
.

Theorem 4. Assume that I is closed (possibly, I = [−∞; ∞]), that r0; r1

are continuous and increasing, D0 < D1 or D1 < D0, and that r0 maps
◦
D0

9



onto
◦
I and r1 maps

◦
D1 onto

◦
I . (Then f is continuous and monotonic.)

Lastly, assume that f is strictly monotonic. Then

{x ∈ I : f (x) ∈ IQ} = {x ∈ I : x is in an orbit under r of a fixed point of

rk = r ◦ : : : ◦ r (k ≥ 1)}.

Proof. Call the right-hand set in the assertion M .

(i) We show that f(x) ∈ IQ for x ∈ M .

Indeed, x ∈ M implies that there exist ”0; : : : ; ”n−1 and „1; : : : ; „k such that

(r„k
◦ : : : ◦ r„1 ◦ r”n−1 ◦ : : : ◦ r”0)(x) = (r”n−1 ◦ : : : ◦ r”0)(x);

where all of these maps are defined, i.e., x ∈ D”0, r”0(x) ∈ D”1 , and so on.

By the recursion formula (1),(2), this means that

f(x) = (0; ”0 : : : ”n−1„1 : : : „k„1 : : : „k : : :)2;

that is, f(x) ∈ IQ.

(ii) Assume f (x) ∈ IQ, say, f(x) = (0; ”0 : : : ”n−1„1 : : : „k„1 : : : „k : : :)2: Let

I = [a; b] and assume wlog D0 < D1. It follows that r0(a) = a and r1(b) = b.

Now observe that rk has a fixed point x0 in (r−1
„1

◦ : : :◦r−1
„k

)(I): If („1 : : : „k) 6=

(0 : : : 0) and 6= (1 : : : 1), then for S := (r−1
„1

◦ : : :◦ r−1
„k

)(
◦
I), we have S ⊆

◦
I, and

since r0 and r1 are onto
◦
I, we have

rk(S) = (rk−1 ◦ r„1 ◦ r−1
„1

◦ : : : ◦ r−1
„k

)(
◦
I) = (rk−1 ◦ r−1

„2
◦ : : : ◦ r−1

„k
)(

◦
I) = : : : =

◦
I;

therefore, rk has a fixed point in S. If („1 : : : „k) = (0 : : : 0), then the fixed

point is a, for („1 : : : „k) = (1 : : : 1), it is b.
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Set y := (r−1
”0

◦ : : : ◦ r−1
”n−1

)(x0), then y is in an orbit of x0 and f(y) =

(0; ”0 : : : ”n−1„1 : : : „k„1 : : : „k : : :)2 by (1),(2). Since f is injective, x = y. k
3 Several examples

We begin with a short list of transcendental functions f which satisfy a

system of type (S) where the functions r0; r1 are algebraic.

1. f(x) = ln x= ln 2, I = [1; 2],

D0 = [1;
√

2), D1 = [
√

2; 2],

r0(x) = x2, r1(x) = x2=2.

Of course, the recursion (1),(2) can be used to compute the binary

expansion of the function f . Take for example x = a0 = 3=2. Then

a1 = 9=8, a2 = 81=64, a3 = 6561=4096, a4 = 316=225, and so on. Here

are the first 20 binary digits of ln 3= ln 2: (1:10010101110000000001)2.

An application of Theorem ?? would yield that f(x) is rational if and

only if x = 2q with rational q. But we know that already.

2. f(x) = arccos(x)=…, I = [−1; 1],

D0 = (0; 1], D1 = [−1; 0],

r0(x) = 2x2 − 1, r1(x) = 1 − 2x2.

Theorem ?? says that the points whose value is rational are the fixed

points of rk = ±(r0 ◦ : : : ◦ r0) (the sign on each set (r−1
„1

◦ : : : ◦ r−1
„k

)(I)
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must be chosen so that rk is increasing) and their orbits. Or put the

other way round, these are the values of cos(…x) if x is rational. Note

that rk
0 = r0 ◦ : : : ◦ r0 is the Chebychev polynomial of the first kind T2k

for [−1; 1].

3. f(x) = 2 arcsin(x)=…, I = [0; 1],

D0 = [0; 1=
√

2), D1 = [1=
√

2; 1],

r0(x) = 2x
√

1 − x2, r1(x) = 2x2 − 1.

4. f(x) =
{

arctan(x)=… if x ∈ [0; ∞)
1 + arctan(x)=… if x ∈ [−∞; 0), I = IR ∪ {−∞}

D0 = [0; ∞), D1 = [−∞; 0),

r0(x) = 2x
1−x2 , r0(1) = −∞, r1(x) = 2x

1−x2 , r1(−1) = −∞.

5. f(x) = arccot(x)=…, I = IR ∪ {−∞},

D0 = [0; ∞), D1 = [−∞; 0),

r0(x) = x2−1
2x

, r0(0) = −∞, r1(x) = x2−1
2x

.

6. f (x) = arsinh(x)= ln 2, I = [0; 3=4],

D0 = [0;1=2
√

2), D1 = [1=2
√

2; 3=4],

r0(x) = 2x
√

1 + x2, r1(x) = 5=2x
√

1 + x2 − 3=2x2 − 3=4.

7. Denote by F and K the incomplete (resp. complete) elliptic integral of

the first kind, take k ∈ [0; 1).
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f(x) =
{

F (
√

1 − x2; k)=2K(k) if x ≥ 0
1 − F (

√
1 − x2; k)=2K(k) if x < 0

, I = [−1; 1],

D0 = (0; 1], D1 = [−1; 0],

r0(x) =
x2 − (1 − x2)(k2x2 + 1 − k2)
x2 + (1 − x2)(k2x2 + 1 − k2)

, r1(x) = −x2 − (1 − x2)(k2x2 + 1 − k2)
x2 + (1 − x2)(k2x2 + 1 − k2)

.

(Another way to write this is the following, with x′ :=
√

1 − x2:

r0(x) =
x2 + k2x′4 − x′2

1 − k2x′4 ; r1(x) = −x2 + k2x′4 − x′2

1 − k2x′4 .)

Set, e.g., k = 1=
√

2 and x = 1=
√

2. Then the recursion (1),(2) yields

2F (1=
√

2; 1=
√

2)=fl(1=4; 1=4) = (0:001110010000011 : : :)2

where fl(x; y) =
∫ 1
0 (1 − u)x−1uy−1du for x; y > 0 (beta function); note

that K(1=
√

2) = 2−2fl(1=4; 1=4) (cf. [?]).

As a second example, set k =
√

2 − 1 and x = 1=
√

2. Then we get

29=4F (1=
√

2;
√

2 − 1)=fl(1=8; 1=8) = (0:001111100001010 : : :)2;

note that K(
√

2 − 1) = 2−13=4fl(1=8; 1=8) (cf. [?]).

Theorem ?? says that the points whose value is rational are the fixed

points of rk = ±(r0◦: : :◦r0) (the sign must on each set (r−1
„1

◦: : :◦r−1
„k

)(I)

be chosen so that rk is increasing) and their orbits. Or put the other

way round, these are the values of cn(2K(k)x) if x is rational.

The common denominator in these examples is an algebraic addition theorem

(cf. [?]). Assume that g : IR → IR, injective on [0; 1] and g([0; 1]) = I ,

satisfies P (g(x); g(y); g(x+y)) = 0 for all x; y ∈ IR with a polynomial P . Set

D0 := g([0; 1=2)) and D1 := g([1=2; 1]). Then f :=
(
g|[0;1]

)−1
satisfies (S)

13



where r0 and r1 are determined by solving P (g(x); g(x); g(2x)) = 0 for g(2x)

and P (g(2x); g(−1); g(2x − 1)) = 0 for g(2x − 1) (with the use of r0 here).

For examples 4 and 5, the interval [0; 1] would have to be replaced by [0; 1).

A bit more explicit is the following approach which does not work for ex-

amples 2 and 7. Assume g : [0; 2] → IR is injective on [0; 1] and on [1; 2]

and g([0; 1]) = I. (Again, replace these by halfopen intervals for exam-

ples 4 and 5.) Assume that g is a solution of the functional equation

g(x+y) = a(g(x); g(y)) for x; y ∈ [0; 1] with an algebraic function a : I ×I →

g([0; 2]). Let f :=
(
g|[0;1]

)−1
, therefore f : I → [0; 1]. For u; v ∈ I with

f (u) + f (v) ∈ [0; 1], we have

g(f(u) + f(v)) = a(g(f(u)); g(f(v))) = a(u; v);

or f(u) + f(v) = f(a(u; v)). If we set r0(u) := a(u; u) for u ∈ g([0; 1=2)) =:

D0, then for each u ∈ D0 we have f(r0(u)) = 2f(u).

For any x ∈ [0; 1] and for any u; v ∈ I with f(u) + f(v) ∈ [x; x + 1], there

exists a b = b(u; v) ∈ I with a(b; g(x)) = a(u; v). Indeed, we can write

f (u) + f (v) = y + x with y ∈ [0; 1]. Set b := g(y). Then

a(u; v) = a(g(f(u)); g(f(v))) = g(f(u) + f(v))

= g(y + x) = a(g(y); g(x)) = a(b; g(x)):

Now choose x = 1. Then, if u; v ∈ I with f(u) + f(v) ∈ [1; 2], we have

g(f(u) + f(v)) = a(u; v) = a(b; g(1)) = g(f (b) + 1):

Since g is injective on [1; 2], it follows that f(u) + f(v) = f(b) + 1. If we

set r1(u) := b(u; u) for u ∈ g([1=2; 1]) =: D1, then for each u ∈ D1 we have

f (r1(u)) = 2f(u) − 1.

14



Let us see how this works for Example 3. Here, g(x) = sin(…x=2), I =

g([0; 1]) = [0; 1], D0 = g([0; 1=2)) = [0; 1=
√

2), D1 = g([1=2; 1]) = [1=
√

2; 1]

and f(u) = 2 arcsin(u)=… for u ∈ [0; 1]. g satisfies g(x+y) = g(x)
√

1 − g2(y)+

g(y)
√

1 − g2(x), therefore a(u; v) = u
√

1 − v2 +v
√

1 − u2 for u; v ∈ [0; 1]. To

determine b(u; v), we have to solve a(b; g(1)) = a(u; v) for b ∈ [0; 1] if u; v ∈

[0; 1] and f(u) + f(v) ∈ [1; 2]. This yields b(u; v) = uv −
√

1 − u2
√

1 − v2 for

u; v ∈ [0; 1] and u2 + v2 ≥ 1. Thus, r0(u) = a(u; u) = 2u
√

1 − u2 if u ∈ D0

and r1(u) = b(u; u) = 2u2 − 1 if u ∈ D1.

However, this kind of transcendental functions is not the only interesting

class of solutions of (S) with ”simple” r0; r1. In fact, (S) can be used to

construct rather peculiar functions. We will give two examples here: First,

we construct a continuous, ”almost” surjective function f for which the set

{x ∈ I : f is not constant in a neighbourhood of x} is nowhere dense in I .

Second, we construct a strictly monotone function which has derivative 0

almost everywhere.

In the following Theorem ??, the interior of D0, D1 and I is taken in IR.

Theorem 5. Let r0; r1 be continuous and increasing, D0 < D1, and r0

mapping
◦
D0 onto

◦
I, r1 mapping

◦
D1 onto

◦
I. (Then f is continuous and

increasing.) If there exists an x1 such that x1 ∈
◦
D0 with r0(x1) ≤ x1 or

x1 ∈
◦

D1 with r1(x1) ≥ x1, then for each x; y ∈ I with x < y, there exists a

non-degenerate interval J ⊆ [x; y] with f |J = const.

Proof. Assume that x1 ∈ D0 with r0(x1) ≤ x1 (wlog). Let x := max{x ∈

D0 : r0(x) ≤ x}. We have x ∈
◦
D0 and, since r0 is increasing, r0(x) ≤

15



x ⇔ x ≤ x, which means by (1),(2) that f(x) = 0 ⇔ x ≤ x. Inductively,

f (x) = (0; ”0 : : : ”n−100 : : :)2 ⇔ (r”n−1 ◦ : : : ◦ r”0)(x) ≤ x. Since r0; r1 map
◦
D0

resp.
◦
D1 onto

◦
I, the set

(r−1
”0

◦: : :◦r−1
”n−1

)
(

◦
D0 ∩ (−∞; x)

)
= int {x ∈ I : f(x) = (0; ”0 : : : ”n−100 : : :)2}

is non-empty; since f is increasing, this set is a non-degenerate interval. Since

the dyadic rationals are dense in f (I), the assertion follows. k
At the end of Section 2, we asserted that there are non-strictly monotonic

solutions f of (S) with strictly increasing r0; r1. Theorem ?? provides us with

an example: Set I = [0; 1], D0 = [0; 1=2), D1 = [1=2; 1], r0(x) = 4x2 and

r1(x) = 1 − 4(x − 1)2. Then the solution of this system (S) has the desired

property.

However, functions which have this property can also be constructed as solu-

tions of systems (S) which do not satisfy the assumptions of Theorem ??. It

is enough that r0; r1 map
◦
D0 resp.

◦
D1 onto

◦
I and that the solution f has at

least one non-degenerate interval of constancy. Here is another example: Set

I = [0; 1], D0 = [0; 1=2), D1 = [1=2; 1] and r0(x) =
{ 5x if x ≤ 1=8

x + 1=2 if x ≥ 1=8 ,

r1(x) =
{

x − 1=2 if x ≤ 7=8
5x − 4 if x ≥ 7=8.

We turn now to the construction of a continuous, strictly increasing func-

tion f which has derivative 0 almost everywhere. As mentioned, these func-

tions, constructed in the following Theorem ??, are the inverses of de Rham’s

functions with the same property. Note that the set of measure 1 on which

the derivative of f vanishes is mapped by f onto a set of measure 0 on which

the derivative of f−1 does not exist, and vice versa.
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Theorem 6. Take any t ∈ (0; 1) \ {1=2}. Set D0 = [0; t), D1 = [t; 1],

r0(x) = x=t, r1(x) = (x − t)=(1 − t). Then the solution f of this system (S)

is strictly increasing and its derivative is 0 wherever it exists.

Proof. First, according to the conditions in Theorems ?? and ??, f is contin-

uous and increasing. In fact, f is strictly increasing: Set L := min{1=t; 1=(1−

t)}, then L > 1. For each x; y ∈ I for which there exists an n ∈ IN0

such that ak(x) ∈ D0 ⇔ ak(y) ∈ D0 for all k = 0; : : : ; n is true, we

have |an(x) − an(y)| ≥ Ln|x − y| (with an(x) := (r”n−1 ◦ : : : ◦ r”0)(x),

as in the proof of Theorem ??). Therefore, f(x) = f(y), which means

an(x) ∈ D0 ⇔ an(y) ∈ D0 for all n ∈ IN0, implies x = y.

Since f is strictly monotonic, f ′(x) exists almost everywhere. Take any x

where f ′(x) exists. Assume f(x) = (0; ”0”1 : : :)2. Set t0 := t and t1 := 1 − t.

For each n ∈ IN0, choose xn; yn ∈ [0; 1] with f (xn) = (0; ”0 : : : ”n−100 : : :)2

and f(yn) = f(xn)+1=2n. Since f is strictly increasing, we have xn ≤ x < yn.

It can be proved by induction (see below) that yn − xn = t”0 · · · t”n−1 .

Now assume f ′(x) 6= 0. Then

f(yn) − f(xn)
yn − xn

·
yn+1 − xn+1

f(yn+1) − f(xn+1)
→ 1 (n → ∞):

But we have

f(yn) − f(xn)
yn − xn

· yn+1 − xn+1

f(yn+1) − f(xn+1)
=

1=2n

t”0 · · · t”n−1

· t”0 · · · t”n−1 · t”n

1=2n+1 = 2t”n:

The latter sequence has at least one partial sequence which is constant, but

its value (2t or 2(1 − t)) is unequal to 1 if t 6= 1=2. That is a contradiction.

k
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We close this section with the induction we omitted in the proof of Theo-

rem ??. Notations are as in that proof.

Lemma. For each n ∈ IN0 and i = (”0 : : : ”n−1)2 ∈ {0; : : : ; 2n − 1}, let

xi;n; yi;n ∈ [0; 1] such that f(xi;n) = i=2n, f(yi;n) = (i + 1)=2n. Then yi;n −

xi;n = t”0 · · · t”n−1 .

Proof. First, we define r0(t) := 1, such that 2f(x) = f(r0(x)) for x ∈

D0 ∪ {t}.

For n = 0, we have i = 0, x0;0 = 0, y0;0 = 1, and y0;0 − x0;0 = 1, whereas

t”0 · · · t”n−1 is the empty product.

Assume now the assertion to be proved for an n ∈ IN0. To prove it for n +1,

we distinguish two cases; first, assume i ∈ {0; : : : ; 2n − 1}. Then (i +

1)=2n+1 ≤ 1=2, which means that xi;n+1; yi;n+1 ∈ D0 ∪ {t} and that xi;n; yi;n

exist. Moreover, we have f(xi;n+1) = (0; 0”1 : : : ”n00 : : :)2 and f(xi;n) =

(0; ”1 : : : ”n00 : : :)2. Now,

f(xi;n+1=t) = f (r0(xi;n+1)) = 2f(xi;n+1) = 2 · i=2n+1 = i=2n = f(xi;n);

since f is strictly increasing, that means that xi;n+1 = txi;n. Similarly,

yi;n+1 = tyi;n. Therefore,

t0 · t”1 · · · t”n = t · (yi;n − xi;n) = tyi;n − txi;n = yi;n+1 − xi;n+1:

On the other hand, if i ∈ {2n; : : : ; 2n+1 −1}, then i=2n+1 ≥ 1=2, which means

that xi;n+1; yi;n+1 ∈ D1 and that xi−2n;n; yi−2n;n exist. Moreover, we have

f (xi;n+1) = (0; 1”1 : : : ”n00 : : :)2 and f(xi−2n;n) = (0; ”1 : : : ”n00 : : :)2. Now,

f((xi;n+1 − t)=(1 − t)) = f(r1(xi;n+1)) = 2f(xi;n+1) − 1 = 2 · i=2n+1 − 1

18



= (i − 2n)=2n = f (xi−2n;n);

since f is strictly increasing, that means that xi;n+1 = (1 − t)xi−2n;n + t.

Similarly, yi;n+1 = (1 − t)yi−2n;n + t. Therefore,

t1 · t”1 · · · t”n = (1 − t) · (yi;n − xi;n)

= (1 − t)yi;n + t − ((1 − t)xi;n + t) = yi;n+1 − xi;n+1:

k
4 Closing remarks

We conclude the paper with two remarks concerning possible generalizations.

First, the same type of reasoning as we did here would also work for systems

of more than two equations. We give here only two examples.

1. f (x) = arccos(x)=… satisfies

3f(x) = f(4x3 − 3x) if x ∈ (1=2; 1];
3f(x) − 1 = f(−4x3 + 3x) if x ∈ (−1=2; 1=2];
3f(x) − 2 = f(4x3 − 3x) if x ∈ [−1; −1=2]:

That means that f can be computed by the following recursion:

Set a0 = x; an+1 =
{

4a3
n − 3an if an ∈ (1=2; 1] ∪ [−1; −1=2]

−4a3
n + 3an if an ∈ (−1=2; 1=2]

:

Then arccos(x)=… =
∑

an∈(−1=2;1=2]

1
3n+1 +

∑
an∈[−1;−1=2]

2
3n+1 .

2. Pick any b ∈ IN \ {1}. Then f (x) = ln x satisfies

bf(x) − ” = f
(
e−”xb

)
if x ∈

[
exp

(
”

b

)
; exp

(
” + 1

b

)]
;

for ” = 0; : : : ; b − 1 on I = [1; e].
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Second, there is no particular reason for the set I to be an interval. In

fact, Theorems ?? and ?? seem to work in any topological space I . Possibly,

functional equations of type (S) can be used to construct ”counterexamples”,

i.e., functions with peculiar properties, in such spaces. However, it might

sometimes be necessary to take discontinuous functions r0; r1 to describe a

continuous function f , as we saw in the example before Theorem ??. So, the

construction of a counterexample by use of (S) might be more difficult than

a straight-forward construction.
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