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Abstract

This is a complement to my previous article “Advanced Determinant Calculus” [C. Krat-
tenthaler, Advanced determinant calculus, Séminaire Lotharingien Combin. 42 (1999) (“The
Andrews Festschrift”), Article B42q, 67 pp.]. In the present article, I share with the reader
my experience of applying the methods described in the previous article in order to solve a
particular problem from number theory [G. Almkvist, C. Krattenthaler, J. Petersson, Some new
formulas for �, Experiment. Math. 12 (2003) 441–456]. Moreover, I add a list of determinant
evaluations which I consider as interesting, which have been found since the appearance of
the previous article, or which I failed to mention there, including several conjectures and open
problems.
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1. Introduction

In the previous article [109], I described several methods to evaluate determinants,
and I provided a long list of known determinant evaluations. The present article is
meant as a complement to [109]. Its purpose is threefold: first, I want to shed light
on the problem of evaluating determinants from a slightly different angle, by sharing
with the reader my experience of applying the methods from [109] in order to solve
a particular problem from number theory (see Sections 3 and 4); second, I shall
address the question why it is apparently in the first case combinatorialists (such as
myself) who are so interested in determinant evaluations and get so easily excited
about them (see Section 2); and, finally third, I add a list of determinant evaluations,
which I consider as interesting, which have been found since the appearance of [109],
or which I failed to mention in the list given in Section 3 of [109] (see Section 5),
including several conjectures and open problems.

2. Enumerative combinatorics, nice formulae, and determinants

Why are combinatorialists so fascinated by determinant evaluations?
A simplistic answer to this question goes as follows. Clearly, binomial coefficients(

n

k

)
or Stirling numbers (of the second kind)S(n, k) are basic objects in (enumerative)

combinatorics; after all they count the subsets of cardinality k of a set with n elements,
respectively the ways of partitioning such a set of n elements into k pairwise disjoint
non-empty subsets. Thus, if one sees an identity such as1

det
1�i,j�n

((
a + b

a − i + j

))
=

n∏
i=1

(a + b + i − 1)!(i − 1)!
(a + i − 1)!(b + i − 1)! , (2.1)

or2

det
1�i,j�n

(S(i + j, i)) =
n∏

i=1

ii (2.2)

1 For more information on this determinant see Theorems 2 and 4 in this section and [109, Sections 2.2,
2.3 and 2.5].

2 This determinant evaluation follows easily from the matrix factorisation

(S(i + j, i))1�i,j�n = ((−1)kki/(k! (i − k)!))1�i,k�n · (kj )1�k,j�n,

application of [109, Theorem 26, (3.14)] to the first determinant, and application of the Vandermonde
determinant evaluation to the second.
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(and there are many more of that kind; see [109] and Section 5), there is an obvious
excitement that one cannot escape.

Although this is indeed an explanation which applies in many cases, there is also
an answer on a more substantial level, which brings us to the reason why I like (and
need) determinant evaluations.

The favourite question for an enumerative combinatorialist (such as myself) is

How many 〈. . .〉 are there?

Here, 〈. . .〉 can be permutations with certain properties, certain partitions, certain
paths, certain trees, etc. The favourite theorem then is:

Theorem 1. The number of 〈. . .〉 of size n is equal to

NICE(n).

I have already explained the meaning of 〈. . .〉. What does NICE(n) stand for?
Typical examples for NICE(n) are formulae such as

1

n+ 1

(
2n
n

)
(2.3)

(Catalan numbers; cf. [178, Ex. 6.19]) or

n−1∏
i=0

(3i + 1)!
(n+ i)! (2.4)

(the number of n× n alternating sign matrices and several other combinatorial ob-
jects; cf. [28]). Let us be more precise.

“Definition”. The symbol NICE(n) is a formula of the type

ξn · Rat(n) ·
k∏

i=1

(ain+ bi)!
(cin+ di)! , (2.5)

where Rat(n) is a rational function in n, and where ai, ci ∈ Z for i = 1, 2, . . . , k, Z

denoting the set of integers. The parameters bi, ci, ξ can be arbitrary real or complex
numbers. (If necessary, (ain+ bi)! has to be interpreted as �(ain+ bi + 1), where
�(x) is the Euler gamma function, and similarly for (cin+ di)!.)

Clearly, the formulae (2.3) and (2.4) fit this “Definition”.3

3 The writing NICE(n) is borrowed from Doron Zeilberger [193, Recitation III]. The technical term
for a formula of the type (2.5) is “hypergeometric term”, see [144, Sec. 3.2], whereas, most often, the
colloquial terms “closed form” or “nice formula” are used for it, see [193, Recitation II]. More recently,
some authors call sequences given by formulae of that type sequences of “round” numbers, see [117, Sec.
6].
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If one is working on a particular problem, how can one recognise that one is
looking at a sequence of numbers given by NICE(n)? The key observation is that,
if we factorise (an+ b)! into its prime factors, where a and b are integers, then, as n

runs through the positive integers, the numbers (an+ b)! explode quickly, whereas
the prime factors occurring in the factorisation will grow only moderately, more
precisely, they will grow roughly linearly. Thus, if we encounter a sequence the
prime factorisation of which has this property, we can be sure that there is a formula
NICE(n) for this sequence. Even better, as I explain in Appendix A of [109], the
program Rate4 will (normally5) be able to guess the formula.

To illustrate this, let us look at a particular example. Let us suppose that the first
few values of our sequence are the following:

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440,

9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420.

The prime factorisation of the second-to-last number is (we are using Mathematica
here)

In[1] := FactorInteger[477638700]
Out[1] = {{2,2}, {3,1}, {5,2}, {7,1}, {11,1}, {23,1}, {29,1}, {31,1}}

whereas the prime factorisations of the next-to-last and the last number in this se-
quence are

In[2] := FactorInteger[1767263190]
Out[2] = {{2,1}, {3,1}, {5,1}, {7,1}, {11,1}, {23,1}, {29,1}, {31,1},
> {37,1}}
In[3] := FactorInteger[6564120420]

4 Rate is available from http://igd.univ-lyon1.fr/∼kratt. It is based on a rather simple
algorithm which involves rational interpolation. In contrast to what I read, with great surprise, in [46],
the explanations of how Rate works in Appendix A of [109] can be read and understood without any
knowledge about determinants and, in particular, without any knowledge of the fifty or so pages that
precede Appendix A in [109].

5 Rate will always be able to guess a formula of the type (2.5) if there are enough initial terms
of the sequence available. However, there is a larger class of sequences which have the property that
the size of the primes in the prime factorisation of the terms of the sequence grows only slowly with
n. These are sequences given by formulae containing “Abelian” factors, such as nn. Unfortunately,
Rate does not know how to handle such factors. Recently, Rubey [158] proposed an algorithm for
covering Abelian factors as well. His implementation Guess is written in Axiom and is available at
http://www.mat.univie.ac.at/∼rubey/martin.html.
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Out[3] = {{2,2}, {3,1}, {5,1}, {11,1}, {13,1}, {23,1}, {29,1}, {31,1},
> {37, 1}}

(To decipher this for the reader unfamiliar with Mathematica: the prime factorisation
of the last number is 223151111131231291311371.) One observes, first of all, that the
occurring prime factors are rather small in comparison to the numbers of which they
are factors, and, second, that the size of the prime factors grows only very slowly
(from 31 to 37). Thus, we can be sure that there is a “nice” formula NICE(n) for
this sequence. Indeed, Rate needs only the first five members of the sequence to
come up with a guess for NICE(n):

In[4] :=<< rate.m

In[5] := Rate[1,2,5,14,42]
4
i0

Gamma[1
2
+ i0]

Out[5] = − −−−−−−−−−−−
Sqrt[Pi] Gamma[2+ i0]

As the reader will have guessed, Rate uses the parameter i0 instead of n. In fact, the

formula is a fancy way to write 1
i0+1

(
2i0
i0

)
, that is, we were looking at the sequence

of Catalan numbers (2.3).
To see the sharp contrast, here are the first few terms of another sequence:

1, 2, 9, 272, 589185.

(Also these are combinatorial numbers. They count the perfect matchings of the n-
dimensional hypercube; cf. [146, Problem 19].) Let us factorise the last two numbers:

In[6] := FactorInteger[272]
Out[6] = {{2,4}, {17,1}}
In[7] := FactorInteger[589185]
Out[7] = {{3,2}, {5,1}, {13093,1}}

The presence of the big prime factor 13093 in the last factorisation is a sure sign
that we cannot expect a formula NICE(n) as described in the “Definition” for this
sequence of numbers. (There may well be a simple formula of a different kind. It is
not very likely, though. In any case, such a formula has not been found up to this
date.)

Now, that I have sufficiently explained all the ingredients in the “prototype theo-
rem” Theorem 1, I can explain why theorems of this form are so attractive (at least to
me): the objects (i.e., the permutations, partitions, paths, trees, etc.) that it deals with
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(a) (b)

Fig. 1. (a) A hexagon with sides a, b, c, a, b, c, where a = 3, b = 4, c = 5. (b) A rhombus tiling of a
hexagon with sides a, b, c, a, b, c.

are usually very simple to explain, the statement is very simple and can be understood
by anybody, the result NICE(n) has a very elegant form, and yet, very often it is
not easy at all to give a proof (not to mention a true explanation why such an elegant
result occurs).

Here are two examples. They concern rhombus tilings, by which I mean tilings of
a region by rhombi with side lengths 1 and angles of 60◦ and 120◦. The first one is
a one century old theorem due to MacMahon [131, Sec. 429, q → 1; proof in Sec.
494].6

Theorem 2. The number of rhombus tilings of a hexagon with side lengths a, b, c, a,

b, c whose angles are 120◦ (see Fig. 1a for an example of such a hexagon, and
Fig. 1b for an example of a rhombus tiling) is equal to

c∏
i=1

(a + b + i − 1)!(i − 1)!
(a + i − 1)!(b + i − 1)! . (2.6)

The second one is more recent, and is due to Ciucu, Eisenkölbl, Zare and the author
[40, Theorem 1].

6 To be correct, MacMahon did not know anything about rhombus tilings, they did not exist in enumerative
combinatorics at the time. The objects that he considered were plane partitions. However, there is a very
simple bijection between plane partitions contained in an a × b × c box and rhombus tilings of a hexagon
with side lengths a, b, c, a, b, c, as explained for example in [51].
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Fig. 2. A hexagon with triangular hole.

Theorem 3. If a, b, c have the same parity, then the number of lozenge tilings of a
hexagon with side lengths a, b +m, c, a +m, b, c +m, with an equilateral triangle
of side length m removed from its centre (see Fig. 2 for an example) is given by

H(a +m)H(b +m)H(c +m)H(a + b + c +m)

H(a + b +m)H(a + c +m)H(b + c +m)

H
(
m+ ⌈

a+b+c
2

⌉)
H

(
m+ ⌊

a+b+c
2

⌋)
H(a+b

2 +m)H( a+c
2 +m)H( b+c

2 +m)

× H
(⌈

a
2

⌉)
H

(⌈
b
2

⌉)
H

(⌈
c
2

⌉)
H

(⌊
a
2

⌋)
H

(⌊
b
2

⌋)
H

(⌊
c
2

⌋)
H

(
m
2 +

⌈
a
2

⌉)
H

(
m
2 +

⌈
b
2

⌉)
H

(
m
2 +

⌈
c
2

⌉)
H

(
m
2 +

⌊
a
2

⌋)
H

(
m
2 +

⌊
b
2

⌋)
H

(
m
2 +

⌊
c
2

⌋)

× H
(
m
2

)2
H

(
a+b+m

2

)2
H

(
a+c+m

2

)2
H

(
b+c+m

2

)2

H
(
m
2 +

⌈
a+b+c

2

⌉)
H

(
m
2 +

⌊
a+b+c

2

⌋)
H

(
a+b

2

)
H

(
a+c

2

)
H

(
b+c

2

) , (2.7)

where

H(n) :=



∏n−1
k=0 �(k + 1) for n an integer,∏n− 1

2
k=0 �(k + 1

2 ) for n a half-integer.
(2.8)

(There is a similar theorem if the parities of a, b, c should not be the same,
see [40, Theorem 2]. Together, the two theorems generalise MacMahon’s
Theorem 2.7)

7 Bijective proofs of Theorem 2 which “explain” the “nice” formula are known [106,108]. I do not ask
for a bijective proof of Theorem 3 because I consider the task of finding one as daunting.
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The reader should notice that the right-hand side of (2.6) is indeed of the form
NICE(a), while the right-hand side of (2.7) is of the form NICE(m/2).

Where is the connexion to determinants? As it turns out, these two theorems are
in fact determinant evaluation theorems. More precisely, Theorem 2 is equivalent to
the following theorem.

Theorem 4

det
1�i,j�c

((
a + b

a − i + j

))
=

c∏
i=1

(a + b + i − 1)!(i − 1)!
(a + i − 1)!(b + i − 1)! . (2.9)

(The reader should notice that this is exactly (2.1) with n replaced by c.) On the
other hand, Theorem 3 is equivalent to the theorem below.8

Theorem 5. If m is even, the determinant

det
1�i,j�a+m




(
b + c +m

b − i + j

)
1 � i � a(

b+c
2

b+a
2 − i + j

)
a + 1 � i � a +m


 (2.10)

is equal to (2.7).

The link between rhombus tilings (and equivalent objects such as plane partitions,
semistandard tableaux, etc.) and determinants which explains the above two equiva-
lence statements is non-intersecting lattice paths.9 The latter are families of paths in
a lattice with the property that no two paths in the family have a point in common.
Indeed, rhombus tilings are (usually) in bijection with families of non-intersecting
paths in the integer lattice Z2 which consist of unit horizontal and vertical steps.
(Fig. 3 illustrates the bijection for the rhombus tilings which appear in Theorem 3
in an example. In that bijection, all horizontal steps of the paths are in the positive
direction, and all vertical steps are in the negative direction. See the explanations

8 To be correct, this is a little bit oversimplified. The truth is that equivalence holds only if m is even. An
additional argument is necessary for proving the result for the case that m is odd. We refer the reader who
is interested in these details to [40, Sec. 2].

9 There exists in fact a second link between rhombus tilings and determinants which is not less interesting
or less important. It is a well-known fact that rhombus tilings are in bijection with perfect matchings of
certain hexagonal graphs. (See for example [116, Figs. 13 and 14].) In view of this fact, this second link is
given by Kasteleyn’s theorem [98] saying that the number of perfect matchings of a planar graph is given
by the Pfaffian of a slight perturbation of the adjacency matrix of the graph. See [116] for an exposition
of Kasteleyn’s result, including historical notes, and for adaptations taking symmetries of the graph into
account.
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Fig. 3. (a) A lozenge tiling of the cored hexagon in Fig. 2. (b) The corresponding path family. (c) The path
family made orthogonal.

that accompany [40, Fig. 8] for a detailed description. Since, as I explained, The-
orem 3 essentially is a generalisation of Theorem 2, this gives also an idea for
the bijection for the rhombus tilings which appear in the latter theorem. For other
instances of bijections between rhombus tilings and non-intersecting lattice paths
see [41,43,44,55,56,57,61,112,141].). In the case that the starting points and the end
points of the lattice paths are fixed, the following many-author-theorem applies.10

10 This result was discovered and rediscovered several times. In a probabilistic form, it occurs for the
first time in work by Karlin and McGregor [96,97]. In matroid theory, it is discovered in its discrete form
by Lindström [126, Lemma 1]. Then, in the 1980s the theorem is rediscovered at about the same time
in three different communities, not knowing from each other at the time: in statistical physics by Fisher
[62, Sec. 5.3] in order to apply it to the analysis of vicious walkers as a model of wetting and melting,
in combinatorial chemistry by John and Sachs [91] and Gronau et al. [78] in order to compute Pauling’s
bond order in benzenoid hydrocarbon molecules, and in enumerative combinatorics by Gessel and Viennot
[73,74] in order to count tableaux and plane partitions. Since only Lindström, and then Gessel and Viennot
state the result in its most general form (not reproduced here), I call this theorem most often the “Lindström–
Gessel–Viennot theorem.” It must be also mentioned that the so-called “Slater determinant” in quantum
mechanics (cf. [170] and [171, Ch. 11]) may qualify as an “ancestor” of the Lindström–Gessel–Viennot
determinant.
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Theorem 6 (Karlin–McGregor, Lindström, Gessel–Viennot, Fisher, John–Sachs,
Gronau–Just–Schade–Scheffler–Wojciechowski). Let A1, A2, . . . , An and E1,

E2, . . . , En be lattice points such that for i < j and k < l any lattice path between
Ai and El has a common point with any lattice path between Aj and Ek. Then the
number of all families (P1, P2, . . . , Pn) of non-intersecting lattice paths, Pi running
from Ai to Ei, i = 1, 2, . . . , n, is given by

det
1�i,j�n

(P (Aj → Ei)),

where P(A→ E) denotes the number of all lattice paths from A to E.

It goes beyond the scope of this article to include the proof of this theorem here.
However, I cannot help telling that it is an extremely beautiful and simple proof that
every mathematician should have seen once, even if (s)he does not have any use for
it in her/his own research. I refer the reader to [73,74,179].

Now the origin of the determinants becomes evident. In particular, since, for rhom-
bus tilings, we have to deal with lattice paths in the integer lattice consisting of unit
horizontal and vertical steps, and since the number of such lattice paths which connect
two lattice points is given by a binomial coefficient, we see that the enumeration of
rhombus tilings must be a rich source for binomial determinants. This is indeed the
case, and there are several instances in which such determinants can be evaluated in
the form NICE(.) (see [38,40,41,43,44,55–57,61,71,109] and Section 5). Often the
evaluation part is highly non-trivial.

The evaluation of the determinant (2.9) is not very difficult (see [109, Sections 2.2,
2.3, 2.5] for three different ways to evaluate it). On the other hand, the evaluation of
the determinant (2.10) requires some effort (see [40, Sec. 7]).

To conclude this section, I state another determinant evaluation, to which I shall
come back later. Its origin lies as well in the enumeration of rhombus tilings and plane
partitions (see [105, Theorem 10] and [42, Theorem 2.1]).

Theorem 7. For any complex numbers x and y there holds

det
0�i,j�n−1

(
(x + y + i + j − 1)!

(x + 2i − j)!(y + 2j − i)!
)

=
n−1∏
i=0

i!(x + y + i − 1)!(2x + y + 2i)i(x + 2y + 2i)i
(x + 2i)!(y + 2i)! , (2.11)

where the shifted factorials or Pochhammer symbols (a)k are defined by (a)k :=
a(a + 1) · · · (a + k − 1), k � 1, and (a)0 := 1. (In this formula, a factorial m! has
to be interpreted as �(m+ 1) if m is not a non-negative integer.)
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3. A determinant from number theory

However, determinants do not only arise in combinatorics, they also arise in other
fields. In this section, I want to present a determinant which arose in number theory,
explain in some detail its origin, and then outline the steps which led to its evaluation,
thereby giving the reader an opportunity to look “behind the scenes” while one tries
to make the determinant evaluation methods described in [109] work.

The story begins with the following two series expansions for π . The first one is
due to Bill Gosper [77],

π =
∞∑

n=0

50n− 6(
3n
n

)
2n

(3.1)

and was used by Fabrice Bellard [20, file pi1.c] to find an algorithm for computing
the n-th decimal of π without computing the earlier ones, thus improving an earlier
algorithm due to Simon Plouffe [145]. The second one,

π = 1

740025



∞∑

n=1

3P(n)(
7n
2n

)
2n−1

− 20379280


 , (3.2)

where

P(n)= −885673181n5 + 3125347237n4 − 2942969225n3

+1031962795n2 − 196882274n+ 10996648,

is due to Fabrice Bellard [20], and was used by him in his world record setting
computation of the 1000 billionth binary digit of π , being based on the algorithm in
[19].

Going beyond that, my co-authors from [5], Gert Almkvist and Joakim Petersson,
asked themselves the following question:

Are there more expansions of the type

π =
∞∑

n=0

S(n)(
mn

pn

)
an

,

where S(n) is some polynomial in n (depending on m,p, a)?
How can one go about to get some intuition about this question? One chooses

some specific m,p, a, goes to the computer, computes

p(k) =
∞∑

n=0

nk(
mn

pn

)
an
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Table 1

m p a deg(S)

3 1 2 1 (Gosper)
7 2 2 5 (Bellard)
8 4 −4 4
10 4 4 8
12 4 −4 8
16 8 16 8
24 12 −64 12
32 16 256 16
40 20 −45 20
48 24 46 24
56 28 −47 28
64 32 48 32
72 36 −49 36
80 40 410 40

to many, many digits for k = 0, 1, 2, . . ., puts

π, p(0), p(1), p(2), . . .

into the LLL-algorithm (which comes, for example, with the Maple computer algebra
package), and one waits whether the algorithm comes up with an integral linear com-
bination of π, p(0), p(1), p(2), . . ..11 Indeed, Table 1 shows the parameter values,
where the LLL-algorithm gave a result.

For example, it found

π = 1

r

∞∑
n=0

S(n)(
16n
8n

)
16n

,

where

r = 365372112132

11 For readers unfamiliar with the LLL-algorithm: in this particular application, it takes as an input
rational numbers r1, r2, . . . , rm (which, in our case, will be the numbers 1 and the rational approximations
of π, p(0), p(1), . . . which we computed), and, if successful, outputs small integers c1, c2, . . . , cm such
that c1r1 + c2r2 + · · · + cmrm is very small. Thus, if ri was a good approximation for the real number
xi , i = 1, 2, . . . , m, one can expect that actually c1x1 + c2x2 + · · · + cmxm = 0. See [123, Sec. 1, in
particular the last paragraph] and [45, Ch. 2] for the description of and more information on this important
algorithm. In particular, also here, the output of the algorithm (if there is) is just a (very guided) guess.
Thus, a proof is still needed, although the probability that the guess is wrong is infinitesimal. As a matter
of fact, it is very likely that Bellard had no proof of his formula (3.2) . . ..



80 C. Krattenthaler / Linear Algebra and its Applications 411 (2005) 68–166

and

S(n)= − 869897157255− 3524219363487888n+ 112466777263118189n2

− 1242789726208374386n3 + 6693196178751930680n4

− 19768094496651298112n5 + 32808347163463348736n6

− 28892659596072587264n7 + 10530503748472012800n8,

and

π = 1

r

∞∑
n=0

S(n)(
32n
16n

)
256n

,

where
r = 233105673111132172192232292312

and

S(n)= − 2062111884756347479085709280875

+ 1505491740302839023753569717261882091900n

− 112401149404087658213839386716211975291975n2

+ 3257881651942682891818557726225840674110002n3

− 51677309510890630500607898599463036267961280n4

+ 517337977987354819322786909541179043148522720n5

− 3526396494329560718758086392841258152390245120n6

+ 171145766235995166227501216110074805943799363584n7

− 60739416613228219940886539658145904402068029440n8

+ 159935882563435860391195903248596461569183580160n9

− 313951952615028230229958218839819183812205608960n10

+ 457341091673257198565533286493831205566468325376n11

− 486846784774707448105420279985074159657397780480n12

+ 367314505118245777241612044490633887668208926720n13

− 185647326591648164598342857319777582801297080320n14

+ 56224688035707015687999128994324690418467340288n15

− 7687255778816557786073977795149360408612044800n16.

Of course, there could be many more.
If one looks more closely at Table 1, then, if one disregards the first, second and

fourth line, one cannot escape to notice a pattern: apparently, for each k = 1, 2, . . .,
there is a formula

π =
∞∑

n=0

Sk(n)(
8kn
4kn

)
(−4)kn

,

where Sk(n) is some polynomial in n of degree 4k.
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In order to make progress on this observation, we have to first see how one can
prove such an identity, once it is found. In fact, this is not difficult at all. To illustrate
the idea, let us go through a proof of Gosper’s identity (3.1).

The beta integral evaluation (cf. [12, Theorem 1.1.4]) gives

1(
3n
n

) = (3n+ 1)
∫ 1

0
x2n(1− x)n dx.

Hence the right-hand side of the formula will be∫ 1

0

∞∑
n=0

(50n− 6)(3n+ 1)

(
x2(1− x)

2

)n

dx.

We have
∞∑

n=0

(50n− 6)(3n+ 1)yn = 2(56y2 + 97y − 3)

(1− y)3
. (3.3)

Thus, if substituted, we obtain

RHS= 8
∫ 1

0

28x6 − 56x5 + 28x4 − 97x3 + 97x2 − 6

(x3 − x2 + 2)3
dx

=
[

4x(x − 1)(x3 − 28x2 + 9x + 8)

(x3 − x2 + 2)2
+ 4 arctan(x − 1)

]1

0
= π. (3.4)

(Clearly, both (3.3) and (3.4) are routine calculations, and therefore we did not do it
by hand, but let them be worked out by Maple.)

Now let us fix k � 1. We apply the same procedure to
∑∞

n=0 Sk(n)

/(
8kn
4kn

)
(−4)kn,

where Sk(n) is (hopefully) some (unknown) polynomial in n. The beta integral
evaluation gives

1(
8kn
4kn

) = (8kn+ 1)
∫ 1

0
x4kn(1− x)4kn dx.

Hence, if Sk(n) should have degree d in n,

∞∑
n=0

Sk(n)(
8kn
4kn

)
(−4)kn

=
∫ 1

0

∞∑
n=0

(8kn+ 1)Sk(n)

(
x4k(1− x)4k

(−4)k

)n

dx

=
∫ 1

0

Pk(x)

(x4k(1− x)4k − (−4)k)d+2
dx, (3.5)

where Pk(x) is some polynomial in x. For convenience, let us write P as a short-hand
for Pk . Let Q(x) := x4k(1− x)4k − (−4)k . Now we make the wild assumption that
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P(x)

Q(x)d+2
dx = R(x)

Q(x)d+1
+ 2 arctan(x)+ 2 arctan(x − 1)

for some polynomial R(x) with R(0) = R(1) = 0. Then the original sum would
indeed be equal to π . The last equality is equivalent to

P

Qd+2
= R′

Qd+1
− (d + 1)

Q′R
Qd+2

+ 2

(
1

x2 + 1
+ 1

x2 − 2x + 2

)
,

or

QR′ − (d + 1)Q′R = P − 2Qd+2
(

1

x2 + 1
+ 1

x2 − 2x + 2

)
.

In our examples, we observed that

R(x) = (2x − 1)Ř(x(1− x))

for a polynomial Ř. So, let us make the substitution

t = x(1− x).

Then, after some simplification, the above differential equation becomes

−(1− 4t)Q
dŘ

dt
+ (2Q+ 4k(4k + 1)(1− 4t)t4k−1)Ř

−P + 2(3− 2t)
Q4k+2

t2 − 2t + 2
= 0, (3.6)

where Q(t) = t4k − (−4)k .
Now, writing N(k) = 4k(4k + 1), we make the Ansatz

Ř(t) =
N(k)−1∑

j=1

a(j)tj ,

Sk(n) =
4k∑

j=0

a(N(k)+ j)nj .

(The reader should recall that Sk(n) defines Pk(t) = P(t) through (3.5).) Comparing
coefficients of powers of t on both sides of (3.6), we get a system of N(k)+ 4k linear
equations for the unknowns a(1), a(2), . . . , a(N(k)+ 4k).

Hence: If the determinant of this system of linear equations is non-zero, then there
does indeed exist a representation

π =
∞∑

n=0

Sk(n)(
8kn
4kn

)
(−4)n

.

To see whether we could indeed hope for the determinant to be non-zero, we
went again to the computer and looked at the values of the determinant in some
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small instances. (Obviously, we do not want to do this by hand, since for k = 1 the
matrix is already a 24× 24 matrix!) So, let us program the matrix. (We shall see the
mathematical definition of the matrix in just a moment, see (3.8)).12)

In[8] := a[k_,j_] := Module[{Var = j/(4k)},
(−1)∧(Var−1) ∗ 8k(4k+1)(−4)∧(k ∗ (Var+1))
∗Product[4k ∗ l− 1, {l,1,4k− Var}]
∗Product[4k ∗ l+ 1, {l,1,Var− 1}]
]

In[9] := A [k_,i_,j_] := Module[{Var},
Var = {Floor[(i− 2)/(4 ∗ k− 1)],

Floor[(j− 1)/(4 ∗ k)],Mod[i− 2,4 ∗ k− 1],
Mod[j− 1,4 ∗ k]};

If [i == 1,

If [Mod[j,4 ∗ k] === 0,a[k,j],0],
If [Var[[1]] − Var[[2]] == 0,

Switch[Var[[3]] − Var[[4]],0,f1[k,Var[[3]] + 1,j],−1,
f0 [k,Var[[3]] + 1,j], _,0],

If [Var[[1]] − Var[[2]] == 1,

Switch[Var[[3]] − Var[[4]],0,g1[k,Var[[3]] + 1,j],−1,
g0 [k,Var[[3]] + 1,j], _,0],0]]]]

In[10] := A [k_] := Table[A[k,i,j], {i,1,16 ∗ k∧2}, {j,1,16 ∗ k∧2}]
In[11] := f0 [k_,t_,j_] := j ∗ (−4)∧k;

f1 [k_,t_,j_] := −(2+ 4 ∗ j) ∗ (−4)∧k;
g0 [k_,t_,j_] := (4 ∗ k ∗ (4 ∗ k+ 1)− j);
g1 [k_,t_,j_] := (−4 ∗ 4 ∗ k ∗ (4 ∗ k+ 1)+ 2+ 4 ∗ j)

We shall not try to digest this at this point. Let us accept the program as a black
box, and let us compute the determinant for k = 2.

In[12] := Det[A[2]]
Out[12] = −601576375580370166777074138698518196031142518971568946712\

12 To tell the truth, this is the form of the matrix after some simplifications have already been carried out.
(In particular, we are looking at a matrix which is slightly smaller than the original one.) See [5, beginning
of Section 4] for these details. There, the matrix in (3.8) is called M ′′′.
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Table 2

k det(A(k))

1 259355671

2 −2325339511711113132

3 2772314652871711171318174193231

4 −219133111558738112113221724197235292311

5 22932320253067691129132717281929239296315372

> 2204136674781038302774231725971306459064075121023092662279814\
> 015195545600000000000

Magnificent! This is certainly not zero. However, what are we going to do with this
gigantic number? Remembering our discussion about “nice” numbers and “nice”
formulae in the preceding section, let us factorise it in its prime factors.

In[13] := FactorInteger [%]
Out[13] = {{−1,1}, {2,325}, {3,39}, {5,11}, {7,11}, {11,3}, {13,2}}

I would say that this is sensational: a number with 139 digits, and the biggest prime
factor is 13! As a matter of fact, this is not just a rare exception. Table 2 shows the
factorisations of the first five determinants. (We could not go further because of the
exploding size of the matrix of which the determinant is taken.)

Thus, these experimental results make us sure that there must be a “nice” formula
for the determinant. Indeed, we prove in [5] that13

det(A(k)) = (−1)k−1216k3+20k2+6kk8k2+2k(4k + 1)!4k
4k∏

j=1

(2j)!
j !2 . (3.7)

Hence the desired theorem follows.

Theorem 8. For all k � 1 there is a formula

π =
∞∑

n=0

Sk(n)(
8kn
4kn

)
(−4)kn

,

where Sk(n) is a polynomial in n of degree 4k with rational coefficients. The poly-
nomial Sk(n) can be found by solving the previously described system of linear
equations.

13 Strictly speaking, this is not a formula NICE(k) according to my “Definition” in the preceding section,

because of the presence of the “Abelian” factors k8k2+2k and (4k + 1)!4k , see Footnote 5. Nevertheless,
the reader will certainly admit that this is a nice and closed formula.



C. Krattenthaler / Linear Algebra and its Applications 411 (2005) 68–166 85

I must admit that we were extremely lucky that it was indeed possible to evaluate
the determinant explicitly. To recall, “all” we needed to prove our theorem (Theorem
8) was to show that the determinant was non-zero. To be honest, I would not have the
slightest idea how to do this here without finding the exact value of the determinant.

Now, after all this somewhat “dry” discussion, let me present the determinant. We
had to determine the determinant of the 16k2 × 16k2 matrix



0 . . . 0∗ 0 . . . 0∗ 0 . . . 0∗ · · · . . . · · · 0 . . . 0∗
F1 0 0 · · · . . . · · · 0

G1 F2 0 · · · . . . · · · 0

0 G2 F3
...

0 0 G3
. . .

...

...
. . .

. . .
. . .

. . .
. . .

...

...
. . .

. . .
. . . F4k−1 0

... 0 0 G4k−1 F4k

0 · · · . . . · · · 0 0 G4k




, (3.8)

where the 'th non-zero entry in the first row (these are marked by ∗) is

(−1)'−1(−4)('+1)k8k(4k + 1)

(
4k−'∏
i=1

(4ik − 1)

)(
'−1∏
i=1

(4ik + 1)

)
,

and where each block Ft and Gt is a (4k − 1)× (4k) matrix (that is, these are
rectangular blocks!) with non-zero entries only on its (two) main diagonals,

Ft =




f1(4(t − 1)k + 1) f0(4(t − 1)k + 2) 0
0 f1(4(t − 1)k + 2) f0(4(t − 1)k + 3)

. . .
. . .
. . .
0

· · ·
0 · · ·

. . .
f1(4tk − 2) f0(4tk − 1) 0

0 f1(4tk − 1) f0(4tk)



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and

Gt =




g1(4(t − 1)k + 1) g0(4(t − 1)k + 2) 0
0 g1(4(t − 1)k + 2) g0(4(t − 1)k + 3)

. . .
. . .
. . .
0

· · ·
0 · · ·

. . .
g1(4tk − 2) g0(4tk − 1) 0

0 g1(4tk − 1) g0(4tk)




.

We have almost worked our way through the definition of the determinant. The
only missing piece is the definition of the functions f0, f1, g0, g1 in the blocks Ft

and Gt . Here it is:

f0(j) = j (−4)k,

f1(j) = −(4j + 2)(−4)k,

g0(j) = (N(k)− j),

g1(j) = −(4N(k)− 4j − 2), (3.9)

where, as before, we write N(k) = 4k(4k + 1) for short.

4. The evaluation of the determinant

I now describe how the determinant of (3.8) was evaluated by applying to it the
methods described in [109]. To make this section as self-contained as possible, for
each of them I briefly recall how it works before putting it into action.

“Method” 0: Do row and column operations until the determinant reduces to
something manageable.

In fact, at a first glance, this does not look too bad. Our matrix (3.8), of which we
want to compute the determinant and show that it is non-zero, is a very sparse matrix.
Moreover, it looks almost like a two-diagonal matrix. It seems that one should be able
to do a few row and column manipulations and thus reduce the matrix to a matrix of
a simpler form of which we can evaluate the determinant.

Well, we tried that. Unfortunately, the above impression is deceiving. First of all,
the diagonals of the blocks do not really fit together to form diagonals which run from
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one end of the matrix to the other. Second, there remains still the first row which does
not fit the pattern of the rest of the matrix. So, whatever we did, we ended up nowhere.
Maybe we should try something more sophisticated . . .

Method 1 [109, Sec. 2.6]: LU-factorisation. Suppose we are given a family of ma-
trices A(1), A(2), A(3), . . . of which we want to compute the determinants. Suppose
further that we can write

A(k) · U(k) = L(k),

where U(k) is an upper triangular matrix with 1s on the diagonal, and where L(k) is
a lower triangular matrix. Then, clearly,

det(A(k)) = product of the diagonal entries of L(k).

But how do we find U(k) and L(k)? We go to the computer, crank out U(k) and
L(k) for k = 1, 2, 3, . . ., until we are able to make a guess. Afterwards we prove the
guess by proving the corresponding identities.

Well, we programmed that, we stared at the output on the computer screen, but we
could not make any sense of it.

Method 2 [109, Sec. 2.3]: Condensation. This is based on a determinant formula due
to Jacobi (see [28, Ch. 4] and [100, Sec. 3]). Let A be an n× n matrix. Let Aj1,j2,...,j'

i1,i2,...,i'
denote the submatrix of A in which rows i1, i2, . . . , i' and columns j1, j2, . . . , j' are
omitted. Then there holds

det A · det A1,n
1,n = det A1

1 · det An
n − det An

1 · det A1
n. (4.1)

If we consider a family of matrices A(1), A(2), . . ., and if all the consecutive minors
of A(n) belong to the same family, then this allows one to give an inductive proof of
a conjectured determinant evaluation for A(n).

Let me illustrate this by reproducing Amdeberhan’s condensation proof [8] of
(2.11). Let Mn(x, y) denote the determinant in (2.11). Then we have

(Mn(x, y))
n
n = Mn−1(x, y),

(Mn(x, y))
1
1 = Mn−1(x + 1, y + 1),

(Mn(x, y))
1
n = Mn−1(x − 1, y + 2),

(Mn(x, y))
n
1 = Mn−1(x + 2, y − 1),

(Mn(x, y))
1,n
1,n = Mn−2(x + 1, y + 1). (4.2)

Thus, we know that Eq. (4.1) is satisfied with A replaced by Mn(x, y), where the
minors appearing in (4.1) are given by (4.2). This can be interpreted as a recurrence
for the sequence (Mn(x, y))n�0. Indeed, given M0(x, y) and M1(x, y), the equation
(4.1) determinesMn(x, y)uniquely for alln � 0 (given thatMn(x, y)never vanishes).
Thus, since the right-hand side of (2.11) is indeed never zero, for the proof of (2.11)
it suffices to check (2.11) for n = 0 and n = 1, and that the right-hand side of (2.11)
also satisfies (4.1), all of which is a routine task.
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Now, a short glance at the definition of our matrix (3.8) will convince us quickly
that application of this method to it is rather hopeless. For example, omission of the
first row already brings us outside of our family of matrices. So, also this method
is not much help to solve our problem, which is really a pity, because it is the most
painless of all . . .

Method 3 [109, Sec. 2.4]: Identification of factors. In order to sketch the idea, let
us quickly go through a (standard) proof of the Vandermonde determinant evaluation,

det
1�i,j�n

(X
j−1
i ) =

∏
1�i<j�n

(Xj −Xi). (4.3)

Proof. If Xi1 = Xi2 with i1 /= i2, then the Vandermonde determinant (4.3) certainly
vanishes because in that case two rows of the determinant are identical. Hence, (Xi1 −
Xi2) divides the determinant as a polynomial in the Xi’s. But that means that the
complete product

∏
1�i<j�n(Xj −Xi) (which is exactly the right-hand side of (4.3))

must divide the determinant.
On the other hand, the determinant is a polynomial in the Xi’s of degree at most(

n

2

)
. Combined with the previous observation, this implies that the determinant equals

the right-hand side product times, possibly, some constant. To compute the constant,
compare coefficients of X0

1X
1
2 · · ·Xn−1

n on both sides of (4.3). This completes the
proof of (4.3). �

At this point, let us extract the essence of this proof. The basic steps are:

(S1) Identification of factors
(S2) Determination of degree bound
(S3) Computation of the multiplicative constant.

As I report in [109], this turns out to be an extremely powerful method which has
numerous applications. To give an idea of the flavour of the method, I show a few
steps when it is applied to the determinant in (2.11) (ignoring the fact that we have
already found a very simple proof of its evaluation; see [105, proof of Theorem 10]
for the complete proof using the “identification of factors” method).

To get started, we have to transform the assertion (2.11) into an assertion about
polynomials. This is easily done, we just have to factor

(x + y + i − 1)!/(x + 2i)!/(y + 2n− i − 2)!
out of the ith row of the determinant. If we subsequently cancel common factors on
both sides of (2.11), we arrive at the equivalent assertion

det
0�i,j�n−1

((x + y + i)j (x + 2i − j + 1)j (y + 2j − i + 1)2n−2j−2)
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=
n−1∏
i=0

(i!(y + 2i + 1)n−i−1(2x + y + 2i)i(x + 2y + 2i)i), (4.4)

where, as before, (α)k is the standard notation for shifted factorials (Pochhammer
symbols) explained in the statement of Theorem 7.

In order to apply the same idea as in the above evaluation of the Vandermonde
determinant, as a first step we have to show that the right-hand side of (4.4) divides
the determinant on the left-hand side as a polynomial in x and y. For example, we
would have to prove that (x + 2y + 2n− 2) (actually, (x + 2y + 2n− 2)�(n+1)/3�,
we will come to that in a moment) divides the determinant. Equivalently, if we set
x = −2y − 2n+ 2 in the determinant, then it should vanish. How could we prove
that? Well, if it vanishes then there must be a linear combination of the columns, or
of the rows, that vanishes. Equivalently, for x = −2y − 2n+ 2 we find a vector in
the kernel of the matrix in (4.4), respectively of its transpose. More generally (and
this addresses the fact that we actually want to prove that (x + 2y + 2n− 2)�(n+1)/3�
divides the determinant):

For proving that (x + 2y + 2n− 2)Edivides the determinant, we find E

linear independent vectors in the kernel.

(For a formal justification that this does indeed suffice, see Section 2 of [107], and in
particular the Lemma in that section.)

Okay, how is this done in practice? You go to your computer, crank out these vectors
in the kernel, for n = 1, 2, 3, . . ., and try to make a guess what they are in general. To
see how this works, let us do it in our example. First of all, we program the kernel of
the matrix in (4.4) with x = −2y − 2n+ 2 (again, we are using Mathematica here).14

In[14] := p = Pochhammer;
m[i_,j_,n_] := p[x+ y+ i,j] ∗ p[y+ 2 ∗ j+ 1− i,2 ∗ n− 2

∗j− 2] ∗ p[x− j+ 1+ 2i,j];
V[n_] := (x = −2y− 2n+ 2;

Var = Sum[c[j] ∗ Table[m[i,j,n], {i,0,n− 1}], {j,0,n− 1}];
Var = Solve[Var == Table[0, {n}],Table[c[i], {i,0,n− 1}]];
Factor[Table[c[i], {i,0,n− 1}]/.Var])

What the computer gives is the following:

In[15] := V[2]

14 In the program, V[n] represents the kernel, which is clearly a vector space. In the computer output, it
is given in parametric form, the parameters being the c[i]’s.
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Out[15] = {{−2c[1],c[1]}}
In[16] := V[3]
Out[16] = {{−2c[2],−c[2],c[2]}}
In[17] := V[4]
Out[17] = {{−2c[3],−3c[3],0,c[3]}}
In[18] := V[5]
Out[18] = {{−2c[4],−5c[4],−2c[3] − c[4],c[3],c[4]}}
In[19] := V[6]
Out[19] = {{−2c[5],−7c[5],−2(c[4] + 2c[5]),−c[4],c[4],c[5]}}
In[20] := V[7]
Out[20] = {{−2c[6],−9c[6],−2c[5] − 9c[6],−3c[5] − c[6],0,
> c[5],c[6]}}

At this point, the computations become somewhat slow. So we should help our
computer. Indeed, on the basis of what we have obtained so far, it is “obvious” that,
somewhat unexpectedly, y does not appear in the result. Therefore we simply set y

equal to some random number, and then the computer can go much further without
any effort.

In[21] := y = 101

In[22] := V[8]
Out[22] = {{−2c[7],−11c[7],−2(c[6] + 8c[7]),−5(c[6] + c[7]),
> −2c[5] − c[6],c[5],c[6],c[7]}}
In[23] := V[9]
Out[23] = {{−2c[8],−13c[8],−2c[7] − 25c[8],−7(c[7] + 2c[8]),
> −2c[6] − 4c[7] − c[8],−c[6],c[6],c[7],c[8]}}
In[24] := V[10]
Out[24] = {{−2c[9],−15c[9],−2(c[8] + 18c[9]),−3(3c[8] + 10c[9]),
> −2c[7] − 9c[8] − 6c[9],−3c[7] − c[8],0,c[7],c[8],c[9]}}
In[25] := V[11]
Out[25] = {{−2c[10],−17c[10],−2c[9] − 49c[10],−11(c[9] + 5c[10]),
> −2(c[8] + 8c[9] + 10c[10]),−5c[8] − 5c[9] − c[10],
> −2c[7] − c[8],c[7],c[8],c[9],c[10]}}

Let us extract some information out of these data. For convenience, we write Mn

for the matrix in (4.4) in the sequel. For example, by just looking at the coefficients
of c[n− 1] appearing in V [n], we extract that
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the vector (−2, 1) is in the kernel of M2,
the vector (−2,−1, 1) is in the kernel of M3,
the vector (−2,−3, 0, 1) is in the kernel of M4,
the vector (−2,−5,−1, 0, 1) is in the kernel of M5,
the vector (−2,−7,−4, 0, 0, 1) is in the kernel of M6,
the vector (−2,−9,−9,−1, 0, 0, 1) is in the kernel of M7,
the vector (−2,−11,−16,−5, 0, 0, 0, 1) is in the kernel of M8,
the vector (−2,−13,−25,−14,−1, 0, 0, 0, 1) is in the kernel of M9,
the vector (−2,−15,−36,−30,−6, 0, 0, 0, 0, 1) is in the kernel of M10,
the vector (−2,−17,−49,−55,−20,−1, 0, 0, 0, 0, 1) is in the kernel of M11.

Okay, now we have to make sense out of this. Our vectors in the kernel have the
following structure: first, there are some negative numbers, then follow a few zeroes,
and finally there is a trailing 1. I believe that we do not have any problem to guess
what the zeroeth15 or the first coordinate of our vector is. Since the second coordinates
are always negatives of squares, there is also no problem there. What about the third
coordinates? Starting with the vector for M7, these are −1,−5,−14,−30,−55, . . .
I guess, rather than thinking hard, we should consult Rate (see Footnote 4):

In[26] := Rate[−1,−5,−14,−30,−55]
−(i0 (1+ i0) (1+ 2i0))

Out[26] = {− − −−−−−−−−−}
6

After replacing i0 by n− 6 (as we should), this becomes −(n− 6)(n− 5)(2n−
11)/6. An interesting feature of this formula is that it also works well for n = 6 and
n = 5. Equipped with this experience, we let Rate work out the fourth coordinate:

In[27] := Rate[0,0,0,−1,−6,−20]
−((−3+ i0) (−2+ i0)2 (−1+ i0))

Out[27] = {− − −−−−−−−−−−−−−−}
12

After replacement of i0 by n− 5, this is −(n− 8)(n− 7)2(n− 6)/12. Let us sum-
marise our results so far: the first five coordinates of our vector in the kernel of Mn

are

−2,−(2n− 5),− (n− 4)(2n− 8)

2
,− (n− 6)(n− 5)(2n− 11)

6
,

− (n− 8)(n− 7)(n− 6)(2n− 14)

12
.

15 The indexing convention in the matrix in (4.4) of which the determinant is taken is that rows and
columns are indexed by 0, 1, . . . , n− 1. We keep this convention here.
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I would say, there is a clear pattern emerging: the s-th coordinate is equal to

− (n− 2s)s−1(2n− 3s − 2)

s! = − (2n− 3s − 2)

(n− s − 1)

(n− 2s)s
s! .

Denoting the above expression by f (n, s), the vector

(f (n, 0), f (n, 1), . . . , f (n, n− 2), 1)

is apparently in the kernel of Mn for n � 2. To prove this, we have to show that

n−2∑
s=0

(2n− 3s − 2)

(n− s − 1)

(n− 2s)s
(s)!

· (−y − 2n+ i + 2)s(−2y − 2n+ 2i − s + 3)s(y + 2s − i + 1)2n−2s−2

= (−y − 2n+ i + 2)n−1(−2y − 3n+ 2i + 4)n−1.

In [105] it was argued that this identity follows from a certain hypergeometric iden-
tity due to Singh [169]. However, for just having some proof of this identity, this
careful literature search was not necessary. In fact, nowadays, once you write down
a binomial or hypergeometric identity, it is already proved! One simply puts the
binomial/hypergeometric sum into the Gosper–Zeilberger algorithm (see [144,193,
194,195]), which outputs a recurrence for it, and then the only task is to verify that
the (conjectured) right-hand side also satisfies the same recurrence, and to check the
identity for sufficiently many initial values (which one has already done anyway while
producing the conjecture).16

As I mentioned earlier, actually we need more vectors in the kernel. However,
this is not difficult. Take a closer look, and you will see that the pattern persists (set
c[n− 1] = 0 in the vector for V [n], etc.). It will take you no time to work out a
full-fledged conjecture for �(n+ 1)/3� linear independent vectors in the kernel of
Mn.

I do not want to go through Steps (S2) and (S3), that is, the degree calculation and
the computation of the constant. As it turns out, to do this conveniently you need to
introduce more variables in the determinant in (4.4). Once you do this, everything
works out very smoothly. I refer the reader to [105] for these details.

16 As you may have suspected, this is again a little bit oversimplified. But not much. The Gosper–
Zeilberger algorithm applies always to hypergeometric sums, and there are only very few binomial
sums where it does not apply. (For the sake of completeness, I mention that there are also sev-
eral algorithms available to deal with multi-sums, see [34,190]. These do, however, rather quickly
challenge the resources of today’s computers.) Maple implementations written by Doron Zeilberger
are available from http://www.math.rutgers.edu/∼zeilberg, those written by Fr’ederic
Chyzak are available from http://algo.inria.fr/chyzak/mgfun.html, Mathematica imple-
mentations written by Peter Paule, Axel Riese, Markus Schorn, Kurt Wegschaider are available from
http://www.risc.uni-linz.ac.at/research/combinat/risc/software.



C. Krattenthaler / Linear Algebra and its Applications 411 (2005) 68–166 93

Now, let us come back to our determinant, the determinant of (3.8), and apply
“identification of factors” to it.17 To begin with, here is bad news: “identification of
factors” crucially requires the existence of indeterminates. But, where are they in
(3.8)? If we look at the definition of the matrix (3.8), which, in the end, depends on
the auxiliary functions f0, f1, g0, g1 defined in (3.9), then we see that there are no
indeterminates at all. Everything is (integral) numbers. So, to get even started, we
need to introduce indeterminates in a way such that the more general determinant
would still factor “nicely.” We do not have much guidance. Maybe, since we already
made the abbreviation N(k) = 4k(4k + 1), we should replace N(k) by X? Okay, let
us try this, that is, let us put

f0(j) = j (−4)k,

f1(j) = −(4j + 2)(−4)k,

g0(j) = (X − j),

g1(j) = −(4X − 4j − 2) (4.5)

instead of (3.9). Let us compute the new determinant for k = 2. We program the new
functions f0, f1, g0, g1,

In[28] := f0 [k_,t_,j_] := j ∗ (−4)∧k;
f1 [k_,t_,j_] := −(2+ 4 ∗ j) ∗ (−4)∧k;
g0 [k_,t_,j_] := (X− j);
g1 [k_,t_,j_] := (−4 ∗ X+ 2+ 4 ∗ j)

we enter the new determinant for k = 2,

In[29] := Factor[Det[A[2]]]
and, after a waiting time of more than 15 min,18 we obtain

17 What I describe in the sequel is, except for very few excursions that ended up in a dead end, and which
are therefore omitted here, the way how the determinant evaluation was found.
18 which I use to explain why our computer needs so long to calculate this determinant of a very sparse

matrix of size 16 · 22 = 64: isn’t it true that, nowadays, determinants of matrices with several hundreds of
rows and columns can be calculated without the slightest difficulty (particularly if they are very sparse)?
Well, we should not forget that this is true for determinants of matrices with numerical entries. However, our
matrix (3.8) with the modified definitions (4.5) of f0, f1, g0, g1 has now entries which are polynomials in
X. Hence, when our computer algebra program applies (internally) some elimination algorithm to compute
the determinant, huge rational expressions will slowly build up and will slow down the calculations (and,
at times, will make our computer crash …). As I learn from Dave Saunders, Maple and Mathematica
do currently in fact not use the best known algorithms for dealing with determinants of matrices with
polynomial entries. (This may have to do with the fact that the developers try to optimise the algorithms
for numerical determinants in the first case.) It is known how to avoid the expression swell and compute
polynomial matrix determinants in time about mn3, where n is the dimension of the matrix and m is the
bit length of the determinant (roughly, in univariate case, m is degree times maximum coefficient length).
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Out[29] = −1406399608474882323154910525986578515918369681041517636\

> 11783762359972003840000000 (−64+ X) (−48+ X) (−40+ X)2

> (−32+ X)3 (−24+ X)4 (−16+ X)5 (−8+ X)6 X7

> (9653078694297600− 916000657637376 X+ 36130368757760 X2

> −758218948608 X3 + 8928558848 X4 − 55938432 X5 + 145673 X6)

Not bad. There are many factors which are linear in X. (This is what we were after.)
However, the irreducible polynomial of degree 6 gives us some headache. (The degrees
of the irreducible part of the polynomial will grow quickly with k.) How are we going
to guess what this factor could be, and, even more daunting, even if we should be able
to come up with a guess, how would we go about to prove it?

So, maybe we should modify our choice of how to introduce indeterminates into the
matrix. In fact, we overlooked something: maybe, in a hidden manner, the variableX is
also there at other places in (3.9), that is, when X is specialised to N(k) = 4k(4k + 1)
at these places it becomes invisible. More specifically, maybe we should insert the
difference X − 4k(4k + 1) in the definitions of f0 and f1 (which would disappear
for X = 4k(4k + 1)). So, maybe we should try:

f0(j) = (4k(4k + 1)−X + j)(−4)k,

f1(j) = −(16k(4k + 1)− 4X + 2+ 4j)(−4)k,

g0(j) = (X − j),

g1(j) = −(4X − 4j − 2),

Okay, let us modify our computer program accordingly,

In[30] := f0 [k_,t_,j_] := (4 ∗ k ∗ (4 ∗ k+ 1)− X+ j) ∗ (−4)∧k;
f1 [k_,t_,j_] := −(4 ∗ 4 ∗ k ∗ (4 ∗ k+ 1)− 4 ∗ X+ 2+ 4 ∗ j) ∗ (−4)∧k;
g0 [k_,t_,j_] := (X− j);
g1 [k_,t_,j_] := (−4 ∗ X+ 2+ 4 ∗ j)

and let us compute the new determinant for k = 2:

In[31] := Factor [Det[A[2]]]
This makes us wait for another 15 min, after which we are rewarded with:

Out[31] = −296777975397624679901369809794412104454134763494070841\
> 1155365196124754770317472271790417634937439881166252558632\
> 616674197504000000000 (−141+ 2X) (−139+ 2X) (−137+ 2X)

> (−135+ 2X) (−133+ 2X) (−131+ 2X) (−129+ 2X)
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Excellent! There is no big irreducible polynomial anymore. Everything is linear
factors in X. But, wait, there is still a problem: in the end (recall Step (S2)!) we
will have to compare the degrees of the determinant and of the right-hand side as
polynomials in X. If we expand the determinant according to its definition, then the
conclusion is that the degree of the determinant is bounded above by 16k2 − 1, which,
for k = 2 is equal to 31. The right-hand side polynomial however which we computed
above has degree 7. This is a big gap!

I skip some other things (ending up in dead ends …) that we tried at this point.
Altogether they pointed to the fact that, apparently, one indeterminate is not sufficient.
Perhaps it is a good idea to “diversify” the variable X, that is, to make two variables,
X1 and X2, out of X:

f0(j) = (4k(4k + 1)−X2 + j)(−4)k,

f1(j) = −(16k(4k + 1)− 4X1 + 2+ 4j)(−4)k,

g0(j) = (X2 − j),

g1(j) = −(4X1 − 4j − 2).

We program this,

In[32] := f0 [k_,t_,j_] := (4 ∗ k ∗ (4 ∗ k+ 1)− X[2] + j) ∗ (−4)∧k;
f1 [k_,t_,j_] := −(4 ∗ 4 ∗ k ∗ (4 ∗ k+ 1)− 4 ∗ X[1] + 2+ 4 ∗ j) ∗ (−4)∧k;
g0 [k_,t_,j_] := (X[2] − j);
g1 [k_,t_,j_] := (−4 ∗ X[1] + 2+ 4 ∗ j)

and, in order to avoid overstraining our computer, compute this time the new deter-
minant for k = 1:

In[33] := Factor[Det[A[1]]]
After some minutes there appears

Out[33] = 3242591731706757120000 (−37+2X[1]) (−35+2X[1])
> (−33+ 2X[1]) (1+ 2X[1] − 2X[2])3 (3+ 2X[1] − 2X[2])2
> (5+ 2X[1] − 2X[2])

on the computer screen. On the positive side: the determinant still factors completely
into linear factors, something which we could not expect a priori. Moreover, the
degree (in X1 and X2) has increased, it is now equal to 9 although we were only
computing the determinant for k = 1. However, a gap remains, the degree should be
16k2 − 1 = 15 if k = 1.

Thus, it may be wise to introduce another genuine variable, Y . For example, we
may think of simply homogenising the definitions of f0, f1, g0, g1:
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f0(j) = (4k(4k + 1)Y −X2 + jY )(−4)k,

f1(j) = −(16k(4k + 1)Y − 4X1 + (2+ 4j)Y )(−4)k,

g0(j) = (X2 − jY ),

g1(j) = −(4X1 − (4j + 2)Y ).

We program this,

In[34] := f0 [k_,t_,j_] := (4 ∗ k ∗ (4 ∗ k+ 1) ∗ Y− X[2] + j ∗ Y) ∗ (−4)∧k;
f1 [k_,t_,j_] := − (4 ∗ 4 ∗ k ∗ (4 ∗ k+ 1) ∗ Y− 4 ∗ X[1]

+ (2+ 4 ∗ j) ∗ Y) ∗ (−4)∧k;
g0 [k_,t_,j_] := (X[2] − j ∗ Y);
g1 [k_,t_,j_] := (−4 ∗ X[1] + (2+ 4 ∗ j) ∗ Y)

In[35] := Factor[Det[A[1]]]
we wait for some more minutes, and we obtain

Out[35] = −3242591731706757120000Y6 (33Y− 2X[1]) (35Y− 2X[1])
> (37Y− 2X[1]) (Y+ 2X[1] − 2X[2])3 (3Y+ 2X[1] − 2X[2])2
> (5Y+ 2X[1] − 2X[2])

Great! The degree in X1, X2, Y is 15, as it should be!
At this point, one becomes greedy. The more variables we have, the easier will be

the proof. We “diversify” the variables X1, X2, Y , that is, we make them X1,t , X2,t , Yt

if they appear in the blocks Ft or Gt , respectively, t = 1, 2, . . . , 4k (cf. (3.8) and the
Mathematica code for the precise meaning of this definition):

f0(j) = (4k(4k + 1)Yt −X2,t + jYt )(−4)k,

f1(j) = −(16k(4k + 1)Yt − 4X1,t + (2+ 4j)Yt )(−4)k,

g0(j) = (X2,t − jYt ),

g1(j) = −(4X1,t − (4j + 2)Yt ). (4.6)

Now there are so many variables so that there is no way to do the factorisation of
the new determinant for k = 1 on the computer unless one plays tricks (which we
did).19 But let us pretend that we are able to do it:

19 See Footnote 18 for the explanation of the complexity problem. “Playing tricks” would mean to compute
the determinant for various special choices of the variables X1,t , X2,t , Yt , and then reconstruct the general
result by interpolation. This is possible because we know an a priori degree bound (namely 15) for the
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In[36] := f0 [k_,t_,j_] := (4 ∗ k ∗ (4 ∗ k+ 1) ∗ Y[t] − X[2,t]
+j ∗ Y[t]) ∗ (−4)∧k;

f1 [k_,t_,j_] := − (4 ∗ 4 ∗ k(4 ∗ k+ 1) ∗ Y[t] − 4 ∗ X[1,t]
+ (2+ 4 ∗ j) ∗ Y[t]) ∗ (−4)∧k;

g0 [k_,t_,j_] := (X[2,t] − j ∗ Y[t]);
g1 [k_,t_,j_] := (−4 ∗ X[1,t] + (2+ 4 ∗ j) ∗ Y[t])

In[37] := Factor [Det[A[1]]]
Out[37] = 3242591731706757120000(2X[1,1] − 33Y[1]) Y[1]
> (2X[1,1] − 2X[2,1] + Y[1])(2X[1,2] − 35Y[2]) Y[2]
> (2X[1,2] − 2X[2,2] + Y[2])(−2X[2,2]Y[1] + 2X[1,1]
> Y[2] + 3Y[1]Y[2])(2X[1,3] − 37Y[3])Y[3](2X[1,3]−
> 2X[2,3] + Y[3])(−2X[2,3]Y[1] + 2X[1,1]Y[3]+
> 5Y[1]Y[3])(−2X[2,3]Y[2] + 2X[1,2]Y[3] + 3Y[2]Y[3])

By staring a little bit at this result (and the one that we computed for k = 2), we
extracted that, apparently, we have

det AX = (−1)k−142k(4k2+7k+2)k2k(4k+1)
4k∏
i=1

(i + 1)4k−i+1

×
4k−1∏
a=1

(
2X1,a − (32k2 + 2a − 1)Ya

)

×
∏

1�a�b�4k−1

(2X2,bYa − 2X1,aYb − (2b − 2a + 1)YaYb), (4.7)

polynomial. However, this would become infeasible for k = 3, for example. “Playing tricks” then would
mean to be content with an “almost sure” guess, the latter being based on features of the (unknown)
general result that are already visible in the earlier results, and on calculations done for special values of
the variables. For example, if we encounter determinants det M(k), where the M(k)’s are some square
matrices, k = 1, 2, . . ., and the results for k = 1, 2, . . . , k0 − 1 show thatx − y must be a factor of det M(k)

to some power, then one would specialise y to some value that would make x − y distinct from any other
linear factors containing x, and, supposing that y = 17 is such a choice, compute det M(k0) with y = 17.
The exact power of x − y in the unspecialised determinant det M(k0) can then be read off from the exponent
of x − 17 in the specialised one. If it should happen that it is also infeasible to calculate det M(k0) with
x still unspecialised, then there is still a way out. In that case, one specialises y and x, in such a way
that x − y would be a prime p that one expects not to occur as a prime factor in any other factor of the
determinant det M(k0). The exact power of x − y in the unspecialised determinant det M(k0) can then be
read off from the exponent of p in the prime factorisation of the specialised determinant. See Sections 5.7
and 5.8, and in particular Footnote 27 for further instances where this trick was applied.



98 C. Krattenthaler / Linear Algebra and its Applications 411 (2005) 68–166

where AX denotes the new general matrix given through (3.8) and (4.6), and where,
as before, (α)k is the standard notation for shifted factorials (Pochhammer symbols)
explained in the statement of Theorem 7. The special case that we need in the end to
prove our Theorem 8 is X1,t = X2,t = N(k) and Yt = 1.

Now we are in business. Here is the Sketch of the proof of (4.7):
Re (S1): For each factor of the (conjectured) result (4.7), we find a linear com-

bination of the rows which vanishes if the factor vanishes. (In other terms: if the
indeterminates in the matrix are specialised so that a particular factor vanishes, we
find a vector in the kernel of the transpose of the specialised matrix.) For example, to
explain the factor (2X1,1 − (32k2 + 1)Y1), we found:

If X1,1 = 32k2+1
2 Y1, then

2(X2,4k−1 − (N(k)− 1)Y4k−1)

(−4)k(4k+1)+1(16k2 + 1)
∏4k−1

'=1 (4'k + 1)
· (row 0 of AX)

+
4k∑
s=0

4k−2∑
t=0

(
(−1)s(k−1)2t

4sk

s−1∏
'=0

4k − 1+ 4'k

16k2 + 1− 4'k

×
4k−1∏

'=4k−t

2X1,' − (32k2 + 2'− 1)Y'

X2,'−1 − (16k2 + '− 1)Y'−1




· (row (16k2 − (4k − 1)s − t − 1) of AX) = 0, (4.8)

as is easy to verify. (Since the coefficients of the various rows in (4.8) are rational
functions in the indeterminates X1,t , X2,t , Yt , they are rather easy to work out from
computer data. One does not even need Rate …)

Re (S2): The total degree in the X1,t ’s, X2,t ’s, Yt ’s of the product on the right-hand
side of (4.7) is 16k2 − 1. As we already remarked earlier, the degree of the determinant
is at most 16k2 − 1. Hence, the determinant is equal to the product times, possibly,
a constant.

Re (S3): For the evaluation of the constant, we compare coefficients of

X4k
1,1X

4k−1
1,2 · · ·X2

1,4k−1Y
1
1 Y 2

2 · · ·Y 4k−1
4k−1 .

After some reflection, it turns out that the constant is equal to a determinant of the
same form, that is, of the form (3.8), but with auxiliary functions

f0(j) = (N(k)+ j)(−4)k,

f1(j) = 4(−4)k,

g0(j) = −j,

g1(j) = −4. (4.9)
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What a set-back! It seems that we are in the same situation as at the very beginning.
We started with the determinant of the matrix (3.8) with auxiliary functions (3.9), and
we ended up with the same type of determinant, with auxiliary functions (4.9). There
is little hope though: the functions in (4.9) are somewhat simpler as those in (3.9).
Nevertheless, we have to play the same game again; that is, if we want to apply
the method of identification of factors, then we have to introduce indeterminates.
Skipping the experimental part, we came up with

f0(j) = (Zt + j)(−4)k,

f1(j) = 4(−4)kXt ,

g0(j) = −j,

g1(j) = −4Xt,

where t has the same meaning as before in (4.6). Denoting the new matrix by AZ ,
computer calculations suggested that apparently

det AZ = (−1)k−1216k3+20k2+14k−1k4k(4k + 1)!

×
4k−1∏
a=1

(
X4k+1−a

a

a−1∏
b=0

(Za − 4bk)

)
. (4.10)

The special case that we need is Zt = N(k) and Xt = 1.
So, we apply again the method of identification of factors. Everything runs smoothly

(except that the details of the verification of the factors are somewhat more unpleasant
here). When we come finally to the point that we want to determine the constant, it
turns out that the constant is equal to—no surprise anymore—the determinant of a
matrix of the form (3.8) with auxiliary functions

f0(j) = (−4)k,

f1(j) = 4(−4)k,

g0(j) = 0,

g1(j) = −4.

Now, is this good or bad news? In other words, while painfully working through the
steps of “identification of factors,” will we forever continue producing new determi-
nants of the form (3.8), which we must again handle by the same method? To give
it away: this is indeed very good news. The function g0(j) vanishes identically! It
makes it possible that now Method 0 (= do some row and column manipulations)
works. (See [5] for the details.) We are—finally—done with the proof of (4.7), and,
since the right-hand side does not vanish for X1,t = X2,t = N(k) and Yt = 1, with
the proof of Theorem 8!
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5. More determinant evaluations

This section complements the list of known determinant evaluations given in
Section 3 of [109]. I list here several determinant evaluations which I believe are
interesting or attractive (and, in the ideal case, both), that have appeared since [109], or
that I failed to mention in [109]. I also include several conjectures and open problems,
some of them old, some of them new. As in [109], each evaluation is accompanied
by some remarks providing information on the context in which it arose. Again, the
selection of determinant evaluations presented reflects totally my taste, which must
be blamed in the case of any shortcomings. The order of presentation follows loosely
the order of presentation of determinants in [109].

5.1. More basic determinant evaluations

I begin with two determinant evaluations belonging to the category “standard
determinants” (see Section 2.1 in [109]). They are among those which I missed to
state in [109]. The reminder for inclusion here is the paper [9]. There, Amdeberhan
and Zeilberger propose an automated approach towards determinant evaluations
via the condensation method (see “Method 2” in Section 4). They provide a list
of examples which can be obtained in that way. As they remark at the end of
the paper, all of these are special cases of Lemma 5 in [109], with the excep-
tion of three, namely Eqs. (8)–(10) in [9]. In their turn, two of them, namely (8)
and (9), are special cases of the following evaluation. (For (10), see Lemma 11
below.)

Lemma 9. Let P(Z) be a polynomial in Z of degree n− 1 with leading coefficient
L. Then

det
1�i,j�n

(
P(Xi + Yj )

) = Ln
n∏

i=1

(
n− 1

i

) ∏
1�i<j�n

(Xi −Xj)(Yj − Yi). (5.1)

This lemma is easily proved along the lines of the standard proof of the Vander-
monde determinant evaluation which we recalled in Section 4 (see the proof of (4.3))
or by condensation.

A multiplicative version of Lemma 9 is the following.

Lemma 10. Let P(Z) = pn−1Z
n−1 + pn−2Z

n−2 + · · · + p0. Then

det
1�i,j�n

(P (XiYj )) =
n−1∏
i=0

pi

∏
1�i<j�n

(Xi −Xj)(Yi − Yj ). (5.2)
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On the other hand, identity (10) from [9] can be generalised to the following
Cauchy-type determinant evaluation. As all the identities from [9], it can also be
proved by the condensation method.

Lemma 11. Let a0, a1, . . . , an−1, c0, c1, . . . , cn−1, b, x and y be indeterminates.
Then, for any positive integer n, there holds

det
0�i,j�n−1

(
(x + ai + cj )(y + bi + cj )

(x + ai + bi + cj )

)

= bn−1 (n− 1)!
((

n

2

)
b + (n− 1)x + y +

n−1∑
i=1

ai +
n−1∑
i=0

ci

)

×
∏

0�i<j�n−1(cj − ci)
∏n−1

i=1 (y − x − ai)
∏

1�i<j�n−1((j − i)b − ai + aj )∏n−1
i=1

∏n−1
j=0 (x + ai + bi + cj )

.

(5.3)

Speaking of Cauchy-type determinant evaluations, this brings us to a whole family
of such evaluations which were instrumental in Kuperberg’s recent advance [117]
on the enumeration of (symmetry classes of) alternating sign matrices. The reason
that determinants, and also Pfaffians, play an important role in this context is due
to Propp’s discovery (described for the first time in [59, Sec. 7] and exploited in
[115,117]) that alternating sign matrices are in bijection with configurations in the six
vertex model, and due to determinant and Pfaffian formulae due to Izergin [88] and
Kuperberg [117] for certain multivariable partition functions of the six vertex model
under various boundary conditions. In many cases, this leads to determinants which
are, or are similar to, Cauchy’s evaluation of the double alternant (see [136, vol. III,
p. 311] and (5.5) below) or Schur’s Pfaffian version [166, pp. 226/227] of it (see (5.7)
below).

Let me recall that the Pfaffian Pf(A) of a skew-symmetric (2n)× (2n) matrix A

is defined by

Pf(A) =
∑
π

(−1)c(π)
∏

(ij)∈π
Aij , (5.4)

where the sum is over all perfect matchings π of the complete graph on 2n vertices,
where c(π) is the crossing number of π , and where the product is over all edges
(ij), i < j , in the matching π (see e.g. [179, Sec. 2]). What links Pfaffians so closely
to determinants is (aside from similarity of definitions) the fact that the Pfaffian of
a skew-symmetric matrix is, up to sign, the square root of its determinant. That is,
det(A) = Pf(A)2 for any skew-symmetric (2n)× (2n)matrixA (cf. [179, Prop. 2.2]).
See the corresponding remarks and additional references in [109, Sec. 2.8].

The following three theorems present the relevant evaluations. They are Theorems
15–17 from [117]. All of them are proved using identification of factors (see “Method
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3” in Section 4). The results in Theorem 12 contain whole sets of indeterminates,
whereas the results in Theorems 13 and 14 only have two indeterminates p and q,
respectively three indeterminates p, q and r , in them. Identity (5.8) is originally due to
Laksov, Lascoux and Thorup [119] and Stembridge [179], independently. The reader
must be warned that the statements in [117, Theorems 15–17] are often blurred by
typos.

Theorem 12. Let x1, x2, . . . and y1, y2, . . . be indeterminates. Then, for any positive
integer n, there hold

det
1�i,j�n

(
1

xi + yj

)
=

∏
1�i<j�n(xi − xj )(yi − yj )∏

1�i,j�n(xi + yj )
, (5.5)

det
1�i,j�n

(
1

xi + yj

− 1

1+ xiyj

)

=
∏

1�i<j�n(1− xixj )(1− yiyj )(xj − xi)(yj − yi)∏
1�i,j�n(xi + yj )(1+ xiyj )

n∏
i=1

(1− xi)(1− yi),

(5.6)

Pf
1�i,j�2n

(
xi − xj

xi + xj

)
=

∏
1�i<j�2n

xi − xj

xi + xj

. (5.7)

Pf
1�i,j�2n

(
xi − xj

1− xixj

)
=

∏
1�i<j�2n

xi − xj

1− xixj

. (5.8)

Theorem 13. Let p and q be indeterminates. Then, for any positive integer n, there
hold

det
1�i,j�n

(
qn+j−i − q−(n+j−i)

pn+j−i − p−(n+j−i)

)

=
∏

1�i /=j�n(p
j−i − p−(j−i))

∏
1�i,j�n(qp

j−i − q−1p−(j−i))∏
1�i,j�n(p

n+j−i − p−(n+j−i))
, (5.9)

det
1�i,j�n

(
qj−i + q−(j−i)

pj−i + p−(j−i)

)

= (−1)

(
n

2

)
2n

∏
1�i /=j�n

2|j−i

(pj−i − p−j+i )
∏

1�i,j�n
2�j−i

(qpj−i − q−1p−j+i )∏
1�i,j�n(p

j−i + p−j+i )
,

(5.10)
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det
1�i,i�n

(
qn+j+i − q−(n+j+i)

pn+j+i − p−(n+j+i)
− qn+j−i − q−(n+j−i)

pn+j−i − p−(n+j−i)

)

=
∏

1�i<j�2n(p
j−i − p−(j−i))

∏
1�i,j�2n+1

2|j
(qpj−i − q−1p−(j−i))∏

1�i,j�n(p
n+j−i − p−(n+j−i))(pn+j+i − p−(n+j+i))

,

(5.11)

det1�i,j�n

(
qj+i+q−(j+i)

pj+i+p−(j+i) − qj−i+q−j+i

pj−i+p−(j−i)

)

= (−1)

(
n
2

)
2n

∏
1�i<j�n(p

2(j−i)−p−2(j−i))2 ∏
1�i,j�2n+1

2�i, 2|j
(qpj−i−q−1p−(j−i))∏

1�i,j�n(p
j−i+p−(j−i))(pj+i+p−(j+i))

.

(5.12)

Theorem 14. Let p, q, and r be indeterminates. Then, for any positive integer n,

there hold

Pf
1�i,j�2n

(
(qj−i−q−(j−i))(rj−i−r−(j−i))

(pj−i−p−(j−i))

)
=

∏
1�i<j�n(p

j−i−p−(j−i))2 ∏
1�i,j�n(qp

j−i−q−1p−(j−i))(rpj−i−r−1p−(j−i))∏
1�i,j�n(p

n+j−i−p−(n+j−i))

(5.13)

Pf
1�i,j�2n

(
(pj+i − p−(j+i))(pj−i − p−(j−i))

(
qj+i−q−(j+i)

pj+i−p−(j+i) − qj−i−q−(j−i)

pj−i−p−(j−i)

)
·
(

rj+i−r−(j+i)

pj+i−p−(j+i) − rj−i−r−(j−i)

pj−i−p−(j−i)

))

=
∏

1�i<j�2n(p
j−i−p−(j−i))

∏
1�i,j�2n+1

2|j
(qpj−i−q−1p−(j−i))(rpj−i−r−1p−(j−i))∏

1�i<j�2n(p
j+i−p−(j+i))

.

(5.14)

Subsequent to Kuperberg’s work, Okada [139] related Kuperberg’s determinants
and Pfaffians to characters of classical groups, by coming up with rather complex,
but still beautiful determinant identities. In particular, this allowed him to settle one
more of the conjectured enumeration formulae on symmetry classes of alternating
sign matrices. Generalising even further, Ishikawa et al. [85] have found more such
determinant identities. Putting them into the framework of certain special represen-
tations of the symmetric group, Lascoux [122] has clarified the mechanism which
gives rise to these identities.
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The next six determinant lemmas are corollaries of elliptic determinant evaluations
due to Rosengren and Schlosser [156]. (The latter will be addressed later in Section
5.11.) They partly extend the fundamental determinant lemmas in [109, Sec. 2.2].
For the statements of the lemmas, we need the notion of a norm of a polynomial
a0 + a1z+ · · · + akz

k , which we define to be the reciprocal of the product of its
roots, or, more explicitly, as (−1)kak/a0.

If we specialise p = 0 in Lemma 68, (5.122), then we obtain a determinant identity
which generalises at the same time the Vandermonde determinant evaluation, Lemma
9 and Lemma 10.

Lemma 15. Let P1, P2, . . . , Pn be polynomials of degree n and norm t, given by

Pj (x) = (−1)ntaj,0x
n +

n−1∑
k=0

aj,kx
k.

Then

det
1�i,j�n

(
Pj (xi)

) = (1− tx1 . . . xn)


 ∏

1�i<j�n

(xj − xi)


 det

1�i�n
0�j�n−1

(ai,j ).

(5.15)

Further determinant identities which generalise other Weyl denominator formulae
(cf. [109, Lemma 2]) could be obtained from the special case p = 0 of the other
determinant evaluations in Lemma 68.

A generalisation of Lemma 6 from [109] in the same spirit can be obtained by
setting p = 0 in Theorem 75. It is given as Corollary 5.1 in [156].

Lemma 16. Let x1, . . . , xn, a1, . . . , an, and t be indeterminates. For each j = 1,
. . . , n, let Pj be a polynomial of degree j and norm ta1 . . . aj . Then there holds

det
1�i,j�n


Pj (xi)

n∏
k=j+1

(1− akxi)




= 1− ta1 . . . anx1 . . . xn

1− t

n∏
i=1

Pi(1/ai)
∏

1�i<j�n

aj (xj − xi). (5.16)

We continue with a consequence of Theorem 76 (see Corollary 5.3 in [156]). The
special case Pj−1(x) = 1, j = 1, . . . , n, is Lemma A.1 of [162], which was needed
in order to obtain an An matrix inversion that played a crucial role in the derivation
of multiple basic hypergeometric series identities. A slight generalisation was given
in [164, Lemma A.1].
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Lemma 17. Let x1, . . . , xn and b be indeterminates. For each j = 1, . . . , n, let
Pj−1(x) be a polynomial in x of degree at most j − 1 with constant term 1, and
let Q(x) = (1− y1x) . . . (1− yn+1x). Then there holds

Q(b) det
1�i,j�n

(
x
n+1−j
i Pj−1(xi)− bn+1−jPj−1(b)

Q(xi)

Q(b)

)

= (1− bx1 · · · xny1 . . . yn+1)

n∏
i=1

(xi − b)
∏

1�i<j�n

(xi − xj ). (5.17)

Pairing the (i, j)-entry in the determinant in (5.16) with itself, but with xi replaced
by 1/xi , one can construct another determinant which evaluates in closed form. The
result given below is Corollary 5.5 in [156]. It is the special case p = 0 of Theorem
77.

Lemma 18. Let x1, . . . , xn, a1, . . . , an, and c1, . . . , cn+2 be indeterminates. For
each j = 1, . . . , n, let Pj be a polynomial of degree j with norm (c1 . . . cn+2aj+1 . . .

an)
−1. Then there holds

det
1�i,j�n


x−n−1

i

n+2∏
k=1

(1− ckxi) Pj (xi)

n∏
k=j+1

(1− akxi)

−xn+1
i

n+2∏
k=1

(1− ckx
−1
i ) Pj (x

−1
i )

n∏
k=j+1

(1− akx
−1
i )




= a1 . . . an

x1 . . . xn (1− c1 . . . cn+2a1 . . . an)

n∏
i=1

Pi(1/ai)
∏

1�i<j�n+2

(1− cicj )

×
n∏

i=1

(1− x2
i )

∏
1�i<j�n

aj (xi − xj )(1− 1/xixj ). (5.18)

It is worthwhile to state the limit case cn+2 →∞ of this lemma separately, in
which case the norm constraint on the polynomials Pj drops out, but, in return, the
degree of Pj gets lowered by one (see [156, Cor. 5.8]).

Lemma 19. Let x1, . . . , xn, a2, . . . , an, and c1, . . . , cn+1 be indeterminates. For
each j = 1, . . . , n, let Pj−1 be a polynomial of degree at most j − 1. Then there
holds
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det
1�i,j�n


x−n

i

n+1∏
k=1

(1− ckxi) Pj−1(xi)

n∏
k=j+1

(1− akxi)

−xn
i

n+1∏
k=1

(1− ckx
−1
i ) Pj−1(x

−1
i )

n∏
k=j+1

(1− akx
−1
i )




=
n∏

i=1

Pi−1(1/ai)
∏

1�i<j�n+1

(1− cicj )

×
n∏

i=1

x−1
i (1− x2

i )
∏

1�i<j�n

aj (xi − xj )(1− 1/xixj ). (5.19)

Dividing both sides of (5.19) by
∏n

i=2 ai−1
i and then letting ai tend to ∞, i =

2, 3, . . . , n, we arrive at the determinant evaluation below (see [156, Cor. 5.11]).
Its special case Pj−1(x) = 1, j = 1, . . . , n, is Lemma A.11 of [162], needed there
in order to obtain a Cn matrix inversion, which was later applied in [163] to derive
multiple q-Abel and q-Rothe summations.

Lemma 20. Let x1, . . . , xn, and c1, . . . , cn+1 be indeterminates. For each j = 1,
. . . , n, let Pj−1 be a polynomial of degree at most j − 1. Then there holds

det
1�i,j�n

(
x
−j
i

n+1∏
k=1

(1− ckxi) Pj−1(xi)− x
j
i

n+1∏
k=1

(1− ckx
−1
i ) Pj−1(x

−1
i )

)

=
n∏

i=1

Pi−1(0)
∏

1�i<j�n+1

(1− cicj )

n∏
i=1

x−1
i (1− x2

i )
∏

1�i<j�n

(xj − xi)(1− 1/xixj ).

(5.20)

It is an attractive feature of this determinant identity that it contains, at the same
time, the Weyl denominator formulae for the classical root systems Bn, Cn and Dn

as special cases (cf. [109, Lemma 2]). This is seen by setting Pj (x) = 1 for all
j , c1 = c2 = . . . = cn−1 = 0, and then cn = 0, cn+1 = −1 for the type Bn case,
cn = cn+1 = 0 for the type Cn case, and cn = 1, cn+1 = −1 for the type Dn case,
respectively.

A determinant which is of completely different type, but which also belongs to
the category of basic determinant evaluations, is the determinant of a matrix where
only two (circular) diagonals are filled with non-zero elements. It was applied with
advantage in [80] to evaluate Scott-type permanents.
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Lemma 21. Letnand r be positive integers, r � n,andx1, x2, . . . , xn, y1, y2, . . . , yn

be indeterminates. Then, with d = gcd(r, n), we have

det




x1 0 · · · 0 yn−r+1 0

0 x2 0 0 yn−r+2 0
. . .

. . . 0

0 0 yn

y1 0

0 y2 0

0
. . . 0

. . . 0

0 yn−r 0 0 xn




=
d∏

i=1


n/d∏

j=1

xi+(j−1)d − (−1)n/d
n/d∏
j=1

yi+(j−1)d


 . (5.21)

(I.e., in the matrix there are only nonzero entries along two diagonals, one of which
is a broken diagonal.)

A further basic determinant evaluation which I missed to state in [109] is the
evaluation of the determinant of a skew circulant matrix attributed to Scott [167] in
[136, p. 356]. It was in fact recently used by Fulmek in [70] to find a closed form
formula for the number of non-intersecting lattice paths with equally spaced starting
and end points living on a cylinder, improving on earlier results by Forrester [67] on
the vicious walker model in statistical mechanics, see [70, Lemma 9].

Theorem 22. Let n by a fixed positive integer, and let a0, a1, . . . , an−1 be indeter-
minates. Then

det




a0 a1 a2 · · · an−2 an−1

−an−1 a0 a1 · · · an−3 an−2

−an−2 −an−1 a0 · · · an−4 an−3

· · · · · · · · · · · · · · · · · ·
−a1 −a2 −a3 · · · −an−1 a0




=
n−1∏
i=0

(
a0 + ω2i+1a1 + ω2(2i+1)a2 + · · · + ω(n−1)(2i+1)an−1

)
, (5.22)

where ω is a primitive (2n)th root of unity.
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5.2. More confluent determinants

Here I continue the discussion from the beginning of Section 3 in [109, Theorems
20–24]. There I presented determinant evaluations of matrices which, essentially,
consist of several vertical strips, each of which is formed by taking a certain column
vector and gluing it together with its derivative, its second derivative, etc., respec-
tively by a similar construction where the derivative is replaced by a difference or
q-difference operator.

Since most of this subsection will be under the influence of the so-called “q-
disease”,20 we shall need the standard q-notations (a; q)k , denoting the q-shifted
factorial and being given by (a; q)0 := 1 and

(a; q)k := (1− a)(1− aq) · · · (1− aqk−1)

if k is a positive integer, as well as
[
α

k

]
q
, denoting the q-binomial coefficient and

being defined by
[
α

k

]
q
= 0 if k < 0,

[
α

0

]
q
= 1, and

[
α

k

]
q

:= (1− qα)(1− qα−1) · · · (1− qα−k+1)

(1− qk)(1− qk−1) · · · (1− q)

if k is a positive integer. Clearly we have limq→1

[
α

k

]
q
=

(
α

k

)
.

20 The distinctive symptom of this disease is to invariably raise the question “Is there also a q-analogue?”
My epidemiological research on MathSciNet revealed that, while basically non-existent during the 1970s,
this disease slowly spread during the 1980s, and then had a sharp increase around 1990, when it jumped
from about 20 papers per year published with the word “q-analog∗” in it to over 80 in 1995, and since
then it has been roughly stable at 60–70 papers per year. In its simplest form, somebody who is infected
by this disease takes a combinatorial identity, and replaces every occurrence of a positive integer n by its
“q-analogue” 1+ q + q2 + · · · + qn−1, inserts some powers of q at the appropriate places, and hopes that
the result of these manipulations would be again an identity, thus constituting a “q-analogue” of the original
equation. I refer the reader to the bible [72] for a rich source of q-identities, and for the right way to look at
(most) combinatorial q-identities. In another form, given a certain set of objects of which one knows the
exact number, one defines a statistics stat on these objects and now tries to evaluate

∑
O an object q

stat(O).

For a very instructive text following these lines see [63], with emphasis on the objects being permutations.
There is also an important third form of the disease in which one works in the ring of polynomials in
variables x, y, . . . with coefficients being rational functions in q, and in which some pairs of variables
satisfy commutation relations of the type xy = qxy. The study of such polynomial rings and algebras is
often motivated by quantum groups and quantum algebras. The reader may want to consult [104] to learn
more about this direction. While my description did not make this clear, the three described forms of the
q-disease are indeed strongly inter-related.
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The first result that I present is a q-extension of the evaluation of the conflu-
ent alternant due to Schendel [161] (cf. [109, paragraph before Theorem 20]). In
fact, Theorem 23 of [109] already provided a q-extension of (a generalisation of)
Schendel’s formula. However, in [93, Theorem 1], Johnson found a different q-
extension. The theorem below is a slight generalisation of it. (The theorem below
reduces to Johnson’s theorem if one puts C = 0. For q = 1, the theorem below and
[109, Theorem 23] become equivalent. To go from one determinant to the other in
this special case, one would have to take a certain factor out of each column.)

Theorem 23. Let n be a non-negative integer, and let Am(X) denote the n×m matrix([
C + i

i − j

]
q

(X; q)i−j

)
0�i�n−1, 0�j�m−1

.

Given a composition of n, n = m1 + · · · +m', there holds

det
n×n

(Am1 (X1) Am2 (X2) . . . Am'
(X'))

= q
∑

1�i<j<k�' mimjmk
∏

1�i<j�'

mi∏
g=1

mj∏
h=1

(qh−1Xi − qg−1Xj )(1− qC+g+h−1+∑i−1
r=1 mr )

(1− qg+h−1+∑i−1
r=1 mr )

.

(5.23)

In [93, Theorem 2], Johnson provides as well a confluent q-extension of the
evaluation of Cauchy’s double alternant (5.5). Already the case q = 1 seems to not
have appeared in the literature earlier. Here, I was not able to introduce an additional
parameter (as, for example, the C in Theorem 23).

Theorem 24. Letnbe a non-negative integer,and letAm(X)denote then×mmatrix(
1

(Yi −X)(Yi − qX)(Yi − q2X) · · · (Yi − qj−1X)

)
1�i�n, 1�j�m

.

Given a composition of n, n = m1 + · · · +m', there holds

det
n×n

(Am1(X1) Am2(X2) . . . Am'
(X'))

=
(∏

1�i<j�n(Yi − Yj )
) (∏

1�i<j�'

∏mi

g=1

∏mj

h=1(q
h−1Xj − qg−1Xi)

)
∏n

i=1
∏'

j=1(Yi −Xj)(Yi − qXj )(Yi − q2Xj) · · · (Yi − qmj−1Xj)
.

(5.24)
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A surprising mixture between the confluent alternant and a confluent double alter-
nant appears in [39, Theorem A.1]. Ciucu used it there in order to prove a Coulomb
gas law and a superposition principle for the joint correlation of certain collections
of holes for the rhombus tiling model on the triangular lattice. (His main result is in
fact based on an even more general, and more complex, determinant evaluation, see
[39, Theorem 8.1].)

Theorem 25. Let s1, s2, . . . , sm � 1 and t1, t2, . . . , tn � 1 be integers. Write S =∑m
i=1 si, T =∑n

j=1 tj , and assume S � T . Let x1, x2, . . . , xm and y1, y2, . . . , yn

be indeterminates. Define N to be the S × S matrix

N = [
A B

]
(5.25)

whose blocks are given by

A=




(0
0)

y1−x1

(1
0)

(y1−x1)
2 · · · (

t1−1
0 )

(y1−x1)
t1

(0
0)

yn−x1

(1
0)

(yn−x1)
2 · · · (

tn−1
0 )

(yn−x1)
tn

(1
1)

(y1−x1)
2

(2
1)

(y1−x1)
3 · · · (

t1
1 )

(y1−x1)
t1+1

(1
1)

(yn−x1)
2

(2
1)

(yn−x1)
3 · · · (

tn
1 )

(yn−x1)
tn+1

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.
.
.
.

(
s1−1
s1−1)

(y1−x1)
s1

(
s1

s1−1)

(y1−x1)
s1+1 · · · (

s1+t1−2
s1−1 )

(y1−x1)
s1+t1−1

(
s1−1
s1−1)

(yn−x1)
s1

(
s1

s1−1)

(yn−x1)
s1+1 · · · (

s1+tn−2
s1−1 )

(yn−x1)
s1+tn−1

.

.

.
.
.
.

(0
0)

y1−xm

(1
0)

(y1−xm)2 · · · (
t1−1

0 )

(y1−xm)t1

(0
0)

yn−xm

(1
0)

(yn−xm)2 · · · (
tn−1

0 )
(yn−xm)tn

(1
1)

(y1−xm)2
(2
1)

(y1−xm)3 · · · (
t1
1 )

(y1−xm)t1+1
(1
1)

(yn−xm)2
(2
1)

(yn−xm)3 · · · (
tn
1 )

(yn−xm)tn+1

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.
.
.
.

(
sm−1
sm−1)

(y1−xm)sm

(
sm

sm−1)

(y1−xm)sm+1 · · ·
(
sm+t1−2

sm−1 )

(y1−xm)sm+t1−1

(
sm−1
sm−1)

(yn−xm)sm

(
sm

sm−1)

(yn−xm)sm+1 · · ·
(
sm+tn−2

sm−1 )

(yn−xm)sm+tn−1




(5.26)

and



C. Krattenthaler / Linear Algebra and its Applications 411 (2005) 68–166 111

B =




(
0
0

)
x0

1

(
1
0

)
x1 · · ·

(
S − T − 1

0

)
xS−T−1

1(
0
1

)
x−1

1

(
1
1

)
x0

1 · · ·
(
S − T − 1

1

)
xS−T−2

1

...
...

...(
0

s1 − 1

)
x

1−s1
1

(
1

s1 − 1

)
x

2−s1
1 · · ·

(
S − T − 1

s1 − 1

)
x
S−T−s1
1

...(
0
0

)
x0
m

(
1
0

)
xm · · ·

(
S − T − 1

0

)
xS−T−1
m(

0
1

)
x−1
m

(
1
1

)
x0
m · · ·

(
S − T − 1

1

)
xS−T−2
m

...
...

...(
0

sm − 1

)
x

1−sm
m

(
1

sm − 1

)
x

2−sm
m · · ·

(
S − T − 1
sm − 1

)
x
S−T−sm
m




.

(5.27)

Then we have

det N =
∏

1�i<j�m(xj − xi)
si sj

∏
1�i<j�n(yi − yj )

ti tj∏m
i=1

∏n
j=1(yj − xi)

si tj
. (5.28)

This theorem generalises at the same time numerous previously obtained deter-
minant evaluations. It reduces of course to Cauchy’s double alternant when m = n

and s1 = s2 = . . . = sm = t1 = t2 = . . . = tn = 1. (In that case, the submatrix B is
empty.) It reduces to the confluent alternant for t1 = t2 = . . . = tn = 0 (i.e., in the
case where the submatrix A is empty). The case m = rn, s1 = s2 = . . . = sm = 1,
t1 = t2 = . . . = tn = r is stated as an exercise in [137, Ex. 42, p. 360]. Finally, a
mixture of the double alternant and the Vandermonde determinant appeared already
in [80, Theorem (Cauchy+)] where it was used to evaluate Scott-type permanents. This
mixture turns out to be the special case s1 = s2 = . . . = sm = t1 = t2 = . . . = tn = 1
(but not necessarily m = n) of Theorem 25.

If S = T (i.e., in the case where the submatrix B is empty), Theorem 25 provides
the evaluation of a confluent double alternant which is different from the one in
Theorem 24 for C = 0 and q = 1. While, for the general form of Theorem 25, I was
not able to find a q-analogue, I was able to find one for this special case, that is, for
the case where B is empty. In view of the fact that there are also q-analogues for the
other extreme case where the submatrix A is empty (namely Theorem 23 and [109,
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Theorem 23]), I still suspect that a q-analogue of the general form of Theorem 25
should exist.

Theorem 26. Let s1, s2, . . . , sm � 1 and t1, t2, . . . , tn � 1 be integers such that s1 +
s2 + · · · + sm = t1 + t2 + · · · + tn. Let x1, x2, . . . , xm and y1, y2, . . . , yn be indeter-
minates. Let A be the matrix

A=




[
0
0

]
q

〈x1,y1〉1

[
1
0

]
q

〈x1,y1〉2
· · ·

[
t1 − 1

0

]
q

〈x1,y1〉t1

[
0
0

]
q

〈x1,yn〉1

[
1
0

]
q

〈x1,yn〉2
· · ·

[
tn − 1

0

]
q

〈x1,yn〉tn[
1
1

]
q

〈x1,y1〉2

[
2
1

]
q

〈x1,y1〉3
· · ·

[
t1
1

]
q

〈x1,y1〉t1+1

[
1
1

]
q

〈x1,yn〉2

[
2
1

]
q

〈x1,yn〉3
· · ·

[
tn

1

]
q

〈x1,yn〉tn+1

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.
.
.
.

[
s1 − 1
s1 − 1

]
q

〈x1,y1〉s1

[
s1

s1 − 1

]
q

〈x1,y1〉s1+1 · · ·

[
s1 + t1 − 2

s1 − 1

]
q

〈x1,y1〉s1+t1−1

[
s1 − 1
s1 − 1

]
q

〈x1,yn〉s1

[
s1

s1 − 1

]
q

〈x1,yn〉s1+1 · · ·

[
s1 + tn − 2

s1 − 1

]
q

〈x1,yn〉s1+tn−1

.

.

.
.
.
.

[
0
0

]
q

〈xm,y1〉1

[
1
0

]
q

〈xm,y1〉2
· · ·

[
t1 − 1

0

]
q

〈xm,y1〉t1

[
0
0

]
q

〈xm,yn〉1

[
1
0

]
q

〈xm,yn〉2 · · ·

[
tn − 1

0

]
q

〈xm,yn〉tn
[

1
1

]
q

〈xm,y1〉2

[
2
1

]
q

〈xm,y1〉3
· · ·

[
t1
1

]
q

〈xm,y1〉t1+1

[
1
1

]
q

〈xm,yn〉2

[
2
1

]
q

〈xm,yn〉3 · · ·

[
tn

1

]
q

〈xm,yn〉tn+1

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.
.
.
.

[
sm − 1
sm − 1

]
q

〈xm,y1〉sm

[
sm

sm − 1

]
q

〈xm,y1〉sm+1 · · ·

[
sm + t1 − 2

sm − 1

]
q

〈xm,y1〉sm+t1−1

[
sm − 1
sm − 1

]
q

〈xm,yn〉sm

[
sm

sm − 1

]
q

〈xm,yn〉sm+1 · · ·

[
sm + tn − 2

sm − 1

]
q

〈xm,yn〉sm+tn−1




,

(5.29)

where 〈x, y〉e := (y − x)(qy − x)(q2y − x) · · · (qe−1y − x). Then we have

det A= q
1
6

∑m
i=1(si−1)si (2si−1)


 ∏

1�i<j�m

si∏
g=1

sj∏
h=1

(qg−1xj − qh−1xi)




×

 ∏

1�i<j�n

ti∏
g=1

tj∏
h=1

(qg−1yi − qh−1yj )



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×

 m∏

j=1

n∏
i=1

ti∏
g=1

sj∏
h=1

1

(qg+h−2yi − xj )


 . (5.30)

5.3. More determinants containing derivatives and compositions of series

Inspired by formulae of Mina [135], Kedlaya [99] and Strehl and Wilf [180] for
determinants of matrices the entries of which being given by (coefficients of) multiple
derivatives and compositions of formal power series (see also [109, Lemma 16]),
Chu embedded all these in a larger context in the remarkable systematic study [33].
He shows that, at the heart of these formulae, there is the Faà di Bruno formula21

for multiple derivatives of a composition of two formal power series. Using it, he
derives the following determinant reduction formulae [33, Theorems 4.1 and 4.2] for
determinants of matrices containing multiple derivatives of compositions of formal
power series.

Theorem 27. Letf (x)andφk(x)andwk(x), k = 0, 1, . . . , n,be formal power series
in x with coefficients in a commutative ring. Then

det
0�i,j,�n

(
dj

dxj

(
wj(x)φi(f (x))

))= (f ′(x))

(
n+ 1

2

) (
n∏

k=0

wk(x)

)

× det
0�i,j,�n

(
φ

(j)
i (f (x))

)
, (5.31)

where φ(j)(x) is short for dj

dxj φ(x). If, in addition, wk(x) is a polynomial of degree
at most k, k = 1, 2, . . . , n, then

det
1�i,j,�n

(
dj

dxj

(
wj(x)φi(f (x))

))= (f ′(x))

(
n+ 1

2

) (
n∏

k=1

wk(x)

)

× det
1�i,j,�n

(
φ

(j)
i (f (x))

)
. (5.32)

21 As one can read in [92], “Faà di Bruno was neither the first to state the formula that bears his name nor
the first to prove it.” In Section 4 of that article, the author tries to trace back the roots of the formula. It is
apparently impossible to find the author of the formula with certainty. In his book [15, p. 312], Arbogast
describes a recursive rule how, from the top term, to generate all other terms in the formula. However, the
explicit formula is never written down. (I am not able to verify the conclusions in [48]. It seems to me
that the author mixes the knowledge that we have today with what is really written in [15].) The formula
appears explicitly in Lacroix’s book [118, p. 629], but Lacroix’s precise sources remain unknown. I refer
the reader to [92, Sec. 4] and [48] for more detailed remarks on the history of the formula.
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Specialising the series φi(x) so that the determinants on the right-hand sides of
(5.31) or (5.32) can be evaluated, he obtains numerous nice corollaries. Possible
choices are φi(x) = exp(yix), φi(x) = log(1+ yix), φi(x) = xyi , or φi(x) = (ai +
bix)/(ci + dix). See [33, Cor. 4.3 and 4.4] for the corresponding results.

Further reduction formulae and determinant evaluations from [33] address de-
terminants of matrices formed out of coefficients of iterated compositions of formal
power series. In order to have a convenient notation, let us write f 〈n〉(x) for the n-fold
composition of f with itself,

f 〈n〉(x) = f (f (· · · (f (x)))),

with n occurrences of f on the right-hand side. Chu shows [33, Sec. 1.4] that it is
possible to extend this n-fold composition to values of n other than non-negative
integers. This given, Theorems 4.6 and 4.7 from [33] read as follows.

Theorem 28. Let f (x) = x +∑∞
m=2 fmxm, g(x) =∑∞

m=1 gmxm and wk(x), k =
1, 2, . . . , n, be formal power series with coefficients in some commutative ring.
Then

det
1�i,j�n

(
[xj ]wj(x)f

〈yi 〉(g(x))
)
= f

(
n

2

)
2 g

(
n+ 1

2

)
1

(
n∏

k=1

wk(0)

)

×

 ∏

1�i<j�n

(yj − yi)


 , (5.33)

where [xj ]h(x) denotes the coefficient of xj in the seriesh(x). If, in addition,wn(0) =
0, then

det
1�i,j�n

(
[xj+1]wj(x)f

〈yi 〉(g(x))
)
= f

(
n

2

)
2 g

(
n+ 1

2

)
1


 ∏

1�i<j�n

(yj − yi)




× det
1�i,j�n

([x1+j−i]wj(x)). (5.34)

Furthermore, we have

det
1�i,j�n

(
[xj+1]f 〈yi 〉(x)

)
= f

(
n+ 1

2

)
2

(
n∏

k=1

yk

)
 ∏

1�i<j�n

(yj − yi)


 .

(5.35)
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5.4. More on Hankel determinant evaluations

Section 2.7 of [109] was devoted to Hankel determinants. There, I tried to convince
the reader that, whenever you think that a certain Hankel determinant evaluates nicely,
then the explanation will be (sometimes more sometimes less) hidden in the theory
of continued fractions and orthogonal polynomials. In retrospect, it seems that the
success of this try was mixed. Since readers are always right, this has to be blamed
entirely on myself, and, indeed, the purpose of the present subsection is to rectify
some shortcomings from then.

Roughly speaking, I explained in [109] that, given a Hankel determinant

det
0�i,j�n−1

(µi+j ), (5.36)

to find its evaluation one should expand the generating function of the sequence of
coefficients (µk)k�0 in terms of a continued fraction, respectively find the sequence
of orthogonal polynomials (pn(x))n�0 with moments µk , k = 0, 1, . . ., and then the
value of the Hankel determinant (5.36) can be read off the coefficients of the continued
fraction, respectively from the recursion coefficients of the orthogonal polynomials.
What I missed to state is that the knowledge of the orthogonal polynomials makes it
also possible to find the value of the Hankel determinants which start with µ1 and µ2,
respectively (instead of µ0). In the theorem below I summarise the results that were
already discussed in [109] (for which classical references are [186, Theorem 51.1]
or [185, Cor. 6, (19), on p. IV-17; Proposition 1, (7), on p. V-5]), and I add the two
missing ones.

Theorem 29. Let (µk)k�0 be a sequence with generating function
∑∞

k=0 µkx
k written

in the form
∞∑
k=0

µkx
k = µ0

1+ a0x − b1x
2

1+a1x− b2x2

1+a2x−···

. (5.37)

Then

det
0�i,j�n−1

(µi+j ) = µn
0b

n−1
1 bn−2

2 · · · b2
n−2bn−1. (5.38)

Let (pn(x))n�0 be a sequence of monic polynomials, the polynomial pn(x) having
degree n, which is orthogonal with respect to some functional L, that is, L(pm(x)

pn(x)) = δm,ncn, where the cn’s are some non-zero constants and δm,n is the
Kronecker delta. Let

pn+1(x) = (an + x)pn(x)− bnpn−1(x) (5.39)

be the corresponding three-term recurrence which is guaranteed by Favard’s theorem.
Then the generating function

∑∞
k=0 µkx

k for the momentsµk = L(xk) satisfies (5.37)
with the ai’s and bi’s being the coefficients in the three-term recurrence (5.39). In
particular, the Hankel determinant evaluation (5.38) holds, with the bi’s from the
three-term recurrence (5.39).
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If (qn)n�0 is the sequence recursively defined by q0 = 1, q1 = −a0, and

qn+1 = −anqn − bnqn−1,

then in the situation above we also have

det
0�i,j�n−1

(µi+j+1) = µn
0b

n−1
1 bn−2

2 · · · b2
n−2bn−1qn (5.40)

and

det
0�i,j�n−1

(µi+j+2) = µn
0b

n−1
1 bn−2

2 · · · b2
n−2bn−1

n∑
k=0

q2
k bk+1 · · · bn−1bn.

(5.41)

I did not find a reference for (5.40) and (5.41). These two identities follow how-
ever easily from Viennot’s combinatorial model [185] for orthogonal polynomials
and Hankel determinants of moments. More precisely, in this theory the moments
µk are certain generating functions for Motzkin paths, and, due to Theorem 6, the
Hankel determinants det0�i,j�n−1(µi+j+m) are generating functions for families
(P1, P2, . . . , Pn) of non-intersecting Motzkin paths, Pi running from (−i, 0) to (j +
m, 0). In the case m = 0, it is explained in [185, Ch. IV] how to find the corresponding
Hankel determinant evaluation (5.38) using this combinatorial model. The idea is
that in that case there is a unique family of non-intersecting Motzkin paths, and its
weight gives the right-hand side of (5.38). If m = 1 or m = 2 one can argue similarly.
The paths are uniquely determined with the exception of their portions in the strip
0 � x � m. The various possibilities that one has there then yield the right-hand sides
of (5.40) and (5.41).

Since there are so many explicit families of orthogonal polynomials, and, hence, so
many ways to apply the above theorem, I listed only a few standard Hankel determinant
evaluations explicitly in [109]. I did append a long list of references and sketched in
which ways these give rise to more Hankel determinant evaluations. Apparently, these
remarks were at times too cryptic, in particular concerning the theme “orthogonal
polynomials as moments.” This is treated systematically in the two papers [86,87] by
Ismail and Stanton. There it is shown that certain classical polynomials (rn(x))n�0,
such as, for example, the Laguerre polynomials, the Meixner polynomials, or the
Al-Salam–Chihara polynomials (but there are others as well, see [86,87]), are
moments of other families of classical orthogonal polynomials. Thus, application
of Theorem 29 with µn = rn(x) immediately tells that the evaluations of the corre-
sponding Hankel determinants

det
0�i,j�n−1

(ri+j (x)) (5.42)

(and also the higher ones in (5.40) and (5.41)) are known. In particular, the explicit
forms can be extracted from the coefficients of the three-term recursions for these other
families of orthogonal polynomials. Thus, whenever you encounter a determinant of
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the form (5.42), you must check whether (rn(x))n�0 is a family of orthogonal polyno-
mials (which, as I explained in [109], one does by consulting the compendium [102]
of hypergeometric orthogonal polynomials compiled by Koekoek and Swarttouw),
and if the answer is “yes”, you will find the solution of your determinant evaluation
through the results in [86,87] by applying Theorem 29.

While Theorem 29 describes in detail the connexion between Hankel determinants
and the continued fractions of the type (5.37), which are often called J -fractions
(which is short for Jacobi continued fractions), I missed to tell in [109] that there is
also a close relation between Hankel determinants and so-called S-fractions (which
is short for Stieltjes continued fractions). I try to remedy this by the theorem below
(cf. for example [94, Theorem 7.2], where S-fractions are called regular C-fractions).
In principle, since S-fractions are special cases of J -fractions (5.37) in which the
coefficients ai are all zero, the corresponding result for the Hankel determinants is in
fact implied by Theorem 29. Nevertheless, it is useful to state it separately. I am not
able to give a reference for (5.46), but, again, it is not too difficult to derive it from
Viennot’s combinatorial model [185] for orthogonal polynomials and moments that
was mentioned above.

Theorem 30. Let (µk)k�0 be a sequence with generating function
∑∞

k=0 µkx
k written

in the form
∞∑
k=0

µkx
k = µ0

1+ a1x

1+ a2x

1+···

. (5.43)

Then

det
0�i,j�n−1

(µi+j ) = µn
0(a1a2)

n−1(a3a4)
n−2 · · · (a2n−5a2n−4)

2(a2n−3a2n−2),

(5.44)

det
0�i,j�n−1

(µi+j+1) = (−1)nµn
0a

n
1 (a2a3)

n−1(a4a5)
n−2

· · · (a2n−4a2n−3)
2(a2n−2a2n−1), (5.45)

and

det
0�i,j�n−1

(µi+j+2)= µn
0a

n
1 (a2a3)

n−1(a4a5)
n−2 · · · (a2n−4a2n−3)

2

×(a2n−2a2n−1)
∑

0�i1−1<i2−2<···<in−n�n

ai1ai2 · · · ain .

(5.46)

Using this theorem, Tamm [181, Theorem 3.1] observed that from Gauβ’ con-
tinued fraction for the ratio of two contiguous 2F1-series one can deduce several
interesting binomial Hankel determinant evaluations, some of them had already been
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found earlier by Eğecioğlu, Redmond and Ryavec [53, Theorem 4] while working on
polynomial Riemann hypotheses. Gessel and Xin [75] undertook a systematic analysis
of this approach, and they arrived at a set of 18 Hankel determinant evaluations,
which I list as (5.48)–(5.65) in the theorem below. They are preceded by the Hankel
determinant evaluation (5.47), which appears only in [53, Theorem 4].

Theorem 31. For any positive integer n, there hold

det
0�i,j�n−1

((
3i + 3j + 2

i + j

))
=

n−1∏
i=0

(
4
3

)
i

(
5
6

)
i

(
5
3

)
i

( 7
6

)
i(

3
2

)
2i

(
5
2

)
2i

(
27

4

)2i

, (5.47)

det
0�i,j�n−1

(
1

3i + 3j + 1

(
3i + 3j + 1

i + j

))
=

n−1∏
i=0

(
2
3

)
i

(
1
6

)
i

(
4
3

)
i

(
5
6

)
i(

1
2

)
2i

(
3
2

)
2i

(
27

4

)2i
,

(5.48)

det
0�i,j�n−1

(
1

3i + 3j + 4

(
3i + 3j + 4
i + j + 1

))
=

n−1∏
i=0

(
4
3

)
i

(
5
6

)
i

(
5
3

)
i

(
7
6

)
i(

3
2

)
2i

(
5
2

)
2i

(
27

4

)2i
,

(5.49)

det
0�i,j�n−1

(
1

3i + 3j + 2

(
3i + 3j + 2
i + j + 1

))
=

n−1∏
i=0

(
4
3

)
i

(
5
6

)
i

(
5
3

)
i

(
7
6

)
i(

3
2

)
2i

(
5
2

)
2i

(
27

4

)2i
,

(5.50)

det
0�i,j�n−1

(
1

3i + 3j + 5

(
3i + 3j + 5
i + j + 2

))
=

n∏
i=0

(
2
3

)
i

(
1
6

)
i

(
4
3

)
i

(
5
6

)
i(

1
2

)
2i

(
3
2

)
2i

(
27

4

)2i
,

(5.51)

det
0�i,j�n−1

(
2

3i + 3j + 1

(
3i + 3j + 1
i + j + 1

))
=

n∏
i=0

(
2
3

)
i

(
1
6

)
i

(
4
3

)
i

(
5
6

)
i(

1
2

)
2i

(
3
2

)
2i

(
27

4

)2i
,

(5.52)
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det
0�i,j�n−1

(
2

3i + 3j + 4

(
3i + 3j + 4

i + j + 2

))
=

n∏
i=0

(
4
3

)
i

(
5
6

)
i

(
5
3

)
i

(
7
6

)
i(

3
2

)
2i

(
5
2

)
2i

(
27

4

)2i
,

(5.53)

det
0�i,j�n−1

(
2

(3i + 3j + 1)(3i + 3j + 2)

(
3i + 3j + 2

i + j + 1

))

=
n−1∏
i=0

2

(
5
3

)
i

(
1
6

)
i

( 7
3

)
i

(
5
6

)
i(

3
2

)
2i

(
5
2

)
2i

(
27

4

)2i

, (5.54)

det
0�i,j�n−1

(
2

(3i + 3j + 4)(3i + 3j + 5)

(
3i + 3j + 5

i + j + 2

))

= (−1)n
n∏

i=1

(
5
3

)
i

(
1
6

)
i

(
4
3

)
i

(
− 1

6

)
i(

1
2

)
2i

(
3
2

)
2i

(
27

4

)2i

, (5.55)

det
0�i,j�n−1

(
(9i + 9j + 5)

(3i + 3j + 1)(3i + 3j + 2)

(
3i + 3j + 2

i + j + 1

))

=
n−1∏
i=0

5

(
2
3

)
i

( 7
6

)
i

(
4
3

)
i

(
11
6

)
i(

3
2

)
2i

(
5
2

)
2i

(
27

4

)2i

, (5.56)

det
0�i,j�n−1

(
(9i + 9j + 14)

(3i + 3j + 4)(3i + 3j + 5)

(
3i + 3j + 5

i + j + 2

))

=
n∏

i=1

2

(
2
3

)
i

( 7
6

)
i

(
1
3

)
i

(
5
6

)
i(

1
2

)
2i

(
3
2

)
2i

(
27

4

)2i

. (5.57)

Let a0 = −2 and am = 1
3m+1

(
3m+ 1

m

)
for m � 1. Then

det
0�i,j�n−1

(ai+j ) =
n−1∏
i=0

(−2)

(
1
3

)
i

(
− 1

6

)
i

(
5
3

)
i

( 7
6

)
i(

1
2

)
2i

(
3
2

)
2i

(
27

4

)2i

. (5.58)
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Let b0 = 10 and bm = 2
3m+2

(
3m+ 2

m

)
for m � 1. Then

det
0�i,j�n−1

(bi+j ) =
n−1∏
i=0

10

(
2
3

)
i

(
1
6

)
i

( 7
3

)
i

(
11
6

)
i(

3
2

)
2i

(
5
2

)
2i

(
27

4

)2i

. (5.59)

Furthermore,

det
0�i,j�n−1

(
2

3i + 3j + 5

(
3i + 3j + 5
i + j + 1

))

=
n∏

i=0

(
4
3

)
i

(
5
6

)
i

(
5
3

)
i

( 7
6

)
i(

3
2

)
2i

(
5
2

)
2i

(
27

4

)2i

. (5.60)

Let c0 = 7
2 and cm = 2

3m+1

(
3m+ 1
m+ 1

)
for m � 1. Then

det
0�i,j�n−1

(ci+j ) =
n∏

i=0

(
4
3

)
i

(
5
6

)
i

(
5
3

)
i

( 7
6

)
i(

3
2

)
2i

(
5
2

)
2i

(
27

4

)2i

. (5.61)

Let d0 = −5 and dm = 8
(3m+1)(3m+2)

(
3m+ 2

m

)
for m � 1. Then

det
0�i,j�n−1

(di+j ) =
n−1∏
i=0

(−5)

(
4
3

)
i

(
− 1

6

)
i

(
8
3

)
i

( 7
6

)
i(

3
2

)
2i

(
5
2

)
2i

(
27

4

)2i

. (5.62)

Furthermore,

det
0�i,j�n−1

(
8

(3i + 3j + 4)(3i + 3j + 5)

(
3i + 3j + 5
i + j + 1

))

=
n−1∏
i=0

2

( 7
3

)
i

(
5
6

)
i

(
8
3

)
i

( 7
6

)
i(

5
2

)
2i

( 7
2

)
2i

(
27

4

)2i

. (5.63)

Let e0 = 14 and em = 2(9m+5)
(3m+1)(3m+2)

(
3m+ 2

m

)
for m � 1. Then

det
0�i,j�n−1

(ei+j ) =
n−1∏
i=0

14

(
1
3

)
i

(
5
6

)
i

(
5
3

)
i

(
13
6

)
i(

3
2

)
2i

(
5
2

)
2i

(
27

4

)2i

. (5.64)
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Furthermore,

det
0�i,j�n−1

(
2(9i + 9j + 14)

(3i + 3j + 4)(3i + 3j + 5)

(
3i + 3j + 5
i + j + 1

))

=
n∏

i=1

2

(
2
3

)
i

( 7
6

)
i

(
1
3

)
i

(
5
6

)
i(

1
2

)
2i

(
3
2

)
2i

(
27

4

)2i

. (5.65)

Some of the numbers appearing on the right-hand sides of the formulae in this
theorem have combinatorial significance, although no intrinsic explanation is known
why this is the case. More precisely, the numbers on the right-hand sides of (5.48),
(5.51) and (5.52) count cyclically symmetric transpose-complementary plane parti-
tions (cf. [132] and [28]), whereas those on the right-hand sides of (5.47), (5.49),
(5.50) and (5.53) count vertically symmetric alternating sign matrices (cf. [117] and
[28]).

In [53, Theorem 4], Eğecioğlu, Redmond and Ryavec prove also the following
common generalisation of (5.49) and (5.50). (The first identity is the special case
x = 0, while the second is the special case x = 1 of the following theorem.)

Theorem 32. For m � 0, let sm(x) =∑m
k=0

k+1
m+1

(
3m− k + 1

m− k

)
xk. Then, for any

positive integer n, there holds

det
0�i,j�n−1

(si+j (x)) =
n−1∏
i=0

(
4
3

)
i

(
5
6

)
i

(
5
3

)
i

( 7
6

)
i(

3
2

)
2i

(
5
2

)
2i

(
27

4

)2i

. (5.66)

As I mentioned above, in [109] I only stated a few special Hankel determinant
evaluations explicitly, because there are too many ways to apply Theorems 29 and 30.
I realise, however, that I should have stated the evaluation of the Hankel determinant
of Catalan numbers there. I make this up now by doing this in the theorem below. I did
not do it then because orthogonal polynomials are not needed for its evaluation (the
orthogonal polynomials which are tied to Catalan numbers as moments are Chebyshev
polynomials, but, via Theorems 29 and 30, one would only cover the cases m = 0, 1, 2

in the theorem below). In fact, the Catalan number Cn = 1
n+1

(
2n
n

)
can be alterna-

tively written as Cn = (−1)n22n+1
(

1/2
n+ 1

)
, and therefore the Hankel determinant

evaluation below follows from [109, Theorem 26, (3.12)]. This latter observation
shows that even a more general determinant, namely det0�i,j�n−1(Cλi+j ), can be
evaluated in closed form. For historical remarks on this ubiquitous determinant see
[76, paragraph before the Appendix].
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Theorem 33

det
0�i,j�n−1

(Cm+i+j ) =
∏

1�i�j�m−1

2n+ i + j

i + j
. (5.67)

As in [109], let me conclude the part on Hankel determinants by pointing the reader
to further papers containing interesting results on them, high-lighting sometimes
the point of view of orthogonal polynomials that I explained above, sometimes a
combinatorial point of view. The first point of view is put forward in [191] (see
[110] for the solution of the conjectures in that paper) in order to present Hankel
determinant evaluations of matrices with hypergeometric 2F1-series as entries. The
orthogonal polynomials approach is also used in [49] to show that a certain Hankel
determinant defined by Catalan numbers evaluates to Fibonacci numbers. In [14],
one finds Hankel determinant evaluations involving generalisations of the Bernoulli
numbers. The combinatorial point of view dominates in [4,35–37,54], where Hankel
determinants involving q-Catalan numbers, q-Stirling numbers, and q-Fibonacci
numbers are considered.

A very interesting new direction, which seems to have much potential, is opened
up by Luque and Thibon in [127]. They show that Selberg-type integrals can be evalu-
ated by means of Hankel hyperdeterminants, and they prove many hyperdeterminant
generalisations of classical Hankel determinant evaluations.

At last, (but certainly not least!), I want to draw the reader’s attention to Las-
coux’s “unorthodox”22 approach to Hankel determinants and orthogonal polynomials
through symmetric functions which he presents in detail in [121, Ch. 4, 5, 8]. In
particular, Theorem 29, Eq. (5.38) are the contents of Theorem 8.3.1 in [121] (see also
the end of Section 5.3 there), and Theorem 30, Eqs. (5.44) and (5.45) are the contents
of Theorem 4.2.1 in [121]. The usefulness of this symmetric function approach is,
for example, demonstrated in [82,83] in order to evaluate Hankel determinants of
matrices the entries of which are Rogers–Szegő, respectively Meixner polynomials.

5.5. More binomial determinants

A vast part of Section 3 in [109] is occupied by binomial determinants. As I
mentioned in Section 2 of the present article, an extremely rich source for binomial
determinants is rhombus tiling enumeration. I want to present here some which did
not already appear in [109].

To begin with, I want to remind the reader of an old problem posed by Andrews
in [11, p. 105]. The determinant in this problem is a variation of a determinant which
enumerates cyclically symmetric plane partitions and descending plane partitions,
which was evaluated by Andrews in [10] (see also [109, Theorem 32]; the latter

22 It could easily be that it is the “modern” treatment of the theory which must be labelled with the attribute
“unorthodox.” As Lascoux documents in [121], in his treatment he follows the tradition of great masters
such as Cauchy, Jacobi or Wroński…
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determinant arises from the one in (5.68) by replacing j + 1 by j in the bottom of
the binomial coefficient).

Problem 34. Evaluate the determinant

D1(n) := det
0�i,j�n−1

(
δij +

(
µ+ i + j

j + 1

))
, (5.68)

where δij is the Kronecker delta. In particular, show that

D1(2n)

D1(2n− 1)
= (−1)

(
n− 1

2

)
2n

(
µ
2 + n

)
�n/2�

(
µ
2 + 2n+ 1

2

)
n−1

(n)n

(
−µ

2 − 2n+ 3
2

)
�(n−2)/2�

. (5.69)

The determinants D1(n) are rather intriguing. Here are the first few values:

D1(1)= µ+ 1,

D1(2)= (µ+ 1)(µ+ 2),

D1(3)= 1

12
(µ+ 1)(µ+ 2)(µ+ 3)(µ+ 14),

D1(4)= 1

72
(µ+ 1)(µ+ 2)(µ+ 3)(µ+ 4)(µ+ 9)(µ+ 14),

D1(5)= 1

8640
(µ+ 1)(µ+ 2)(µ+ 3)(µ+ 4)(µ+ 5)(µ+ 9)

×(3432+ 722µ+ 45µ2 + µ3),

D1(6)= 1

518400
(µ+ 1)(µ+ 2)(µ+ 3)(µ+ 4)(µ+ 5)(µ+ 6)(µ+ 8)

×(µ+ 13)(µ+ 15)(3432+ 722µ+ 45µ2 + µ3),

D1(7)= 1

870912000
(µ+ 1)(µ+ 2)(µ+ 3)(µ+ 4)(µ+ 5)(µ+ 6)(µ+ 7)

×(µ+ 8)2(µ+ 13)(µ+ 15)2(µ+ 34)(µ3 + 47µ2 + 954µ+5928),

D1(8)= 1

731566080000
(µ+ 1)(µ+ 2)(µ+ 3)(µ+ 4)(µ+ 5)(µ+ 6)

×(µ+ 7)(µ+ 8)3(µ+ 10)(µ+ 15)2(µ+ 17)(µ+ 19)

×(µ+ 21)(µ+ 34)(µ3 + 47µ2 + 954µ+ 5928).

“So,” these determinants factor almost completely, there is only a relatively small (in
degree) irreducible factor which is not linear. (For example, this factor is of degree
6 for D1(9) and D1(10), and of degree 7 for D1(11) and D1(12).) Moreover, this
“bigger” factor is always the same for D1(2n− 1) and D1(2n). Not only that, the
quotient which is predicted in (5.69) is at the same time a building block in the result
of the evaluation of the determinant which enumerates the cyclically symmetric and
descending plane partitions (see [11]). All this begs for an explanation in terms of
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a factorisation of the matrix of which the determinant is taken from. In fact, for the
plane partition matrix there is such a factorisation, due to Mills, Robbins and Rumsey
[132, Theorem 5] (see also [109, Theorem 36]). The question is whether there is a
similar one for the matrix in (5.68).

Inspired by this conjecture and by the variations in [40, Theorems 11–13] (see
[109, Theorem 35]) on Andrews’ original determinant evaluation in [10], Guoce Xin
(private communication) observed that, if we change the sign in front of the Kronecker
delta in (5.68), then the resulting determinant factors completely into linear factors.

Conjecture 35. Let µ be an indeterminate and n be a non-negative integer. The
determinant

det
0�i,j�n−1

(
−δij +

(
µ+ i + j

j + 1

))
(5.70)

is equal to

(−1)n/22n(n+2)/4

(
µ
2

)
n/2(

n
2

)!

(n−2)/2∏

i=0

i!2
(2i)!2




×

�(n−4)/4�∏

i=0

(
µ

2
+ 3i + 5

2

)2

(n−4i−2)/2

(
−µ

2
− 3n

2
+ 3i + 3

)2

(n−4i−4)/2




(5.71)

if n is even, and it is equal to

(−1)(n−1)/22(n+3)(n+1)/4
(

µ− 1

2

)
(n+1)/2


(n−1)/2∏

i=0

i! (i + 1)!
(2i)! (2i + 2)!




×

�(n−3)/4�∏

i=0

(
µ

2
+ 3i + 5

2

)2

(n−4i−3)/2

(
−µ

2
− 3n

2
+ 3

2
+ 3i

)2

(n−4i−1)/2




(5.72)

if n is odd.

In fact, it seems that also the “next” determinant, the determinant where one
replaces j + 1 at the bottom of the binomial coefficient in (5.70) by j + 2 factors
completely when n is odd. (It does not when n is even, though.)

Conjecture 36. Let µ be an indeterminate. For any odd non-negative integer n there
holds
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det
0�i,j�n−1

(
−δij +

(
µ+ i + j

j + 2

))

= (−1)(n−1)/22(n−1)(n+5)/4(µ+ 1)

(
µ
2 − 1

)
(n+1)/2(

n+1
2

)
!

×

(n−1)/2∏

i=0

i!2
(2i)!2

(
µ

2
+ 3i + 3

2

)2

(n−4i−1)/2




×

�(n−3)/4�∏

i=0

(
−µ

2
− 3n

2
+ 3i + 5

2

)2

(n−4i−3)/2


 . (5.73)

For the combinatorialist I add that all the determinants in Problem 34 and Con-
jectures 35 and 36 count certain rhombus tilings, as do the original determinants in
[10,11,40].

Alain Lascoux (private communication) did not understand why we should stop
here, and he hinted at a parametric family of determinant evaluations into which the
case of odd n of Conjecture 35 is embedded as a special case.

Conjecture 37. Let µ be an indeterminate. For any odd non-negative integers n and
r there holds

det
0�i,j�n−1

(
−δi,j+r−1 +

(
µ+ i + j

j + r

))

= (−1)(n−r)/22(n2+6n−2nr+r2−4r+2)/4

(
r−2∏
i=0

i!
)

×

(r−3)/2∏

i=0

(n− 2i − 2)!2(
n−2i−3

2

)
!2(n+ 2i)!(n+ 2i + 2)!


 (µ− r)

(
µ+ 1

2

)
(n−r)/2

×
(

r−1∏
i=1

(m− r + i)n+r−2i+1

)
(n−1)/2∏

i=0

i! (i + 1)!
(2i)! (2i + 2)!




×

�(n−r−2)/4�∏

i=0

(
µ

2
+ 3i + r + 3

2

)2

(n−4i−r−2)/2

×
(
−µ

2
− 3n

2
+ r

2
+ 3i + 1

)2

(n−4i−r)/2


 . (5.74)
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The next binomial determinant that I want to mention is, strictly speaking, not a de-
terminant but a Pfaffian (see (5.4) for the definition). While doing (−1)-enumeration
of self-complementary plane partitions, Eisenkölbl [57] encountered an, I admit,
complicated looking Pfaffian,

Pf
1�i,j�a

(M(m1,m2, n1, n2, a, b)), (5.75)

where a is even and b is odd, and where

Mij (m1,m2, n1, n2, a, b)

=
�(a+b−1)/4�∑

l=1

(−1)i+j

((
n1

(b − 1)/2+ �(i − 1)/2� − l + 1

)

×
(

m1
−a/2+ �(j − 1)/2� + l

)
−

(
n1

(b − 1)/2+ �(j − 1)/2� − l + 1

)

×
(

m1
−a/2+ �(i − 1)/2� + l

))

+
�(a+b−1)/4�∑

l=1

((
n2

(b − 1)/2+ �i/2� − l + 1

)(
m2

−a/2+ �j/2� + l − 1

)

−
(

n2
(b − 1)/2+ �j/2� − l + 1

)(
m2

−a/2+ �i/2� + l − 1

))
.

Remarkably however, experimentally this Pfaffian, first of all, factors completely
into factors which are linear in the variables m1,m2, n1, n2, but not only that, there
seems to be complete separation, that is, each linear factor contains only one of
m1,m2, n1, n2. One has the impression that this phenomenon should have an expla-
nation in a factorisation of the matrix in (5.75). However, the task of finding one does
not seem to be an easy one in view of the “entangledness” of the parameters in the
sums of the matrix entries.

Problem 38. 23 Find and prove the closed form evaluation of the Pfaffian in (5.75).

Our next determinants can be considered as shuffles of two binomial determinants.
Let us first consider

det
1�i,j�a+m




(
b + c +m

b − i + j

)
1 � i � a(

b+c
2

b+a
2 − i + j + ε

)
a + 1 � i � a +m


 . (5.76)

In fact, if ε = 0, and if a, b, c all have the same parity, then this is exactly the
determinant in (2.10), the evaluation of which proves Theorem 3, as we explained
in Section 2. If ε = 1/2 and a has parity different from that of b and c, then the

23 Theresia Eisenkölbl has recently solved this problem in [58].
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corresponding determinant was also evaluated in [40], and this evaluation implied the
companion result to Theorem 3 that we mentioned immediately after the statement
of the theorem. In the last section of [40], it is reported that, apparently, there are
also nice closed forms for the determinant in (5.76) for ε = 1 and ε = 3/2, both of
which imply as well enumeration theorems for rhombus tilings of a hexagon with an
equilateral triangle removed from its interior (see Conjectures 1 and 2 in [40]). We
reproduce the conjecture for ε = 1 here, the one for ε = 3/2 is very similar in form.

Conjecture 39. Let a, b, c,m be non-negative integers, a, b, c having the same par-
ity. Then for ε = 1 the determinant in (5.76) is equal to

1

4

H(a +m)H(b +m)H(c +m)H(a + b + c +m)

H(a + b +m)H(a + c +m)H(b + c +m)

× H
(
m+ ⌈

a+b+c
2

⌉)
H

(
m+ ⌊

a+b+c
2

⌋)
H

(
a+b

2 +m+ 1
)

H
(
a+c

2 +m− 1
)

H
(
b+c

2 +m
)

× H
(⌈

a
2

⌉)
H

(⌈
b
2

⌉)
H

(⌈
c
2

⌉)
H

(⌊
a
2

⌋)
H

(⌊
b
2

⌋)
H

(⌊
c
2

⌋)
H

(
m
2 +

⌈
a
2

⌉)
H

(
m
2 +

⌈
b
2

⌉)
H

(
m
2 +

⌈
c
2

⌉)
H

(
m
2 +

⌊
a
2

⌋)
H

(
m
2 +

⌊
b
2

⌋)
H

(
m
2 +

⌊
c
2

⌋)
× H

(
m
2

)2 H
(
a+b+m

2

)2
H

(
a+c+m

2

)2 H
(
b+c+m

2

)2

H
(
m
2 +

⌈
a+b+c

2

⌉)
H

(
m
2 +

⌊
a+b+c

2

⌋)
H

(
a+b

2 −1
)

H
(
a+c

2 +1
)

H
(
b+c

2

)P1(a, b, c,m),

(5.77)

where P1(a, b, c,m) is the polynomial given by

P1(a, b, c,m) =
{
(a + b)(a + c)+ 2am if a is even,
(a + b)(a + c)+ 2(a + b + c +m)m if a is odd,

and where H(n) is the hyperfactorial defined in (2.8).

Two other examples of determinants in which the upper part is given by one
binomial matrix, while the lower part is given by a different one, arose in [43,
Conjectures A.1 and A.2]. Again, both of them seem to factor completely into linear
factors, and both of them imply enumeration results for rhombus tilings of a certain
V-shaped region. The right-hand sides of the (conjectured) results are the weirdest
“closed” forms in enumeration that I am aware of.24 We state just the first of the two
conjectures, the other is very similar.

Conjecture 40. Let x, y,m be non-negative integers. Then the determinant

det
1�i,j�m+y







(
x + i

x − i + j

)
i = 1, . . . , m(

x + 2m− i + 1
m+ y − 2i + j + 1

)
i = m+ 1, . . . , m+ y





 (5.78)

24 No non-trivial simplifications seem to be possible.
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is equal to

m∏
i=1

(x + i)!
(x − i +m+ y + 1)! (2i − 1)!

m+y∏
i=m+1

(x + 2m− i + 1)!
(2m+ 2y − 2i + 1)! (m+ x − y + i − 1)!

×2


m

2


+


y

2


 m−1∏

i=1

i!
y−1∏
i=1

i!
∏
i�0

(
x + i + 3

2

)
m−2i−1

∏
i�0

(
x − y + 5

2
+ 3i

)
⌊

3y
2 − 9i

2

⌋
−2

×
∏
i�0

(
x + 3m

2
− y +

⌈
3i

2

⌉
+ 3

2

)
3� y

2 �−
⌈

9i
2

⌉
−2

×
∏
i�0

(
x + 3m

2
− y +

⌊
3i

2

⌋
+ 2

)
3� y

2 �−
⌊

9i
2

⌋
−1

×
∏
i�0

(
x +m−

⌊y

2

⌋
+ i + 1

)
2� y

2 �−m−2i

∏
i�0

(
x +

⌊y

2

⌋
+ i + 2

)
m−2� y

2 �−2i−2

×
∏y

i=0(x − y + 3i + 1)m+2y−4i
∏� y

2 �−1
i=0 (x +m− y + i + 1)3y−m−4i∏

i�0

(
x + m

2 − y
2 + i + 1

)
y−2i

(
x + m

2 − y
2 + i + 3

2

)
y−2i−1

×
∏y

i=0(x + i + 2)2m−2i−1

(x + y + 2)m−y−1 (m+ x − y + 1)m+y

. (5.79)

Here, shifted factorials occur with positive as well as with negative indices. The
convention with respect to which these have to be interpreted is

(α)k :=



α(α + 1) · · · (α + k − 1) if k > 0,
1 if k = 0,
1/(α − 1)(α − 2) · · · (α + k) if k < 0.

All products
∏

i�0(f (i))g(i) in (5.79) have to be interpreted as the products over all
i � 0 for which g(i) � 0.

For further conjectures of determinants of shuffles of two binomial matrices I refer
the reader to Conjectures 1–3 in Section 4 of [71]. All of them imply also enumeration
results for rhombus tilings of hexagons. This time, these would be results about the
number of rhombus tilings of a symmetric hexagon with some fixed rhombi on the
symmetry axis.

5.6. Determinants of matrices with recursive entries

Binomial coefficients

(
i + j

i

)
satisfy the basic recurrence of the Pascal triangle,

pi,j = pi,j−1 + pi−1,j . (5.80)

We have seen many determinants of matrices with entries containing binomial
coefficients in the preceding subsection and in [109, Sec. 3]. In [17], Bacher reports an
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experimental study of determinants of matrices (pi,j )0�i,j�n−1, where the coefficients
pi,j satisfy the recurrence (5.80) (and sometimes more general recurrences), but where
the initial conditions for pi,0 and p0,i , i � 0, are different from the ones for binomial
coefficients. He makes many interesting observations. The most intriguing one says
that these determinants satisfy also a linear recurrence (albeit a much longer one).
It is intriguing because it points towards the possibility of automatising determinant
evaluations25, something that several authors (cf. e.g. [9,109,143]) have been aiming
at (albeit, with only limited success up to now). The conjecture (and, in fact, a gen-
eralisation thereof) has been proved by Petkovšek and Zakrajšek in [192]. Still, there
remains a large gap to fill until computers will replace humans doing determinant
evaluations.

The paper [17] contained as well several pretty conjectures on closed form evalua-
tions of special cases of such determinants. These were subsequently proved in [111].
We state three of them in the following three theorems. The first two are proved in
[111] by working out the LU-factorisation (see “Method 1” in Section 4) for the
matrices of which the determinant is computed. The third one is derived by simple
row and column operations.

Theorem 41. Let (ai,j )i,j�0 be the sequence given by the recurrence

ai,j = ai−1,j + ai,j−1 + xai−1,j−1, i, j � 1,

and the initial conditions ai,0 = ρi and a0,i = σ i , i � 0. Then

det
0�i,j�n−1

(ai,j ) = (1+ x)

(
n− 1

2

)
(x + ρ + σ − ρσ)n−1. (5.81)

Theorem 42. Let (ai,j )i,j�0 be the sequence given by the recurrence

ai,j = ai−1,j + ai,j−1 + xai−1,j−1, i, j � 1,

and the initial conditions ai,i = 0, i � 0, ai,0 = ρi−1 and a0,i = −ρi−1, i � 1. Then

det
0�i,j�2n−1

(ai,j ) = (1+ x)2(n−1)2
(x + ρ)2n−2. (5.82)

Theorem 43. Let (ai,j )i,j�0 be the sequence given by the recurrence

ai,j = ai−1,j + ai,j−1 + xai−1,j−1, i, j � 1,

and the initial conditions ai,0 = i and a0,i = −i, i � 0. Then

det
0�i,j�2n−1

(ai,j ) = (1+ x)2n(n−1). (5.83)

25 The reader should recall that the successful automatisation [144,188,190,194,195] of the evaluation of
binomial and hypergeometric sums is fundamentally based on producing recurrences by the computer.
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Certainly, the proofs in [111] are not very illuminating. Neuwirth [138] has looked
more carefully into the structure of recursive sequences of the type as those in The-
orems 41–43. Even more generally, he looks at sequences (fi,j )i,j�0 satisfying the
recurrence relation

fi,j = cjfi−1,j + djfi,j−1 + ejfi−1,j−1, i, j � 1, (5.84)

for some given sequences (cj )j�1, (dj )j�1, (ej )j�1. He approaches the problem
by finding appropriate matrix decompositions for the (infinite) matrix (fi,j )i,j�0.
In two special cases, he is able to apply his decomposition results to work out the
LU-factorisation of the matrix (fi,j )i,j�0 explicitly, which then yields an elegant
determinant evaluation in both of these cases. Neuwirth’s first result [138, Theorem
5] addresses the case where the initial values f0,j satisfy a first order recurrence
determined by the coefficients dj from (5.84). It generalises Theorem 41. There is no
restriction on the initial values fi,0 for i � 1.

Theorem 44. Let (cj )j�1, (dj )j�1 and (ej )j�1 be given sequences, and let (fi,j )i,j�0
be the doubly indexed sequence given by the recurrence (5.84) with and the initial
conditions f0,0 = 1 and f0,j = djf0,j−1, j � 1. Then

det
0�i,j�n−1

(fi,j ) =
∏

0�i<j�n−1

(ei+1 + cj di+1). (5.85)

Neuwirth’s second result [138, Theorem 6] also generalises Theorem 41, but in a
different way. This time, the initial values f0,j , j � 1, are free, whereas the initial
values fi,0 satisfy a first order recurrence determined by the coefficients cj from the
recurrence (5.84). Below, we state its most attractive special case, in which all the
cj ’s are identical.

Theorem 45. Let (dj )j�1 and (ej )j�1 be given sequences, and let (fi,j )i,j�0 be the
doubly indexed sequence given by the recurrence (5.84) with cj = c for all j and the
initial conditions f0,0 = 1 and fi,0 = cfi−1,0, i � 1. Then

det
0�i,j�n−1

(fi,j ) =
n−1∏
i=1

(cdi + ei)
n−i . (5.86)

5.7. Determinants for signed permutations

The next class of determinants that we consider are determinants of matrices in
which rows and columns are indexed by elements of reflection groups (the latter being
groups generated by reflections of hyperplanes in real n-dimensional space; see [84]
for more information on these groups, and, more generally, on Coxeter groups). The
prototypical example of a reflection group is the symmetric group Sn of permutations
of an n-element set. In [109], there appeared two determinant evaluations associated
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to the symmetric group, see Theorems 55 and 56 in [109]. They concerned evaluations
of determinants of the type

det
σ,π∈Sn

(
qstat(σπ−1)

)
, (5.87)

due to Varchenko, Zagier, and Thibon, respectively, in which stat is the statistic
“number of inversions,” respectively “major index.” We know that in many fields of
mathematics there exist certain diseases which are typical for that field. Algebraic
combinatorics is no exception. Here, I am not talking of the earlier mentioned
“q-disease” (see Footnote 20; although, due to the presence of q we might also count
it as a case of q-disease), but of the disease which manifests itself by the question
“And what about the other types?”26 So let us ask this question, that is, are there
theorems similar to the two theorems which we mentioned above for other reflection
groups?

So, first of all we need analogues of the statistics “number of inversions” and “major
index” for other reflection groups. Indeed, these are available in the literature. The
analogue of “number of inversions” is the so-called length of an element in a Coxeter
group (see [84] for the definition). As a matter of fact, a closed form evaluation of the
determinant (5.87), where Sn is replaced by any finite reflection group, and where
stat is the length, is known (and was already implicitly mentioned in [109]). This
result is due to Varchenko [184, Theorem (1.1), where a(H) is specialised to q]. His
result is actually much more general, as it is valid for real hyperplane arrangements in
which each hyperplane is assigned a different weight. I will not state it here explicitly
because I do not want to go through the definitions and notations which would be
necessary for doing that.

So, what about analogues of the “major index” for other reflection groups? These
are also available, and there are in fact several of them. The first person to introduce
a major index for reflection groups other than the symmetric groups was Reiner in
[150]. He proposed a major index for the hyperoctahedral group Bn, which arose
naturally in his study of P -partitions for signed posets. The elements of Bn are often
called signed permutations, and they are all elements of the form π1π2 . . . πn, where
πi ∈ {±1,±2, . . . ,±n}, i = 1, 2, . . . , n, and where |π1||π2| . . . |πn| is a permutation
in Sn. To define their multiplicative structure, it is most convenient to view π =
π1π2 . . . πn as a linear operator on Rn acting by permutation and sign changes of the
co-ordinates. To be precise, the action is given by π(ei) = (sgnπi)e|πi |, where ei is
the ith standard basis vector in Rn, i = 1, 2, . . . , n. The multiplication of two signed
permutations is then simply the composition of the corresponding linear operators.

26 In order to give a reader who is not acquainted with the language and theory of reflection groups
an idea what this question is referring to, I mention that all finite reflection groups have been classified,
each having been assigned a certain “type.” So, usually one proves something for the symmetric group
Sn, which, according to this classification, has type An−1, and then somebody (which could be oneself)
will ask the question “Can you also do this for the other types?”, meaning whether or not there exists an
analogous result for the other finite reflection groups.
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The major index majBπ of an element π ∈ Bn which Reiner defined is, as in the
symmetric group case, the sum of all positions of descents in π . (There is a natural
notion of “descent” for any Coxeter group.) Concretely, it is

majBπ := χ(πn < 0)+
n−1∑
i=1

i · χ(πi >B πi+1),

where we impose the order 1 <B 2 <B · · · <B n <B −n <B · · · <B −2 <B −1 on
our ground set {±1,±2, . . . ,±n}, and where χ(A) = 1 if A is true and χ(A) = 0
otherwise.

There is overwhelming computational evidence27 that the “major-determinant”
for Bn, i.e., the determinant (5.87) with stat = majB and with Sn replaced by Bn,
factors completely into cyclotomic polynomials.

Conjecture 46. For any positive integer n, we have

det
σ,π∈Bn

(
qmajB(σπ−1)

)
=

n∏
i=1

(1− q2i )2n−1n!/i
n∏

i=2

(1− qi)2nn!(i−1)/i . (5.88)

A different major index for Bn was proposed by Adin and Roichman in [3]. It arises
there naturally in a combinatorial study of polynomial algebras which are diagonally

27 The reader may wonder what this computational evidence could actually be. After all, we are talking
about a determinant of a matrix of size 2nn!. More concretely, for n = 1, 2, 3, 4, 5 these are matrices of
size 2, 8, 48, 384, 3840, respectively. While Maple or Mathematica have no problem to compute these
determinants for n = 1 and n = 2, it takes already considerable time to do the computation for n = 3,
and it is, of course, completely hopeless to let them compute the one for n = 4, a determinant of a matrix
of size 384 which has polynomial entries (cf. Footnote 18). However, the results for n = 1, 2, 3 already
“show” that the determinant will factor completely into factors of the form 1− qi , i = 1, 2, . . . , 2n. One
starts to expect the same to be true for higher n. To get a formula for n = 4, one would then apply
the tricks explained in Footnote 19. That is, one specialises q to 4, at which value the first 8 cyclotomic
polynomials (in fact, even more) are clearly distinguishable by their prime factorisations, and one computes
the determinant. The exponents of the various factors 1− qi can then be extracted from the exponents of
the prime factors in the prime factorisation of the determinant with q = 4. Unfortunately, the data collected
for n = 1, 2, 3, 4 do not suffice to come up with a guess, and, on the other hand, Maple and Mathematica
will certainly be incapable to compute a determinant of a matrix of size 3840 (which, just to store it on
the disk, occupies already 10 megabytes …). So then, what did I mean when I said that the conjecture is
based on data including n = 5? This turned out to become a “test case” for LinBox, a C++ template library
for exact high-performance linear algebra [52], which is freely available under http://linalg.org.
To be honest, I was helped by Dave Saunders and Zhendong Wan (two of the developers) who applied
LinBox to do rank and Smith normal form computations for the specialised matrix with respect to various
prime powers (each of which taking several hours). The specific computational approach that worked here
is quite recent (thus, it came just in time for our purpose), and is documented in [160]. The results of
the computations made it possible to come up with a “sure” prediction for the exponents with which the
various prime factors occur in the prime factorisation of the specialised determinant. As in the case n = 4,
the exponents of the various factors 1− qi , i = 1, 2, . . . , 2n can then easily be extracted. (The guesses
were subsequently also tested with special values of q other than q = 4.)
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invariant under Bn. (In fact, more generally, wreath products of the form Cm !Sn,
where Cm is the cyclic group of order m, and their diagonal actions on polynomial
algebras are studied in [3]. These groups are also sometimes called generalised re-
flection groups. In this context, Bn is the special case C2 !Sn.) If we write negπ for
the number of i for which πi is negative, then the flag-major index fmaj of Adin and
Roichman is defined by

fmajπ := 2majAπ + negπ, (5.89)

where majA is the “ordinary” major index due to MacMahon,

majAπ :=
n−1∑
i=1

i · χ(πi > πi+1).

If one now goes to the computer and calculates the determinant on the left-hand side
of (5.88) with majB replaced by fmaj for n = 1, 2, 3, 4, 5 (see Footnote 27 for the
precise meaning of “calculating the determinant for n = 1, 2, 3, 4, 5”), then again the
results factor completely into cyclotomic factors. Even more generally, it seems that
one can treat the two parts on the right-hand side of (5.89), that is “major index” and
“number of negative letters,” separately.

Conjecture 47. For any positive integer n, we have

det
σ,π∈Bn

(
qmajA(σπ−1)pneg(σπ−1)

)
=

n∏
i=1

(1− p2i )2n−1n!/i
n∏

i=2

(1− qi)2nn!(i−1)/i .

(5.90)

I should remark that Adin and Roichman have shown in [3] that the statistics fmaj
is equidistributed with the statistics length on Bn. However, even in the case where we
just look at the flag-major determinant (that is, the case where q = p2 in Conjecture
47), this does not seem to help. (Neither length nor flag-major index satisfy a simple
law with respect to multiplication of signed permutations.) In fact, from the data
one sees that the flag-major determinants are different from the length determinants
(that is, the determinants (5.87), where Sn is replaced by Bn and stat is flag-major,
respectively length).

Initially, I had my program wrong, and, instead of taking the (ordinary) major index
majA of the signed permutation π = π1π2 . . . πn in (5.89), I computed taking the
major index of the absolute value of π . This absolute value is obtained by forgetting
all signs of the letters of π , that is, writing |π | for the absolute value of π , |π | =
|π1||π2| . . . |πn|. Curiously, it seems that also this “wrong” determinant factors nicely.
(Again, the evidence for this conjecture is based on data which were obtained in the
way described in Footnote 27.)
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Conjecture 48. For any positive integer n, we have

det
σ,π∈Bn

(
qmajA|σπ−1|pneg(σπ−1)

)
= (1− p2)2n−1n·n!

n∏
i=2

(1− qi)2nn!(i−1)/i .

(5.91)

Since, as I indicated earlier, Adin and Roichman actually define a flag-major index
for wreath products Cm !Sn, a question that suggests itself is whether or not we can
expect closed product formulae for the corresponding determinants. Clearly, since
we are now dealing with determinants of the size mnn!, computer computations will
exhaust our computer’s resources even faster if m > 2. The calculations that I was
able to do suggest strongly that there is indeed an extension of the statement in
Conjecture 47 to the case of arbitrary m, if one uses the definition of major index and
the “negative” statistics for Cm !Sn as in [3]. (See [3, Section 3] for the definition
of the major index. The sum on the right-hand side of [3, (3.1)] must be taken as the
extension of the “negative” statistics neg to Cm !Sn.)

Problem 49. Find and prove the closed form evaluation of

det
σ,π∈Cm!Sn

(
qmaj(σπ−1)pneg(σπ−1)

)
, (5.92)

where maj and neg are the extensions to Cm !Sn of the statistics majA and neg in
Conjecture 47, as described in the paragraph above.

Together with Brenti, Adin and Roichman proposed another major statistics for
signed permutations in [1]. They call it the negative major index, denoted nmaj, and
it is defined as the sum of the ordinary major index and the sum of the absolute values
of the negative letters, that is,

nmajπ := majAπ + snegπ,

where sneg π := −∑n
i=1 χ(πi < 0)πi . Also for this statistics, the corresponding

determinant seems to factor nicely. In fact, it seems that one can again treat the two
components of the definition of the statistics, that is, “major index” and “sum of
negative letters,” separately. (Once more, the evidence for this conjecture is based on
data which were obtained in the way described in Footnote 27.)

Conjecture 50. For any positive integer n, we have

det
σ,π∈Bn

(
qmajA(σπ−1)psneg(σπ−1)

)
=

n∏
i=1

(1−p2i2
)2n−1n!/i

n∏
i=2

(1− qi)2nn!(i−1)/i .

(5.93)

If one compares the (conjectured) result with the (conjectured) one for the “flag-
major determinant” in Conjecture 47, then one notices the somewhat mind-boggling
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fact that one obtains the right-hand side of (5.93) from the one of (5.90) by simply
replacing (in the factored form of the latter) 1− p2i by 1− p2i2

, everything else, the
exponents, the “q-part”, is identical. It is difficult to imagine an intrinsic explanation
why this should be the case.

Since Thibon’s proof of the evaluation of the determinant (5.87) with stat being the
(ordinary) major index for permutations (see [109, Appendix C]) involved the descent
algebra of the symmetric group, viewed in terms of non-commutative symmetric
functions, one might speculate that to prove Conjectures 46–48 and 50 it may be
necessary to work with Bn versions of descent algebras (which exist, see [175]) and
non-commutative symmetric functions (which also exist, see [32]).

Adriano Garsia points out that all the determinants in (5.87), (5.88), (5.90)–(5.93)
are special instances of group determinants. (See the excellent survey article [120]
for information on group determinants.) The main theorem on group determinants,
due to Frobenius, says that a general group determinant factorises into irreducible
factors, each of which corresponding to an irreducible representation of the group,
and the exact exponent to which the irreducible factor is raised is the degree of the
corresponding irreducible representation. In view of this, Garsia poses the following
problem, a solution of which would refine the above conjectures, Problem 49, and
the earlier mentioned results of Varchenko, Zagier, and Thibon.

Problem 51. For each of the above special group determinants, determine the closed
formula for the value of the irreducible factor corresponding to a fixed irreducible
representation of the involved group (Sn, Bn, Cm !Sn, respectively).

It seems that a solution to this problem has not even been worked out for the
determinant which is the subject of the results of Varchenko and Zagier, that is, for
the determinant (5.87) with stat being the number of inversions.

For further work on statistics for (generalised) reflection groups (thus providing fur-
ther prospective candidates for forming interesting determinants), I refer the reader to
[1,2,18,22,23,26,27,64,65,66,79,149]. I must report that, somewhat disappointingly,
it seems that the various major indices proposed for the group Dn of even signed
permutations (see [26,27,150]) apparently do not give rise to determinants in the
same way as above that have nice product formulae. This remark seems to also apply
to determinants formed in an analogous way by using the various statistics proposed
for the alternating group in [148].

5.8. More poset and lattice determinants

Continuing the discussion of determinants which arise under the influence of the
above-mentioned “reflection group disease,” we turn our attention to two miraculous
determinants which were among the last things Rodica Simion was able to look at.
Some of her considerations in this direction are reported in [165].
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The first of the two is a determinant of a matrix the rows and columns of which are
indexed by type B non-crossing partitions. This determinant is inspired by the evalu-
ation of an analogous one for ordinary non-crossing partitions (that is, in “reflection
group language,” type A non-crossing partitions), due to Dahab [50] and Tutte [183]
(see [109, Theorem 57, (3.69)]). Recall (see [177, Ch. 1 and 3] for more information)
that a (set) partition of a set S is a collection {B1, B2, . . . , Bk} of pairwise disjoint
non-empty subsets of S such that their union is equal to S. The subsets Bi are also
called blocks of the partition. One partially orders partitions by refinement. With
respect to this partial order, the partitions form a lattice. We write π ∨A γ (the A

stands for the fact that, in “reflection group language”, we are looking at “type A

partitions”) for the join of π and γ in this lattice. Roughly speaking, the join of π

and γ is formed by considering altogether all the blocks of π and γ . Subsequently,
whenever we find two blocks which have a non-empty intersection, we merge them
into a bigger block, and we keep doing this until all the (merged) blocks are pairwise
disjoint.

If S = {1, 2, . . . , n}, we call a partition non-crossing if for any i < j < k < l the
elements i and k are in the same block at the same time as the elements j and l are in
the same block only if these two blocks are the same. (I refer the reader to [168] for
a survey on non-crossing partitions.)

Reiner [151] introduced non-crossing partitions in type B. Partitions of type Bn are
(ordinary) partitions of {1, 2, . . . , n,−1,−2, . . . ,−n} with the property that when-
ever B is a block then so is −B := {−b : b ∈ B}, and that there is at most one block
B with B = −B. A block B with B = −B, if present, is called the zero-block of
the partition. We denote the set of all type Bn partitions by �B

n , the number of zero
blocks of a partition π by zbkπ , and we write nzbkπ for half of the number of the
non-zero blocks. Type Bn non-crossing partitions are a subset of type Bn partitions.
Imposing the order 1 < 2 < · · · < n < −1 < −2 < · · · < −n on our ground-set, the
definition of type Bn non-crossing partitions is identical with the one for type A non-
crossing partitions, that is, given this order on the ground-set, a Bn partition is called
non-crossing if for any i < j < k < l the elements i and k are in the same block at
the same time as the elements j and l are in the same block only if these two blocks
are the same. We write NCB

n for the set of all Bn non-crossing partitions.
The determinant defined by type Bn non-crossing partitions that Simion tried to

evaluate was the one in (5.94) below.28 The use of the “type A” join ∨A for two type
B non-crossing partitions in (5.94) may seem strange. However, this is certainly a

28 In fact, instead of ∨A, the “ordinary” join, she used the join in the type Bn partition lattice �B
n .

However, the number of non-zero blocks will be the same regardless of whether we take the join of two
type Bn non-crossing partitions with respect to “ordinary” join or with respect to “type Bn” join. This is
in contrast to the numbers of zero blocks, which can differ largely. (To be more precise, one way to form
the “type Bn” join is to first form the “ordinary” join, and then merge all zero blocks into one big block.)
The reason that I insist on using ∨A is that this is crucial for the more general Conjecture 53. To tell the
truth, the discovery of the latter conjecture is due to a programming error on my behalf (that is, originally
I aimed to program the “type B” join, but it happened to be the “ordinary” join …).
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well-defined operation. The result may neither be a type B partition nor a non-crossing
one, it will just be an ordinary partition of the ground-set {1, 2, . . . , n,−1,−2, . . . ,
−n}. We extend the notion of “zero block” and “non-zero block” to these objects
in the obvious way. Simion observed that, as in the case of the analogous type
An partition determinant due to Dahab and Tutte, it factors apparently completely
into factors which are Chebyshev polynomials. Based on some additional numerical
calculations,29 I propose the following conjecture.

Conjecture 52. For any positive integer n, we have

det
π,γ∈NCB

n

(
qnzbk(π∨Aγ )

)
=

n∏
i=1

(
U3i−1

(√
q/2

)
Ui−1

(√
q/2

)
)( 2n

n−i)

, (5.94)

where Um(x) :=∑
j�0(−1)j

(
m−j

j

)
(2x)m−2j is the mth Chebyshev polynomial of the

second kind.

If proved, this would solve Problem 1 in [165]. It would also solve Problem 2 from
[165], because Um−1

(√
q/2

)
is, up to multiplication by a power of q, equal to the

product
∏

j |m fj (q), where the polynomials fj (q) are the ones of [165]. A simple
computation then shows that, when the right-hand side product of (5.94) is expressed
in terms of the fj (q)’s, one obtains

n∏
k=1

f3k(q)
en,k , (5.95)

where

en,k =
�n/k�∑
'=1

' $≡0 (mod 3)

(
2n

n− 'k

)
.

29 Evidently, more than five years later, thanks to technical progress since then, one can go much farther
when doing computer calculations. The evidence for Conjecture 52 which I have is based on, similar to the
conjectures and calculations on determinants for signed permutations in Section 5.7 (see Footnote 27), the
exact form of the determinants for n = 1, 2, 3, 4, which were already computed by Simion, and, essentially,
the exact form of the determinants for n = 5 and 6. By “essentially” I mean, as earlier, that I computed the
determinant for many special values of q, which then let me make a guess on the basis of comparison of the
prime factors in the factorised results with the prime factors of the candidate factors, that is the irreducible
factors of the Chebyshev polynomials. Finally, for guessing the general form of the exponents, the available
data were not sufficient for Rate (see Footnote 4). So I consulted the fabulous On-Line Encyclopedia
of Integer Sequences (http://www.research.att.com/∼njas/sequences/Seis.html),
originally created by Neil Sloane and Simon Plouffe [173], and since many years continuously further
developed by Sloane and his team [172]. An appropriate selection from the results turned up by the
Encyclopedia then led to the exponents on the right-hand side of (5.94).
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This agrees with the data in [165] and with the further ones I have computed (see
Footnote 29).

Even more seems to be true. The following conjecture predicts the evaluation of
the more general determinant where we also keep track of the zero blocks.

Conjecture 53. For any positive integer n, we have

det
π,γ∈NCB

n

(
qnzbk(π∨Aγ )zzbk(π∨Aγ )

)
= z

1
2

(
2n
n

)
n∏

i=1

(
2T2i

(√
q/2

)+ 2− z
)( 2n

n− i

)
,

(5.96)

where Tm(x) := 1
2

∑
j�0(−1)j m

m−j

(
m− j

j

)
(2x)m−2j is the mth Chebyshev poly-

nomial of the first kind.

Again, the conjecture is supported by extensive numerical calculations. It is not too
difficult to show, by using some identities for Chebyshev polynomials, that Conjecture
53 implies Conjecture 52.

The other determinant which Simion looked at (cf. [165, Problem 9ff]), was the Bn

analogue of a determinant of a matrix the rows and columns of which are indexed by
non-crossing matchings, due to Lickorish [124], and evaluated by Ko and Smolinsky
[101] and independently by Di Francesco [68] (see [109, Theorem 58]). As we may
regard (ordinary) non-crossing matchings as partitions all the blocks of which consist
of two elements, we define a Bn non-crossing matching to be a Bn non-crossing
partition all the blocks of which consist of two elements. We shall be concerned with
B2n non-crossing matchings, which we denote by NCmatch(2n). With this notation,
the following seems to be true.

Conjecture 54. For any positive integer n, we have

det
π,γ∈NCmatch(2n)

(
qnzbk(π∨Aγ )zzbk(π∨Aγ )

)
=

n∏
i=1

(
2T2i (q/2)+ 2− z2

)(
2n

n− i

)
.

(5.97)

The reader should notice the remarkable fact that, in the case that Conjectures
53 and 54 are true, the right-hand side of (5.97) is, up to a power of z, equal to the
right-hand side of (5.96) with q replaced by q2 and z replaced by z2. An intrinsic
explanation why this should be the case is not known. An analogous relation between
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the determinants of Tutte and of Lickorish, respectively, was observed, and proved,
in [47]. Also here, no intrinsic explanation is known.

The reader is referred to [165] for further open problems related to the determinants
in Conjectures 52–54. Finally, it may also be worthwhile to look at determinants
defined using Dn non-crossing partitions and non-crossing matchings, see [16] and
[151] for two possible definitions of those.

The reader may have wondered why in Conjectures 52 and 53 we considered
determinants defined by type Bn non-crossing partitions, which form in fact a lattice,
but used the extraneous type A join30 in the definition of the determinant, instead
of the join which is intrinsic to the lattice of type Bn non-crossing partitions. In
particular, what would happen if we would make the latter choice? As it turns out, for
that situation there exists an elegant general theorem due to Lindström [125], which
I missed to state in [109]. I refer to [177, Ch. 3] for the explanation of the poset
terminology used in the statement.

Theorem 55. Let L be a finite meet semilattice, R be a commutative ring, and f :
L× L→ R be an incidence function, that is, f (x, y) = 0 unless x ∧ y = x. Then

det
x,y∈L (f (x ∧ y, x)) =

∏
y∈L

(∑
x∈L

µ(x, y)f (x, y)

)
, (5.98)

where µ is the Möbius function of L.

Clearly, this does indeed answer our question, we just have to specialise f (x, y) =
h(x) for x ∧ y = x, where h is some function from L to R. The fact that the above
theorem talks about meets instead of joins is of course no problem because this is just
a matter of convention.

Having an answer in such a great generality, one is tempted to pose the problem
of finding a general theorem that would encompass the above-mentioned determi-
nant evaluations due to Tutte, Dahab, Ko and Smolinsky, Di Francesco, as well as
Conjectures 52 and 53. This problem is essentially Problem 6 in [165].

Problem 56. Let L and L′ be two lattices (semilattices?) with L′ ⊆ L. Furthermore,
let R be a commutative ring, and let f be a function from L to R. Under which
conditions is there a compact formula for the determinant

det
x,y∈L′

(f (x ∧L y)) , (5.99)

where ∧L is the meet operation in L?

By specialisation in Theorem 55, one can derive numerous corollaries. For exam-
ple, a very attractive one is the evaluation of the “GCD determinant” due to Smith

30 and not even the one in the type A non-crossing partition lattice!
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[174]. (In fact, Smith’s result is a more general one for factor closed subsets of the
positive integers.)

Theorem 57. For any positive integer n, we have

det
1�i,j�n

(gcd(i, j)) =
n∏

i=1

φ(i),

where φ denotes the Euler totient function.

An interesting generalisation of Theorem 55 to posets was given by Altinişik,
Sagan and Tuğlu [6]. Again, all undefined terminology can be found in [177, Ch. 3].

Theorem 58. Let P be a finite poset, R be a commutative ring, and f, g : P × P →
R be two incidence functions, that is, f (x, y) = 0 unless x � y in P, the same being
true for g. Then

det
x,y∈P

(∑
z∈P

f (z, x)g(z, y)

)
=

∏
x∈P

f (x, x)g(x, x).

The reader is referred to Section 3 of [6] for the explanation why this theorem
implies Lindström’s.

5.9. Determinants for compositions

Our next family of determinants consists of determinants of matrices the rows and
columns of which are indexed by compositions. Recall that a composition of a non-
negative integer n is a vector (α1, α2, . . . , αk) of non-negative integers such that α1 +
α2 + · · · + αk = n, for some k. For a fixed k, let C(n, k) denote the corresponding set
of compositions of n. While working on a problem in global optimisation, Brunat and
Montes [30] discovered the following surprising determinant evaluation. It allowed
them to show how to explicitly express a multivariable polynomial as a difference
of convex functions. In the statement, we use standard multi-index notation: if � =
(α1, α2, . . . , αk) and � = (β1, β2, . . . , βk) are two compositions, we let

�� := α
β1
1 α

β2
2 · · ·αβk

k .

Theorem 59. For any positive integers n and k, we have

det
�,�∈C(n,k)

(
��

) = n(
n+k−1

k )+k−1
n−1∏
i=1

i(n−i+1)(n+k−i−1
k−2 ). (5.100)
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In recent joint work [29,31], Brunat, Montes and the author showed that there is
in fact a polynomial generalisation of this determinant evaluation.

Theorem 60. Let x = (x1, x2, . . . , xk) be a vector of indeterminates, and let λ be an
indeterminate. Then, for any non-negative integers n and k, we have

det
�,�∈C(n,k)

(
(x+ λ�)�

)= λ(k−1)(n+k−1
k ) (|x| + λn)(

n+k−1
k )

×
n∏

i=1

i(k−1)(n+k−i−1
k−1 ), (5.101)

where x+ λ� is short for (x1 + λα1, x2 + λα2, . . . , xk + λαk), and where |x| =
x1 + x2 + · · · + xk .

As a matter of fact, there is actually a binomial variant which implies the above
theorem. Extending our multi-index notation, let(

�

�

)
:=

(
α1
β1

)(
α2
β2

)
· · ·

(
αk

βk

)
.

Theorem 61. Let x = (x1, x2, . . . , xk) be a vector of indeterminates, and let λ be
an indeterminate. Then, using the notation from Theorem 60, for any non-negative
integers n and k, we have

det
�,�∈C(n,k)

((
x+ λ�

�

))
= λ(k−1)(n+k−1

k )

×
n∏

i=1

( |x| + (λ− 1)n+ i

i

)(n+k−i−1
k−1 )

.

(5.102)

The above theorem is proved in [29] by identification of factors (see “Method 3” in
Section 4). Theorem 61 follows by extracting the highest homogeneous component
in (5.101). I report that, if one naively replaces “compositions” by “integer partitions”
in the above considerations, then the arising determinants do not have nice product
formulae.

Another interesting determinant of a matrix with rows indexed by compositions
appears in the work of Bergeron et al. [21, Theorem 4.8] on Hopf algebras of non-
commutative symmetric functions. It was used there to show that a certain set of
generators of non-commutative symmetric functions were algebraically independent.
To state their determinant evaluation, we need to introduce some notation. Given a
composition � = (α1, α2, . . . , αk) of n with all summands αi positive, we let D(�) =
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{α1, α1 + α2, . . . , α1 + α2 + · · · + αk−1}. Furthermore, for two compositions � and
� of n, we write � ∪ � for the (unique) composition � of n with D(�) = D(�) ∪D(�).
Finally, �! is short for α1!α2! · · ·αk!.

Theorem 62. Let Comp(n) denote the set of all compositions of n all summands of
which are positive. Then

det
�,�∈Comp(n)

((� ∪ �)!) =
∏

�∈Comp(n)

'(�)∏
i=1

aγi
, (5.103)

where '(�) is the number of summands (components) of the composition �, and where
am denotes the number of indecomposable permutations of m (cf. [178, Ex.5.13(b)]).
These numbers can be computed recursively by a1 = 1 and

an = n! −
n−1∑
i=1

ai(n− 1)!, n > 1.

As explained in [21], one proves the theorem by factoring the matrix in (5.103) in
the form CDCt , where C is the “incidence matrix” of “refinement of compositions,”
and where D is a diagonal matrix. Thus, in particular, the LU-factorisation of the
matrix is determined.

5.10. Two partition determinants

On the surface, integer partitions (see below for their definition) seem to be very
closely related to compositions, as they can be considered as “compositions where
the order of the summands is without importance.” However, experience shows that
integer partitions are much more complex combinatorial objects than compositions.
This may be the reason that the “composition determinants” from the preceding
subsection do not seem to have analogues for integer partitions. Leaving aside this
disappointment, here is a determinant of a matrix in which rows and columns are
indexed by integer partitions. This determinant arose in work on linear forms of
values of the Riemann zeta function evaluated at positive integers, although the traces
of it have now been completely erased in the final version of the article [114]. (The
symmetric function calculus in Section 12 of the earlier version [113] gives a vague
idea where it may have come from.)

Recall that the power symmetric function of degree d in x1, x2, . . . , xk is given
by xd

1 + xd
2 + · · · + xd

k , and is denoted by pd(x1, x2, . . . , xk). (See [121, Ch. 1 and
2], [130, Ch. I] and [178, Ch. 7] for in-depth expositions of the theory of symmetric
functions.) Then, while working on [114], Rivoal and the author needed to evaluate
the determinant

det
λ,µ∈Part(n,k)

(pλ(µ1, µ2, . . . , µk)) , (5.104)
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where Part(n, k) is the set of integer partitions ofnwith at most k parts, that is, the set of
all possibilities to write n as a sum of non-negative integers, n = λ1 + λ2 + · · · + λk ,
with λ1 � λ2 � · · · � λk � 0 (the non-zero λi’s being called the parts of λ), and
where

pλ(x1, x2, . . . , xk) = pλ1(x1, . . . , xk)pλ2(x1, . . . , xk) · · ·pλk
(x1, . . . , xk).

Following the advice given in Section 2, we went to the computer and let it calculate
the prime factorisations of the values of this determinant for small values of n and
k. Indeed, the prime factors turned out to be always small so that we were sure that
a “nice” formula exists for the determinant. However, even more seemed to be true.
Recall that, in order to facilitate a proof of a (still unknown) formula, it is (almost)
always a good idea to try to introduce more parameters (see [109, Sec. 2]). This is
what we did. It led us consider the following determinant,

det
λ,µ∈Part(n,k)

(pλ(µ1 +X1, µ2 +X2, . . . , µk +Xk)) , (5.105)

where X1, X2, . . . , Xk are indeterminates. Here are some values of the determinant
(5.105) for special values of n and k. For n = k = 3 we obtain

6 (X1 −X2 + 2) (X1 −X3 + 1)(X2 −X3 + 1)(X1 +X2 +X3 + 3)4,

for n = 4 and k = 3 we obtain

8 (X1 −X2 + 1) (X1 −X2 + 2)(X1 −X2 + 3)(X1 −X3 + 2)

×(X2 −X3 + 1)(X1 +X2 +X3 + 4)7,

for n = 5 and k = 3 we get

8 (X1 −X2 + 1) (X1 −X2 + 2)(X1 −X2 + 3)(X1 −X2 + 4)(X1 −X3 + 2)

×(X1 −X3 + 3)(X2 −X3 + 1)(X2 −X3 + 2)(X1 +X2 +X3 + 5)11,

for n = 6 and k = 3 we get

576 (X1 −X2 + 1) (X1 −X2 + 2)2(X1 −X2 + 3)2(X1 −X2 + 4)(X1 −X2 + 5)

×(X1 −X3 + 1)(X1 −X3 + 2)(X1 −X3 + 3)(X1 −X3 + 4)(X2 −X3 + 1)2

×(X2 −X3 + 2)2(X1 +X2 +X3 + 6)16,

for n = 4 and k = 4 we get

192 (X1 −X2 + 1) (X1 −X2 + 2)(X1 −X2 + 3)(X1 −X3 + 2)(X2 −X3 + 1)

×(X1 −X4 + 1)(X2 −X4 + 1)(X3 −X4 + 1)(X1 +X2 +X3 +X4 + 4)7

while for n = 5 and k = 4 we get

48 (X1 −X2 + 1) (X1 −X2 + 2)(X1 −X2 + 3)(X1 −X2 + 4)(X1 −X3 + 2)
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×(X1 −X3 + 3)(X2 −X3 + 1)(X2 −X3 + 2)(X1 −X4 + 2)

×(X2 −X4 + 1)(X3 −X4 + 1)(X1 +X2 +X3 +X4 + 5)12.

It is “therefore” evident that there will be one factor which is a power of n+∑k
i=1 Xi , whereas the other factors will be of the form Xi −Xj + ci,j , again raised

to some power. In fact, the determinant is easy to compute for k = 1 because, in
that case, it reduces to a special case of the Vandermonde determinant evaluation.
However, we were not able to come even close to computing (5.105) in general. (As
I already indicated, finally we managed to avoid the determinant evaluation in our
work in [114].)

To proceed further, we remark that evaluating (5.105) is equivalent to evaluating the
same determinant, but with the power symmetric functions pλ replaced by the Schur
functions sλ, because the transition matrix between these two bases of symmetric
functions is the character table of the symmetric group of the corresponding order
(cf. [130, Ch. I, Sec. 7]), the determinant of which is known (see Theorem 64 below;
since in our determinants (5.104) and (5.105) the indices range over all partitions
of n with at most k parts, it is in fact the refinement given in Theorem 65 which
we have to apply). The determinant with Schur functions has some advantages
over the one with power symmetric functions since the former decomposes into
a finer block structure. Alain Lascoux observed that, in fact, there is a generali-
sation of the Schur function determinant to Graßmannian Schubert polynomials,
which contains another set of variables, Y1, Y2, . . . , Yn+k−1. More precisely, given
λ = (λ1, λ2, . . . , λk), let Yλ(X1, X2, . . . , Xk;Y1, Y2, . . .) denote the polynomial in
the variables X1, X2, . . . , Xk and Y1, Y2, . . ., defined by (see [121, Sections 1.4 and
9.7; the order of the Bki should be reversed in (9.7.2) and analogous places])

Yλ(X1, X2, . . . , Xk;Y1, Y2, . . .)

:= det
1�i,j�k

(Sλi−i+j (X1, . . . , Xk;Y1, . . . , Yλi+k−i )),

where the entries of the determinant are given by
∞∑

m=0

Sm(X1, . . . , Xk;Y1, . . . , Yl)x
m =

∏l
i=1(1− Yix)∏k
i=1(1−Xix)

. (5.106)

The Graßmannian Schubert polynomial Yλ reduces to the Schur function sλ when
all the variables Yi , i = 1, 2, . . ., are set equal to 0. Given these definitions, Alain
Lascoux (private communication) established the following result.

Theorem 63. Let X1, X2, . . . , Xk, Y1, Y2, . . . , Yn+k−1 be indeterminates. Then,

det
λ,µ∈Part(n,k)

(Yλ(µ1 +X1, µ2 +X2, . . . , µk +Xk;Y1, Y2, . . .))
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= �(n, k)
∏

σ∈G(n,k)

(
n+

k∑
i=1

Xi −
k∑

i=1

Yσ(i)

)
, (5.107)

where G(n, k) denotes the set of all Graßmannian permutations,31 the descent of
which (if existent) is at k, and which contain at most n− 1 inversions, and where
�(n, k) is given recursively by

�(n, k) = �(n, k − 1)�(n− k, k)
∏

µ∈Part+(n,k)

k∏
j=1

(Xj + µj −Xk), (5.108)

Part+(n, k) denoting the set of partitions of n into exactly k (positive) parts, with
initial conditions �(n, k) = 1 if k = 1 or n � 1. Explicitly,

�(n, k) =
∏
w

|w|B<k−1

∏
µ∈Part(n−|w|Ak+inv w,k−|w|B)

k−|w|B∏
j=1

(Xj + µj −Xk−|w|B ),

(5.109)

where the product over w runs over all finite-length words w with letters from {A,B},
including the empty word. The notation |w|B means the number of occurrences of B
in w, with the analogous meaning for |w|A. The quantity invw denotes the number
of inversions of w = w1w2 . . . , which is the number of pairs of letters (wi, wj ),

i < j, such that wi = B and wj = A.

We obtain the evaluation of the determinant (5.104) if we set Xi = Yi = 0 for all i
in the above theorem and multiply by (5.114). Likewise, we obtain the evaluation of
the determinant (5.105) if we set Yi = 0 for all i in the above theorem and multiply
the result by (5.114).

For example, here is the determinant (5.107) for n = 3 and k = 2,

(X1 −X2 + 2)(X1 +X2 − Y1 − Y2 + 3)(X1 +X2 − Y1 − Y3 + 3)

×(X1 +X2 − Y2 − Y3 + 3)(X1 +X2 − Y1 − Y4 + 3),

31 A permutation σ in S∞ (the set of all permutations of the natural numbers N which fix all but a finite
number of elements of N) is called Graßmannian if σ(i) < σ(i + 1) for all i except possibly for one, the
latter being called the descent of σ (see [129, p. 13]). An inversion of σ is a pair (i, j) such that i < j

but σ(i) > σ(j). We remark that the number of Graßmannian permutations with descent (if existent) at
k and at most n− 1 inversions is equal to the number of partitions of at most n− 1 with at most k parts
(including the empty partition). More concretely, if we denote this number by gn,k , the generating function
of the numbers gn,k is given by

∞∑
n=1

gn,kx
n−1 = 1

1− q

k∏
i=1

1

1− qi
.
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and the following is the one for n = k = 3,

(X1 −X2 + 2)(X1 −X3 + 1)(X2 −X3 + 1)

×(X1 +X2 +X3 − Y1 − Y2 − Y3 + 3)(X1 +X2 +X3 − Y1 − Y2 − Y4 + 3)

×(X1 +X2 +X3 − Y1 − Y3 − Y4 + 3)(X1 +X2 +X3 − Y1 − Y2 − Y5 + 3).

In the sequel, I sketch Lascoux’s proof of Theorem 63. The first step consists in ap-
plying the Monk formula for double Schubert polynomials in the case of Graßmannian
Schubert polynomials (see [103]),(

k∑
i=1

Xi −
k∑

i=1

Yλk−i+1+i

)
Yλ = Yλ+(1,0,0,...) +

∑
µ

Yµ,

where Yλ is short for Yλ(X1, X2, . . . , Xk;Y1, Y2, . . .), and where the sum on the
right-hand side is over all partitions µ of the same size as λ+ (1, 0, 0, . . .) but
lexicographically smaller. Clearly, by using this identity, appropriate row operations
in the determinant (5.107) show that

n+
k∑

i=1

Xi −
k∑

i=1

Yσ(i), (5.110)

is one of its factors, the relation between σ and λ being σ(i) = λk−i+1 + i, i =
1, 2, . . . , k. In particular, σ can be extended (in a unique way) to a Graßmannian
permutation. Moreover, doing these row operations, and taking out the factors of the
form (5.110), we collect on the one hand the product in (5.107), and we may on
the other hand reduce the determinant (5.107) to a determinant of the same form, in
which, however, the partitions λ = (λ1, λ2, . . . , λk) run over all partitions of size at
most n with the additional property that λ1 = λ2 (instead of over all partitions from
Part(n, k)).

As it turns out, the determinant thus obtained is independent of the variables
Y1, Y2, . . . , Yn+k−1. Indeed, if we expand each Schubert polynomial Yλ(µ1 +X1,

µ2 +X2, . . . , µk +Xk;Y1, Y2, . . .) in the determinant as a linear combination of
Schur functions in X1, X2, . . . , Xk with coefficients being polynomials in the Y1,

Y2, . . . , Yn+k−1, then, by also using that

S1(µ1 +X1, µ2 +X2, . . . , µk +Xk) = n+
k∑

i=1

Xi

is independent of µ, it is not difficult to see that one can eliminate all the Yi’s by
appropriate row operations.

To summarise the current state of the discussion: we have already explained
the occurrence of the product on the right-hand side of (5.107) as a factor of the
determinant. Moreover, the remaining factor is given by a determinant of the same
form as in (5.107),
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det
λ,µ

(Yλ(µ1 +X1, µ2 +X2, . . . , µk +Xk;Y1, Y2, . . .)) , (5.111)

where, as before, µ runs over all partitions in Part(n, k), but where λ runs over
partitions (λ1, λ2, . . . , λk) of size at most n, with the additional restriction that λ1 =
λ2. The final observation was that this latter determinant is in fact independent of
the Yi’s. This allows us to specify Y1 arbitrarily, say Y1 = Xk . Now another property
of double Schubert polynomials, namely that (this follows from the definition of
double Schubert polynomials by means of divided differences, see [121, (10.2.3)],
and standard properties of divided differences)

Yρ+(1,1,...,1)(X1, X2, . . . , Xk;Y1, Y2, . . .)

= Yρ(X1, X2, . . . , Xk;Y2, . . .)

k∏
j=1

(Xj − Y1) (5.112)

comes in handy. (In the vector (1, 1, . . . , 1) on the left-hand side of (5.112) there
are k occurrences of 1.) Namely, if Y1 = Xk , the matrix in (5.111) (of which the
determinant is taken), M(n, k;Y1, Y2, . . .) say, decomposes in block form. If λ is a
partition with λk > 0 and µ is a partition with µk = 0, then, because of (5.112), the
corresponding entry in (5.111) vanishes. Furthermore, in the block where λ and µ are
partitions with λk = µk = 0, because of the definition (5.106) of the quantities Sm(.)

the corresponding entry reduces to

Yλ(µ1 +X1, µ2 +X2, . . . , µk−1 +Xk−1, Xk;Xk, Y2, . . .)

= Yλ(µ1 +X1, µ2 +X2, . . . , µk−1 +Xk−1;Y2, . . .).

In other words, this block is identical with M(n, k − 1;Y2, . . .). Finally, in the block
indexed by partitions λ and µ with λk > 0 and µk > 0, we may use (5.112) to factor∏k

j=1(Xj + µj −Xk) out of the column indexed by µ, for all such µ. What remains
is identical with M(n− k, k;Y2, . . .). Taking determinants, we obtain the recurrence
(5.108). (Here we use again that the determinants in (5.111), that is, in particular, the
determinants of M(n, k;Y1, . . .), M(n, k − 1;Y2, . . .), and of M(n− k, k;Y2, . . .),
are all independent of the Yi’s.) The explicit form (5.109) for �(n, k) can be easily
derived by induction on n and k.

A few paragraphs above, we mentioned in passing another interesting determinant
of a matrix the rows and columns of which are indexed by (integer) partitions: the
determinant of the character table of the symmetric group Sn (cf. [89, Cor. 6.5]).
Since this is a classical and beautiful determinant evaluation which I missed to state
in [109], I present it now in the theorem below. There, the notation λ ( n stands for
“λ is a partition of n.” For all undefined notation, I refer the reader to standard texts
on the representation theory of symmetric groups, as for example [89,90,159].

Theorem 64. For partitions λ and ρ of n, let χλ(ρ) denote the value of the irreducible
character χλ evaluated at a permutation of cycle type ρ. Then
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det
λ,ρ(n

(
χλ(ρ)

) = ∏
µ(n

∏
i�1

µi. (5.113)

In words: the determinant of the character table of the symmetric group Sn is equal
to the products of all the parts of all the partitions of n.

A refinement of this statement, where we restrict to partitions of n with at most k
parts, is the following.

Theorem 65. With the notation of Theorem 64, for all positive integers n and k,

n � k, we have

det
λ,ρ∈Part(n,k)

(
χλ(ρ)

) = ∏
µ∈Part(n,k)

∏
i�1

mi(µ)!, (5.114)

where mi(µ) is the number of times i occurs as a part in the partition µ.

This determinant evaluation follows from the decomposition of the full character
table of Sn in the form(

χλ(ρ)
)
λ,ρ(n = L ·K−1, (5.115)

where L = (Lλ,µ)λ,µ(n is the transition matrix from power symmetric functions to
monomial symmetric functions, and where K = (Kλ,µ)λ,µ(n is the Kostka
matrix, the transition matrix from Schur functions to monomial symmetric functions
(see [130, Ch. I, (6.12)]). For, if we order the partitions of n so that the partitions
in Part(n, k) come before the partitions in Part(n, k + 1), k = 1, 2, . . . , n− 1, and
within Part(n, k) lexicographically, then, with respect to this order, the matrix L is
lower triangular and the matrix K , and hence also K−1, is upper triangular. Further-
more, the matrix K , and hence also K−1, is even block diagonal, the blocks along
the diagonal being the ones which are formed by the rows and columns indexed
by the partitions in Part(n, k), k = 1, 2, . . . , n. These facts together imply that the
decomposition (5.115) restricts to the submatrices indexed by partitions in Part(n, k),(

χλ(ρ)
)
λ,ρ∈Part(n,k) = (Lλ,µ)λ,µ∈Part(n,k) · (Kλ,µ)−1

λ,µ∈Part(n,k).

If we now take determinants on both sides, then, in view of Kµ,µ = 1 and of

Lµ,µ =
∏
i�1

mi(µ)!

for all µ, the theorem follows.
Further examples of nice determinant evaluations of tables of characters of

representations of symmetric groups and their double covers can be found in
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[25,142]. Determinants of tables of characters of the alternating group can be found
in [24].

5.11. Elliptic determinant evaluations

In special functions theory there is currently a disease rapidly spreading, general-
ising the earlier mentioned q-disease (see Footnote 20). It could be called the “elliptic
disease.” Recall that, during the q-disease, we replaced every positive integer n by
1+ q + q2 + · · · + qn−1 = (1− qn)/(1− q), and, more generally, shifted factori-
als a(a + 1) · · · (a + k − 1) by q-shifted factorials (1− α)(1− qα) · · · (1− αqk−1).
(Here, α takes the role of qa , and one drops the powers of 1− q in order to ease
notation.) Doing this with some “ordinary” identity, we arrived (hopefully) at its
q-analogue. Now, once infected by the elliptic disease, we would replace every
occurrence of a term 1− x (and, looking at the definition of q-shifted factorials,
we can see that there will be many) by its elliptic analogue θ(x;p):

θ(x) = θ(x;p) =
∞∏

j=0

(1− pjx)(1− pj+1/x).

Here, p is a complex number with |p| < 1, which will be fixed throughout. Up to
a trivial factor, θ(e2π ix; e2π iτ ) equals the Jacobi theta function θ1(x|τ) (cf. [189]).
Clearly, θ(x) reduces to 1− x if p = 0.

At first sight, one will be skeptical if this is a fruitful thing to do. After all, for
working with the functions θ(x), the only identities which are available are the (trivial)
inversion formula

θ(1/x) = −1

x
θ(x), (5.116)

the (trivial) quasi-periodicity

θ(px) = −1

x
θ(x), (5.117)

and Riemann’s (highly non-trivial) addition formula (cf. [189, p. 451, Example 5])

θ(xy)θ(x/y)θ(uv)θ(u/v)− θ(xv)θ(x/v)θ(uy)θ(u/y)

= u

y
θ(yv)θ(y/v)θ(xu)θ(x/u). (5.118)

Nevertheless, it has turned out recently that a surprising number of identities from the
“ordinary” and from the “q-world” can be lifted to the elliptic level. This is particularly
true for series of hypergeometric nature. We refer the reader to Chapter 11 of [72]
for an account of the current state of the art in the theory of, as they are called now,
elliptic hypergeometric series.

On the following pages, I give elliptic determinant evaluations a rather extensive
coverage because, first of all, they were non-existent in [109] (with the exception
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of the mention of the papers [133,134] by Milne), and, second, because I believe
that the “elliptic research” is a research direction that will further prosper in the
next future and will have numerous applications in many fields, also outside of just
special functions theory and number theory. I further believe that the determinant
evaluations presented in this subsection will turn out to be as fundamental as the
determinant evaluations in Sections 2.1 and 2.2 in [109]. For some of them this
belief is already a fact. For example, determinant evaluations involving elliptic func-
tions have come into the picture in the theory of multiple elliptic hypergeometric
series, see [95,147,152,153,155,176,187]. They have also an important role in the
study of Ruijsenaars operators and related integrable systems [81,157]. Furthermore,
they have recently found applications in number theory to the problem of count-
ing the number of representations of an integer as a sum of triangular numbers
[154].

Probably the first elliptic determinant evaluation is due to Frobenius [69, (12)].
This identity has found applications to Ruijsenaars operators [157], to multidimen-
sional elliptic hypergeometric series and integrals [95], [147] and to number theory
[154]. For a generalisation to higher genus Riemann surfaces, see [60, Cor. 2.19].
Amdeberhan [7] observed that it can be easily proved using the condensation method
(see “Method 2” in Section 4).

Theorem 66. Let x1, x2, . . . , xn, a1, a2, . . . , an and t be indeterminates. Then there
holds

det
1�i,j�n

(
θ(taj xi)

θ(t)θ(aj xi)

)

= θ(ta1 . . . anx1 . . . xn)

θ(t)

∏
1�i<j�n ajxj θ(ai/aj )θ(xi/xj )∏n

i,j=1 θ(aj xi)
. (5.119)

For p = 0 and t →∞, this determinant identity reduces to Cauchy’s evaluation
(5.5) of the double alternant, and, thus, may be regarded as an “elliptic analogue” of
the latter.

Okada [140, Theorem 1.1] has recently found an elliptic extension of Schur’s
evaluation (5.7) of a Cauchy-type Pfaffian. His proof works by the Pfaffian version
of the condensation method.

Theorem 67. Let x1, x2, . . . , xn, t and w be indeterminates. Then there holds

Pf
1�i,j�2n

(
θ(xj /xi)

θ(xixj )

θ(txixj )

θ(t)

θ(wxixj )

θ(w)

)

= θ(tx1 . . . x2n)

θ(t)

θ(wx1 . . . x2n)

θ(w)

∏
1�i<j�2n

θ(xj /xi)

xj θ(xixj )
. (5.120)
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The next group of determinant evaluations is from [156, Sec. 3]. As the Vander-
monde determinant evaluation, or the other Weyl denominator formulae (cf. [109,
Lemma 2]), are fundamental polynomial determinant evaluations, the evaluations
in Lemma 68 below are equally fundamental in the elliptic domain as they can be
considered as the elliptic analogues of the former. Indeed, Rosengren and Schlosser
show that they imply the Macdonald identities associated to affine root systems [128],
which are the affine analogues of the Weyl denominator formulae. In particular, in
this way they obtain new proofs of the Macdonald identities.

In order to conveniently formulate Rosengren and Schlosser’s determinant eval-
uations, we shall adopt the following terminology from [156]. For 0 < |p| < 1 and
t /= 0, an An−1 theta function f of norm t is a holomorphic function for x /= 0 such
that

f (px) = (−1)n

txn
f (x). (5.121)

Moreover, if R denotes either of the root systems Bn, B∨n , Cn, C∨n , BCn or Dn (see
Footnote 26 and [84] for information on root systems), we call f an R theta function
if

f (px) = − 1
pn−1x2n−1 f (x), f (1/x) = − 1

x
f (x), R = Bn,

f (px) = − 1
pnx2n f (x), f (1/x) = −f (x), R = B∨n ,

f (px) = 1
pn+1x2n+2 f (x), f (1/x) = −f (x), R = Cn,

f (px) = 1

p
n− 1

2 x2n
f (x), f (1/x) = − 1

x
f (x), R = C∨n ,

f (px) = 1
pnx2n+1 f (x), f (1/x) = − 1

x
f (x), R = BCn,

f (px) = 1
pn−1x2n−2 f (x), f (1/x) = f (x), R = Dn.

Given this definition, Rosengren and Schlosser [156, Lemma 3.2] show that a
function f is an An−1 theta function of norm t if and only if there exist constants C,
b1, . . . , bn such that b1 . . . bn = t and

f (x) = Cθ(b1x) · · · θ(bnx),

and for the other six cases, they show that f is an R theta function if and only if there
exist constants C, b1, . . . , bn−1 such that

f (x) = Cθ(x)θ(b1x)θ(b1/x) · · · θ(bn−1x)θ(bn−1/x), R = Bn,

f (x) = Cx−1θ(x2;p2)θ(b1x)θ(b1/x) · · · θ(bn−1x)θ(bn−1/x), R = B∨n ,

f (x) = Cx−1θ(x2)θ(b1x)θ(b1/x) · · · θ(bn−1x)θ(bn−1/x), R = Cn,

f (x) = Cθ(x;p 1
2 )θ(b1x)θ(b1/x) · · · θ(bn−1x)θ(bn−1/x), R = C∨n ,

f (x) = Cθ(x)θ(px2;p2)θ(b1x)θ(b1/x) · · · θ(bn−1x)θ(bn−1/x), R = BCn,

f (x) = Cθ(b1x)θ(b1/x) · · · θ(bn−1x)θ(bn−1/x), R = Dn,

where θ(x) = θ(x;p).
If one puts p = 0, then an An−1 theta function of norm t becomes a polynomial

of degree n such that the reciprocal of the product of its roots is equal to t . Similarly,
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if one puts p = 0, then a Dn theta function becomes a polynomial in (x + 1/x) of
degree n. This is the specialisation of some of the following results which is relevant
for obtaining the earlier Lemmas 16–20.

The elliptic extension of the Weyl denominator formulae is the following formula.
(See [156, Prop. 3.4].)

Lemma 68. Let f1, . . . , fn be An−1 theta functions of norm t. Then,

det
1�i,j�n

(
fj (xi)

) = CWAn−1(x), (5.122)

for some constant C, where

WAn−1(x) = θ(tx1 . . . xn)
∏

1�i<j�n

xj θ(xi/xj ).

Moreover, if R denotes either Bn, B∨n , Cn, C∨n , BCn or Dn and f1, . . . , fn are R

theta functions, we have

det
1�i,j�n

(
fj (xi)

) = CWR(x), (5.123)

for some constant C, where

WBn(x) =
n∏

i=1

θ(xi)
∏

1�i<j�n

x−1
i θ(xixj )θ(xi/xj ),

WB∨n (x) =
n∏

i=1

x−1
i θ(x2

i ;p2)
∏

1�i<j�n

x−1
i θ(xixj )θ(xi/xj ),

WCn(x) =
n∏

i=1

x−1
i θ(x2

i )
∏

1�i<j�n

x−1
i θ(xixj )θ(xi/xj ),

WC∨n (x) =
n∏

i=1

θ(xi;p 1
2 )

∏
1�i<j�n

x−1
i θ(xixj )θ(xi/xj ),

WBCn(x) =
n∏

i=1

θ(xi)θ(px2
i ;p2)

∏
1�i<j�n

x−1
i θ(xixj )θ(xi/xj ),

WDn(x) =
∏

1�i<j�n

x−1
i θ(xixj )θ(xi/xj ).

Rosengren and Schlosser show in [156, Prop. 6.1] that the famous Macdonald
identities for affine root systems [128] are equivalent to special cases of this lemma.
We state the corresponding results below.
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Theorem 69. The following determinant evaluations hold:

det
1�i,j�n

(
x
j−1
i θ((−1)n−1pj−1txn

i ;pn)
)
= (p;p)n∞

(pn;pn)n∞
WAn−1(x),

det
1�i,j�n

(
x
j−n
i θ(pj−1x2n−1

i ;p2n−1)− x
n+1−j
i θ(pj−1x1−2n

i ;p2n−1)
)

= 2(p;p)n∞
(p2n−1;p2n−1)n∞

WBn(x),

det
1�i,j�n

(
x
j−n−1
i θ(pj−1x2n

i ;p2n)− x
n+1−j
i θ(pj−1x−2n

i ;p2n)
)

= 2(p2;p2)∞(p;p)n−1∞
(p2n;p2n)n∞

WB∨n (x),

det
1�i,j�n

(
x
j−n−1
i θ(−pjx2n+2

i ;p2n+2)− x
n+1−j
i θ(−pjx−2n−2

i ;p2n+2)
)

= (p;p)n∞
(p2n+2;p2n+2)n∞

WCn(x),

det
1�i,j�n

(
x
j−n
i θ(−pj− 1

2 x2n
i ;p2n)− x

n+1−j
i θ(−pj− 1

2 x−2n
i ;p2n)

)

= (p
1
2 ;p 1

2 )∞(p;p)n−1∞
(p2n;p2n)n∞

WC∨n (x),

det
1�i,j�n

(
x
j−n
i θ(−pjx2n+1

i ;p2n+1)− x
n+1−j
i θ(−pjx−2n−1

i ;p2n+1)
)

= (p;p)n∞
(p2n+1;p2n+1)n∞

WBCn(x),

det
1�i,j�n

(
x
j−n
i θ(−pj−1x2n−2

i ;p2n−2)+ x
n−j
i θ(−pj−1x2−2n

i ;p2n−2)
)

= 4(p;p)n∞
(p2n−2;p2n−2)n∞

WDn(x), n � 2.

Historically, aside from Frobenius’ elliptic Cauchy identity (5.119), the subject
of elliptic determinant evaluations begins with Warnaar’s remarkable paper [187].
While the main subject of this paper is elliptic hypergeometric series, some elliptic
determinant evaluations turn out to be crucial for the proofs of the results. Lemma 5.3
from [187] extends one of the basic determinant lemmas listed in [109], namely [109,
Lemma 5], to the elliptic world, to which it reduces in the case p = 0. We present
this important elliptic determinant evaluation in the theorem below.
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Theorem 70. Let x1, x2, . . . , xn, a1, a2, . . . , an be indeterminates. For each j =
1, . . . , n, let Pj (x) be a Dj theta function. Then there holds

det
1�i,j�n


Pj (xi)

n∏
k=j+1

θ(akxi)θ(ak/xi)




=
n∏

i=1

Pi(ai)
∏

1�i<j�n

ajx
−1
j θ(xj xi)θ(xj /xi). (5.124)

Warnaar used this identity to obtain a summation formula for a multidimensional
elliptic hypergeometric series. Further related applications may be found in [152,153,
155,176]. The relevant special case of the above theorem is the following (see [187,
Cor. 5.4]). It is the elliptic generalisation of [109, Theorem 28]. In the statement, we
use the notation

(a; q, p)m = θ(a;p)θ(aq;p) · · · θ(aqm−1;p), (5.125)

which extends the notation for q-shifted factorials to the elliptic world.

Theorem 71. Let X1, X2, . . . , Xn, A, B and C be indeterminates. Then, for any
non-negative integer n, there holds

det
1�i,j�n

(
(AXi; q, p)n−j (AC/Xi; q, p)n−j

(BXi; q, p)n−j (BC/Xi; q, p)n−j

)

= (Aq)

(
n

2

) ∏
1�i<j�n

Xjθ(Xi/Xj )θ(C/XiXj )

×
n∏

i=1

(B/A; q, p)i−1
(
ABCq2n−2i; q, p)

i−1

(BXi; q, p)n−1 (BC/Xi; q, p)n−1
. (5.126)

Theorem 29 from [109], which is slightly more general than [109, Theorem 28],
can also be extended to an elliptic theorem by suitably specialising the variables in
Theorem 70.

Theorem 72. LetX1, X2, . . . , Xn,Y1, Y2, . . . , Yn,AandB be indeterminates.Then,
for any non-negative integer n, there holds

det
1�i,j�n

(
(XiYj ; q, p)j

(
AYj/Xi; q, p

)
j

(BXi; q, p)j (AB/Xi; q, p)j

)
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= q

2

(
n

3

)
(AB)

(
n

2

) ∏
1�i<j�n

θ(XjXi/A)θ(Xj/Xi)

×
n∏

i=1

(ABYiq
i−2; q, p)i−1

(
Yi/Bqi−1; q, p)

i−1

Xi−1
i (BXi; q, p)n−1 (AB/Xi; q, p)n−1

. (5.127)

Another, very elegant, special case of Theorem 70 is the following elliptic Cauchy-
type determinant evaluation. It was used by Rains [147, Sec. 3] in the course of
deriving a BCn ↔ BCm integral transformation.

Lemma 73. Let x1, x2, . . . , xn and a1, a2, . . . , an be indeterminates. Then there
holds

det
1�i,j�n

(
1

θ(aj xi)θ(aj /xi)

)

=
∏

1�i<j�n ajx
−1
j θ(xj xi)θ(xj /xi)θ(aiaj )θ(ai/aj )∏n
i,j=1 θ(aj xi)θ(aj /xi)

. (5.128)

The remaining determinant evaluations in the current subsection, with the excep-
tion of the very last one, are all due to Rosengren and Schlosser [156]. The first
one is a further (however non-obvious) consequence of Theorem 70 (see [156, Cor.
4.3]). Two related determinant evaluations, restricted to the polynomial case, were
applied in [162] and [164] to obtain multidimensional matrix inversions that played a
major role in the derivation of new summation formulae for multidimensional basic
hypergeometric series.

Theorem 74. Letx1, x2, . . . , xn, a1, a2, . . . , an+1,andb be indeterminates.For each
j = 1, . . . , n+ 1, let Pj (x) be a Dj theta function. Then there holds

Pn+1(b) det
1�i,j�n


Pj (xi)

n+1∏
k=j+1

(θ(akxi)θ(ak/xi))

−Pn+1(xi)

Pn+1(b)
Pj (b)

n+1∏
k=j+1

(θ(akb)θ(ak/b))




=
n+1∏
i=1

Pi(ai)
∏

1�i<j�n+1

ajx
−1
j θ(xj xi)θ(xj /xi), (5.129)

where xn+1 = b.

The next determinant evaluation is Theorem 4.4 from [156]. It generalises another
basic determinant lemma listed in [109], namely Lemma 6 from [109], to the elliptic
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case. It looks as if it is a limit case of Warnaar’s in Theorem 70. However, limits are
very problematic in the elliptic world, and therefore it does not seem that Theorem 70
implies the theorem below. For a generalisation in a different direction than Theorem
70 see [182, Appendix B] (cf. also [156, Remark 4.6]).

Theorem 75. Let x1, x2, . . . , xn, a1, a2, . . . , an, and t be indeterminates. For each
j = 1, . . . , n, let Pj (x) be an Aj−1 theta function of norm ta1 . . . aj . Then there holds

det
1�i,j�n


Pj (xi)

n∏
k=j+1

θ(akxi)




= θ(ta1 . . . anx1 . . . xn)

θ(t)

n∏
i=1

Pi(1/ai)
∏

1�i<j�n

ajxj θ(xi/xj ). (5.130)

As is shown in [156, Cor. 4.8], this identity implies the following determinant
evaluation.

Theorem 76. Let x1, x2, . . . , xn, a1, a2, . . . , an+1 and b be indeterminates. For each
j = 1, . . . , n+ 1, let Pj (x) be an Aj−1 theta function of norm ta1 . . . aj . Then there
holds

Pn+1(b) det
1�i,j�n


Pj (xi)

n+1∏
k=j+1

θ(akxi)− Pn+1(xi)

Pn+1(b)
Pj (b)

n+1∏
k=j+1

θ(akb)




= θ(tba1 . . . an+1x1 . . . xn)

θ(t)

n+1∏
i=1

Pi(1/ai)
∏

1�i<j�n+1

ajxj θ(xi/xj ),

(5.131)

where xn+1 = b.

By combining Lemma 73 and Theorem 75, a determinant evaluation similar to the
one in Theorem 74, but different, is obtained in [156, Theorem 4.9].

Theorem 77. Letx1, x2, . . . , xn, a1, a2, . . . , an,and c1, . . . , cn+2 be indeterminates.
For each j = 1, . . . , n, let Pj (x) be an Aj−1 theta function of norm (c1 . . . cn+2aj+1
. . . an)

−1. Then there holds

det
1�i,j�n


x−n−1

i Pj (xi)

n+2∏
k=1

θ(ckxi)

n∏
k=j+1

θ(akxi)− xn+1
i Pj (x

−1
i )

×
n+2∏
k=1

θ(ckx
−1
i )

n∏
k=j+1

θ(akx
−1
i )



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= a1 . . . an

x1 . . . xnθ(c1 . . . cn+2a1 . . . an)

n∏
i=1

Pi(1/ai)

×
∏

1�i<j�n+2

θ(cicj )

n∏
i=1

θ(x2
i )

∏
1�i<j�n

ajx
−1
i θ(xixj )θ(xi/xj ). (5.132)

The last elliptic determinant evaluation which I present here is a surprising elliptic
extension of a determinant evaluation due to Andrews and Stanton [13, Theorem 8]
(see [109, Theorem 42]) due to Warnaar [187, Theorem 4.17]. It is surprising because
in the former there appear q-shifted factorials and q2-shifted factorials at the same
time, but nevertheless there exists an elliptic analogue, and to obtain it one only has
to add the p everywhere in the shifted factorials to convert them to elliptic ones.

Theorem 78. Let x and y be indeterminates. Then, for any non-negative integer n,

there holds

det
0�i,j�n−1

(
(y/xqi; q2, p)i−j (q/yxq

i; q2, p)i−j (1/x2q2+4i; q2, p)i−j

(q; q, p)2i+1−j (1/yxq2i; q, p)i−j (y/xq1+2i; q, p)i−j

)

=
n−1∏
i=0

(x2q2i+1; q, p)i(xq
3+i/y; q2, p)i(yxq

2+i; q2, p)i

(x2q2i+2; q2, p)i(q; q2, p)i+1(yxq1+i; q, p)i(xq2+i/y; q, p)i
.

(5.133)

In closing this final subsection, I remind the reader that, as was already said before,
many Hankel determinant evaluations involving elliptic functions can be found in
[133] and [134].
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