
Dissipative Arithmetic

William B. Langdon

Department of Computer Science
University College London
Gower Street, London WC1E 6BT, UK
www.cs.ucl.ac.uk/staff/W.Langdon

Large arithmetic expressions are dissipative: they lose information and
are robust to perturbations. Lack of conservation gives resilience to fluc-
tuations. The limited precision of floating point and the mixture of lin-
ear and nonlinear operations make such functions anti-fragile and give
a largely stable locally flat plateau a rich fitness landscape. This slows
long-term evolution of complex programs, suggesting a need for depth-
aware crossover and mutation operators in tree-based genetic program-
ming. It also suggests that deeply nested computer program source code
is error tolerant because disruptions tend to fail to propagate, and there-
fore the optimal placement of test oracles is as close to software defects
as practical.

Keywords: information loss; irreversible computing; entropy;
evolvability; arithmetic; software mutational robustness; optimal test
oracle placement; evolution of complexity; data dependent
computational irreducibility; effective computational equivalence;
experimental mathematics; algorithmic information dynamics

Introduction1.

Genetic programming (GP) [1] aims to evolve programs from scratch.
Typically a program is represented as a tree structure, to which vari-
ous operations are applied, such as subtree replacement and subtree
exchange with another program. In the following experiments, we
observe that for arithmetic expressions, many such changes do not
change the program’s output and find this is often due to the impreci-
sion of floating-point arithmetic. This means that the runtime disrup-
tion caused by such a change did not propagate to the root of the GP
tree that represents a given program, thus hiding a possible error. By
sampling uniformly the space of large arithmetic expressions com-
posed of the four common operators (+, -,  and ÷), we show
changes usually do not impact expressions’ values, and so large arith-
metic expressions are resilient to change. Furthermore, even testing as
many as a thousand test points (uniformly selected in the range -1.0
to +1.0), the disruption caused by changes to the rational functions
on average penetrates only about 60 levels of nesting in a GP tree,

https://doi.org/10.25088/ComplexSystems.31.3.287

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://doi.org/10.25088/ComplexSystems.31.3.287

and so changes are often invisible outside the expression. (The median
impact of disruption is about 16 genetic programming tree levels,
rather than 60, if the expression is not protected against divide by
zero, see Section 6.) With fewer tests (i.e., a weaker test oracle),
changes impact fewer levels. However, with such a large number of
tests, chance disruption close to the outermost part of the expression
(the root node) may indeed have a sizeable effect. The effects of the
introduced error progressively fail to propagate across the expression,
as the four computer arithmetic operators are dissipative.

In an idealized infinite-precision computer, in some cases such
small changes might be visible. However, if the injected perturbation
is sufficiently far from the top of the expression, real computer
effects, such as limited precision and rounding error, tend to act to
smooth away such changes.

From an evolutionary point of view [1, 2], large complex expres-
sions are robust and present a smooth fitness landscape where many
mutations have no discernible impact. While we deal exclusively with
arithmetic expressions, there is growing evidence that this is true of
programming in general [3, 4].

In the next two sections, we continue the introduction. First, to con-
sider the implications for software engineering (Section 2.1) and very
long-term digital evolution of complexity (2.2). Then Section 3
describes the connected areas of computational irreducibility (3.1),
experimental mathematics (3.2) and algorithmic information dynam-
ics (3.3). Sections 4 and 5 detail how we sample the space of large
nested expressions and their neighbors. In the two experimental sec-
tions (Sections 6 and 7), numbers and operations are represented as
floating-point numbers and operations. We create large arithmetic
expressions, make small changes to them and trace the impact of the
change. In most cases, the impact dies away before it can affect any-
thing outside the expression.

Motivation2.

Interest in large expressions stems from two concerns. First, the test
oracle placement problem [5], and second, the evolution of complex
behavior in long-term evolution experiments (LTEE) [6].

Information Loss in Deeply Nested Software Impacts Testing2.1

In software engineering, the test oracle problem [7] is well known.
However, there has been less research on where to place test oracles.
Essentially the oracle problem is: when testing software, not only
must we have test inputs for the code being tested but we must have
an oracle that “knows” the correct answer. For example, we might
have test strings “A” and “B” for a string concatenation program and

288 W. B. Langdon

Complex Systems, 31 © 2022

a test oracle that checks the output “AB” is generated. The oracle
itself can sometimes be somewhat automated, for example, using
metamorphic testing [8] and implicit oracles [7]. For example, a pro-
gram to find the cube root might check that the return value when
multiplied by itself three times is (within suitable precision bounds)
the same as the test input [9]. Implicit oracles include: Did the pro-
gram crash? Did the program complete in a reasonable time? Did it
return a value at all?

In terms of these experiments, we find that the more deeply nested
an error is, the more chance that it will not be visible at the program’s
output. This suggests that the best place to check to see if the soft-
ware being tested contains an error is as close to the error as possible.
In terms of practical software, rather than the pure functions used
here, we see in many circumstances software engineers already try to
do this with unit testing. In unit testing, values calculated in small pro-
gram modules are checked immediately, rather than after the whole
program has finished. These results motivate this and further recom-
mend, where feasible, inserting test oracles inside software units. With
increasing use of automatic testing, it may be feasible to use many
closely spaced test oracles, which thus have a higher chance of detect-
ing errors.

Excessive Robustness of Deep Trees Hampers LTEE Evolution

of Complexity
2.2

Recently we have shown that over many thousands, even a million
generations, artificial evolution, specifically GP [1, 2], can continue to
find improvements, but that the rate of improvement may slow [10,
11]. As expected, the size of the programs also grows. This led to this
investigation to see if the reduction in the speed of evolution can be
tied to the nature of the evolving artifacts. Essentially, we find that
the GP system evolves into a very robust region of the search space,
where most small moves in the space have absolutely no impact on
performance. We suggest that this relates to the depth of the pro-
grams rather than their size. Should this occur in a GP system, most
children produced by conventional GP genetic operations would have
the same fitness as their parents and the population would converge,
in the sense that even though each tree is unique, everyone has the
same fitness and there is no useful evolution until a random lucky
genetic change near the output of a tree disrupts fitness [12, 13].

Connected Areas3.

Data-Dependent Computational Irreducibility3.1

We can view arithmetic expressions as being computations. Indeed,
the trees shown in Figures 1, 3, 5, 8 and 12 are programs or subpro-
grams that recursively evaluate the value of an expression. Usually

Dissipative Arithmetic 289

https://doi.org/10.25088/ComplexSystems.31.3.287

https://doi.org/10.25088/ComplexSystems.31.3.287

they can be reduced to simpler expressions; that is, they are not com-
putationally irreducible [14, 15]. For example, the lower part of Fig-
ure 1 (SUB (SUB 0.211 (ADD X -0.01)) X) can be reduced to
0.221-2X. Some expressions or subexpressions are always reducible.
For example, 0.211 - -0.01 should always be 0.221, and similarly
-X+-X should always be -2X. However, sometimes computations
can be reduced using knowledge of their input data. For example,

x (((0.897 + -0.875) ((0.211 - x + -0.01) - x)) ÷ -0.132) - 0.995

(see again Figure 1) can be reduced to 0 if it is known x  0. That is,
programs might be computationally irreducible in general but compu-
tationally reducible for some datum or set of test input data.

In Sections 6 and 7, we use test cases to show in many circum-
stances large expressions are effectively computationally equivalent
(i.e., on the test cases) to other large expressions that are slightly dif-
ferent from them. That is, the larger expression is not computation-
ally irreducible for at least some test data, as it gives the same results
as the smaller expression.

Figure 1. Example subexpression

x (((0.897 + -0.875) ((0.211 - x + -0.01) - x)) ÷ -0.132) - 0.995

as a tree (fun 5 from Table 1). Value of expression is given by the root node,
here MUL, at the top. Plotted as yellow line in Figure 2.

290 W. B. Langdon

Complex Systems, 31 © 2022

Test Depth Change

Max Mean depth size function

0 435 245.7 254 1 X

replaced by fun 0 1 X

1 386 202.7 377 1 X

replaced by fun 1 1 X

2 235 125.6 141 3 (SUB X -0.263)

replaced by fun 2 1 -0.615

3 365 186.2 330 1 -0.67

replaced by fun 3 1 X

4 305 140.9 102 1 X

replaced by fun 4 1 -0.052

5 337 197.9 314 1 X

replaced by fun 5 17 (MUL X (SUB (DIX (MUL (ADD

0.897 -0.875) (SUB (SUB 0.211

(ADD X -0.01)) X)) -0.132) 0.995))

6 398 193.5 216 1 0.015

replaced by fun 6 15 (MUL (DIX (MUL (MUL X -0.803)
(SUB (MUL 0.255 (DIX X X))

0.389)) -0.756) -0.546)

7 358 156.8 152 1 -0.725

replaced by fun 7 13 (SUB (DIX X (DIX (SUB -0.016

(DIX -0.003 (DIX -0.399 -0.194)))
0.436)) 0.24)

8 283 145.6 76 1 X

replaced by fun 8 1 0.12

9 444 233.0 46 9 (SUB X (ADD (ADD -0.272 X)

(SUB X X)))

replaced by fun 9 1 X

Table 1. Ten changes. Left: depth and average depth of each of the tree’s
nodes for 10 sampled trees, each representing arithmetic expressions with

25 001 nodes (Section 4). Right: uniformly selected changes (Section 5).
Column 4 shows the depth of the uniformly chosen change site, while
columns 5 and 6 show the removed subexpression and its replacement. DIX
is either normal or protected division, depending on the experiment. (See also
Figures 1 and 2.)

Dissipative Arithmetic 291

https://doi.org/10.25088/ComplexSystems.31.3.287

https://doi.org/10.25088/ComplexSystems.31.3.287

Figure 2. Eight pairs of changes plotted as functions of x. By chance, changes
to functions 0 and 1 both replace x with x and are not plotted (see Table 1).
Inserted subexpressions are plotted with lines and crosses. Horizontal lines
indicate constants. Labels on the left margin indicate constant values that are
removed. Labels on the right indicate constants that are inserted. In three
examples, x is removed and in two, x is inserted. These are plotted on top of

each other along the diagonal. In fun 7, the constant -0.725 is replaced by a

randomly chosen linear function -29.9835x - 0.24 (near vertical line).

Experimental Mathematics3.2

Experimental mathematics [14] is a branch of mathematics that
instead of using only pure reasoning uses experimental investigation
to gain insight, which may then lead to formal proof. For example,
Simon Plouffe’s 1995 discovery of the BBP formula [16] for the
binary digits of π was achieved by computerized search followed by
formal proof. In the mathematical tradition, we need to proceed with
caution, as there are situations where formulas are initially correct in
the numerical sense for the first 10000 cases, but then found to fail

for the 14 235th case [17]. In our experiments we are on firm ground
since we are specifically targeting 32-bit precision. Although it would
be nice to extend these results with formal proofs, the mathematics of
floating-point arithmetic, overflow and rounding errors is notoriously
difficult.

Algorithmic Information Dynamics3.3

Algorithmic information dynamics [18–20], based on algorithmic
“Solomonoff” probability, generates programs and so is more general
than functions. In Section 4 onward, we deal with perturbations to
functions (which are a proper subset of the set of algorithmics).

292 W. B. Langdon

Complex Systems, 31 © 2022

Notice algorithmic probability leads directly to a strong preference
for generating simpler models and so follows Occam’s razor, in con-
trast to GP, where regularization often needs to be added as part of
bloat control [2].

Uniformly Sampling Large Arithmetic Expressions4.

All the experiments sample uniformly the space of expressions with
12 500 arithmetic operators [21]. As all four operators have two
inputs, the expressions are binary trees with 12 500 internal nodes
and 12501 leaves (or external nodes). For a particular input x, the
value of the whole expression is the value calculated by the operator
that is the root node of the tree. (Figure 3 contains an example
expression.)

Figure 3. Expression 0 presented as a binary tree of 25 001 nodes (depth
435). Root node at top.

We start with a bare tree. It has been chosen uniformly at random
from all the binary trees of size exactly 25 001. We chose the total
tree size to be 25001 (internal + external nodes), as such trees on aver-

age have depth close to 2π size ≈ 400 (Flajolet and Oldyzko [22]),

Dissipative Arithmetic 293

https://doi.org/10.25088/ComplexSystems.31.3.287

https://doi.org/10.25088/ComplexSystems.31.3.287

and previous work with evolved trees showed that, on average, typi-
cally the impact of mutations was lost after traversing about 100 func-
tions [23].

We then convert it into a program by labeling each internal node
with a function name (chosen at random) and label each external
node with the name of a leaf. The leaves are either the input variable
x or one of the constants. We use GPquick [24]. GPquick limits the
number of constants to 250. In this experiment, the constants all have
three digits, for example, -0.123, and are sampled from the range
[-1, 1]. Before the experiment starts, we select (without replacement)
250 such constants, which we use in the (program) tree.

As a reminder, each binary tree’s size is 25001, and so it contains
12 500 functions and 12501 leaves. For the leaves we only have x
and 250 as constants, so we are bound to reuse. That is, the tree will
have multiple copies of some constants and multiple copies of x.
We choose to use x half the time, so on average, each tree will contain
about 6250 copies of x in its leaf nodes. These will be scattered
randomly.

We repeat the procedure 10 times and report results for 10 such
randomly sampled trees. By chance, none of the special values -1.0,
0, or +1.0 are included. However, as we shall see in Section 6, the spe-
cial value 0 is often present within the sampled arithmetic expressions
(i.e., subtrees), due to subexpressions like x - x.

Sampling Changes5.

A site for each change is selected uniformly from each large expres-
sion. The subexpression at that location is removed and replaced by
another subexpression. The inserted subexpression is similarly chosen
uniformly from a large expression of the same size (i.e., 25 001
nodes). Table 1 describes the selected changes. The changes are
plotted in Figure 2. The same changes are used in both the normal
(Section 6) and the protected division (Section 7) experiments. Notice,
by chance, change 9 is closest to the root node of its expression.

Each change is subsequently evaluated on a set of 1001 test cases,
that is, values for x. These are selected uniformly in the range [-1, 1]
every 0.002 (e.g., 0.124). The value obtained at the root node of the
unmodified tree is taken as ground truth.

Experiment I: Impact of Divide by Zero 6.

The 10 created expressions (without mutation) contain on average
3125 divisions (i.e., 12 500 / 4) and about 195.3 x - x (i.e., about

294 W. B. Langdon

Complex Systems, 31 © 2022

12 500 / (444)). Thus we encounter divide by zero. In floating-
point arithmetic, this is commonly (as here) handled by division
returning a special value representing ± infinity. All four floating-

point operators deal with inf appropriately. That is, typically, if one
of their arguments is infinity, then so too is their output. Thus infinity
is propagated up the tree and typically the (floating-point) expression
as a whole yields infinity. The output of the 10 selected large expres-
sions is plotted for the input x range -1.0 to +1.0 in Figure 4. Eight
of the 10 selected large expressions are shown in Figure 5. None of
the 10 always give finite numbers, although one gives values between
-100.0 and +100.0 on many test cases and one gives zero in all but

one test case (where it gives -nan). In Section 7 we deal with this by
“protecting” division from divide by zero errors.

Figure 4. Ten large uniformly selected floating-point functions. Vertical axis
has been linearly rescaled to plot very different output ranges on the same

axis. Seven give -nan. Tree 4 gives either ±inf or -nan (light blue). Tree 1

gives either ±0 or -nan (green) and Tree 0 gives mostly numbers between

-100 and +100, although it too can give ±inf and -nan (red).

Another common situation is multiply by zero. In floating-point
arithmetic, multiply by zero yields ± zero. (For most purposes, the
two types of floating-point zero are equivalent.) So again, multiply by
zero destroys all the information about its other argument. However,
zero is not as “sticky” as infinity, and the linear operators (+ and -)
can readily transform zero into other numbers. Hence, typically, large
trees do not yield zero for all inputs. With multiply by zero, it is
easy to see why disruption to a subexpression can become invisible
externally.

Dissipative Arithmetic 295

https://doi.org/10.25088/ComplexSystems.31.3.287

https://doi.org/10.25088/ComplexSystems.31.3.287

Expression 2 (depth 235) Expression 3 (depth 365)

Expression 4 (depth 305) Expression 5 (depth 327)

Expression 6 (depth 398) Expression 7 (depth 358)

Figure 5. (continues)

Each expression underwent a random mutation (i.e., disruption),
as described in the previous section. None of the disruptions changed
the value of the 10 expressions at the root node, yet within the tree
changes are observed to the various subexpressions where the change
took place. Figure 2 shows uniformly selected small changes to the 10
large functions. We need only plot the changes once, even though we
use protected division in Section 7, as the small functions are not only
syntactically the same in both this section and in Section 7, but (in
these data ranges) they are also semantically the same. That is, Fig-
ure 2 applies to this section and to Section 7.

296 W. B. Langdon

Complex Systems, 31 © 2022

Expression 8 (depth 283) Expression 9 (depth 444)

Figure 5. Expressions 2 through 9 presented as binary trees of 25001 nodes.
Root nodes at top. Color indicates disrupted nodes. Blue nodes show subex-
pressions where at least one test case produces a different internal value as a
result of the change with both normal and protected division. Green nodes
(uppermost shaded nodes) show subexpressions where at least one test case is
different when using division protected against divide by zero. Note here ordi-
nary division is disrupted less than protected division.

Examples of Error Hiding: Multiply by Zero and Infinity and
in General

6.1

Here we discuss how an error might not propagate to the root node,
then present in detail how disruption failed to propagate in our 10
example trees.

If a leaf 0.125 is changed to 0.525, then it is as if an error of 0.4 is
injected into the expression at that point. In a small expression, this
might be easily observed. In a large expression, the 0.4 error is trans-
formed by each function it passes through. In general, the error may
become bigger or smaller. However, if it encounters a multiply by
zero, the  result will be 0 regardless of the error. At this point, the
error has vanished.

Notice the same can happen if the error encounters an infinity. For
example, a+ inf  inf and also (a+ error) + inf  inf . So again, the
error vanishes and cannot be observed externally.

As we will see, multiply by zero and arithmetic on infinity are not
the only reasons why a change may not affect the total result of an
expression. Even under ideal conditions, floating-point arithmetic
loses about half a bit of precision at each operation. So disruption is
progressively suppressed. As the expressions are hierarchical, once dis-
ruption on a test case is lost (i.e., an internal function yields the same

Dissipative Arithmetic 297

https://doi.org/10.25088/ComplexSystems.31.3.287

https://doi.org/10.25088/ComplexSystems.31.3.287

answer before and after the change), it cannot be reintroduced higher
in the tree (i.e., the number of disrupted test cases falls monotoni-
cally). This continued interference of finite computing means the
impact of even large errors can be totally lost in large expressions.
Next, we discuss disruption propagation failures in our examples.

Figure 6 shows the fall in disruption of test cases as we move away
from the disruption (i.e., as we move up the tree toward the root
node). Figure 7 shows the same thing. But instead of counting the
number of test cases that are not identical, Figure 7 plots the average
difference before and after the change in the values inside each of the
large expressions.

Figure 6. Fall in impact of eight changes with distance from disruption
(functions 0 and 1 cause no disruption as both replace x with x and so are
not plotted). Colors are the same as in Figure 2 and others.

For two changes (fun 0 and fun 1), by chance, there is no disrup-
tion, as they both replace x by itself (not plotted). For five changes,
disruption is halted by encountering an infinity and in two more by a
multiply by zero (see string of blue nodes in Figure 5). Even in the
remaining example, fun 7, disruption is rapidly quenched.

As expected, the fall in test case failures is monotonic (Figure 6).
However, root mean square (RMS) differences in values of affected
subexpressions can rise and can fall (Figure 7), but RMS must be zero
when values on all test cases are identical. For one example, fun 3,

although the change is finite, it is immediately added to ±inf, so the

ADD function yields ±inf regardless of the change, and fun 3’s disrup-
tion does not propagate. In four more examples (fun 4, 6, 8 and 9),

298 W. B. Langdon

Complex Systems, 31 © 2022

Figure 7. Change in impact, as measured by RMS difference on test cases, of
eight changes with distance from disruption. In one change, fun 2, the float-
ing-point difference on all test cases is zero (±0) after passing through 21
functions; however, two more functions are required to ensure exact binary
equality. Note nonlinear scale.

the disruption spreads a little way before reaching an operation

whose other argument is ±inf. In two others (fun 2 and 5), the disrup-
tion is suppressed effectively by a multiply by zero. The remaining
change, fun 7, Section 7, is more complicated, but here too disruption
is quickly suppressed.

Explaining Lack of Impact of Change 76.2

Table 1 shows that at 13 nodes, change 7 is one of the larger syntactic
changes. Indeed, the orange line in Figure 2 shows it also produces a
large change in behavior at the change site. (Change 7 replaces a
constant by a large multiple of x.) See also Figure 8. At the point of
disruption, all the test cases are different and the RMS difference can

be estimated from the original constant b and the linear function
mx + a that replaces it (see caption of Figure 2). Setting

m  -29.9835, a  -0.24 and b  -0.725 and approximating the
sum over n test cases by an integral over -1 to +1 gives:

Dissipative Arithmetic 299

https://doi.org/10.25088/ComplexSystems.31.3.287

https://doi.org/10.25088/ComplexSystems.31.3.287

RMSfun 7 
1

n


n

(-29.9835xi - 0.24 - -0.725)2

≈
1

2

-1

+1

(mx + a - b)2


1

2

-1

+1

m2x2 + 2m(a - b)x + (a - b)2


1

2
m2x3  3 + (a - b)2x

-1

+1


1

2
2m2  3 + 2(a - b)2

 m2  3 + (a - b)2

 17.3178.

(1)

This compares well with the actual value 17.335 obtained over a
finite set of test cases (first orange line in Figure 7).

The next function up the tree toward the root node is an addition
(Figure 8). Since this is linear, neither the number of test cases nor the
RMS difference changes (see first orange line in Figures 6 and 7).
Next is a multiply, whose other argument is -0.003 x. This means for
x  0, the multiply node both before and after the change gives zero.
This means that for the test case x  0, the whole expression will give
the same value before and after the change. Also the RMS difference
at the multiply node is dramatically reduced (very approximately by a
ratio of 0.003, Figure 7). The next three functions are linear and do
not change either the number of test cases whose evaluation at each
of the three functions is different before and after the change or the
RMS difference. Immediately above them is a subtraction, whose
other subtree is large and contains several divisions. It never gives

finite values. (In fact, on these test cases it evaluates to ±inf or -nan.)
Therefore so too does the subtraction. Notice that this particular
node (only six levels above change 7) gives identical answers before
and after the change and therefore immediately suppresses the remain-
ing disruption caused by change 7.

300 W. B. Langdon

Complex Systems, 31 © 2022

Figure 8. Fragment of change 7 with unprotected division. (Shown in full in

Figure 5.) The original constant -0.725 is replaced by the subexpression
(SUB (DIV X (DIV (SUB -0.016 (DIV -0.003 (DIV -0.399 -0.194))) 0.436))
0.24) in red (here DIV is ordinary unprotected division). The blue nodes show
operations in the original expression where their value on at least one test
case is different before and after change 7. The white nodes indicate the evalu-
ation is unchanged. The value of the new subexpression is given its topmost
node (the topmost red SUB), and plotted as a function of x as the near-
vertical line in Figure 2. Section 6.2 explains why disruption stops after six
blue nodes, and so the red change makes no externally visible difference.

Experiment II: Protected Division7.

The problem of division by zero is well known in GP and is typically
treated by “protecting” division [1, 2]. When the denominator is zero,
the divide (DIV) operator is defined to return 1.0. We repeat the
experiments in Section 6 with ordinary division replaced by protected
division.

Dissipative Arithmetic 301

https://doi.org/10.25088/ComplexSystems.31.3.287

https://doi.org/10.25088/ComplexSystems.31.3.287

Contrasting Figures 4 and 9, we can see this simple change makes a
dramatic difference in the values calculated by large expressions.
However, although it takes the now infinity-free expressions longer to
suppress the changes, passing the disruption through the arithmetic
expression continues to suppress it. Contrasting Figures 6 and 7 with
Figures 10 and 11 shows the average number of levels needed to
totally hide a change has increased from 16 to 60.

Figure 5 shows results for both unprotected and protected division.
Figure 5 shows the quick suppression of changes without protection
against divide by zero as blue nodes, and with protected division as
blue followed by green nodes.

In four changes (fun 2, 3, 7 and 8), the disruption is eventually
caught by encountering a zero as the other argument. In three changes
(fun 4, 5 and 6), the test cases are disabled progressively. This is also
true of the last one, fun 9, but this is the only example where the dis-
ruption is not totally suppressed within the expression.

Figure 10 shows that indeed the number of test cases that are dis-
rupted can remain the same or fall but can never rise. While Figure 11
shows, as expected, RMS differences can rise and fall.

Figure 9. Ten large floating-point functions. Same expressions as Figure 4,
except divide by zero is protected (Section 7). Vertical axis has been linearly
rescaled to plot very different output ranges on the same axis. Here all
outputs are finite. Tree 1 always gives 0 (green) but the other nine vary
widely. (Note despite protecting divide by zero, rational functions often have
discontinuities.)

302 W. B. Langdon

Complex Systems, 31 © 2022

Figure 10. Fall in impact of eight changes with distance from disruption
(functions 0 and 1 cause no disruption as both replace x with x and so are
not plotted). As expected, the fall in test case failures is monotonic. Only
fun 9 does not reach zero. Colors are the same as in Figure 2 and others.

Figure 11. Change in impact, as measured by root mean squared difference
on test cases, of eight changes with distance from disruption. Note nonlinear
scale.

Dissipative Arithmetic 303

https://doi.org/10.25088/ComplexSystems.31.3.287

https://doi.org/10.25088/ComplexSystems.31.3.287

With the less dissipative functions, one change (9) is now visible on
some test cases externally. This is because change 9 is not deeply
nested inside its expression. (Table 1 shows it is only at depth 46.)
Instead, although the change is suppressed on some test cases, there is
not enough distance between the change location and the outside of
the expression to suppress them all.

Explaining Lack of Impact of Change 4 with Protected Division7.1

We choose change 4 as a second example to explain in detail because
it cannot be explained as simply reaching an infinity or a multiply by
zero and because its disruption passes through one of the longer
chains of operations before being lost entirely. Figures 10 and 11 plot
the gradual loss of disruption of change 4 and show on these test
cases it is totally suppressed after 92 floating-point arithmetic opera-
tions. However, we shall not discuss in detail each of these 92 but
concentrate on the first few, which hide change 4 on 86 test cases
(Figure 12).

Change 4 is to replace the input x with the constant -0.052
(Table 1). In Figure 2, the original subexpression (x) is plotted along
the diagonal, which makes it hard to see, as four other lines are also
plotted along the diagonal. The replacement -0.052 is plotted in light
blue with crosses. See also “fun 4” on right-hand margin.

The first operation involving change 4 is to replace 0.927 - x with
0.927 - -0.052. Clearly, for the test case where x is -0.052, these
two expressions will produce the same answer. Not only that, but this
unchanged value spreads through the whole expression like before the
change. This means on test cases where x is -0.052, the whole expres-
sion (with 25 001 components) produces the same value as it did
before the change. Thus at the lowest blue SUB node in Figure 12, the
number of test cases that are different before and after the change is
one less than the total number of test cases.

Since change 4 (like change 7) involved interchanging a linear
function and a constant, we can reuse equation (1) to approximate
the root mean square difference between the new expression and the
original expression at the change site. Setting m  1, a  0 and

b  -0.052 gives 0.579687, which is within 0.1% of the actual RMS.
The next four operations (ADD, ADD, ADD and SUB) are linear

and do not change either the number of test cases where the
new expression differs or the RMS value of the difference over the
test cases.

Next is a division, in which x is divided by the value calculated by
the previous SUB (five levels above the change). Neither before nor
after the change does this subtraction produce zero; therefore for the
test case where x is zero, both before and after the change, x /.. is also
zero. That is, the number of test cases that are different falls by one.

304 W. B. Langdon

Complex Systems, 31 © 2022

Also note that, due to the nonlinear nature of DIV, RMS above and
below the DIV operation is different.

The next operation is (SUB-0.175..); see Figure 12. Notice this lin-
ear operation reduces the number of test cases that differ by a further
76. When we study the internal traces of the original and the new
expressions at this subtraction (Figure 13), we can see that they are
similar. Indeed, within floating-point precision, at 78 test points they
are identical. Notice again since subtraction is a linear operation, the
RMS difference is unchanged.

Figure 12. Fragment of change 4 with protected division. The original leaf x

is replaced by the constant -0.052 in red. The blue nodes show the first few
operations in the original expression where their value on at least one test
case is different before and after change 4. (Here DIV is protected division.)
White nodes show a fragment of unchanged large expression, shown in full in
Figure 5. Section 7.1 explains the gradual dissipation of disruption. After 92
blue nodes (lowest 8 shown), change 4 makes no visible difference.

Dissipative Arithmetic 305

https://doi.org/10.25088/ComplexSystems.31.3.287

https://doi.org/10.25088/ComplexSystems.31.3.287

The next operation (ADD .. x) is again linear (so RMS is
unchanged). However, adding x nudges a further eight test points into
being identical. Figure 14 zooms in on the 86 test points where the
changed and unchanged subexpressions give identical values.

Figure 13. Impact of change 4 with protected division at distance seven. The
new functionality (dashed line) closely follows the original. Indeed, at 78
points (+) they are identical.

Figure 14. Impact of change 4 with protected division at distance eight (i.e.,
adding x to value produced by SUB, Figure 13). The new functionality
(dashed line) closely follows the original. At 86 points (+) they are identical.
This is eight more test points (red +) than the previous subtraction.

306 W. B. Langdon

Complex Systems, 31 © 2022

As the disruption caused by replacing x by -0.052 spreads through-
out the large expression, it continues to loose potency, so that after
being transformed by 92 arithmetic operations, it is not visible at all
on any of the test points.

Conclusion8.

Large floating-point arithmetic expressions are robust in the sense
that the value they calculate tends to be the same after a small syntac-
tic change as it was before.

With modern floating point, large arithmetic expressions are domi-

nated by nonfinite values such as ±inf and ±nan, which are readily
generated by division by zero. Small changes to such expressions are
easily lost due to arithmetic on nonfinite values and due to operations
like multiply by zero, whose output does not depend on their other
input.

When care is taken to avoid nonfinite values, binary operations
like multiply by zero or division with zero as a numerator continue to
suppress information about changes to their other argument.

These special values (0, ±inf and ±nan) are easy to explain and
affect many arithmetic values, but they are special examples of a gen-
eral trend for slightly different arithmetical expressions to calculate
the same value (within common machine precision). This was
observed in all our experiments (e.g., Figures 6 and 10). In one exam-
ple, where the disruption was the closest to the root, the change was
partially visible externally. In all the other examples, the disruption
was buried so deeply that it had to pass through enough intermediate
floating-point arithmetic operations that it was not observed exter-
nally at all.

Acknowledgments

I would like to thank Justyna Petke, EPSRC grant EP/P005888/1
(gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1)
and the Meta OOPS project.

References

[1] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, Cambridge, MA: MIT Press, 1992.

Dissipative Arithmetic 307

https://doi.org/10.25088/ComplexSystems.31.3.287

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://doi.org/10.25088/ComplexSystems.31.3.287

[2] R. Poli, W. B. Langdon and N. F. McPhee (with contributions by
J. R. Koza), A Field Guide to Genetic Programming, 2022. (Aug 26,
2022) www.gp-field-guide.org.uk.

[3] W. B. Langdon and J. Petke, “Software Is Not Fragile,” in First Com-
plex Systems Digital Campus E-conference (CS-DC’15) (P. Bourgine,
P. Collet and P. Parrend, eds.), Cham: Springer, 2015 pp. 203–211.
doi:10.1007/978-3-319-45901-1_ 24.

[4] J. Petke, B. Alexander, E. T. Barr, A. E. I. Brownlee, M. Wagner and
D. R. White, “A Survey of Genetic Improvement Search Spaces,” in Pro-
ceedings of the Genetic and Evolutionary Computation Conference
Companion (GECCO 2019), Prague, Czech Republic (B. Alexander,
S. O. Haraldsson, M. Wagner and J. R. Woodward, eds.), New York:
Association for Computing Machinery, 2019 pp. 1715–1721.
doi:10.1145/3319619.3326870.

[5] G. Jahangirova, Oracle Assessment, Improvement and Placement, Ph.D.
thesis, Department of Computer Science, University College London,
UK, April 16, 2019. discovery.ucl.ac.uk/id/eprint/10072699.

[6] R. E. Lenski, M. J. Wiser, N. Ribeck, et al., “Sustained Fitness Gains
and Variability in Fitness Trajectories in the Long-Term Evolution
Experiment with Escherichia coli,” Proceedings of the Royal Society B:
Biological Sciences, 282(1821), 2015 20152292.
doi:10.1098/rspb.2015.2292.

[7] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz and S. Yoo, “The
Oracle Problem in Software Testing: A Survey,” IEEE Transactions on
Software Engineering, 41(5), 2015 pp. 507–525.
doi:10.1109/TSE.2014.2372785.

[8] T. Y. Chen, “Metamorphic Testing: A Simple Approach to Alleviate the
Oracle Problem,” in 2010 Fifth IEEE International Symposium on
Service Oriented System Engineering (SOSE ’10), Nanjing, China, 2010
(X. Bai and Y. Li, eds.), Piscataway, NJ: IEEE, 2010 pp. 1–2.
doi:10.1109/SOSE.2010.31.

[9] W. B. Langdon and O. Krauss, “Genetic Improvement of Data for
Maths Functions,” ACM Transactions on Evolutionary Learning and
Optimization, 1(2), 2021 pp. 1–30. doi:10.1145/3461016.

[10] W. B. Langdon, “Long-Term Evolution of Genetic Programming Popula-
tions,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion (GECCO ’17), Berlin, Germany 2017, New
York: Association for Computing Machinery, 2017 pp. 235–236.
doi:10.1145/3067695.3075965.

[11] W. B. Langdon and W. Banzhaf, “Long-Term Evolution Experiment
with Genetic Programming,” Artificial Life, 28(2), 2022 pp. 173–204.
doi:10.1162/artl_a_00360.

[12] W. B. Langdon, “Genetic Programming Convergence,” Genetic Pro-
gramming and Evolvable Machines, 23(1), 2022 pp. 71–104.
doi:10.1007/s10710-021-09405-9.

308 W. B. Langdon

Complex Systems, 31 © 2022

http://www.gp-field-guide.org.uk
https://doi.org/10.1007/978-3-319-45901-1_24
https://doi.org/10.1145/3319619.3326870
https://discovery.ucl.ac.uk/id/eprint/10072699/
https://doi.org/10.1098/rspb.2015.2292
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/SOSE.2010.31
https://doi.org/10.1145/3461016
https://doi.org/10.1145/3067695.3075965
https://doi.org/10.1162/artl_a_00360
https://doi.org/10.1007/s10710-021-09405-9

[13] W. B. Langdon, “Evolving Open Complexity,” SIGEVOlution Newslet-
ter of the ACM Special Interest Group on Genetic and Evolutionary
Computation, 15(1), 2022 pp. 1–4. doi:10.1145/3532942.3532945.

[14] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc. 2002.

[15] T. Rowland. “Computational Irreducibility” from MathWorld—A
Wolfram Web resource.
mathworld.wolfram.com/ComputationalIrreducibility.html.

[16] E. W. Weisstein. “BBP Formula” from MathWorld—A Wolfram Web
resource. mathworld.wolfram.com/BBPFormula.html.

[17] M. Alekseyev. “Height (Maximum Absolute Value of Coefficients) of

the nth Cyclotomic Polynomial.” The On-Line Encyclopedia of Integer
Sequences. (Aug 26, 2022) oeis.org/A160338.

[18] H. Zenil, N. A. Kiani, A. A. Zea and J. Tegner, “Causal Deconvolution
by Algorithmic Generative Models,” Nature Machine Intelligence, 1(1),
2019 pp. 58–66. doi:10.1038/s42256-018-0005-0.

[19] H. Zenil, N. A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt,
G. Ball and J. Tegner, “An Algorithmic Information Calculus for
Causal Discovery and Reprogramming Systems,” iScience, 19, 2019
pp. 1160–1172. doi:10.1016/j.isci.2019.07.043.

[20] H. Zenil, N. A. Kiani, F. S. Abrahao and J. N. Tegner, “Algorithmic
Information Dynamics,” Scholarpedia, 15(7), 2020 53143, revision
#195807. doi:10.4249/scholarpedia.53143.

[21] W. B. Langdon, Fast Generation of Big Random Binary Trees , Techni -
cal Report RN/20/01, Computer Science, University College, London,
Gower Street, London, UK, 13 January 2020. arxiv.org/abs/2001.04505.

[22] P. Flajolet and A. Oldyzko, “The Average Height of Binary Trees and
Other Simple Trees,” Journal of Computer and System Sciences, 25(2),
1982 pp. 171–213. doi:10.1016/0022-0000(82)90004-6.

[23] W. B. Langdon, “Incremental Evaluation in Genetic Programming,” in
Genetic Programming (EuroGP 2021), Virtual Event, 7–9 April 2021
(T. Hu, N. Lourenco and E. Medvet, eds.), Cham: Springer, 2021
pp. 229–246. doi:10.1007/978-3-030-72812-0_15.

[24] A. Singleton, “Genetic Programming with C++,” BYTE, 1994
pp. 171–176.

Dissipative Arithmetic 309

https://doi.org/10.25088/ComplexSystems.31.3.287

https://doi.org/10.1145/3532942.3532945
https://mathworld.wolfram.com/ComputationalIrreducibility.html
https://mathworld.wolfram.com/BBPFormula.html
http://oeis.org/A160338
https://doi.org/10.1038/s42256-018-0005-0
https://doi.org/10.1016/j.isci.2019.07.043
https://dx.doi.org/10.4249/scholarpedia.53143
https://arxiv.org/abs/2001.04505
https://doi.org/10.1016/0022-0000(82)90004-6
https://doi.org/10.1007/978-3-030-72812-0_15
https://doi.org/10.25088/ComplexSystems.31.3.287

