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Large  arithmetic  expressions  are  dissipative:  they  lose  information  and
are robust to perturbations. Lack of conservation gives resilience to fluc-
tuations. The  limited precision of floating  point and the mixture of lin-
ear  and  nonlinear  operations  make  such  functions  anti-fragile  and  give
a  largely  stable  locally  flat  plateau  a  rich  fitness  landscape.  This  slows
long-term evolution of complex programs, suggesting a need for depth-
aware crossover and mutation operators in tree-based genetic program-
ming. It also suggests that deeply nested computer program source code
is error tolerant because disruptions tend to fail to propagate, and there-
fore the optimal placement of test oracles is as close to software defects
as practical. 
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Introduction1.

Genetic programming (GP) [1] aims to evolve programs from scratch.
Typically  a  program  is  represented  as  a  tree  structure,  to  which  vari-
ous  operations  are  applied,  such  as  subtree  replacement  and  subtree
exchange  with  another  program.  In  the  following  experiments,  we
observe  that  for  arithmetic  expressions,  many  such  changes  do  not
change the program’s  output and find  this is often due to the impreci-
sion of floating-point  arithmetic. This  means that the runtime disrup-
tion caused by such a change did not propagate to the root of the GP
tree  that  represents  a  given  program,  thus  hiding  a  possible  error.  By
sampling  uniformly  the  space  of  large  arithmetic  expressions  com-
posed  of  the  four  common  operators  (+,  -,    and  ÷),  we  show
changes usually do not impact expressions’ values, and so large arith-
metic expressions are resilient to change. Furthermore, even testing as
many  as  a  thousand  test  points  (uniformly  selected  in  the  range  -1.0
to  +1.0),  the  disruption  caused  by  changes  to  the  rational  functions
on  average  penetrates  only  about  60  levels  of  nesting  in  a  GP  tree,

https://doi.org/10.25088/ComplexSystems.31.3.287

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://doi.org/10.25088/ComplexSystems.31.3.287


and so changes are often invisible outside the expression. (The median
impact  of  disruption  is  about  16  genetic  programming  tree  levels,
rather  than  60,  if  the  expression  is  not  protected  against  divide  by
zero,  see  Section  6.)  With  fewer  tests  (i.e.,  a  weaker  test  oracle),
changes  impact  fewer  levels.  However,  with  such  a  large  number  of
tests,  chance  disruption  close  to  the  outermost  part  of  the  expression
(the  root  node)  may  indeed  have  a  sizeable  effect.  The  effects  of  the
introduced error progressively fail to propagate across the expression,
as the four computer arithmetic operators are dissipative.

In  an  idealized  infinite-precision  computer,  in  some  cases  such
small  changes  might  be  visible.  However,  if  the  injected  perturbation
is  sufficiently  far  from  the  top  of  the  expression,  real  computer
effects,  such  as  limited  precision  and  rounding  error,  tend  to  act  to
smooth away such changes. 

From  an  evolutionary  point  of  view  [1,  2],  large  complex  expres-
sions  are  robust  and  present  a  smooth  fitness  landscape  where  many
mutations have no discernible impact. While  we deal exclusively with
arithmetic  expressions,  there  is  growing  evidence  that  this  is  true  of
programming in general [3, 4]. 

In the next two sections, we continue the introduction. First, to con-
sider  the  implications  for  software  engineering  (Section  2.1)  and  very
long-term  digital  evolution  of  complexity  (2.2).  Then  Section  3
describes  the  connected  areas  of  computational  irreducibility  (3.1),
experimental  mathematics  (3.2)  and  algorithmic  information  dynam-
ics  (3.3).  Sections  4  and  5  detail  how  we  sample  the  space  of  large
nested  expressions  and  their  neighbors.  In  the  two  experimental  sec-
tions  (Sections  6  and  7),  numbers  and  operations  are  represented  as
floating-point  numbers  and  operations.  We  create  large  arithmetic
expressions,  make  small  changes  to  them  and  trace  the  impact  of  the
change.  In  most  cases,  the  impact  dies  away  before  it  can  affect  any-
thing outside the expression. 

Motivation2.

Interest  in  large  expressions  stems  from  two  concerns.  First,  the  test
oracle  placement  problem  [5],  and  second,  the  evolution  of  complex
behavior in long-term evolution experiments (LTEE)  [6].

Information Loss in Deeply Nested Software Impacts Testing2.1

In  software  engineering,  the  test  oracle  problem  [7]  is  well  known.
However,  there  has  been  less  research  on  where  to  place  test  oracles.
Essentially  the  oracle  problem  is:  when  testing  software,  not  only
must  we  have  test  inputs  for  the  code  being  tested  but  we  must  have
an  oracle  that  “knows”  the  correct  answer.  For  example,  we  might
have test strings “A”  and “B”  for a string concatenation program and
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a  test  oracle  that  checks  the  output  “AB”  is  generated.  The  oracle
itself  can  sometimes  be  somewhat  automated,  for  example,  using
metamorphic  testing  [8]  and  implicit  oracles  [7].  For  example,  a  pro-
gram  to  find  the  cube  root  might  check  that  the  return  value  when
multiplied  by  itself  three  times  is  (within  suitable  precision  bounds)
the  same  as  the  test  input  [9].  Implicit  oracles  include:  Did  the  pro-
gram  crash?  Did  the  program  complete  in  a  reasonable  time?  Did  it
return a value at all?

In terms of these experiments, we find  that the more deeply nested
an error is, the more chance that it will not be visible at the program’s
output.  This  suggests  that  the  best  place  to  check  to  see  if  the  soft-
ware being tested contains an error is as close to the error as possible.
In  terms  of  practical  software,  rather  than  the  pure  functions  used
here,  we  see  in  many  circumstances  software  engineers  already  try  to
do this with unit testing. In unit testing, values calculated in small pro-
gram  modules  are  checked  immediately,  rather  than  after  the  whole
program  has  finished.  These  results  motivate  this  and  further  recom-
mend, where feasible, inserting test oracles inside software units. With
increasing  use  of  automatic  testing,  it  may  be  feasible  to  use  many
closely spaced test oracles, which thus have a higher chance of detect-
ing errors. 

Excessive Robustness of Deep Trees Hampers  LTEE  Evolution 

of Complexity
2.2

Recently  we  have  shown  that  over  many  thousands,  even  a  million
generations, artificial  evolution, specifically  GP [1, 2], can continue to
find  improvements,  but  that  the  rate  of  improvement  may  slow  [10,
11]. As  expected, the size of the programs also grows. This  led to this
investigation  to  see  if  the  reduction  in  the  speed  of  evolution  can  be
tied  to  the  nature  of  the  evolving  artifacts.  Essentially,  we  find  that
the  GP  system  evolves  into  a  very  robust  region  of  the  search  space,
where  most  small  moves  in  the  space  have  absolutely  no  impact  on
performance.  We  suggest  that  this  relates  to  the  depth  of  the  pro-
grams  rather  than  their  size.  Should  this  occur  in  a  GP  system,  most
children produced by conventional GP genetic operations would have
the  same  fitness  as  their  parents  and  the  population  would  converge,
in  the  sense  that  even  though  each  tree  is  unique,  everyone  has  the
same  fitness  and  there  is  no  useful  evolution  until  a  random  lucky
genetic change near the output of a tree disrupts fitness [12, 13].

Connected Areas3.

Data-Dependent Computational Irreducibility3.1

We  can  view  arithmetic  expressions  as  being  computations.  Indeed,
the trees shown in Figures 1, 3, 5, 8 and 12 are programs or subpro-
grams  that  recursively  evaluate  the  value  of  an  expression.  Usually
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they can be reduced to simpler expressions; that is, they are not com-
putationally  irreducible  [14,  15].  For  example,  the  lower  part  of  Fig-
ure 1  (SUB  (SUB  0.211  (ADD  X  -0.01))  X)  can  be  reduced  to
0.221-2X.  Some  expressions  or  subexpressions  are  always  reducible.
For  example,  0.211 - -0.01  should  always  be  0.221,  and  similarly
-X+-X  should  always  be  -2X.  However,  sometimes  computations
can be reduced using knowledge of their input data. For example,

x (((0.897 + -0.875) ((0.211 - x + -0.01) - x)) ÷ -0.132) - 0.995

(see again Figure 1) can be reduced to 0 if it is known x  0. That  is,
programs might be computationally irreducible in general but compu-
tationally reducible for some datum or set of test input data.

In  Sections  6  and  7,  we  use  test  cases  to  show  in  many  circum-
stances  large  expressions  are  effectively  computationally  equivalent
(i.e.,  on  the  test  cases)  to  other  large  expressions  that  are  slightly  dif-
ferent  from  them.  That  is,  the  larger  expression  is  not  computation-
ally irreducible for at least some test data, as it gives the same results
as the smaller expression. 

Figure 1. Example subexpression 

x (((0.897 + -0.875) ((0.211 - x + -0.01) - x)) ÷ -0.132) - 0.995 

as a tree (fun 5 from Table  1). Value  of expression is given by the root node,
here MUL, at the top. Plotted as yellow line in Figure 2. 
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Test Depth Change

Max Mean depth size function

0 435 245.7 254 1 X

replaced by fun 0 1 X

1 386 202.7 377 1 X

replaced by fun 1 1 X

2 235 125.6 141 3 (SUB X -0.263)

replaced by fun 2 1 -0.615

3 365 186.2 330 1 -0.67

replaced by fun 3 1 X

4 305 140.9 102 1 X

replaced by fun 4 1 -0.052

5 337 197.9 314 1 X

replaced by fun 5 17 (MUL X (SUB (DIX (MUL (ADD 

0.897 -0.875) (SUB (SUB 0.211 

(ADD X -0.01)) X)) -0.132) 0.995))

6 398 193.5 216 1 0.015

replaced by fun 6 15 (MUL (DIX (MUL (MUL X -0.803) 
(SUB (MUL 0.255 (DIX X X)) 

0.389)) -0.756) -0.546)

7 358 156.8 152 1 -0.725

replaced by fun 7 13 (SUB (DIX X (DIX (SUB -0.016 

(DIX -0.003 (DIX -0.399 -0.194))) 
0.436)) 0.24)

8 283 145.6 76 1 X

replaced by fun 8 1 0.12

9 444 233.0 46 9 (SUB X (ADD (ADD -0.272 X) 

(SUB X X)))

replaced by fun 9 1 X

Table 1. Ten  changes.  Left:  depth  and  average  depth  of  each  of  the  tree’s
nodes  for  10  sampled  trees,  each  representing  arithmetic  expressions  with

25 001  nodes  (Section  4).  Right:  uniformly  selected  changes  (Section  5).
Column  4  shows  the  depth  of  the  uniformly  chosen  change  site,  while
columns  5  and  6  show  the  removed  subexpression  and  its  replacement.  DIX
is either normal or protected division, depending on the experiment. (See also
Figures 1 and 2.) 
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Figure 2. Eight pairs of changes plotted as functions of x. By chance, changes
to functions 0 and 1 both replace x with x and are not plotted (see Table  1).
Inserted  subexpressions  are  plotted  with  lines  and  crosses.  Horizontal  lines
indicate constants. Labels on the left margin indicate constant values that are
removed.  Labels  on  the  right  indicate  constants  that  are  inserted.  In  three
examples, x is removed and in two, x is inserted. These  are plotted on top of

each other along the diagonal. In fun 7, the constant -0.725 is replaced by a

randomly chosen linear function -29.9835x - 0.24 (near vertical line). 

Experimental Mathematics3.2

Experimental  mathematics  [14]  is  a  branch  of  mathematics  that
instead  of  using  only  pure  reasoning  uses  experimental  investigation
to  gain  insight,  which  may  then  lead  to  formal  proof.  For  example,
Simon  Plouffe’s  1995  discovery  of  the  BBP  formula  [16]  for  the
binary  digits  of  π  was  achieved  by  computerized  search  followed  by
formal proof. In the mathematical tradition, we need to proceed with
caution,  as  there  are  situations  where  formulas  are  initially  correct  in
the  numerical  sense  for  the  first  10000  cases,  but  then  found  to  fail

for the 14 235th  case [17]. In our experiments we are on firm  ground
since we are specifically  targeting 32-bit precision. Although  it would
be nice to extend these results with formal proofs, the mathematics of
floating-point  arithmetic, overflow  and rounding errors is notoriously
difficult. 

Algorithmic Information Dynamics3.3

Algorithmic  information  dynamics  [18–20],  based  on  algorithmic
“Solomonoff” probability,  generates programs and so is more general
than  functions.  In  Section  4  onward,  we  deal  with  perturbations  to
functions  (which  are  a  proper  subset  of  the  set  of  algorithmics).
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Notice  algorithmic  probability  leads  directly  to  a  strong  preference
for  generating  simpler  models  and  so  follows  Occam’s  razor,  in  con-
trast  to  GP,  where  regularization  often  needs  to  be  added  as  part  of
bloat control [2]. 

Uniformly Sampling Large Arithmetic  Expressions4.

All  the  experiments  sample  uniformly  the  space  of  expressions  with
12 500  arithmetic  operators  [21].  As  all  four  operators  have  two
inputs,  the  expressions  are  binary  trees  with  12 500  internal  nodes
and  12501  leaves  (or  external  nodes).  For  a  particular  input  x,  the
value  of  the  whole  expression  is  the  value  calculated  by  the  operator
that  is  the  root  node  of  the  tree.  (Figure  3  contains  an  example
expression.)

Figure 3. Expression  0  presented  as  a  binary  tree  of  25 001  nodes  (depth
435). Root node at top. 

We  start with a bare tree. It has been chosen uniformly at random
from  all  the  binary  trees  of  size  exactly  25 001.  We  chose  the  total
tree size to be 25001 (internal + external nodes), as such trees on aver-

age have depth close to 2π size ≈ 400 (Flajolet and Oldyzko [22]),
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and  previous  work  with  evolved  trees  showed  that,  on  average,  typi-
cally the impact of mutations was lost after traversing about 100 func-
tions [23]. 

We  then  convert  it  into  a  program  by  labeling  each  internal  node
with  a  function  name  (chosen  at  random)  and  label  each  external
node with the name of a leaf. The  leaves are either the input variable
x  or  one  of  the  constants.  We  use  GPquick  [24].  GPquick  limits  the
number of constants to 250. In this experiment, the constants all have
three  digits,  for  example,  -0.123,  and  are  sampled  from  the  range
[-1, 1]. Before the experiment starts, we select (without replacement)
250 such constants, which we use in the (program) tree. 

As  a  reminder,  each  binary  tree’s  size  is  25001,  and  so  it  contains
12 500  functions  and  12501  leaves.  For  the  leaves  we  only  have  x
and 250 as constants, so we are bound to reuse. That  is, the tree will
have  multiple  copies  of  some  constants  and  multiple  copies  of  x.
We  choose to use x half the time, so on average, each tree will contain
about  6250  copies  of  x  in  its  leaf  nodes.  These  will  be  scattered
randomly. 

We  repeat  the  procedure  10  times  and  report  results  for  10  such
randomly  sampled  trees.  By  chance,  none  of  the  special  values  -1.0,
0, or +1.0 are included. However,  as we shall see in Section 6, the spe-
cial value 0 is often present within the sampled arithmetic expressions
(i.e., subtrees), due to subexpressions like x - x. 

Sampling Changes5.

A  site  for  each  change  is  selected  uniformly  from  each  large  expres-
sion.  The  subexpression  at  that  location  is  removed  and  replaced  by
another subexpression. The  inserted subexpression is similarly chosen
uniformly  from  a  large  expression  of  the  same  size  (i.e.,  25 001
nodes).  Table  1  describes  the  selected  changes.  The  changes  are
plotted  in  Figure  2.  The  same  changes  are  used  in  both  the  normal
(Section 6) and the protected division (Section 7) experiments. Notice,
by chance, change 9 is closest to the root node of its expression.

Each  change  is  subsequently  evaluated  on  a  set  of  1001  test  cases,
that is, values for x. These  are selected uniformly in the range [-1, 1]
every  0.002  (e.g.,  0.124).  The  value  obtained  at  the  root  node  of  the
unmodified tree is taken as ground truth. 

Experiment I: Impact of Divide by Zero 6.

The  10  created  expressions  (without  mutation)  contain  on  average
3125  divisions  (i.e.,  12 500 / 4)  and  about  195.3  x - x  (i.e.,  about
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12 500 / (444)).  Thus  we  encounter  divide  by  zero.  In  floating-
point  arithmetic,  this  is  commonly  (as  here)  handled  by  division
returning  a  special  value  representing  ±  infinity.  All  four  floating-

point  operators  deal  with  inf  appropriately.  That  is,  typically,  if  one
of their arguments is infinity,  then so too is their output. Thus infinity
is propagated up the tree and typically the (floating-point)  expression
as a whole yields infinity.  The  output of the 10 selected large expres-
sions is plotted for the input x range -1.0 to +1.0 in Figure 4. Eight
of  the  10  selected  large  expressions  are  shown  in  Figure  5.  None  of
the 10 always give finite  numbers, although one gives values between
-100.0  and  +100.0  on  many  test  cases  and  one  gives  zero  in  all  but

one  test  case  (where  it  gives  -nan).  In  Section  7  we  deal  with  this  by
“protecting” division from divide by zero errors.

Figure 4. Ten  large  uniformly  selected  floating-point  functions.  Vertical  axis
has  been  linearly  rescaled  to  plot  very  different  output  ranges  on  the  same

axis.  Seven  give  -nan.  Tree  4  gives  either  ±inf  or  -nan  (light  blue).  Tree  1

gives  either  ±0  or  -nan  (green)  and  Tree  0  gives  mostly  numbers  between

-100 and +100, although it too can give ±inf and -nan (red).

Another  common  situation  is  multiply  by  zero.  In  floating-point
arithmetic,  multiply  by  zero  yields  ± zero.  (For  most  purposes,  the
two types of floating-point  zero are equivalent.) So again, multiply by
zero  destroys  all  the  information  about  its  other  argument.  However,
zero  is  not  as  “sticky”  as  infinity,  and  the  linear  operators  (+  and  -)
can readily transform zero into other numbers. Hence, typically,  large
trees  do  not  yield  zero  for  all  inputs.  With  multiply  by  zero,  it  is
easy  to  see  why  disruption  to  a  subexpression  can  become  invisible
externally. 
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Expression 2 (depth 235) Expression 3 (depth 365)

Expression 4 (depth 305) Expression 5 (depth 327)

Expression 6 (depth 398) Expression 7 (depth 358)

Figure 5. (continues)

Each  expression  underwent  a  random  mutation  (i.e.,  disruption),
as described in the previous section. None of the disruptions changed
the  value  of  the  10  expressions  at  the  root  node,  yet  within  the  tree
changes  are  observed  to  the  various  subexpressions  where  the  change
took place. Figure 2 shows uniformly selected small changes to the 10
large functions. We  need only plot the changes once, even though we
use protected division in Section 7, as the small functions are not only
syntactically  the  same  in  both  this  section  and  in  Section  7,  but  (in
these  data  ranges)  they  are  also  semantically  the  same.  That  is,  Fig-
ure 2 applies to this section and to Section 7. 
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Expression 8 (depth 283) Expression 9 (depth 444)

Figure 5. Expressions  2  through  9  presented  as  binary  trees  of  25001  nodes.
Root  nodes  at  top.  Color  indicates  disrupted  nodes.  Blue  nodes  show  subex-
pressions  where  at  least  one  test  case  produces  a  different  internal  value  as  a
result  of  the  change  with  both  normal  and  protected  division.  Green  nodes
(uppermost shaded nodes) show subexpressions where at least one test case is
different when using division protected against divide by zero. Note here ordi-
nary division is disrupted less than protected division.

Examples of Error Hiding: Multiply by Zero and Infinity and
in General

6.1

Here  we  discuss  how  an  error  might  not  propagate  to  the  root  node,
then  present  in  detail  how  disruption  failed  to  propagate  in  our  10
example trees.

If a leaf 0.125 is changed to 0.525, then it is as if an error of 0.4 is
injected  into  the  expression  at  that  point.  In  a  small  expression,  this
might be easily observed. In a large expression, the 0.4 error is trans-
formed  by  each  function  it  passes  through.  In  general,  the  error  may
become  bigger  or  smaller.  However,  if  it  encounters  a  multiply  by
zero,  the    result  will  be  0  regardless  of  the  error.  At  this  point,  the
error has vanished. 

Notice the same can happen if the error encounters an infinity.  For
example,  a+ inf  inf  and  also  (a+ error) + inf  inf .  So  again,  the
error vanishes and cannot be observed externally.  

As  we  will  see,  multiply  by  zero  and  arithmetic  on  infinity  are  not
the  only  reasons  why  a  change  may  not  affect  the  total  result  of  an
expression.  Even  under  ideal  conditions,  floating-point  arithmetic
loses  about  half  a  bit  of  precision  at  each  operation.  So  disruption  is
progressively suppressed. As the expressions are hierarchical, once dis-
ruption on a test case is lost (i.e., an internal function yields the same
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answer before and after the change), it cannot be reintroduced higher
in  the  tree  (i.e.,  the  number  of  disrupted  test  cases  falls  monotoni-
cally).  This  continued  interference  of  finite  computing  means  the
impact  of  even  large  errors  can  be  totally  lost  in  large  expressions.
Next, we discuss disruption propagation failures in our examples. 

Figure 6 shows the fall in disruption of test cases as we move away
from  the  disruption  (i.e.,  as  we  move  up  the  tree  toward  the  root
node).  Figure  7  shows  the  same  thing.  But  instead  of  counting  the
number of test cases that are not identical, Figure 7 plots the average
difference before and after the change in the values inside each of the
large expressions. 

Figure 6. Fall  in  impact  of  eight  changes  with  distance  from  disruption
(functions  0  and  1  cause  no  disruption  as  both  replace  x  with  x  and  so  are
not plotted). Colors are the same as in Figure 2 and others. 

For  two  changes  (fun  0  and  fun  1),  by  chance,  there  is  no  disrup-
tion,  as  they  both  replace  x  by  itself  (not  plotted).  For  five  changes,
disruption is halted by encountering an infinity  and in two more by a
multiply  by  zero  (see  string  of  blue  nodes  in  Figure  5).  Even  in  the
remaining example, fun 7, disruption is rapidly quenched. 

As  expected,  the  fall  in  test  case  failures  is  monotonic  (Figure  6).
However,  root  mean  square  (RMS)  differences  in  values  of  affected
subexpressions can rise and can fall (Figure 7), but RMS must be zero
when  values  on  all  test  cases  are  identical.  For  one  example,  fun  3,

although  the  change  is  finite,  it  is  immediately  added  to  ±inf,  so  the

ADD function yields ±inf regardless of the change, and fun 3’s  disrup-
tion  does  not  propagate.  In  four  more  examples  (fun  4,  6,  8  and  9),
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Figure 7. Change  in  impact,  as  measured  by  RMS  difference  on  test  cases,  of
eight  changes  with  distance  from  disruption.  In  one  change,  fun  2,  the  float-
ing-point  difference  on  all  test  cases  is  zero  (±0)  after  passing  through  21
functions;  however,  two  more  functions  are  required  to  ensure  exact  binary
equality.  Note nonlinear scale. 

the  disruption  spreads  a  little  way  before  reaching  an  operation

whose other argument is ±inf. In two others (fun 2 and 5), the disrup-
tion  is  suppressed  effectively  by  a  multiply  by  zero.  The  remaining
change, fun 7, Section 7, is more complicated, but here too disruption
is quickly suppressed. 

Explaining Lack of Impact of Change 76.2

Table  1 shows that at 13 nodes, change 7 is one of the larger syntactic
changes.  Indeed,  the  orange  line  in  Figure  2  shows  it  also  produces  a
large  change  in  behavior  at  the  change  site.  (Change  7  replaces  a
constant  by  a  large  multiple  of  x.)  See  also  Figure  8.  At  the  point  of
disruption, all the test cases are different and the RMS difference can

be  estimated  from  the  original  constant  b  and  the  linear  function
mx + a  that  replaces  it  (see  caption  of  Figure  2).  Setting

m  -29.9835,  a  -0.24  and  b  -0.725  and  approximating  the
sum over n test cases by an integral over -1 to +1 gives: 
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RMSfun 7 
1

n


n

(-29.9835xi - 0.24 - -0.725)2

≈
1

2

-1

+1

(mx + a - b)2


1

2

-1

+1

m2x2 + 2m(a - b)x + (a - b)2


1

2
m2x3  3 + (a - b)2x

-1

+1


1

2
2m2  3 + 2(a - b)2

 m2  3 + (a - b)2

 17.3178.

(1)

This  compares  well  with  the  actual  value  17.335  obtained  over  a
finite set of test cases (first orange line in Figure 7).

The  next  function  up  the  tree  toward  the  root  node  is  an  addition
(Figure 8). Since this is linear,  neither the number of test cases nor the
RMS  difference  changes  (see  first  orange  line  in  Figures  6  and  7).
Next is a multiply,  whose other argument is -0.003 x. This means for
x  0, the multiply node both before and after the change gives zero.
This means that for the test case x  0, the whole expression will give
the  same  value  before  and  after  the  change.  Also  the  RMS  difference
at the multiply node is dramatically reduced (very approximately by a
ratio  of  0.003,  Figure  7).  The  next  three  functions  are  linear  and  do
not  change  either  the  number  of  test  cases  whose  evaluation  at  each
of  the  three  functions  is  different  before  and  after  the  change  or  the
RMS  difference.  Immediately  above  them  is  a  subtraction,  whose
other  subtree  is  large  and  contains  several  divisions.  It  never  gives

finite  values. (In fact, on these test cases it evaluates to ±inf or -nan.)
Therefore  so  too  does  the  subtraction.  Notice  that  this  particular
node  (only  six  levels  above  change  7)  gives  identical  answers  before
and after the change and therefore immediately suppresses the remain-
ing disruption caused by change 7. 

300 W.  B. Langdon

Complex Systems, 31 © 2022



Figure 8. Fragment  of  change  7  with  unprotected  division.  (Shown  in  full  in

Figure  5.)  The  original  constant  -0.725  is  replaced  by  the  subexpression
(SUB  (DIV  X  (DIV  (SUB  -0.016  (DIV  -0.003  (DIV  -0.399  -0.194)))  0.436))
0.24) in red (here DIV is ordinary unprotected division). The blue nodes show
operations  in  the  original  expression  where  their  value  on  at  least  one  test
case is different before and after change 7. The white nodes indicate the evalu-
ation  is  unchanged.  The  value  of  the  new  subexpression  is  given  its  topmost
node  (the  topmost  red  SUB),  and  plotted  as  a  function  of  x  as  the  near-
vertical  line  in  Figure  2.  Section  6.2  explains  why  disruption  stops  after  six
blue nodes, and so the red change makes no externally visible difference. 

Experiment II: Protected Division7.

The problem of division by zero is well known in GP and is typically
treated by “protecting”  division [1, 2]. When the denominator is zero,
the  divide  (DIV)  operator  is  defined  to  return  1.0.  We  repeat  the
experiments in Section 6 with ordinary division replaced by protected
division. 
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Contrasting Figures 4 and 9, we can see this simple change makes a
dramatic  difference  in  the  values  calculated  by  large  expressions.
However, although it takes the now infinity-free  expressions longer to
suppress  the  changes,  passing  the  disruption  through  the  arithmetic
expression continues to suppress it. Contrasting Figures 6 and 7 with
Figures  10  and  11  shows  the  average  number  of  levels  needed  to
totally hide a change has increased from 16 to 60. 

Figure 5 shows results for both unprotected and protected division.
Figure  5  shows  the  quick  suppression  of  changes  without  protection
against  divide  by  zero  as  blue  nodes,  and  with  protected  division  as
blue followed by green nodes. 

In  four  changes  (fun  2,  3,  7  and  8),  the  disruption  is  eventually
caught by encountering a zero as the other argument. In three changes
(fun 4, 5 and 6), the test cases are disabled progressively.  This  is also
true of the last one, fun 9, but this is the only example where the dis-
ruption is not totally suppressed within the expression. 

Figure  10  shows  that  indeed  the  number  of  test  cases  that  are  dis-
rupted can remain the same or fall but can never rise. While Figure 11
shows, as expected, RMS differences can rise and fall. 

Figure 9. Ten  large  floating-point  functions.  Same  expressions  as  Figure  4,
except  divide  by  zero  is  protected  (Section  7).  Vertical  axis  has  been  linearly
rescaled  to  plot  very  different  output  ranges  on  the  same  axis.  Here  all
outputs  are  finite.  Tree  1  always  gives  0  (green)  but  the  other  nine  vary
widely.  (Note despite protecting divide by zero, rational functions often have
discontinuities.) 
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Figure 10. Fall  in  impact  of  eight  changes  with  distance  from  disruption
(functions  0  and  1  cause  no  disruption  as  both  replace  x  with  x  and  so  are
not  plotted).  As  expected,  the  fall  in  test  case  failures  is  monotonic.  Only
fun 9 does not reach zero. Colors are the same as in Figure 2 and others. 

Figure 11. Change  in  impact,  as  measured  by  root  mean  squared  difference
on  test  cases,  of  eight  changes  with  distance  from  disruption.  Note  nonlinear
scale. 
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With the less dissipative functions, one change (9) is now visible on
some  test  cases  externally.  This  is  because  change  9  is  not  deeply
nested  inside  its  expression.  (Table  1  shows  it  is  only  at  depth  46.)
Instead, although the change is suppressed on some test cases, there is
not  enough  distance  between  the  change  location  and  the  outside  of
the expression to suppress them all. 

Explaining Lack of Impact of Change 4 with Protected Division7.1

We  choose change 4 as a second example to explain in detail because
it cannot be explained as simply reaching an infinity  or a multiply by
zero  and  because  its  disruption  passes  through  one  of  the  longer
chains of operations before being lost entirely.  Figures 10 and 11 plot
the  gradual  loss  of  disruption  of  change  4  and  show  on  these  test
cases  it  is  totally  suppressed  after  92  floating-point  arithmetic  opera-
tions.  However,  we  shall  not  discuss  in  detail  each  of  these  92  but
concentrate  on  the  first  few,  which  hide  change  4  on  86  test  cases
(Figure 12). 

Change  4  is  to  replace  the  input  x  with  the  constant  -0.052
(Table 1).  In  Figure  2,  the  original  subexpression  (x)  is  plotted  along
the  diagonal,  which  makes  it  hard  to  see,  as  four  other  lines  are  also
plotted along the diagonal. The replacement -0.052 is plotted in light
blue with crosses. See also “fun 4” on right-hand margin. 

The  first  operation  involving  change  4  is  to  replace  0.927 - x  with
0.927 - -0.052.  Clearly,  for  the  test  case  where  x  is  -0.052,  these
two expressions will produce the same answer.  Not only that, but this
unchanged value spreads through the whole expression like before the
change. This means on test cases where x is -0.052, the whole expres-
sion  (with  25 001  components)  produces  the  same  value  as  it  did
before the change. Thus at the lowest blue SUB node in Figure 12, the
number  of  test  cases  that  are  different  before  and  after  the  change  is
one less than the total number of test cases. 

Since  change  4  (like  change  7)  involved  interchanging  a  linear
function  and  a  constant,  we  can  reuse  equation  (1)  to  approximate
the  root  mean  square  difference  between  the  new  expression  and  the
original  expression  at  the  change  site.  Setting  m  1,  a  0  and

b  -0.052 gives 0.579687, which is within 0.1% of the actual RMS. 
The  next  four  operations  (ADD,  ADD,  ADD  and  SUB)  are  linear

and  do  not  change  either  the  number  of  test  cases  where  the
new  expression  differs  or  the  RMS  value  of  the  difference  over  the
test cases. 

Next is a division, in which x is divided by the value calculated by
the  previous  SUB  (five  levels  above  the  change).  Neither  before  nor
after  the  change  does  this  subtraction  produce  zero;  therefore  for  the
test case where x is zero, both before and after the change, x /.. is also
zero.  That  is,  the  number  of  test  cases  that  are  different  falls  by  one.
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Also  note  that,  due  to  the  nonlinear  nature  of  DIV,  RMS  above  and
below the DIV operation is different. 

The next operation is (SUB-0.175..); see Figure 12. Notice this lin-
ear operation reduces the number of test cases that differ by a further
76.  When  we  study  the  internal  traces  of  the  original  and  the  new
expressions  at  this  subtraction  (Figure  13),  we  can  see  that  they  are
similar.  Indeed,  within  floating-point  precision,  at  78  test  points  they
are  identical.  Notice  again  since  subtraction  is  a  linear  operation,  the
RMS difference is unchanged. 

Figure 12. Fragment  of  change  4  with  protected  division.  The  original  leaf  x

is replaced by the constant -0.052 in red. The  blue nodes show the first  few
operations  in  the  original  expression  where  their  value  on  at  least  one  test
case  is  different  before  and  after  change  4.  (Here  DIV  is  protected  division.)
White nodes show a fragment of unchanged large expression, shown in full in
Figure  5.  Section  7.1  explains  the  gradual  dissipation  of  disruption.  After  92
blue nodes (lowest 8 shown), change 4 makes no visible difference. 
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The  next  operation  (ADD  ..  x)  is  again  linear  (so  RMS  is
unchanged). However,  adding x nudges a further eight test points into
being  identical.  Figure  14  zooms  in  on  the  86  test  points  where  the
changed and unchanged subexpressions give identical values. 

Figure 13. Impact  of  change  4  with  protected  division  at  distance  seven.  The
new  functionality  (dashed  line)  closely  follows  the  original.  Indeed,  at  78
points (+) they are identical.

Figure 14. Impact  of  change  4  with  protected  division  at  distance  eight  (i.e.,
adding  x  to  value  produced  by  SUB,  Figure  13).  The  new  functionality
(dashed  line)  closely  follows  the  original.  At  86  points  (+)  they  are  identical.
This is eight more test points (red +) than the previous subtraction. 
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As the disruption caused by replacing x by -0.052 spreads through-
out  the  large  expression,  it  continues  to  loose  potency,  so  that  after
being  transformed  by  92  arithmetic  operations,  it  is  not  visible  at  all
on any of the test points. 

Conclusion8.

Large  floating-point  arithmetic  expressions  are  robust  in  the  sense
that the value they calculate tends to be the same after a small syntac-
tic change as it was before.

With modern floating  point, large arithmetic expressions are domi-

nated  by  nonfinite  values  such  as  ±inf  and  ±nan,  which  are  readily
generated  by  division  by  zero.  Small  changes  to  such  expressions  are
easily lost due to arithmetic on nonfinite  values and due to operations
like  multiply  by  zero,  whose  output  does  not  depend  on  their  other
input. 

When  care  is  taken  to  avoid  nonfinite  values,  binary  operations
like multiply by zero or division with zero as a numerator continue to
suppress information about changes to their other argument. 

These  special  values  (0,  ±inf  and  ±nan)  are  easy  to  explain  and
affect many arithmetic values, but they are special examples of a gen-
eral  trend  for  slightly  different  arithmetical  expressions  to  calculate
the  same  value  (within  common  machine  precision).  This  was
observed in all our experiments (e.g., Figures 6 and 10). In one exam-
ple,  where  the  disruption  was  the  closest  to  the  root,  the  change  was
partially  visible  externally.  In  all  the  other  examples,  the  disruption
was buried so deeply that it had to pass through enough intermediate
floating-point  arithmetic  operations  that  it  was  not  observed  exter-
nally at all. 
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