
How to hunt wild constants

David R. Stoutemyer*

February 1, 2022

Abstract

There are now several comprehensive web applications, stand-alone computer

programs and computer algebra functions that, given a �oating point number such

as 6.518670730718491, can return concise non�oat constants such as 3 arctan 2 +
ln 9 + 1 that closely approximate the �oat. This is analogous to unscrambling an

egg. Such software includes AskConstants, Inverse Symbolic Calculator, the Maple

identify function, MESearch, OEIS, Ordner, RIES, and WolframAlpha. Usefully of-

ten such a result is the exact limit as the �oat is computed with increasing precision.

Therefore these program results are candidates for proving an exact result that you

could not derive or conjecture without the program. Moreover, candidates that are

not the exact limit can be provable bounds, or convey qualitative insight, or suggest

series that they truncate, or provide su�ciently close e�cient approximations for

subsequent computation. This article describes some of these programs, how they

work, and how best to use each of them. Almost everyone who uses or should use

mathematical software can bene�t from acquaintance with several such programs,

because these programs di�er in the sets of constants that they can return.

1 Introduction

�. . . you are in a state of constant learning.�
� Bruce Lee

This article is about numerical mathematical constants that can be computed ap-
proximately, rather than about dimensionless or dimensioned physical constants. This
article is a more detailed version of the conference presentation [21].

For real-world problems, we often cannot directly derive exact closed-form results
even with the help of computer algebra, but we more often can compute approximate
�oating-point results � hereinafter called �oats. For some such cases there is an exact
closed-form expression that the �oat approximates, and that expression is simple enough
so that we would like to know it, but we do not know how to derive it or to guess it as
a prerequisite to a proof. If we had one or a few plausible concise non�oat candidates

*Retired professor, Information and Computer Science Department, University of Hawaii

1

that agree su�ciently closely with the �oat, then we could concentrate our e�orts on
attempting to prove that one of those candidates is the exact result.

This article describes text and software tools that provide such candidates. Table 1
lists several such tools in order of presentation, grouped by type. Figure 1 plots the initial
publication dates of these tools on a time line. All of the web-based and downloadable
tools are free, but some of the downloadable tools require Java, a C compiler, Maple or
Mathematica.1

Table 1: Tables in books, web apps, standalone apps, CAS functions, and CAS apps

Type Name Sec. Needs http://www. or https://www.

Book
table

Robinson&Potter 2.1 Library

or

buy

escholarship.org/uc/item/2t95c0bp

Borwein&Borwein 2.2 springer.com/gp/book/9781461585121

Steven Finch 2.2 sites.oxy.edu/lengyel/originals/0521818052ws.pdf

.pdf
table

Shamo's Catalog 3.1 [20]

Web
search

Google, etc. 4 Smart-

phone

Google.com, etc.

OEIS 5.1 oeis.org

Ordner 5.2 or fungrim.org/ordner

Web WolframAlpha 5.3
computer

wolframalpha.com

apps ISC 5.4 wayback.cecm.sfu.ca/projects/ISC/ISCmain.html

ISC+ 5.5 isc.carma.newcastle.edu.au/

Stand
alone

MESearch 6.1 Java http://plou�e.fr/MESearch/

RIES 6.2 C compiler mrob.com/ries

In
CAS

identify 7.1 Maple maplesoft.com/support/help/Maple/view.aspx

identify, �ndpoly 7.2 SymPy docs.sympy.org/0.7.1/modules/mpmath/

CAS
apps

AskConstants 8.2 Mathematica AskConstants.org

Plou�e's Inverter 8.3 Maple forthcoming: archive.org

PSLQ Custom IR model 9
Fortran

C++ or CAS
[1, 2]

1Mathematica is free and pre-installed on some Raspberry Pi computers costing only a few dollars.

2

http://escholarship.org/uc/item/2t95c0bp
http://springer.com/gp/book/9781461585121
http://sites.oxy.edu/lengyel/originals/0521818052ws.pdf
http://Google.com
http://oeis.org
http://fungrim.org/ordner
http://wolframalpha.com
http://wayback.cecm.sfu.ca/projects/ISC/ISCmain.html
http://isc.carma.newcastle.edu.au/
http://plouffe.fr/MESearch/
http://mrob.com/ries
http://maplesoft.com/support/help/Maple/view.aspx
http://docs.sympy.org/0.7.1/modules/mpmath/
http://AskConstants.org
http://forthcoming:%20%20archive.org

Figure 1: Tables, web apps, download apps and functions to propose exact constants

Float inputs for these tools often arise from computations such as numerical inte-
gration, in�nite series, iterative equation solving, approximate optimization, etc. The
purposes of this article are to explain how best to use these tools, to explain how they
work, and to explain how to decide if proposed candidates are promising or else probably
impostors.

Section 8 discusses input magnitude limitations and Section 9 discusses some common
causes of impostor results, with conclusions in Section 10.

2 Text tables

2.1 Mathematical Constants table by Robinson & Potter

Here is an excerpt from a hand-typed table of about 3000 constants by Robinson and
Potter [17]:

... ...

4 .22755 35333 76265 40809 −ψ(1/4) = γ + 3 ln 2 + π/2

0 .22755 09577 68849 99385 4/(π2eγ)

0 .22756 34054 87472 14332 root of 7xex = 2
... ...

Notice that:

3

� Inverse to more common tables of constants, the inputs in the left column are �oats
and the expressions in the right column are corresponding exact constants.

� The digamma function of 1/4 was negated to make the �oat positive. Most such
tables do this sign aliasing, because it is easy to discard the sign of the �oat,
then negate the corresponding non�oat result. This doubles the potential coverage
without increasing the table size.

� The inputs are sorted by the fractional parts of the absolute values of the in-
put �oats rather than by those entire input �oats. For a given �oat x̃, you do a
manual search for the fractional part of |x̃|, then decide whether or not the dis-
crepancy with the fractional part of either bracketing entry or of entries slightly
further away is small enough to justify further consideration. This fractional-
part aliasing makes the table applicable to many more examples and is easily
inverted mentally to construct the true candidate. For example, from the table
�oat 4 .22755 35333 76265 40809, we can also easily guess that a numerical result
5.22755 35332 might approach 1− ψ(1/4) as the precision increases.

� The last entry in the above table excerpt is an implicit result. Since the popular-
ization of the Lambert W function [5], this result can now be expressed explicitly
as W0 (2/7), but the table contains approximate solutions to other equations that
cannot yet be expressed explicitly, together with approximate de�nite integrals,
in�nite series, and in�nite products having no known closed form.

To view a photocopy of the entire table, visit

https://escholarship.org/uc/item/2t95c0bp

De�nition. Published constants are publicly accessible closed-form and/or approxi-
mate �oat constants � either printed or on the web.

De�nition. Named constants are constants having a widely-accepted name, such as
Catalan's constant or the twin prime constant. Named constants include those with an
OEIS name as described in subsection 5.1.

De�nition. Tabulated constants are formed by systematically applying sets of func-
tions to systematic sets of arguments, Printed function tables for approximate computa-
tion usually have equally-spaced arguments that are terminating decimal fractions such
as 1.001, 1.002, 1.003, etc. In contrast, to return non�oat results such as arctan(2/3),
the curated and computer-generated tables described in this article often instead use the
set of all reduced fraction arguments whose numerator and denominator magnitudes do
not exceed some given integer � perhaps also multiplied by common irrational constants
such as π,

√
2, etc.

Remark. The table by Robinson and Potter contains all three of the these types.

De�nition. Wild constants are computed �oat constants for which you do not know an
exact closed form for the limit as the precision of the �oat approaches in�nity.

4

https://escholarship.org/uc/item/2t95c0bp

2.2 Other printed text tables

� Borwein and Borwein authored a similar printed table of about 100,000 constants
[3]. The table contains mostly computer-generated tabulated constants and some
dimensionless physical constants.

� The award-winning book by Steven Finch [9] has not only a table of about 10,000
well chosen non-tabulated constants, but it and Volume II [10] contain short essays
about those constants, with references to the literature about them.

3 Downloadable .pdf and web-searchable tables

3.1 Shamos's Catalog of the Real Numbers

Michael Shamos posted a .pdf �le of a table of about 10,000 constants at http://

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.9997&rep=rep1&type=pdf

Most of these constants are isolated pairs of a �oat value and a closed form de�ned by a
de�nite integral, in�nite series, or in�nite product. Many �oats list several corresponding
formulas, such as various integrals, series and products that have the same value, which
is helpful by suggesting other perhaps more e�cient ways to compute more digits.

A web search for �Mathematical constants� can locate other tables that can be
downloaded or searched directly on the web.

4 Web browsers

General-purpose web browser search engines are also helpful for directly �nding candidate
non�oats for particular �oat inputs.

Here are some input tips for using the Google Search Engine for this purpose2:

1. I infer that currently the search is based on your complete digit string and complete
digit substrings in a web site, rather than on parsing your input �oat string and
numeric web substrings into �oats then comparing those with a tolerance or on
returning results for which your input string matches a proper leading substring of
a web string or vice versa. This has several consequences:

(a) You will probably obtain disjointly di�erent sets of web sites for di�erent
numbers of entered digits.

(b) Entering too few digits is likely to overwhelm you with irrelevant elementary
mathematics tutorials, serial numbers, etc.

(c) Entering too many digits is likely to return no result.

2The Microsoft Edge and Apple Safari browsers currently allows a choice of Google, Bing, Yahoo or
DuckDuckGo as a search engine .

5

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.9997&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.9997&rep=rep1&type=pdf

(d) Most computed �oats published since the internet are computed using IEEE
binary64 arithmetic, which is almost 16 digits, the last one or more of which
are often incorrect due to discretization, rounding errors and catastrophic can-
cellation. Authors who realize this should round or at least truncate their web
numbers to at most the number of digits they believe are almost certainly
correct, but realization of that is not a requirement for web publication. Thus
if your number was computed with IEEE binary 64, a reasonable strategy is
to �rst try all 16 digits, then 15, 14, etc. down to where you obtain promis-
ing results or it seems likely than you will not obtain any. When doing so,
remember that an author might have rounded or truncated a number on their
web page, so you should try both if they di�er. When rounding, always do so
from your complete original number because, for example, rounding 1.546 to
1.55, then subsequently rounding that to 1.6 is di�erent than rounding 1.546
directly to 1.5 .

(e) But numbers of interest to mathematicians are often computed to more than
16 digits, so if the next thing to try if your number was computed to more
than 16 digits is to try 17 digits, then 18, etc. Some authors tend to prefer a
multiple of 3, 4 or 5 for either the number of fractional digits or the number
of fractional digits � particularly if they group digits with spaces or commas
for legibility, which might a�ect the success of the web search.

2. Decimal fraction notation seems more successful than scienti�c notation, perhaps
partly because of variations in spacing, characters, raised exponents, and program-
ming notations such as using E or e for �×10^�. However, if your �oat has magni-
tude that is quite large or small compared to 1, then also try omitting the power
of 10 from scienti�c notation because the search engine might terminate a lexical
scan when it encounters any character other than a digit or decimal point in a web
page.

3. For negative numbers, try both the negative entry and its absolute value.

4. For numbers having magnitude less than 1, try both with and without a leading 0
digit before the decimal point.

5. If a web page containing a promising match includes a name for a constant (such
as �Artin's constant�), then branch into a search using that clue.

Somewhat di�erent tips might be appropriate for other search engines, and Google's
search algorithm might evolve to make some of the tips here unnecessary. To learn,
experiment with �oat approximations to a few known mathematical constants that are
not too obscure or too well known. For example, try

0.91596559 .

6

5 Free web applications

If you have internet access as you read this, then you might want to try each of the web
applications in this section as you read the subsections. With good eyesight, most of
them are usable even with most smart phones.

To become acquainted with them, using simple then less simple non�oat constants
from books and articles, try entering their �oating-point approximations of varying pre-
cisions. Also try random �oats having di�ering numbers of signi�cant digits. As the
number of signi�cant digits increases, random �oats are decreasingly likely to be the
truncated or rounded value of any non�oat expression simple enough for any of these
programs to propose in a reasonable amount of time. An application is generous if it
often suggests expressions for such random-number entries, versus parsimonious if it
rarely does. It is alright for an application to be generous, but it is important for you
to realize it. Generosity can be helpful for determining bounds or e�cient su�ciently
accurate approximations or for suggesting the dominant terms of a longer exact result.

�Perfection is the enemy of success�
� Mark Cuban

Every �oat is exactly representable as an easily computed rational number, but �oats
cannot exactly represent all rational numbers, and �oats are often approximations to
irrational numbers. If your �oat approaches a limit as the working precision of the
calculation approaches in�nity and that limit is expressible as a non�oat expression,
then that limit is what you want. Perfect agreement with a mere approximation
prevents that desired result.

5.1 The On-line Encyclopedia of Integer Sequences

One of the main purposes of the OEIS site at https://oeis.org/ is to identify integer
sequences such as proposing that the truncated sequence 8, 16, 32, 64, . . . might be a
subsequence of the sequence whose nth element is 2n. Another goal of this database is
to provide accurate and comprehensive information about these sequences.

The successive digits of a decimal fraction can be regarded as an integer sequence,
and an under-advertised capability of OEIS is to propose non�oat constant expressions
that closely approximate your �oat. OEIS has sequences of up through about 100 digits
or more for about 10,000 constants regarded as important by the many contributors who
posted them. To attempt identifying non�oat candidates for your �oat, you can enter
a comma-separated list of some signi�cant digits of the absolute value of its decimal
fraction value, such as 3, 1, 4, 1, 5, 9, 2, 6 . OEIS then attempts to match your entered
successive digits with any subsequence of its sequences. It then lists information about
each of its integer sequences that contain your sequence as a subsequence. However, it is
better to enter your �oat digits as a positive decimal fraction with a decimal point, such
as 3.1415926. (Do not use scienti�c notation.)

Any matched table entries can contain hyperlinks to references and contain computer-
algebra program fragments to compute the constant to any number of digits e�ciently.
There is also usually a Keyword link labeled cons that leads to the precomputed value

7

https://oeis.org/

of the constant up to a median of about 100 signi�cant digits. The references sometimes
contain values with thousands of digits.

This exact-match decimal radix search requires you to truncate trailing digits of
the absolute value of your �oat rather than round. However, the hardware or software
that computed your �oat is approximate and almost certainly used rounding rather than
truncation. Therefore you should truncate enough of your trailing digits to be reasonably
con�dent that your submission matches exactly the leading digits at OEIS.

If your computed �oat ends with a sequence of digits 9, then also try what you get
by adding 1 to the last digit. If your computed �oat ends with a sequence of digits 0,
then also try what you get by subtracting 1 from the last digit, because those minimal
relative changes to your approximate �oat can dramatically alter the digit sequence.

If you enter too few digits then you will obtain numerous matches, most or all of
which are irrelevant. However, with about 105 numbers in the data base, entering 8 or
more signi�cant digits is usually su�cient to achieve at most one match, and almost all
of the OEIS sequences for �oats contain at least that many digits. Therefore you can
usually truncate to about 8 signi�cant digits without much chance of false matches or
of entering more digits than are in a table entry. However, some of the table entries are
there because they are surprisingly close to other constants of widespread interest, such
as π. Therefore you should always compare all of your digits with corresponding ones
stored at the cons link in the table.

Moreover, if you do obtain more than one match, then it is wise to do this comparison
for all of them or to enter more correctly truncated digits if possible to reduce the match
count to a comfortably inspectable number.

Since OEIS ignores the position of the decimal point, entering 31.41592 also returns
π rather than 10π. It is your responsibility to notice this and to multiply the proposed
exact constant by the appropriate power of 10. This base-ten signi�cand aliasing
increases the number of �oats that can be matched.

Since OEIS can match any subsequence of their digit sequences, you can also exploit
fractional part aliasing by entering only the fractional part of the absolute value of your
�oat. For example, if your truncated wild �oat is 9.141592654, then entering it produces
no result, whereas entering 0.141592654 produces π and gives its �oat value, enabling
you to recognize that your wild �oat is probably 6 + π. Thus it is worth trying all of
your �oat magnitude, then only the integer part of that magnitude if di�erent.

Beware that fractional part aliasing su�ers catastrophic cancellation when the ab-
solute value of the fractional part is small compared to the absolute value of the �oat,
whereas signi�cand aliasing su�ers no loss of precision. Therefore it is best if 8 or more
signi�cant digits remain after omitting the integer part and truncating dubious trailing
digits.

Other than you exploiting these types of aliasing, OEIS makes no e�ort to identify
more general transformations of its constants, such as 2/3 of a named constant or 2/3
plus a named constant.

All OEIS integer sequences and �oat digit sequences are assigned an OEIS name
consisting of the letter �A� followed by six digits. Although such names are di�cult
to remember and do not acknowledge the discoverers, they are unique and serve as a de

facto standard � particularly when there is no other widely recognized name. In contrast,

8

traditional names can have various spellings, subsets, and orderings of all the discoverers,
as well as values di�ering by a factor of 2, etc, on account of one author using a radius
where another uses a diameter, for example.

A complimentary way to use OEIS for named constants is to enter a name, such as
grazing goat, or an OEIS name such as A133731. If successful, you will �nd the same
information as for entering the truncated �oat value 1.158728473 .

Brief sorted descriptions of all the constants together with links to their pages are at

https://oeis.org/wiki/Index_to_constants#Description

Some of these constants are tabulated, but most are isolated published constants,
drawn from many areas by many contributors.

Even if another tool has already returned a satisfying result, OEIS and Steven Finch's
books are good places to seek more information about a constant.

5.2 Ordner: index of real numbers

Fredrik Johansson [11] posted an online table of over 3000 sign-aliased real numbers,
many of which I have not found elsewhere. To avoid a tedious amount of scrolling, there
is a clickable index of intervals that transfer you to the subtable bracketing the absolute
value of your �oat. For each subtable �oat there are one or more links to alternative
equivalent expressions having that 30-digit value to within one unit in the last place.

As a bonus, a link to the Fungrim home page reveals a table of contents with links
into a collection of useful function identities, some of which I have not seen elsewhere.

5.3 WolframAlpha

If you enter a �oat into WolframAlpha at https://www.wolframalpha.com/, the results
usually include up to three guesses for a non�oat constant that the �oat approximates.

A way to test the tools described in this article is to approximate a non�oat constant
to a generous number of signi�cant digits, then see how many of them are necessary to
produce an equivalent expression, if any. Accordingly, I approximated

1− 3
√

3

1 +
√

3 + π
(1)

to 18 digits, then tried entering that and successively fewer digits into WolframAlpha.
Table 2 lists the results for �oats rounded to 10 and to 11 signi�cant digits, together with
entries having 11 correct digits followed by one and by two incorrect digits. Underlined
digits in the entries di�er from the exact expression by at most 0.5 units in the last place.

9

https://oeis.org/wiki/Index_to_constants#Description
https://www.wolframalpha.com/

Table 2: WolframAlpha test for identifying 1− 3
√

3

1 +
√

3 + π
from a �oat approximation

Entry digits Result (Agrees with input to 0.5 in last bold digit) ≡

0.1153442566 10

11− 7π + 2π2

π(21 + π)
≈ 0.11534425649366

1

root of x4 − 75x2 + 10x− 99 near x = 8.6697
≈ 0.11534425656239

root of 99x4 − 10x3 + 75x2 − 1 near x = 0.115344
≈ 0.11534425656239

0.11534425658 11

1− 2
√

3 + π

1 +
√

3 + π
≈ 0.115344256584835 X

−2e e! + 124− 35e+ 5e2

136e
≈ 0.115344256579706

root of 92x4 + 49x3 − 27x2 + 37x− 4 near x = 0.115344
≈ 0.1153442565821563

1− 2
√

3 + π

1 +
√

3 + π
≈ 0.1153442565814835 X

0.115344256580 12
2(15σS − 1)

5(6σS + 73)
≈ 0.1153442565818196

where σS is Somos's quadratic recurrence constant

π (root of 100x4 − 152x3 − x2 − 27x+ 1 near x = 0.0367)
≈ 0.1153442565828298

0.1153442565800 13

45419π

1237062
≈ 0.1153442565800221712

3e e! + 295− 86e− 9e2

94e
≈ 0.15344256579947

1

45
(4C + 30− 11π − 40π log(2) + 27π log(3))

0.115344256580078601, where C is Catalan's constant

Notice that:

1. Alpha did not propose an equivalent for 10 correct digits.

2. Alpha proposed an equivalent expression for 11 or more correct digits provided they
were followed by no more than 1 incorrect digit.

3. Thus Alpha almost always �nds expressions that di�er from your input by at most
a few units in the last place that you entered, making those di�erences not a good
criteria for favoring one alternative over the others.

4. The returned candidates are usually nonequivalent, so Alpha is generous.

10

So with typically three nonequivalent expressions all having about the same di�erences
from your input, how are we to know which if any are the limit we seek?

By the principle of parsimony, you should prefer the least complex, but the three
alternatives for 11 correctly-rounded digits don't visually di�er much in complexity. Here
is a way to gain some evidence: If you can compute your wild �oat to more digits, perhaps
using Alpha, then do so and round the result enough to be reasonably con�dent that the
last digit or at least the one before it is correctly rounded, then enter that �oat. Impostors
for the lower-precision input are less likely to appear for the higher-precision �oat. For
example, the correctly rounded 18-digit value for expression (1) is 0.115344256581483524,
and entering that returns the three alternatives

1− 2
√

3 + π

1 +
√

3 + π
≈ 0.115344256581483524414074,

26534199π

722703038
≈ 0.1153442565814835251297,

−678 + 46e+ 97e2

2 (−10 + 167e+ 36e2)
≈ 0.1153442565814835236159 .

Notice that the �rst non�oat is the same as for entering 11 or 12 correctly rounded digits
in Table 2. The other two non�oats for 11 and 12 digits have been replaced with other
expressions and were therefore almost certainly impostors. It is possible that the true
limit would not appear until more than 18-digit precision, making the �rst entry for 18
digits an impostor too that would disappear at higher precision. However, it is typical
of true limits that once they appear at a certain precision, they will appear for all higher
precisions. Therefore it is advisable to enter increasing numbers of probably-correctly
rounded digits until one of the alternatives convincingly persists or you become convinced
that Alpha does not model your �oat. If two or more candidates persist, then perhaps
they are equivalent.

If you cannot compute more digits for your original �oat, then try rounding it to
fewer digits to see which alternatives persist in that direction.

When Alpha returns more than one result and only one has dramatically less com-
plexity than the others, there is some justi�cation for preferring it. However, I prefer to
always tray t least two id�erent precisions to asses transcience versus persis-
tence.

Alpha mostly uses the PSLQ integer relation algorithm3 [7, 8]: Given a basis vector
c = [c1, c2,. . .] of nonzero symbolic and/or �oat constants, the algorithm returns either
an indication of failure or a minimal 2-norm vector of integers [n1, n2, . . .] not all 0 such
that the inner product n1c1 + n2c2 + · · · ' 0.0 and gcd(n1, n2, . . .) = 1 .

1. One way to exploit this algorithm is to make c1 be the given �oat x̃ and choose
commonly occurring non�oat constants such as 1, π,

√
2, and ln 2 as the other con-

stants. If the algorithm returns a vector [n1, n2, . . .] , then a close-�tting candidate
is the rational linear combination

x̃ ' − n2

n1

c2 −
n3

n1

c3 − · · · .

3The LLL algorithm can also be used for this purpose.

11

The last entry in Table 2 is of this type.

2. Another way to exploit this algorithm is if

(n1c1 + n2c2 + · · ·) x̃+ (nkck + nk+1ck+1 + · · ·) ' 0.0,

then

x̃ ' − n1c1 + n2c2 + · · ·
nkck + nk+1ck+1 + · · ·

.

This linear fractional category of model was used for the correct identi�cations and
some of the incorrect ones in Table 2.

3. Another way to exploit this algorithm is if

n1 + n2x̃+ · · ·+ nm+1x̃
m ' 0.0 (2)

then x̃ is approximately one of the zeros of the polynomial n1 +n2x+ · · ·+nm+1x
m.

This can be tried for m = 1, 2, . . . up to some maximum degree that increases with
the number of signi�cant digits. If PSLQ returns a vector of integers, then an
approximate polynomial zero algorithm can then be used to determine which zero
is closest to the given �oat. Several alternatives in Table 2 are such an algebraic

number candidates.

4. The minimal polynomial integer relation can be generalized to include predeter-
mined exact irrational constants with one or more powers of x̃, such as

n1π + n2x̃+ n2x̃
2 ' 0.0 .

For degree 2 models such as this, the quadratic formula could be used to express
a successful PSLQ candidate result explicitly in terms of π, rather than implicitly
using Root [. . .].

5. For a power product model of the form x̃ ' br11 b
r2
2 · · · with given positive non-

�oat base constants bk and unknown rational exponents rk, if n1 ln x̃ + n2 ln b1 +
n3 ln b2 · · · ' 0.0, then

x̃ ' exp

(
−n2 ln b1 + n3 ln b2 + · · ·

n1

)
= b

−n2/n1

1 b
−n3/n1

2 · · · .

The irrational factors of an irrational exponent can be included in the bases to

make this category �t a model such as x̃ ' 2r13r2
√
5er3π = 2r1

(
3
√
5
)r2

(eπ)r3 .

6. For a model of the form f(. . .), where f is invertible with respect to at least one of
its arguments and that argument model is one of the above types or recursively of
this functional type:

� Using predetermined constants for any other arguments, apply an inverse of
f to the given �oat x̃ giving ỹ.

12

� If the argument model is successfully �t to ỹ, giving a non�oat candidate
constant y, then return f(y).

The computing time grows rapidly with the number of elementsm in the basis vector and
the number of words in the �oat signi�cands. Moreover, the PSLQ algorithm can require
the input �oat to have mn signi�cant digits of precision to return a correct m component
vector having integer components of up through n digits even if many of these integer
coe�cients have much smaller magnitudes, including 0 . Therefore, although specialized
e�orts to identify particular �oats have used thousands of digits and hundreds of vector
components, the general-purpose programs described here use mostly basis vectors having
. 8 elements.

More advise for using Alpha to identify �oats:

1. If you enter 18 or more signi�cant digits, including any trailing 0 digits, then Alpha
uses arbitrary precision rather than 16-digit machine �oats. Arbitrary-precision
�oats are slower but more than 18 digits are necessary for PSLQ to determine
many published constants.

2. Alternatively, you can append a su�x of the form ‘n to the signi�cand of your
input to indicate that your best guess for the Precision is the value of n, which can
be a decimal fraction. For example, if your input for the example in Table 2 was
computed by iterative equation solving using 16-digit IEEE binary64 hardware and
you guess that most probably about 14 digits are correctly rounded, then you could
start by entering 0.1153442565814834`14 . This strongly recommended alternative
has the advantage that you can enter all of the computed digits, which which are
more likely to be correct than the value rounded or truncated to 14 digits, but
without having Alpha assume that all but perhaps the last one are correct. In the
other direction, if your computed 16-digit machine �oat is 0.1615000000000000 and
you are rather con�dent that all are correct, then you can enter it more concisely
and reliably as 0.1615`16 . Di�erent from the apostrophe, the accent grave character
` is near the upper left corner on many keyboards and might look di�erent on your
keyboard or screen.

3. Software does not always display all of the digits in its signi�cands, and internet
browsers paste into web applications such as Alpha only the characters that you
highlight when copying. For example, Mathematica displays by default only 6 of
the approximately 16 signi�cant digits in the widespread IEEE binary64 machine
�oats, and displays none of the 8 or more stored guard digits in arbitrary-precision
�oats. Often some of those hardware or guard digits are correct and therefore
helpful to try entering. Therefore, learn how to display all of the digits in your
software's �oats.4

4One way to do this in Mathematica is to copy all of the displayed digits then paste into a notebook,
then copy all of that fully-displayed InputForm �oat into Alpha. Another way is to copy the result of
InputForm [float] into Alpha.

13

4. Unless you are an exceptionally fast accurate digit typist, highlight then copy the
entire �oat including its hidden digits rather than type it.

5. Then attach to the signi�cand a su�x of the form `n, where n is your best guess
for the number of signi�cant digits that are correctly rounded. Keep in mind that
cancellation and rounding errors often lose one or more digits from the working
precision � and that discretization errors such as from quadrature often lose more.
Interval arithmetic can provide an upper bound on cancellation and rounding errors,
but not necessarily on discretization errors. Signi�cance arithmetic such as Math-

ematica's arbitrary-precision �oat arithmetic provides cancellation and rounding
error estimates that are occasionally underestimates but more frequently overesti-
mates.

6. PSLQ over�ts often contain many digits in their rational numbers, such as the �rst
alternative in Table 2 for 13 digits. Information theory and my experience sug-
gests that results are dubious if they contain a total of more instances of operators,
functions and digits than about 6 less than your number of estimated correct signi�-
cant digits in your �oat input. Also, several terms or factors containing only simple
rational numbers is less suspicious than one term containing a very complicated
rational number.

5.4 Inverse Symbolic Calculator

Inverse Symbolic Calculator (ISC) implemented by Simon Plou�e working with Jonathon
and Peter Borwein and others is currently hosted at

http://wayback.cecm.sfu.ca/projects/ISC/ISCmain.html .

Plou�e [14] describes its origins.

ISC provides four di�erent techniques to apply to the �oat that you enter:

5.4.1 Simple Lookup and Browser

This technique searches a precomputed table of sorted truncated 16-digit base-ten sig-
ni�cands of the absolute values of the �oats, each paired with a character-string
description of the constant.

That table has about 30 million pairs that are a mixture of published and tabulated
constants. The sorted signi�cands and the corresponding non�oats are subdivided into
about 9000 �les whose names include some leading digits of all the signi�cands in that
�le, with each �le containing all of the signi�cands having those leading digits. The
search begins with a binary search on the �le names in RAM, followed by a search in
the appropriate �le to perfectly match or bracket the signi�cand of the �oat that you
entered, followed by retrieval of close neighbors of those entries. Here are some input
tips:

14

http://wayback.cecm.sfu.ca/projects/ISC/ISCmain.html

� ISC Simple Lookup de�nes a match as all of the entered digits of the signi�cand
being identical to that leading portion of a tabulated signi�cand, but ignoring
any entered digits beyond 16.

� The last one or more digits of your computed �oat are often not the correctly trun-
cated ones. To maximize your chance of success, try to compute as many digits as
is practical to be reasonably con�dent that the �rst 16 digits are correctly trun-
cated, then enter at least those 16 digits. Your �oat was probably computed with
software that rounds rather than truncates, so at least truncate the last computed
digit.

� If you cannot compute more than 16 digits, then truncate to as many as your best
guess for how many are correctly truncated digits of the limit you seek.

� If the least signi�cant truncated digit is a 9, then also try truncating what you get
by adding 1 to that 9 digit. If the least signi�cant truncated digit is instead a 0,
then also try truncating what you get by subtracting 1 from that 0 digit. Those
minimal relative changes to your entered �oat can dramatically alter the trailing
digit sequence.

� You can enter as few as 5 signi�cant digits, but with about 30 million entries having
signi�cands 0.1000000000000000 through 0.9999999999999999, the mean distance
between table signi�cands is

0.9999999999999999− 0.1000000000000000

30× 106
' 3.3× 10−8.

Thus you can expect an unwelcome number of matches if you enter fewer than
seven or eight signi�cant digits.

� You are o�ered the opportunity to browse nearby table entries even if there are no
matches. Doing so might reveal one or more candidate non�oats that agree closely
and are plausible considering your knowledge of the problem domain. Browse even
if there are matches, because your input might not be as correctly truncated as you
assumed.

� The table contains many instances of non�oats that all have the same 16-digit
signi�cand value. The corresponding non�oats are often but not always equivalent
to each other within a sign and a factor that is a power of 10. Approximating these
non�oats to higher precision can support such aliased equivalence or reveal the lack
of such equivalence.

� Moreover, if you can compute your wild �oat to more than 16 digits and you have
software that can evaluate a table non�oat to more than 16 digits, then doing so
permits you to determine how many more digits of that non�oat agree with your
higher-precision wild �oat. Beware though that the table non�oats are character
strings some of which are Maple syntax or Mathematica syntax or neither, so you

15

might have to type a syntactically appropriate translation into your software rather
than merely copy and paste.5

� If you do not obtain at least one promising result, then also try entering fewer and
more truncated digits up through 16, covering what you guess spans most of the
possible actual correctly truncated digits of your wild �oat.

As a test example, the correctly truncated 16-digit value of

− 10

√
2

37

(
8
√

3− 9
)

= −5.123557917376186 . (3)

Table 3 summarizes the results of entering various further truncated and rounded leading
digits to expose the consequences of rounding rather than truncating � and of appending
incorrectly truncated digits beyond the sixteenth.

Table 3: ISC Simple Lookup test results for approximated

∣∣∣∣∣−10

√
2

7

(
8
√

3− 9
)∣∣∣∣∣

Input digits Treatment Result ?

5.1235
5

truncated 38 matches include 121/4/
√

8 + 93/4 Too
many

5.1236 rounded
360 matches.

They don't include 121/4/
√

8 + 93/4

Too
many

5.123557
7

truncated Matches only 121/4/
√

8 + 93/4 X+

5.123558 rounded
6 matches that do not

include nearby 121/4/
√

8 + 93/4

All
bad

5.1235579173
11

truncated Matches only 121/4/
√

8 + 93/4 X+

5.1235579174 rounded
No match, but browser lists adjacent

121/4/
√

8 + 93/4, matching 10 digits
X

5.12355791730 12
incorrect
last digit

No match, but browser lists adjacent

121/4/
√

8 + 93/4, matching 10 digits
X

5.12355791737618
15

truncated Matches only 121/4/
√

8 + 93/4 X+

5.12355791737619 rounded
No match, but browser lists adjacent

121/4/
√

8 + 93/4, matching 14 digits
X

5.1235579173761861
17

incorrect
last digit

Matches only 121/4/
√

8 + 93/4 X+

5.1235579173761869
incorrect
last digit

Matches only 121/4/
√

8 + 93/4 X+

5Or, try typing �N [non�oat, desiredPrecision]� into WolframAlpha, where non�oat is the string
copied and pasted from ISC. WolframAlpha is somewhat tolerant of varying mathematical notation.

16

For each match, ISC lists the truncated 16-digit base-10 signi�cand without a decimal
point, equated to a corresponding non�oat, such as

512355791737618 = 12 ∧ (1/4)/(8 + 9 ∧ (3/4)) ∧ (1/2) . (4)

To process this match:

1. The ratio of your input 5.123557917376186 to the signi�cand 0.5123557917376186
is 10, so multiply the candidate non�oat by 10 to de-alias the signi�cand.

2. Then negate that, because our �oat of interest in equation (3) is negative and we
necessarily entered its absolute value, giving our �nal result

− 10
121/4

√
8 + 93/4

. (5)

3. For veri�cation of our de-aliasing and of our interpretation of the table non�oat, we
should approximate expression (5) to preferably more than 16 digits, then truncate
to trusted digits, giving -5.123557917376186, which agrees with the right side of
equation (3) to 16 digits.

4. It is not di�cult to transform the de-aliased non�oat candidate (5 into our test
expression on the left side of (3). But what if our input was a wild constant that
happens to agree with an impostor to 16 digits?

For candidates resulting from tables, if you can compute your �oat in-
put and a candidate non�oat to higher precision than used in the table,
then it is wise to assess exact and near-exact matches to higher precision
than used in the table to help expose impostors or gain con�dence in
the correctness of the non�oat.

5. However, beware that the table non�oats are character strings some of which are
Maple or Mathematica syntax or neither. Therefore you might have to type a
syntactically appropriate translation into your software rather than merely copy
and paste.6

Beware also that the table was assembled over many years from many computed and
printed sources that used varying syntactic conventions. For example:

� Gam, Gamma, GAM and GAMMA all denote the Gamma function, whereas
gamma denotes the Euler-Mascheroni constant.

� sqrt and sr both denote the principal square root.

� A polynomial in x or root(a_polynomial_in_x) denotes the zero of that polyno-
mial nearest the given �oat.

6Or, try exploiting Alpha's heuristic expression parser by typing �N [non�oat, desiredPrecision]�,
where non�oat is the string copied and pasted from ISC.

17

� Non-real expressions often implicitly denote the real parts of those expressions.

� As with our regrettably ambiguous traditional mathematics notation, sometimes
16^3/4 means 16^(3/4) rather than (16^3)/4, sin e+3 means sin(e+3) rather than
sin(e) + 3, and 7/3π means 7/(3π) rather than (7/3)π, etc.

Step 3 above enables you to verify or refute your interpretation of
the non�oat syntax, then to try another interpretation if necessary.

Some non�oats in the table contain either a common name constant such as Bernstein or
a red OEIS web link labeled with an OEIS constant having a name of the form �A� with
a six-digit su�x. Either way, you can search for their de�nitions at https://oeis.org/,
as described in subsection 5.1.

5.4.2 Smart Lookup

This technique uses the same lookup table about 100 times, but precedes each lookup with
a transformation of your �oat. For example, smart lookup might add 3/7 or multiply by
3/7 or apply ln(. . .). For a given number of input digits, the average number of matches
is thus about 100 times as many as for simple lookup However, some transformations
lose precision. Therefore smart lookup requires you to enter at least 10 digits, and the
transformation of your input is done using 26-digit signi�cands. Thus it is bene�cial to
enter �oats having up through 26 correctly rounded digits even though the forward table
�oats have only 16-digit signi�cands.

For example, computed to 26 signi�cant digits,

− 1

4
− 10

121/4

√
8 + 93/4

' −5.3735579173761866715453232 . (6)

Applying simple lookup to the absolute value of this �oat truncated to 16 digits
returns no match, and the ISC browser lists no result that agrees to more than 5 digits.
However, applying smart lookup to the absolute value of the right side of equation (6),
computed with arithmetic that rounds, returns the table

Function Result Precision Matches

K− 1/4 5.1235579173761866715453232 16 1

The Function entry, K− 1/4 is a transformation that was applied to your �oat, with
K representing both the non�oat that you seek and its approximate value

5.3735579173761866715453232 .

The Result entry is the result of applying the transformation to your �oat as computed
with 26-digit signi�cands. The Precision entry is the number of leading digits in the
table that matched those in your transformed �oat. The Matches entry is the number of
matches for that transformation.

If you click on the Function entry K− 1/4, then ISC shows the result of doing simple

lookup with a truncated signi�cand of the transformed Result �oat, which gives

18

https://oeis.org/

121/4

√
8 + 93/4

, (7)

together with an opportunity to browse around it.
If you want to further investigate one of these non�oats that have agreement accept-

able to you, then, for example, you should

1. Numerically approximate the non�oat, preferably to at least 16 digits, giving

K =121/4/
√

8 + 93/4 ' 0.512355791737618667 .

2. From the ratio of that �oat to the �oat in the Result entry, determine a power of
10 by which to multiply the non�oat:

5.1235579173761866715453232

0.512355791737618667
= 10.0000000000000000 .

3. Multiply the table non�oat (7) by that power of 10 giving the magnitude de-aliased
non�oat

y = 10
121/4

√
8 + 93/4

4. Solve y = K− 1/4 for K either manually or by computer algebra :), giving

K = y + 1/4 = 10
121/4

√
8 + 93/4

.+
1

4

5. Negate this result to de-alias the sign, giving the non�oat candidate for our �oat
of interest

−
(

1

4
+ 10

121/4

√
8 + 93/4

)
.

To summarize:

1. We made the input �oat positive by negating it.

2. Smart lookup found a transformation that lead to a matching signi�cand in the
Simple lookup table.

3. We multiplied the corresponding non�oat y1 in the Simple lookup table by an
appropriate power of 10 to make the value of the resulting non�oat y2 match the
Result value in the Smart lookup table.

4. We then applied the inverse of the Function of K in the Smart lookup table to y2
giving y3.

5. We then negated y3 giving the candidate for our original �oat.

19

More generally there might be several rows in the returned table for several di�erent
transformations that resulted in matches. (The number of rows tends to decrease as you
increase the number of entered digits above the minimum required 10 digits.)

Click on each of the Function entries to see the corresponding non�oats and optionally
browse their neighbors.

For this example, entering fewer than 16 digits produced no smart lookup result.
It is worth starting with Simple Lookup �rst because it is faster, it does not require

an inverse transformation, and it permits browsing the neighborhood of your input even
if there are no matches.

5.4.3 ISC Integer Relation Algorithms

ISC provides an Integer Relation alternative that you should try too even if simple or
smart lookup gives a promising result. Integer Relations requires inputs of 16 through
32 signi�cant digits. Integer Relation checks for algebraic numbers through �fth degree
and for rational linear combinations of the basis vectors

[e, π, γ,Ei (1),W (1), 1] ,[√
3π, ln 3, ln 2, γ,

√
2π
]
,[

π2,Catalan, π ln 2,
√

2π2, (ln 2)2
]
,[

π3, ζ (3), π2 ln 2, (ln 2)3,
√

3π3,
√

2π3
]
.

These basis vectors might seem rather few and specialized. However, a noticeable
portion of wild constants in the printed tables of Section 2 are representable with a
subset of at least one of these vectors or with algebraic numbers of degree ≤ 5.

It is wise to compute as many digits as you can up through 32. There is no need to
truncate, and it is OK for a few of the last digits to be incorrectly rounded.

5.4.4 Generalized Expansions

You must enter at least 16 signi�cant digits for this option, and it is most appropriate to
round your approximate �oat to where you are reasonably con�dent that the last digit
is correctly rounded.

This option computes a truncated continued fraction from your input �oat, and com-
putes similar truncated in�nite representations such as a truncated in�nite product and
a truncated Egyptian fraction. This can be helpful because these alternatives might
suggest patterns that might be useful for computing the �oat to arbitrarily many digits
more e�ciently than the method you used. Moreover, the GFUN package [19] is then
applied to these truncated representations to try guessing a generating function for the
in�nite representation. (It is for you to prove that it is such a generating function.)

Also, you can copy the comma-separated sequence of integers for one of these trun-
cated representations, then paste it at https://oeis.org/ to attempt learning more about
it, possibly including a closed form. The [Hints] button on the OEIS home page invokes
advice that includes:

20

https://oeis.org/

�Enter about 6 terms, starting with the second term. Leave o� the �rst term
or two, because people may disagree about where the sequence begins. Don't
enter too many terms, because you may have more terms than are in the
OEIS data base.�

Generalized Expansions and two related tools GCF.TXT by Dougherty-Bliss and Zeil-
berger [6] and the Ramanujan Machine by a team of nine authors [16] are intriguing but
adjacent to the topic of this article, so they are not described further here.

5.5 Inverse Symbolic Calculator Plus

Inverse Symbolic Calculator Plus at https://isc.carma.newcastle.edu.au/ was a di�erent
interface to essentially the same smart lookup and integer-relations models as ISC, ISC+
has had the message �down for maintenance inde�nitely� from late 2018 through at least
January 2022. However, as of this writing there is a link there titled �The original ISC�
that links to the ISC site already discussed in subsection 5.4.

6 Freely downloadable standalone applications

Most of the implemented integer relation models and precomputed table-lookup entries of
the software described in this article are based on one implementer's perception of what
patterns of non�oat constant expressions are most likely to �t the combined needs of
the intended users. There is a consequent e�ciency to the extent that the implementer's
choices are appropriate for you. However, such an implementation is almost certain to
miss some very concise results �tting unimplemented patterns.

The MESearch and RIES software address this issue by trying all possible expressions
composed of user-selected rational numbers, symbolic constants, operators and functions
� up to a certain total complexity, time limit or memory limit. By default both programs
use bidirectional search: The forward table is like the ISC table, and the backward
table is like the ISC Smart Lookup transformations. However, rather than using precom-

puted forward and transformation tables, for each given �oat both applications build new
tables from your selected components in a breadth-�rst way, interleaving the searching
with this table building. The forward table begins with a selected set of simple rational
numbers and named constants together with a set of arithmetic operators and functions.
More complicated forward expressions are formed by applying all chosen functions and
operators to existing entries in an order such that the predicted expression complexity
grows approximately monotonically. The backward table starts with the given �oat, and
applies the selected functions in an order such that the estimated resulting complexity
also grows approximately monotonically. For functions and operators of more than one
operand, all but one of the operands can be taken from the current forward table.

Growth alternates between the forward and backward tables so that at any one time
they have roughly the same number of entries.

Even though the initial set of rational numbers is typically quite simple, arithmetic
combinations of rational subexpressions can lead to larger numerator and/or denominator
magnitudes.

21

https://isc.carma.newcastle.edu.au/

Both programs use only hardware �oating point but make the best of that limitation.
Moreover, as with the 16-digit Inverse Symbolic Calculator table, if you can approximate
non�oat candidates and your wild �oat to greater than hardware precision, then you
can assess the agreement of candidates to greater precision to help distinguish impostors
from the limit you seek.

Both programs use a few simpli�cation rules such as employing 0 and 1 identities,
doing rational arithmetic, and canceling composition of a function with its inverse. How-
ever, neither program uses a computer algebra system, so sometimes the results can be
usefully simpli�ed manually or by computer algebra.

Computation ceases at your preset expression complexity limit, memory limit, time
limit, or the limit of your patience when you �nally interrupt a search. Both programs
initially use RAM for the tables, but can resort to a much slower secondary-storage mode
when allocated RAM is exhausted.

The fact that the tables are exhaustively built and searched in approximate order
of increasing expression complexity has a bene�t that simple candidates composed of
your selected components are almost always quickly found. However, the open-ended
exponential growth of the table sizes and computing time with expression complexity
makes it impractical to generate expressions having complexity that is easily achievable
by sparse precomputed tables such as OEIS and ISC or by integer relation models with
su�ciently large-precision inputs. With a medium sized set of selected components,
exhaustive search can require overnight to generate an expression containing about 12 or
13 instances of modest rational numbers, symbolic constants, arithmetic operators, and
function invocations.

But the peace of mind knowing that the search was exhaustive for expressions com-
posed of your selected rational numbers, symbolic constants, operators and functions is
worth the wait. (This is a good way for you to extract value from your computer even
while you sleep!)

In contrast, the other programs discussed in this article have a �xed number of table
entries and/or integer relation models. The latter can accommodate expressions having
any number of predetermined symbolic constants in one of several categories of forms ,
with arbitrarily large integers determined by PSLQ. But being non-exhaustive, those tools
can and do miss some very simple results that MESearch and/or RIES can determine.

Applying some of the transformations to the given �oat might produce unusable
under�ow over�ow, or non-real results; and compositions of di�erent backward with
forward pairs might lead to identical or equivalent results. However, if the backward
table has m entries and the forward table has n entries, then a useful upper bound on
the number of potentially recognizable expressions is mn. If both kinds of table entries
averaged the same memory space per entry, then for a given amount of memory, mn is
maximized by having m = n. For example, only 106 entries in the forward table and 106

entries in the backward table gives an upper bound of recognizing 1012 di�erent-valued
expressions.

MESearch and RIES both o�er the option of using only a forward table, but they are
almost always faster and less memory consumptive bidirectionally.

22

6.1 MESearch

MESearch is implemented in Java and was freely downloadable from

http://www.xuru.org/mesearch/MESearch.asp

That much changed site no longer lists MESearch, but thanks to Simon Plou�e, a
copy is freely downloadable from

http://plouffe.fr/MESearch/

The Java Runtime Environment is often already installed on most computers, and it
is freely downloadable from

https://www.java.com/en/download/

MESearch uses only invertible functions or operators for the top level function or
operator of its backward table, and automatically applies those inverses to the non�oats
in the forward table whose �oat values closely match a transformed �oat input.

Figure 2 shows the MESearch input panel for the test �oat input

1√
5 + 2

√
6 +
√

5
≈ 0.1857930606004482. (8)

MESearch measures expression complexity by Length, de�ned as the number of
occurrences of rational numbers, named constants, functions and operators. Counting
the implicit multiply, the Length of the expression on the left side of equation (8) is 12.

MESearch o�ers a choice of operators, functions, named constants, natural numbers
and rational numbers from which to build expressions, and Figure 2 shows my most com-
mon choices for these. Choosing only a few components permits you to search to longer
expressions before exhausting memory or your patience, but it is important to include
components that you expect have a nonnegligible probability of occurring in your problem
domain. Functions and operators with more than one argument are particularly costly,
and that is why I often initially limit those to �+�, �×�, and �^�. Memory and computing
time also grow quickly with the cardinality of the initial set of named constants, natural
numbers, and rational numbers. Thus I often initially select only π and e together with
very simple natural numbers and fractions.

23

http://www.xuru.org/mesearch/MESearch.asp
http://plouffe.fr/MESearch/
https://www.java.com/en/download/

Figure 2: Input panel for an MESearch example

MESearch only displays candidates whose �oat value are within ±Tolerance entered
under the Target constant near the upper left corner of Figure 2. The default MESearch
Tolerance is 1/2 unit in the last entered digit of your Target constant, which is di�cult
to achieve if your Target constant is all 16 digits of the hardware �oats or nearly so.
Consequently I often initially choose about 1000 to 10,000 units in the last entered place
for Target �oats having 16 signi�cant digits, down to about 10 units in the last place for
Target �oats having 7 or fewer signi�cant digits. Generous tolerances change the result
likelihood estimates and are more likely to generate impostors, but unlike overly frugal
tolerances, generous tolerances do not tend to lose achievable true limits. I would rather
obtain a true limit together with a few impostors, then decide which are most plausible

24

and recompute those with smaller tolerances for more accurate likelihood estimates.
MESearch uses your entered absolute tolerance rather than the number of entered

digits. Therefore you should enter all of your computed digits if there are less than 16
or rounded to 16 digits otherwise, even if any number of the resulting trailing digits are
dubious. Therefore I entered all 16 digits of 0.1857930606004482, for which my entered
absolute tolerance was 10−12.

Here is a summary of the most important information in the resulting output:

Length Expression Di�erence Likely1 Likely2 Likely3

8 ((e^arccosh (5))^(1/2) + 5^(1/2))^-1 0.0 0.5103 0.9135 0.9187

9 arctanh (cos (tan (sin (4/3 / sinh (cos (4)))))) 6.769e-13 3.3e-11 0.8515

9 arctan(ψ(2 - tan(Ei(logGamma((3/4)^2))))) 6.769e-13 3.3e-11 0.8515

Watching the output panel evolve provides some entertainment while you wait and
helps you decide whether and when to terminate the search manually.

The �rst expression that met the tolerance was at complexity Length 8. The three
Likelihood estimates are based on the fact that the expressions are all possible expres-
sions composed of the selected components, computed in approximately monotonic non-
decreasing order of complexity. The reason for the two vacant Likely3 entries is that
Likely3 can be computed only upon completion of searching its Length level, and I
manually halted the search during Length 9.

Clicking a column heading sorts the rows by the values in that column, so I usually
click the middle Likely2, which the implementer Salsamendi states is most often most
correct.

If this input �oat was a wild �oat, then having the 0.0 Di�erence between the entered
�oat and the value of the Length 8 Expression, together with its two likelihoods of
greater than 90% and one of greater than 50% would lead me to strongly suspect that
the corresponding expression is a correct limit. In contrast, the very low values for half
the likelihoods of the two Level 9 candidates and their signi�cantly greater Di�erences
would lead me to strongly suspect that they are impostors.

The result subexpression e^arccosh (5) having Length 4 is quite di�erent from the

corresponding test subexpression
√

5 + 2
√

6 in equation (8). However, they are provably
equivalent, and MESearch almost certainly would have generated the more recognizable
equivalent (√

5 + 2
√

6 +
√

5

)−1
at Level 11.

Although most people prefer algebraic numbers to be expressed using radicals or
trigonometric functions if possible and practical, other representations often have lower
complexity by most quickly-computed measures.7

Salsamendi [18] describes the data structures, algorithm, and time complexity.

7Many computer algebra systems have transformation functions that can help you seek alternative
representations of result candidate expressions.

25

6.2 RIES (Rilybot Inverse Equation Solver)

RIES is implemented in C, and the source code is freely downloadable from https:

//mrob.com/ries . Your computer might already have a C or C++ compiler that you
are unaware of, and there are several good free ones for Mac OS X, the Unix family, and
Windows.

RIES optionally exploits 19-digit IEEE binary80 arithmetic if your CPU and C com-
piler support it. The resulting 19 digits is a valuable increment over the typical 16-digit
hardware. IEEE binary80 is supported by Intel x86 processors, but not by current or past
AMD or ARM processors. The Intel C++ compiler and the free GNU C compiler sup-
port this arithmetic, and Microsoft Visual C can be made to do so at the inconvenience
of inserting _controlfp_s function calls at appropriate places in the source code.

Here is an example by Bill Gosper (private communication):
Mathematica 12.1 cannot determine a closed form for

∞∑
n=0

(−1)n cos

(√
1
2

+
(
1
2

+ n
)2
π

)
(
1
2

+ n
) (

1
2
− 1√

2
+ n
)(

1
2

+ 1√
2

+ n
)

Suppose that you compute a 20-digit approximate value 7.0895773641597344051, and
you invoke RIES as the command line

ries -l7 7.0895773641597344051 -s

where option -l7 speci�es the maximum search level and option -s permits implicit
equational results that are not of the explicit form x = constantExpression. This
feature is valuable because such equations are often solvable manually or by computer
algebra, and you at least have a possibly useful di�erent characterization of your wild
constant that might provide insight and enable you to approximate it to larger
precision more e�ciently.

Here is the corresponding slightly edited RIES output:

Your target value: T = 7.08957736415973441 mrob.com/ries

x = pi + 4 for x = T + 0.0520153 {49}
x = 4 sqrt(pi) for x = T + 0.000238039 {58}
x = 1/(8 + pi) + 7 for x = T + 0.000176411 {81}
x = (sqrt(pi) + pi)/ln(2) for x = T - 0.000106841 {87}
x = e^(e^sqrt(phi))/5 for x = T - 8.60481e-05 {90}
x = ln(ln(6^8))^2 for x = T + 7.23949e-05 {93}
x = (phi^2)^sqrt(1 + pi) for x = T - 4.72474e-05 {85}
x = (e^(pi - 2))^2 - e for x = T + 1.25979e-05 {90}
x = (1/pi + sqrt(pi))^2 + e for x = T - 2.53137e-06 {92}
x = e (sinpi(1/ln(9)) + phi) for x = T + 2.0796e-06 {109}
x = 3/pi + 8 - pi"/x for x = T + 5.08817e-10 {113}

26

https://mrob.com/ries
https://mrob.com/ries

sinpi(sqrt(x)/e) = (1/(8/phi - 1))^2 for x = T - 3.68034e-10 {131}
x = 3((pi"/4 - 1/7) + phi) - 2 for x = T - 3.51782e-11 {141}
x = 2 e"/(1 + e) - 1/(1 - 3"/2) for x = T + 1.65079e-11 {147}
x = ((log_9(1/2 + 8))/4)/e + 7 for x = T - 1.3897e-11 {150}
x = -(pi/cospi(1/sqrt(2))) - pi cospi(1/sqrt(2)) for x = T - 5.28657e-16 {148}
x = pi (-1/cospi(1/sqrt(2)) - cospi(1/sqrt(2))) for x = T + 3.05745e-16 {154}
x = (1/tanpi(1/sqrt(8))^4 + 1)(x/2 + pi) for x = T - 1.30104e-18 {164}

(Stopping now because best match is within 3.07e-18 of target value.)

log_A(B) = logarithm to base A of B = ln(B) / ln(A),
cospi(X) = cos(pi * x)
sinpi(X) = sin(pi * x)
tanpi(X) = tan(pi * x)
phi = the golden ratio = (1+sqrt(5))/2
A"/B = Ath root of B

--LHS-- --RHS-- -Total-
max complexity: 86 81 167

dead-ends: 363904522 872434773 1236339295 Time: 204.127 sec
expressions: 25836915 59427019 85263934 Memory: 1351040 KB

distinct: 7974910 9198455 17173365
Total tested: (7.336e+13)

The integers in braces at the right ends of result lines are the complexities, which are
computed di�erently from MESearch. Notice that

� RIES rounded the 20 digit input to 1 digit less than the 19 digit arithmetic it is
using on this computer.

� RIES displays a candidate only if its absolute di�erence from the entered �oat is
less than that for the previously displayed candidate. Since candidates are gener-
ated in approximate order of non-decreasing complexity, the sequence of displayed
candidates is approximately the Pareto set of optima for the con�icting objectives
of large agreement and small complexity. Thus usually all but perhaps the last few
of the displayed candidates are possibly-useful approximations rather than plau-
sible candidates for the limit you seek. (But the last one or so can be incorrect
because of over�ts or the limited precision of the hardware arithmetic.)

� The last candidate is an implicit equation with x on both sides, but it can be solved
exactly for x either manually or by computer algebra to give

x = −2π

1 +
2

−1 + cot

(
π

2
√

2

)4

 ' 7.0895773641597344057, (9)

which is within a few 19-digit machine-epsilons of the input �oat.

27

� The nonequivalent candidate result implicit result sinpi (sqrt (x) / e) = (1/(8/phi -
1))^2 is also solvable. RIES was able to explicitly invert the backward transforma-
tion for all of the other result lines.

� Both of the simpler explicit solutions immediately preceding the last output equa-
tion are equivalent to each other and to the explicit solution (9).8

RIES uses a particularly compact data structure that allows it to build particularly large
tables before having to resort to slower secondary storage. Compiling with extended
precision is slower and reduces the maximum achievable table sizes, but the greatly
increased number of recognizable constants makes it worthwhile. To maximize your
coverage and impostor detection, compile both a 19-digit and 16-digit version if your
CPU supports that, then try both.

7 Functions built into computer algebra systems

7.1 The Maple identify (. . .) function

Sometimes you want to write software that invokes other software and uses the result
without human intervention for that part. For that purpose, functions are usually bet-
ter than downloadable or web applications because function invocation from software
shouldn't require human keystrokes. Moreover, mathematical functions have a single
output and should not have side e�ects, making them composable, with results that are
the same regardless of temporal reorderings due to exploiting commutativity, associativ-
ity, etc. Functions are also more suitable for processing a batch of inputs without human
intervention.

The Maple computer algebra system has a function named identify (. . .) that can
take a �oat as an argument and returns either one non�oat constant or the input �oat if
the function cannot determine a non�oat that the function judges su�ciently likely to be
the limit you seek. This function is an adaptation by Kevin Hare of a Maple application
by Alan Meichsner [12, 4], based on the PSLQ integer relation algorithm.

Default arbitrary-precision Maple �oats have only 10-digit signi�cands. Therefore
you must almost always use more precision to have a reasonable chance of success.

The fact that identify (. . .) results are either the input �oat or a non�oat that has
very nearly the same value enables identify (. . .) to map automatically over the parts of
non-real constants and over non-constant expressions, trying to replace all or at least
some of any �oats therein with close non�oat constants. For example,

identify

(
0.27675082− 1.0369278 I

8.3118730x2 + 11.94535128y

)
→ 0.27675082− Iζ(5)√

7πx2 + 4e ln(3)y

where I =
√
−1 and ζ is the Riemann zeta function.

8The simpler explicit equivalent results give the same 20 digit value despite their estimated absolute
errors being about 100 times as large. This is probably because the estimated errors rely on linearized
error analysis and/or the limitation to hardware �oating-point prevents the �oat values of the non�oat
candidates from being computed more precisely than the �oat input.

28

The one �oat that identify did not convert was a random �oat. In contrast to ap-
plications that allow you to inspect alternatives and reject them all, a function such as
identify (. . .) automatically replaces any number of �oats in an expression by non�oats
without your inspection and consent to their complexity and agreement. It is therefore
appropriate that the identify function is parsimonious and therefore did not replace the
random �oat with a candidate that would almost certainly be an impostor.

To determine your con�dence in a Maple identify result, try using successively in-
creasing precisions for the input �oats until the result appears to stabilize. Then, assess
the agreements of the replaced �oats with their replacements by using the evalf function
on each of those replacements.9

The identify function has optional arguments that enable you to adjust the integer
relation models, and it is well worth doing so if the defaults do not return a satisfactory
result. For example, although the default maximum degree for seeking algebraic numbers
such as RootOf [polynomial, . . .] is 6, you can change that. Many algebraic numbers of
interest have larger degree, so try larger degrees if an algebraic number is plausible and
you can compute your wild �oat to high precision.

7.2 The MPMath, SymPy and Sage identify (. . .), findpoly (. . .),
and nsimplify (. . .), functions

Sage is a software system freely downloadable from http://www.sagemath.org/ that
includes NumPy, SciPy, matplotlib, SymPy, Maxima, GAP, FLINT, R and other pack-
ages. The SymPy computer algebra system in turn includes MPMath, which has an
identify (. . .) function analogous to Maple's, except that identi�cation of algebraic num-
bers is done by a separate function named findpoly (. . .). The SymPy system also has
an nsimplify (. . .) function somewhat analogous to the NSimplify [. . .] component of
AskConstants described in subsection 8.2.

8 Functions and applications for CAS

8.1 An exhaustive search toolkit for Mathematica

Andrzej Odrzywoªek analyzes the probability of correctly identifying a �oat constant
using forward exhaustive search [13]. In support of that research he implemented a
toolkit in Mathematica freely downloable from

https://github.com/VA00/SymbolicRegressionPackage

It includes a unidirectional RecognizeConstant function. Your initial components can
include any Mathematica symbolic constant that can be evaluated to a �oat or any
Mathematica function that returns a �oat result for �oat inputs. Being unidirectional,
it is not as fast or memory e�cient as MESearch and RIES.

9A replacement subexpression could still be an impostor, but if you are satis�ed with the �oat values
of the replacements, then at least the result is a satisfactory approximation to the original �oat, which
was not an exact representation either.

29

http://www.sagemath.org/
https://github.com/VA00/SymbolicRegressionPackage

My favorite function in the toolkit is a RandomExpression function that returns a
random expression of a requested complexity composed of speci�ed constants, variables,
functions and operators. Being exhaustive, it is particularly appropriate for generating
examples for which MESearch and RIES described in Subsection 6.2 are particularly
successful.

Another useful function is EnumerateExpressions, which generates all expressions of
a speci�ed complexity composed of speci�ed components.

8.2 AskConstants and associated functions for Mathematica

AskConstants is an application that I implemented in Mathematica, freely downloadable
from AskConstants.org . AskConstants 5.0 has about 3000 integer relation models,
and also bidirectional search with a choice of precomputed tables for which the largest
backward table has about 5 million entries and the largest forward table has about 15
million entries. The table lookup exploits sign and base 2 signi�cand aliasing, with
automatic de-aliasing and inversion for close matches.10 Thus ignoring over�ow un-
der�ow, nonreal compositions and the aliasing bonus, the largest tables cover about
(5 × 106)(15 × 106) = 7.5 × 1013 expressions. The backward tables and about half of
the largest forward table use tabulated and published constants. The other half of the
largest tables was generated by exhaustive table building with the elementary functions
and the most commonly-occurring special functions. This hybrid combines advantages
of precomputed tables such as ISC with those of exhaustive breadth-�rst tables such as
MESearch and RIES.

Figure 4 shows the use of version 5.0 to propose a closed form for the de�nite integral

∞∫
0

dx√
1 + x2 + (1 + x2)7/2

that the Mathematica 12.1 Integrate function cannot determine.11

10The bonus for base 2 aliasing exceeds that of base 10 aliasing because 2 divides a random re-
duced numerator or denominator more often than 10 does, and forward table entries of the form ratio-

nal×irrational only need to include positive rational numbers having an odd numerator and denominator:
The appropriate sign and power of 2 are recovered by the automatic dealiasing. Also, without loss of gen-
erality, backward transformations of the form rational × anyForwardTableEntry can limit the rational
to being positive with an odd numerator and denominator.

11I thank Daniel Lichtblau for this example.

30

AskConstants.org

Figure 3: AskConstants proposes a formula that agrees with 3.26115 . . . to 24 digits

The input �eld near the top contains the Mathematica NIntegrate function to com-
pute the approximate �oat value displayed below the digit ruler. More commonly, the
numerical integration would be done in a notebook, with the �oat result copied then
pasted into the AskConstants input �eld.

AskConstants displays the candidate non�oat

ArcCosh [2]

2
√

3
+

1

3

(
−π

2
+

ArcSinh [1]√
2

)
. (10)

on the left side of the output and displays an associated scatter plot of Agreement versus
Entropy10 on the right side, where:

31

1. The �oat value of the input numerical integration is echoed under the digit ruler,
with the darker digits estimated to be correctly rounded by signi�cance arithmetic
and with the normally undisplayed two agreeing guard digits displayed gray.

2. The upper horizontal dashed plot line is the Precision of the input �oat as estimated
by signi�cance arithmetic.

3. The Agreement of a candidate non�oat is the number of digits that agree
with the input �oat within 1/2 unit, up to the length of the input signi�cand,
including any stored digits that are not ordinarily displayed.

4. The lower horizontal dashed line is the smallest allowable Agreement for displaying
a non�oat on the left and plotting it as a large dot on the scatter plot.

5. Entropy10 based on information theory is a measure of non�oat expression com-
plexity that is the sum of the base-ten logarithms of the absolute values of all the
nonzero integers occurring in numerators and denominators in an expression, plus
about 1.0 per occurrence of a named constant, function or operator � counting
duplicates. The implicit units of Entropy10 are also digits.

6. It is desirable to have high agreement, but it is also desirable to have low expres-
sion complexity because �oats can be approximated arbitrarily well by su�ciently
complicated non�oats that are impostors rather than the limit you seek.

7. Therefore

Margin := Agreement− Entropy10 (11)

combines these two competing objectives into one of maximizing Margin, with the
largest Margin in the upper left corner of the plot and the smallest Margin in the
lower right corner.

8. The dashed diagonal line is the smallest allowable Margin for displaying a candidate
non�oat on the left side of the output.

9. Plot points in the upper leftmost pink region are very rarely impostors, Plot points
in the lower right white region are almost always impostors, with other background
colors having likelihoods that vary monotonically between these extremes.

10. As illustrated, hovering the mouse over a plot point invokes a tooltip listing the
non�oat candidate together with its Entropy10, Agreement and Margin. The latter
two include a qualitative likelihood estimate ranging adjectives �Excellent� through
�Terrible� based on my experience with test examples.12

12Candidates are not produced in approximate order of increasing complexity, so the helpful numeric
likelihood estimates of MESearch are inapplicable.

32

11. Hovering over a small plot point of a rejected candidate sometimes reveals a plau-
sible candidate for which the precision of the input was insu�cient to meet the
minimum acceptable agreement and margin. If it is the limit you seek, then in-
creasing input precision enough should move it vertically up into the accepted
regions.

12. More generally there might be several accepted candidates. Ones judged equivalent
by applying the Mathematica PossibleZeroQ function to their di�erences are joined
by line segments, which can help you assess them more e�ciently.

Automatic use of the backward transformation requires an inverse function for the top-
level function in the transformation; and as with most mathematics software, Mathemat-

ica has very few inverse special functions � probably because they are extremely di�cult
to implement for nonreal arguments. However, like all of the other tools discussed in
this article, AskConstants directly addresses only real �oats, and it is not too di�cult to
implement most inverse special functions for real arguments and results. Consequently
I did that for about 40 special functions. Many of those are multi-branched, such as for
BesselJ, Gamma, and Zeta. Consequently I also implemented corresponding functions
that return the abscissa and ordinates of the local in�ma and suprema of those functions
to accomplish piecewise monotonic partitions of the functions being inverted. The real
inverse and in�ma or suprema functions are separately usable, as are some additional
functions analogous to the Mathematica BesselJZero function.13

To overcome the limitation to constant expressions, real arguments and results, AskCon-
stants also contains a ProposeBestOrInput function that maps over general expressions
and over the real and imaginary parts of non-real constants similar to the Maple identify
function.

8.2.1 NSimplify [...]

Anyone who tests the programs described here with constants having known non�oat
representations might eventually notice that surprisingly often an equivalent proposed
candidate is simpler than the published expression. This is because:

� Manual derivations and default computer algebra simpli�cation often produce in-
completely simpli�ed expressions.

� Sometimes there is no composition of builtin optional computer algebra transfor-
mations that can produce a particularly simple representable equivalent that exists.

Consequently the AskConstants download includes an NSimplify function that supple-
ments the Mathematica FullSimplify function by approximating a non�oat input ex-
pression as a �oat, then applying the ProposeBestOrInput function to that �oat. If it
returns a non�oat having smaller Entropy10 than the given non�oat and the Mathemat-

ica PossibleZeroQ function judges that the di�erence between the original expression and
proposed replacement is 0, then the original is replaced. If that doesn't succeed, then

13Some users might �nd these functions more frequently useful than AskConstants.

33

this process is recursively applied to subexpressions. NSimplify also tries FullSimplify so
that the result is at least that successful. This brute-force combination is slow, but it can
achieve some dramatic simpli�cations. Some users might �nd NSimplify more frequently
useful than AskConstants and ProposeBestOrInput.

As an example, applying NSimplify to√√√√√√√
1

2
− 1

4

√√√√ 2

4 +

√
7−
√

5 +
√

30− 6
√

5

Root [−97 + 448 #1− 672 #12 + 560 #13 − 280 #14 + 84 #15 − 14 #16 + #17 &, 1]

produced the result

sin

(
7π

120

)
2− 311/7

;

and the optional trace reported the steps

� Level 2: ProposeBestOrInput

[
N

[
1

2
−
√

1

4
√
. . .
, 26

]]
7→ sin

(
7π

120

)
,

reducing Entropy10 by 14.1; and PossibleZeroQ [di�erence] 7→True.

� Level 2: ProposeBestOrInput [N [Root [−97 + · · ·+ #17 &, 1]] , 38] 7→ 1

2− 311/7
,

reducing Entropy10 by 18.6; and PossibleZeroQ [di�erence] 7→True.

Remarks :

1. NSimplify maps over over general expressions, replacing exact constant subexpres-
sions with less complex ones where it can.

2. The Mathematica PossibleZeroQ Function can incorrectly return False, but this
would merely cause NSimplify to miss an Entropy10 reduction opportunity.

3. The PossibleZeroQ function can incorrectly return True, causing NSimplify to re-
turn a nonequivalent result. However, in this application that also requires the
parsimonious AskConstants ProposeBestOrInput function to have generated an
impostor non�oat for a �oat subexpression, and the product of these two small
probabilities is such that I have not yet noticed it happen. I suspect that the over-
all probability is not much more than that of a nonequivalent result due to a bug
in the many built-in Mathematica functions.

8.3 Plou�e's inverter for Maple

After developing ISC, Simon Plou�e developed Plou�e's Inverter [15], a similar Maple
application with larger tables. He has several versions using di�erent signi�cand sizes,
and over the years his tables have grown. As of January 2022 his largest forward table
has about 8× 1010 entries.

34

The same site https://archive.org/ (not arXiv.org) that hosts ISC has agreed to
also store at least one of his versions for downloading. For downloading, all three versions
require you to have Maple, a fast reliable download connection and a computer with a
large amount of secondary storage.

Therefore, I am hoping that the site will also host a free web application alongside
the ISC that they already host.

9 Custom Integer Relation Models

Wild �oats often occur at the high end of a family of problems depending on a parameter
n, with known non�oat values for small n. For example, a noticeable number of de�nite
integrals have non�oat representations that can be expressed as a rational linear combi-
nation of terms with cofactors that are small positive integer powers of π, ln 2, ln 3, ζ(m)
with small integer m > 1, and low-order polylogarithms having simple arguments such
as 1/2 or 1/4, perhaps multiplied by

√
2 or

√
3. The known closed forms for small n

permits guesses of possible cofactors for the next value of n, and if a guess is successful,
then you can use that form to make cofactor guesses for the next value of n, and so on.

An increasing number of computer algebra systems have builtin integer-relation solvers.
David Bailey and David Broadhurst [1, 2] describe some particularly e�cient implemen-
tations in Fortran 90 and C++. Such large models are too time consuming to make
them part of the set of more general-purpose integer relation models in tools such as
WolframAlpha, AskConstants, or the Maple and MPMath identify functions. However,
it is easy to simply invoke a built-in or stand-alone PSLQ function with an input vector
containing your �oat and a set of cofactors. The LLL algorithm can also be used for this
purpose if that is available instead.

10 The curse of extreme magnitude

The software described here is most successful at proposing candidate non�oats for �oats
whose magnitudes are not extremely di�erent from 1.0. A reason for this is that represen-
tations of non�oat constants having extreme magnitudes often require high-complexity
extreme magnitudes of the numerators or denominators of some rational numbers therein,
which requires extreme precision input �oats for integer relation algorithms or pro-
hibitively extreme magnitude integer subexpressions in lookup tables. Exceptions are
functions whose nonzero magnitude can be extremely large or small for arguments that
are not extremely large or small, such as Γ(98/3) ' 8.26×1034 or erfc (9) ' 4.14×10−37.

Fortunately, most published mathematics constants do not have extreme magnitudes.
For example, in Steven Finch's table of about 10,000 such constants, nonzero magnitudes
vary from 0.000111582 through 137.0359 with median about 0.9 and quartiles about 0.4
and 1.9 .

35

https://archive.org/

11 Some causes of impostors

�1.0000001 is a crowd�
� adapted from James Thurber

Reasons for impostors include:

1. Many functions f(x) have a stationary value of 1 for some value of x. For ex-
ample, cosx, secx and coshx, at x = 0; or tanhx and erf (x) as x → ∞. In a
neighborhood of the stationary point, such constants that are modeled are likely
to occur as impostors for any that are not modeled, because very low complexity x
can produce values very close to 1.0 and hence each other. For example, sec(1/999)
and cosh(1/999) di�er by only 2 units in the 14th place. Therefore, if only one of
these was modeled, you could easily get one of them as an impostor for the other.

2. If a sum has some terms with very small magnitudes compared to other terms,
impostors often omit those small-magnitude terms � at least until su�ciently large
precision is used.

3. If for some relatively low complexity non�oat constant x a modeled expression
f(x) agrees relatively closely with an unmodeled nonequivalent expression g(x),
then that makes it easy for the modeled expression to be an impostor for the
unmodeled expression. For example the low complexity expressions, e18, 2 sinh 18,
and 2 cosh 18 di�er by only 1 unit in the last of 16 places. If a proper subset of
these is modeled and the true limit is an unmodeled one of these, then one of the
modeled ones will almost certainly occur as an impostor having nearly the same
agreement and complexity as the correct limit.

12 Conclusions

There are many good tools that can propose non�oat candidates that your �oat closely
approximates. Usefully often one of those candidates is the limit that your �oat would
approach as the working precision increases. Some of the tools are easy to use directly
on the internet, some are built-into a computer algebra system, and others are easy to
download and install.

Most of the programs discussed in this article can propose correct candidates that
none of the others can propose. General-purpose web search engines, radix search, integer
relation models, precomputed tables and exhaustive run-time tables are each best at
overlapping kinds of expressions. Therefore it is worthwhile to try as many of these
programs as is reasonably convenient.

Consequently it is wise to try at least:

� the Online Encyclopedia of Integer Sequences14,

14

� This is also a good place to �nd high precision values and program fragments for e�ciently com-
puting more digits.

36

� at least one of the general purpose web search engines on your computers or smart
phones,

� one of the tools that have numerous integer-relation models and can identify alge-
braic numbers, preferably arbitrary degree, returning results such as Root [polyno-
mial, n] : AskConstants, Maple identify, SymPy identify and FindPoly, or Wolfra-
mAlpha,

� one that has precomputed lookup tables (AskConstants, Inverse Symbolic Calcu-
lator, and Plou�e's Inverter),

� one that uses exhaustive bidirectional breadth-�rst search (MESearch and RIES).

At the very least you should try all that are built into or downloadable for the com-
puter algebra systems that you already have, together with all of the web-based tools (a
browser's search engine, the Online Encyclopedia of Integer Sequences, Inverse Symbolic
Calculator and WolframAlpha) because that is so easy to do.

You might develop favorites that tend to work better for your needs, but it is nice to
have all of these alternatives when your favorites don't succeed and the result is important
to you.

The success of your e�orts depends strongly on knowing how to groom your �oat for
input, interpret the results, and possibly de-alias and transform the result. These details
vary greatly among the tools, as described in this article.

When none of these programs accessible to you can propose a plausible constant, then
at least you can have the peace of mind of greatly reducing the chance that your problem
has a simple non�oat result that you did not �nd.

Acknowledgments

Thank you Bill Gosper, Daniel Lichtblau, Robert Munafo, Simon Plou�e, Neil Sloane
and Michael Trott for your helpful suggestions.

References

[1] Bailey, D. H., The PSLQ Algorithm: Techniques for E�cient Computation (slides),
2010, https://www.davidhbailey.com/dhbtalks/dhb-carma-20100824.pdf

[2] Bailey, D. H. and Broadhurst, D. J., Parallel Integer Relation Detection: Techniques
and Applications, 1999, https://arxiv.org/pdf/math/9905048.pdf

[3] Borwein, J. and Borwein, P., A Dictionary of Real Numbers, Wadsworth Inc., 1990.

[4] Borwein, P., Hare, K. G., and Meichsner, A., Reverse Symbolic computations,
the identify function, https://www.researchgate.net/publication/267425704_
REVERSE_SYMBOLIC_COMPUTATIONS_THE_IDENTIFY_FUNCTION

37

https://www.davidhbailey.com/dhbtalks/dhb-carma-20100824.pdf
https://arxiv.org/pdf/math/9905048.pdf
https://www.researchgate.net/publication/267425704_REVERSE_SYMBOLIC_COMPUTATIONS_THE_IDENTIFY_FUNCTION
https://www.researchgate.net/publication/267425704_REVERSE_SYMBOLIC_COMPUTATIONS_THE_IDENTIFY_FUNCTION

[5] Corless, R, Gonnet, G., Hare, D., Je�rey, D., Knuth, On the Lambert W function,
Advances in Computational Mathematics, 5, (1996), pp. 329�359.

[6] Dougherty-Bliss, R. and Zeilberger, D., Automatic conjecturing and proving
of exact values of some in�nite families of in�nite continued fractions, 2020,
https://arxiv.org/pdf/2004.00090.pdf

[7] Ferguson, H. R. P. and Bailey, D. H., A Polynomial Time, Numerically Stable Integer
Relation Algorithm, RNR Technical Report RNR-91-032, July 14, 1992.

[8] Ferguson, H. R. P., Bailey, D. H., and Arno, S., Analysis of PSLQ, an integer relation
�nding algorithm, Mathematics of Computation 68 (1999) 351�369.

[9] Finch, S. R., Mathematical Constants, Encyclopedia of Mathematics and its Appli-

cations, Cambridge University Press, 2003.

[10] Finch, S. R., Mathematical Constants II, Encyclopedia of Mathematics and its Ap-

plications, Cambridge University Press, 2018.

[11] Johansson, F., Ordner: index of real numbers, https://fungrim.org/ordner

[12] Meichsner, A., Integer relation algorithms and the recognition of numer-

ical constants, M.S. Thesis, Simon Fraser University, 2001. http://www.

collectionscanada.gc.ca/obj/s4/f2/dsk3/ftp04/MQ61592.pdf

[13] Odrzywolek, A., Criteria for the numerical constant recognition, 2020, https://
arxiv.org/abs/2002.12690

[14] Plou�e, S., Credits and References for Inverse Symbolic Calculator. http://

wayback.cecm.sfu.ca/projects/ISC/credits.html, 1995.

[15] Plou�e, S., L'Inverseur, March 1998, http://vixra.org/pdf/1409.0151v1.pdf

[16] Raayoni, G. et al., The Ramanujan Machine: Automatically generated conjectures
on fundamental constants, 2020, https://arxiv.org/pdf/1907.00205.pdf

[17] Robinson, H. P. and Potter, E., Mathematical Constants, UCRL-20418, UC-32
Math. and Comp., TID-4500 (57th Ed.), March 1971.

[18] Salsamendi, J. Z., An e�cient mathematical expression searcher for constant
recognition and some conjectures and theorems discovered with it, 2013,
https://web.archive.org/web/20180728144309/http://xuru.org/downloads/

papers/MESearch.pdf

[19] Salvy, B. and Zimmermann, P., GFUN: a Maple package for the manipulation of
generating and holonomic functions in one variable, ACM Transactions on Mathe-
matical Software, 20(2), June 1994, pp. 163-177.

[20] Shamos, M. I., Shamos's Catalog of the Real Numbers,
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.9997&rep=rep1&type=pdf

38

https://arxiv.org/pdf/2004.00090.pdf
https://fungrim.org/ordner
http://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/ftp04/MQ61592.pdf
http://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/ftp04/MQ61592.pdf
https://arxiv.org/abs/2002.12690
https://arxiv.org/abs/2002.12690
http://wayback.cecm.sfu.ca/projects/ISC/credits.html
http://wayback.cecm.sfu.ca/projects/ISC/credits.html
http://vixra.org/pdf/1409.0151v1.pdf
https://arxiv.org/pdf/1907.00205.pdf
https://web.archive.org/web/20180728144309/http://xuru.org/downloads/papers/MESearch.pdf
https://web.archive.org/web/20180728144309/http://xuru.org/downloads/papers/MESearch.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.9997&rep=rep1&type=pdf

[21] Stoutemyer, D. R., The Constant Hunters, Applications of Computer Algebra Con-

ference, 2019, Montreal, http://aca2019.etsmtl.ca/program/invited-speakers/.

39

http://aca2019.etsmtl.ca/program/invited-speakers/

	Introduction
	Text tables
	Mathematical Constants table by Robinson & Potter
	Other printed text tables

	Downloadable .pdf and web-searchable tables
	Shamos’s Catalog of the Real Numbers

	Web browsers
	Free web applications
	The On-line Encyclopedia of Integer Sequences
	Ordner: index of real numbers
	WolframAlpha
	Inverse Symbolic Calculator
	Simple Lookup and Browser
	Smart Lookup
	ISC Integer Relation Algorithms
	Generalized Expansions

	Inverse Symbolic Calculator Plus

	Freely downloadable standalone applications
	MESearch
	RIES (Rilybot Inverse Equation Solver)

	Functions built into computer algebra systems
	The Maple identify(…) function
	The MPMath, SymPy and Sage identify(…), findpoly(…), and nsimplify(…), functions

	Functions and applications for CAS
	An exhaustive search toolkit for Mathematica
	AskConstants and associated functions for Mathematica
	NSimplify [...]

	Plouffe's inverter for Maple

	Custom Integer Relation Models
	The curse of extreme magnitude
	Some causes of impostors
	Conclusions

