
On analytic properties and canonical
constructions of absolute zeta functions

August 2024

Takuki Tomita



A Thesis for the Degree of Ph.D. in Science

On analytic properties and canonical
constructions of absolute zeta functions

August 2024

Graduate School of Science and Technology

Keio University

Takuki Tomita



Contents

1 Introduction 1
1.1 Background of absolute zeta functions . . . . . . . . . . . . . . . . . 1

1.1.1 Absolute zeta functions . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Absolute Euler products . . . . . . . . . . . . . . . . . . . . . 4

1.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Absolute Euler products and F1-schemes . . . . . . . . . . . . 6
1.2.2 Three analytic properties of absolute zeta functions . . . . . . 7
1.2.3 Ceiling and floor Puiseux polynomials . . . . . . . . . . . . . . 9

1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 F1-schemes 13
2.1 Background of F1-geometry . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Monoid schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Definition of monoid schemes . . . . . . . . . . . . . . . . . . 15
2.2.2 Properties of monoid schemes of finite type . . . . . . . . . . . 17

2.3 F1-schemes by Connes-Consani . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 F1-schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Torsion free Noetherian F1-schemes . . . . . . . . . . . . . . . 20

3 Absolute Euler products and F1-schemes 23
3.1 The absolute zeta function of a torsion free Noetherian F1-scheme . . 23
3.2 Proof of Theorem 3.1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Applications of Theorem 3.1.5 . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Fundamental F1-schemes . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Toric varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Analytic properties of absolute zeta functions 39
4.1 The class A of analytic functions . . . . . . . . . . . . . . . . . . . . 41
4.2 Series expansion at the infinity . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Integral formula in the sense of Connes and Consani . . . . . . . . . . 48
4.4 Absolute Euler products . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Absolute Euler product in the case of f ∈ A . . . . . . . . . . 52

i



4.4.2 Examples of absolute Euler products . . . . . . . . . . . . . . 56
4.4.3 Region of absolute convergence of a certain absolute Euler

product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.4 Proof of the key lemma . . . . . . . . . . . . . . . . . . . . . . 63

5 Ceiling and floor Puiseux polynomials 69
5.1 Ceiling and floor polynomials . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Ceiling/Floor polynomials . . . . . . . . . . . . . . . . . . . . 69
5.1.2 Other examples of ceiling/floor polynomials . . . . . . . . . . 71

5.2 Ceiling and floor Puiseux polynomials . . . . . . . . . . . . . . . . . . 74
5.2.1 Ceiling/Floor Puiseux polynomials . . . . . . . . . . . . . . . 74
5.2.2 Ceiling/Floor Puiseux polynomial of a projective curve and

its maximal/minimal reduction . . . . . . . . . . . . . . . . . 77
5.2.3 Ceiling/Floor Puiseux polynomial of an elliptic curve . . . . . 78

A Ceiling/Floor Puiseux polynomial of an elliptic curve in the case
of P = P \ S 81

B Another proofs of Lemma 4.4.5 and Theorem 4.4.12 83
B.1 Another proof of Lemma 4.4.5 . . . . . . . . . . . . . . . . . . . . . . 83
B.2 Another version of Theorem 4.4.12 . . . . . . . . . . . . . . . . . . . 85

Bibliography 91

ii



List of Notations

N The set of positive integers
N0 The set of non-negative integers
Z The ring of integers
Q The field of rational numbers
Q The field of algebraic numbers
R The field of real numbers
C The field of complex numbers
P The set of prime numbers
PN The set of prime powers pm (p ∈ P, m ∈ N)
PN
S The set of prime powers pm (p ∈ P \ S, m ∈ N), where S is a subset of P

Fq The finite field with q elements (q ∈ PN)
D The open unit disk {z ∈ C | |z| < 1}
Mn(R) The set of n× n matrices over a ring R
Ob(C) The collection of objects of a category C
Set The category of sets
Ab The category of abelian groups
CRing The category of commutative rings

M0
The category of monoids, where a monoid in this thesis means a commu-
tative multiplicative semigroup with 1 and 0

AlgR The category of R-algebras, where R is a commutative ring
ModR The category of R-module, where R is a commutative ring
Sch The category of schemes over Z
MSch The category of monoid schemes
⌈x⌉ The ceiling function (x ∈ R), i.e. ⌈x⌉ := min{n ∈ Z | x ≤ n}
⌊x⌋ The floor function (x ∈ R), i.e. ⌊x⌋ := max{n ∈ Z | n ≤ x}

µ(n)
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Chapter 1

Introduction

In this thesis, we study analytic properties of an absolute zeta function and give a
simpler construction of the absolute zeta function of a geometric object.

An absolute zeta function is the zeta function associated with an “F1-scheme”,
which would be a geometric object expected to be a strong tool in an approach
to solving the Riemann hypothesis. In this approach, it is pivotal to discover the
relationship between geometric operations of F1-schemes such as fibre products and
function-theoretic information such as poles and zeros of an absolute zeta function.

In this thesis, we give a further understanding of absolute zeta functions in terms
of their analytic properties and relationship with F1-schemes. In this chapter, we
review the background of absolute zeta functions and state three main results of this
thesis.

In what follows, we denote the set of prime numbers and that of prime powers
by P and PN, respectively.

1.1 Background of absolute zeta functions

In number theory, it is traditionally important to study the solutions over Z of
algebraic equations. One of the approaches to such a problem is to investigate the
set X (Fpm) of Fpm-rational points of a scheme X of finite type over Z for each p ∈ P
and unify information on X (Fpm)’s. In particular, the congruent zeta function, or
the local zeta function,

Z(XFp , p
−s) := exp

( ∞∑

m=1

#X (Fpm)

m
p−ms

)

of XFp := X ×Z SpecFp, defined as the generating function of the number of Fpm-
rational points of XFp , has been studied as exemplified by the Weil Conjecture since
the 20th century.
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1.1.1 Absolute zeta functions

Soulé [46] studied the limit

lim
p→1

(p− 1)fX (1)Z(XFp , p
−s) = lim

p→1
(p− 1)fX (1) exp

( ∞∑

m=1

fX (pm)

m
p−ms

)

when there exists a polynomial fX (t) =
∑R

j=0 ajt
j ∈ Z[t] satisfying that #X (Fq) =

fX (q) for any q ∈ PN. More precisely, he found the fact that

lim
p→1

(p− 1)fX (1) exp

( ∞∑

m=1

fX (pm)

m
p−ms

)
=

R∏

j=0

(s− j)−aj

and called it the absolute zeta function of X , motivated by the ambition to define
the zeta function of an F1-geometric object (see Chapter 2 for the details of F1-
geometry). Later, Deitmar [11, 12] introduced a monoid scheme and realised the
above rational function as an invariant of a certain monoid scheme. After Deitmar’s
work, Connes and Consani generalised the above definition of absolute zeta functions
as follows.

Definition 1.1.1 (Connes and Consani [8, §2.1]). Let f : [1,∞) → C be a function
satisfying that |f(t)| ≤ Ctd for some C > 0 and d > 0. Then, the absolute zeta
function of f is defined by the limit

ζ limf (s) := lim
p→1+

(p− 1)f(1) exp

( ∞∑

m=1

f(pm)

m
p−ms

)

for Re(s) > d when the right-hand side converges.

To define an absolute zeta function even for a function with a pole at t = 1,
Kurokawa gave another definition of an absolute zeta function using zeta regulari-
sation. This enables us to regard Barnes’ multiple gamma function as an absolute
zeta function.

Definition 1.1.2 (Kurokawa and Ochiai [34], Deitmar, Koyama and Kurokawa [14]).
Let f : (1,∞) → C be a measurable function. The function f is said to be admissible
if there exist a constant d > 0 and a (non-empty open) domain D of C such that

Zf (w, s) :=
1

Γ(w)

∫ ∞

1

f(t)t−s(log t)w−1dt

t
=

1

Γ(w)

∫ ∞

0

f(ex)e−sxxw−1dx

converges for every (w, s) ∈ D × {s ∈ C | Re(s) > d} and Zf (w, s) admits a unique
holomorphic extension to w = 0. If f is admissible, then we define the absolute zeta
function of f by

ζf (s) := exp

(
∂

∂w
Zf (w, s)

∣∣∣∣
w=0

)
.
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It is known that absolute zeta functions have the following functoriality.

Proposition 1.1.3 (Kurokawa and Ochiai [34, Theorem B]).

(1) Let f1, f2 be admissible functions on (1,∞). Then, it holds that

ζf1+f2(s) = ζf1(s)ζf2(s).

(2) Let Φ1, Φ2 be finite subsets of C. Put f1(t) :=
∑

ρ1∈Φ1
aρ1t

ρ1 (aρ1 ∈ C) and
f2(t) :=

∑
ρ2∈Φ2

bρ2t
ρ2 (bρ2 ∈ C). Then, it holds that

ζf1f2(s) =
∏

ρ1∈Φ1

∏

ρ2∈Φ2

(s− (ρ1 + ρ2))
−aρ1bρ2 .

Remark 1.1.4. Kurokawa may have introduced the above definition with the follow-
ing ambition to treat the Riemann zeta function ζ(s) as the absolute zeta function
of “SpecZ over F1” (see Section 2.1 for some details on the Riemann zeta function).
Let Z be the set of nontrivial zeros of ζ(s). According to Deninger [17, Theorem 3.3],
we could formally have the decomposition of the completed Riemann zeta function

ζ̂(s) := 2−
1
2π− s

2Γ
(s
2

)
ζ(s) = ζfZ

( s

2π

)
=

ζfξ
(

s
2π

)

s
2π · s−1

2π

if fξ(t) := f̃ξ(t
1
2π ) were admissible, where fZ(t) := f̃Z(t

1
2π ) and

f̃Z(t) := t− f̃ξ(t) + 1, f̃ξ(t) :=
∑

ρ∈Z

tρ.

On the other hand, Kurokawa suggests that “ζ̂(s) = ζf̃Z(s)” (see e.g. [30, p. 42]).

Example 1.1.5 (Kurokawa and Ochiai [34, Theorem A]). Let Φ be a finite subset
of C and put

fΦ(t) =
∑

ρ∈Φ

aρt
ρ (aρ ∈ Z).

Then, it holds that

ζ limfΦ (s) =
∏

ρ∈Φ

(s− ρ)−aρ = ζfΦ(s).

Thus, both definitions coincide with each other if f is a linear combination of tρ’s.
For example, motivated by Remark 1.1.4, Kurokawa [31] introduced the following

function called the counting function of an absolute Riemann surface

fα(t) := t− 2
√
t

g∑

k=1

cos(αk log t) + 1 = t−
g∑

k=1

(
tρk + tρk

)
+ 1,

3



whereα = (α1, . . . ,αg) ∈ [0,∞)g and ρk :=
1
2+

√
−1αk. Note that this is comparable

with “the finite version of f̃Z” in Remark 1.1.4. Then, its absolute zeta function is

ζfα(s) =
1

s(s− 1)

g∏

k=1

((s− ρk) (s− ρk)) .

Thus, we might consider this as “the finite version of ζ̂(s)” in Remark 1.1.4. How-
ever, the definition of “absolute Riemann surfaces” has not yet been established.

Example 1.1.6 (Kurokawa and Ochiai [34]). Let ω = (ω1, . . . ,ωr) ∈ (0,∞)r and
put

fω(t) :=
1

(1− t−ω1) · · · (1− t−ωr)
.

Then, it holds that
ζfω(s) = Γr(s,ω),

where Γr(s,ω) is Barnes’ multiple gamma function. In particular, when r = 1, it
holds that

ζfω(s) = Γ1(s,ω) =
ω

s
ω− 1

2

√
2π

Γ
( s

ω

)
.

Thus, the gamma function Γ(s) is also an absolute zeta function.

For a function f which satisfies the conditions of two definitions, it is not clear
whether ζ limf (s) and ζf (s) always coincide with each other. However, in joint work
with Y. Hirakawa, we found that we can create infinitely many simple examples in
which they do not coincide by using Connes-Consani’s integral formula (see Exam-
ple 4.3.7).

1.1.2 Absolute Euler products

Many zeta functions including the Riemann zeta function have an infinite product
representation running over all prime numbers (see e.g. Kurokawa [29, §11.1]). This
infinite product is called an Euler product. For example, the Riemann zeta function
has the following Euler product representation:

ζ(s) =
∏

p∈P

(1− p−s)−1.

As a generalisation of this Euler product, the zeta function ζR(s) of a finitely
generated Z-algebra R, which is called the Hasse zeta function of SpecR, has the
following Euler product representation:

ζR(s) :=
∏

a∈m-SpecR

(1− (#R/a)−s)−1 =
∏

p∈P

∞∏

n=1

(1− p−ns)−κ(p,n;R),
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where m-SpecR is the set of maximal ideals of R and

κ(p, n;R) := #{a ∈ m-SpecR | #R/a = pn}.

Similarly, the congruent zeta function Z(X, p−s) of a smooth projective variety X
over Fp has the following Euler product representation:

Z(X, p−s) =
∏

l∈P

∞∏

n=1

(1− l−ns)−κ(l,n;X), (1.1)

where k(x) is the residue field of x, the set |X| is the set of closed points of X, and

κ(l, n;X) =

{
#{x ∈ |X| | #k(x) = pn} if l = p,

0 if l ̸= p.

However, since there should be no prime numbers in F1-theory, absolute zeta
functions cannot have a similar Euler product representation. In [30, §7.3], Kurokawa
calculated certain infinite products of absolute zeta functions for some specific
schemes of finite type over Z according to Soulé’s definition. Then, he suggested
that the “absolute zeta function ζX (s)” of a general scheme X of finite type over
Z has the following infinite product structure, which he called the absolute Euler
product. Note that “ζX (s)” has not generally been defined yet.

Conjecture 1.1.7 (Kurokawa’s suggestion [30, §7.3]). For a scheme X of finite type
over Z, there should exist the absolute Euler product of “ζX (s)” of the form

ζX (s) =

(
1

s

)χabs(X ) ∞∏

n=1

(
1−

(
1

s

)n)−κ(n,X )

, (1.2)

where κ(n,X ) is an integer for any n ∈ N, the integer χabs(X ) := fX (1) is the
absolute Euler characteristic, and fX (t) is the function associated with X . Moreover,
the infinite product (1.2) converges absolutely for Re(s) > dimX .

Remark 1.1.8. Assume that XFp is a smooth projective variety. Let fX be a
function which satisfies fX (q) = #X (Fq) for any q ∈ PN. Then, by the Lefschetz
trace formula (see e.g. Hartshorne [22, p. 454]), it holds that

fX (p
m) = #X (Fpm) =

2 dimXFp∑

i=0

(−1)i(αm
i,1 + · · ·+ αm

i,bi),

where the integer dimXFp is the dimension of XFp , the complex numbers αi,1, . . . ,αi,bi

are eigenvalues of the induced map of the Frobenius morphism on the i-th étale
cohomology of XFp

, and the integer bi is the i-th Betti number. If we substituted
m = 0 in this equality, we could formally obtain

fX (1) = “#X (F1)” =

2 dimXFp∑

i=0

(−1)ibi = χtop(X (C)),
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where χtop(X (C)) is the Euler characteristic of the complex manifold X (C). This is
the reason why fX (1) is called the absolute Euler characteristic.

This philosophy that the number of “F1-rational points” of a scheme and the
value at 1 of the original function f of the absolute zeta function ζf associated with
it coincide with its Euler characteristic also appears in [46, Théorème 2], [28, Remark
2], [12, p. 141], and the proof of [14, Theorem 2.1].

Equation (1.2) in Conjecture 1.1.7 does not seem like the Euler products which
we mentioned above. Kurokawa himself did not explain the validity of the name
“absolute Euler product”. However, in joint work with Y. Hirakawa, we found one
of the reasons why it is reasonable to call Equation (1.2) an Euler product. We
explain this in Subsection 4.4.2.

1.2 Main results

Originally, an absolute zeta function was expected to be the zeta function associated
with an F1-scheme. Hence, we are interested in the relationship between absolute
zeta functions and F1-schemes. However, most previous works study F1-geometry
and absolute zeta functions separately.

In this thesis, we mainly give three results. The first main result is on the
absolute Euler product of the absolute zeta function of a certain F1-scheme defined
by Connes and Consani. The second is on three analytic properties of absolute
zeta functions: the series expansion, an integral formula, and the absolute Euler
product. The third is on a “canonical” construction of the absolute zeta function
from a scheme over Z or Q using ceiling and floor Puiseux polynomials. Here, the
second and the third results are based on joint work with Y. Hirakawa.

1.2.1 Absolute Euler products and F1-schemes

Let f be a polynomial with integer coefficients. Kurokawa [33, Theorem 11.1] for-
mally gave the absolute Euler product of ζf (s) which is similar to Equation (1.2)
and described the exponent corresponding to κ(n,X ) explicitly. However, he did
not give the region where the absolute Euler product converges absolutely.

In this thesis, we formulate Kurokawa’s suggestion (Conjecture 1.1.7) for a tor-
sion free Noetherian F1-scheme, whose Z-lift is almost a toric variety (see Chapter 2
for its definition). Moreover, we prove that the region where the absolute Euler
product converges absolutely is |s| > rel.dimXZ/Z, where rel.dimXZ is the relative
dimension of XZ over Z, and it is the widest possible region.

Theorem 1.2.1 (Theorem 3.1.5, [49, Theorem 3.8]). Let X be a torsion free Noethe-
rian F1-scheme. Then, there exists a polynomial NX ∈ Z[t] associated with X . Let
XM0 (resp. XZ) be the scheme (resp. the monoid scheme) obtained from X . Then,

6



it holds that

ζX/F1(s) = s−NX (1)
∞∏

n=1

(
1− s−n

)−κ(n,XM0
)
,

where κ(n,XM0) is a certain integer which is explicitly given by the information of
XM0. Moreover, if XZ is of finite type over Z, the region of absolute convergence of
this absolute Euler product is {s ∈ C | |s| > rel.dimXZ/Z}.

Remark 1.2.2. By combining Theorem 4.4.6 and a method in Subsection 1.2.3,
which we explain later, we can remove the condition “torsion free” in Theorem 1.2.1
and generalise Theorem 1.2.1.

1.2.2 Three analytic properties of absolute zeta functions

In previous works, absolute zeta functions were mainly investigated when f was a
relatively specific function such as a polynomial or a product of fω’s. In this thesis,
we investigate three analytic properties of the absolute zeta functions of elements of
the following class of analytic functions:

Ad := {f ∈ Cω([1,∞),C) | ∃C > 0, ∀n ∈ N0, |αn(f)| ≤ Cdn}

for d > 0, where

αn(f) :=

(
t
∂

∂t

)n

f(t)

∣∣∣∣
t=1

=

(
∂

∂x

)n

f(ex)

∣∣∣∣
x=0

for any n ∈ N0. In these results, we take the branch of log s with the branch cut
along C \ (−∞, 0], and define sw := ew log s for s, w ∈ C.

The first analytic property is that the logarithmic derivative of an absolute zeta
function can be identified with the generating function of the iterative Euler deriva-
tives of a given function. Note that we can determine the region where the absolute
zeta function of f ∈ Ad can be defined based on its proof, while it is originally
defined for a sufficiently large Re(s) by its definition.

Moreover, this expression of the absolute zeta function is useful for obtaining its
asymptotic behaviour. According to Kurokawa [33, p. 116], it is classically known
that the Hasse zeta function and the congruent zeta function tend to 1 as Re(s) →
∞. In [31, §1.7], Kurokawa observed that the absolute zeta function of fΦ(t) =∑

ρ∈Φ aρtρ for some aρ ∈ Z and a finite set Φ ⊂ C satisfies

sfΦ(1)ζfΦ(s) =
∏

ρ∈Φ

(
1− ρ

s

)−aρ
→ 1 (s → +∞).

The following theorem is a generalisation of this observation.

Theorem 1.2.3 (Theorem 4.2.1). Let d > 0 and f ∈ Ad.

7



(1) For Re(s) > d, the absolute zeta function of f is

ζf (s) = s−f(1) exp

( ∞∑

n=1

αn(f)

nsn

)
.

In particular, this can be analytically continued to a single-valued holomorphic
function on {s ∈ C | |s| > d}. Moreover, we have

lim
s→∞

sf(1)ζf (s) = 1.

(2) For Re(s) > d, the logarithmic derivative of the absolute zeta function ζf (s) is

ζ ′f (s)

ζf (s)
= −

∞∑

n=1

αn−1(f)s
−n.

The second analytic property is a corollary of Theorem 1.2.3, which asserts that
the logarithmic derivative of the absolute zeta function of f ∈ Ad has a similar
integral formula to Connes-Consani’s integral formula.

Theorem 1.2.4 (Corollary 4.3.3). Let d > 0 and f ∈ Ad. Then, it holds that

ζ ′f (s)

ζf (s)
= −

∫ ∞

0

f(ex)e−sxdx = −L[f ◦ exp](s)

for Re(s) > d, where L is the Laplace transform.

The third analytic property is also a corollary of Theorem 1.2.3, which is that
the absolute zeta function of f ∈ Ad has the absolute Euler product expression. Let
M : CN0 → CN0 be the linear map defined by M(a)0 := a0 and

M(α)n :=
1

n

∑

m|n

µ
( n

m

)
am (n ∈ N)

for a sequence a = {an}∞n=0 of complex numbers. Then, we define the linear map
Mn : Ad → C by

Mn(f) := M({αn(f)}∞n=0)n.

Theorem 1.2.5 (Theorem 4.4.6). Let d > 0 and f ∈ Ad. Then, the following
statements hold.

(1) The series

Sf (s) :=
∞∑

n=1

Mn(f) log
(
1− s−n

)

converges absolutely for |s| > max{d, 1}.

8



(2) It holds that
log ζf (s) = −f(1) log s− Sf (s)

for |s| > max{d, 1}. In particular, it holds that

ζf (s) = s−M0(f)
∞∏

n=1

(1− s−n)−Mn(f).

According to the theorem, the series Sf (s) converges absolutely at least for |s| >
max{d(f), 1}, where d(f) := inf{d | f ∈ Ad}. We wonder whether this region is the
widest possible region where Sf (s) converges absolutely. In this thesis, we prove it
affirmatively at least if f is a linear combination of tρ’s satisfying some technical
assumptions by using ergodicity of an irrational rotation (Theorem 4.4.12).

Note that the relationship of a function f ∈ Ad, the value αn(f), and the linear
map Mn which appeared in the above three theorems is described in the following
diagram:

A ∋ f

{(t ∂
∂t)

n(·)
∣∣
t=1

}∞n=0

!!
{αn(f)}∞n=0

M
!!

∞∑
n=0

αn(f)
n! (log t)n

"" {Mn(f)}∞n=0

∑
k|n

kMk(f)

""

integral
formula

series
expansion

absolute
Euler product

.

1.2.3 Ceiling and floor Puiseux polynomials

As we mentioned before, Soulé obtained the absolute zeta function from a scheme X
of finite type over Z, assuming that the sequence (#X(Fq))q∈PN is interpolated by a
polynomial. In addition, we can obtain the canonical polynomial from a torsion free
Noetherian F1-scheme as we mentioned in Theorem 1.2.1. In these cases, we can
define the canonical absolute zeta function of the geometric objects as the absolute
zeta function of the polynomials.

However, there are normally infinitely many continuous functions which inter-
polate the number of Fq-rational points of a geometric object. Hence, we cannot
generally obtain such a canonical continuous function from a geometric object. For
example, let X = (X,OX) be a monoid scheme of finite type and XZ be the Z-lift
of X (see Section 2.2 for their definitions). Then, Connes and Consani showed that

#XZ(Fq) =
∑

x∈X

(q − 1)rx
lx∏

j=1

gcd(q − 1, tx,j)

for any prime power q (see Propositions 2.2.7 and 2.2.10), where the non-negative in-
tegers rx, lx and the positive integers tx,j are taken so that O×

X,x
∼= Zrx×

∏lx
j=1 Z/tx,jZ
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with tx,j | tx,j+1 for each x ∈ X. In this case, there is no clue to determine what is
a “canonical” interpolation of (#XZ(Fq))q∈PN .

By using the Fourier expansion of the periodic function gcd(q − 1, tx,j) in q,
Deitmar, Koyama and Kurokawa [14, pp. 61–63] interpolated #XZ(Fq) to a certain
continuous function NXZ on [1,∞) and then regarded ζ limNXZ

(s) as the absolute zeta
function of X.

Theorem 1.2.6 (Deitmar, Koyama and Kurokawa [14, Theorem 2.1]). For the
above function NXZ, it holds that

ζ limNXZ
(s) =

RX∏

k=0

(s− k)
∑

x∈X Tx(−1)rx−k+1(rxk ),

where Tx :=
∏lx

j=1 tx,j and RX := maxx∈X rx. Moreover, if XZ is a smooth projective
variety of relative dimension d, it holds that NXZ(1) = χtop(XZ(C)) and ζNXZ

(d−s) =

(−1)χtop(XZ(C))ζNXZ
(s), where χtop(XZ(C)) is the Euler characteristic of the complex

manifold XZ(C).

Remark 1.2.7. In [14], Deitmar, Koyama and Kurokawa took tx,j’s as prime powers
instead of the above integers satisfying tx,j | tx,j+1.

Despite this simple result, the proof of Theorem 1.2.6 involves relatively compli-
cated calculations. In fact, comparing with Example 1.1.5 and Theorem 1.2.6, we
see that the absolute zeta function ζNXZ

(s) of NXZ coincides with the absolute zeta
function ζCXZ

(s) of the polynomial

CXZ(t) =
∑

x∈X

Tx(t− 1)rx .

This polynomial CXZ is characterised as the ceiling polynomial of XZ, which is
defined as the unique polynomial in R[t] satisfying the following conditions:

(1) The inequality CXZ(q) ≥ #XZ(Fq) holds for every q ∈ PN.

(2) There exist infinitely many prime powers q such that CXZ(q) = #XZ(Fq).

Thus, we have a simpler way to obtain the above absolute zeta function ζNXZ
(s)

without using the periodicity of gcd(q − 1, tx,j). This simple observation is notable
in extending Soulé’s idea to a more general scheme of finite type over Z for which
we do not have any formula like Connes-Consani’s formula of #XZ(Fq).

Similarly, by replacing ≥ with ≤ in the first condition, we can recover the poly-
nomial

FXZ(t) =
∑

x∈X

(t− 1)rx ,

introduced by Deitmar [12, Theorem 1]. We call it the floor polynomial of XZ.
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The above conditions satisfied by the ceiling polynomial suggest that it is not
necessary to interpolate the whole sequence (#XZ(Fq))q∈PN for the definition of an
absolute zeta function of XZ, at least in view of the result of Deitmar, Koyama and
Kurokawa [14]. Therefore, it is more natural to start from a general (separated)
scheme of finite type over Q instead of the Z-lift of a monoid scheme of finite type.
Moreover, since the polynomial condition is too strict for most schemes of finite type
over Z[S−1], where S is a finite subset of P, we generalise the ceiling polynomial
by means of Puiseux polynomial. For example, a desired Puiseux polynomial exists
uniquely for every elliptic curve E overQ as follows; this fact leads us to a provisional
definition of the absolute zeta function of E.

Theorem 1.2.8 (Corollary 5.2.15, [23, Definition 3.4 and Corollary 3.15]). Let
E be an elliptic curve defined over Q. Then, the Puiseux polynomial CE(t) :=
t+2t1/2+1 is characterised as the unique element in R[t1/∞] =

⋃
n∈N R[t1/n] satisfying

the following condition: for any separated scheme E of finite type over Z satisfying
that EQ ∼= E, there exists a finite set SE of prime numbers such that for any finite set
S of prime numbers containing SE , the Puiseux polynomial CE satisfies the following
conditions:

(1) The inequality CE(pm) ≥ #E(Fpm) holds for every pm ∈ PN, where p ̸∈ S.

(2) There exist infinitely many prime powers pm such that p ̸∈ S and the equality
⌊CE(pm)⌋ = #E(Fpm) holds.

(3) CE(1) ∈ Z.

Moreover, the absolute zeta function of CE is

ζCE(s) =
1

s
(
s− 1

2

)2
(s− 1)

.

We call CE the ceiling Puiseux polynomial of E. A drawback of CE is that the
special value CE(1) does not coincide with the Euler characteristic of the complex
torus E(C). This is not consistent with the philosophy which we mentioned in Re-
mark 1.1.8. Indeed, if X is a monoid scheme of finite type such that Tx = 1 for each
x ∈ X and XZ is a smooth projective variety, then it holds that NXZ(1) = CXZ(1) =
FXZ(1) = χtop(XZ(C)). However, it holds that CE(1) = 4 ̸= 0 = χtop(E(C)).

On the other hand, by replacing ≥ in (1) (resp. ⌊CE(pm)⌋ = #E(Fpm) in (2))
in Theorem 1.2.8 with ≤ (resp. ⌈CE(pm)⌉ = #E(Fpm)), we can naturally define the
floor Puiseux polynomial of E and determine it as follows.

Theorem 1.2.9 (Corollary 5.2.15, [23, Corollary 3.15]). Let E be an elliptic curve
defined over Q. Then, the floor Puiseux polynomial FE(t) of E coincides with t −
2t1/2 + 1 and its absolute zeta function is

ζFE(s) =

(
s− 1

2

)2

s(s− 1)
.

11



Here, note that the special value FE(1) coincides with the Euler characteristic of
E(C), which is consistent with the above philosophy. In this view, it is fair to say
that ζFE(s) is better than ζCE(s).

Remark 1.2.10. While Deitmar, Koyama, and Kurokawa constructed the absolute
zeta function of a scheme over Z associated with a monoid scheme of finite type
such as a toric variety, our method enables the construction of a pair of the absolute
zeta functions of a general scheme over Z or Q whose corresponding F1-scheme has
not been established yet such as an elliptic curve. According to Remark 5.2.18,
the absolute zeta function ζCE(s) or ζFE(s) might be regarded as the absolute zeta
function of “the reduction modulo 1” of an elliptic curve over Q. This observation
might help guess an F1-scheme associated with an elliptic curve.

1.3 Outline of this thesis

The outline of this thesis is as follows.
As a preliminary, we survey the background of F1-theory and the F1-schemes by

following Deitmar and Connes-Consani in Chapter 2. In particular, we review the
definition of monoid schemes defined by Deitmar and F1-schemes defined by Connes
and Consani, and introduce their properties related to their rational points.

In Chapter 3, we formulate Kurokawa’s suggestion for a torsion free Noetherian
F1-scheme X defined by Connes and Consani and give the absolute Euler product
representation of its absolute zeta function. Moreover, we show that its region of
absolute convergence is purely determined by the relative dimension of the scheme
obtained from X .

In Chapter 4, we introduce the commutative C-algebra A consisting of certain
analytic functions. Then, we investigate three analytic properties of the absolute
zeta function of f ∈ A: the series expansion, the integral formula according to
Connes and Consani, and the absolute Euler product expression.

In Chapter 5, we study the ceiling and floor (Puiseux) polynomials of schemes and
their absolute zeta functions. First, we characterise the polynomial which Deitmar,
Koyama and Kurokawa implicitly used as the ceiling polynomial of the Z-lift of a
monoid scheme. Then, we introduce the ceiling and floor Puiseux polynomials of a
separated scheme X of finite type over Q and provide a certain pair of the absolute
zeta functions of X. In particular, we investigate their existence when X is an
elliptic curve.

12



Chapter 2

F1-schemes

In this chapter, we review the background of F1-geometry and introduce monoid
schemes, defined by Deitmar [11], and F1-schemes, defined by Connes and Con-
sani [8]. In this thesis, we mean a monoid to be a commutative multiplicative
semigroup with the identity 1 and the absorbing element 0 which maps any element
to 0 by multiplication. Note that a morphism between monoids is a semigroup
homomorphism which preserves both 0 and 1.

2.1 Background of F1-geometry

In number theory, the Riemann zeta function

ζ(s) :=
∞∑

n=1

1

ns
(Re(s) > 1)

is one of the classical research objects. This function is meromorphically continued
to the entire complex plane C and has a simple pole at s = 1. It is also well-known
that ζ(s) has a simple zero at any negative even integer and ζ(s) ̸= 0 unless s ∈ C
is a negative even integer or in 0 < Re(s) < 1 (see e.g. Serre [42, Chapter VI, §3.2]).
These negative even integers are called the trivial zeros and all other zeros of ζ(s)
are called the nontrivial zeros. The following conjecture on nontrivial zeros of ζ(s)
is well-known as the Riemann hypothesis.

Conjecture 2.1.1 (Riemann hypothesis). All nontrivial zeros of ζ(s) lie on the line
{s ∈ C | Re(s) = 1

2}.

This conjecture is of great importance since it implies numerous conjectures in
number theory. For example, von Koch [50] proved that it implies a sharp estimate

π(x) = Li(x) +O
(
x

1
2+ε

)

of the number π(x) of prime numbers up to a sufficiently large x for any ε > 0,
where Li(x) is the logarithmic integral function.
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Despite various attempts to solve the Riemann hypothesis, it has remained un-
solved for more than a century. However, in the early 1990s, a new approach to
solving the Riemann hypothesis was proposed by Deninger and Kurokawa using F1-
geometry. The concept of F1 was first introduced by Tits [48] independently from
the context of the Riemann hypothesis. Deninger and Kurokawa suggested that
the Riemann hypothesis could be proved similarly to Deligne’s proof of the Weil
conjecture if we introduced appropriate F1-geometry and absolute zeta functions
(cf. Manin [36]).

The Weil conjecture is a function field analogue of the Riemann hypothesis,
which was proved by Deligne in 1974. Fix a prime number p and let X be a
smooth projective variety over Fp. The Weil conjecture states that the congruent
zeta function Z(X, p−s) is a rational function of p−s and all zeros and poles of
Z(X, p−s) lie in {s ∈ C | Re(s) ∈ 1

2Z}, where
1
2Z is the set of half integers (see

e.g. Hartshorne [22, p. 450]). Deligne [15] proved this conjecture by using the étale
cohomology of X := X ⊗Fp Fp. The key of this proof is to narrow the bound of
the absolute value of an eigenvalue of the étale cohomology of the fibre product
X ×Fp

· · ·×Fp
X.

Deninger [16, 17] pointed out that the Riemann zeta function would have had
a determinant expression (cf. Remark 1.1.4) similar to the congruent zeta function
of a smooth projective curve over Fp if there were a “cohomology theory of F1-
geometry” [36]. On the other hand, Kurokawa introduced a tensor product for zeta
functions which is called the Kurokawa tensor product (see Definition 3.1.3 for the
definition) and proposed an idea to solve the Riemann hypothesis similar to the
Weil conjecture by using the Kurokawa tensor product (see Kurokawa [32, §11.3]
[33, §2.1]). While both ideas are a little different, they at least require constructing
an F1-scheme X whose fibre product “X ×F1 X” is not trivial, i.e. X ×F1 X ̸∼=
X. In particular, the latter idea requires the compatibility of the fibre product
“X ×F1X” and the Kurokawa tensor product of the zeta functions of X, which are
called absolute zeta functions.

This inspired many mathematicians to consider candidates of F1-geometry (see
e.g. Peña and Lorscheid [39]). Any theory constructs F1-algebras so that the tensor
product Z⊗F1Z is not trivial, i.e. Z⊗F1Z ̸∼= Z. However, there is still no definitive
definition of F1-geometry. In particular, the candidates of F1-geometry are not
currently equipped with a good cohomology theory.

Kurokawa, Ochiai and Wakayama [35] defined the category AlgF1
of F1-algebras

and the categoryModF1 of F1-modules by the following identification of the diagrams
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

AlgZ

##!!
!!
!!
!!
!

$$■
■■

■■
■■

■■

ModZ

$$❏
❏❏

❏❏
❏❏

❏❏
❏

AlgF1

##✉✉
✉✉
✉✉
✉✉
✉

ModF1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

CRing
forget ×

%%✇✇
✇✇
✇✇
✇✇
✇

forget +

&&❍
❍❍

❍❍
❍❍

❍❍

Ab

forget + &&❍
❍❍

❍❍
❍❍

❍❍
M0

forget ×##✈✈
✈✈
✈✈
✈✈
✈

Set

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,
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where CRing, Ab, M0 and Set are the categories of commutative rings, abelian
groups, monoids and sets, respectively.

This idea became the basis of many candidates for F1-geometry. Deitmar [11]
extended this idea to define schemes over F1 using F1-algebras, i.e. monoids. Later,
Connes and Consani [8] generalised Deitmar’s F1-scheme to a functor which encodes
a monoid scheme and a usual scheme over Z. In this thesis, we treat these two
candidates of F1-geometry.

2.2 Monoid schemes

Deitmar defined monoid schemes as F1-schemes (see Deitmar [11], where monoid
schemes are called schemes over F1). In short, a monoid scheme is a topological
space together with a sheaf of monoids, which is constructed by gluing spectra of
monoids just like a scheme. Precisely, it is constructed as follows.

Let F1[·] : Ab → M0 be the covariant functor which sends a multiplicative abelian
group G to a monoid G∪ {0}. We put F1n := F1[Cn], where Cn := ⟨ζn⟩ is the cyclic
group of order n ∈ N generated by the primitive n-th root ζn of unity. In particular,
we abbreviate F11 = {0, 1} to F1.

For a commutative ring R, we define the base extension functor ·⊗F1R : M0 →
AlgR by M ⊗F1R := R[M ], where R[M ] is the monoidal ring which is defined by

R[M ] :=

{
∑

m∈M

nmm

∣∣∣∣∣ nm ∈ R, nm = 0 for all but finitely many m ∈ M

}
.

Note that this functor · ⊗F1Z is left adjoint to the forgetful functor CRing → M0

[11, Theorem 1.1].

2.2.1 Definition of monoid schemes

Let M be a monoid. A nonempty subset a of M is called an ideal of M if it satisfies
that aA ⊂ a. An ideal a ̸= M is to be prime if M \ a is multiplicatively closed, i.e.
a, b ̸∈ a ⇒ ab ̸∈ a.

For a subsemigroup S of M with the unit 1, i.e. 1 ∈ S and st ∈ S for all s, t ∈ S,
the localisation of M at S is defined by S−1M := S×M/ ∼, where (s,m) ∼ (s′,m′)
if and only if there exists t ∈ S such that ts′m = tsm′. We denote [(s,m)] ∈ S−1M
by m

s . In particular, for a prime ideal p, we define the localisation Mp at p by S−1
p M ,

where Sp := M \ p.
We introduce a topology on the set specM of prime ideals of M1 like the Zariski

topology by defining the closed sets as sets of the form V (a) := {p ∈ specM | p ⊃ a}
for any ideal a of M .

1In this thesis, we use “spec” for the spectrum of a monoid to distinguish it from “Spec”, the
spectrum of a commutative ring.
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Definition 2.2.1 (Deitmar [11, §2.1]). Let M be a monoid. For each open subset
U of specM , we define

OspecM(U) :=

⎧
⎪⎪⎨

⎪⎪⎩
s : U →

∐

p∈U

Mp

∣∣∣∣∣∣∣∣

∀p ∈ U, • s(p) ∈ Mp,

• ∃V ⊂ U a neighbourhood of p, ∃a, b ∈ M

s.t. ∀q ∈ V, b /∈ q and s(q) =
a

b
in Mq.

⎫
⎪⎪⎬

⎪⎪⎭
.

Then, we call the functor OspecM : Op(specM) → M0 the structure sheaf of specM ,
where Op(specM) is the category of open sets of specM .

A monoidal space is a topological space together with a sheaf of monoids. A pair
of the morphisms (f, f#) : (X,OX) → (Y,OY ) is the morphism of monoidal spaces if
f : X → Y is a continuous function and f# : OY → f∗OX is a morphism of sheaves
of monoids on Y . Note that the pair (specM,OspecM) is a monoidal space and spec
satisfies the functoriality [11, Proposition 2.2]. Then, we define monoid schemes as
follows.

Definition 2.2.2 (Deitmar [11, §2.3]). A monoidal space X is an affine monoid
scheme if there exists a monoid M such that X is isomorphic to the spectrum
specM of M . Moreover, a monoidal space X is a monoid scheme if for any x ∈ X
there exists an open neighbourhood U of X such that (U,OX |U) is an affine monoid
scheme.

A morphism of monoid schemes is a local morphism of monoidal spaces, i.e.
a morphism (f, f#) : (X,OX) → (Y,OY ) of monoidal spaces which induces the
morphism f#

x : OY,f(x) → f∗OX,x satisfying (f#
x )−1(O×

X,x) = O×
Y,f(x) for each x ∈ X.

For a monoid scheme X, we define X(M) := Hom(specM,X) for each M ∈ M0.

Let R be a commutative ring and X be a monoid scheme with an affine covering
X =

⋃
i∈I specMi. Through the base extension functor · ⊗F1 R : M0 → AlgR, we

obtain the scheme XR :=
⋃

i∈I Spec(Mi⊗F1R) over R and call XR as the R-lift of X.
Here, the isomorphism class of XR does not depend on the choices of affine coverings
of X due to compatibility with gluing [11].

Example 2.2.3. Let G be a multiplicative abelian group. Then, the Z-lift of
specF1[G] = {(0)} is SpecZ[G]. Note that the monoid F1[G] is sometimes called an
F1-field because of the similarity to a field K such as the fact that SpecK = {(0)}
(see Kurokawa [33, p. 141]). In particular, for each q ∈ PN, the monoid scheme
specF1q−1 = specF1[F×

q ] plays a similar role to Spec Fq in counting rational points
of a monoid scheme.

Definition 2.2.4 (Deitmar [12, §1]). Let X be a monoid scheme. We say X to be
of finite type if it has a finite covering by affine monoid schemes specMi such that
each Mi is finitely generated.

Proposition 2.2.5 (Deitmar [12, Lemma 2]). A monoid scheme X is of finite type
if and only if the Z-lift XZ is of finite type over Z.
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A monoid scheme is said to be integral if it is covered by affine monoid schemes
specM ’s, where M is integral, i.e. ab = ac implies b = c in M . The following
proposition shows that integral monoid schemes of finite type are essentially toric.

Proposition 2.2.6 (Deitmar [13, Theorem 4.1]). Every irreducible component of
the C-lift of a connected integral monoid scheme of finite type is a toric variety.

2.2.2 Properties of monoid schemes of finite type

Now, we review the basic properties of monoid schemes of finite type which we use
in this thesis.

Proposition 2.2.7 (Deitmar [12, Remark 1]). Let X be a monoid scheme of finite
type. Then, it holds that

X(F1q−1) ∼= XZ(Fq)

for any q ∈ PN. In particular, the underlying set of X is finite, i.e. #X = #X(F1) =
#XZ(F2) < ∞.

Proof. As in Example 2.2.3, specF1q−1 consists of one point, the generic point (0).
Since any morphism of monoid schemes sends it to the generic point, it holds that

X(F1q−1) =
⋃

i∈I

Ui(specF1q−1),

where we take an affine covering of X as
⋃

i∈I Ui. Hence, it suffices to show the
statement in the affine case, which follows from the fact that

X(F1q−1) ∼= Hom(M,F1q−1) ∼= Hom(Z[M ],Fq) ∼= XZ(Fq)

by the functoriality of spec and ·⊗F1Z when we put X = specM .

Connes and Consani explicitly described the right-hand side of Proposition 2.2.7.
Before stating their formula, we introduce some notations used hereafter.

Definition 2.2.8. Let X = (X,OX) be a monoid scheme of finite type. For each
x ∈ X, we define rx, lx ∈ N0 and tx,j ∈ N by the integers satisfying

O×
X,x

∼= Zrx ×
lx∏

j=1

Z/tx,jZ with tx,j | tx,j+1

and put Tx := #(O×
X,x)tors =

∏lx
j=1 tx,j. Here, O×

X,x denotes the group of invertible
elements of the monoidOX,x and (O×

X,x)tors denotes its torsion subgroup. In addition,
we put RX := maxx∈X rx and TX :=

∏
x∈X Tx.

Lemma 2.2.9 (Connes and Consani [8, Proposition 3.22]). For an abelian group
G, it holds that

X(F1[G]) =
⊔

x∈X

HomAb

(
O×

X,x, G
)
.
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The following property follows form Lemma 2.2.9 by putting G = Z/nZ.

Proposition 2.2.10 (Connes and Consani [9, Lemma 4.4]). Let X be a monoid
scheme of finite type. Then, it holds that

#X(F1n) =
∑

x∈X

nrx

lx∏

j=1

gcd(n, tx,j)

for any n ∈ N.

2.3 F1-schemes by Connes-Consani

Next, we review F1-schemes defined by Connes and Consani [8]. They constructed
the categoryMR, which glues together the categoryM0 of monoids and the category
CRing of commutative rings using adjoint functors. Then, they defined an F1-scheme
as a functor MR → Set which satisfies certain conditions.

2.3.1 F1-schemes

As we mentioned above, the functor Z[·] : M0 → CRing is left adjoint to the forgetful
functor U : CRing → M0, which forgets the addition of rings [11, Theorem 1.1].
Using these functors, we glue M0 and CRing.

Definition 2.3.1 (Connes and Consani [8, §4.1]). We define the category MR :=
M0 ∪Z[·],U CRing by the category which consists of the following data:

• The collection of objects of MR is the disjoint union of the collections of
objects of M0 and CRing.

• For any M,N ∈ M0 and R,S ∈ CRing, we set

HomMR(M,N) := HomM0(M,N), HomMR(R,S) := HomCRing(R,S),

HomMR(M,R) := HomCRing(Z[M ], R) ∼= HomM0(M,U(R)),

HomMR(R,M) := ∅.

• For φ ∈ HomMR(M,R), f ∈ HomM0(N,M) and g ∈ HomCRing(R,S), we
define φ ◦ f ∈ HomMR(N,R) and g ◦ φ ∈ HomMR(M,S) as φ ◦ Z[f ] ∈
HomCRing(Z[N ], R) and g ◦ φ ∈ HomCRing(Z[M ], R), respectively.

An F1-scheme is a functor MR → Set which combines information of an M0-
scheme, a Z-scheme and a natural transformation which binds them. Here, we
introduce M0-schemes and Z-schemes.

Definition 2.3.2 (Connes and Consani [8, Definition 3.5]). Let F be a covariant
functor M0 → Set.
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• A covariant functor G is a subfunctor of F if G(M) ⊂ F(M) for all M ∈
Ob(M0) and G(f) = F(f)|G(M) for all f ∈ HomM0(M,M ′).

• A subfunctor G ⊂ F is said to be open if for any monoid M and any morphism
φ : HomM0(M, ·) → F , there exists an ideal a ⊂ M such that

φ(ρ) ∈ G(N) (⊂ F(N)) ⇔ ρ(a)N = N

for any N ∈ Ob(M0) and any ρ ∈ HomM0(M,N).

• Let F be a covariant functor M0 → Set and {Fi}i∈I be a family of open
subfunctors of F . Then, {Fi}i∈I is an open covering of F if it holds that

F(F1[G]) =
⋃

i∈I

Fi(F1[G])

for any multiplicative abelian group G.

Definition 2.3.3 (Connes and Consani [8, Definition 3.10]). An M0-scheme is
a covariant functor M0 → Set which admits an open covering by representable
subfunctors. A Z-scheme is defined similarly by exchanging M0 for CRing.

Next, we introduce the natural transformation which is one of the data of an
F1-scheme. For each R ∈ Ob(CRing), put

α′
R := Φ−1(idU(R)) ∈ Φ−1(HomM0(U(R), U(R)) = HomMR(U(R), R),

where Φ : HomCRing(Z[M ], S)
∼→ HomM0(M,U(S)) is a natural bijection in M ∈

Ob(M0) and S ∈ Ob(CRing) which is determined by the adjoint functors Z[·] : M0 →
CRing and U : CRing → M0. Then, we have the map eR := X (α′

R) : X|M0 ◦U(R) →
X|CRing(R) for any covariant functor X : MR → Set. Thus, we obtain the natural
transformation e : X|M0 ◦ U → X|CRing.

Definition 2.3.4 (Connes and Consani [8, Definition 4.7]). A functor X : MR →
Set is an F1-scheme if it satisfies the following conditions:

• The restriction X|M0 is an M0-scheme.

• The restriction X|CRing is a Z-scheme.

• The map eK : X|M0 ◦ U(K) → X|CRing(K) is bijective for any field K.

Remark 2.3.5 (Connes and Consani [8, Proposition 3.17]). For a monoid scheme
X and a scheme X over Z, we put

X := HomMSch(spec(·),X) and X := HomSch(Spec(·), X),

where MSch and Sch are the categories of monoid schemes and schemes over Z,
respectively. Since the category of M0-schemes is equivalent as a category to MSch,
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for any M0-scheme F : M0 → Set, there exists the unique monoid scheme XM0 (up
to natural isomorphism) such that F = XM0

. We call the monoid scheme XM0

the geometric realisation of F . Similarly, for any Z-scheme G : CRing → Set, there
exists the unique scheme XZ over Z (up to natural isomorphism) such that G = XZ.
We also call the scheme XZ the geometric realisation of G.

Remark 2.3.6 (cf. Connes and Consani [8, Remark 4.10]). It is important that eK
is bijective not for an arbitrary rings but for an arbitrary fields, since X|M0 ◦ U is
not always a Z-scheme. For example, when X is an F1-scheme satisfying that the
geometric realisation of X|M0 (resp. X|CRing) is a monoid scheme X (resp. its Z-lift
XZ), the map eR is bijective for any rings R. On the other hand, when X is the
F1-scheme associated with the projective line or a Chevalley group, the map eR is
not bijective for any rings R.

2.3.2 Torsion free Noetherian F1-schemes

Next, we show some properties of F1-schemes under certain conditions. First of all,
we review the definition of a torsion free Noetherian F1-scheme.

Definition 2.3.7 (Connes and Consani [8, Definition 4.12]). An M0-scheme F is
Noetherian if there exists a finite open covering by representable subfunctors, each
of which is naturally isomorphic to HomM0(M, ·) for some Noetherian monoid M .
A Noetherian Z-scheme is also defined similarly.

An F1-scheme X is Noetherian if X|M0 is a Noetherian M0-scheme and X|CRing

is a Noetherian Z-scheme.

Remark 2.3.8. The following conditions on a monoid M are equivalent.

• M is Noetherian.

• M is finitely generated.

• Z[M ] is a Noetherian ring.

This implies that an M0-scheme is Noetherian if and only if its geometric realisation
is of finite type.

Definition 2.3.9 (Connes and Consani [8, §4.4]). A monoid scheme X is torsion
free if the group O×

X,x is torsion free for any x ∈ X. We call an F1-scheme X to be
torsion free if the geometric realisation of X|M0 is torsion free.

The following theorem is the important property of a torsion free Noetherian
F1-scheme to define its absolute zeta function defined by Soulé.

Theorem 2.3.10 (Connes and Consani [8, Theorem 4.13]). Let X be a torsion free
Noetherian F1-scheme. Then, there exists a unique polynomial NX ∈ Z[t] satisfying
the following conditions:
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• It holds that #X (F1n) = NX (n+ 1) for any n ∈ N.

• It holds that #X (Fq) = NX (q) for any q ∈ PN.

We call this polynomial NX the counting function of X .

Remark 2.3.11 (Connes and Consani [8, Theorem 4.13]). It is easy to check that
the counting function NX (t) in Theorem 2.3.10 is given by

NX (t) :=
∑

x∈XM0

(t− 1)rx =
∑

x∈XM0

rx∑

j=0

(−1)rx−j

(
rx
j

)
tj.

Note that the underlying set of XM0 is finite by Proposition 2.2.7.

The degree of the counting function of a torsion free Noetherian F1-scheme coin-
cides with the relative dimension of the scheme associated with the F1-scheme. We
use this property later when we determine the region of absolute convergence of the
absolute Euler product using the relative dimension in Theorem 3.1.5.

Theorem 2.3.12 ([49, Theorem 2.10]). Let X be a torsion free Noetherian F1-
scheme and NX be its counting function. Assume that the geometric realisation XZ
of X|CRing is of finite type over Z. Then, it holds that

degNX = rel.dimXZ/Z,

where rel.dimXZ/Z is the relative dimension of XZ over Z.

Proof. Fix a prime power q ∈ PN. Put Y = SpecZ and take y ∈ Y (Fq). When we
put d := rel.dimXZ/Z, we have d = dim(XZ)y for any y ∈ Y (Fq), where (XZ)y :=
XZ ×Y SpecFq. Here, it holds that

#(XZ)y(Fq) = O(qd)

by Lang and Weil (cf. Poonen [40, Theorem 7.7.1 (i)]). Since we have #Xy(Fq) =
NX (q) by Theorem 2.3.10 and NX is a polynomial, we have

degNX = d = rel.dimXZ/Z.

Corollary 2.3.13 ([49, Corollary 2.12]). Let X be a torsion free Noetherian F1-
scheme and XM0 (resp. XZ) be the geometric realisation of X|M0 (resp. X|CRing).
Assume that XZ is of finite type over Z. Then the counting function of X is given
explicitly as

NX (t) =
d∑

j=0

(
d∑

l=j

(−1)l−j

(
l

j

)
#Il

)
tj,

where d := rel.dimXZ/Z, rx := rankO×
XM0

,x and Il := {x ∈ XM0 | rx = l}.
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Proof. By Remark 2.3.11 and Theorem 2.3.12, we have

max
x∈XM0

rx = degNX = rel.dimXZ/Z = d.

Since Il = ∅ for l > d, we have

NX (t) =
∑

x∈XM0

(t− 1)rx =
d∑

l=0

#Il(t− 1)l

=
d∑

l=0

#Il

l∑

j=0

(−1)l−j

(
l

j

)
tj =

d∑

j=0

(
d∑

l=j

(−1)l−j

(
l

j

)
#Il

)
tj

by Remark 2.3.11.
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Chapter 3

Absolute Euler products and
F1-schemes

In this chapter, we prove the first main result of this thesis. Before stating the
main result, we introduce the absolute zeta function of a torsion free Noetherian
F1-scheme. Then, we state the main theorem asserting that it has the absolute
Euler product and its region of absolute convergence is determined by the relative
dimension of the scheme obtained by the torsion free Noetherian F1-scheme.

3.1 The absolute zeta function of a torsion free
Noetherian F1-scheme

As we mentioned in Subsection 1.1.1, Soulé [46] defined the absolute zeta function
for a scheme X of finite type over Z with the condition on rational points as the
limit of Z(X, p−s) as p → 1. Note that absolute zeta functions for general schemes
of finite type over Z cannot be defined similarly.

Extending this definition, Connes and Consani [8] defined the absolute zeta func-
tion ζX/F1(s) for a torsion free Noetherian F1-scheme X as the absolute zeta function
for the geometric realisation of X|CRing.

Definition 3.1.1 (Connes and Consani [8, §2]). Let X be a torsion free Noethe-
rian F1-scheme. Note that the counting function NX ∈ Z[t] of X exists by Theo-
rem 2.3.10. We define the function

ζX/F1(s) := ζ limNX
(s) = lim

p→1
(p− 1)NX (1) exp

( ∞∑

m=1

NX (pm)

m
p−sm

)

and call it the absolute zeta function for X .

By this definition, we immediately obtain the following proposition.
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Proposition 3.1.2 (Soulé [46, Lemme 1]). Let X be a torsion free Noetherian

F1-scheme and NX be the counting function of X . Put NX (t) =
r∑

k=0
aktk (cf. Theo-

rem 2.3.10). Then, the absolute zeta function of X is expressed as

ζX/F1(s) =
r∏

k=0

(s− k)−ak ,

and can be continued meromorphically to the whole complex plane C.

In [8], Connes and Consani gave a finite product representation of the absolute
zeta function of a torsion free Noetherian F1-scheme X which runs over the points
of the geometric realisation of X|M0 . Each factor of the product is expressed using
the Kurokawa tensor product as defined below.

Definition 3.1.3 (Kurokawa [27], Manin [36]). For i ∈ {1, . . . , r}, let Φi be a finite
subset of C and mi : Φi → Z be a function and put

Zi(s) :=
∏

ρ∈Φi

(s− ρ)mi(ρ).

We define the Kurokawa tensor product by

Z1(s)⊗ · · ·⊗ Zr(s) :=
∏

(ρ1,...,ρr)∈Φ1×···×Φr

(s− (ρ1 + · · ·+ ρr))
m(ρ1,...,ρr),

where

m(ρ1, . . . , ρr) :=

⎧
⎪⎨

⎪⎩

m1(ρ1) · · ·mr(ρr) if Im(ρi) ≥ 0 for each i,

(−1)r−1m1(ρ1) · · ·mr(ρr) if Im(ρi) < 0 for each i,

0 otherwise.

Theorem 3.1.4 (Connes and Consani [8, Theorem 4.13]). Let X be a torsion free
Noetherian F1-scheme. Then we have

ζX/F1(s) =
∏

x∈XM0

1
(
1− 1

s

)⊗rx
,

where rx := rankO×
XM0

,x and ⊗ is the Kurokawa tensor product.

Using this theorem, we obtain the following absolute Euler product of the abso-
lute zeta function of a torsion free Noetherian F1-scheme. This is a formulation of
Kurokawa’s suggestion (Conjecture 1.1.7) using torsion free Noetherian F1-schemes.
Moreover, we give an explicit form of κ(n,X) in Conjecture 1.1.7 using the points
of the monoid scheme X associated with the F1-scheme and determine the region of
absolute convergence. This is the main theorem of this chapter.
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Theorem 3.1.5 ([49, Theorem 3.8]). Let X be a torsion free Noetherian F1-scheme
and NX ∈ Z[t] be its counting function. Let XM0 (resp. XZ) be the geometric
realisation of X|M0 (resp. X|CRing).

(1) It holds that

ζX/F1(s) = s−NX (1)
∞∏

n=1

(
1− s−n

)−κ(n,XM0
)
,

where

κ(n,XM0) :=
∑

x∈XM0

rx∑

j=0

(−1)rx−j

(
rx
j

)
κj(n), κj(n) :=

1

n

∑

m|n

µ
( n

m

)
jm.

Here, the map µ : N → {−1, 0, 1} is the Möbius function, which is defined by

µ(n) :=

{
0 if n has a squared prime factor,

(−1)k if n has k distinct prime factors.

(2) If XZ is of finite type over Z, the region of absolute convergence of this absolute
Euler product is {s ∈ C | |s| > rel.dimXZ/Z}.

We give this proof in the next section. In fact, κ(n,XM0) is given as the image
of the counting function of X with respect to the following homomorphism.

Definition 3.1.6 ([49, Definition 3.9]). For any n ∈ N, we define the homomorphism
of Z-modules

Mn : Z[t] → Z

such that Mn(ta) := κa(n) for a ∈ N0. Note that we show that κa(n) ∈ Z later.

Since we have κ(n,XM0) = Mn(NX ) by Remark 2.3.11, Theorem 3.1.5 can be
represented only by the counting function NX .

Corollary 3.1.7 ([49, Corollary 3.10]). Let X be a torsion free Noetherian F1-
scheme and NX (t) be its counting function. Then, it holds that

ζX/F1(s) = s−NX (1)
∞∏

n=1

(
1− s−n

)−Mn(NX )
.

Remark 3.1.8. As demonstrated in the proof of Theorem 3.1.5 in Subsection 3.2.2,
the region of absolute convergence of the above absolute Euler product is {s ∈ C |
|s| > degNX}.
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3.2 Proof of Theorem 3.1.5

3.2.1 Lemmas

To prove Theorem 3.1.5, we first prove the core formula of the absolute Euler product
representation and its region of absolute convergence.

Lemma 3.2.1 (cf. Kurokawa [30, Exercise 7.1]). Let a ∈ Z, n ∈ N, and

κa(n) :=
1

n

∑

m|n

µ
( n

m

)
am.

Then, we have κa(n) ∈ Z for any n ∈ N and a ∈ Z, and it holds that in Z[[u]]
∞∏

n=1

(1− un)κa(n) = 1− au. (3.1)

Remark 3.2.2. When a is a variable, the polynomial κa(n) is called the necklace
polynomial, which was introduced by Moreau [38].

Moreover, the inverse of Equation (3.1) coincides with the cyclotomic identity
(cf. Metropolis and Rota [37]), which is the same as the condition that {an}∞n=1 is
the Euler transform of {κa(n)}∞n=1 (cf. Sloane and Plouffe [45]).

Proof. First of all, we show κa(n) ∈ Z. We prove this in a different way from
Kurokawa’s proof [30, Exercise 7.1], using the following property of the unit group
of Z/pe+1Z:

(
Z/pe+1Z

)× ∼=

⎧
⎪⎨

⎪⎩

Z/(p− 1)Z× Z/peZ if p is odd,

{1} if p = 2 and e = 0,

Z/2Z× Z/2e−1Z if p = 2 and e ≥ 1,

for any e ∈ N0 and p ∈ P (see e.g. Serre [42, Chapter II, Theorem 2]). Since
yp

e+1 − yp
e
= yp

e
(yp

e(p−1) − 1), we have

yp
e+1 ≡ yp

e
(mod pe+1) (3.2)

for any y ∈ Z, e ∈ N0 and p ∈ P.
Since Z =

⋂
p∈P Z(p), it suffices to show that κa(n) ∈ Z(p) for any p ∈ P. Fix any

a and p. If p ! n, κa(n) ∈ Z
[
1
n

]
⊂ Z(p) holds by definition. We assume that p | n.

By Equation (3.2), putting n = pνu (ν = vp(n), u ∈ Z),

κa(n) =
1

n

∑

m|n

µ
( n

m

)
am =

1

pνu

∑

m|pνu

µ

(
pνu

m

)
am

(∗)
=

∑

d|u

1

pνu
µ
(u
d

)(
ap

νd − ap
ν−1d

)

∈ Z(p)

(
∵ ap

νd − ap
ν−1d ≡ 0 (mod pνZ(p))

)
.
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Here, (∗) follows by dividing into two cases: m = pν−1d and m = pνd, where pνu
m

does not have any squared prime factor.
Next, we formally calculate the infinite product representation of 1 − au:

log

( ∞∏

n=1

(1− un)κa(n)

)
=

∞∑

n=1

κa(n) log(1− un) = −
∞∑

n=1

∞∑

k=1

nκa(n)

nk
unk

(a)
= −

∞∑

m=1

1

m

⎛

⎝
∑

n|m

nκa(n)

⎞

⎠um

= −
∞∑

m=1

1

m

⎛

⎝
∑

n|m

∑

l|n

µ
(n
l

)
al

⎞

⎠um

(b)
= −

∞∑

m=1

1

m
amum = log(1− au).

Here, we put m = nk in (a) and we use the Möbius inversion formula in (b).

The exponent κa(n) has the following properties.

Proposition 3.2.3 ([49, Proposition 4.4 and Corollary 4.5]). For any a ∈ Z and
n ∈ N, it holds that ∣∣∣∣κa(n)−

an

n

∣∣∣∣ ≤
|a|⌊n/2⌋+1

n
.

Thus, the values and signs of κa(n)’s are as in Table 3.1.

n\a · · · −2 −1 0 1 2 · · ·
1 · · · −2 −1 0 1 2 · · ·
2

+ (if 2|n)
− (if 2 ! n)

1 0 0
+3 0 0 0

...
...

...
...

Table 3.1: the values and signs of κa(n)’s

Proof. First, we consider the easy cases. When a = 0, we have κ0(n) = 0. When
a = 1, we have

κ1(n) =
1

n

∑

m|n

µ
( n

m

)
=

1

n
δ1n =

{
1 if n = 1,

0 if n ≥ 2,

by a standard property of the Möbius function.
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Let a = −1. We have κ−1(1) = −1 and κ−1(2) = 1. Hence, we consider the case
when n ≥ 3. Then, we have

κ−1(n) =
1

n

∑

m|n

µ
( n

m

)
(−1)m = 0.

Indeed, since the number of divisors of n is at most
⌊
n
2

⌋
+1, it holds that |κ−1(n)| <

1
2 +

1
n < 1. Thus, we have κ−1(n) = 0 since κ−1(n) ∈ Z by Lemma 3.2.1.
Let |a| ≥ 2. We have κa(1) = a. For n ≥ 2, we have

|nκa(n)− an| ≤
∑

m|n
m ̸=n

|a|m ≤
⌊n/2⌋∑

m=0

|a|m =
|a|⌊n/2⌋+1 − 1

|a|− 1
< |a|⌊n/2⌋+1.

Note that this implies the inequality

an

n
− |a|⌊n/2⌋+1

n
< κa(n) <

an

n
+

|a|⌊n/2⌋+1

n
.

Hence, when a ≤ −2, it holds that κa(n) > 0 if 2 | n and κa(n) < 0 if 2 ! n.
Thus, the proposition follows.

Using the above properties of κa(n), we give the region of absolute convergence
of the infinite product in Lemma 3.2.1, which is the key lemma for Theorem 3.1.5.

Lemma 3.2.4 ([49, Lemma 4.3]). Let a ∈ Z and u ∈ C. If a ≥ 2, then the region
of absolute convergence of the infinite product in Lemma 3.2.1

∞∏

n=1

(1− un)κa(n)

is {u ∈ C | |u| < 1
a}. If a = 1, then its region of absolute convergence is C.

Proof. When a = 1, κ1(n) = δ1n and thus the infinite product converges for any
u ∈ C. We assume a ≥ 2 in the following. First, we show that the infinite product
converges absolutely at least for |u| < 1

a . Since

∞∏

n=1

(1− un)κa(n) =
∞∏

n=1

(
1 + ((1− un)κa(n) − 1)

)
,

it suffices to show that
∞∑

n=1

|(1− un)κa(n) − 1|

converges for |u| < 1
a . First of all, we calculate the upper bound of the binomial

coefficient
(
κa(n)
m

)
as follows:

(
κa(n)

m

)
≤ κa(n)m

m!
<

κa(n)m√
2πm

(
m
e

)m =
κa(n)mem√
2πmm+ 1

2

≤ 1√
2π

(
eκa(n)

m

)m

.
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Since κa(n) ≤
an + a⌊n/2⌋+1

n
≤ 2an

n
by Proposition 3.2.3, it holds that

(
κa(n)

m

)
<

1√
2π

(
eκa(n)

m

)m

≤ 1√
2π

(
2ean

nm

)m

.

Putting |u| = 1
a − ε

(
0 < ε < 1

a

)
, we have

∞∑

n=1

|(1− un)κa(n) − 1| =
∞∑

n=1

∣∣∣∣∣∣

κa(n)∑

m=1

(−1)m
(
κa(n)

m

)
unm

∣∣∣∣∣∣

≤
∞∑

n=1

κa(n)∑

m=1

(
κa(n)

m

)
|u|nm =

∞∑

n=1

κa(n)∑

m=1

(
κa(n)

m

)(
1

a
− ε

)nm

<
∞∑

n=1

κa(n)∑

m=1

1√
2π

(
2ean

nm

)m (
1− εa

a

)nm

≤
∞∑

n=1

κa(n)∑

m=1

1√
2π

(
2e(1− εa)n

n

)m

.

By setting

cε :=
1

1− εa
> 1, rn :=

2e(1− εa)n

n
=

2e

ncnε
,

it holds that

∞∑

n=1

|(1− un)κa(n) − 1| <
∞∑

n=1

1√
2π

κa(n)∑

m=1

rmn =
1√
2π

∞∑

n=1

rκa(n)+1
n − rn
rn − 1

.

We take and fix sufficiently large N ∈ N satisfying cnε > n and rn < 1 for any n ≥ N .

∞∑

n=1

|(1− un)κa(n) − 1| < 1√
2π

(
N−1∑

n=1

rκa(n)+1
n − rn
rn − 1

+
∞∑

n=N

rn − rκa(n)+1
n

1− rn

)

≤ 1√
2π

(
N−1∑

n=1

rκa(n)+1
n − rn
rn − 1

+
∞∑

n=N

rn
1− rN

)

≤ 1√
2π

(
N−1∑

n=1

rκa(n)+1
n − rn
rn − 1

+
1

1− rN

∞∑

n=N

2e

n2

)

≤ 1√
2π

(
N−1∑

n=1

rκa(n)+1
n − rn
rn − 1

+
2e

1− rN
ζ(2)

)
< ∞.

Therefore, the series above converges. Thus, the infinite product converges abso-
lutely at least for |u| < 1

a when a ≥ 2.
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Next, we show that the infinite product does not converge absolutely for |u| ≥ 1
a

when a ≥ 2. It is easy to show that
∑∞

n=1 |(1− un)κa(n) − 1| diverges when |u| ≥ 1.
Hence, we may assume that 1

a ≤ |u| < 1.
Firstly, we prove that it diverges when u = 1

a . It holds that

∞∑

n=1

|(1− un)κa(n) − 1| =
∞∑

n=1

(
1−

(
1− 1

an

)κa(n)
)

=
∞∑

n=1

κa(n)

an

κa(n)∑

m=1

(−1)m+1 1

κa(n)

(
κa(n)

m

)
1

an(m−1)
.

For n ≥ 3, put

In :=
κa(n)∑

m=1

(−1)m+1 1

κa(n)

(
κa(n)

m

)
1

an(m−1)
.

Then, we have

|In − 1| =

∣∣∣∣∣∣

κa(n)∑

m=2

(−1)m+1κa(n)− 1

an
· · · κa(n)−m+ 1

an
· 1

m!

∣∣∣∣∣∣

≤
κa(n)∑

m=2

∣∣∣∣
κa(n)− 1

an

∣∣∣∣ · · ·
∣∣∣∣
κa(n)−m+ 1

an

∣∣∣∣ ·
1

m!
.

Here, we have ∣∣∣∣
κa(n)− i

an

∣∣∣∣ ≤
κa(n)

an
≤ 1

n
+

1

nan−⌊n/2⌋−1
≤ 2

n

for any i ∈ {1, . . . ,m− 1} by Proposition 3.2.3. Hence, it holds that

|In − 1| ≤
κa(n)∑

m=2

2m−1

nm−1
· 1

m!
≤

κa(n)∑

m=2

1

nm−1
=

1− n1−κa(n)

n− 1
<

1

n− 1
≤ 1

2

for n ≥ 3. Therefore, we have In ≥ 1
2 for n ≥ 3 and then

∞∑

n=1

(
1−

(
1− 1

an

)κa(n)
)

≥
∞∑

n=3

κa(n)

an
In ≥

∞∑

n=3

1

2n
· 1
2
= ∞, (3.3)

since for n ≥ 3
κa(n)

an
≥ 1

n
− 1

nan−⌊n/2⌋−1
≥ 1

2n
.

Secondly, we prove that
∑∞

n=1 |(1 − un)κa(n) − 1| diverges for 1
a ≤ |u| < 1. Let

r = Arg u
2π (0 ≤ r < 1). Assume that r ∈ Q. We put r = k1

k2
(k1 ∈ Z, k2 ∈ N). Let

30



N = {k2m | m ∈ N}, then it holds that un = |u|n ≥ 1
an for any n ∈ N . Therefore,

we have

∞∑

n=1

|(1− un)κa(n) − 1| ≥
∑

n∈N

(
1− (1− |u|n)κa(n)

)
≥

∑

n∈N

(
1−

(
1− 1

an

)κa(n)
)
.

In a similar way to Equation (3.3), we have

∑

n∈N

(
1−

(
1− 1

an

)κa(n)
)

≥ 1

4

∑

n∈N∩[3,∞)

1

n
.

Here, since the natural density of N is 1
k2

> 0 and coincides with the Dirichlet

density of N , the last infinite sum diverges. Thus, the series
∑∞

n=1 |(1−un)κa(n)−1|
diverges if r ∈ Q.

Assume that r ̸∈ Q. If n ∈ N satisfies |1− un| ≥ 1 + 1
2an , it holds that

∣∣(1− un)κa(n) − 1
∣∣ ≥

∣∣|1− un|κa(n) − 1
∣∣ ≥

(
1 +

1

2an

)κa(n)

− 1

>
κa(n)

2an
(∗)
≥ 1

2n

(
1− 1

an−⌊n/2⌋−1

)
≥ 1

4n

by applying Proposition 3.2.3 to (∗). Hence, for every N ⊂ N which consists of
n ∈ N satisfying |1− un| ≥ 1 + 1

2an , we have

∞∑

n=1

|(1− un)κa(n) − 1| ≥
∑

n∈N

|(1− un)κa(n) − 1| > 1

4

∑

n∈N

1

n
.

Here, if the natural density of N is positive, then the last infinite sum diverges and
hence the series

∑∞
n=1 |(1−un)κa(n)− 1| diverges. Therefore, it suffices to show that

there exists N ⊂ N with positive natural density such that |1 − un| ≥ 1 + 1
2an for

any n ∈ N .
As described in Figure 3.1, let pn ∈ C be the intersection of |z| = |u|n and

|z − 1| = 1 + 1
2an whose imaginary part is positive and put θn := Arg pn. Let

Θn := {θ ∈ R | θn ≤ θ ≤ 2π − θn}. Note that if Arg(un) ∈ Θn, then such an n
satisfies that |1− un| ≥ 1 + 1

2an . Since
1
a ≤ |u| < 1, we have

cos θn =
|u|n

2
− 1

2an|u|n − 1

8a2n|u|n ≥ 1

2an
− 1

2
− 1

8an
=

3

8an
− 1

2
≥ −1

2

for any n ∈ N. Hence, we have θn ≤ 2
3π for any n ∈ N. Therefore, it holds that

Θn ⊃
[
2
3π,

4
3π

]
=: Θ∞ for any n ∈ N. Let N := {n ∈ N | Arg(un) ∈ Θ∞}. Here, any

n ∈ N satisfies |1 − un| ≥ 1 + 1
2an , since N ⊂ {n ∈ N | Arg(un) ∈ Θn}. Therefore,

it suffices to show that the natural density of N is positive. Put T := R/Z. Let
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Re

Im

1

21
an 2 + 1

2an
|u|n

pn

− 1
2an

θn

Figure 3.1: the definition of pn and θn in the complex plane

ι : R → T be the natural isomorphism defined by ι(x) := x mod Z and Rr : T → T
be the map satisfying that Rr(x) = ι(x + r). Put Θ∞ := ι

([
1
3 ,

2
3

])
. Then, it holds

that N = {n ∈ N | Rn
r (0) ∈ Θ∞}. Since r ̸∈ Q, the continuous map Rr on T

is uniquely ergodic (cf. Einsiedler and Ward [18, Example 1.3 and Example 4.11]).
Therefore, since Θ∞ is an interval in T, we have

lim
M→∞

1

M
#{n ∈ N0 ∩ [0,M) | Rn

r (x) ∈ Θ∞} = mT(Θ∞) =
1

3
,

where mT is the Lebesgue measure on T, for every x ∈ T by [18, Example 4.18 and
Lemma 4.17] (also see Einsiedler and Ward [18, Example 1.3]). By putting x = 0,
we have

lim
M→∞

#(N ∩ [1,M ])

M
= lim

M→∞

1

M
#{n ∈ N0 ∩ [0,M) | Rn

r (0) ∈ Θ∞} =
1

3
> 0.

Therefore, the natural density of N is positive.
Thus, the infinite product does not converge absolutely for |u| ≥ 1

a .

3.2.2 Proof

First, we derive the infinite product representation as an element of Z[[1s ]]. By
Theorem 3.1.4, we have

ζX/F1(s) =
∏

x∈XM0

1
(
1− 1

s

)⊗rx
=

∏

x∈XM0

rx∏

j=0

(s− rx + j)(−1)j+1(rxj )

=
∏

x∈XM0

rx∏

j=0

s(−1)j+1(rxj )
(
1− rx − j

s

)(−1)j+1(rxj )

=

(
1

s

)∑
x∈XM0

∑rx
j=0(−1)j(rxj ) ∏

x∈XM0

rx∏

j=0

(
1− rx − j

s

)(−1)j+1(rxj )
.
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Since the counting function NX (t) of X satisfies

NX (t) =
∑

x∈XM0

(t− 1)rx ∈ Z[t]

by Remark 2.3.11, we have

∑

x∈XM0

rx∑

j=0

(−1)j
(
rx
j

)
=

∑

x∈XM0

(1− 1)rx = NX (1).

By Lemma 3.2.1, it holds that

1− rx − j

s
=

∞∏

n=1

(
1−

(
1

s

)n)κrx−j(n)

.

Hence, it holds that

ζX/F1(s) =

(
1

s

)NX (1) ∏

x∈XM0

rx∏

j=0

(
1− rx − j

s

)(−1)j+1(rxj )

=

(
1

s

)NX (1) ∏

x∈XM0

rx∏

j=0

( ∞∏

n=1

(
1−

(
1

s

)n)κrx−j(n)
)(−1)j+1(rxj )

=

(
1

s

)NX (1) ∞∏

n=1

(
1−

(
1

s

)n)−
∑

x∈XM0

∑rx
j=0(−1)j(rxj )κrx−j(n)

.

Put

κ(n,XM0) :=
∑

x∈XM0

rx∑

j=0

(−1)j
(
rx
j

)
κrx−j(n) =

∑

x∈XM0

rx∑

j=0

(−1)rx−j

(
rx
j

)
κj(n).

Then, we get the desired infinite product

ζX/F1(s) =

(
1

s

)NX (1) ∞∏

n=1

(
1−

(
1

s

)n)−κ(n,XM0
)

.

Next, we show that the infinite product converges absolutely for |s| > rel.dimXZ/Z
if XZ is of finite type over Z. In the above calculation of the infinite product repre-
sentation, the point which is relevant to its convergence area is the following equality
for which we use Lemma 3.2.1:

1− rx − j

s
=

∞∏

n=1

(
1−

(
1

s

)n)κrx−j(n)

.
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Let |s| > rel.dimXZ/Z. Since XZ is of finite type over Z, we have

degNX = rel.dimXZ/Z

by Theorem 2.3.12. Since

|s| > rel.dimXZ/Z = degNX = RXM0
≥ rx ≥ rx − j

for any x ∈ XM0 , we have 1
|s| <

1
rx−j when 0 ≤ j < rx. Therefore, when j ̸= rx,

∞∏

n=1

(
1−

(
1

s

)n)κrx−j(n)

(3.4)

converges absolutely by Lemma 3.2.4. Also, when j = rx, it converges absolutely
since κ0(n) = 0. Thus, the infinite product

∞∏

n=1

(
1−

(
1

s

)n)−κ(n,XM0
)

(3.5)

converges absolutely for |s| > rel.dimXZ/Z if XZ is of finite type over Z.
Lastly, we show that the infinite product (3.5) diverges for |s| ≤ rel.dimXZ/Z if

XZ is of finite type over Z. By Theorem 2.3.12, we have |s| ≤ RXM0
. When x ∈ XM0

and j satisfy rx − j = RXM0
, the infinite product (3.4) diverges by Lemma 3.2.4.

Thus, the infinite product (3.5) diverges for |s| ≤ rel.dimXZ/Z.

3.3 Applications of Theorem 3.1.5

In this section, we see some applications of Theorem 3.1.5 and Corollary 3.1.7 to
the cases of Ar, Gr

m and toric varieties to obtain the absolute Euler products of
the absolute zeta functions for the F1-schemes associated with these cases. In fact,
for the cases of Ar and Gr

m, our result coincides with Kurokawa’s calculations [30,
Exercise 7.2] in a different method.

3.3.1 Fundamental F1-schemes

Example 3.3.1 ([49, Example 5.1]). Let r ∈ N. Put F1[t1, . . . , tr] := F1[{tu1
1 · · · tur

r |
ui ∈ N0}] and Ar := specF1[t1, . . . , tr]. Then, by the extension of the functors
Ar : M0 → Set, Ar : CRing → Set, we obtain the functor Ar : MR → Set satisfying
that the geometric realisation of Ar|M0 (resp. Ar|CRing) is A

r (resp. Ar) (see Connes
and Consani [8, §4.2] for the extension of the functors). Moreover, Ar is a torsion
free Noetherian F1-scheme.

Since #Ar(Fpm) = pmr for any m ∈ N and p ∈ P, the counting function of Ar is
NAr(t) = tr ∈ Z[t]. Hence, we have χabs(Ar) = NAr(1) = 1 and

ζAr/F1(s) = ζ limNAr (s) =
1

s− r
.
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Since the prime ideals of F1[t1, . . . , tr] are of the form

pI =
⋃

i∈I

tiF1[t1, . . . , tr],

where I ⊂ {1, . . . , r} and p∅ = (0), we have rpI = r −#I for pI ∈ Ar. We put

κ(n,Ar) :=
∑

pI∈Ar

rpI∑

j=0

(−1)rpI−j

(
rpI
j

)
κj(n) =

r∑

i=0

(
r

i

) r−i∑

j=0

(−1)r−i−j

(
r − i

j

)
κj(n)

=
r∑

j=0

κj(n)
r−j∑

i=0

(−1)r−j−i

(
r

i

)(
r − i

j

)

=
r∑

j=0

(
r

j

)
κj(n)

r−j∑

i=0

(−1)r−j−i

(
r − j

i

)
=

r∑

j=0

(
r

j

)
κj(n)(1− 1)r−j

= κr(n).

By Theorem 3.1.5, we obtain the absolute Euler product

ζAr/F1(s) =
1

s

∞∏

n=1

(
1−

(
1

s

)n)−κr(n)

and this infinite product converges absolutely for |s| > rel.dimAr/Z = r.

Example 3.3.2 ([49, Example 5.2]). Let r ∈ N. Put F1[t
±1
1 , . . . , t±1

r ] := F1[{tu1
1 · · · tur

r |
ui ∈ Z}] and Gr

m := specF1[t
±1
1 , . . . , t±1

r ]. Then, by the extension of the functors
Gr

m : M0 → Set, Gr
m : CRing → Set, we obtain the functor Gr

m : MR → Set sat-
isfying that the geometric realisation of Gr

m|M0 (resp. Gr
m|CRing) is Gr

m (resp. Gr
m).

Moreover, Gr
m is a torsion free Noetherian F1-scheme.

Since #Gr
m(Fpm) = (pm − 1)r for any m ∈ N and p ∈ P, the counting function of

Gr
m is NGr

m
(t) = (t− 1)r ∈ Z[t]. Hence, we have χabs(Gr

m) = NGr
m
(1) = 0 and

ζGr
m/F1(s) = ζ limNGr

m
(s) =

r∏

k=0

(s− k)(−1)r−k+1(rk).

Since Gr
m = {(0)} and r(0) = r, we put

κ(n,Gr
m) :=

r∑

k=0

(−1)r−k

(
r

k

)
κk(n).

By Theorem 3.1.5, we get the absolute Euler product

ζGr
m/F1(s) =

∞∏

n=1

(
1−

(
1

s

)n)−
r∑

k=0
(−1)r−k(rk)κk(n)

and this infinite product converges absolutely for |s| > rel.dimGr
m/Z = r.
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3.3.2 Toric varieties

Lastly, we calculate the absolute Euler product of the absolute zeta function for the
F1-scheme associated with a toric variety, using their counting functions calculated
by Deitmar [13].

First, we review the notation of cones and fans according to Peña and Lorscheid
[39, §2.1]. Let N be a lattice, i.e. N ∼= Zr ⊂ Rr as additive groups. Fixing this
isomorphism, we put NR := N ⊗ R ∼= Rr. An additive semi-group σ ⊂ Rr is called
a (strongly convex rational polyhedral) cone if σ ∩ (−σ) = {0} and there exists a
linearly independent set {v1, . . . , vk} ⊂ N such that σ = v1R≥0+ · · ·+ vkR≥0, where
R≥0 := [0,∞). A face τ of a cone σ is a cone of the form τ = vi1R≥0 + · · ·+ vimR≥0

for some {i1, . . . , im} ⊂ {1, . . . , k}. We denote a face τ of σ by τ ≺ σ. A nonempty
set Φ of cones in NR is called a fan if every face of a cone in Φ is also in Φ and
σ1 ∩ σ2 is a face of each σ1 and σ2 for any σ1,σ2 ∈ Φ. Also, we call Φ to be finite if
|Φ| < ∞.

Next, we review the definition of the F1-scheme associated with a cone [39, §2.1].
Let N be a lattice and σ be a cone in NR. Let N∨ := HomZ(N,Z) ∼= Zr be the
dual of N and ⟨·, ·⟩ : N∨ × N → Z be the natural pairing. We define the dual of
σ by σ∨ := {u ∈ N∨ ⊗ R | ∀v ∈ σ, ⟨u, v⟩ ≥ 0}. Put Aσ := σ∨ ∩ N∨. Then, we
have the scheme SpecZ[Aσ] of finite type over Z and the monoid scheme specAσ.
The F1-scheme Xσ associated with the cone σ is defined as the F1-scheme satisfying
that the geometric realisation of Xσ|M0 is XM0

σ := specAσ and that of Xσ|CRing is
XZ

σ := SpecZ[Aσ]. Since Aσ is finitely generated, the F1-scheme Xσ is Noetherian.
Lastly, we review the definition of the F1-scheme associated with a fan [39, §2.1].

Let Φ be a finite fan in NR. An inclusion τ ⊂ σ of cones induces an open immersions
specAτ ↪→ specAσ and SpecZ[Aτ ] ↪→ SpecZ[Aσ]. We define the monoid scheme
and the scheme associated with the fan Φ by

XM0
Φ := lim−→

σ∈Φ
specAσ, XZ

Φ := lim−→
σ∈Φ

SpecZ[Aσ],

and we call (XZ
Φ,Φ) the toric variety of the fan Φ of dimension r. The F1-scheme

XΦ associated with Φ is the F1-scheme satisfying that the geometric realisation of
XΦ|M0 is X

M0
Φ and that of XΦ|CRing is XZ

Φ. Since Φ is finite and specAσ is Noetherian,
XΦ is Noetherian.

Deitmar calculated the counting functions of the schemes associated with cones
and finite fans, which are equal to the counting functions of the F1-scheme associated
with them. Hereinafter, let N be a lattice of dimension r, σ be a cone in NR and
Φ be a finite fan in NR. Let Xσ (resp. XΦ) be the F1-scheme associated with σ
(resp. Φ).

Proposition 3.3.3 (Deitmar [13, Proposition 4.3]). In the above setting, the count-
ing functions NXσ and NXΦ are

NXσ(t) =
dimσ∑

k=0

iσdimσ−k(t− 1)k =
dimσ∑

j=0

(
dimσ∑

k=j

(−1)k−j

(
k

j

)
iσdimσ−k

)
tj

36



and

NXΦ(t) =
r∑

k=0

iΦr−k(t− 1)k =
r∑

j=0

(
r∑

k=j

(−1)k−j

(
k

j

)
iΦr−k

)
tj,

where iσk := #{η ≺ σ | dim η = k} and iΦk := #{τ ∈ Φ | dim τ = k}.

Example 3.3.4 ([49, Example 5.4]). By Proposition 3.3.3, the absolute zeta func-
tions of Xσ and XΦ are

ζXσ/F1(s) =
dimσ∏

j=0

(s− j)

dim σ∑
k=j

(−1)k−j(kj)iσdim σ−k

,

ζXΦ/F1(s) =
r∏

j=0

(s− j)

r∑
k=j

(−1)k−j(kj)iΦr−k

,

where iσk and iΦk are defined in Proposition 3.3.3. Using the homomorphism Mn

(Corollary 3.1.7), we can easily obtain the absolute Euler products of those absolute
zeta functions. Since NXσ(1) = 1 and NXΦ(1) = iΦr by Proposition 3.3.3, we have
the absolute Euler products

ζXσ/F1(s) =
1

s

∞∏

n=1

(
1−

(
1

s

)n)−
dim σ∑
j=0

(
dim σ∑
k=j

(−1)k−j(kj)iσdim σ−k

)
κj(n)

,

ζXΦ/F1(s) =

(
1

s

)#Ir ∞∏

n=1

(
1−

(
1

s

)n)−
r∑

j=0

(
r∑

k=j
(−1)k−j(kj)iΦr−k

)
κj(n)

,

and ζXσ/F1(s) (resp. ζXΦ/F1(s)) converges absolutely for |s| > dim σ (resp. |s| > r).
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Chapter 4

Analytic properties of absolute
zeta functions

In this chapter, we prove the second main result of this thesis. That is, we show
three analytic properties of absolute zeta functions: the series expansion, the integral
formula, and the absolute Euler product. In this chapter, we take the branch of log s
with the branch cut along C \ (−∞, 0], and define sw := ew log s for s, w ∈ C.

In the previous chapter, we studied the absolute Euler product of the absolute
zeta functions for F1-schemes defined by Connes and Consani and introduced the
homomorphism Mn : Z[t] → Z in Definition 3.1.6. This morphism can be easily
generalised to the morphism Z[t, t−1] → Z. Putting f(t) :=

∑d+
j=−d−

ajtj ∈ Z[t, t−1]

(d± ∈ N0), we define D : Z[t, t−1] → ZN0 by D(f) := {αn(f)}∞n=0, where

αn(f) :=

(
t
d

dt

)n

f(t)

∣∣∣∣
t=1

=
d+∑

j=−d−

ajj
n,

and the linear map M : ZN0 → ZN0 by M(α)0 := α0 and

M(α)n :=
1

n

∑

m|n

µ
( n

m

)
αm (n ∈ N)

for an integer sequence α = {αn}∞n=0. Then, we define Mn : Z[t, t−1] → Z by

Mn(f) := (M ◦D(f))n =
d+∑

j=−d−

ajκj(n).

Thus, we have the following series expression.

Proposition 4.0.1. For f(t) :=
∑d+

j=−d−
ajtj ∈ Z[t, t−1], we put

ζf (s) := s−M0(f)
∞∏

n=1

(1− s−n)−Mn(f) ∈ Q[[s−1]].
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Then, it holds that in Q[[s−1]]

ζ ′f (s)

ζf (s)
= −

∞∑

n=1

((
t
d

dt

)n−1

f(t)

∣∣∣∣∣
t=1

)
s−n = −

(
s− t

d

dt

)−1

f(t)

∣∣∣∣∣
t=1

.

In particular, the left-hand side lies in Z[[s−1]]. Moreover, the series in the middle
converges absolutely at least for |s| > max{d+, d−}.

Proof. Since
d

ds
log(1− s−n) =

ns−n−1

1− s−n
=

n

sn+1 − s
,

we have

ζ ′f (s)

ζf (s)
= −f(1)

s
−

∞∑

n=1

nMn(f)

sn+1 − s
= −1

s

(
f(1) +

∞∑

n=1

nMn(f)

sn − 1

)

= −1

s

(
f(1) +

∞∑

n=1

nMn(f)
∞∑

m=1

1

snm

)
= −1

s

⎛

⎝f(1) +
∞∑

N=1

1

sN

∑

n|N

nMn(f)

⎞

⎠ .

Here, it holds that

∑

n|N

nMn(f) =
∑

n|N

d+∑

j=−d−

ajnκj(n) =
∑

n|N

d+∑

j=−d−

aj
∑

k|n

µ
(n
k

)
jk

=
d+∑

j=−d−

aj
∑

n|N

∑

k|n

µ
(n
k

)
jk

(∗)
=

d+∑

j=−d−

ajj
N =

(
t
d

dt

)N

f(t)

∣∣∣∣∣
t=1

by applying the Möbius inversion formula to (∗). Therefore, we have

ζ ′f (s)

ζf (s)
= −1

s

∞∑

N=0

((
t
d

dt

)N

f(t)

∣∣∣∣∣
t=1

)
1

sN
= −

∞∑

N=1

((
t
d

dt

)N−1

f(t)

∣∣∣∣∣
t=1

)
1

sN
.

For |s| > max{d+, d−}, it holds that
∣∣∣∣∣

∞∑

n=1

((
t
d

dt

)n−1

f(t)

∣∣∣∣∣
t=1

)
1

sn

∣∣∣∣∣ ≤
∞∑

n=1

∣∣∣∣∣∣

⎛

⎝
d+∑

j=−d−

ajj
n−1

⎞

⎠ 1

sn

∣∣∣∣∣∣

≤
d+∑

j=−d−

|aj|
|s|

∞∑

n=1

jn−1

|s|n−1
=

d+∑

j=−d−

|aj|
|s|

1

1− j
|s|

< ∞.

Thus, the series converges for |s| > max{d+, d−}.

In the following sections, we generalise these simple observations to a certain
class of analytic functions.
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4.1 The class A of analytic functions

Before stating the main results, we introduce a commutative C-algebra consisting
of analytic functions on [1,∞) with a nice condition.

Definition 4.1.1. Let d > 0. We define Ad by the set of analytic functions on
[1,∞) satisfying that there exists C > 0 such that for any n ∈ N0

|αn(f)| ≤ Cdn,

where

αn(f) :=

(
∂

∂x

)n

f(ex)

∣∣∣∣
x=0

=

(
t
∂

∂t

)n

f(t)

∣∣∣∣
t=1

for each n ∈ N0. We define A :=
⋃

d>0 Ad.

Remark 4.1.2. The class A requires that f is defined at t = 1. Therefore, functions
with a pole at t = 1 such as the function whose absolute zeta function is Barnes’
multiple gamma function are not included in A.

Example 4.1.3. We easily see that tρ ∈ A|ρ| (ρ ∈ C). Let c ∈ C be a constant.
Then, we also see that c, log t ∈ Aε for any ε > 0.

Proposition 4.1.4. The classes Ad’s satisfy the following properties:

• If 0 < d1 < d2, then it holds that Ad1 ⊂ Ad2.

• Let f ∈ Ad1, g ∈ Ad2. Then, we have f + g ∈ Amax{d1,d2}, fg ∈ Ad1+d2.

Therefore, A is a continuously filtered commutative C-algebra.

Proof. Let d1 < d2. For f ∈ Ad1 , there exists C > 0 such that

|αn(f)| ≤ Cdn1 < Cdn2

for any n ∈ N0. Thus, it follows that f ∈ Ad2 .
Let f ∈ Ad1 , g ∈ Ad2 . Then, we have

∃C1 > 0, ∀n ∈ N0, |αn(f)| ≤ C1d
n
1 ,

∃C2 > 0, ∀n ∈ N0, |αn(g)| ≤ C2d
n
2 .

Since αn(·) has the linearity αn(f + g) = αn(f) + αn(g) by definition, it holds that

|αn(f + g)| ≤ C1d
n
1 + C2d

n
2 ≤ (C1 + C2)(max{d1, d2})n.

Thus, we have f + g ∈ Amax{d1,d2}. Since

αn(fg) =
n∑

m=0

(
n

m

)
αm(f)αn−m(g)
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by the Leibniz rule, it holds that

|αn(fg)| ≤
n∑

m=0

(
n

m

)
· C1d

m
1 · C2d

n−m
2 = C1C2(d1 + d2)

n

by the Leibniz rule. Thus, we have fg ∈ Ad1+d2 .

Example 4.1.5. For a finite subset Φ of C, it holds that
∑

ρ∈Φ

cρt
ρ ∈ Amax

ρ∈Φ
|ρ| (cρ ∈ C \ {0}),

since tρ ∈ A|ρ| by Example 4.1.3. Moreover, it holds that t log t ∈ A1+ε for any
ε > 0, since t ∈ A1 and log t ∈ Aε by Example 4.1.3.

Example 4.1.6 (cf. Kurokawa [30, Theorem 2.1] [31, §5.2, p. 56]). Let n± ∈ N0 and
put fA(t) := Tr(tA+)−Tr(tA−)+a, where A = (A+, A−, a) ∈ Mn+(C)×Mn−(C)×C.
Since it holds that

fA(t) =
n+∑

j=1

tλ
+
j −

n−∑

j=1

tλ
−
j + a,

where λ±
1 , . . . ,λ

±
n± are eigenvalues of A±, we have fA ∈ Amax{ρ(A+), ρ(A−)}, where

ρ(A±) is the spectral radius of A±.

Remark 4.1.7 (Manin [36, p. 134]). Set f1(t) := (1 − t−1)−1. Then, it holds that
ζf1(s) =

1√
2π
Γ(s) as in Example 1.1.6. Here, the equality

f1(t) =
1

1− t−1
=

∞∑

n=0

t−n,

suggests that f1 is derived from the trace of a trace class operator whose eigenvalues
are all non-negative (or non-positive) integers. This is compatible with Manin’s
suggestion that ζf1(s) is the zeta function of “the dual infinite dimensional projective
space over F1”.

By Example 4.1.6, it holds that

ζfA(s) = s−adet(sIn− − A−)

det(sIn+ − A+)
= s−fA(1)det(In− − s−1A−)

det(In+ − s−1A+)
. (4.1)

In joint work with Y. Hirakawa, we found that some functions which have been
classically investigated such as congruent zeta functions and Ihara zeta functions
are absolute zeta functions by using this example.

Let X be a smooth projective variety over Fq. By the Weil conjecture (see
e.g. Hartshorne [22, p. 450]), there exist a finite subset Φ(X/Fq) of C and a map
m : Φ(X/Fq) → Z \ {0} such that

Z(X/Fq, u) =
∏

λ∈Φ(X/Fq)

(1− λu)−m(λ). (4.2)
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Setting

A+
X/Fq

:=
⊕

λ∈Φ(X/Fq)
m(λ)>0

m(λ)⊕

j=1

(λ) and A−
X/Fq

:=
⊕

λ∈Φ(X/Fq)
m(λ)<0

−m(λ)⊕

j=1

(λ),

where ⊕ is the direct sum of matrices. By Equation (4.1), we have the following.

Corollary 4.1.8. Under the above notations, the congruent zeta function of X is
expressed by an absolute zeta function as follows:

Z(X/Fq, q
−s) = qχtop(X)sζfX/Fq (q

s)

for Re(s) > dimX, where χtop(X) is the Euler characteristic of X and

fX/Fq(t) := f(
A+

X/Fq ,A
−
X/Fq ,0

)(t) = Tr
(
t
A+

X/Fq
)
− Tr

(
t
A−

X/Fq
)
=

∑

λ∈Φ(X/Fq)

m(λ)tλ.

Proof. This follows from Equation (4.1), Equation (4.2) and the equality fX/Fq(1) =
χtop(X), since

∑

λ∈Φ(X/Fq)

m(λ) =
2 dimX∑

i=1

∑

λ∈Φ(X/Fq)

|λ|=q
i
2

(−1)i =
2 dimX∑

i=1

(−1)ibi = χtop(X),

where bi is the ith-Betti number of X.

Let G = (V,E) be a finite connected graph without degree-1 vertices. The Ihara
zeta function of G is defined by

ZG(u) :=
∏

P∈Prim(G)

(
1− ul(P )

)−1
,

where Prim(G) is the set of primes (equivalent classes of primitive closed paths) in
G and l(P ) is the length of a path P (see e.g. Terras [47, Definition 2.2]). It is known
that the Ihara zeta function has the following two-term determinant formula:

ZG(u) = det (I − uW1)
−1 , (4.3)

where W1 ∈ M2|E|(Z) is the edge adjacency matrix of G [4]. Let Φ(G) be the set of
eigenvalues of W1 and m(λ) be the multiplicity of each eigenvalue λ of W1. Then,
we have the following by Equation (4.1).

Corollary 4.1.9. Under the above notations, the Ihara zeta function of G is ex-
pressed by an absolute zeta function as follows:

ZG(u) = u−χtop(G)ζfG(u
−1)
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for Re(u−1) > maxλ∈Φ(G) |λ|, where χtop(G) = |V | − |E| is the Euler characteristic
of G and

fG(t) := f(W1,0,|V |−3|E|)(t) = Tr(tW1) + (|V |− 3|E|) =
∑

λ∈Φ(G)

m(λ)tλ + (|V |− 3|E|) .

Proof. This follows from Equation (4.3), Equation (4.1) and the equality fG(1) =
χtop(G).

Example 4.1.10. Let z ∈ C, a ∈ C \ Z<0. Then, we put

Φexp(z, a, s) :=
∞∑

n=1

zn

(n− 1)! (a+ n)s
.

This function converges locally uniformly absolutely for each s ∈ C. Note that it
was introduced by Hardy [21] and Boyadzhiev [5], who called it a polyexponential.
Let k ∈ N and

Pk(t) := −tΦexp(− log t, 0, k + 1) = −t
∞∑

j=1

(− log t)j

j! jk
.

By [2, p. 589] (the special case of Hoffman’s identity [24, Theorem 4.2]), we have

−
∞∑

j=1

(−1)j
(
n

j

)
1

jk
=

∑

0<j1≤···≤jk≤n

1

j1 · · · jk
=: H⋆

n({1}k),

where H⋆
n(s1, . . . , sk) is the multiple harmonic star sum. Thus, it holds that

Pk(e
x) = −

( ∞∑

m=0

xm

m!

)( ∞∑

j=1

(−x)j

j! jk

)
=

∞∑

m=0

∞∑

j=1

(−1)j+1xm+j

m! j! jk

=
∞∑

n=0

∞∑

j=1

(−1)j+1xn

(n− j)! j! jk
=

∞∑

n=0

xn

n!

∞∑

j=1

(−1)j+1

(
n

j

)
1

jk
=

∞∑

n=0

xn

n!
H⋆

n({1}k).

Since H⋆
n({1}k) ≤ (Hn)k = O((log n)k), where Hn :=

∑n
k=1

1
k is the n-th harmonic

number, it holds that Pk ∈ A1+ε for any ε > 0.

4.2 Series expansion at the infinity

The absolute zeta function ζf (s) of f ∈ A is defined if Re(s) ≫ 1 by definition.
The following theorem gives the explicit region in which the absolute zeta func-
tion is defined. Also, its analytic continuation enables us to discuss whether a
functional equation for ζf (s) holds or not. Moreover, this is a generalisation of
Proposition 4.0.1.
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Theorem 4.2.1. Let d > 0 and f ∈ Ad.

(1) For Re(s) > d, the absolute zeta function of f is

ζf (s) = s−f(1) exp

( ∞∑

n=1

αn(f)

nsn

)
.

In particular, this can be analytically continued to a single-valued holomorphic
function on {s ∈ C | |s| > d}. Moreover, we have

lim
s→∞

sf(1)ζf (s) = 1.

(2) For Re(s) > d, the logarithmic derivative of the absolute zeta function ζf (s) is

ζ ′f (s)

ζf (s)
= −

∞∑

n=1

αn−1(f)s
−n.

In particular, this can be analytically continued to a single-valued holomorphic
function on {s ∈ C | |s| > d}.

Proof. In this proof, we abbreviate αn(f) to αn.
(1) It holds that

f(ex) =
∞∑

n=0

αnxn

n!

by the definition of αn. Since f ∈ Ad, there exists C > 0 such that |αn| ≤ Cdn for
each n ∈ N0. For Re(s) > d and Re(w) > 0, it holds that

∫ ∞

0

∣∣∣∣∣

∞∑

n=0

αnxn

n!
e−sxxw−1

∣∣∣∣∣ dx ≤
∫ ∞

0

∞∑

n=0

Cdnxn

n!
e−Re(s)xxRe(w)dx

x

≤ C

∫ ∞

0

e−(Re(s)−d)xxRe(w)dx

x
=

C Γ(Re(w))

(Re(s)− d)Re(w)
< ∞.

By Lebesgue’s dominated convergence theorem, for Re(s) > d and Re(w) > 0

Zf (w, s) =
1

Γ(w)

∞∑

n=0

αn

n!

∫ ∞

0

e−sxxn+w dx

x
=

1

Γ(w)

∞∑

n=0

αn

n!

Γ(n+ w)

sn+w
=

∞∑

n=0

αn(w)n
n! sn+w

,

where (w)n := w(w + 1) · · · (w + n − 1) is the Pochhammer symbol. If |s| > d and
|w| < 1, it holds that

∞∑

n=0

∣∣∣∣
αn(w)n
n! sn+w

∣∣∣∣ ≤
CeIm(w) arg(s)

|s|Re(w)

∞∑

n=0

dn

|s|n
n−1∏

m=0

|w +m|
m+ 1

<
CeIm(w) arg(s)

|s|Re(w)
· 1

1− d
|s|

< ∞
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since |w + m| < m + 1 for each m ∈ N0. Therefore, Zf (w, s) can be analytically
continued to |s| > d, {w | Re(w) > 0} ∪ {w | |w| < 1}. Then, we have

∂

∂w
Zf (w, s) =

∂

∂w

(
α0

sw
+ w

∞∑

n=1

αn

sn+w

n−1∏

m=1

w +m

m+ 1

)

= −α0

sw
log s+

∞∑

n=1

αn

sn+w

n−1∏

m=1

w +m

m+ 1
+ w

∂

∂w

( ∞∑

n=1

αn

sn+w

n−1∏

m=1

w +m

m+ 1

)

for |s| > d and |w| < 1. Since

∞∑

n=0

∣∣∣∣∣
αn

sn+w

n−1∏

m=1

w +m

m+ 1

∣∣∣∣∣ ≤
CeIm(w) arg(s)

|s|Re(w)

∞∑

n=0

dn

|s|n
n−1∏

m=0

|w +m|
m+ 1

< ∞

for |s| > d and |w| < 1, it holds that

∣∣∣∣∣
∂

∂w

( ∞∑

n=1

αn

sn+w

n−1∏

m=1

w +m

m+ 1

)∣∣∣∣∣ < ∞

for |s| > d and |w| < 1. Since the derivative of the holomorphic function defined by
a convergent series is given by the termwise differentiation and is particularly finite,
we have

log ζf (s) =
∂

∂w
Zf (w, s)

∣∣∣∣
w=0

= −α0 log s+
∞∑

n=1

αn

n!
s−n(n−1)! = −α0 log s+

∞∑

n=1

αn

n
s−n

for |s| > d and |w| < 1. Note that this can be analytically continued to a single-
valued holomorphic function on {s ∈ C | |s| > d} \ (−∞, 0]. Since log

(
sf(1)ζf (s)

)
=

log ζf (s) + f(1) log s, it holds that

log
(
sf(1)ζf (s)

)
=

∞∑

n=1

αn

n
s−n

and it can be analytically continued to {s ∈ C | |s| > d}. Thus, the claim follows.
Moreover, the statement sf(1)ζf (s) → 1 (s → ∞) follows since

∣∣log
(
sf(1)ζf (s)

)∣∣ =

∣∣∣∣∣

∞∑

n=1

αn(f)

nsn

∣∣∣∣∣ ≤
∞∑

n=1

Cdn

n|s|n ≤ Cd

|s|− d
−→ 0 (s → ∞).

(2) By (1), it holds that

ζ ′f (s)

ζf (s)
=

∂

∂s
log ζf (s) = −

∞∑

n=0

αns
−n−1

46



for Re(s) > d. Moreover, since

∞∑

n=1

∣∣αn−1s
−n

∣∣ =
∞∑

n=1

|αn−1||s|−n ≤
∞∑

n=1

Cdn−1|s|−n =
C

d

d|s|−1

1− d|s|−1
=

C

|s|− d
< ∞

for |s| > d, the series
∑∞

n=1 αn−1s−n converges absolutely for |s| > d.

Example 4.2.2. Let Φ be a finite subset of C and put

fΦ(t) =
∑

ρ∈Φ

aρt
ρ (aρ ∈ Z).

Since fΦ ∈ Amaxρ∈Φ |ρ| by Example 4.1.5, it holds that

ζ ′fΦ(s)

ζfΦ(s)
= −

∞∑

n=1

(
∑

ρ∈Φ

aρρ
n−1

)
s−n

for Re(s) > maxρ∈Φ |ρ| by Theorem 4.2.1.
In particular, the counting function of an absolute Riemann surface of genus g

fα(t) := t− 2
√
t

g∑

k=1

cos(αk log t) + 1 = t−
g∑

k=1

(
tρk + tρk

)
+ 1,

where α = (α1, . . . ,αg) ∈ [0,∞)g and ρk :=
1
2 +

√
−1αk, satisfies that

fα ∈ Amax{1,|ρ1|,...,|ρg |}.

By Theorem 4.2.1, we have

ζfα(s) =
1

s2−2g
exp

( ∞∑

n=1

(
1−

g∑

k=1

(ρnk + ρk
n)

)
1

nsn

)

for Re(s) > max{1, |ρ1|, . . . , |ρg|}. Note that the Euler characteristic 2 − 2g of a
Riemann surface of genus g appears in the exponent of 1

s .

While the above examples are the series expansion of rational functions, the
following functions have not been known as absolute zeta functions.

Example 4.2.3. By Example 4.1.10, it holds that Pk(t) := −tΦexp(− log t, 0, k+1) ∈
A1+ε for any ε > 0 and Pk(1) = 0. By the proof of Theorem 4.2.1, we have

log ζPk
(s) =

∞∑

n=1

H⋆
n({1}k)
nsn

=
∞∑

n=1

∑

0<j1≤···≤jk≤n

(
1
s

)n

j1 · · · jkn
=

∑

|m|=k+1

Lim

(
1

s

)
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for Re(s) > 1, where m ∈ Nr is a multi-index, |m| :=
∑

mi is its weight, and

Lim(z) :=
∑

0<n1<···<nr

znr

nm1
1 · · ·nmr

r

is the multiple polylogarithm. Therefore, the absolute zeta function of Pk is

ζPk
(s) =

∏

|m|=k+1

exp

(
Lim

(
1

s

))

for Re(s) > 1. Moreover, it holds that

ζ ′Pk
(s)

ζPk
(s)

= −
∞∑

n=1

H⋆
n({1}k)
sn+1

= −1

s

∑

0<j1≤···≤jk≤n

(
1
s

)n

j1 · · · jk

= −1

s

∑

0<j1≤···≤jk

1

j1 · · · jk

∞∑

n=jk

(
1

s

)n

= −1

s

∑

0<j1≤···≤jk

1

j1 · · · jk

(
1
s

)jk

1− 1
s

= − 1

s
(
1− 1

s

)
∑

0<j1≤···≤jk

(
1
s

)jk

j1 · · · jk
=

1

1− s

∑

|m|=k

Lim

(
1

s

)
.

Example 4.2.4. Put f(t) = t log t. By Example 4.1.5, it holds that f ∈ A1+ε for
any ε > 0. Since α0(f) = f(1) = 0 and αn(f) = n for each n ∈ N, it holds that

ζf (s) = exp

( ∞∑

n=1

n

nsn

)
= exp

(
1

s− 1

)
= exp

(
Li0

(
1

s

))
.

This corresponds to “ζP−1(s)” in Example 4.2.3. In addition, if f(t) = t − 1, then
we have ζf (s) = s

s−1 = exp
(
− log(1− 1

s)
)
= exp

(
Li1(

1
s)
)
. Thus, this corresponds

to “ζP0(s)” in Example 4.2.3.

4.3 Integral formula in the sense of Connes and
Consani

Connes and Consani [8] proved the following integral formula of an absolute zeta
function ζ limf (s).

Theorem 4.3.1 (Connes and Consani [8, Lemma 2.1] [9, Lemma 4.10]). Let f : [1,∞) →
R be a continuous function satisfying that |f(t)| ≤ Ctd for some C > 0 and d ∈ N.
Then, it holds that

(ζ limf )′(s)

ζ limf (s)
= −

∫ ∞

1

f(t)t−sdt

t

(
= −

∫ ∞

0

f(ex)e−sxdx

)

for Re(s) > d. Connes and Consani [9] called it the integral formula.
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Remark 4.3.2. By the definition of ζ limf (s), it holds that

(ζ limf )′(s)

ζ limf (s)
= lim

q→1

(
− ∂

∂s

∞∑

m=1

f(qm)
q−ms

m

)

if we can interchange differentiation and integration. Note that Connes and Consani
treated this as the definition of ζ limf (s). Thus, it is essential to prove

lim
q→1

(
− ∂

∂s

∞∑

m=1

f(qm)
q−ms

m

)
=

∫ ∞

1

f(t)t−sdt

t

in order to prove Theorem 4.3.1.

The following corollary is an analogy of Connes-Consani’s integral formula and
is the corollary of Theorem 4.2.1.

Corollary 4.3.3. Let d > 0 and f ∈ Ad. Then, it holds that

ζ ′f (s)

ζf (s)
= −

∫ ∞

0

f(ex)e−sxdx = −L[f ◦ exp](s)

for Re(s) > d, where L is the Laplace transform.

Proof. Since f ∈ Ad, there exists C > 0 such that |αn(f)| ≤ Cdn for n ∈ N0. Since

∣∣∣∣∣

∫ ∞

0

∞∑

n=0

αn(f)xn

n!
e−sxdx

∣∣∣∣∣ ≤
∫ ∞

0

∞∑

n=0

Cdnxn

n!
e−Re(s)xdx

= C

∫ ∞

0

e−(Re(s)−d)xdx =
C

Re(s)− d
< ∞

for Re(s) > d, it holds that

ζ ′f (s)

ζf (s)
= −

∞∑

n=1

αn−1(f)s
−n = −

∞∑

n=1

αn−1(f)
1

(n− 1)!

∫ ∞

0

e−sxxn−1dx

= −
∫ ∞

0

e−sx
∞∑

n=1

αn−1(f)xn−1

(n− 1)!
dx = −

∫ ∞

0

f(ex)e−sxdx

by Theorem 4.2.1 (2) and Lebesgue’s dominated convergence theorem.

The following proposition compares the assumption of Connes-Consani’s integral
formula (Theorem 4.3.1) with that of Corollary 4.3.3.

Proposition 4.3.4. Let f ∈ Cω([1,∞)). If f ∈ Ad, then there exists C > 0 such
that |f(t)| ≤ Ctd.

49



Proof. Since f ∈ Ad, there exists C > 0 such that |αn(f)| ≤ Cdn for each n ∈ N0.
Then, it holds that

|f(ex)| =

∣∣∣∣∣

∞∑

n=0

αn(f)

n!
xn

∣∣∣∣∣ ≤ C
∞∑

n=0

(dx)n

n!
= Cedx

for x ∈ [0,∞). Hence, we have |f(t)| ≤ Ctd by substituting ex = t.

Remark 4.3.5. The converse of Proposition 4.3.4 does not hold. For example, let
1
2 ≤ a < 1 and f(t) = t

t−a . Then, it holds that |f(t)| ≤
1

1−at
ε for any ε > 0. However,

the inequality |αn(f)| ≤ Cdn cannot hold for any C > 0 and d > 0. Indeed, it holds
that

f(ex) =
∞∑

m=0

am
∞∑

n=0

(−mx)n

n!
=

∞∑

n=0

(−x)n

n!

∞∑

m=0

ammn =
∞∑

n=0

(−1)n Li−n(a)

n!
xn,

where Lim(z) is the polylogarithm, which is the multiple polylogarithm with r = 1
(cf. Example 4.2.3). Here, the order of Li−n(a) is

Li−n(a) =
1

(1− a)n+1

n−1∑

k=0

A(n, k)an−k ≥ an

(1− a)n+1

n−1∑

k=0

A(n, k) ≥ n!,

where A(n, k) is the Eulerian number, the number of permutations in Sn in which
k elements are less than the previous elements. Thus, the absolute value of αn(f)
cannot be bound by Cdn for any C, d > 0.

By Proposition 4.3.4, we can obtain the relation between an absolute zeta func-
tion of Soulé-Connes-Consani’s type and that of Kurokawa’s type.

Corollary 4.3.6. Let d > 0 and f ∈ Ad be a real-valued function. Then, we have

(ζ limf )′(s)

ζ limf (s)
=

ζ ′f (s)

ζf (s)

for Re(s) > d. In particular, there exists C ∈ C \ {0} such that ζ limf (s) = Cζf (s).

Proof. By Proposition 4.3.4, we can define ζ limf (s) for f ∈ Ad. Therefore, by Theo-
rem 4.3.1 and Corollary 4.3.3, we have

ζ ′f (s)

ζf (s)
= −

∫ ∞

0

f(ex)e−sxdx =
(ζ limf )′(s)

ζ limf (s)
.

Moreover, since ∂
∂s log

(
ζ limf (s)ζf (s)−1

)
= 0, there exists C ∈ C \ {0} such that

ζ limf (s) = Cζf (s).
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By Corollary 4.3.6, we see that ζ limf (s) and ζf (s) “nearly” coincide with each other
at least if f ∈ A. Hence, Corollary 4.3.3 gives another proof of Connes-Consani’s
integral formula (Theorem 4.3.1).

We may think that ζ limf (s) and ζf (s) always coincide with each other if a function
f satisfies the conditions of Definition 1.1.1 and Definition 1.1.2. However, this is
not true as in the following example.

Example 4.3.7. Let a > 0 and f, g ∈ A be distinct two functions satisfying that
f(ea) = g(ea). Assume that 1

sf(e
1/s) is not equal to

∫∞
0 f(ex)e−sxdx for Re(s) > 0.

We define

F (t) :=

{
f(t) if 1 ≤ t ≤ ea,

g(t) if ea ≤ t.

For example, the case where a = 1, f(t) = −t + 2e and g(t) = t is one of the
examples. This continuous function is not included in A. By Theorem 4.3.1, we
have

(ζ limF )′(s)

ζ limF (s)
= −

∫ ∞

0

F (ex)e−sxdx = −
∫ a

0

f(ex)e−sxdx−
∫ ∞

a

g(ex)e−sxdx.

On the other hand, we calculate ζF (s). It holds that

ZF (w, s) =
1

Γ(w)

(∫ a

0

∞∑

n=0

αn(f)

n!
e−sxxn+w dx

x
+

∫ ∞

a

∞∑

n=0

αn(g)

n!
e−sxxn+w dx

x

)

=
∞∑

n=0

1

n!

(
αn(f)

Γ(w)

∫ a

0

e−sxxn+w dx

x
+

αn(g)

Γ(w)

∫ ∞

a

e−sxxn+w dx

x

)
.

Here, we have

∂

∂w

(
1

Γ(w)

∫ ∞

a

e−sxxn+w dx

x

)
= −Γ′(w)

Γ(w)2

∫ ∞

a

e−sxxn+w dx

x

+
1

Γ(w)

∫ ∞

a

e−sxxn+w−1 log x dx.

Since Γ(w) = 1
w +O(1) (w → 0), we have

∂

∂w

(
1

Γ(w)

∫ ∞

a

e−sxxn+w dx

x

)∣∣∣∣
w=0

=

∫ ∞

a

e−sxxndx

x
.

Thus, we have

∂

∂w

(
1

Γ(w)

∫ a

0

e−sxxn+w dx

x

)∣∣∣∣
w=0

=
∂

∂w

(
s−n−w − 1

Γ(w)

∫ ∞

a

e−sxxn+w dx

x

)∣∣∣∣
w=0

= − log s

sn
−

∫ ∞

a

e−sxxndx

x
.
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Therefore, it holds that

log ζF (s) =
∂

∂w
ZF (w, s)

∣∣∣∣
w=0

=
∞∑

n=0

1

n!

(
αn(f)

(
− log s

sn
−

∫ ∞

a

e−sxxndx

x

)
+ αn(g)

(∫ ∞

a

e−sxxndx

x

))

= −f(e1/s) log s−
∫ ∞

a

f(ex)e−sxdx

x
+

∫ ∞

a

g(ex)e−sxdx

x
.

By differentiating log ζF (s), we have

ζ ′F (s)

ζF (s)
= −1

s
f(e1/s) +

∫ ∞

a

f(ex)e−sxdx−
∫ ∞

a

g(ex)e−sxdx

= −1

s
f(e1/s) +

∫ ∞

0

f(ex)e−sxdx+
(ζ limF )′(s)

ζ limF (s)
.

Since 1
sf(e

1/s) is not equal to
∫∞
0 f(ex)e−sxdx, we have

(ζ limF )′(s)

ζ limF (s)
̸= ζ ′F (s)

ζF (s)
.

This implies that ζ limF (s) ̸= ζF (s). Thus, this is an example of a function which
satisfies the conditions of Definition 1.1.1 and Definition 1.1.2 but absolute zeta
functions are different.

4.4 Absolute Euler products

According to the introduction of this chapter, each factor of the absolute Euler
product of the absolute zeta function of a Laurent polynomial can be described by
using the linear map Mn : Z[t, t−1] → Z. In this section, we generalise this map and
give the absolute Euler product of the absolute zeta function of f ∈ A.

4.4.1 Absolute Euler product in the case of f ∈ A
Definition 4.4.1. We define the map M : CN0 → CN0 by M(a)0 := a0 and

M(a)n :=
1

n

∑

m|n

µ
( n

m

)
am (n ∈ N)

for a sequence a = {an}∞n=0 of complex numbers. In particular, we put

κρ(n) := M({ρn}∞n=0)n

for ρ ∈ C and n ∈ N.
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Remark 4.4.2. The map M : CN0 → CN0 is a linear map.

Definition 4.4.3. We define Mn by

{Mn(f)}∞n=0 := M(D(f))

for f ∈ A, where D : A → CN0 is defined by D(f) := {αn(f)}∞n=0.

Remark 4.4.4. SinceM : CN0 → CN0 andD : A → CN0 is linear, the mapMn : A →
C is linear.

We can summarise the relationship between a function f , the coefficient αn(f)
of the Taylor series of f(ex), and the linear map Mn into the following diagram:

A ∋ f

D
!!
{αn(f)}∞n=0

M
!!

∞∑
n=0

αn(f)
n! (log t)n

"" {Mn(f)}∞n=0

∑
k|n

kMk(f)

""

integral
formula

series
expansion

absolute
Euler product

.

Kurokawa’s core formula, Lemma 3.2.1, can be generalised as follows. Note that
log(1− z) = −

∑∞
m=1

zm

m for any z ∈ D := {z ∈ C | |z| < 1}.

Lemma 4.4.5. It holds that

log(1− ρu) =
∞∑

n=1

κρ(n) log (1− un) ∈ Q[[ρ, u]].

Moreover, for ρ ∈ C, the region of absolute convergence of the series in the right-
hand side is ⎧

⎪⎪⎨

⎪⎪⎩

{
u ∈ D

∣∣∣ |u| < 1
|ρ|

}
if ρ ̸= 0, 1,

C if ρ = 0,

D if ρ = 1.

Proof. If ρ = 0, then both sides become 0. If ρ = 1, then both sides become
log(1 − u) since κ1(n) = δ1n. We may assume that ρ ̸= 0, 1. Then, the equality as
formal series holds since

∞∑

n=1

κρ(n) log(1− un)
(∗)
= −

∞∑

n=1

∞∑

k=1

nκρ(n)

nk
unk (a)

= −
∞∑

m=1

1

m

⎛

⎝
∑

n|m

nκρ(n)

⎞

⎠um

= −
∞∑

m=1

1

m

⎛

⎝
∑

n|m

∑

l|n

µ
(n
l

)
ρl

⎞

⎠um (b)
= −

∞∑

m=1

1

m
ρmum

= log(1− ρu)
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by substituting m = nk in (a) and using the Möbius inversion formula in (b). Note
that the equality (∗) holds for u ∈ D.

Next, we show that the series
∑∞

n=1 κρ(n) log (1− un) converges absolutely for

|u| < min
{

1
|ρ| , 1

}
. It holds that

∞∑

n=1

|κρ(n) log (1− un)| ≤
∞∑

n=1

∣∣∣∣∣∣
1

n

∑

d|n

µ
(n
d

)
ρd

∣∣∣∣∣∣

∞∑

m=1

|u|nm

m

≤
∞∑

n=1

∞∑

m=1

|u|nm

nm

∑

d|n

|ρ|d =
∞∑

N=1

|u|N

N

∑

n|N

∑

d|n

|ρ|d.

By [1, Theorem 13.12], there exists n0 ∈ N such that
∑

d|n 1 < n
1
2 for each n ≥ n0.

Hence, there exists C > 0 such that
∑

d|n 1 < C
√
n for each n ∈ N. Therefore, it

holds that
∑

n|N

∑

d|n

|ρ|d ≤ (max{|ρ|, 1})N
∑

n|N

∑

d|n

1 < C (max{|ρ|, 1})N
∑

n|N

√
n

≤ C
√
N (max{|ρ|, 1})N

∑

n|N

1 < C2N (max{|ρ|, 1})N .

Thus, we have

∞∑

n=1

|κρ(n) log (1− un)| ≤ C2
∞∑

N=1

|u|N (max{|ρ|, 1})N =
C2|u|max{|ρ|, 1}
1− |u|max{|ρ|, 1} < ∞

since |u|max{|ρ|, 1} < 1. Therefore, the series
∑∞

n=1 κρ(n) log (1− un) converges

absolutely for |u| < min
{

1
|ρ| , 1

}
.

Next, we show that the series
∑∞

n=1 κρ(n) log (1− un) does not converge abso-

lutely for |u| ≥ min
{

1
|ρ| , 1

}
. If |ρ| ≤ 1, then the series log(1−un) does not converge

absolutely since |u| ≥ 1. We may assume that |ρ| > 1. It is sufficient to show that
the series does not converge absolutely for 1

|ρ| ≤ |u| < 1. By [1, Theorem 13.12],

there exists n1 ∈ N such that
∑

d|n 1 < 1
2 |ρ|

n
2 for n ≥ n1. Therefore, it holds that

|nκρ(n)| ≥ |ρ|n −

∣∣∣∣∣∣

∑

n ̸=d|n

µ
(n
d

)
ρd

∣∣∣∣∣∣
≥ |ρ|n − |ρ|n2

∑

n ̸=d|n

1 > |ρ|n − 1

2
|ρ|n =

|ρ|n

2

for each n ≥ n1. Moreover, since |u| < 1 and 3
2x + log(1 − x) ≥ 0 at least for

0 < x ≤ 1
3 , it holds that

| log(1− un)| ≥ |u|n −
∞∑

m=2

|u|nm

m
≥ |u|n −

∞∑

m=2

|u|m

m
= 2|u|n + log(1− |u|n) ≥ |u|n

2
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for n ≥ n2 :=
log 3

log |u|−1 . Therefore, since |ρ||u| ≥ 1, we have

∞∑

n=1

|κρ(n) log (1− un)| ≥
∑

n≥max{n1,n2}

|ρ|n

2n
· |u|

n

2
≥ 1

4

∑

n≥max{n1,n2}

1

n
= ∞.

By Theorem 4.2.1, we obtain the logarithmic version of an absolute Euler product

s−M0(f)
∞∏

n=1

(1− s−n)−Mn(f).

Theorem 4.4.6. Let d > 0 and f ∈ Ad. Then, the following statements hold.

(1) The series

Sf (s) :=
∞∑

n=1

Mn(f) log
(
1− s−n

)

converges absolutely for |s| > max{d, 1}.

(2) It holds that
log ζf (s) = −f(1) log s− Sf (s)

for |s| > max{d, 1}.

Proof. (1) Since |Mn(f)| ≤ 1
n

∑
l|n |αl(f)| ≤ C

n

∑
l|n d

l ≤ C(max{d, 1})n, we have

∞∑

n=1

∣∣Mn(f) log
(
1− s−n

)∣∣ ≤
∞∑

n=1

∞∑

m=1

|Mn(f)|
m|s|nm ≤

∞∑

n=1

∞∑

m=1

|Mn(f)|
|s|n+m−1

≤
∞∑

n=1

(max{d, 1})n

|s|n
∞∑

m=1

C

|s|m−1
=

max{d,1}
|s|

1− max{d,1}
|s|

C

1− 1
|s|

< ∞

for |s| > max{d, 1}. Thus, the series Sf (s) converges absolutely in the region.

(2) By Theorem 4.2.1, it holds that

ζ ′f (s)

ζf (s)
= −

∞∑

N=1

αN−1(f)

sN
= −1

s

∞∑

N=0

αN(f)

sN

for Re(s) > d. Note that the region of absolute convergence of this series is {s ∈ C |
|s| > d}. Since it holds that

∑

n|N

nMn(f) =
∑

n|N

∑

m|n

µ
( n

m

)
αm(f) = αN(f)
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for each N ∈ N by the Möbius inversion formula, we have

ζ ′f (s)

ζf (s)
= −1

s

⎛

⎝α0(f) +
∞∑

N=1

1

sN

∑

n|N

nMn(f)

⎞

⎠ = −1

s

(
α0(f) +

∞∑

n=1

nMn(f)
∞∑

m=1

1

snm

)

= −1

s

(
α0(f) +

∞∑

n=1

nMn(f)

sn − 1

)
= −α0(f)

s
−

∞∑

n=1

nMn(f)

sn+1 − s
.

Since d
ds log(1− s−n) = ns−n−1

1−s−n = n
sn+1−s , we have

ζ ′f (s)

ζf (s)
= −α0(f)

s
−

∞∑

n=1

Mn(f)
d

ds
log(1− s−n)

=
d

ds

(
−α0(f) log s−

∞∑

n=1

Mn(f) log
(
1− s−n

)
)

for |s| > max{d, 1}. Therefore, it holds that

d

ds

(
− log ζf (s)− α0(f) log s−

∞∑

n=1

Mn(f) log
(
1− s−n

)
)

= 0.

Then, there exists a constant C ∈ C which is independent of s such that

log ζf (s) = −f(1) log s−
∞∑

n=1

Mn(f) log
(
1− s−n

)
+ C

since α0(f) = f(1). As s → ∞ in s ̸∈ D, we have

C = lim
s→∞
s̸∈D

(log ζf (s) + f(1) log s) = lim
s→∞
s̸∈D

log
(
sf(1)ζf (s)

)
= 0

by Theorem 4.2.1 (1).

4.4.2 Examples of absolute Euler products

Example 4.4.7. Let Φ be a finite subset of C and put d(Φ) := maxρ∈Φ |ρ| and

fΦ(t) =
∑

ρ∈Φ

aρt
ρ ∈ Ad(Φ) (aρ ∈ Z).

Then, it holds that M0(fΦ) = fΦ(1) =
∑

ρ∈Φ aρ and

Mn(fΦ) =
∑

ρ∈Φ

aρκρ(n)
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for n ∈ N. By Theorem 4.4.6, we have the absolute Euler product

ζfΦ(s) =
∏

ρ∈Φ

(s− ρ)−aρ = s
−

∑
ρ∈Φ

aρ
∞∏

n=1

(
1− s−n

)− ∑
ρ∈Φ

aρκρ(n)

for |s| > max{d(Φ), 1}.

Example 4.4.8. Let k ∈ N. By Example 4.1.10, it holds that

Pk(t) := −tΦexp(− log t, 0, k + 1) ∈ A1+ε

for any ε > 0 and M0(Pk) = Pk(1) = 0. By Theorem 4.4.6, we have the absolute
Euler product

ζPk
(s) =

∏

|m|=k+1

exp

(
Lim

(
1

s

))
=

∞∏

n=1

(1− s−n)−Mn(Pk)

for Re(s) > 1, where

Mn(Pk) =
1

n

∑

m|n

µ
( n

m

)
H⋆

m({1}k) =
1

n

∑

m|n

µ
( n

m

) ∑

0<j1≤···≤jk≤m

1

j1 · · · jk
.

Example 4.4.9. Put f(t) = t log t. By Example 4.1.5, it holds that f ∈ A1+ε for
any ε > 0. Since f(ex) =

∑∞
n=1

xn

(n−1)! , it holds that M0(f) = f(1) = 0 and

Mn(f) =
1

n

∑

m|n

µ
( n

m

)
m =

∑

m|n

µ
( n

m

)( n

m

)−1

=
∏

p∈P
p|n

(1− p−1).

Note that this is the “truncated” Euler product. By Theorem 4.4.6, we have the
absolute Euler product

ζf (s) = exp

(
Li0

(
1

s

))
=

∞∏

n=1

(1− s−n)
−

∏

p|n
(1−p−1)

.

As we mentioned in Subsection 1.1.2, the validity of the name “absolute Euler
product” has not been explained in previous work. In joint work with Y. Hirakawa,
we found one of the reasons why the name is suitable using the Euler products of
the congruent zeta function and the Ihara zeta function as follows.

As we mentioned in Subsection 1.1.2, it is well-known that the congruent zeta
function of a smooth projective variety X over Fq has the following Euler product
representation for Re(s) > dimX:

Z(X/Fq, q
−s) =

∏

x∈|X|

(
1−#k(x)−s

)−1
=

∞∏

n=1

(1− q−sn)−κ(p,n;X),
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where |X| is the set of closed points of X and k(x) is the residue field of x ∈ X and
κ(p, n;X) is the number of the closed points of X of degree n. Since fX/Fq ∈ A by
Example 4.1.6, we have

Z(X/Fq, q
−s) = qχtop(X)sζfX/Fq (q

s) = q(χtop(X)−fX/Fq (1))s
∞∏

n=1

(1− q−sn)−Mn(fX/Fq )

by Corollary 4.1.8 and Theorem 4.4.6. Therefore, this absolute Euler product coin-
cides with the Euler product by the following theorem.

Theorem 4.4.10. Let X be a smooth projective variety over Fq. Under the same
notation in corollary 4.1.8, it holds that

χtop(X) = fX/Fq(1) = n+ − n−

and
κ(p, n;X) = Mn(fX/Fq) = Tr

(
A+

X/Fq

)n

− Tr
(
A−

X/Fq

)n

.

Proof. The equality χtop(X) = fX/Fq(1) follows from the proof of Corollary 4.1.8.
We now show that κ(p, n;X) = Mn(fX/Fq). By the Lefschetz trace formula, it holds
that

αm(fX/Fq) =
∑

λ∈Φ(X/Fq)

m(λ)λm = #X(Fqm)

for any m ∈ N. By the Möbius inversion formula, it holds that

nMn(fX/Fq) =
∑

m|n

µ
( n

m

)
#X(Fqm) =

∑

m|n

µ
( n

m

)∑

l|m

lκ(l, n;X)

=
∑

l|n

lκ(l, n;X)
∑

m
l |

n
l

µ
( n

m

)
= nκ(p, n;X)

for any n ∈ N.

As we mentioned in Section 4.1, the Ihara zeta function of a finite connected
graph G without degree 1 is defined as the infinite product running over primes in
G, which corresponds to prime numbers in an Euler product. Hence, we may regard
this infinite product as one of the Euler products. This product can be expressed
by

ZG(u) :=
∏

P∈Prim(G)

(
1− ul(P )

)−1
=

∞∏

n=1

(1− u−n)−κ(n;G),

where Prim(G) is the set of primes in G, the integer l(P ) is the length of a path P
and the integer κ(n;G) is the number of primes in G of length n. Since fG ∈ A by
Example 4.1.6, we have

ZG(u) = u−χ(G)ζfG(u
−1) = u−χ(G)+fG(1)

∞∏

n=1

(1− u−sn)−Mn(fG)
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by Corollary 4.1.8 and Theorem 4.4.6. Therefore, this absolute Euler product coin-
cides with the above Euler product by the following theorem.

Theorem 4.4.11. Let G be a finite connected graph without degree-1 vertices. Under
the same notation in corollary 4.1.9, it holds that

χ(G) = fG(1) = |V |− |E|

and
κ(n;G) = Mn(fG) = Tr (W1)

n .

Proof. The equality χ(G) = fG(1) follows from the proof of corollary 4.1.9. We now
show that κ(n;G) = Mn(fG). It suffices to show that

Tr(W1)
m =

∑

l|m

lκ(l;G)

due to the similar calculation in the proof of theorem 4.4.10. Let Nm be the number
of closed paths of length m without backtracking or tails in G (cf. Terras [47, Defi-
nition 4.2]). Then, we have

∑

l|m

lκ(l;G) = Nm = Tr(W1)
m

since it holds that Nm = Tr(W1)m (see e.g. Terras [47, p. 30]).

By the above examples, the absolute Euler products of the congruent zeta func-
tion and the Ihara zeta function coincide with their respective Euler products.
Therefore, it is reasonable to call the infinite product the “absolute Euler prod-
uct” or the F1-theoretic Euler product from these points of view.

4.4.3 Region of absolute convergence of a certain absolute
Euler product

Let f ∈ A and put
d(f) := inf{d > 0 | f ∈ Ad}.

In Theorem 4.4.6, the series

Sf (s) :=
∞∑

n=1

Mn(f) log
(
1− s−n

)

converges absolutely at least for |s| > max{d(f), 1}. We want to extend the region
where Sf (s) converges absolutely as wide as possible. Thus, we wonder if the region
|s| > max{d(f), 1} is best possible or not.

According to [49, Corollary 3.10] (Corollary 3.1.7), if f is a polynomial, it holds
that d(f) = deg f and the region of absolute convergence of Sf (s) is {s ∈ C | |s| >
deg f}. Like this case, we want to obtain the region of absolute convergence even in
the case of f ∈ A and describe it by using information of f . The following theorem
is an answer to this problem.

59



Theorem 4.4.12. Let Φ be a nonempty finite subset of C and put d(Φ) := maxρ∈Φ |ρ|.
Set λ = λΦ := max {d(Φ), 1} and

fΦ(t) :=
∑

ρ∈Φ

cρt
ρ ∈ Ad(Φ) (cρ ∈ C \ {0}) .

Put Φmax := {ρ ∈ Φ | |ρ| = λ} =: {ρ1, . . . , ρl} and θk :=
Arg ρk
2π . Assume the following

technical conditions by sorting the order of ρ1, . . . , ρl appropriately:

(1) There exists 0 ≤ r ≤ l such that θ1, . . . , θr ∈ Q and θr+1, . . . , θl ̸∈ Q.

(2) There exists 0 ≤ h ≤ l−r
2 such that θl−h+1 = −θl−2h+1, . . . , θl = −θl−h.

(3) 1, θr+1, . . . , θl−h are linearly independent over Q.

(4) cρl−h+1
, . . . , cρl ∈ R.

Then, the region of absolute convergence of SfΦ(s) is {s ∈ C | |s| > λΦ}.

∈Q︷ ︸︸ ︷
θ1, . . . , θr,

̸∈Q︷ ︸︸ ︷
θr+1, . . . , θl−2h+1, . . . , θl−h︸ ︷︷ ︸
& 1 are linearly independent over Q

, θl−h+1︸ ︷︷ ︸
=−θl−2h+1

, . . . , θl︸︷︷︸
=−θl−h

Figure 4.1: The conditions (1) to (3) of Theorem 4.4.12

Remark 4.4.13. The integer r is the number of θj’s which are rational. The integer
h is the number of θj’s whose opposite signs exist in {θr+1, . . . , θl}. If r = l, then all
θ1, . . . , θl are rational. If r = 0, then all θ1, . . . , θl are irrational. If h = 0, then the
conditions (2) and (4) are omitted.

Remark 4.4.14. We can treat the counting function of an absolute Riemann surface
in this theorem. In regarding its absolute zeta function as “the finite version of
the Riemann zeta function” as we mentioned in Example 1.1.5, the real numbers
1, Im ρ1, . . . , Im ρl are expected to be linearly independent over Q, which is called the
Grand Simplicity Hypothesis (see e.g. Rubinstein and Sarnak [41, p. 176]). However,
the claim that 1, Im ρ1, . . . , Im ρl are linearly independent over Q is not equivalent
to the condition that 2π,Arg ρ1, . . . ,Arg ρl are linearly independent over Q. Indeed,

if ρ = re
2π

√
−1

6 ∈ Φmax, then Arg ρ = π
3 and Im ρ =

√
3
2 .

The following lemma is essential to prove Theorem 4.4.12. We prove this lemma
in Subsection 4.4.4.

Lemma 4.4.15. Put e(θ) := e2π
√
−1θ. Let l ≥ 1, θ1, . . . , θl ∈ R and c1, . . . , cl ∈ C.

Assume the following technical conditions which are the same as those in Theo-
rem 4.4.12:
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(1) There exists 0 ≤ r ≤ l such that θ1, . . . , θr ∈ Q and θr+1, . . . , θl ̸∈ Q.

(2) There exists 0 ≤ h ≤ l−r
2 such that θl−h+1 = −θl−2h+1, . . . , θl = −θl−h.

(3) 1, θr+1, . . . , θl−h are linearly independent over Q.

(4) cl−h+1, . . . , cl ∈ R.

Then, if (c1, . . . , cl) ̸= (0, . . . , 0), then there exists N ⊂ N whose natural density is
positive such that

lim inf
n∈N

∣∣∣∣∣

l∑

j=1

cje(nθj)

∣∣∣∣∣ > 0.

Remark 4.4.16. The condition (3) is an essential assumption. For example, we
consider the case when l = 2, r = 0, h = 0, and c1 = −c2 ̸= 0. If θ1 and θ2 satisfy
that 1 + θ1 − θ2 = 0, then c1e(nθ1) + c2e(nθ2) = (c1 + c2)e(nθ1) = 0. Thus, this is a
counterexample of Lemma 4.4.15 without the condition (3).

Admitting the above key lemma, we prove Theorem 4.4.12.

Proof of Theorem 4.4.12. By Theorem 4.4.6, the series SfΦ(s) converges absolutely
for |s| > λ. Now, we show that SfΦ(s) does not converge absolutely for |s| ≤ λ. If
λ = 1, that is, |ρ| ≤ 1 for each ρ ∈ Φ, then the series log(1− s−n) does not converge
absolutely for |s| ≤ λ = 1. Thus, we may assume that λ > 1. It holds that

∞∑

n=1

∣∣Mn(fΦ) log
(
1− s−n

)∣∣ =
∞∑

n=1

∣∣∣∣∣
∑

ρ∈Φ

cρ
nκρ(n)

λn

∣∣∣∣∣

∣∣∣∣
λn

n
log

(
1− s−n

)∣∣∣∣ .

Since λ > 1, the set Φmax = {ρ ∈ Φ | |ρ| = λ} is not empty. It holds that

∣∣∣∣∣
∑

ρ∈Φ

cρ
nκρ(n)

λn

∣∣∣∣∣

≥

∣∣∣∣∣
∑

ρ∈Φmax

cρ
(ρ
λ

)n
∣∣∣∣∣−

∣∣∣∣∣∣

∑

ρ∈Φmax

cρ
∑

n ̸=m|n

µ
(
n
m

)
ρm

λn

∣∣∣∣∣∣
−

∣∣∣∣∣∣

∑

ρ∈Φ\Φmax

cρ
∑

m|n

µ
(
n
m

)
ρm

λn

∣∣∣∣∣∣

≥

∣∣∣∣∣
∑

ρ∈Φmax

cρe
√
−1n arg ρ

∣∣∣∣∣−
∑

ρ∈Φmax

|cρ|
∑

n ̸=m|n

|ρ|m

λn
−

∑

ρ∈Φ\Φmax

|cρ|
∑

m|n

|ρ|m

λn
.

Here, we put

Rn :=
∑

ρ∈Φmax

|cρ|
∑

n ̸=m|n

|ρ|m

λn
+

∑

ρ∈Φ\Φmax

|cρ|
∑

m|n

|ρ|m

λn
.
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By Lemma 4.4.15, there exists N ⊂ N whose natural density is positive such that

lim inf
n∈N

∣∣∣∣∣
∑

ρ∈Φmax

cρe
√
−1n arg ρ

∣∣∣∣∣ > 0.

Therefore, there exist M > 0, n0 ∈ N such that for each n ∈ N ∩ [n0,∞)

∣∣∣∣∣
∑

ρ∈Φmax

cρe
√
−1n arg ρ

∣∣∣∣∣ > M.

Since Rn → 0 as n → ∞, there exists n1 ∈ N such that Rn < 1
2M for each n ≥ n1.

Hence, it holds that ∣∣∣∣∣
∑

ρ∈Φ

cρ
nκρ(n)

λn

∣∣∣∣∣ >
1

2
M

for each n ∈ N ∩ [max{n0, n1},∞). Thus, we have

∞∑

n=1

∣∣Mn(fΦ) log
(
1− s−n

)∣∣ ≥ 1

2
M

∑

n∈N∩[max{n0,n1},∞)

∣∣∣∣
λn

n
log

(
1− s−n

)∣∣∣∣ = ∞

by the similar argument of Lemma 4.4.5.

Example 4.4.17. Let α = (α1, . . . ,αg) ∈ [0,∞)g. Then, the counting function fα
of an absolute Riemann surface of genus g (cf. Example 1.1.5) coincides with

fΦ(t) =
∑

ρ∈Φ

aρt
ρ = t−

g∑

k=1

(
tρk + tρk

)
+ 1,

where ρk :=
1
2 +

√
−1αk, Φ := {0, 1, ρ1, . . . , ρg, ρ1, . . . , ρg} and a0 = a1 = 1, aρ = −1

for ρ ∈ Φ \ {0, 1}. By Example 4.4.7, it holds that

ζfα(s) = s−(2−2g)

(
1− 1

s

)−1 ∞∏

n=1

(
1− s−n

) g∑
k=1

(κρk (n)+κρk
(n))

for |s| > max{d(Φ), 1}.
Put θk :=

1
2π Arg ρk (1 ≤ k ≤ 2g). If necessary, we sort the order of ρ1, . . . , ρg so

that θ1, . . . , θr ∈ Q and θr+1, . . . , θg ̸∈ Q for some 0 ≤ r ≤ g. Put ρ′1 := 0, ρ′2 := 1,
ρ′k+2 := ρk (1 ≤ k ≤ r), ρ′k+r+2 := ρk (1 ≤ k ≤ r), ρ′k+2r+2 := ρk+r (1 ≤ k ≤
g − r), ρ′k+g+r+2 := ρk+r (1 ≤ k ≤ g − r), and θ′k := 1

2π Arg ρ
′
k (1 ≤ k ≤ 2g + 2).

Then, it holds that θ′k+g+r+2 = −θ′k+2r+2 (1 ≤ k ≤ g − r). By Theorem 4.4.12,
if 1, θ′2r+3, . . . , θ

′
g+r+2 are linearly independent over Q, then the region of absolute

convergence of Sfα(s) is {s ∈ C | |s| > d(Φ)}, where d(Φ) := max{1, |ρ1|, . . . , |ρg|}.
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4.4.4 Proof of the key lemma

We use the following lemma to prove Lemma 4.4.15. Hereinafter, we put T := R/Z
and identify the interval

(
−1

2 ,
1
2

]
with T under the natural bijection ϕ :

(
−1

2 ,
1
2

]
→ T.

We define ϕl :
(
−1

2 ,
1
2

]l → Tl by ϕl(x) := (ϕ(x1), . . . ,ϕ(xl)). Let ι : R → T be the
natural surjection and put ψ := ϕ−1 ◦ ι.

Lemma 4.4.18. Let g := (θ1, . . . , θl) ∈ Rl and define Rg : Tl → Tl by Rg(x) :=
x + g. Fix 0 < δ < 1

2 and put Vδ := {x ∈ Tl | |ϕ−1
l (x)| < δ}. For x ∈ Tl, put

N g
Vδ
(x) := {n ∈ N | Rn

g (x) ∈ Vδ}. If 1, θ1, . . . , θl are linearly independent over Q,
then it holds that

d(N g
Vδ
(x)) = vlδ

l

for any x ∈ Tl, where d(N g
Vδ
(x)) is the natural density of N g

Vδ
(x) and vl :=

π
l
2

Γ( l
2+1)

.

Proof of Lemma 4.4.18. Fix x0 ∈ Tl. It holds that

d(N g
Vδ
(x0)) = lim

m→∞

1

m
#{n | 1 ≤ n ≤ m, 1Vδ

(Rn
g (x0)) = 1}

= lim
m→∞

1

m

m∑

n=1

1Vδ
(Rn

g (x0)),

where 1Vδ
is the indicator function of Vδ. Hereinafter, we show that

lim
m→∞

1

m

m∑

n=1

1Vδ
(Rn

g (x0)) = vlδ
l

in a similar way to [18, Lemma 4.17]. For 0 < η < δ, we define the continuous

function f±
η :

(
−1

2 ,
1
2

]l → [0, 1] by

f−
η (x) :=

⎧
⎪⎨

⎪⎩

1 if |x| ≤ δ − η,
δ−|x|
η if δ − η ≤ |x| ≤ δ,

0 if |x| ≥ δ,

, f+
η (x) :=

⎧
⎪⎨

⎪⎩

1 if |x| ≤ δ,
(δ+η)−|x|

η if δ ≤ |x| ≤ δ + η,

0 if |x| ≥ δ + η.

Note that f−
η (ϕ

−1
l (x)) ≤ 1Vδ

(x) ≤ f+
η (ϕ

−1
l (x)). Hence, it holds that

1

m

m∑

n=1

f−
η (ϕ

−1
l (Rn

g (x))) ≤
1

m

m∑

n=1

1Vδ
(Rn

g (x)) ≤
1

m

m∑

n=1

f+
η (ϕ

−1
l (Rn

g (x)))

for any x ∈ Tl. Now, since 1, θ1, . . . , θl are linearly independent over Q by the
assumption, the irrational rotation Rg is uniquely ergodic according to Einsiedler
and Ward [18, Corollary 4.15]. Therefore, by [18, Theorem 4.10 (3)], it holds that

lim
n→∞

1

n

n∑

j=1

f±
η (ϕ

−1
l (Rj

g(x0))) =

∫

Tl

f±
η (ϕ

−1
l (x))dx =

∫

(− 1
2 ,

1
2 ]

l
f±
η (x)dx.
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We have
∫

|x|≤M

dx =

∫ M

0

rl−1dr ·
∫ π

0

sinl−2 α1dα1 · · · · ·
∫ π

0

sinαl−2dαl−2 ·
∫ 2π

0

dαl−1

=
M l

l
·
Γ
(
l−1
2

)

Γ
(
l
2

) Γ
(
l−2
2

)

Γ
(
l−1
2

) · · · Γ(1)
Γ
(
3
2

)
(√

π
)l−2 · 2π =

M l

l
· 2π

l
2

Γ
(
l
2

) = vlM
l

for any M ∈ (0,∞) by converting to polar coordinates. In a similar calculation, we
have ∫

|x|≤M

|x|dx =
M l+1

l + 1
· lvl

for any M ∈ (0,∞). Therefore, it holds that

∫

(− 1
2 ,

1
2 ]

l
f−
η (x)dx =

∫

|x|≤δ

f−
η (x)dx

=

∫

|x|≤δ−η

dx+
δ

η

∫

δ−η≤|x|≤δ

dx− 1

η

∫

δ−η≤|x|≤δ

|x|dx

= vl(δ − η)l +
δ

η

(
vlδ

l − vl(δ − η)l
)
− 1

η

δl+1 − (δ − η)l+1

l + 1
· lvl

=
vl
η

(
δl+1 − (δ − η)l+1

)(
1− l

l + 1

)
= vlδ

l +O(η).

Similarly, we obtain

∫

(− 1
2 ,

1
2 ]

l
f+
η (x)dx =

vl
η

(
(δ + η)l+1 − δl+1

)(
1− l

l + 1

)
= vlδ

l +O(η).

Therefore, it holds that

vlδ
l +O(η) =

∫

(− 1
2 ,

1
2 ]

l
f−
η (x)dx ≤ lim inf

m→∞

1

m

m∑

n=1

1Vδ
(Rn

g (x0))

≤ lim sup
m→∞

1

m

m∑

n=1

1Vδ
(Rn

g (x0)) ≤
∫

(− 1
2 ,

1
2 ]

l
f+
η (x)dx = vlδ

l +O(η).

As η → +0, we have

lim inf
m→∞

1

m

m∑

n=1

1Vδ
(Rn

g (x0)) = lim sup
m→∞

1

m

m∑

n=1

1Vδ
(Rn

g (x0)) = vlδ
l.

Thus, we have d(N g
Vδ
) = vlδl.

Now, we show Lemma 4.4.15, which is the key to prove Theorem 4.4.12.
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Proof of Lemma 4.4.15. Put

Sn :=
l∑

j=1

cje(nθj).

We may assume that all θ1, . . . , θl are distinct and θj ∈ (−1
2 ,

1
2 ] for all j ∈ {1, . . . , l}.

Assume that r = l, i.e. all θ1, . . . , θl are rational. Put Den
(
a
b

)
:= b ∈ N for an

irreducible fraction a
b ∈ Q and m = gcd (Den(θ1), . . . ,Den(θl)). Putting Nk := {n ∈

N | n ≡ k mod m} for k ∈ {0, . . . ,m− 1}, it holds that

Sn =
l∑

j=1

cje(kθj)

for each k ∈ {0, . . . ,m − 1} and n ∈ Nk. We show that c1 = · · · = cl = 0 by
induction, assuming that

l∑

j=1

cje(kθj) = 0

for all k ∈ {0, . . . ,m− 1}. If l = 1, then we have c1 = 0. Let l ≥ 2. Since

e(θl)
l∑

j=1

cje(kθj) = 0,
l∑

j=1

cje((1 + k)θj) = 0

for each k ∈ {0, . . . ,m− 1}, the subtraction of both equations leads to the equality

l−1∑

j=1

cj (e(θl)− e(θj)) e(kθj) = 0.

Since k is arbitrary, by the hypothesis of induction, it holds that

cj (e(θl)− e(θj)) = 0

for j ∈ {1, . . . , l − 1}. Since θl ̸= θj and θj ∈ (−1
2 ,

1
2 ] for all j ∈ {1, . . . , l − 1},

we have c1 = · · · = cl−1 = 0. Thus, we have cl = 0 since cle(kθl) = 0 for each
k ∈ {0, . . . ,m− 1}.

Assume that 0 ≤ r ≤ l − 1. Put m := gcd (Den(θ1), . . . ,Den(θr)) and xj :=
1
2π Arg cj for j ∈ {r + 1, . . . , l − 2h}. For n ∈ mN, put n = mk for some k ∈ N.
Then, we have

|Sn| =

∣∣∣∣∣

r∑

j=1

cj +
l−2h∑

j=r+1

cje(kmθj) +
l−h∑

j=l−2h+1

(cje(kmθj) + cj+he(−kmθj))

∣∣∣∣∣

=

∣∣∣∣∣

r∑

j=1

cj +
l−2h∑

j=r+1

|cj|e(kmθj + xj) +
l−h∑

j=l−2h+1

(cje(kmθj) + cj+he(−kmθj))

∣∣∣∣∣ .
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Put c0 :=
∑r

j=1 cj, θ
′
j := ψ(mθj) for j ∈ {r+1, . . . , l− h} and g′ := (θ′r+1, . . . , θ

′
l−h).

Then, it is sufficient to show that if there exists k0 ∈ {0, r+1, r+2, . . . , l} such that
ck0 ̸= 0, then there exists a set N ⊂ N whose natural density is positive such that

lim inf
n∈mN

|Sn| = lim inf
k∈N

|S ′
k|

:= lim inf
k∈N

∣∣∣∣∣c0 +
l−2h∑

j=r+1

|cj|e(kθ′j + xj) +
l−h∑

j=l−2h+1

(
cje(kθ

′
j) + cj+he(−kθ′j)

)
∣∣∣∣∣ > 0.

Note that this includes the case when r = 0 by putting c0 = 0.
If c0 = 0 and k0 ∈ {r + 1, . . . , l − 2h}, then we may assume that k0 = r + 1 by

sorting the order of the labels. Since cl−h+1, . . . , cl ∈ R by the assumption, we have

Re
(
cje(kθ

′
j) + cj+he(−kθ′j)

)

= Re
(
(cj + cj+h)e(kθ

′
j)− cj+h

(
e(kθ′j)− e(−kθ′j)

))

= |cj + cj+h| cos 2π(kθ′j + xj) + 2|cj+h| sin arg cj+h sin 2πkθ
′
j

= |cj + cj+h| cos 2π(kθ′j + xj),

where xj :=
1
2π Arg(cj + cj+h) for j ∈ {l − 2h+ 1, . . . , l − h}. Hence, it holds that

|S ′
k| ≥

∣∣∣∣∣

l−2h∑

j=r+1

|cj| cos 2π(kθ′j + xj) +
l−h∑

j=l−2h+1

|cj + cj+h| cos 2π(kθ′j + xj)

∣∣∣∣∣ .

Put x :=
(
ι(xr+1), ι(xr+2 − 1

4), . . . , ι(xl−h − 1
4)
)
∈ Tl−h−r. Since 1, θ′r+1, . . . , θ

′
l−h are

linearly independent over Q by the assumption, the natural density of N g′

Vδ
(x) is

positive for any δ > 0 by Lemma 4.4.18. Therefore, we have |Rk
g′(x)| < δ for each

k ∈ N g′

Vδ
(x). Since

|ψ
(
kθ′r+1 + xr+1

)
| < δ,

∣∣∣∣ψ
(
kθ′j + xj −

1

4

)∣∣∣∣ < δ (j ∈ {r + 1, . . . , l − h})

for each k ∈ N g′

Vδ
(x), it holds that

| cos 2π(kθ′r+1+xr+1)| > cos δ, | cos 2π(kθ′j+xj)| =
∣∣∣∣sin 2π

(
kθ′j + xj −

1

4

)∣∣∣∣ < sin δ

for each j ∈ {r+1, . . . , l−h}. Since |cr+1| = |ck0 | > 0, it holds that for a sufficiently
small δ > 0 and any k ∈ N g′

Vδ
(x),

|S ′
k| ≥ |cr+1|

∣∣cos 2π(kθ′r+1 + xr+1)
∣∣−

l−2h∑

j=r+2

|cj|
∣∣cos 2π(kθ′j + xj)

∣∣

−
l−h∑

j=l−2h+1

|cj + cj+h|
∣∣cos 2πk(kθ′j + xj)

∣∣

> |cr+1| cos δ −
(

l−2h∑

j=r+2

|cj|+
l−h∑

j=l−2h+1

|cj + cj+h|
)
sin δ > 0.
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Therefore, when c0 = 0 and k0 ∈ {r + 1, . . . , l − 2h}, we have

lim inf
k∈Ng′

Vδ
(x)

|S ′
k| > 0.

If c1 = 0 and k0 ∈ {l − 2h + 1, . . . , l − h}, then we may assume that k0 = l − h
by sorting the order of the labels, i.e. cl−h ̸= 0. Assume that cl−h ̸= −cl. Then,
we can show the desired inequality by a similar argument to the case when k0 ∈
{r + 1, . . . , l − 2h} by taking x ∈ Tl−h−r satisfying that

∣∣ψ
(
kθ′j + xj − 1

4

)∣∣ < δ for
j ∈ {r+1, . . . , l−h− 1} and |ψ

(
kθ′l−h + xl−h

)
| < δ. Assume that cl−h = −cl. Note

that cl−h − cl ̸= 0 since cl−h ̸= 0. Since cl−h+1, . . . , cl ∈ R by the assumption, we
have

Im
(
cje(kθ

′
j) + cj+he(−kθ′j)

)

= Im
(
(cj − cj+h)e(kθ

′
j) + cj+h

(
e(kθ′j) + e(−kθ′j)

))

= |cj − cj+h| sin 2π(kθ′j + x′
j) + 2|cj+h| sin arg cj+h cos 2πkθ

′
j

= |cj − cj+h| sin 2π(kθ′j + x′
j),

where x′
j :=

1
2π Arg(cj − cj+h) for j ∈ {l − 2h+ 1, . . . , l − h}. Hence, it holds that

|S ′
k| ≥

∣∣∣∣∣

l−2h∑

j=r+1

|cj| sin 2π(kθ′j + xj) +
l−h∑

j=l−2h+1

|cj − cj+h| sin 2π(kθ′j + x′
j)

∣∣∣∣∣ .

Put x :=
(
ι(xr+1), . . . , ι(xl−2h), ι(x′

l−2h+1), . . . , ι(x
′
l−h−1), ι(xl−h − 1

4)
)
∈ Tl−h−r. Then,

the natural density of N g′

Vδ
(x) is positive for any δ > 0 by Lemma 4.4.18. Hence, we

have |Rn
g′(x)| < δ for any n ∈ N g′

Vδ
(x). Since

|ψ (kθ′i + xi) | < δ, |ψ
(
kθ′j + x′

j

)
| < δ

for i ∈ {r + 1, . . . , l − 2h}, j ∈ {l − 2h+ 1, . . . , l − h− 1} and
∣∣∣∣ψ

(
kθ′l−h + x′

l−h −
1

4

)∣∣∣∣ < δ,

it holds that

| sin 2π(kθ′i + xi)| < sin δ (i ∈ {r + 1, . . . , l − 2h}),
| sin 2π(kθ′j + x′

j)| < sin δ (j ∈ {l − 2h+ 1, . . . , l − h− 1}),

| sin 2π(kθ′l−h + x′
l−h)| =

∣∣∣∣cos 2π
(
kθ′l−h + x′

l−h −
1

4

)∣∣∣∣ > cos δ.

Since cl−h − cl ̸= 0, it holds that for a sufficiently small δ > 0 and any n ∈ N g′

Vδ
(x),

|S ′
k| > |cl−h − cl| cos δ −

(
l−2h∑

j=r+1

cj −
l−h−1∑

j=l−2h+2

|cj − cj+h|
)
sin δ > 0.
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Therefore, when c0 = 0 and k0 ∈ {l − 2h+ 1, . . . , l − h}, we have

lim inf
n∈Ng′

Vδ
(x)

|S ′
k| > 0.

Assume that c0 ̸= 0. If Re(c0) ̸= 0, then we have

|S ′
k| ≥

∣∣∣∣∣Re(c0) +
l−2h∑

j=r+1

|cj| cos 2π(kθ′j + xj) +
l−h∑

j=l−2h+1

|cj + cj+h| cos 2π(kθ′j + xj)

∣∣∣∣∣ ,

where xj := 1
2π Arg(cj + cj+h) for j ∈ {l − 2h + 1, . . . , l − h}. By taking x :=(

ι(x2 − 1
4), . . . , ι(xl−h − 1

4)
)
∈ Tl−h−r satisfying that

∣∣∣∣ψ
(
kθ′j + xj −

1

4

)∣∣∣∣ < δ

for j ∈ {r+1, . . . , l− h}, we can show the desired inequality by a similar argument
to the case when c0 = 0 and k0 ∈ {r + 1, . . . , l − 2h}.

If Im(c0) ̸= 0, then we have

|S′
k| ≥

∣∣∣∣∣Im(c0) +
l−2h∑

j=r+1

cj sin 2π(kθ
′
j + xj) +

l−h∑

j=l−2h+1

|cj − cj+h| sin 2π(kθ′j + x′
j)

∣∣∣∣∣ ,

where x′
j := 1

2π Arg(cj − cj+h) for j ∈ {l − 2h + 1, . . . , l − h}. By taking x :=(
x2, . . . , xl−2h, x′

l−2h+1, . . . , x
′
l−h

)
∈ Tl−h−1 satisfying that

|ψ (kθ′i + xi) | < δ, |ψ
(
kθ′j + xj

)
| < δ

for i ∈ {r+1, . . . , l−2h}, j ∈ {l−2h+1, . . . , l−h}, we can show the desired inequality
by a similar argument to the case when c0 = 0 and k0 ∈ {r + 1, . . . , l − 2h}.
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Chapter 5

Ceiling and floor Puiseux
polynomials

In this chapter, we prove the third main result of this thesis. First, we introduce
ceiling polynomials and give another interpretation of the result of Deitmar, Koyama
and Kurokawa [14, Theorem 2.1]. Then, we give some examples of the ceiling and
floor polynomials of specific schemes over Z[S−1], where S is a subset of P. Next, we
extend ceiling and floor polynomials to ceiling and floor Puiseux polynomials and
determine the ceiling and floor Puiseux polynomials of an elliptic curve defined over
Q, which leads to the pair of provisional definitions of its absolute zeta function.

Let S be a subset of P. In what follows, we denote the set of prime powers pm

with p ∈ P \ S and m ∈ N by PN
S .

5.1 Ceiling and floor polynomials

Let X be a monoid scheme of finite type. As we explained in Subsection 1.2.3,
Deitmar, Koyama and Kurokawa [14] identified the absolute zeta function of the
continuous function NXZ with the absolute zeta function of the polynomial CXZ . In
this section, we introduce the ceiling and floor polynomials of a scheme of finite
type over Z[S−1]. After that, we characterise the polynomial CXZ as the ceiling
polynomial of XZ.

5.1.1 Ceiling/Floor polynomials

Lemma 5.1.1 ([23, Lemma 2.4]). Let P be an infinite subset of N and A = (An)n∈P
be a sequence in Z. Then, there exists at most one polynomial f(t) ∈ R[t] satisfying
the following conditions:

(1) The inequality f(n) ≥ An (resp. f(n) ≤ An) holds for every n ∈ P.

(2) There exist infinitely many n ∈ P such that f(n) = An.
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Proof. Suppose that f, g ∈ R[t] satisfy both of the conditions. Then, since f − g is
a polynomial, we have the following three possibilities:

• There exists N ∈ N such that f(n)− g(n) > 0 for every n > N .

• There exists N ∈ N such that f(n)− g(n) < 0 for every n > N .

• f(n)− g(n) = 0 for every n ∈ N, i.e. f = g in R[t].

In the first case, since g (resp. f) satisfies the first condition, the inequality f(n) >
g(n) ≥ An (resp. An ≥ f(n) > g(n)) holds for every n > N , which contradicts that
f (resp. g) satisfies the second condition. By changing the roles of f and g, we see
that the second case is also impossible. Thus, we obtain the conclusion.

Definition 5.1.2 ([23, Definition 2.5]). When the polynomial f in Lemma 5.1.1
exists, we call the unique polynomial f the ceiling (resp. floor) polynomial of A.

Definition 5.1.3 ([23, Definition 2.6]). Let S be a proper subset of P and X be
a scheme of finite type over Z[S−1]. We call the ceiling (resp. floor) polynomial of
(#X (Fq))q∈PN

S
the ceiling (resp. floor) polynomial of X and denote it by CX (resp.

FX ).

According to Propositions 2.2.7 and 2.2.10, we obtain the ceiling (resp. floor)
polynomial of the Z[S−1]-lift of a monoid scheme of finite type.

Theorem 5.1.4 ([23, Theorem 2.7]). Let X be a monoid scheme of finite type and
S be a finite subset of P. Set X := XZ[S−1],

ex,j,S :=

{
1 if 2 | tx,j and 2 ∈ S,

0 otherwise,
and Tx,S :=

lx∏

j=1

2ex,j,S .

Then, it holds that

CX (t) =
∑

x∈X

Tx(t− 1)rx ∈ Z[t] and FX (t) =
∑

x∈X

Tx,S(t− 1)rx ∈ Z[t].

In particular, CX is independent of S. Moreover, it holds that

ζCX (s) =
RX∏

k=0

(s− k)
∑

x∈X Tx(−1)rx−k+1(rxk ),

ζFX (s) =
RX∏

k=0

(s− k)
∑

x∈X Tx,S(−1)rx−k+1(rxk ).

Proof. First, we consider the polynomial CX . The first condition in Lemma 5.1.1
follows from the inequality gcd(n − 1, tx,j) ≤ tx,j for any n ∈ N. We can check the
second condition by applying Dirichlet’s theorem on arithmetic progressions to the
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prime numbers p such that p ≡ 1 (mod TX). Thus, the polynomial
∑

x∈X Tx(t−1)rx

coincides with CX .
Next, we consider the polynomial FX . Let T ′

X be the odd integer satisfying
TX = 2eT ′

X for some e ∈ N0. The first condition follows from the inequality gcd(q−
1, tx,j) ≥ 2ex,j,S for any x ∈ X, j ∈ {1, . . . , lx} and q ∈ PN

S . The second condition
in the case where 2 ̸∈ S follows from the fact that 2ϕ(T

′
X)k+1 − 1 ≡ 1 (mod T ′

X)
for any k ∈ N, where ϕ is Euler’s totient function. In the case where 2 ∈ S,
we see that there are infinitely many p ∈ P \ S such that p ≡ 2 (mod T ′

X) and
p ≡ 3 (mod 4) by combining Dirichlet’s theorem on arithmetic progression and the
Chinese remainder theorem. We denote the set of such p’s by P . For p ∈ P , it
holds that gcd(p − 1, TX) = 2 (resp. 1) when TX is even (resp. odd), and hence
gcd(p − 1, tx,j) = 2ex,j,S for any x ∈ X and j ∈ {1, . . . , lx}. Thus, the second
condition follows.

The equality on the absolute zeta function follows from Example 1.1.5 and the
calculation of CX and FX .

Remark 5.1.5 ([23, Remark 2.8]). Let X = (X,OX) be a monoid scheme of finite
type. Then,

∑

x∈X

Tx(t− 1)rx ∈ Z[t]
(
resp.

∑

x∈X

(t− 1)rx ∈ Z[t]
)

is the ceiling (resp. floor) polynomial of (#X(F1n−1))n∈N∩[2,∞) by Proposition 2.2.10
and a similar argument of the proof of Theorem 5.1.4. In fact, the floor polynomial
of (#X(F1n−1))n∈N∩[2,∞) coincides with the polynomial N(x) introduced by Deitmar
in [12, Theorem 1] since it satisfies the condition therein and such a polynomial is
unique.

Theorem 5.1.4 shows that ζCX (s) coincides with ζNXZ
(s) in Theorem 1.2.6, which

Deitmar, Koyama and Kurokawa obtained in [14] by using the Fourier expansion.
Thus, ζNXZ

(s) is an invariant of XZ[S−1] independent of S, and hence it is an invariant
of its generic fiber XQ (cf. Example 5.2.7).

5.1.2 Other examples of ceiling/floor polynomials

We give some examples of the ceiling (resp. floor) polynomials of other specific
schemes over Z[S−1], especially those of relative dimension 1.

Theorem 5.1.6 ([23, Theorem 2.9]). Let n ∈ N, An := A1
Z \ {0, 1, . . . , n − 1} and

S be a finite subset of P. Set n1 := min{n,min(P \ S)}. Then, it holds that

CAn,Z[S−1]
(t) = t− n1 and FAn,Z[S−1]

(t) = t− n.

Proof. This follows from the fact that

#An,Z[S−1](Fq) = q −#(Fp ∩ {0, 1, . . . , n− 1}) = q −min{p, n}

for each q = pm ∈ PN
S .
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Let n ≥ 2. Replacing {0, 1, . . . , n− 1} with {0} ∪ µn−1, where µn−1 is the set of
the (n− 1)-th roots of unity, we obtain the following result.

Theorem 5.1.7 ([23, Theorem 2.10]). Let n ∈ N∩[2,∞), Gn := A1
Z\({0} ∪ µn−1) =

Gm,Z \ µn−1 and S be a finite subset of P. Set

n2 :=

{
3 if 2 ! n and 2 ∈ S,

2 otherwise.

Then, it holds that

CGn,Z[S−1]
(t) = t− n2 and FGn,Z[S−1]

(t) = t− n.

Proof. This follows from Theorem 5.1.4 and the fact that µn−1 is the Z-lift of
specF1n−1 .

We give another example of ceiling (resp. floor) polynomials. Let C∆ be the Pell
conic of discriminant ∆ ̸= 0, defined as an affine curve over Z defined by

{
x2 − ∆

4 y
2 = 1 if ∆ ≡ 0 mod 4,

x2 + xy + 1−∆
4 y2 = 1 if ∆ ≡ 1 mod 4.

Then, the number of the Fq-rational points of C∆ is given as follows.

Theorem 5.1.8 ([23, Theorem 2.11]). Let q = pm ∈ PN. Then,

#C∆(Fq) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q −
(

∆
p

)m

if p ̸= 2, p ! ∆,

2q if p ̸= 2, p | ∆,

q − (−1)
∆2−1

8 m if p = 2, 2 ! ∆,

q if p = 2, 2 | ∆,

where
(

∆
p

)
is the Legendre symbol. Moreover, let S∆ be the set of prime numbers

dividing ∆. For any finite subset S of P, it holds that

CC∆
Z[S−1]

(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2t if S∆ \ {2} ̸⊂ S,

t+ 1 if ∆ is not a square and S∆ \ {2} ⊂ S,

t− 1 if ∆ is a square and S∆ ⊂ S,

t if ∆ is an even square, S∆ \ {2} ⊂ S and 2 ̸∈ S,

and

FC∆
Z[S−1]

(t) = t− 1.
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Proof. Assume that p ̸= 2 and p ! ∆. If ∆ mod p ∈ F×2
q , then we have #C∆(Fq) =

q − 1 since it holds that

C∆(Fq) ∼= F×
q ; (x, y) B→ x+

√
∆

2
y.

If ∆ mod p ∈ F×
q \ F×2

q , then it holds that

C∆(Fq) ∼= Ker
(
NFq2/Fq : F×

q2 → F×
q

)
; (x, y) B→ x+

√
∆

2
y

and the norm mapNFq2/Fq is surjective. Therefore, we have #C∆(Fq) = #F×
q2/#F×

q =

q + 1. Thus, it holds that #C∆(Fq) = q −
(

∆
p

)m

if p ̸= 2 and p ! ∆.

Assume that p ̸= 2 and p | ∆. Then,

#C∆(Fq) = #{(x, y) ∈ Fq × Fq | x2 ≡ 4 (mod p)} = 2q.

Assume that p = 2 and p ! ∆. If ∆ ≡ 1 (mod 8), then we have #C∆(Fq) = q− 1
since

C∆(Fq) ∼= F×
q ; (x, y) B→ x.

If ∆ ≡ 5 (mod 8) and m is even, then we have #C∆(Fq) = q − 1 since

C∆(Fq) ∼= F×
q ; (x, y) B→ x+ ζ3y,

where ζ3 ∈ Fq denotes a primitive third root of unity. If ∆ ≡ 5 (mod 8) and m is
odd, then we have #C∆(Fq) = q + 1 since

C∆(Fq) ∼= KerNFq2/Fq ; (x, y) B→ x+ ζ3y,

where ζ3 ∈ Fq2 denotes a primitive third root of unity.
Assume p = 2 and p | ∆, then

#C∆(Fq) = #{(x, y) ∈ Fq × Fq | x2 ≡ 1 (mod 2)} = q.

The statements on the ceiling and floor polynomials of C∆
Z[S−1] follow from the

above calculation of #C∆(Fq).

Next, it is natural to study the ceiling (resp. floor) polynomial of a curve C of
positive genus defined over Z[S−1]. According to Theorem 5.1.8, one can expect
that the ceiling polynomial crucially depends on the bad reductions of C and be-
comes simpler if C is smooth over Z[S−1]. However, the following result shows that
the ceiling polynomial does not exist even for an elliptic curve defined over Z[S−1]
whenever S is finite.

Proposition 5.1.9 ([23, Proposition 2.12]). Let S be a finite subset of P and E be an
elliptic curve defined over Z[S−1]. Then, there exists no ceiling or floor polynomial
of E.
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Proof. By Hasse’s theorem, it holds that

#E(Fp) < p+ 1 + 2
√
p

for every p ∈ P \ S. On the other hand, the Sato-Tate conjecture [3, 7] implies that
for any ε > 0, there exist prime numbers p ∈ P \ S such that

#E(Fp) > p+ 1 + 2
√
p(1− ε).

These facts imply that there exists no ceiling polynomial CE of E . Indeed, if such
a polynomial CE exists, then the Sato-Tate conjecture and the first condition in
Lemma 5.1.1 imply that

∀α > 0, ∃N0 ∈ N s.t. ∀p ∈ P \ S (p > N0 ⇒ CE(p) > p+ α).

However, since CE is a polynomial, the above estimate is equivalent to the following
formula:

∃δ > 0 s.t. ∃N1 ∈ N s.t. ∀p ∈ P \ S (p > N1 ⇒ CE(p) > (1 + δ)p).

Since the inequality (1 + δ)p > p + 1 + 2
√
p holds for each p ≫ 1, Hasse’s theorem

implies that

∃N2 ∈ N s.t. ∀p ∈ P \ S (p > N2 ⇒ CE(p) > #E(Fp)),

which contradicts the second condition in Lemma 5.1.1.
The non-existence of the floor polynomial FE of E follows from a similar argu-

ment.

5.2 Ceiling and floor Puiseux polynomials

In this section, we introduce ceiling (resp. floor) Puiseux polynomials by replacing
the polynomial condition in Lemma 5.1.1 by means of Puiseux polynomials. Then,
after introducing the ceiling (resp. floor) Puiseux polynomial of a separated scheme
of finite type over Q, we identify the ceiling (resp. floor) Puiseux polynomial of an
elliptic curve over Q as the Puiseux polynomial t+ 2t1/2 + 1 (resp. t− 2t1/2 + 1).

5.2.1 Ceiling/Floor Puiseux polynomials

We begin with the definition of the ceiling (resp. floor) Puiseux polynomial of a
general integer sequence.

Definition 5.2.1 ([23, Definition 3.1]). Let R be a commutative ring. We define
R[t1/∞] as the residue ring of the polynomial ring R [tn | n ∈ N] in countably many
indeterminates tn by the ideal I generated modulo tmmn − tn for all m,n ∈ N, and
set t1/n := tn mod I. We call an element of R[t1/∞] a Puiseux polynomial with
coefficients in R.
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Suppose that R = R (or its subring). Then, each Puiseux polynomial in R[t1/∞]
defines a continuous function on (0,∞) to R. In what follows, we identify each
Puiseux polynomial with this function. Similarly to Lemma 5.1.1, we show the
uniqueness of a certain Puiseux polynomial.

Lemma 5.2.2 ([23, Lemma 3.2]). Let P be an infinite subset of N and A = (An)n∈P
be a sequence in Z. Then, there exists at most one Puiseux polynomial f(t) ∈ R[t1/∞]
satisfying the following conditions:

(1) The inequality f(n) ≥ An (resp. f(n) ≤ An) holds for every n ∈ P.

(2) There exist infinitely many n ∈ P such that the equality ⌊f(n)⌋ = An (resp.
⌈f(n)⌉ = An) holds.

(3) f(1) ∈ Z.

Proof. Suppose that f, g ∈ R[t1/∞] satisfy both of the conditions. Then, since f − g
is a Puiseux polynomial, it is a polynomial of t1/m for some m ∈ N. Hence, we have
the following three possibilities:

• There exists some N ∈ N such that f(n)− g(n) ≥ 1 for every n > N .

• There exists some N ∈ N such that f(n)− g(n) ≤ −1 for every n > N .

• f − g is a constant in the open interval (−1, 1).

In the first case, since g (resp. f) satisfies the first condition, the inequality f(n) ≥
g(n) + 1 ≥ An + 1 (resp. g(n) ≤ f(n) − 1 ≤ An − 1) holds for every n > N , which
contradicts that f (resp. g) satisfies the second condition. By changing the roles
of f and g, we see that the second case is also impossible. In the third case, it
holds that f = g since f(1)− g(1) = 0 by the third condition. Thus, we obtain the
conclusion.

Definition 5.2.3 ([23, Definition 3.3]). When the Puiseux polynomial f in Lemma
5.2.2 exists, we call the unique Puiseux polynomial f the ceiling (resp. floor) Puiseux
polynomial of A.

If there exists a polynomial with integral coefficients satisfying the conditions
in Lemma 5.1.1, then it satisfies the conditions in Lemma 5.2.2. In this sense,
the Puiseux polynomial in Lemma 5.2.2 is a generalisation of the polynomials with
integral coefficients in Lemma 5.1.1, which contain polynomials having been studied
in the context of absolute zeta functions (e.g. Soulé[46], Deitmar [12], Deitmar,
Koyama and Kurokawa [14]).

As we mentioned after Theorem 5.1.8, we can expect a simpler ceiling Puiseux
polynomial if the information on pathological prime numbers is excluded. Hence,
it is fair to define a ceiling (resp. floor) Puiseux polynomial of an algebraic variety
over Q (and more generally a separated scheme of finite type over Q) as follows.
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Definition 5.2.4 ([23, Definition 3.4]). Let X be a separated scheme of finite type
over Q. Assume that there exists a Puiseux polynomial f satisfying the following
condition: for any separated scheme X of finite type over Z satisfying that XQ ∼= X,
there exists a finite subset SX of P such that for any finite subset S of P containing
SX , the Puiseux polynomial f is the ceiling (resp. floor) Puiseux polynomial of
(#X (Fq))q∈PN

S
. Then, we call f the ceiling (resp. floor) Puiseux polynomial of X

and denote it by CX (resp. FX).

The following facts are useful for verification of the uniqueness of the ceiling and
floor Puiseux polynomials of X and their practical calculation.

Theorem 5.2.5 (cf. Serre [43, Theorems 4.12 and 4.13]). Let X be a separated
scheme of finite type over Z and l be a prime number. Then, there exists a finite
subset Σ of P (independent of l) such that for every p ∈ P \ (Σ ∪ {l}) and every
m ∈ N, the following equality holds:

#X (Fpm) =

2 dimXQ∑

i=0

(−1)i Tr(σ−m
p | H i

c(XQ,Ql)),

where σp is the p-th power Frobenius automorphism in Gal(Fp/Fp), which acts on
H i

c(XQ,Ql) via the specialization map H i
c(XFp

,Ql)
∼→ H i

c(XQ,Ql).

Corollary 5.2.6 ([23, Corollary 3.6]). Let X ,Y be separated schemes of finite type
over Z such that XQ ∼= YQ. Then, there exists a finite subset Σ′ of P such that the
following equality holds for every q ∈ PN

Σ′:

#X (Fq) = #Y(Fq).

In particular, in the setting of Definition 5.2.4, if f is the ceiling (resp. floor) Puiseux
polynomial of (#X (Fq))q∈PN

S
for some X and for some SX with an arbitrary S ⊃ SX ,

then it coincides with the ceiling (resp. floor) Puiseux polynomial of X.

According to this corollary, it is sufficient to verify the condition in Defini-
tion 5.2.4 not for all X but for a single X . Moreover, the ceiling and floor Puiseux
polynomials for such an X are unique respectively if they exist. Using this fact,
we obtain the ceiling and floor Puiseux polynomials for the generic fibres of specific
schemes which appeared in Subsection 5.1.2 as follows.

Example 5.2.7 ([23, Example 3.7]). Let X be a monoid scheme of finite type such
that XZ is separated. Thus, it holds that

CXQ(t) =
∑

x∈X

Tx(t− 1)rx and FXQ(t) =
∑

x∈X

Tx,{2}(t− 1)rx

by Theorem 5.1.4 and Corollary 5.2.6. Indeed, it is sufficient to take X = XZ and
SX = {2}. In particular, it holds that CXQ = FXQ if and only if the torsion subgroup
of O×

X,x is 2-torsion for all x ∈ X.
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Example 5.2.8 ([23, Example 3.8]). Put X = An,Q. By Theorem 5.1.6 and Corol-
lary 5.2.6, it holds that

CAn,Q(t) = FAn,Q(t) = t− n.

Indeed, it suffices to take X = An and SX as the set of prime numbers less than n.

Example 5.2.9 ([23, Example 3.9]). Put X = Gn,Q. By Theorem 5.1.7 and Corol-
lary 5.2.6, it holds that

CGn,Q(t) = t− 2 and FGn,Q(t) = t− n.

Indeed, it is sufficient to take X = Gn and SX = {2}. In particular, it holds that
CGn,Q = FGn,Q if and only if n = 2.

Example 5.2.10 ([23, Example 3.10]). Put X = C∆
Q . By Theorem 5.1.8 and Corol-

lary 5.2.6, it holds that

CC∆
Q
(t) =

{
t− 1 if ∆ is a square,

t+ 1 if ∆ is not a square,
and FC∆

Q
(t) = t− 1.

Indeed, it is sufficient to take X = C∆ and SX as the set of prime numbers dividing
2∆. In particular, it holds that CC∆

Q
= FC∆

Q
if and only if ∆ is square, which is

equivalent to C∆
Q
∼= Gm,Q. Note that even if ∆ is not a square, the scalar extension

(base change) C∆
Q ⊗ Q(

√
∆) can be identified with the Q(

√
∆)-lift of the monoid

scheme Gm,F1 .

5.2.2 Ceiling/Floor Puiseux polynomial of a projective curve
and its maximal/minimal reduction

Let C be a smooth proper curve over Q which is geometrically irreducible of genus
g > 0. Then, by the spreading out principle (see Poonen [40, Theorem 3.2.1]), there
exist a finite subset SC of P and a smooth proper scheme C of finite type over Z[S−1

C ]
such that CQ ∼= C.

For q = pm ∈ PN
SC
, the Hasse-Weil bound (see Serre [43, §4.7.2.2]) implies that

q − 2g
√
q + 1 ≤ #C(Fq) ≤ q + 2g

√
q + 1.

The closed fiber CFp of C is called Fq-maximal (resp. Fq-minimal) if #C(Fq) attains
the Hasse-Weil upper (resp. lower) bound, i.e.

#C(Fq) = q + 2g
√
q + 1 (resp. #C(Fq) = q − 2g

√
q + 1).

In view of the ceiling (resp. floor) Puiseux polynomial, we are interested in the
distribution of the prime powers q for which CFp is Fq-maximal (resp. Fq-minimal).
By the definition of the ceiling (resp. floor) Puiseux polynomial of C, we obtain the
following proposition.
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Proposition 5.2.11 ([23, Proposition 3.11]). Assume that there exist infinitely
many prime numbers p ∈ P \ SC for which CFp is Fpm-maximal (resp. Fpm-minimal)
for some m ∈ N. Then, it holds that

CC(t) = t+ 2gt1/2 + 1
(
resp. FC(t) = t− 2gt1/2 + 1

)
.

5.2.3 Ceiling/Floor Puiseux polynomial of an elliptic curve

Let E be an elliptic curve defined over Q. Like Subsection 5.2.2, there exist a finite
subset SE of P and an elliptic curve E over Z[S−1

E ] such that EQ ∼= E. Then, the
following fact is known concerning a supersingular elliptic curve.

Lemma 5.2.12 (see e.g. Silverman [44, p. 155]). Suppose that p ∈ P \ (SE ∪{2, 3}).
Then, the following conditions are equivalent:

(1) EFp is supersingular, i.e. #E(Fp) = p+ 1.

(2) EFp is Fp4k−2-maximal and Fp4k-minimal for any k ∈ N, i.e. #E(Fp4k−2) =
p4k−2 + 2p2k−1 + 1 and #E(Fp4k) = p4k − 2p2k + 1.

(3) EFp is Fp2-maximal.

(4) It holds that

Z(EFp , T ) := exp

( ∞∑

m=1

#E(Fpm)

m
Tm

)
=

1 + pT 2

(1− T )(1− pT )
.

Proof. Let α be an eigenvalue of the p-th power Frobenius endomorphism on the
Tate module of E. Then, it holds that

#E(Fpm) = 1−
(
αm +

pm

αm

)
+ pm (5.1)

for any m ∈ N (see e.g. Silverman [44, Theorem 2.3.1]). In particular, by specialising
it to m = 1, the equivalence (1) ⇔ α2 = −p follows. The equation α2 = −p is
equivalent to (2) and (3), respectively. Moreover, the equivalence (1) ⇔ (4) follows
since

Z(EFp , T ) = exp

( ∞∑

m=1

(
1−

(
αm +

pm

αm

)
+ pm

)
Tm

m

)

=
(1− αT )(1− p

αT )

(1− T )(1− pT )
=

1 + (#E(Fp)− p− 1)T + pT 2

(1− T )(1− pT )
.
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Proposition 5.2.11 and Lemma 5.2.12 (1) ⇔ (2) lead us to the natural question
whether there exist infinitely many prime numbers p such that EFp is supersingular.
The answer is known to be affirmative due to Elkies as follows.

Theorem 5.2.13 (Elkies [19]). Let E be an elliptic curve over Q. Then, there exist
infinitely many prime numbers at which E has good supersingular reduction.

Remark 5.2.14 ([23, Remark 3.14]). In fact, Elkies [20] obtained a similar result
for every elliptic curve over an arbitrary number field F (of finite degree) which has
at least one field embedding F ⊂ R.

As the consequence of Theorem 5.2.13 and Lemma 5.2.12 (1) ⇔ (2), we see
that there exist infinitely many prime numbers p ∈ P \ SE for each of which EFp is
Fpm-maximal for some m ∈ N. Therefore, we can determine the ceiling (resp. floor)
Puiseux polynomial of an elliptic curve defined over Q as follows.

Corollary 5.2.15 ([23, Corollary 3.15]). Let E be any elliptic curve over Q. Then,
it holds that

CE(t) = t+ 2t1/2 + 1 and FE(t) = t− 2t1/2 + 1.

Moreover, the absolute zeta functions of CE and FE are

ζCE(s) =
1

s
(
s− 1

2

)2
(s− 1)

and ζFE(s) =

(
s− 1

2

)2

s(s− 1)
.

Remark 5.2.16 ([23, Remark 1.7]). According to Corollary 5.2.15, it holds that

ζCE(s) =

(
1

s
(
s− 1

2

)
)⊗̃2

and ζFE(s) =

(
s

s− 1
2

)⊗̃2

,

where ⊗̃ denotes the tensor product that we replace m(ρ1, . . . , ρr) to −m(ρ1, . . . , ρr)
in the definition of the Kurokawa tensor product in Definition 3.1.3. These are
compatible with the factorizations CE(t) = (t1/2 + 1)2 and FE(t) = (t1/2 − 1)2.

Remark 5.2.17 ([23, Remark 3.16]). If X is a monoid scheme of finite type whose
Z-lift is a smooth projective variety, then Deitmar, Koyama and Kurokawa deduced
the equality

#X(F1) = NXZ(1) = χtop(XZ(C))

from the Weil conjecture for XFp (cf. the proof of [14, Theorem 2.1]). In fact, we
could formally obtain the similar equality

“#E(F1)” = 0 = χtop(E(C))
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if we substituted m = 0 in Equation (5.1) in the proof of Lemma 5.2.12, which is
the consequence of the Weil conjecture for EFp . Moreover, the Puiseux polynomial
FE satisfies that

FE(1) = χtop(E(C)) = χtop(S
1 × S1).

These observations are all consistent with the philosophy we mentioned in Re-
mark 1.1.8. On the other hand, the Puiseux polynomial CE is not consistent with
it. In this view, it is fair to say that ζFE is better than ζCE .

Remark 5.2.18 ([23, Remark 3.17]). According to Charles [6], for any pair of ellip-
tic curves E1, E2 over a number filed K, there are infinitely many prime ideals of K
at which the reductions of E1 and E2 are geometrically isogenous. Corollary 5.2.15
might suggest that “the reductions modulo 1” of all elliptic curves over K are “ge-
ometrically isogenous over F1” in some sense. On the other hand, if K = Q, then
Corollary 5.2.15 shows that both CE and FE are determined purely in terms of the
Betti numbers of the topological 2-dimensional torus S1 × S1. In particular, they
are independent of the isogeny class of E. This might even suggest that all elliptic
curves over Q are “isogenous over F1” at least in view of Tate’s isogeny theorem
over Fp (see e.g. Silverman [44, III.7.7]).
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Appendix A

Ceiling/Floor Puiseux polynomial
of an elliptic curve in the case of
P = P \ S

Let S be a finite subset of P. In this appendix, we discuss the ceiling and floor
Puiseux polynomials of the sequence (#E(Fp))p∈P\S instead of (#E(Fq))q∈PN

S
in Sec-

tion 5.2. As a result, in the case of elliptic curves defined over Q with complex mul-
tiplication, we obtain the same Puiseux polynomial as its ceiling and floor Puiseux
polynomial.

Definition A.0.1 ([23, Definition A.1]). Let X be a separated scheme of finite type
over Q. Assume that there exists a Puiseux polynomial f satisfying the following
condition: for any separated scheme X of finite type over Z satisfying that XQ ∼= X,
there exists a finite subset SX of P such that for any finite subset S of P containing
SX , the Puiseux polynomial f is the ceiling (resp. floor) Puiseux polynomial of
(#X (Fp))p∈P\S. Then, we call f the prime ceiling (resp. floor) Puiseux polynomial
of X and denote it by C′

X (resp. F′
X).

Remark A.0.2 ([23, Remark A.2]). Comparing it with Definition 5.2.4, the first
condition in Lemma 5.2.2 gets weaker and the second one gets stronger for A =
(#X (Fp))p∈P\S than for A = (#X (Fq))q∈PN

S
.

Let E be an elliptic curve defined over Q. As mentioned in Subsection 5.2.3,
there exist a finite subset SE of P and an elliptic curve E over Z[S−1

E ] such that
EQ ∼= E. Then, for p ∈ P \ SE, the Hasse bound implies that

p+ 1− 2
√
p < #E(Fp) < p+ 1 + 2

√
p.

Then, p is called a champion (resp. trailing) prime if the equality

#E(Fp) = p+ 1 + ⌊2√p⌋ (resp. #E(Fp) = p+ 1− ⌈2√p⌉)
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holds (cf. James and Pollack [25]). Let π+
E (resp. π−

E) be the set of champion (resp.
trailing) prime numbers for E and π±

E(x) := π±
E ∩ (0, x] for every x ∈ (0,∞). Then,

the following is obvious:

Proposition A.0.3 (cf. Proposition 5.2.11). Assume that #π±
E = ∞, then it holds

that C′
E = CE and F′

E = FE.

For a CM elliptic curve over Q, the following fact on π±
E(x) is known.

Theorem A.0.4 (James and Pollack [25, Theorem 1]). Suppose that E has complex
multiplication over Q. Then, the following asymptotic relation holds:

π±
E(x) ∼

2

3π
· x3/4

log x
(x → ∞).

In particular, it holds that #π±
E = ∞.

According to Theorem A.0.4, the prime ceiling (resp. floor) Puiseux polynomial of
a CM elliptic curve coincides with the Puiseux polynomial in Proposition A.0.3. On
the other hand, for an elliptic curve defined over Q without complex multiplication,
it is conjectured in [26, Conjecture 2.3] that

π±
E(x) ∼ cE · x1/4

log x
(x → ∞),

where cE ∈ (0,∞) is a constant. Currently, the above estimate of π±
E(x) in the

case where E is a non-CM elliptic curve is verified only under some assumptions
such as the Generalised Riemann Hypothesis (cf. David, Gafni, Malik, Prabhu and
Turnage-Butterbaugh [10]).
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Appendix B

Another proofs of Lemma 4.4.5
and Theorem 4.4.12

In this chapter, we give another proof of Lemma 4.4.5 using ergodic theory. More-
over, we show another version of Theorem 4.4.12 whose conditions are simpler.

B.1 Another proof of Lemma 4.4.5

Lemma B.1.1 (Lemma 4.4.5). It holds that

log(1− ρu) = Stρ(u) :=
∞∑

n=1

κρ(n) log (1− un) ∈ Q[[ρ, u]].

Moreover, for ρ ∈ C, the region of absolute convergence of the series in the right-
hand side is ⎧

⎪⎪⎨

⎪⎪⎩

{
u ∈ D

∣∣∣ |u| < 1
|ρ|

}
if ρ ̸= 0, 1,

C if ρ = 0,

D if ρ = 1.

Another proof of Lemma 4.4.5. We assume that ρ ̸= 0, 1. We show that the series
Stρ(u) does not converge absolutely for |u| ≥ min{ 1

|ρ| , 1}. If |u| ≥ 1, then Stρ(u)

does not converge absolutely. Hence, we may assume that |ρ| > 1 and it is sufficient
to prove that Stρ(u) does not converge absolutely for 1

|ρ| ≤ |u| < 1.

Now, we show that Stρ(u) does not converges absolutely for
1
|ρ| ≤ |u| < 1. Assume

that Arg u
2π ∈ Q. Then, we put Arg u

2π = k1
k2

(k1, k2 ∈ Z, k2 ̸= 0) and Nrat := {k2m |
m ∈ N}. Then, since un ∈ [ 1

|ρ| , 1) for any n ∈ Nrat, it holds that

∞∑

n=1

|κρ(n) log (1− un)| ≥
∑

n∈Nrat

|κρ(n) log (1− un)| =
∑

n∈Nrat

|κρ(n)| log
1

1− un
.
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Put Nρ :=
{
n ∈ N

∣∣∣ n ≥ max
{

5
log |ρ| log

2
|ρ|−1 , 3

}}
. Since n

5 < n − ⌊n
2 ⌋ − 1 for each

n ∈ Nρ, we have

∣∣∣∣∣∣

∑

n ̸=d|n

µ
(n
d

)
ρd

∣∣∣∣∣∣
≤

∑

n ̸=d|n

|ρ|d ≤
⌊n
2 ⌋∑

d=1

|ρ|d = |ρ|⌊n
2 ⌋+1 − |ρ|
|ρ|− 1

<
|ρ|⌊n

2 ⌋+1

|ρ|− 1
<

|ρ|n

2
.

Thus, for any n ∈ Nρ, it holds that

|nκρ(n)| ≥ |ρ|n −

∣∣∣∣∣∣

∑

n ̸=d|n

µ
(n
d

)
ρd

∣∣∣∣∣∣
> |ρ|n − |ρ|n

2
=

|ρ|n

2
.

Since
(
1− 1

x

)−x
> e for any x > 1 and the natural density of Nrat is equal to

1
k2

> 0,
it holds that

∑

n∈Nrat

|κρ(n)| log
1

1− un
≥

∑

n∈Nrat

|κρ(n)| log
1

1− |ρ|−n
>

∑

n∈Nrat∩Nρ

|ρ|n

2n
log

1

1− |ρ|−n

=
∑

n∈Nrat∩Nρ

1

2n
log

(
1− 1

|ρ|n

)−|ρ|n

>
1

2

∑

n∈Nrat∩Nρ

1

n
= ∞.

Assume that Arg u
2π ̸∈ Q. We put ϕn := Arcsin |u|n, ψn := Arcsin 1

2|ρ|n ,

θ±n := Arccos

⎛

⎝ 1

2|u|n

⎛

⎝
(√

1− 1

4|ρ|2n ±

√

|u|2n − 1

4|ρ|2n

)2

− |u|2n − 1

⎞

⎠

⎞

⎠

= Arccos

(
− 1

4(|u||ρ|2)n ±

√(
1− 1

4|ρ|2n

)(
1− 1

4(|u||ρ|)2n

))
,

and Θn := [θ+n , θ
−
n ] ∪ [2π − θ−n , 2π − θ+n ] as described in Figure B.1. Note that

Re

Im

θ+n
θ−n

1

1 + 1
2|ρ|n

1 + |u|n

1 + 1
|ρ|n

ϕn

ψn

Figure B.1: The definitions of ϕn, ψn, θ±n in the complex plane
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|Arg(1− un)| ≤ ϕn when n ∈ Θn. Since θ+n is strictly monotonically decreasing and
θ−n > π

2 by a simple calculation, we have θ+n ≤ π
3 and θ−n ≥ π

2 for any n ∈ N. Putting
Θ :=

[
π
3 ,

π
2

]
, we have Θn ⊃ Θ for any n ∈ N. Since |Arg(1− un)| ≥ ψn ≥ 1

2|ρ|n for n
satisfying that Arg un ∈ Θ ⊂ Θn,

∞∑

n=1

|κρ(n) log (1− un)| ≥
∑

n∈Nρ

|κρ(n)| |log (1− un)| >
∑

n∈Nρ

|ρ|n

2n
|Arg(1− un)|

≥
∑

n∈Nρ∩N

|ρ|n

2n
|Arg(1− un)| ≥

∑

n∈Nρ∩N

|ρ|n

2n

1

2|ρ|n =
1

4

∑

n∈Nρ∩N

1

n
,

where N := {n ∈ N | Arg un ∈ Θ}. Therefore, it is sufficient to prove that the
natural density of N is positive.

Put θ := Arg u
2π and T := R/Z. Let ι : R → T be the natural isomorphism defined

by ι(x) := x mod Z and Rθ : T → T be the map satisfying that Rθ(x) = ι(x + θ).
Put Θ := ι

([
1
6 ,

1
4

])
. Then, we have the equality N = {n ∈ N | Rn

θ (0) ∈ Θ}. Since
θ ̸∈ Q, the continuous function Rθ on T is uniquely ergodic [18, Example 1.3 and
Example 4.11]. Since Θ is an interval in T, for any x ∈ T

lim
M→∞

1

M
#{n ∈ N0 ∩ [0,M) | Rn

θ (x) ∈ Θ} = mT(Θ) =
1

12
,

where mT is a Lebesgue measure on T [18, Example 4.18 and Lemma 4.17] (also see
Einsiedler and Ward [18, Example 1.3]). Substituting x = 0 gives the inequality

lim
M→∞

#(N ∩ [1,M ])

M
= lim

M→∞

1

M
#{n ∈ N0 ∩ [0,M) | Rn

θ (0) ∈ Θ∞} =
1

12
> 0.

Thus, the natural density of N is positive.

B.2 Another version of Theorem 4.4.12

While the conditions in Theorem 4.4.12 are so complicated, the conditions in the
following similar theorem are simpler. Note that, however, Theorem B.2.1 cannot
treat the counting function of an absolute Riemann surface, since it violates the
second condition.

Theorem B.2.1. Let Φ be a nonempty finite subset of C and put d(Φ) := maxρ∈Φ |ρ|.
Set λ = λΦ := max {d(Φ), 1} and

fΦ(t) :=
∑

ρ∈Φ

cρt
ρ ∈ Ad(Φ) (cρ ∈ C \ {0}) .

Put Φmax := {ρ ∈ Φ | |ρ| = λ} =: {ρ1, . . . , ρl} and θk :=
Arg ρk
2π . Assume the following

technical conditions:
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(1) It holds that ∑

ρ∈Φmax

cρ ̸= 0,

(2) 1, θ1, . . . , θl are linearly independent over Q.

Then, the region of absolute convergence of SfΦ(s) is {s ∈ C | |s| > λΦ}.

Proof. We use the same notations in Section 4.4. By Theorem 4.4.6, the series
SfΦ(s) converges absolutely for |s| > λ. Now, we show that SfΦ(s) does not converge
absolutely for |s| ≤ λ. If λ = 1, that is, |ρ| ≤ 1 for each ρ ∈ Φ, then the series
log(1 − s−n) does not converge absolutely for |s| ≤ λ = 1. Thus, we may assume
that λ > 1. It holds that

∞∑

n=1

∣∣Mn(f) log
(
1− s−n

)∣∣ =
∞∑

n=1

∣∣∣∣∣
∑

ρ∈Φ

cρ
κρ(n)

κλ(n)

∣∣∣∣∣
∣∣κλ(n) log

(
1− s−n

)∣∣

Put M := 1
2

∣∣∣
∑

ρ∈Φmax
cρ
∣∣∣ and fix 0 < ε < 1

2 satisfying that

ε <
2M

4#Φmax max |cρ|+M
.

By the assumption, it holds that M > 0. Set

Nε :=
{
n ∈ N

∣∣∣ ∀ρ ∈ Φmax,
∣∣e

√
−1n arg ρ − 1

∣∣ < ε
}
,

Nλ :=

{
n ∈ N

∣∣∣∣ (log λ)
−1 log

2

ε(λ− 1)
< n−

⌊n
2

⌋
− 1

}
.

Since

κρ(n) =
1

n

∑

m|n

µ
( n

m

)
λme

√
−1m arg ρ = κλ(n) +

1

n

∑

m|n

µ
( n

m

)
λm

(
e
√
−1m arg ρ − 1

)
,

putting Rn :=
∑

m|n µ
(
n
m

)
λm

(
e
√
−1m arg ρ − 1

)
, we have

∣∣∣∣∣
∑

ρ∈Φmax

cρ
κρ(n)

κλ(n)

∣∣∣∣∣ =

∣∣∣∣∣
∑

ρ∈Φmax

cρ +
∑

ρ∈Φmax

cρRn

nκλ(n)

∣∣∣∣∣ ≥

∣∣∣∣∣

∣∣∣∣∣
∑

ρ∈Φmax

cρ

∣∣∣∣∣−

∣∣∣∣∣
∑

ρ∈Φmax

cρRn

nκλ(n)

∣∣∣∣∣

∣∣∣∣∣ .

Then, it holds that

|Rn|
λn

≤ 1

λn

∑

m|n

λm
∣∣∣e

√
−1m arg ρ − 1

∣∣∣ =
∣∣∣e

√
−1n arg ρ − 1

∣∣∣+
1

λn

∑

n ̸=m|n

λm
∣∣∣e

√
−1m arg ρ − 1

∣∣∣

< ε+
2

λn

⌊n
2 ⌋∑

m=1

λm = ε+
2
(
λ⌊n

2 ⌋+1 − λ
)

λn(λ− 1)
= ε+

2

λn−⌊n
2 ⌋−1(λ− 1)
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for each n ∈ Nε. Moreover, since

2

λn−⌊n
2 ⌋−1(λ− 1)

< ε

for n ∈ Nλ, we have |Rn| < 2ελn for each n ∈ Nε ∩Nλ. Since

nκλ(n) > λn − λ⌊n
2 ⌋ + 1

λ− 1
>

(
1− ε

2

)
λn

for any n ∈ Nλ, it holds that
∣∣∣∣∣
∑

ρ∈Φmax

cρRn

nκλ(n)

∣∣∣∣∣ ≤
∑

ρ∈Φmax

∣∣∣∣
cρRn

nκλ(n)

∣∣∣∣ <
∑

ρ∈Φmax

2ελn|cρ|(
1− ε

2

)
λn

=
∑

ρ∈Φmax

4ε|cρ|
2− ε

<
∑

ρ∈Φmax

M |cρ|
#Φmax max |cρ|

=
M

#Φmax

∑

ρ∈Φmax

|cρ|
max |cρ|

≤ M

for each n ∈ Nε ∩Nλ. Therefore, the desired inequality
∣∣∣∣∣
∑

ρ∈Φmax

cρ
κρ(n)

κλ(n)

∣∣∣∣∣ ≥

∣∣∣∣∣
∑

ρ∈Φmax

cρ

∣∣∣∣∣−

∣∣∣∣∣
∑

ρ∈Φmax

cρRn

nκλ(n)

∣∣∣∣∣ ≥ 2M −M = M

follows for any n ∈ Nε ∩Nλ.

Since

1

λn

∣∣∣∣∣∣

∑

n ̸=m|n

µ
( n

m

)
λm

∣∣∣∣∣∣
≤ 1

λn
· λ

⌊n
2 ⌋+1 − 1

λ− 1
<

1

λn−⌊n
2 ⌋−1(λ− 1)

<
1

λ− 1
,

it holds that
∣∣∣∣
κρ(n)

κλ(n)

∣∣∣∣ =

∣∣∣∣∣

∑
m|n µ

(
n
m

)
ρm

∑
m|n µ

(
n
m

)
λm

∣∣∣∣∣ ≤
1
λn

∑
m|n |ρ|m∣∣∣1 + 1

λn

∑
n ̸=m|n µ

(
n
m

)
λm

∣∣∣

≤
|ρ|

|ρ|−1

(
|ρ|
λ

)n

1− 1
λ−1

−→ 0 (n → ∞)

for ρ ∈ Φ \ Φmax. Hence, for each ρ ∈ Φ \ Φmax, there exists nρ ∈ N such that,
∣∣∣∣
κρ(n)

κλ(n)

∣∣∣∣ <
M

#Φ|cρ|

for each n ≥ nρ. For any n ∈ N, if n ≥ max{nρ | ρ ∈ Φ \ Φmax}, then it holds that
∣∣∣∣∣∣

∑

ρ∈Φ\Φmax

cρ
κρ(n)

κλ(n)

∣∣∣∣∣∣
≤

∑

ρ∈Φ\Φmax

|cρ|
∣∣∣∣
κρ(n)

κλ(n)

∣∣∣∣ <
∑

ρ∈Φ\Φmax

M

#Φ
=

(#Φ−#Φmax)M

#Φ
.
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Therefore, by putting N := {n ∈ Nε ∩Nλ | n ≥ max{nρ | ρ ∈ Φ \ Φmax}}, we have

∣∣∣∣∣
∑

ρ∈Φ

cρ
κρ(n)

κλ(n)

∣∣∣∣∣ =

∣∣∣∣∣∣

∑

ρ∈Φmax

cρ
κρ(n)

κλ(n)
+

∑

ρ∈Φ\Φmax

cρ
κρ(n)

κλ(n)

∣∣∣∣∣∣

≥

∣∣∣∣∣
∑

ρ∈Φmax

cρ
κρ(n)

κλ(n)

∣∣∣∣∣−

∣∣∣∣∣∣

∑

ρ∈Φ\Φmax

cρ
κρ(n)

κλ(n)

∣∣∣∣∣∣

> M − (#Φ−#Φmax)M

#Φ
=

#Φmax

#Φ
M

for any n ∈ N . Therefore, it holds that

∞∑

n=1

∣∣Mn(f) log
(
1− s−n

)∣∣ > #Φmax

#Φ
M

∑

n∈N

∣∣κλ(n) log
(
1− s−n

)∣∣ .

Set δ = ε
2π and g = (θ1, . . . , θl). Let Vδ and N g

Vδ
(x) be the sets in Lemma 4.4.18.

Then, we have N g
Vδ
(0) ⊂ Nε. Indeed, if n ∈ N g

Vδ
(0), then it holds that

∑

ρ∈Φmax

(
Arg ρn

2π

)2

<
( ε

2π

)2

by taking the arguments of any ρ ∈ Φmax in −π < Arg ρ ≤ π. Then, since we have
|Arg ρn| < ε for each ρ ∈ Φmax, it holds that

∣∣e
√
−1nArg ρ − 1

∣∣ <
√
2− 2 cos ε < ε

for any ρ ∈ Φmax. Thus, if n ∈ N g
Vδ
(0), then n ∈ Nε.

Since the natural density of N g
Vδ
(0) ⊂ Nε is positive by Lemma 4.4.18, the

natural density of N ′ := N g
Vδ
(0) ∩ N is positive. By Lemma 4.4.5, the series∑

n∈N ′ |κλ(n) log (1− s−n)| diverges for |s| ≤ λ. Therefore, the series SfΦ(s) does
not converges absolutely for |s| ≤ λ.
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309–314.

92

https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-2.1.401
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-2.1.401


[39] J. L. Peña and O. Lorscheid, Mapping F1-land: An overview of geometries over the field with
one element, Noncommutative geometry, arithmetic, and related topics, 2011, pp. 241–265.

[40] B. Poonen, Rational points on varieties, Graduate studies in mathematics, vol. 186, American
Mathematical Society, 2017.

[41] M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experiment. Math. 3 (1994), no. 3, 173–197.

[42] J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, vol. 7, Springer-Verlag,
New York-Heidelberg, 1973.

[43] , Lectures on NX(p), Chapman & Hall/CRC Res. Notes Math., vol. 11, CRC Press,
Boca Raton, Fla, 2012.

[44] J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., Graduate Texts in Mathematics,
vol. 106, Springer, Dordrecht, 2009.

[45] N. J. A. Sloane and S. Plouffe, The encyclopedia of Integer Sequences, Academic Press, San
Diego, 1995.
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