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Chapter 1

Introduction

In this thesis, we study analytic properties of an absolute zeta function and give a
simpler construction of the absolute zeta function of a geometric object.

An absolute zeta function is the zeta function associated with an “IF;-scheme”,
which would be a geometric object expected to be a strong tool in an approach
to solving the Riemann hypothesis. In this approach, it is pivotal to discover the
relationship between geometric operations of F;-schemes such as fibre products and
function-theoretic information such as poles and zeros of an absolute zeta function.

In this thesis, we give a further understanding of absolute zeta functions in terms
of their analytic properties and relationship with F;-schemes. In this chapter, we
review the background of absolute zeta functions and state three main results of this
thesis.

In what follows, we denote the set of prime numbers and that of prime powers
by P and PY, respectively.

1.1 Background of absolute zeta functions

In number theory, it is traditionally important to study the solutions over Z of
algebraic equations. One of the approaches to such a problem is to investigate the
set X (F,m) of F,m-rational points of a scheme X of finite type over Z for each p € P
and unify information on X'(F,m)’s. In particular, the congruent zeta function, or
the local zeta function,

2\ HX (Fym
Z(X]Fp,p_3> = exp (Z Wp—ms)
m=1

of Ap, := & xz SpeclF,, defined as the generating function of the number of Fym-
rational points of A , has been studied as exemplified by the Weil Conjecture since
the 20th century.



1.1.1 Absolute zeta functions

Soulé [46] studied the limit
lim(p — D)/*WDZ(Xe ,p~*) = lim(p — 1)"*W exp i Mp*ms
p—1 p’ p—1 — m

when there exists a polynomial fx(t) = Zf:o a;t? € Z[t] satistying that #X (F,) =
fx(q) for any q € PN. More precisely, he found the fact that

R

lim(p — 1) exp (2_:1 L) Xfi’“p‘”) =[[6s-n

J=0

and called it the absolute zeta function of X, motivated by the ambition to define
the zeta function of an Fy-geometric object (see Chapter B for the details of F-
geometry). Later, Deitmar [IT,2] introduced a monoid scheme and realised the
above rational function as an invariant of a certain monoid scheme. After Deitmar’s
work, Connes and Consani generalised the above definition of absolute zeta functions
as follows.

Definition 1.1.1 (Connes and Consani [8, §2.1]). Let f: [1,00) — C be a function
satisfying that |f(t)| < Ct? for some C' > 0 and d > 0. Then, the absolute zeta
function of f is defined by the limit

¢f™(s) == lim (p — 1) Wexp (i f(pm)p—m5>
m=1

p—14+ m

for Re(s) > d when the right-hand side converges.

To define an absolute zeta function even for a function with a pole at t = 1,
Kurokawa gave another definition of an absolute zeta function using zeta regulari-
sation. This enables us to regard Barnes’ multiple gamma function as an absolute
zeta function.

Definition 1.1.2 (Kurokawa and Ochiai [34], Deitmar, Koyama and Kurokawa [14]).
Let f: (1,00) — C be a measurable function. The function f is said to be admissible
if there exist a constant d > 0 and a (non-empty open) domain D of C such that

Zi(w,s) := ﬁ /100 f()t*(log t)l"1% = ﬁ /000 fleMe v da

converges for every (w,s) € D x {s € C| Re(s) > d} and Z;(w, s) admits a unique
holomorphic extension to w = 0. If f is admissible, then we define the absolute zeta

function of f by
w=0) .

Cr(s) :=exp <8%Zf(w,s)
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It is known that absolute zeta functions have the following functoriality.
Proposition 1.1.3 (Kurokawa and Ochiai [34, Theorem B]).

(1) Let f1, fo be admissible functions on (1,00). Then, it holds that
Cf1+f2<8) =(h (S)Cf2 (S>

(2) Let @1, @y be finite subsets of C. Put fi(l) = }_, co, apt™ (a, € C) and
fo(t) =32, ca, bpat?™ (bp, € C). Then, it holds that

<f1f2<5) = H H (8 — (pl + p2))_a91b92 )

p1EDP1 p2eds

Remark 1.1.4. Kurokawa may have introduced the above definition with the follow-
ing ambition to treat the Riemann zeta function ((s) as the absolute zeta function
of “SpecZ over [F1” (see Section BT for some details on the Riemann zeta function).
Let Z be the set of nontrivial zeros of ((s). According to Deninger [, Theorem 3.3],
we could formally have the decomposition of the completed Riemann zeta function

=i (e - ) - 248

2m 2 2w
if fe(t) = E(tﬁ) were admissible, where fz(t) := fz(t27) and

Jalt) =t = Je(®) + 1, Je(t) =Dt

pEZ

~

On the other hand, Kurokawa suggests that “((s) = (5 (s)” (see e.g. [30, p. 42]).

Example 1.1.5 (Kurokawa and Ochiai [34, Theorem A]). Let ® be a finite subset
of C and put
fot) =) a,t” (a, € 7).

ped
Then, it holds that
Ga(s) =TI = p)7 = Cpuls):
ped

Thus, both definitions coincide with each other if f is a linear combination of ¢*’s.
For example, motivated by Remark T4, Kurokawa [31] introduced the following
function called the counting function of an absolute Riemann surface

M)

g
fa(t) =t —2VtY cos(aglogt) + 1=1t— Y (t% +17) + 1,
k=1

el
Il

1

3



where @ = (v, ..., o) € [0,00)9 and py, := 3++/—1ay,. Note that this is comparable
with “the finite version of f7” in Remark IT°4. Then, its absolute zeta function is
1 g
Crals) = ml{l ((s = pr) (s — Px)) -

o~

Thus, we might consider this as “the finite version of {(s)” in Remark I'TZ. How-
ever, the definition of “absolute Riemann surfaces” has not yet been established.

Example 1.1.6 (Kurokawa and Ochiai [B4]). Let w = (wy,...,w,) € (0,00)" and

put
1

(I—t1) (1= tor)

fw(t) =

Then, it holds that
Cfu (S) - F,«(S, w)?

where I',(s,w) is Barnes’” multiple gamma function. In particular, when r = 1, it
holds that

_1
2

€n

=)

Thus, the gamma function I'(s) is also an absolute zeta function.

Crals) = T(s,w) =

For a function f which satisfies the conditions of two definitions, it is not clear
whether C}}m(s) and (f(s) always coincide with each other. However, in joint work
with Y. Hirakawa, we found that we can create infinitely many simple examples in
which they do not coincide by using Connes-Consani’s integral formula (see Exam-
ple B37).

1.1.2 Absolute Euler products

Many zeta functions including the Riemann zeta function have an infinite product
representation running over all prime numbers (see e.g. Kurokawa [29, §11.1]). This
infinite product is called an Fuler product. For example, the Riemann zeta function
has the following Euler product representation:

cs) =TI -»"

peP

As a generalisation of this Euler product, the zeta function (r(s) of a finitely
generated Z-algebra R, which is called the Hasse zeta function of Spec R, has the
following Euler product representation:

r(s):= [ @—@#R)=) =] -pm)enm,

a€m-SpecR pEP n=1



where m-SpecR is the set of maximal ideals of R and
k(p,n; R) := #{a € m-SpecR | #R/a = p"}.

Similarly, the congruent zeta function Z(X,p*®) of a smooth projective variety X
over [F,, has the following Euler product representation:

Z(X,p) =]] ﬁu e (1.1)

leP n=1

where k() is the residue field of z, the set | X| is the set of closed points of X, and

#Hx e [X| [ #k(z) =p"} fl=p,
0 if [ # p.

However, since there should be no prime numbers in F;-theory, absolute zeta
functions cannot have a similar Euler product representation. In [30, §7.3], Kurokawa
calculated certain infinite products of absolute zeta functions for some specific
schemes of finite type over Z according to Soulé’s definition. Then, he suggested
that the “absolute zeta function (yx(s)” of a general scheme X of finite type over
Z has the following infinite product structure, which he called the absolute Fuler
product. Note that “Cy(s)” has not generally been defined yet.

/f(l,n;X):{

Conjecture 1.1.7 (Kurokawa’s suggestion (B0, §7.3]). For a scheme X of finite type
over Z, there should exist the absolute Euler product of “Cx(s)” of the form

Ca(s) = G) Xahsm]j <1 — G)n) _H(W, (1.2)

n

where k(n,X) is an integer for any n € N, the integer xaups(X) = fx(1) is the
absolute Euler characteristic, and fx(t) is the function associated with X . Moreover,
the infinite product (2) converges absolutely for Re(s) > dim X',

Remark 1.1.8. Assume that A%, is a smooth projective variety. Let fx be a

function which satisfies fx(q) = #X(F,) for any ¢ € PY. Then, by the Lefschetz
trace formula (see e.g. Hartshorne [22, p. 454]), it holds that

2 dim X,
fe(p™) = #X (Epm) = D (1]} + - +afl),
i=0
where the integer dim Af, is the dimension of Ay, , the complex numbers a; 1, . . ., a;p,

are eigenvalues of the induced map of the Frobenius morphism on the i-th étale
cohomology of X, and the integer b; is the ¢-th Betti number. If we substituted
m = 0 in this equality, we could formally obtain

2dim X,

fe) = “HX(EF)" = Y (1) = xiop(X(C)),

1=0

b}



where Xiop(X(C)) is the Euler characteristic of the complex manifold X(C). This is
the reason why fx(1) is called the absolute Euler characteristic.

This philosophy that the number of “F;-rational points” of a scheme and the
value at 1 of the original function f of the absolute zeta function (; associated with
it coincide with its Euler characteristic also appears in [46, Théoreme 2|, [28, Remark
2], [2, p. 141], and the proof of [I4, Theorem 2.1].

Equation () in Conjecture TI7 does not seem like the Euler products which
we mentioned above. Kurokawa himself did not explain the validity of the name
“absolute Euler product”. However, in joint work with Y. Hirakawa, we found one
of the reasons why it is reasonable to call Equation ([2) an Euler product. We
explain this in Subsection B2,

1.2 Main results

Originally, an absolute zeta function was expected to be the zeta function associated
with an F;-scheme. Hence, we are interested in the relationship between absolute
zeta functions and Fi-schemes. However, most previous works study F;-geometry
and absolute zeta functions separately.

In this thesis, we mainly give three results. The first main result is on the
absolute Euler product of the absolute zeta function of a certain [F;-scheme defined
by Connes and Consani. The second is on three analytic properties of absolute
zeta functions: the series expansion, an integral formula, and the absolute Euler
product. The third is on a “canonical” construction of the absolute zeta function
from a scheme over Z or Q using ceiling and floor Puiseuz polynomials. Here, the
second and the third results are based on joint work with Y. Hirakawa.

1.2.1 Absolute Euler products and [F;-schemes

Let f be a polynomial with integer coefficients. Kurokawa [33, Theorem 11.1] for-
mally gave the absolute Euler product of (;(s) which is similar to Equation ()
and described the exponent corresponding to x(n,X) explicitly. However, he did
not give the region where the absolute Fuler product converges absolutely.

In this thesis, we formulate Kurokawa’s suggestion (Conjecture [I-7) for a tor-
sion free Noetherian [Fy-scheme, whose Z-lift is almost a toric variety (see Chapter &
for its definition). Moreover, we prove that the region where the absolute Euler
product converges absolutely is |s| > rel.dim Xz /Z, where rel.dim X7 is the relative
dimension of Xz over Z, and it is the widest possible region.

Theorem 1.2.1 (Theorem B35, [49, Theorem 3.8]). Let X be a torsion free Noethe-
rian Fi-scheme. Then, there exists a polynomial Ny € Z[t] associated with X . Let
Xom, (resp. Xz) be the scheme (resp. the monoid scheme) obtained from X. Then,

6



1t holds that .
CX/IFl (3) = S_NX(l) H (1 _ S—n)*“(”vxmto) 7
n=1

where k(n, Xon,) s a certain integer which is explicitly given by the information of
Xop,- Moreover, if Xy is of finite type over Z, the region of absolute convergence of
this absolute Euler product is {s € C | |s| > rel.dim Xz/Z}.

Remark 1.2.2. By combining Theorem B46 and a method in Subsection 23,
which we explain later, we can remove the condition “torsion free” in Theorem 2T
and generalise Theorem ITXT.

1.2.2 Three analytic properties of absolute zeta functions

In previous works, absolute zeta functions were mainly investigated when f was a
relatively specific function such as a polynomial or a product of f,’s. In this thesis,
we investigate three analytic properties of the absolute zeta functions of elements of
the following class of analytic functions:

Ag:={f€C¥([l,00),C) | 3C >0, Vn € Ny, | ()| < Cd"}
for d > 0, where
0

an(f) = <t§>nf(t) - (%)”ﬂex)

for any n € Ny. In these results, we take the branch of log s with the branch cut
along C \ (—o00,0], and define s := ¢“'°8* for s,w € C.

The first analytic property is that the logarithmic derivative of an absolute zeta
function can be identified with the generating function of the iterative Euler deriva-
tives of a given function. Note that we can determine the region where the absolute
zeta function of f € Ay can be defined based on its proof, while it is originally
defined for a sufficiently large Re(s) by its definition.

Moreover, this expression of the absolute zeta function is useful for obtaining its
asymptotic behaviour. According to Kurokawa [33, p. 116], it is classically known
that the Hasse zeta function and the congruent zeta function tend to 1 as Re(s) —
oo. In [BT, §1.7], Kurokawa observed that the absolute zeta function of fg(t) =
Zp@ a,t? for some a, € Z and a finite set ® C C satisfies

=0

¢ (5) =] (1 _ B)*“p 51 (s — +00).

s
ped
The following theorem is a generalisation of this observation.

Theorem 1.2.3 (Theorem B2T). Let d > 0 and f € Ay.

7



(1) For Re(s) > d, the absolute zeta function of f is

)

n=1

In particular, this can be analytically continued to a single-valued holomorphic
function on {s € C| |s| > d}. Moreover, we have

lim s/M¢;(s) =

S—00

(2) For Re(s) > d, the logarithmic derivative of the absolute zeta function (s(s) is

Gl _ &
(o)~ e

The second analytic property is a corollary of Theorem 23, which asserts that
the logarithmic derivative of the absolute zeta function of f € A; has a similar
integral formula to Connes-Consani’s integral formula.

Theorem 1.2.4 (Corollary B33). Let d > 0 and f € Ay. Then, it holds that

Cf

/ F(e%)e"dz = —L[f o expl(s)

for Re(s) > d, where L is the Laplace transform.

The third analytic property is also a corollary of Theorem I™23, which is that
the absolute zeta function of f € A, has the absolute Euler product expression. Let
M: CNo — CMo be the linear map defined by M(a)y := ao and

Z,u( ) am (n €N)

for a sequence a = {a,}>2, of complex numbers. Then, we define the linear map

M, : A;— C by
M (f) = M{an(f) }aZo)n-

Theorem 1.2.5 (Theorem B48). Let d > 0 and f € Ay. Then, the following
statements hold.

(1) The series
Z M, ( log 1 -5 ”)
converges absolutely for |s| > max{d, 1}.

8



(2) It holds that
log (f(s) = —f(1)logs — Sy(s)
for |s| > max{d, 1}. In particular, it holds that

G(s) = s 0D T (L= 57200,
n=1

According to the theorem, the series Sy(s) converges absolutely at least for |s| >
max{d(f), 1}, where d(f) := inf{d | f € A4}. We wonder whether this region is the
widest possible region where Sy(s) converges absolutely. In this thesis, we prove it
affirmatively at least if f is a linear combination of ¢”’s satisfying some technical
assumptions by using ergodicity of an irrational rotation (Theorem BZT2).

Note that the relationship of a function f € Ay, the value «,(f), and the linear
map M, which appeared in the above three theorems is described in the following
diagram:

{t5)" )] o M
/\ //’M\
A>f {an(f)}nZo {M(f)}no -
\M/ \‘w/
integral X an(f) " series ST kM(f) absolute
formula 7;) wi- (log?) expansion kln Euler product

1.2.3 Ceiling and floor Puiseux polynomials

As we mentioned before, Soulé obtained the absolute zeta function from a scheme X
of finite type over Z, assuming that the sequence (#X(IF,)),cp~ is interpolated by a
polynomial. In addition, we can obtain the canonical polynomial from a torsion free
Noetherian Fi-scheme as we mentioned in Theorem TZ2T. In these cases, we can
define the canonical absolute zeta function of the geometric objects as the absolute
zeta function of the polynomials.

However, there are normally infinitely many continuous functions which inter-
polate the number of [F -rational points of a geometric object. Hence, we cannot
generally obtain such a canonical continuous function from a geometric object. For
example, let X = (X, Ox) be a monoid scheme of finite type and Xz be the Z-lift
of X (see Section 2 for their definitions). Then, Connes and Consani showed that

Lo
#HXz(Fy) =Y (g — 1) H ged(q — 1,ta5)

zeX

for any prime power ¢ (see Propositions 27 and PZ2710), where the non-negative in-
tegers 1, [, and the positive integers ¢, ; are taken so that Oy , = Z" x Hé””: VLt ;7

9



with ¢, ; | t, 41 for each x € X. In this case, there is no clue to determine what is
a “canonical” interpolation of (# X7 (IF)),epv.
By using the Fourier expansion of the periodic function ged(q — 1,¢,;) in g,
Deitmar, Koyama and Kurokawa [[4, pp. 61-63] interpolated #X7(F,) to a certain
lim

continuous function Nx, on [1,00) and then regarded ¢ Ny, (s) as the absolute zeta
function of X.

Theorem 1.2.6 (Deitmar, Koyama and Kurokawa [[4, Theorem 2.1]). For the
above function Nx,, it holds that

Ry
cim (s) = [ (s = k) Zoex o0 (7),
Z
k=0

where T, 1= Hé?”:l ty; and Rx := maxgzex ry. Moreover, if Xy is a smooth projective
variety of relative dimension d, it holds that Nx, (1) = Xtop(Xz(C)) and (ny, (d—s) =
(—1)Xt°P(XZ(C))CNXZ(S), where Xiop(Xz(C)) is the Euler characteristic of the complex

manifold Xz(C).

Remark 1.2.7. In [14], Deitmar, Koyama and Kurokawa took ¢, ;’s as prime powers
instead of the above integers satisfying t, ; | t; 1.

Despite this simple result, the proof of Theorem 286 involves relatively compli-
cated calculations. In fact, comparing with Example Th and Theorem 26, we
see that the absolute zeta function (ny (s) of Nx, coincides with the absolute zeta
function (e, (s) of the polynomial

Cx,(t) =D Tu(t—1)".

This polynomial €x, is characterised as the ceiling polynomial of Xy, which is
defined as the unique polynomial in R[t] satisfying the following conditions:

(1) The inequality €x,(q) > #Xz(F,) holds for every ¢q € P".
(2) There exist infinitely many prime powers ¢ such that €x,(q) = #Xz(F,).

Thus, we have a simpler way to obtain the above absolute zeta function CNXZ(S)
without using the periodicity of ged(g — 1,¢,,;). This simple observation is notable
in extending Soulé’s idea to a more general scheme of finite type over Z for which
we do not have any formula like Connes-Consani’s formula of # Xy (F,).

Similarly, by replacing > with < in the first condition, we can recover the poly-

nomial
Fx.(t) =) (t—1),

zeX

introduced by Deitmar [I2, Theorem 1]. We call it the floor polynomial of X.

10



The above conditions satisfied by the ceiling polynomial suggest that it is not
necessary to interpolate the whole sequence (#Xz(IF,)),epv for the definition of an
absolute zeta function of X7, at least in view of the result of Deitmar, Koyama and
Kurokawa [14]. Therefore, it is more natural to start from a general (separated)
scheme of finite type over QQ instead of the Z-lift of a monoid scheme of finite type.
Moreover, since the polynomial condition is too strict for most schemes of finite type
over Z[S™'], where S is a finite subset of PP, we generalise the ceiling polynomial
by means of Puiseux polynomial. For example, a desired Puiseux polynomial exists
uniquely for every elliptic curve E over QQ as follows; this fact leads us to a provisional
definition of the absolute zeta function of E.

Theorem 1.2.8 (Corollary b2ZTH, [23, Definition 3.4 and Corollary 3.15]). Let
E be an elliptic curve defined over Q. Then, the Puiseur polynomial €g(t) =
t+2t12+1 is characterised as the unique element in R[t"/*°] = |, . R[t"/"] satisfying
the following condition: for any separated scheme E of finite type over Z satisfying
that Eg = E, there exists a finite set Sg of prime numbers such that for any finite set
S of prime numbers containing Se, the Puiseuz polynomial €g satisfies the following
conditions:

(1) The inequality €x(p™) > #E(Fym) holds for every p™ € PN, where p & S.

(2) There exist infinitely many prime powers p™ such that p ¢ S and the equality
|€e(p™)] = #E[Fym) holds.

(3) €g(1) € Z.
Moreover, the absolute zeta function of € is

1
s (5) s (s— %)2 (s—1)

We call €g the ceiling Puiseux polynomial of E. A drawback of €g is that the
special value €g(1) does not coincide with the Euler characteristic of the complex
torus F(C). This is not consistent with the philosophy which we mentioned in Re-
mark TR, Indeed, if X is a monoid scheme of finite type such that T, = 1 for each
xr € X and X7 is a smooth projective variety, then it holds that Nx,(1) = €x,(1) =
§x, (1) = Xtop(Xz(C)). However, it holds that €g(1) =4 # 0 = xiop(E(C)).

On the other hand, by replacing > in (1) (resp. |€g(p™)| = #E(Fym) in (2))
in Theorem 2R with < (resp. [Cg(p™)] = #E(Fpm)), we can naturally define the
floor Puiseux polynomial of E' and determine it as follows.

Theorem 1.2.9 (Corollary B2ZT3, [23, Corollary 3.15]). Let E be an elliptic curve
defined over Q. Then, the floor Puiseuz polynomial §g(t) of E coincides with t —
2tY/2 + 1 and its absolute zeta function is

Ggp(s) = Ss=1)



Here, note that the special value Fg(1) coincides with the Euler characteristic of
E(C), which is consistent with the above philosophy. In this view, it is fair to say
that (z,(s) is better than (¢, (s).

Remark 1.2.10. While Deitmar, Koyama, and Kurokawa constructed the absolute
zeta function of a scheme over Z associated with a monoid scheme of finite type
such as a toric variety, our method enables the construction of a pair of the absolute
zeta functions of a general scheme over Z or Q whose corresponding [F;-scheme has
not been established yet such as an elliptic curve. According to Remark BZZT8
the absolute zeta function (¢, (s) or (5,(s) might be regarded as the absolute zeta
function of “the reduction modulo 1”7 of an elliptic curve over Q. This observation
might help guess an [F;-scheme associated with an elliptic curve.

1.3 Outline of this thesis

The outline of this thesis is as follows.

As a preliminary, we survey the background of Fi-theory and the F;-schemes by
following Deitmar and Connes-Consani in Chapter B. In particular, we review the
definition of monoid schemes defined by Deitmar and F;-schemes defined by Connes
and Consani, and introduce their properties related to their rational points.

In Chapter B, we formulate Kurokawa’s suggestion for a torsion free Noetherian
[Fi-scheme X defined by Connes and Consani and give the absolute Euler product
representation of its absolute zeta function. Moreover, we show that its region of
absolute convergence is purely determined by the relative dimension of the scheme
obtained from X.

In Chapter B, we introduce the commutative C-algebra A consisting of certain
analytic functions. Then, we investigate three analytic properties of the absolute
zeta function of f € A: the series expansion, the integral formula according to
Connes and Consani, and the absolute Euler product expression.

In Chapter B, we study the ceiling and floor (Puiseux) polynomials of schemes and
their absolute zeta functions. First, we characterise the polynomial which Deitmar,
Koyama and Kurokawa implicitly used as the ceiling polynomial of the Z-lift of a
monoid scheme. Then, we introduce the ceiling and floor Puiseux polynomials of a
separated scheme X of finite type over Q and provide a certain pair of the absolute
zeta functions of X. In particular, we investigate their existence when X is an
elliptic curve.

12



Chapter 2

[F1-schemes

In this chapter, we review the background of Fi-geometry and introduce monoid
schemes, defined by Deitmar [I1], and F;-schemes, defined by Connes and Con-
sani [8]. In this thesis, we mean a monoid to be a commutative multiplicative
semigroup with the identity 1 and the absorbing element 0 which maps any element
to 0 by multiplication. Note that a morphism between monoids is a semigroup
homomorphism which preserves both 0 and 1.

2.1 Background of [;-geometry

In number theory, the Riemann zeta function

(s) =3~ (Re(s) > 1)

n=1

is one of the classical research objects. This function is meromorphically continued
to the entire complex plane C and has a simple pole at s = 1. It is also well-known
that ((s) has a simple zero at any negative even integer and ((s) # 0 unless s € C
is a negative even integer or in 0 < Re(s) < 1 (see e.g. Serre [42, Chapter VI, §3.2]).
These negative even integers are called the trivial zeros and all other zeros of ((s)
are called the nontrivial zeros. The following conjecture on nontrivial zeros of ((s)
is well-known as the Riemann hypothesis.

Conjecture 2.1.1 (Riemann hypothesis). All nontrivial zeros of ((s) lie on the line
{s € C|Re(s) =1}

This conjecture is of great importance since it implies numerous conjectures in
number theory. For example, von Koch [b0] proved that it implies a sharp estimate

(z) = Li(z) + O (ﬁﬂ)

of the number 7(z) of prime numbers up to a sufficiently large x for any ¢ > 0,
where Li(x) is the logarithmic integral function.

13



Despite various attempts to solve the Riemann hypothesis, it has remained un-
solved for more than a century. However, in the early 1990s, a new approach to
solving the Riemann hypothesis was proposed by Deninger and Kurokawa using [F;-
geometry. The concept of F; was first introduced by Tits [48] independently from
the context of the Riemann hypothesis. Deninger and Kurokawa suggested that
the Riemann hypothesis could be proved similarly to Deligne’s proof of the Weil
conjecture if we introduced appropriate Fi-geometry and absolute zeta functions
(cf. Manin [36]).

The Weil conjecture is a function field analogue of the Riemann hypothesis,
which was proved by Deligne in 1974. Fix a prime number p and let X be a
smooth projective variety over IF,. The Weil conjecture states that the congruent
zeta function Z(X,p~®) is a rational function of p~ and all zeros and poles of
Z(X,p®) lie in {s € C | Re(s) € 3Z}, where 1Z is the set of half integers (see
e.g. Hartshorne [22, p. 450]). Deligne [I5] proved this conjecture by using the étale
cohomology of X = X ®F, F,. The key of this proof is to narrow the bound of
the absolute value of an eigenvalue of the étale cohomology of the fibre product
7 XE s XE 7

Deninger [I6,17] pointed out that the Riemann zeta function would have had
a determinant expression (cf. Remark [CT4) similar to the congruent zeta function
of a smooth projective curve over F, if there were a “cohomology theory of IF;-
geometry” [36]. On the other hand, Kurokawa introduced a tensor product for zeta
functions which is called the Kurokawa tensor product (see Definition B3 for the
definition) and proposed an idea to solve the Riemann hypothesis similar to the
Weil conjecture by using the Kurokawa tensor product (see Kurokawa [32, §11.3]
[33, §2.1]). While both ideas are a little different, they at least require constructing
an [Fi-scheme X whose fibre product “X xp, X” is not trivial, i.e. X xp, X 2
X. In particular, the latter idea requires the compatibility of the fibre product
“X xp, X7 and the Kurokawa tensor product of the zeta functions of X, which are
called absolute zeta functions.

This inspired many mathematicians to consider candidates of Fi-geometry (see
e.g. Pena and Lorscheid [39]). Any theory constructs F;-algebras so that the tensor
product Z ®p, Z is not trivial, i.e. Z @y, Z % Z. However, there is still no definitive
definition of Fi-geometry. In particular, the candidates of Fi-geometry are not
currently equipped with a good cohomology theory.

Kurokawa, Ochiai and Wakayama [35] defined the category lgy, of F;-algebras
and the category 9Modg, of F1-modules by the following identification of the diagrams

Alg, CRing
/ \ forget x forget +
Mooy Ql[g]pl =] 26 Mo |
\ / for% At X
E)Jtob]pl Get
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where CRing, Ab, M, and Get are the categories of commutative rings, abelian
groups, monoids and sets, respectively.

This idea became the basis of many candidates for F;-geometry. Deitmar [IT]
extended this idea to define schemes over F; using F;-algebras, i.e. monoids. Later,
Connes and Consani [8] generalised Deitmar’s F;-scheme to a functor which encodes
a monoid scheme and a usual scheme over Z. In this thesis, we treat these two
candidates of [Fy-geometry.

2.2 Monoid schemes

Deitmar defined monoid schemes as Fi-schemes (see Deitmar [[1], where monoid
schemes are called schemes over Fy). In short, a monoid scheme is a topological
space together with a sheaf of monoids, which is constructed by gluing spectra of
monoids just like a scheme. Precisely, it is constructed as follows.

Let Fy[-]: Ab — 9, be the covariant functor which sends a multiplicative abelian
group G to a monoid G U {0}. We put Fy» := F,[C,,], where C,, := ((,) is the cyclic
group of order n € N generated by the primitive n-th root ¢, of unity. In particular,
we abbreviate Fj1 = {0, 1} to F;.

For a commutative ring R, we define the base extension functor - ®p, R: My —
Alg, by M ®p, R := R[M], where R[M] is the monoidal ring which is defined by

R[M] = { Z MM

meM

Nm € R, n, =0 for all but finitely many m & M} .

Note that this functor - ®p, Z is left adjoint to the forgetful functor €Ring — M,
[T1, Theorem 1.1].

2.2.1 Definition of monoid schemes

Let M be a monoid. A nonempty subset a of M is called an ideal of M if it satisfies
that aA C a. An ideal a # M is to be prime if M \ a is multiplicatively closed, i.e.
a,bZa = ab¢a.

For a subsemigroup S of M with the unit 1,i.e. 1 € S and st € S for all s, € S,
the localisation of M at S is defined by S™'M := S x M/ ~, where (s,m) ~ (s',m’)
if and only if there exists ¢ € S such that ts'm = tsm’. We denote [(s,m)] € STIM
by 2. In particular, for a prime ideal p, we define the localisation M, at p by S, M,
where S, := M \ p.

We introduce a topology on the set spec M of prime ideals of M like the Zariski
topology by defining the closed sets as sets of the form V(a) := {p € spec M | p D a}
for any ideal a of M.

'In this thesis, we use “spec” for the spectrum of a monoid to distinguish it from “Spec”, the
spectrum of a commutative ring.

15



Definition 2.2.1 (Deitmar [T1, §2.1]). Let M be a monoid. For each open subset
U of spec M, we define

Vp e U, o s(p) € M,
Oupec1r(U) =L s: U — H M, | ® 3V C U a neighbourhood of p, da,b € M

peU st. VgeV, b¢ qand s(q) = % in M,.

Then, we call the functor Ogpec a2 Op(spec M) — M the structure sheaf of spec M,
where Op(spec M) is the category of open sets of spec M.

A monoidal space is a topological space together with a sheaf of monoids. A pair
of the morphisms (f, f#): (X, Ox) — (Y, Oy) is the morphism of monoidal spaces if
f: X =Y is a continuous function and f#: Oy — f,Ox is a morphism of sheaves
of monoids on Y. Note that the pair (spec M, Ogpec 1) is @ monoidal space and spec
satisfies the functoriality [, Proposition 2.2]. Then, we define monoid schemes as
follows.

Definition 2.2.2 (Deitmar [11, §2.3]). A monoidal space X is an affine monoid
scheme if there exists a monoid M such that X is isomorphic to the spectrum
spec M of M. Moreover, a monoidal space X is a monoid scheme if for any x € X
there exists an open neighbourhood U of X such that (U, Ox|y) is an affine monoid
scheme.

A morphism of monoid schemes is a local morphism of monoidal spaces, i.e.
a morphism (f, f#): (X,0x) — (Y,0Oy) of monoidal spaces which induces the
morphism f7: Oy, y) — f.Ox, satisfying (fF)7(0%,) = Oy 4, for each v € X.
For a monoid scheme X, we define X (M) := Hom(spec M, X) for each M € 9.

Let R be a commutative ring and X be a monoid scheme with an affine covering
X = U,y spec M;. Through the base extension functor - ®@p, R: My — Ulgp, we
obtain the scheme Xp := J,.; Spec(M; ®g, R) over R and call Xy as the R-lift of X.
Here, the isomorphism class of X does not depend on the choices of affine coverings
of X due to compatibility with gluing [IT].

Example 2.2.3. Let G be a multiplicative abelian group. Then, the Z-lift of
spec F1[G] = {(0)} is Spec Z|G]. Note that the monoid F, [G] is sometimes called an
[, -field because of the similarity to a field K such as the fact that Spec K = {(0)}
(see Kurokawa [33, p. 141]). In particular, for each ¢ € PV, the monoid scheme
spec F1s-1 = specF1[F] plays a similar role to SpecF, in counting rational points
of a monoid scheme.

Definition 2.2.4 (Deitmar [12, §1]). Let X be a monoid scheme. We say X to be
of finite type if it has a finite covering by affine monoid schemes spec M; such that
each M; is finitely generated.

Proposition 2.2.5 (Deitmar [I2, Lemma 2]). A monoid scheme X is of finite type
if and only if the Z-lift Xz is of finite type over Z.
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A monoid scheme is said to be integral if it is covered by affine monoid schemes
spec M’s, where M is integral, i.e. ab = ac implies b = ¢ in M. The following
proposition shows that integral monoid schemes of finite type are essentially toric.

Proposition 2.2.6 (Deitmar [I3, Theorem 4.1]). Every irreducible component of
the C-lift of a connected integral monoid scheme of finite type is a toric variety.

2.2.2 Properties of monoid schemes of finite type

Now, we review the basic properties of monoid schemes of finite type which we use
in this thesis.

Proposition 2.2.7 (Deitmar [12, Remark 1]). Let X be a monoid scheme of finite
type. Then, it holds that

X(Fpo-1) = Xg(F,)
for any q € PN. In particular, the underlying set of X is finite, i.e. #X = #X (F,) =
#X7(Fs) < 0.

Proof. As in Example B223, specFj,—1 consists of one point, the generic point (0).
Since any morphism of monoid schemes sends it to the generic point, it holds that

X(Fio-1) = U Ui(specFyq-1),
iel
where we take an affine covering of X as (J,.; U;. Hence, it suffices to show the
statement in the affine case, which follows from the fact that

X (F1o-1) = Hom(M, Fyq-1) = Hom(Z[M],F,) = Xz(F,)
by the functoriality of spec and - ®p, Z when we put X = spec M. n

Connes and Consani explicitly described the right-hand side of Proposition 2ZZ27.
Before stating their formula, we introduce some notations used hereafter.

Definition 2.2.8. Let X = (X, Ox) be a monoid scheme of finite type. For each
xr € X, we define r,,[, € Ny and ¢, ; € N by the integers satisfying

la
O;((,x =27 x HZ/th,JZ with tm,j | t:r,j+1

Jj=1

and put T, := #( )X(@)tors = Hé””zl ty,;. Here, (’))X(@ denotes the group of invertible
elements of the monoid Ox , and ((’))X(,x)tors denotes its torsion subgroup. In addition,

we put Ry 1= maX,ex r, and Tx := Ha:EX T

Lemma 2.2.9 (Connes and Consani [8, Proposition 3.22]). For an abelian group
G, it holds that
X(Fi[G]) = | | Homg (0%, G) -

zeX
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The following property follows form Lemma 229 by putting G = Z/nZ.

Proposition 2.2.10 (Connes and Consani [9, Lemma 4.4]). Let X be a monoid
scheme of finite type. Then, it holds that

Lo

HX(Frn) =Y 0™ [ ged(n, b))

zeX 7j=1

for any n € N.

2.3 [Fi-schemes by Connes-Consani

Next, we review Fy-schemes defined by Connes and Consani [8]. They constructed
the category 9MR, which glues together the category 9, of monoids and the category
CRing of commutative rings using adjoint functors. Then, they defined an F;-scheme
as a functor MR — Set which satisfies certain conditions.

2.3.1 [;-schemes

As we mentioned above, the functor Z[-]: 9y — €Ring is left adjoint to the forgetful
functor U: €Ring — 9My, which forgets the addition of rings [T, Theorem 1.1].
Using these functors, we glue 2, and €Ring.

Definition 2.3.1 (Connes and Consani [8, §4.1]). We define the category MR :=
Mo Uz,v €Ring by the category which consists of the following data:

e The collection of objects of IR is the disjoint union of the collections of
objects of My and CRing.

e For any M, N € 9, and R, S € ERing, we set

HOIH{mm(M, N) = HOmng(M, N), HOngmg{(R, S) = HOngmmg(R, S),
Homgpgx (M, R) := Homening(Z[M], R) = Homgy, (M, U(R)),
Homgpp (R, M) := .

e For ¢ € Homgyn(M,R), f € Homgy, (N, M) and g € Homeming(R,S), we
define ¢ o f € Homgu(N,R) and g o ¢ € Homgun(M,S) as ¢ o Z[f] €
Homening(Z[N], R) and g o ¢ € Homening(Z[M], R), respectively.

An Fi-scheme is a functor 9MR — GSet which combines information of an 9%,-
scheme, a Z-scheme and a natural transformation which binds them. Here, we
introduce 9My-schemes and Z-schemes.

Definition 2.3.2 (Connes and Consani [8, Definition 3.5]). Let F be a covariant
functor My — Set.
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e A covariant functor G is a subfunctor of F if G(M) C F(M) for all M €
Ob(My) and G(f) = F(f)|gwu) for all f € Homg, (M, M’).

e A subfunctor G C F is said to be open if for any monoid M and any morphism
¢: Homyy, (M, ) — F, there exists an ideal a C M such that

¢(p) € G(N) (C F(N)) & pla)N =N
for any N € Ob(9My) and any p € Homgy, (M, N).

e Let F be a covariant functor My — Set and {F;}ic; be a family of open
subfunctors of F. Then, {F;}icr is an open covering of F if it holds that

F(F,[G)) = [ F(E#[q)
i€l
for any multiplicative abelian group G.

Definition 2.3.3 (Connes and Consani [, Definition 3.10]). An 9%y-scheme is
a covariant functor My — Get which admits an open covering by representable
subfunctors. A Z-scheme is defined similarly by exchanging 90, for €Ring.

Next, we introduce the natural transformation which is one of the data of an
[Fy-scheme. For each R € Ob(€Ring), put

oy =@ (idy(r)) € @' (Homgy, (U(R), U(R)) = Hommn(U(R), R),

where ®: Homeging(Z[M],S) = Homgy, (M, U(S)) is a natural bijection in M €
Ob(My) and S € Ob(CRing) which is determined by the adjoint functors Z[-|: My —
CRing and U: €Ring — M. Then, we have the map e := X(az): X|m, o U(R) —
X |ening(R) for any covariant functor X': MMM — Set. Thus, we obtain the natural
transformation e: X|gm, 0 U — X|coting-

Definition 2.3.4 (Connes and Consani [, Definition 4.7]). A functor X': MR —
Get is an [y -scheme if it satisfies the following conditions:

e The restriction X'|gy, is an My-scheme.
e The restriction X |eging is & Z-scheme.
e The map ex: X|m, 0 U(K) = X|ening(K) is bijective for any field K.

Remark 2.3.5 (Connes and Consani [8, Proposition 3.17]). For a monoid scheme
X and a scheme X over Z, we put

X := Hompscn(spec(-), X) and X := Homgen(Spec(-), X),

where MSch and Sch are the categories of monoid schemes and schemes over 7Z,
respectively. Since the category of 91;-schemes is equivalent as a category to MSch,
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for any 9p-scheme F: My — Set, there exists the unique monoid scheme Xgy, (up
to natural isomorphism) such that 7 = Xy, . We call the monoid scheme Xgy,
the geometric realisation of F. Similarly, for any Z-scheme G: €Ring — Get, there
exists the unique scheme X7 over Z (up to natural isomorphism) such that G = X,.
We also call the scheme X7, the geometric realisation of G.

Remark 2.3.6 (cf. Connes and Consani [8, Remark 4.10]). It is important that ex
is bijective not for an arbitrary rings but for an arbitrary fields, since X'|g, o U is
not always a Z-scheme. For example, when X is an [F;-scheme satisfying that the
geometric realisation of X'|oy, (resp. X|eming) 1 & monoid scheme X (resp. its Z-lift
X7z), the map eg is bijective for any rings R. On the other hand, when X is the
[F,-scheme associated with the projective line or a Chevalley group, the map eg is
not bijective for any rings R.

2.3.2 Torsion free Noetherian F;-schemes

Next, we show some properties of [F1-schemes under certain conditions. First of all,
we review the definition of a torsion free Noetherian F;-scheme.

Definition 2.3.7 (Connes and Consani [8, Definition 4.12]). An 9%y-scheme F is
Noetherian if there exists a finite open covering by representable subfunctors, each
of which is naturally isomorphic to Homgy, (M, -) for some Noetherian monoid M.
A Noetherian Z-scheme is also defined similarly.

An Fy-scheme X is Noetherian if X|oy, is a Noetherian 9%y-scheme and X|esing
is a Noetherian Z-scheme.

Remark 2.3.8. The following conditions on a monoid M are equivalent.
e M is Noetherian.
e M is finitely generated.
e Z[M] is a Noetherian ring.

This implies that an 9%;-scheme is Noetherian if and only if its geometric realisation
is of finite type.

Definition 2.3.9 (Connes and Consani [8, §4.4]). A monoid scheme X is torsion
free if the group (’))X(J is torsion free for any x € X. We call an [F;-scheme X to be
torsion free if the geometric realisation of X|gy, is torsion free.

The following theorem is the important property of a torsion free Noetherian
[F-scheme to define its absolute zeta function defined by Soulé.

Theorem 2.3.10 (Connes and Consani [8, Theorem 4.13]). Let X' be a torsion free
Noetherian Fy-scheme. Then, there exists a unique polynomial Ny € Z[t] satisfying
the following conditions:
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o [t holds that #X (Fin) = Nx(n + 1) for any n € N.
e [t holds that #X(F,) = Nx(q) for any q € PN,
We call this polynomial Ny the counting function of X.

Remark 2.3.11 (Connes and Consani [8, Theorem 4.13]). It is easy to check that
the counting function Ny (¢) in Theorem 22310 is given by

SRUTD SR S o o (T
€ Xon, z€Xon, j=0
Note that the underlying set of Xgy, is finite by Proposition 2227,

The degree of the counting function of a torsion free Noetherian F;-scheme coin-
cides with the relative dimension of the scheme associated with the F;-scheme. We
use this property later when we determine the region of absolute convergence of the
absolute Euler product using the relative dimension in Theorem BIA.

Theorem 2.3.12 ([49, Theorem 2.10]). Let X be a torsion free Noetherian F-
scheme and Ny be its counting function. Assume that the geometric realisation Xy
of X|ening 15 of finite type over Z. Then, it holds that

deg Ny = rel.dim X/Z,
where rel.dim Xz /7 is the relative dimension of Xz over Z.

Proof. Fix a prime power ¢ € PN. Put Y = SpecZ and take y € Y (F,). When we
put d := rel.dim Xz /Z, we have d = dim(Xy), for any y € Y (F,), where (Xz), :=
Xz xy SpecF,. Here, it holds that

#(Xz)y(Fy) = O(qd)

by Lang and Weil (cf. Poonen [40, Theorem 7.7.1 (i)]). Since we have #X,(F,) =
Nx(q) by Theorem 2310 and Ny is a polynomial, we have

deg Ny = d = rel.dim X7 /7.
O

Corollary 2.3.13 ([49, Corollary 2.12]). Let X be a torsion free Noetherian F;-
scheme and Xop, (resp. Xz) be the geometric realisation of X, (resp. X|esing)-
Assume that Xz is of finite type over Z. Then the counting function of X is given

explicitly as
-3 (S ()en) e

7=0
where d := rel.dim Xz /7Z, r, := rank O% and I = {z € Xon, | 72 = l}.

KXo @
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Proof. By Remark 22311 and Theorem 223712, we have

max 1, = deg Ny = rel.dim Xz /Z = d.

CCEXng

Since I; = () for [ > d, we have

B (- (Er ()

by Remark PZ3TT.
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Chapter 3

Absolute Euler products and
F1-schemes

In this chapter, we prove the first main result of this thesis. Before stating the
main result, we introduce the absolute zeta function of a torsion free Noetherian
[Fi-scheme. Then, we state the main theorem asserting that it has the absolute
Euler product and its region of absolute convergence is determined by the relative
dimension of the scheme obtained by the torsion free Noetherian F;-scheme.

3.1 The absolute zeta function of a torsion free
Noetherian [F;-scheme

As we mentioned in Subsection I, Soulé [46] defined the absolute zeta function
for a scheme X of finite type over Z with the condition on rational points as the
limit of Z(X,p~*) as p — 1. Note that absolute zeta functions for general schemes
of finite type over Z cannot be defined similarly.

Extending this definition, Connes and Consani [8] defined the absolute zeta func-
tion Cx/r, (s) for a torsion free Noetherian Fy-scheme X as the absolute zeta function
for the geometric realisation of X |eging-

Definition 3.1.1 (Connes and Consani [8, §2]). Let X be a torsion free Noethe-
rian Fi-scheme. Note that the counting function Ny € Z[t] of X exists by Theo-
rem 2-3T0. We define the function

i . Nx(p™) _
. lim Nx(1 2 : X sm
QX/IFl (8) : Ny (S> - })Hr%(p - 1) (1) exXp ( ~ Tp )

and call it the absolute zeta function for X.

By this definition, we immediately obtain the following proposition.
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Proposition 3.1.2 (Soulé [@6, Lemme 1]). Let X be a torsion free Noetherian
[F1-scheme and Ny be the counting function of X. Put Nx(t) = > apt® (cf. Theo-
k=0

rem [ZZ310). Then, the absolute zeta function of X is expressed as

T

Gy (5) = [ [ (s = k),

k=0
and can be continued meromorphically to the whole complex plane C.

In [§], Connes and Consani gave a finite product representation of the absolute
zeta function of a torsion free Noetherian Fi-scheme X which runs over the points
of the geometric realisation of X'|oy,. Each factor of the product is expressed using
the Kurokawa tensor product as defined below.

Definition 3.1.3 (Kurokawa [27], Manin [36]). For i € {1,...,7}, let ®; be a finite
subset of C and m;: ®; — Z be a function and put

Zi(s) :== H (s — p)™ilP).

pED;

We define the Kurokawa tensor product by

B 0= [] (ot p)y e,
(pl,...,pr)Eq)lX“-X‘I)r
where
mi(p1) -+ m,(py) if Im(p;) > 0 for each i,
m(p1,...,pr) =1 (=1)""tmy(p1) - --m,(p,) if Im(p;) < O for each i,
0 otherwise.

Theorem 3.1.4 (Connes and Consani [8, Theorem 4.13]). Let X be a torsion free
Noetherian Fi-scheme. Then we have

1
G () =[] W

xGXgnO ( T s

where r, := rank O and ® s the Kurokawa tensor product.

X
Xgmo yr

Using this theorem, we obtain the following absolute Euler product of the abso-
lute zeta function of a torsion free Noetherian [Fi-scheme. This is a formulation of
Kurokawa’s suggestion (Conjecture II-7) using torsion free Noetherian F;-schemes.
Moreover, we give an explicit form of k(n, X) in Conjecture 17 using the points
of the monoid scheme X associated with the F;-scheme and determine the region of
absolute convergence. This is the main theorem of this chapter.
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Theorem 3.1.5 ([49, Theorem 3.8]). Let X be a torsion free Noetherian Fy-scheme
and Ny € Z[t] be its counting function. Let Xon, (resp. Xz) be the geometric
realisation of X|om, (resp. X|cing)-

(1) It holds that

Cx/r,(5) = = s~ Nx() H s Xang) ;
where
r 1 n -m
U ED S S U] (3 R UEED SACIE
z€Xom, j=0 mln

Here, the map p: N — {—1,0,1} is the Mobius function, which is defined by

(n) = 0 if n has a squared prime factor,
)= (=1)* if n has k distinct prime factors.

(2) If Xy is of finite type over Z, the region of absolute convergence of this absolute
Euler product is {s € C | |s| > rel.dim X/Z}.

We give this proof in the next section. In fact, x(n, Xoy,) is given as the image
of the counting function of X with respect to the following homomorphism.

Definition 3.1.6 ([49, Definition 3.9]). For any n € N, we define the homomorphism
of Z-modules

M,: Z[t] = Z

such that M, (t*) := k4(n) for a € Ny. Note that we show that x,(n) € Z later.

Since we have k(n, Xog,) = M,(Nx) by Remark 22311, Theorem BTH can be
represented only by the counting function Ny.

Corollary 3.1.7 ([49, Corollary 3.10]). Let X be a torsion free Noetherian F;-
scheme and Ny (t) be its counting function. Then, it holds that

oo

CX/]Fl(S) — ¢ Nx(1) H (1 _ S—n)an(NX) ‘

n=1

Remark 3.1.8. As demonstrated in the proof of Theorem BT1 in Subsection B2
the region of absolute convergence of the above absolute Euler product is {s € C |
|s| > deg N+ }.
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3.2 Proof of Theorem

3.2.1 Lemmas

To prove Theorem B 5, we first prove the core formula of the absolute Euler product
representation and its region of absolute convergence.

Lemma 3.2.1 (cf. Kurokawa [30, Exercise 7.1]). Let a € Z, n € N, and

Kq(n) = %Z,u <%> a™.

mln

Then, we have k.(n) € Z for anyn € N and a € Z, and it holds that in Z[u]

[Ja—wy=™=1-au. (3.1)
n=1
Remark 3.2.2. When a is a variable, the polynomial x,(n) is called the necklace
polynomial, which was introduced by Moreau [38].
Moreover, the inverse of Equation (Bl) coincides with the cyclotomic identity
(cf. Metropolis and Rota [37]), which is the same as the condition that {a"}5%, is
the Euler transform of {x,(n)}22; (cf. Sloane and Plouffe [45]).

Proof. First of all, we show r,(n) € Z. We prove this in a different way from

Kurokawa’s proof [30, Exercise 7.1], using the following property of the unit group
of Z/p*t'Z:

Z/(p—1)Z x Z/p°Z if p is odd,
(Z/]zf“Z)X = ¢ {1} if p=2ande=0,
7)27 x 7.]2¢77 ifp=2ande>1,

for any e € Ny and p € P (see e.g. Serre [42, Chapter II, Theorem 2]). Since
ypeJrl _ ype — ype (ype(pfl) — 1)7 we have

pe+1

pe

=9" (mod p“™) (3.2)

for any y € Z, e € Ny and p € P.

Since Z = (,ep Z(p), it suffices to show that r4(n) € Z,) for any p € P. Fix any
aand p. If ptn, ke(n) € Z [+] C Z,) holds by definition. We assume that p | n.
By Equation (B2), putting n = p’u (v = v,(n), u € Z),

=L (R = g S ()
22 e () ()




Here, (x) follows by dividing into two cases: m = p”~!'d and m = p”d, where 1%
does not have any squared prime factor.
Next, we formally calculate the infinite product representation of 1 — au:

log (ﬁ(l — y")re ")) Z Kq(n)log(l — u" f: f: nﬁ;lin)
n=1 n=1 k=1
O] P
m—l

()]

m=1 nlm In
© i l = log(1 — au)
- m=1 m - ‘
Here, we put m = nk in (a) and we use the Mébius inversion formula in (b). O

The exponent k,(n) has the following properties.

Proposition 3.2.3 ([49, Proposition 4.4 and Corollary 4.5]). For any a € Z and

n € N, it holds that
|| ln/2)+1

n

Thus, the values and signs of kq.(n)’s are as in Table F1.

n\a| - =2 -1 0 1|2

1 - =2 [-1 0 1]2

2 . 1 0 0

3 + (if 2|n) 0 0 0 .
— (if 21 n) . o

Table 3.1: the values and signs of k4(n)’s

Proof. First, we consider the easy cases. When a = 0, we have ko(n) = 0. When
a =1, we have

1 n 1 1 ifn=1,
:EZ’“L(E) :E(Sl”:{o if n > 2,

mln

by a standard property of the Mobius function.
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Let a = —1. We have k_;(1) = —1 and x_1(2) = 1. Hence, we consider the case
when n > 3. Then, we have

=2z () =e
m|n

Indeed, since the number of divisors of n is at most | % |+ 1, it holds that |k_;(n)| <
++ 1 < 1. Thus, we have x_y(n) = 0 since k_(n) € Z by Lemma B2T.
Let |a| > 2. We have k,(1) = a. For n > 2, we have

Ln/2] |a|Ln/2j+ 1
nka(n) —a"| < la|™ < Z o) = A= < ||V
m|n | 1
m#n
Note that this implies the inequality
a® ’a“n/Qﬁ-l ‘a“n/2j+1

< Ke(n) < —+

n n n n
Hence, when a < —2, it holds that r,(n) > 0if 2 | n and k,(n) < 0 if 2 { n.
Thus, the proposition follows. m

Using the above properties of x,(n), we give the region of absolute convergence
of the infinite product in Lemma B=T, which is the key lemma for Theorem BTh.

Lemma 3.2.4 ([49, Lemma 4.3]). Let a € Z and u € C. If a > 2, then the region
of absolute convergence of the infinite product in Lemma 321

o

H(l . un)na(n)

n=1
is {u e C||u| <i}. Ifa=1, then its region of absolute convergence is C.

Proof. When a = 1, k1(n) = 61, and thus the infinite product converges for any
u € C. We assume a > 2 in the following. First, we show that the infinite product
converges absolutely at least for |u| < 1. Since

[T0 == =TT+ (= ury=e) = ).

it suffices to show that .
DO =yt — 1
n=1
1

converges for |u| < ~. First of all, we calculate the upper bound of the binomial
coefficient (”“Tfl")) as follows:

(%w)g%wm< Fa(n)" _ Ra(m)"em 1 C%wyf

m m! 2mm (m)m 2rm™ts T~ /21 m




n [n/2|+1 2a"
Since kq4(n) < o e < il by Proposition B3, it holds that
n n

() <ok (2 ()

Putting |u| =1 —¢ (0 <e < 1), we have

[ele} [ere] Ha(n)
Nn\Ka(n m Ka ’fl) nm
S iy -1y = 355 ()
n=1 n=1 [ m=1
< =R Ka n> nm = Ka n) 1 "
<> =3y () (e
n=1 m=1 n=1 m=1
oo Ka n) nm
1 2ea™ 1—c¢a
<X = () ()
n=1 m=1 2 nm a
oo ka(n) m
1 [2e(1— 5a)”)
S|
n=1 m=1 2 n
By setting
Ce 1= 1 > 1, Tn = 26(1 _ ga)n = E’
1—ca n ncw

it holds that

00 00 Ka(n) 00 Ka(n)+1

1 1 T -7
1 — ™) ] < — r’ = - iy
2 S G 2 2

m=1

We take and fix sufficiently large N € N satisfying ¢! > n and r, < 1 for any n > N.

gl(l_“">”“(”)—1|<\/% §%+§#>
<E (X 1fiN<<2>> o

n=1

Therefore, the series above converges. Thus, the infinite product converges abso-
lutely at least for [u| < X when a > 2.
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Next, we show that the infinite product does not converge absolutely for |u| %
when a > 2. It is easy to show that Y o0 |(1 —u™)"(™ — 1| diverges when |u]
Hence, we may assume that £ < |u| < 1.

Firstly, we prove that it diverges when u = % It holds that

i (1 —wm)ret) — 1] = i (1 B (1 B a_ln)na(n)>

n=1 n=1

>
> 1

2 k(1) NN e 1 (Ra(n)) 1
- n ( 1) (m—1)
— ar Ro(m)\' m Ja
For n > 3, put
Ka(n)
1 [k, 1
L= ) (1™ (H n>> n(m—1)
— Kem)\ m Ja

n n |
— a a m
<ﬂan) Ka(n) — 1 Ko(n) —m+1] 1
- an an m!’
m=2
Here, we have
Ke(n) — i </<;a(n)< 1+ 1 <2
an - av T n nan—[n/ZJ—l - n

for any ¢ € {1,...,m — 1} by Proposition B23. Hence, it holds that

Ra(n) om 1 Ka(n) 1—Ka(n)
2 1 l—n a 1 1
|In_1|§mz:2 I mz:: n—1 <n—1S§

for n > 3. Therefore, we have I,, > % for n > 3 and then

00 Ka(n) ooﬁn o0
S a) ) g e

n=1

since for n > 3
1 1

fia ) _ >
nan—Ln/QJ—l )

an

1
p—
n

Secondly, we prove that Yo" [(1 — )" — 1| diverges for 1 < |u| < 1. Let
r= Arg“ (0 <r < 1). Assume that r € Q. We put r = Z—; (kv € Z, ky € N). Let
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N = {kym | m € N}, then it holds that u" = |u|* > = for any n € N. Therefore,
we have

i’ 1—u") Ka(n) —1|>Z< -1 —]M”)m(n)) ZZ <1_ (1_%>%(n)).

neN neN

In a similar way to Equation (B33), we have

10 e 1 1
Z<1—(1—a—n) )Zz 2
neENN[3,00)

neN

Here, since the natural density of N is é > (0 and coincides with the Dirichlet

density of NV, the last infinite sum diverges. Thus, the series Y o0 | |(1 —u")ra(®) —1]
diverges if r € Q.

Assume that r ¢ Q. If n € N satisfies [1 — u”| > 1+ 55, it holds that

1 Ka(n)
_yhraln) _ _ oy |ran) - —
(1 —u™) 1 > []1 —u"| 1] > (1+2an> 1

. Kq(n) (;) 1 ) 1 - 1
2a" T 2n an—ln/21=1 | = 4p

by applying Proposition B=Z3 to (). Hence, for every N C N which consists of

n € N satisfying |1 — u"| > 1+ 5, we have

[e.9]

1 1
nzz:l |(1 — un)na(n) _ 1| > Z |(1 . un)na(n) i 1| > Zl Z E

neN neN

Here, if the natural density of IV is positive, then the last infinite sum diverges and

hence the series Y °° | [(1 —u™)%«(™ — 1| diverges. Therefore, it suffices to show that

there exists N C N with positive natural density such that |1 —u"| > 1+ 55 for
any n € N.

As described in Figure B, let p, € C be the intersection of |z| = |u|" and

\z — 1| = 1 + 5= whose imaginary part is positive and put 6, := Argp,. Let

={# R | 0 <0< 27r—9 nt Notethat if Arg(u™) € ©,, then such an n

satlsﬁes that [1 —u"| > 1+ 55 Since £ < |u| < 1, we have
g _ " 1 SR S SN SRS SO SO
cos b, = — — > - - - =" >
2 2a"|ul®  8a?|ul® T 24 2 8a® 8a® 2 2

for any n E N. Hence, we have 6, < 7r for any n € N. Therefore, it holds that
©, D [2m 37| = O foranynEN LetN ={n € N| Arg(u") € O }. Here, any
ne N satlsﬁes 1 —u"| > 14 55, since N C {n € N | Arg(u") € ©,}. Therefore,
it suffices to show that the natural density of N is positive. Put T := R/Z. Let
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Figure 3.1: the definition of p,, and 6,, in the complex plane

t: R — T be the natural isomorphism defined by ¢(z) := x mod Z and R,: T — T
be the map satisfying that R,(z) = t(z + 7). Put O :=¢([4,2]). Then, it holds
that N = {n € N | R*(0) € ©,}. Since r ¢ Q, the continuous map R, on T
is uniquely ergodic (cf. Einsiedler and Ward [I8, Example 1.3 and Example 4.11]).
Therefore, since O is an interval in T, we have

. 1 . o B .
Jim gH{n € No N [0, M) | RY(2) € Onc} = mr(O) = 3,
where my is the Lebesgue measure on T, for every x € T by [I8, Example 4.18 and

Lemma 4.17] (also see Einsiedler and Ward [I8, Example 1.3]). By putting = 0,
we have

T #(N f]?w[l,M])

. 1
:A}@OOM#{WENOH[O:MHRH( )E@oo}— > 0.

Therefore, the natural density of N is positive.
Thus, the infinite product does not converge absolutely for |u| > é O

3.2.2 Proof

First, we derive the infinite product representation as an element of Z[[%]] By
Theorem BT Z, we have

Crm(s) = 11 T = 11 H s — 1y + )V

€ Xon, s € X, J=0
- 1 I (1_ —j)(l)]“(ﬂ
z€Xop, j=0 5
1 Z(EGXYUIO Z;I:O(_I)J (Tf) T 1 ’]"z —j (_1)j+1(TJx>
= H H - .



Since the counting function Ny (t) of X satisfies

Nx(t)= ) (t—1)" € Zt]

CCEXng

by Remark PZ3T1, we have

Te S )
> Z(—W( ) = Y A-17 = N(1).
LBGX{mO ]:0 ] LBGXng
By Lemma B=T, it holds that

. 00 ny\ Krg—j;(n)
Te — ) 1 e
1- = 1- (- .
2l ()

n=1

Hence, it holds that

1\ Vx() ra )
Cayr, (s) = (—) (1 . j) J
S : S
€ Xon 0

1\ Nx (D) re (oo 1\ i CY)

-(3) e-())
mGXmOJZO n=1

1\ Va1 = IN™\ ~ oo, TiZo(—1Y (7))
() me-¢))

S el S

Put
[z (7, [z i Ta
5 Xony) = 3 Z(—w(j)m”(n): DI ( j)w).

z€Xoy, j=0 z€Xoy, j=0

Then, we get the desired infinite product

1 Ny (1) oo 1\" —&(n, Xomg)
o= () ()

n=1

Next, we show that the infinite product converges absolutely for |s| > rel.dim X /7Z
if X7 is of finite type over Z. In the above calculation of the infinite product repre-
sentation, the point which is relevant to its convergence area is the following equality
for which we use Lemma B=2T:

. ) n\ Krg—j(n)
Te — ) 1 v
1-— = 1—1- .
Z-me-()

n=1
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Let |s| > rel.dim Xz/Z. Since Xz is of finite type over Z, we have
deg Ny = rel.dim Xz/Z
by Theorem PZ3T2. Since
|s| > rel.dim X7 /Z = deg Ny = Rxpy, =10 210 — ]

for any x € Xop,, we have & < ﬁ when 0 < j < r,. Therefore, when j # r,,

Is|
()

converges absolutely by Lemma B24. Also, when j = r,, it converges absolutely
since ko(n) = 0. Thus, the infinite product

i(-()) "

n=1

converges absolutely for |s| > rel.dim X7 /7Z if X7 is of finite type over Z.

Lastly, we show that the infinite product (B3) diverges for |s| < rel.dim X7 /Z if
Xz is of finite type over Z. By Theorem 22312, we have |s| < Rx,, . When z € Xop,
and j satisfy r, — j = Rx,, , the infinite product (84) diverges by Lemma B=Z4.
Thus, the infinite product (B3) diverges for |s| < rel.dim Xz /Z.

3.3 Applications of Theorem

In this section, we see some applications of Theorem BThH and Corollary BT°7 to
the cases of A", G and toric varieties to obtain the absolute Euler products of
the absolute zeta functions for the Fi-schemes associated with these cases. In fact,
for the cases of A" and G/, our result coincides with Kurokawa'’s calculations [30,

Exercise 7.2] in a different method.

3.3.1 Fundamental F;-schemes

Example 3.3.1 ([29, Example 5.1]). Let r € N. Put Fy[ty, ..., t,] := F[{t]" - -t |
u; € No}| and A" := specFy[ty,...,t,]. Then, by the extension of the functors
A" My — Get, A”: CRing — Set, we obtain the functor A™: MR — Set satisfying
that the geometric realisation of A" |oy, (resp. A”|eming) is A" (resp. A”) (see Connes
and Consani [8, §4.2] for the extension of the functors). Moreover, A" is a torsion
free Noetherian F;-scheme.

Since #A" (Fym) = p™ for any m € N and p € P, the counting function of A" is
Ny (t) =t" € Z[t]. Hence, we have Xans(A") = N4r(1) = 1 and

1

s—1r

lim

Caryry (8) = CNy (8) =
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Since the prime ideals of Fy[ty, ..., t,] are of the form

p[ = UtiFl[th s 7tr]7

el

where I C {1,...,r} and py = (0), we have r,, =r — #I for p; € A". We put

CWCEDS i(—l)’w-j (Y =3 () S (7 Yt

-Sum S () ()
-3 (st S () =3 (o
= k,(n).

By Theorem BTh, we obtain the absolute Euler product

Carry(8) = éﬁ (1 _ G)") —rir(n)

n=1
and this infinite product converges absolutely for |s| > rel.dim A" /Z = r.
Example 3.3.2 ([29, Example 5.2]). Let r € N. Put Fy[t5', ... 5] i= Fy[{t4 - -t |
u; € Z}] and G”, := specF [t{',...,tF]. Then, by the extension of the functors
G, : My — Get, G, : CRing — Get, we obtain the functor G, : MR — Set sat-
isfying that the geometric realisation of G |o, (resp. G~ |ening) is Go, (resp. G7,).
Moreover, G is a torsion free Noetherian [Fy-scheme.

Since #GJ,(Fym) = (p™ —1)" for any m € N and p € P, the counting function of
Gy, is Ngr (t) = (t — 1)" € Z[t]. Hence, we have xans(G],) = Ngr (1) = 0 and

T

Cop, e (5) = G (s) = [ [ (s - f) DR,

k=0

Since G, = {(0)} and 7y = r, we put

k(n, G ) = i(-gr’f (;) ki (n).

k=0

By Theorem B3, we get the absolute Euler product

o0 N - kég(—l)’"-k(;)nm)
o =TT (1 (1))
n=1

and this infinite product converges absolutely for |s| > rel.dim G}, /Z = r.
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3.3.2 Toric varieties

Lastly, we calculate the absolute Euler product of the absolute zeta function for the
[Fi-scheme associated with a toric variety, using their counting functions calculated
by Deitmar [[3].

First, we review the notation of cones and fans according to Pena and Lorscheid
[39, §2.1]. Let N be a lattice, i.e. N = Z" C R" as additive groups. Fixing this
isomorphism, we put Ng := N ® R =2 R". An additive semi-group o C R" is called
a (strongly convex rational polyhedral) cone if o N (—o) = {0} and there exists a
linearly independent set {vy,...,vx} C N such that 0 = v1R>¢+- - - +vxR>¢, where
R0 :=[0,00). A face 7 of a cone o is a cone of the form 7 = v, R+ -+ - +v;,, R
for some {iy,...,in} C {1,...,k}. We denote a face 7 of 0 by 7 < 0. A nonempty
set @ of cones in Ny is called a fan if every face of a cone in @ is also in ® and
01N oy is a face of each o and oy for any 01,09 € ®. Also, we call ® to be finite if
|®| < oo.

Next, we review the definition of the F;-scheme associated with a cone [39, §2.1].
Let N be a lattice and o be a cone in Ng. Let NV := Homgy(N,Z) = Z" be the
dual of N and (-,-): N¥ x N — Z be the natural pairing. We define the dual of
oby oV :={ue N QR | W € o, (u,v) > 0}. Put A, := ¢ N NY. Then, we
have the scheme Spec Z[A,] of finite type over Z and the monoid scheme spec A,.
The Fy-scheme X, associated with the cone o is defined as the F;-scheme satisfying
that the geometric realisation of X, |o, is X := spec A, and that of X,|eoing 18
XZ .= SpecZ[A,]. Since A, is finitely generated, the F-scheme X, is Noetherian.

Lastly, we review the definition of the F;-scheme associated with a fan [39, §2.1].
Let ® be a finite fan in Ng. An inclusion 7 C o of cones induces an open immersions
spec A, — spec A, and SpecZ[A,|] < SpecZ[A,]. We define the monoid scheme
and the scheme associated with the fan & by

X0 = limy spec A, XE.= limy Spec Z[A,],
ocd oed
and we call (XZ, ®) the toric variety of the fan ® of dimension 7. The F;-scheme
X3 associated with @ is the Fy-scheme satisfying that the geometric realisation of
Xa|on, 18 X%ﬁo and that of Xg|ening is XZ. Since @ is finite and spec A, is Noetherian,
X3 is Noetherian.

Deitmar calculated the counting functions of the schemes associated with cones
and finite fans, which are equal to the counting functions of the [F;-scheme associated
with them. Hereinafter, let N be a lattice of dimension r, o be a cone in N and
® be a finite fan in Ng. Let X, (resp. Xp) be the Fi-scheme associated with o
(resp. D).

Proposition 3.3.3 (Deitmar [13, Proposition 4.3]). In the above setting, the count-
ing functions Ny, and Nx, are

dimo dimo /dimo
" O .
5= 3 a0 0= 3 (20 )

k=0 7=0
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and

where i := #{n < o | dimn =k} and i := #{r € & | dim 7 = k}.

Example 3.3.4 (|49, Example 5.4]). By Proposition B2323, the absolute zeta func-
tions of X, and X3 are

e gty
. ) j/'dimo—
gXu/Fl(S) = H(S_j) =i )
=0

> (ki (K)ie,

Gy (5) = [ (s = 9= :
=0

where i and i} are defined in Proposition B33. Using the homomorphism M,
(Corollary BT7), we can easily obtain the absolute Euler products of those absolute
zeta functions. Since Ny, (1) = 1 and Ny, (1) = i¥ by Proposition B33, we have
the absolute Euler products

Lo N _d%g(diin:v(_l)kj(’;)i?ﬁma_k>ﬁj(n)
o= 1110 (1)) E 8 |

S
n=1

e NP SOICET T P
<X¢/F1(S) = (é) H (1 _ (1) ) J=0<k—] > ’
1

S
n=

and Cy, /r, (5) (resp. Cxym, (5)) converges absolutely for |s| > dimo (resp. [s| > 7).
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Chapter 4

Analytic properties of absolute
zeta functions

In this chapter, we prove the second main result of this thesis. That is, we show
three analytic properties of absolute zeta functions: the series expansion, the integral
formula, and the absolute Euler product. In this chapter, we take the branch of log s
with the branch cut along C \ (=00, 0], and define s* := e“1°8¢ for s, w € C.

In the previous chapter, we studied the absolute Euler product of the absolute
zeta functions for Fi-schemes defined by Connes and Consani and introduced the
homomorphism M, : Z[t] — Z in Definition BT6. This morphism can be easily
generalised to the morphism Z[t, t~!] — Z. Putting f(t) := Zjifd a;t! € Z[t,t7"]
(d+ € Ny), we define D: Z[t,t7'] — Z by D(f) := {an(f)}>,, where

dy

= Z a;j",

t=1 j=—d_

anlf) = (15) 70

and the linear map M: ZNo — ZNo by M(a)y := ap and

Z,u( > am  (n€N)

mln

for an integer sequence o = {a,,}°2,. Then, we define M,,: Z[t,t™'| — Z by

M, (f) = (Mo D(f))n = Z a;ri;(n)

Thus, we have the following series expression.

Proposition 4.0.1. For f(t) := Zjﬁ_d a;t! € Z[t,t71], we put
Gp(s) = s D [0 =570 e Qs
n=1
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Then, it holds that in Q[s™']

e (ORI R GO

In particular, the left-hand side lies in Z[s™']. Moreover, the series in the middle
converges absolutely at least for |s| > max{d,,d_}.

t=1

Proof. Since

d O '
Elog(l—s )_1—3*” sntl — g’
we have
Gls) — f) nMa(f) 1 — My (f)
& 05) =T _;—s”“—s =3 (f(l)—l—; pe— )
- - (f(l) ML) Y %) — 2 [0+ X & )
n=1 m=1 N=1 n|N

Here, it holds that

Y nMa(f) =) i ajnrg(n) = i %ZN<%>1k

n|N n|N j=—d- n|N jzfd_ k|n
d+ » d\ N
= > > > n(3)it e Z a;j" ( ) f(t)
Jj=—d_ n|N kln Jj=—d_ t=1

by applying the Mdbius inversion formula to (). Therefore, we have

(ORI ER (GG

For |s| > max{d,d_}, it holds that

() o] )

n=1
Thus, the series converges for |s| > max{d,,d_}. O

1
S—N.
t=1

o0

dy .
> it o

j=—d_

P

— j=—d—

VA

.ni

Z |a’]| li < 0.

|

>
<

In the following sections, we generalise these simple observations to a certain
class of analytic functions.
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4.1 The class A of analytic functions

Before stating the main results, we introduce a commutative C-algebra consisting
of analytic functions on [1, 00) with a nice condition.

Definition 4.1.1. Let d > 0. We define A; by the set of analytic functions on
[1,00) satisfying that there exists C' > 0 such that for any n € Ny

o ()] < Cd,

- <t%)nf(t)

Remark 4.1.2. The class A requires that f is defined at ¢ = 1. Therefore, functions
with a pole at ¢ = 1 such as the function whose absolute zeta function is Barnes’
multiple gamma function are not included in A.

where H\"
ol = (52) 1)
for each n € Ny. We define A := (J,., Aa-

t=1

Example 4.1.3. We easily see that t* € A, (p € C). Let ¢ € C be a constant.
Then, we also see that ¢, logt € A, for any € > 0.

Proposition 4.1.4. The classes Ay’s satisfy the following properties:
o [f0 < dy <dy, then it holds that Ag, C Ag,.
o Let f e Ag, g€ Ag,. Then, we have [+ g € Anax{ar,do}s [ € Ady+ds-
Therefore, A is a continuously filtered commutative C-algebra.
Proof. Let dy < dy. For f € Ay, there exists C' > 0 such that
lan(f)] < Cd < Cdy

for any n € Ny. Thus, it follows that f € Ag,.
Let f € A4y, g € Ag,. Then, we have

3C, >0, VneNy, |an(f)| <Cudy,

aC5 > 0, Vn € No, |Oén(g>| < ngg
Since ay,(+) has the linearity a,(f + ¢g) = an(f) + a,(g) by definition, it holds that

lon (f + g)| < Crdy + Cody < (Cy + Co)(max{dy, da})".

Thus, we have f + g € Anax{d; d}- Since

n

) =3 (2 Yan(fan-nlo)

m=0
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by the Leibniz rule, it holds that

n

lan(Fo)l < D (Z) LChdy - Cody ™™ = C1Co(dy + )"

m=0
by the Leibniz rule. Thus, we have fg € Ay, 14, O
Example 4.1.5. For a finite subset ® of C, it holds that

Zcptp c Amgg|p| (Cp S C \ {0}>7
ped :

since t* € Aj, by Example BE13. Moreover, it holds that tlogt € A;,. for any
e >0, since t € A; and logt € A, by Example .1 3.

Example 4.1.6 (cf. Kurokawa [30, Theorem 2.1] [31], §5.2, p. 56]). Let n. € Ny and
put fa(t) := Tr(t*+) —Tr(t4-)+a, where A = (A4, A_,a) € M, (C)x M, (C)xC.

Since it holds that
IR SR

where Ali, e )\ffi are eigenvalues of Ai, we have fi € Anax{p(A,), p(a_)}, Where

p(AL) is the spectral radius of A..

Remark 4.1.7 (Manin [36, p. 134]). Set fi(¢) := (1 —¢*)~!. Then, it holds that
Cr(s) = \/%F(s) as in Example TT6. Here, the equality

1 .
fl(t)zl_t—lzzt !
n=0

suggests that f; is derived from the trace of a trace class operator whose eigenvalues
are all non-negative (or non-positive) integers. This is compatible with Manin’s
suggestion that (y, (s) is the zeta function of “the dual infinite dimensional projective
space over [F;”.

By Example BTG, it holds that

-1
CfA(S) = S_adet(SIn_ — Ai) — ¢ fa(l) det([n_ - 57 A7>
det(sl,, —Ay) det(I,, — s tAy)

(4.1)

In joint work with Y. Hirakawa, we found that some functions which have been
classically investigated such as congruent zeta functions and Ihara zeta functions
are absolute zeta functions by using this example.

Let X be a smooth projective variety over F,. By the Weil conjecture (see
e.g. Hartshorne [22, p. 450]), there exist a finite subset ®(X/F,) of C and a map
m: ®(X/F,) — Z\ {0} such that

Z(X[Fu)= J[ @=xu)y™®. (4.2)

AED(X/F,)
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Setting

—m(A)
A, = EB @ and - Ayp, = @ @
AED(X/F,) AER(X/Fq) Jj=1

m(A)>0 m(X)<0
where @ is the direct sum of matrices. By Equation (El), we have the following.

Corollary 4.1.8. Under the above notations, the congruent zeta function of X is
expressed by an absolute zeta function as follows:

Z(X/Fq,q7%) = ¢**¢p (g)
for Re(s) > dim X, where xiop(X) is the Euler characteristic of X and
= — Aj{/%) _ < A;(/]Fq> — A
Fred8) = f(AX/]Fq Ax /e, 0) () =T (t Tr(t a Z m(A)t".
AED(X/F,)

Proof. This follows from Equation (B), Equation (B2) and the equality fx/g, (1) =
Xtop(X ), since

2dim X 2dim X
> m= 3 > D= 3 (D= xie(X),
AED(X/F,) i=1 Aed( X/Fq i=1
IAl=q2
where b; is the i*"-Betti number of X. O

Let G = (V, E) be a finite connected graph without degree-1 vertices. The Ihara
zeta function of G is defined by

Zotw) = ] (1=u®),
PePrim(G)

where Prim(G) is the set of primes (equivalent classes of primitive closed paths) in
G and [(P) is the length of a path P (see e.g. Terras [47, Definition 2.2]). It is known
that the Thara zeta function has the following two-term determinant formula:

Ze(u) = det (I —uWy) ™", (4.3)

where Wy € My |(Z) is the edge adjacency matrix of G [d]. Let ®(G) be the set of
eigenvalues of Wy and m(\) be the multiplicity of each eigenvalue A of W;. Then,
we have the following by Equation (ET).

Corollary 4.1.9. Under the above notations, the Ihara zeta function of G is ex-
pressed by an absolute zeta function as follows:

Zalw) = u O ()
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for Re(u™) > maxyea(q) | A, where xiop(G) = |V| — |E| is the Euler characteristic
of G and

fat) == fow ovi-siep(t) = Te(") + (VI =3[E)) = Y mN) + ([V]-3|E]).
AED(G)

Proof. This follows from Equation (E=3), Equation (E) and the equality fg(1) =
Xtop(G)- D
Example 4.1.10. Let z € C, a € C\ Zg. Then, we put

n

OP(z,a,5) == ; 1) (a+n)s.

This function converges locally uniformly absolutely for each s € C. Note that it
was introduced by Hardy [21] and Boyadzhiev [6], who called it a polyezponential.
Let k € N and

- —1 t)’
Pi(t) = —t0™(—logt,0,k + 1) —tz Og .
J=1

By [2, p. 589] (the special case of Hoffman’s identity [24, Theorem 4.2]), we have

==

Se(Ng= T =,

0<jr<<jr<nJ1 IR

j=1
where H(s1,...,s) is the multiple harmonic star sum. Thus, it holds that
= ™ = (—x) o (1) gt
Pk<ew>=—(z—) () - ey e
| | 4k | 41 4k
= m! = 7' s mhaty
U Iy ey ()5 - R G,
| k |
n=0 ]:1 ‘7 ‘7 n=0 n: j=1 17 n=0 n

Since H}({1}*) < (H,)* = O((logn)*), where H, := >_p_, ¢ is the n-th harmonic
number, it holds that P, € A;,. for any ¢ > 0.

4.2 Series expansion at the infinity

The absolute zeta function (¢(s) of f € A is defined if Re(s) > 1 by definition.
The following theorem gives the explicit region in which the absolute zeta func-
tion is defined. Also, its analytic continuation enables us to discuss whether a

functional equation for (;(s) holds or not. Moreover, this is a generalisation of
Proposition E1T.
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Theorem 4.2.1. Let d >0 and [ € Aj,.
(1) For Re(s) > d, the absolute zeta function of f is

1= (S50

n=1

In particular, this can be analytically continued to a single-valued holomorphic
function on {s € C| |s| > d}. Moreover, we have

lim s"W¢p(s) =

§—00

(2) For Re(s) > d, the logarithmic derivative of the absolute zeta function (s(s) is

Gl _ e
G~

In particular, this can be analytically continued to a single-valued holomorphic
function on {s € C | |s| > d}.

Proof. In this proof, we abbreviate a,(f) to «,.

(1) It holds that
o 2L

n=0

by the definition of «,. Since f € Ay, there exists C' > 0 such that |«,| < Cd" for
each n € Ny. For Re(s) > d and Re(w) > 0, it holds that

/OO Z nL o= 5T =1 dm</ Cd z" o~ Re(s)a , Re(w dx
0

n=0 L

/ —(Re(s)— d)wae(w)d_f’? _ C T'(Re(w))
0 r  (Re(s) — d)Re(w)

< Q.

By Lebesgue’s dominated convergence theorem, for Re(s) > d and Re(w) > 0

00 00 o) 00

Z — E -n e 5T n+w _ 2 :_TL n + U) _ 2 : an(w)n

rlw ' Jo nl  sntw nl sntw’
n=0

Q

where (w), == w(w+1)--- (w4 n — 1) is the Pochhammer symbol. If |s| > d and
|lw| < 1, it holds that

e}

>l

n=

CeIm(w arg(s H |w 4 m| CeIm(w) arg(s) 1 _
. ©e
| s|Re(w) |5]” m+1 | 5| Re(w) 1— 4

TL

nl Sn+w -
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since |w + m| < m + 1 for each m € Ny. Therefore, Z;(w, s) can be analytically
continued to |s| > d, {w | Re(w) > 0} U{w | |w|] < 1}. Then, we have

n=1 m=1

CGIm (w) arg(s

lw + m|
|S|Rew Z|S’nH m-+1 < o0

for |s| > d and |w| < 1, it holds that

0 wdm
ow (z:ls"+wm1m~l—1>‘

for |s| > d and |w| < 1. Since the derivative of the holomorphic function defined by
a convergent series is given by the termwise differentiation and is particularly finite,
we have

0
log (f(s) = o Z¢(w, )

w=0

= o o = o n
= —aylog 3—{—2 ES (n—1)! = —log S+Z 78
n=1 =

for [s| > d and |w| < 1. Note that this can be analytically continued to a single-
valued holomorphic function on {s € C | |s| > d} \ (—00,0]. Since log (s"(V¢;(s)) =
log (¢(s) + f(1)log s, it holds that

log (s"W¢p(s)) = Y 57"

n=1

and it can be analytically continued to {s € C | |s| > d}. Thus, the claim follows.

Moreover, the statement sfM¢;(s) — 1 (s — oo) follows since
a,(f) = Cd» Cd
1 _ < < 50 .
o (1,9 = [ < 37 C0 < O (o

(2) By (1), it holds that
Gls) 0 .
Cf(s) - % log Cf(S) - g QnS
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for Re(s) > d. Moreover, since

- —-n - -n = n— -n ¢ d|S|_1 C
; 157" = ; la—1]]s| " < ;Cd Hs|™ = AT—ds = S —d < 00

for |s| > d, the series > 7 | a,_15™" converges absolutely for |s| > d. O

Example 4.2.2. Let ® be a finite subset of C and put

fot) = _a,t’ (a, €Z).
ped
Since fo € Amax,cq p Py Example B35, it holds that

GO S )
Cf@(5> N Z (Z o )

n=1 \ped

for Re(s) > max,eq |p| by Theorem E2T.
In particular, the counting function of an absolute Riemann surface of genus g

fal(t) =t — 2\/%i cos(aylogt) +1 =1 — i (tﬂk +tp7) 41,

k=1 k=1

where a = (i, ..., ay) € [0,00)7 and py := 5 + v/— 1oy, satisfies that

Ja € Amax{1 o], logl}-

By Theorem I, we have

u(5) = 5 0P (Z (1 -0 +m">> 7,%)

n=1 k=1

for Re(s) > max{1l,|p1],...,|py|}. Note that the Euler characteristic 2 — 2¢g of a
Riemann surface of genus g appears in the exponent of %

While the above examples are the series expansion of rational functions, the
following functions have not been known as absolute zeta functions.

Example 4.2.3. By Example B1°10, it holds that Py(t) := —t®*?(—logt, 0, k+1) €
Ai,. for any € > 0 and Py(1) = 0. By the proof of Theorem E=ZT, we have

FIAEED BLIULES S S e N O

n=1 n=10<j1<---<jr<n |m|=k+1
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for Re(s) > 1, where m € N is a multi-index, |m| := ) m; is its weight, and

Ny

0<ni<---<ny 1

is the multiple polylogarithm. Therefore, the absolute zeta function of P is

)= [[ o (Lim (1))

|m|=k+1

for Re(s) > 1. Moreover, it holds that

Guls) S HY) 1
CPk(S) B Z gnt1 o Z

n=1 S 0cjiiZjean 1IN
Sy Ly ()t e L 08
S ocjimni IR i NS S gejimngg, IRl
1 (1) 1 : <1>
S - 1) Lim (= ).
(1__) 0<]1<Z<] Ji Tk 1_S|n;k 5

Example 4.2.4. Put f(t) = tlogt. By Example B15, it holds that f € A;,. for
any € > 0. Since ap(f) = f(1) =0 and «,(f) = n for each n € N| it holds that

i =om (32 :25) e () = (1 (2)).

n=1

This corresponds to “Cp_,(s)” in Example B223. In addition, if f(¢t) = ¢ — 1, then
we have (f(s) = 27 = exp (—log(1 — 1)) = exp (Liy(%)). Thus, this corresponds
to “Cp,(s)” in Example B=23.

4.3 Integral formula in the sense of Connes and
Consani

Connes and Consani [8] proved the following integral formula of an absolute zeta
function ¢j™(s).

Theorem 4.3.1 (Connes and Consani [8, Lemma 2.1] [9, Lemma 4.10]). Let f: [1,00) —
R be a continuous function satisfying that |f(t)] < Ot for some C > 0 and d € N,
Then, it holds that

hm /(8
e ) 1o (= [ se)
1m S)

for Re(s) > d. Connes and Consani [9] called it the integral formula.
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Remark 4.3.2. By the definition of (}™(s), it holds that

@Y (0 g™
¢ (s) _él—%( 8SmZ:1f(q ) m )

if we can interchange differentiation and integration. Note that Connes and Consani
treated this as the definition of ¢ hm( ). Thus, it is essential to prove

o 0 ms 0o
lim <—£mzﬂf(qm)qm )Z/l fe

in order to prove Theorem EZ3T.
The following corollary is an analogy of Connes-Consani’s integral formula and
is the corollary of Theorem BE—2T.

Corollary 4.3.3. Let d > 0 and f € Ay. Then, it holds that
Cf

/ F(e%)e " dz = —L[f o expl(s)

for Re(s) > d, where L is the Laplace transform.

Proof. Since f € Ay, there exists C' > 0 such that |a,(f)] < Cd" for n € Ny. Since

/ Cd z" —Re(s):cdl,

C
_ —(Re(s)—d)xd __ ¢
C/o e T o) —d < 00

Oén(f)l'n e—szd
n!

for Re(s) > d, it holds that

S = OO —ST pn— 1
Yo z ——
(s) (n—1)!
/ 75:1: Ofn 1( / f 7sxdx
(n— 1
by Theorem 2T (2) and Lebesgue’s dominated convergence theorem. O]

The following proposition compares the assumption of Connes-Consani’s integral
formula (Theorem B=3T) with that of Corollary B-373.

Proposition 4.3.4. Let f € C¥([1,00)). If f € Ay, then there exists C > 0 such
that | f(t)] < Ct?.
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Proof. Since f € Ay, there exists C' > 0 such that |, (f)| < Cd" for each n € Ny.
Then, it holds that

o0 o0

d n
<ey
n=0 n=0
for z € [0,00). Hence, we have |f(t)| < Ct? by substituting e® = t. O

Remark 4.3.5. The converse of Proposition B232 does not hold. For example, let
3 <a<1land f(t) = £=. Then, it holds that | f(¢)| < =-t° for any ¢ > 0. However,
the inequality |, (f)| < Cd™ cannot hold for any C' > 0 and d > 0. Indeed, it holds
that

e . . — (=1)"Li_,(a) ,
ey = Yoy S S S e = 30 S

m=0 n=0 ! n=0 m=0 n=0

’fL n

where Li,,(z) is the polylogarithm, which is the multiple polylogarithm with r = 1
(cf. Example B23). Here, the order of Li_,(a) is

n—1 n—1

: 1 n—k a”
Li_,(a) = A= apit > An, k)ar* > A= ayet > A(n k) = nl,
k=0 k=0

where A(n, k) is the Eulerian number, the number of permutations in &,, in which
k elements are less than the previous elements. Thus, the absolute value of ay,(f)
cannot be bound by Cd" for any C,d > 0.

By Proposition B34, we can obtain the relation between an absolute zeta func-
tion of Soulé-Connes-Consani’s type and that of Kurokawa’s type.

Corollary 4.3.6. Let d > 0 and f € Ay be a real-valued function. Then, we have

(G (s) _ Gls)
G™(s) ()

for Re(s) > d. In particular, there exists C € C\ {0} such that (7™ (s) = C(s(s).

Proof. By Proposition B34, we can define C}im(s) for f € Ay. Therefore, by Theo-
rem A3 T and Corollary B2373, we have

(s) e @)
) / Jet)e e = =iy

Moreover, since 2 log (¢f™(s)¢s(s)71) = 0, there exists C' € C\ {0} such that
G (s) = CCs(s). O
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By Corollary =36, we see that hm( ) and (f(s) “nearly” coincide with each other
at least if f € A. Hence, Corollary =33 gives another proof of Connes-Consani’s
integral formula (Theorem B-3T).

We may think that ¢ llm( ) and ((s) always coincide with each other if a function
f satisfies the COHdlthnS of Definition [CTT and Definition CT2. However, this is
not true as in the following example.

Example 4.3.7. Let a > 0 and f,g € A be distinct two functions satisfying that
f(e) = g(e®). Assume that £ f(e'/*) is not equal to [* f(e”)e*"dx for Re(s) > 0.

We define
t) f1<t<e
F(t) = fe) iflst<et,
g(t) ife* <t

For example, the case where a = 1, f(t) = —t + 2e and g(t) = t is one of the
examples. This continuous function is not included in A. By Theorem B3, we

have
—( gm)/(s) = — /00 F(e®)e *dx = — /‘l fe®)e **dx — /Oog(e””)e_szdm.
%m(s) 0 0 a

On the other hand, we calculate (r(s). It holds that

Zp(w, rlw) (/0 > (f ¢—sa gt @® / Z - n+wd;>

— - 1 an(f) —SsT ,.n wdx Oén<g) > —8xT ,.n wd‘x
— E(F(w)/ge x+?+F(w)/a€ era;)'

n=0

Here, we have

a 1 > —SsT n+wd‘r . F/(w) /OO —SsT n—i—wdx
aw(r<w>/a o x)‘ fwer), © 7 @

Since I'(w) = = + O(1) (w — 0), we have

i 1 /OO €_le'n+wd—x _ /OO e—sxmnd_x
ow \T'(w) J, ) o Ja T

_ i W 1 /oo e—sxl.n-i-wd_x
w=0 B dw F(w) a x

Thus, we have

i 1 /a —sT n+wd_x
ow \TI'(w) J, © v




Therefore, it holds that

0

log (r(s) = a_wZF(w s)

o0

- % () (-2 - / T ) o) ([T e t))

_SI > xr —Sxdx
= —f(e'/?) logs—/ f(e* / g(e®)e —

By differentiating log (r(s), we have

T

Ly [ e S0

w=0

Since L f(e/*) is not equal to [° f(e*)e **dx, we have
s 0

(™)' (s) , Cr(s)
#(s) Cr(s)

This implies that (i (s) # (r(s). Thus, this is an example of a function which
satisfies the conditions of Definition TITT and Definition 12 but absolute zeta
functions are different.

£

4.4 Absolute Euler products

According to the introduction of this chapter, each factor of the absolute Euler
product of the absolute zeta function of a Laurent polynomial can be described by
using the linear map M,,: Z[t,t~'] — Z. In this section, we generalise this map and
give the absolute Euler product of the absolute zeta function of f € A.

4.4.1 Absolute Euler product in the case of f € A
Definition 4.4.1. We define the map M: CNo — CNo by M(a)g := a and

Z,u( > a, (n€N)

mln

for a sequence a = {a, }22, of complex numbers. In particular, we put

rp(n) == M{p"}3Zo)n

for p e C and n € N.
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Remark 4.4.2. The map M: CYo — CMo is a linear map.

Definition 4.4.3. We define M,, by

{Mn(f)}nZo := M(D(f))
for f € A, where D: A — C™ is defined by D(f) := {a,(f)}>0-

Remark 4.4.4. Since M: CYo — CY and D: A — CMY is linear, the map M,,: A —
C is linear.

We can summarise the relationship between a function f, the coefficient a,(f)
of the Taylor series of f(e*), and the linear map M, into the following diagram:

D M
/\ /ﬂ\
A>f {an(f) oo {M ()} -
\/ '\M//
integral & series > kM(f) absolute
formula Z:: (log t)" expansion kln Euler product

Kurokawa’s core formula Lemma B™2T, can be generalised as follows. Note that
log(l1—2)=—=%" 2 forany zeD:={z€C||z| < 1}.

Lemma 4.4.5. It holds that
log(1 — pu) = Zmp Yog (1 —u") € Q[p,u].

Moreover, for p € C, the region of absolute convergence of the series in the right-
hand side is

{ueD ‘ lu < l—;‘} if p#0,1,
C if p=0,
D if p=1.
Proof. If p = 0, then both sides become 0. If p = 1, then both sides become

log(1 — u) since k1(n) = d1,. We may assume that p # 0,1. Then, the equality as
formal series holds since

o0 oo oo
1

ZKP )log(1 —u™) ; @—Z— Zn/ip(n) u™
n=1 k=1 m=1 nlm
:_Z zl:zl:u<%>pl um(:)_z;%pmum
nlm lIn m=
= log(1 — pu)



by substituting m = nk in (a) and using the Mobius inversion formula in (b). Note
that the equality (*) holds for v € D.
Next, we show that the series Y| k,(n)log (1 —u™) converges absolutely for

|u| < min {ﬁ, 1}. It holds that

o0

3 I o (1 — ) szgz (1) o] 3o 1
sgzjz“’ it =3 Z'“' PILE

By [0, Theorem 13.12], there exists ng € N such that -, 1 < n for each n > ny.

Hence, there exists C' > 0 such that }_, 1 < C+/n for each n € N. Therefore, it
holds that

SO ol < (max{lo], 1)V 331 < € (max{lo], 1) Y v
nIN- djn n|N dln n|N
< CVN (max{|p|,1})¥ Y1 < C2N (max{p|, 1})"
n|N

Thus, we have

CQM max{|p|, 1}
Jlog (1 — u")| < C? N 1" = BT
Z |Kp(n) log (1 — u")| 1\721 [ul™ (max{]pl, }) — [u|max{|p], 1} o0

since |u| max{|p|,1} < 1. Therefore, the series > ° k,(n)log (1 —u™) converges
absolutely for |u| < min {ﬁ, 1}.

Next, we show that the series > - £,(n)log (1 — u™) does not converge abso-
lutely for |u| > min {ﬁ, 1}. If |p| < 1, then the series log(1 —u™) does not converge

absolutely since |u| > 1. We may assume that |p| > 1. It is sufficient to show that
the series does not converge absolutely for ﬁ < |u| < 1. By [0, Theorem 13.12],

there exists n; € N such that >, 1< 1|p|% for n > ny. Therefore, it holds that

)] = ol = | 32 0 (%) o] 2 lol 1% 32 1> Jol — g lolr = 2

n#dln n#dln

for each n > ny. Moreover, since |u| < 1 and 3z + log(1 — z) > 0 at least for
0<zx< %, it holds that

nm n
i | Jul

2

> Juf* - Z" — 2fuf" + log(1 — [u[") >

m=2

[log(1 — u™)[ = [u[" - Z

o4



for n > ny 1= 8% Therefore, since |p||u| > 1, we have
log [u] ’ ’

Z|/<ap Ylog (1 —u™)| > Z %m;zi Z %:oo.

n>max{ni,n2} n>max{ni,n2}

]

By Theorem 2T, we obtain the logarithmic version of an absolute Euler product

—Mo(f)

S (1—s" )_M"(f).

::]8

1

3
I

Theorem 4.4.6. Let d > 0 and f € Ay. Then, the following statements hold.
(1) The series

Z M, ( log 1 —s ”)
converges absolutely for |s| > max{d,1}.

(2) It holds that
log (s(s) = —f(1)log s — S(s)
for |s| > max{d, 1}.

Proof. (1) Since |M,(f)| < %Z“n lai(f)] < %Z”n d' < C(max{d, 1})", we have

CSINe'S 0o 00
Z‘M 10g1—5n‘ Z:Z_: TTL| ’nm Z — |n+m1

max{d,
| |m 1 1 — maT{‘d,l} 1— |?1|

< o0

for |s| > max{d, 1}. Thus, the series Sf(s) converges absolutely in the region.

(2) By Theorem BT, it holds that

Ct(s) = an_1(f 1OOOéN
Sy
N=1

Cr(s) s

for Re(s) > d. Note that the region of absolute convergence of this series is {s € C |
|s| > d}. Since it holds that

S () = 303 () () = an(h)

n|N n|N m|n
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for each N € N by the Mobius inversion formula, we have

G S e L £)

n|N
1 o M(f) ao(f) < nMa(f)
- <a°<f>+§ﬁ> TR
Since % log(l—s") = qs_;n:nl = =, we have
Grls)
M, ( —1 (1—s"
Crls) Z gl =)

d
= (—ao logs—ZM log 1—3 ”))

for |s| > max{d, 1}. Therefore, it holds that

d n
P (—long(s)—ao logs—ZM f)log (1 —s~ )) = 0.

Then, there exists a constant C' € C which is independent of s such that
log (¢(s) = logs—ZM Jlog (1—s")+C

since ag(f) = f(1). As s — oo in s € D, we have

C= sh—é% (log Cs(s) + f(1)log s) = Sl'lé% log (Sf(l)Cf(S)) =0

by Theorem I2T (1). O

4.4.2 Examples of absolute Euler products
Example 4.4.7. Let ® be a finite subset of C and put d(®) := max,cq |p| and

P t) = Zaptp € Ad(<1>) (ap € Z).

ped

Then, it holds that My(fe) = fa(1) = 3_ 4 a, and

®) = Z aphip(n)

ped
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for n € N. By Theorem B4, we have the absolute Euler product

-2 ap 5 — 3 apkp(n)
Cfd:(s) = H(S - p)_ap =g re® ’ H (1 — S_n> pED pee
pe® n=1

for |s| > max{d(®), 1}.
Example 4.4.8. Let £ € N. By Example 1710, it holds that
Pk(t) = _tq)exp(_ lOgt, 0, k + 1) S A1+5

for any € > 0 and My(P;) = FPx(1) = 0. By Theorem EZ6, we have the absolute
Euler product

1 o0
0= T w1 (2)) - [0
|m|=k+1 S vl
for Re(s) > 1, where

=S (B) ) = Zu() >y

min 0<ji<<ju<m LTIk

Example 4.4.9. Put f(t) = tlogt By Example 215, it holds that f € Ay, for

any € > 0. Since f(e*) =>"", oD it holds that My(f) = f(1) =0 and
1 n n n\ -1 _
=) m=20n () () =TI
pln

Note that this is the “truncated” Euler product. By Theorem B46, we have the
absolute Euler product

Cs(s) = exp (Lio (%)) _ ﬁ(l B an)‘pr‘{l(l—fl).

n=1

As we mentioned in Subsection 122, the validity of the name “absolute FEuler
product” has not been explained in previous work. In joint work with Y. Hirakawa,
we found one of the reasons why the name is suitable using the Euler products of
the congruent zeta function and the Thara zeta function as follows.

As we mentioned in Subsection [1T2 it is well-known that the congruent zeta
function of a smooth projective variety X over I, has the following Euler product
representation for Re(s) > dim X:

o0

Z(X/Fqq %) = [] (1= #k(2)™) " =[] — g ~rem),

ze|X| n=1
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where | X| is the set of closed points of X and k(x) is the residue field of z € X and
#(p,n; X) is the number of the closed points of X of degree n. Since fx/r, € A by
Example BTG, we have

o

Z(X/Fyq %) = qx“’p(X)SCfX/Fq (¢°) = qXrer )= fxmg (1)s H(l — gy Mz

n=1

by Corollary I8 and Theorem EA6. Therefore, this absolute Euler product coin-
cides with the Euler product by the following theorem.

Theorem 4.4.10. Let X be a smooth projective variety over F,. Under the same
notation in corollary |4.1.8, it holds that

Xtop(X) = fX/[Fq(l) =Ny —N_

and " "
Blp,ms X) = Ma(Fxpe,) = Tr (A% e, ) = T (A, )

Proof. The equality xiop(X) = fx/r,(1) follows from the proof of Corollary ETS.
We now show that x(p,n; X) = M,(fx/r,). By the Lefschetz trace formula, it holds

that
am(fx/e,) = Z m(AMA™ = #X(Fym)

AED(X/Fy)

for any m € N. By the Mobius inversion formula, it holds that

nM,( fX/Fq Zu( ) Zu( >Zl/€lnX

llm

:Zlm (l,n; X) M(E):”R(R”;X)

m|n
T

lln T

for any n € N. ]

As we mentioned in Section B, the Ihara zeta function of a finite connected
graph G without degree 1 is defined as the infinite product running over primes in
GG, which corresponds to prime numbers in an Euler product. Hence, we may regard
this infinite product as one of the Euler products. This product can be expressed

by

ZG(“) = H (1 — ul(P))_l = H(l _ ufn)fn(n;G)j
PePrim(G) nel

where Prim(G) is the set of primes in G, the integer [(P) is the length of a path P
and the integer x(n;G) is the number of primes in G of length n. Since fg € A by
Example 16, we have

[e.9]

Zg(u) = u_X(G)ng (u_l) — u—X(G)+fG H —sn —Myn(fa)

n=1
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by Corollary T8 and Theorem B46. Therefore, this absolute Euler product coin-
cides with the above Euler product by the following theorem.

Theorem 4.4.11. Let G be a finite connected graph without degree-1 vertices. Under
the same notation in corollary |4.1.9, it holds that

X(G) = fe(l) = V] - |E]|
and
50 G) = My (fs) = Te (Wa)"
Proof. The equality X( ) = fa(1) follows from the proof of corollary ET9. We now

show that k(n; G) = M, (fg). It suffices to show that
Te(Wy)" = > I6(l;G)
llm

due to the similar calculation in the proof of theorem B4 T0. Let V,, be the number
of closed paths of length m without backtracking or tails in G (cf. Terras [47, Defi-
nition 4.2]). Then, we have

> k(L G) Tr (W)™

llm
since it holds that N, = Tr(W;)™ (see e.g. Terras [, p. 30]). O

By the above examples, the absolute Euler products of the congruent zeta func-
tion and the Ihara zeta function coincide with their respective Euler products.
Therefore, it is reasonable to call the infinite product the “absolute Euler prod-
uct” or the [Fi-theoretic Euler product from these points of view.

4.4.3 Region of absolute convergence of a certain absolute
Euler product

Let f € A and put
d(f) :=inf{d > 0| f € Ay}.
In Theorem B4, the series

ZM )log (1—s7")

converges absolutely at least for |s| > max{d(f),1}. We want to extend the region
where S (s) converges absolutely as wide as possible. Thus, we wonder if the region
|s| > max{d(f), 1} is best possible or not.

According to [49, Corollary 3.10] (Corollary BI7), if f is a polynomial, it holds
that d(f) = deg f and the region of absolute convergence of Sf(s) is {s € C | |s| >
deg f}. Like this case, we want to obtain the region of absolute convergence even in
the case of f € A and describe it by using information of f. The following theorem
is an answer to this problem.
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Theorem 4.4.12. Let ® be a nonempty finite subset of C and put d(®) := max,ecq |p|.
Set A = \g := max {d(®), 1} and

)=t € Auwy (€ C\{0}).

pe®

Put @y :={p €@ ||p| =2} = {p1,..., 0} and O := Argp’“ . Assume the following
technical conditions by sorting the order of p1,...,p app'mpmately:

(1) There exists 0 < r <1 such that 01,...,0, € Q and 0,,1,...,0; & Q.
(2) There exists 0 < h < I*TT such that 0;_j, .1 = —6_opi1,...,00 = —0,_p,.
(3) 1,0,11,...,0,_y are linearly independent over Q.

(4) C/’l—h+17 s ;Cpl € R.

Then, the region of absolute convergence of Sy, (s) is {s € C||s| > Ao }.

€Q ¢Q
617 ) 0’/‘7 ,07’ 0 0 0 0
+15- -5 Vi-2h+1y---,VI-h, l—h+1 5--+> l
~ ~~ SN—— ~~
& 1 are linearly independent over Q =—0;_op41 =—0,_pn

Figure 4.1: The conditions (1) to (3) of Theorem EAT2

Remark 4.4.13. The integer r is the number of §;’s which are rational. The integer
h is the number of #;’s whose opposite signs exist in {6,11,...,6;}. If r = [, then all
01,...,0; are rational. If r = 0, then all 64, ...,60; are irrational. If h = 0, then the
conditions (2) and (4) are omitted.

Remark 4.4.14. We can treat the counting function of an absolute Riemann surface
in this theorem. In regarding its absolute zeta function as “the finite version of
the Riemann zeta function” as we mentioned in Example [CTh, the real numbers
1,Im py,...,Im p; are expected to be linearly independent over QQ, which is called the
Grand Slmpllclty Hypothesis (see e.g. Rubinstein and Sarnak [41, p. 176]). However,
the claim that 1,Im py,...,Im p; are linearly independent over QQ is not equivalent
to the Condition that 27, Arg py, ..., Arg p; are linearly independent over Q. Indeed,

if p=re = e D ax, then Argp— z and Im p = 5 V3,

The following lemma is essential to prove Theorem B2 T2. We prove this lemma
in Subsection B-44.

Lemma 4.4.15. Put e(f) :== >V~ Let1>1,6,,....00 € Randcy,...,¢ € C.
Assume the following technical conditions which are the same as those in Theo-

rem l.4.12:
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(1) There exists 0 < r <1 such that by,...,0, € Q and 0,44,...,0; € Q.
(2) There exists 0 < h < Z’TT such that 0;_j 1 = —6,_opi1,...,0, = —0,_p.
(8) 1,0,41,...,0,_ are linearly independent over Q.

(4) Cl—h+1,---,0 € R.

Then, if (c1,...,¢) # (0,...,0), then there exists N C N whose natural density is

positive such that
!

Z cje(nb;)

j=1

lim inf > 0.
neN

Remark 4.4.16. The condition (3) is an essential assumption. For example, we
consider the case when [ =2, r =0, h =0, and ¢; = —cy # 0. If 6; and 0, satisfy
that 1+ 60, — 0 = 0, then cie(nby) + cee(nby) = (¢ + ca)e(nby) = 0. Thus, this is a
counterexample of Lemma B4 T3 without the condition (3).

Admitting the above key lemma, we prove Theorem B4 T2

Proof of Theorem |4.4.12. By Theorem B4, the series Sy, (s) converges absolutely
for |s| > X. Now, we show that Sy, (s) does not converge absolutely for |s| < A. If
A =1, that is, |p| <1 for each p € @, then the series log(1 — s~™) does not converge
absolutely for |s| < A = 1. Thus, we may assume that A > 1. It holds that

ne,(n)
Z|M (fo) log 1—3 |_ZZP "

n=1 | ped

A" .
;log(l—s ) .

Since A > 1, the set @y = {p € © | |[p| = A} is not empty. It holds that

c nK/p
4 A7

ped
p\" () p™ p()pm
2| 3 e (§) ]| 2 e X TR | X e
PEDPmax PEDmax n¢m|n pE‘:I)\(I)max m|n
> Z c eV TInaEp| Z [ Z o™ _ Z e |Z o
= P P )\n P /\n :
PEPmax PEPmax n;ém|n peq)\(}max m‘n

Here, we put

Z A Z ‘i‘” |Cp|z i‘:

peémax n;ém‘n pE‘I’\CDmax m|n
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By Lemma EZ7T3, there exists N C N whose natural density is positive such that

lim inf > 0.

neN

§ Cpex/—lnargp

peq)max

Therefore, there exist M > 0, ng € N such that for each n € N N [ng, 00)

E : Cpex/—lnargp

Pecbmax

> M.

Since R, — 0 as n — oo, there exists n; € N such that R, < %M for each n > n;.
Hence, it holds that

for each n € N N [max{ng, ny},00). Thus, we have

C -n 1 )\n —-n
Z’Mn(ﬁp)log(l—s )‘2§M Z ;log(l—s )| =00
n=1 neNN[max{ng,n1 },00)

by the similar argument of Lemma B-475. O

Example 4.4.17. Let a = (v, ..., ,) € [0,00)?. Then, the counting function f,
of an absolute Riemann surface of genus g (cf. Example [CIT°5) coincides with

g

Jalt) =D apth =t = (1" +17) +1,

ped k=1

where pj, 1= %—{—v—lak, ¢ :={0,1,p1,...,pg,P15---,Pgy and ag =a1 =1, a, = —1
for p € @\ {0,1}. By Example 47, it holds that

g

1 = Kpp (N)+Kp-(n
Crals) = 57720 (1__) H(l_sn)ﬁ( e () Hip ()

§ n=1
for |s| > max{d(®), 1}.

Put 0, := % Argpi (1 < k < 2g). If necessary, we sort the order of py,...,p, so
that 6y,...,0, € Qand 6,14,...,0, ¢ Q for some 0 <r < g. Put pj :=0, p :=1,
Peve =Pk (L <k <7), Phiio =0k (L <k < 1), Pl = prpr (1 <k <
9= 71)s Phsgrrsz = Prrr (1 <k < g—7), and 0 := 5= Argp) (1 < k < 29 +2).
Then, it holds that ¢}, ,..» = =095 (1 <k < g—r). By Theorem B4T3,
if 1,65, 5,... ,9; 4r4o are linearly independent over Q, then the region of absolute
convergence of Sy, (s)is {s € C||s| > d(®)}, where d(®) := max{1, |p1],..., |pyl}-
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4.4.4 Proof of the key lemma

We use the following lemma to prove Lemma B4 TH. Hereinafter, we put T := R/Z

and identify the interval (—5, 5] with T under the natural bijection ¢: (—5, 5} — T.

We define ¢;: (-1, %} — T! by oi(z) == (¢(z1),...,0(x)). Let t: R — T be the
natural surjection and put ¢ := ¢! o

Lemma 4.4.18. Let g := (61,...,6;) € R and define R,: T' — T' by Ry(z) :=
r+g. Fizx0<6<2iandputVs:={xeT]||g'(x) <} ForxzeT, put
Ny () == {n € N | Rp(z) € Vs}. If 1,01,...,0, are linearly independent over Q,
then it holds that

d(NY,(x)) = v’

for any x € T', where d(NY, (x)) is the natural density of Ny (z) and v, :== —7=
Proof of Lemma |4.4.18. Fix xy € T'. It holds that

d(Ny, (20)) = lim —#{n | 1<n <m, 1y (R} (20)) = 1}

m—o00 M,
= n%l_r}réo E ; 1y, (RZ(QCO))’

where 1y, is the indicator function of Vs. Hereinafter, we show that

N R n
2D T (ByGeo)) =

in a similar way to ['IR Lemma 4.17]. For 0 < n < §, we define the continuous
function f£: (—3 —] [0, 1] by

272
1 if |z] <6 —n, 1 if x| <6,
- — ) o=l — ) GEm)—=fz[
0 if |z| > 9, 0 if |z] > d +n.

Note that fn*(gol_l(m)) <1y (z) < f;r(gol_l(x)) Hence, it holds that

o 2 ) < S ) < 3 )

for any z € T'. Now, since 1,6y,...,0; are linearly independent over Q by the
assumption, the irrational rotation R, is uniquely ergodic according to Einsiedler
and Ward [I8, Corollary 4.15]. Therefore, by [I8, Theorem 4.10 (3)], it holds that

+ J :t — +
7112}10 - Zf R (x0)) / I ( ))dx = /(;,;]l 5 (r)dz.
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We have

M T T 27
/ dxr = / rdr - / sin'2 aqday - - - - - / sin ag_oday_g - / doy_q
x| <M 0 0 0 0

_ MY 2r¢
ﬁlz-QW:—-—:lel
V) LT

for any M € (0,00) by converting to polar coordinates. In a similar calculation, we

have -
M
/ |z|de = -y

for any M € (0,00). Therefore, it holds that

N~

“(z)dr = “(z)dx
/( L= [

) 1
:/ dx—i——/ dx——/ |z|dx
|z|<d—n N Jo—n<|z|<s N Js-—n<|z|<s

15l+1 _ (5 _ n)l+1 .

1)
:vl(é—n)l—l—ﬁ(vlél—vl(é—n)l) — 1 l—|—1 ZUZ
A~ A S SR A5 | _ ! _ sl
= (5 (6—mn) ) (1 —l+1) vd' + O(n).

Similarly, we obtain

Jas

Therefore, it holds that

S = (@4 =7 (1= ) = '+ 00

)

=
N

m—oo 11

v 4+ O(n) = / ]l fn_(a:)dx < lim inf 1 Z 1V§(R;(:r0))

[NIE
[NIES

< limsup B Z 1y, (R, (o)) < / o (w)de = v+ O(n).
=1

m—oo M - ]

N

)

N

As n — +0, we have

RN B . . 1 & n
lim inf — D " 1y,(Rp (o)) = limsup — > 1y, (R (x0)) = wd.

m
n=1 m-—r00 n=1

Thus, we have d(Ny, ) = v,d". O

Now, we show Lemma B4 T3, which is the key to prove Theorem B-4T2.
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Proof of Lemma |4.4.15. Put
!
Sy, 1= Z cje(nb;).
j=1

We may assume that all 6y, ..., 6, are distinct and 60; € (—%, %] for all j € {1,...,1}.

Assume that r = [, i.e. all 6q,...,60; are rational. Put Den (%) :=b € N for an

irreducible fraction ¢ € Q and m = ged (Den(6), ..., Den(6;)). Putting Ny := {n €
N |n =k mod m} for k € {0,...,m — 1}, it holds that

Sy = Z cje(k0;)

Jj=1

for each k € {0,...,m — 1} and n € N,. We show that ¢; = --- = ¢ = 0 by
induction, assuming that

l
Z Cj€(k79j) =0
j=1

for all k € {0,...,m — 1}. If [ = 1, then we have ¢; = 0. Let [ > 2. Since

l

e(6)) che(kej) =0, Y ce((1+k)8;) =0

j=1
for each k € {0, ..., m — 1}, the subtraction of both equations leads to the equality

-1

> ¢ (e(r) — e(6))) e(kt;) = 0.

j=1

Since k is arbitrary, by the hypothesis of induction, it holds that

¢j (e(0) —e(6;)) = 0
for j € {1,...,1 —1}. Since 6, # 6; and ; € (—3,%] for all j € {1,...,1 — 1},

T 202
we have ¢; = -+ = ¢_; = 0. Thus, we have ¢, = 0 since ¢e(kf;) = 0 for each

ke {0,...,m—1}.

Assume that 0 < r < [ — 1. Put m := ged (Den(6,),...,Den(d,)) and z; :=
%Argcj for j € {r+1,...,01 —2h}. For n € mN, put n = mk for some k£ € N.
Then, we have

r 1—2h I—h
Sul = D> e+ > cielkmby) + > (cie(kmb;) + cjne(—kmb;))
j=1 j=r+1 j=1—2h+1
r 1—2h I—h
= Z Cj + Z |Cj|€(km0j + l’j) + Z (cje(k:mgj) + cj+he(—km0j))‘ .
j=1 j=r+1 j=l—2h+1
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Put cg =377, ¢j, 05 :=(mb;) for j € {r+1,...,—h}and ¢ := (0], .., 0,_).
Then, it is sufficient to show that if there exists ky € {0,r+1,r+2,...,1} such that
ck, 7 0, then there exists a set N C N whose natural density is positive such that

liminf |S,,| = liminf | S} ]
keEN

nemN
I-2h I—h

= lirkré]i\}lf co + ‘ZH |cjle(k0 4 x5) + | IZ% 1 (cje(k0)) + cjane(—k0}))| > 0.
j=r J=l—2h+

Note that this includes the case when r = 0 by putting ¢y = 0.
If co=0and ky € {r+1,...,l —2h}, then we may assume that kg = r + 1 by
sorting the order of the labels. Since ¢;_j11,...,¢ € R by the assumption, we have

Re (cje(k0)) + cjene(—k07))
= Re ((cj + cj+h)e(k9;) — Cjin (e(kﬁ;) — e(—k:@é-)))
= |¢j + ¢jyn| cos 2m (kO + x5) + 2|cjqp| sin arg ¢4, sin 27k0)
= |¢j + ¢jpnl cos 2m (KO + x;),
where x; := 5= Arg(c¢; + ¢j44) for j € {{ —2h+1,...,1 — h}. Hence, it holds that

1-2h I—h
1Sy > Z |cj] cos 2m (kO 4 x5) + Z |cj 4 cjn| cos 2m (KO + x5)| .
j=r+1 j=l-2h+1
Put z := (v(2,41), L(xrg2 — 1), ... e(@mp, — 1)) € T Since 1,0,,4,...,6,_, are

linearly independent over Q by the assumption, the natural density of N{ﬂ; (x) is
positive for any § > 0 by Lemma E4T8. Therefore, we have |R ()| < d for each

ke N&; (x). Since
1
b (KO 1+ 2ri1) | < 6, ‘@z) (k9;+:cj _Z)‘ <6 (Ge{r+1,...,1—h}
for each k € N@;(x), it holds that

| cos 2m (KB, | +2q1)| > cosd, | cos2m(kO+x;)| = < sind

. 1
sin 27 (k@; +x; — Z_l)

for each j € {r+1,...,l—h}. Since |¢; 11| = |ex,| > 0, it holds that for a sufficiently
small 6 > 0 and any k € N‘g/;(a:),

1-2h
1S4 > leria| |cos 2 (O, g + )] — > lej| |cos 2m(kO) + ;)]
Jj=r+2
I—h
— Z |¢j 4 Cjin| |cos 2wk (kO] + ;)]
j=l—2h+1
1-2h I—h
> |cpg1| cos O — ( Z le;| + Z |c; +cj+h|) sind > 0.
j=r+2 j=1—2h+1
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Therefore, when ¢g =0 and kg € {r +1,...,1 — 2h}, we have

liminf |S,| > 0.
KENY, (2)

Ifep =0and kg € {l —2h+1,...,l — h}, then we may assume that kg =1 —h
by sorting the order of the labels, i.e. ¢;_, # 0. Assume that ¢;_, # —¢;. Then,
we can show the desired inequality by a similar argument to the case when ky €
{r+1,...,1 —2h} by taking x € T'""" satisfying that |¢ (k¢ + z; — 1)| < ¢ for
je{r+1,....;1—h—1} and |¢ (k;@;fh + xl_h) | < 9. Assume that ¢;_;, = —¢;. Note
that ¢;_;, — ¢; # 0 since ¢, # 0. Since ¢;_pi1,...,¢ € R by the assumption, we
have

Im (cje(k0}) + cjine(—k05))
=1Im ((¢j — cjen)e(kb) + cjn (e(k0)) + e(—k0))))
= |¢; — cjpnlsin 27 (k0 + 2) + 2|c;j 4 | sin arg ¢y, cos 2mk0;
= |¢j — ¢jan| sin 2w (kO] + ),

where 2 := 5= Arg(c; — ¢j4) for j € {l —2h+1,...,1— h}. Hence, it holds that

1—2h I—h
1Sy > Z |cj| sin 27 (kO + ;) + Z ¢ — ¢jqn| sin 27 (kO] + 25)| .
j=rt1 j=l—2ht1
Put 2 := (u(zr41), - Ll@i—on), (@] _gpir)s - - - (@] _ppp), t(in — ) € TP Then,

the natural density of N&; (x) is positive for any 0 > 0 by Lemma BE4TR. Hence, we
have |Ry,(z)| < ¢ for any n € N‘g/;(x) Since

[ (kO + ;)| <0, | (k6 + )| <0
forie{r+1,...;0—2h},je{l—2h+1,...,]—h—1} and

1
‘@/) (kQZ—h + )y, — Z) ' <9,
it holds that

| sin 27 (kO] + x;)| < sind (ie{r+1,...,1—2h}),
| sin 27 (k0 + )| < sind (je{l—-2nh+1,....,1—h—1}),

| sin 27 (k0)_), + 27_,)| =

1
cos 27 (k@f_h + ), — 4_1) ’ > cos d.

Since ¢;_, — ¢ # 0, it holds that for a sufficiently small 6 > 0 and any n € N‘g/; (z),

1-2h I—h—1
|Se| > leion — ¢| cos § — ( Z cj — Z le; — cj+h|> sind > 0.

j=r+1 j=l—2h+2
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Therefore, when ¢g =0 and kg € {{ —2h +1,...,l — h}, we have

liminf |S}| > 0.
nEN‘g,;(x)

Assume that ¢y # 0. If Re(cp) # 0, then we have

1-2h I—h
1S5.] > [Re(co) + Z |cj| cos 2m (kO + ;) + Z |¢j + cjn| cos 2m (KO + x5)|
j=r+1 j=l—2h+1

where x; = 5= Arg(c; + ¢jpp) for j € {I —2h +1,...,1 — h}. By taking z :=

(e(wa—3), ... e(mp — 1)) € T"7 satisfying that

4
, 1

for j e {r+1,...,1— h}, we can show the desired inequality by a similar argument
to the case when ¢g =0 and ko € {r +1,...,1 —2h}.
If Im(cp) # 0, then we have

<0

1—2h I—h
1Sy > |Tm(co) + Z c;sin 2m (k0 + x5) + Z |cj = ¢jpn]sin 2w (kO 4 27) |,
j=rt1 j=i—2h+1

where 2 := 5= Arg(c; — ¢jp) for j € {I —2h +1,...,1 — h}. By taking z :=
(22, Tion, &) igs - - -, 2)_p) € T"L satisfying that

[ (kO 4+ 25) | < 0, |1 (kQ; +z;) | <6

fori € {r+1,...,1=2h}, j € {I-2h+1,...,l—h}, we can show the desired inequality
by a similar argument to the case when ¢o = 0 and ko € {r+1,...,1 — 2h}. O
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Chapter 5

Ceiling and floor Puiseux
polynomials

In this chapter, we prove the third main result of this thesis. First, we introduce
ceiling polynomials and give another interpretation of the result of Deitmar, Koyama
and Kurokawa [14, Theorem 2.1]. Then, we give some examples of the ceiling and
floor polynomials of specific schemes over Z[S™!], where S is a subset of P. Next, we
extend ceiling and floor polynomials to ceiling and floor Puiseux polynomials and
determine the ceiling and floor Puiseux polynomials of an elliptic curve defined over
Q, which leads to the pair of provisional definitions of its absolute zeta function.

Let S be a subset of P. In what follows, we denote the set of prime powers p™
with p € P\ S and m € N by PX.

5.1 Ceiling and floor polynomials

Let X be a monoid scheme of finite type. As we explained in Subsection 23,
Deitmar, Koyama and Kurokawa [14] identified the absolute zeta function of the
continuous function Ny, with the absolute zeta function of the polynomial €x,. In
this section, we introduce the ceiling and floor polynomials of a scheme of finite
type over Z[S~!]. After that, we characterise the polynomial €y, as the ceiling
polynomial of X7.

5.1.1 Ceiling/Floor polynomials

Lemma 5.1.1 ([23, Lemma 2.4]). Let P be an infinite subset of N and A = (A,)nep
be a sequence in Z. Then, there exists at most one polynomial f(t) € R[t] satisfying
the following conditions:

(1) The inequality f(n) > A, (resp. f(n) < A, ) holds for everyn € P.

(2) There exist infinitely many n € P such that f(n) = A,.
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Proof. Suppose that f, g € R[t] satisfy both of the conditions. Then, since f — g is
a polynomial, we have the following three possibilities:

e There exists N € N such that f(n) — g(n) > 0 for every n > N.
e There exists N € N such that f(n) — g(n) < 0 for every n > N.
e f(n)—g(n) =0 for every n € N, i.e. f =g in RJt].

In the first case, since g (resp. f) satisfies the first condition, the inequality f(n) >
g(n) > A, (resp. A, > f(n) > g(n)) holds for every n > N, which contradicts that
f (resp. g) satisfies the second condition. By changing the roles of f and g, we see
that the second case is also impossible. Thus, we obtain the conclusion. O

Definition 5.1.2 ([23, Definition 2.5]). When the polynomial f in Lemma BTT
exists, we call the unique polynomial f the ceiling (resp. floor) polynomial of A.

Definition 5.1.3 ([23, Definition 2.6]). Let S be a proper subset of P and X be
a scheme of finite type over Z[S™1]. We call the ceiling (resp. floor) polynomial of
(#X(]Fq))qepg the ceiling (resp. floor) polynomial of X and denote it by €x (resp.

Fx)-

According to Propositions 2277 and EZ2ZT0, we obtain the ceiling (resp. floor)
polynomial of the Z[S™!-lift of a monoid scheme of finite type.

Theorem 5.1.4 ([23, Theorem 2.7]). Let X be a monoid scheme of finite type and
S be a finite subset of P. Set X 1= Xyjg-1),

and T,g:= H 2655

J=1

1 if2|t,; and2 € S, -
€55 = .
0 otherwise,

Then, it holds that

Cr(t) =) To(t—1)= € Z[t] and Fa(t)=> Tos(t—1) €Z[t].

zeX rzeX
In particular, €y s independent of S. Moreover, it holds that

Rx

CQX (8) = H(S — k)zzex Ty (—1)7z—k+1 (?))

k=0
Rx

CSX(S) = H(S — kj)zzex Tx,S(*l)Tm—IH—l(rs).

k=0

Proof. First, we consider the polynomial €y. The first condition in Lemma BTT
follows from the inequality ged(n — 1,¢,;) < t,; for any n € N. We can check the
second condition by applying Dirichlet’s theorem on arithmetic progressions to the
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prime numbers p such that p = 1 (mod T ). Thus, the polynomial ) _\ T, (t—1)"
coincides with €y.

Next, we consider the polynomial §x. Let T% be the odd integer satisfying
Tx = 2°T% for some e € Ny. The first condition follows from the inequality ged(g —
1,t,,) > 2%is for any x € X, j € {1,...,l,} and ¢ € P§. The second condition
in the case where 2 ¢ S follows from the fact that 2¢(Tx)*+1 — 1 = 1 (mod T%)
for any £ € N, where ¢ is Euler’s totient function. In the case where 2 € S,
we see that there are infinitely many p € P\ S such that p = 2 (mod T%) and
p =3 (mod 4) by combining Dirichlet’s theorem on arithmetic progression and the
Chinese remainder theorem. We denote the set of such p’s by P. For p € P, it
holds that ged(p — 1,Tx) = 2 (resp. 1) when T is even (resp. odd), and hence
ged(p — 1,t, ;) = 2%95 for any x € X and j € {1,...,l,}. Thus, the second
condition follows.

The equality on the absolute zeta function follows from Example 15 and the
calculation of €y and Fx. O

Remark 5.1.5 ([23, Remark 2.8]). Let X = (X, Ox) be a monoid scheme of finite
type. Then,

Y T(t-1)" € Zft] (resp. d -1 e Z[t])

rzeX zeX

is the ceiling (resp. floor) polynomial of (#X (Fin-1)),,cnnp,00) Py Proposition 222710
and a similar argument of the proof of Theorem b14. In fact, the floor polynomial
of (#X (F1n-1)),,ennpz,00) cOincides with the polynomial N(z) introduced by Deitmar
in [I2, Theorem 1] since it satisfies the condition therein and such a polynomial is
unique.

Theorem BT shows that (e, (s) coincides with (. (s) in Theorem 26, which
Deitmar, Koyama and Kurokawa obtained in [I4] by using the Fourier expansion.
Thus, Cny, (s) is an invariant of Xz;g-1) independent of S, and hence it is an invariant
of its generic fiber Xq (cf. Example bB27T).

5.1.2 Other examples of ceiling/floor polynomials

We give some examples of the ceiling (resp. floor) polynomials of other specific
schemes over Z[S™], especially those of relative dimension 1.

Theorem 5.1.6 ([23, Theorem 2.9]). Letn € N, A, := AL\ {0,1,...,n — 1} and
S be a finite subset of P. Set ny := min{n, min(P \ S)}. Then, it holds that

Q:An,z[sfl](t) =t—mn1 and Fa, (t)=t—n.
Proof. This follows from the fact that
#A,25-1(Fy) = q—#EF,N{0,1,...,n—1}) = ¢ — min{p,n}
for each ¢ = p™ € PX. O
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Let n > 2. Replacing {0,1,...,n — 1} with {0} U p,,_1, where p,,_1 is the set of
the (n — 1)-th roots of unity, we obtain the following result.

Theorem 5.1.7 (|23, Theorem 2.10]). Let n € NN[2,00), G, := AL\ ({0} U 1) =
Gz \ tin—1 and S be a finite subset of P. Set

2 otherwise.

{3 if24n and 2 € S,

Then, it holds that

anyZ[S‘ll(w =t—ny and %gn,ms—l](t) =t—n.

Proof. This follows from Theorem BTZ and the fact that u, i is the Z-lift of
spec Fyn-1. O

We give another example of ceiling (resp. floor) polynomials. Let C» be the Pell
conic of discriminant A # 0, defined as an affine curve over Z defined by

xQ—%gf:l if A =0 mod 4,
x2+xy+%y2: if A =1 mod 4.

Then, the number of the F,-rational points of C* is given as follows.

Theorem 5.1.8 ([23, Theorem 2.11]). Let ¢ = p™ € PN. Then,

q—(%)m ifp#2, ptA,

#CA(]F(Z) — 2q s pr 7£ 27 p | A7
g—(=1)"s ™ ifp=2 214,
q ifp=2,2]A,

where (%) 15 the Legendre symbol. Moreover, let Sa be the set of prime numbers

dwiding A. For any finite subset S of P, it holds that

2t if SA\ {2} Z S,
t+1 if Ais not a square and Sa \ {2} C S,

Cea  (t) = Cn
z[s—1] t—1 if A s asquare and Sp C S,
t if A is an even square, SA \ {2} C S and 2 ¢ S,
and
SczA[Sfl](t) — t - 1
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Proof. Assume that p # 2 and pt A. If Amod p € F)?, then we have #C*(F,) =
q — 1 since it holds that

A
CAF) = Fs(my) - o+ L2y,
If A mod p € Fy\ F;?, then it holds that
VA
CA(IFQ) = Ker <N]Fq2/IFq: F;; — IF;) ; (ZE, y) — T+ Ty
and the norm map NFq2 JF, is surjective. Therefore, we have #CA(F,) = #]F;2 [#F; =
q + 1. Thus, it holds that #C>(F,) = q — (%)m if p#£2and ptA.
Assume that p # 2 and p | A. Then,
#CA(F,) = #{(v,y) €F, xF, |2 =4 (mod p)} = 2q.

Assume that p =2 and p{ A. If A =1 (mod 8), then we have #C*(F,) = ¢— 1
since
CA(Fy) = F); (z,y) = .

If A=5 (mod 8) and m is even, then we have #C>(F,) = ¢ — 1 since
CH(Fy) = Fys (w,y) = o + Gy,

where (3 € [, denotes a primitive third root of unity. If A =5 (mod 8) and m is
odd, then we have #C>(F,) = ¢ + 1 since

CA(F,) = Ker Ne, e, (2,9) = @+ Goy,

where (3 € Fj2 denotes a primitive third root of unity.
Assume p =2 and p | A, then

#CA(Fq) = #{(z,y) € Fy x F, | a? = (mod 2)} = q.
The statements on the ceiling and floor polynomials of CZA[S_I] follow from the
above calculation of #C>(F,). O

Next, it is natural to study the ceiling (resp. floor) polynomial of a curve C of
positive genus defined over Z[S™!]. According to Theorem BTR, one can expect
that the ceiling polynomial crucially depends on the bad reductions of C and be-
comes simpler if C is smooth over Z[S™!]. However, the following result shows that
the ceiling polynomial does not exist even for an elliptic curve defined over Z[S™]
whenever S is finite.

Proposition 5.1.9 (|23, Proposition 2.12]). Let S be a finite subset of P and € be an
elliptic curve defined over Z|S™']. Then, there exists no ceiling or floor polynomial

of £.
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Proof. By Hasse’s theorem, it holds that

#E(F,) <p+1+2p

for every p € P\ S. On the other hand, the Sato-Tate conjecture [3,[] implies that
for any € > 0, there exist prime numbers p € P\ S such that

HEW,) > p+1+2p(1 —e).

These facts imply that there exists no ceiling polynomial €¢ of £. Indeed, if such
a polynomial €¢ exists, then the Sato-Tate conjecture and the first condition in
Lemma BTT imply that

Va >0, 3Ny € Nsit. Vpe P\ S (p > Ny = C¢(p) > p+ «).

However, since €¢ is a polynomial, the above estimate is equivalent to the following
formula:

36 >0st. IN; e Nst. Vpe P\ S (p> Ny = C¢(p) > (14 )p).

Since the inequality (1 + )p > p + 1 + 2,/p holds for each p > 1, Hasse’s theorem
implies that

AN, € Nsit. Vp e P\ S (p > Ny = C¢(p) > #E(F,)),

which contradicts the second condition in Lemma bTT.
The non-existence of the floor polynomial §¢ of £ follows from a similar argu-
ment. 0

5.2 Ceiling and floor Puiseux polynomials

In this section, we introduce ceiling (resp. floor) Puiseux polynomials by replacing
the polynomial condition in Lemma BT by means of Puiseux polynomials. Then,
after introducing the ceiling (resp. floor) Puiseux polynomial of a separated scheme
of finite type over Q, we identify the ceiling (resp. floor) Puiseux polynomial of an
elliptic curve over Q as the Puiseux polynomial ¢ + 2¢t'/2 + 1 (resp. t — 2tY/2 4+ 1).

5.2.1 Ceiling/Floor Puiseux polynomials

We begin with the definition of the ceiling (resp. floor) Puiseux polynomial of a
general integer sequence.

Definition 5.2.1 (|23, Definition 3.1]). Let R be a commutative ring. We define
R[t'/*°] as the residue ring of the polynomial ring R [t, | n € N] in countably many
indeterminates ¢, by the ideal I generated modulo ¢ —t, for all m,n € N, and
set t'/" := t, mod I. We call an element of R[t'/*] a Puiseur polynomial with
coefficients in R.
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Suppose that R = R (or its subring). Then, each Puiseux polynomial in R[t/*]
defines a continuous function on (0,00) to R. In what follows, we identify each
Puiseux polynomial with this function. Similarly to Lemma BTT, we show the
uniqueness of a certain Puiseux polynomial.

Lemma 5.2.2 ([23, Lemma 3.2]). Let P be an infinite subset of N and A = (A,)nep
be a sequence in Z. Then, there exists at most one Puiseuzx polynomial f(t) € R[tY/>]
satisfying the following conditions:

(1) The inequality f(n) > A, (resp. f(n) < A,) holds for every n € P.

(2) There exist infinitely many n € P such that the equality | f(n)] = A, (resp.
[f(n)] = A,) holds.

(3) f(1) € Z.

Proof. Suppose that f, g € R[t'/*°] satisfy both of the conditions. Then, since f —g
is a Puiseux polynomial, it is a polynomial of t'/™ for some m € N. Hence, we have
the following three possibilities:

e There exists some N € N such that f(n) — g(n) > 1 for every n > N.
e There exists some N € N such that f(n) — g(n) < —1 for every n > N.
e f — g is a constant in the open interval (—1,1).

In the first case, since g (resp. f) satisfies the first condition, the inequality f(n) >
gn)+1>A,+1 (resp. g(n) < f(n) —1 < A, — 1) holds for every n > N, which
contradicts that f (resp. g) satisfies the second condition. By changing the roles
of f and g, we see that the second case is also impossible. In the third case, it
holds that f = g since f(1) — g(1) = 0 by the third condition. Thus, we obtain the
conclusion. O]

Definition 5.2.3 ([23, Definition 3.3]). When the Puiseux polynomial f in Lemma
B2 exists, we call the unique Puiseux polynomial f the ceiling (resp. floor) Puiseux
polynomial of A.

If there exists a polynomial with integral coefficients satisfying the conditions
in Lemma BTT then it satisfies the conditions in Lemma B2, In this sense,
the Puiseux polynomial in Lemma b2 is a generalisation of the polynomials with
integral coefficients in Lemma bTT, which contain polynomials having been studied
in the context of absolute zeta functions (e.g. Soulé[46], Deitmar [I2], Deitmar,
Koyama and Kurokawa [14]).

As we mentioned after Theorem BT, we can expect a simpler ceiling Puiseux
polynomial if the information on pathological prime numbers is excluded. Hence,
it is fair to define a ceiling (resp. floor) Puiseux polynomial of an algebraic variety
over Q (and more generally a separated scheme of finite type over Q) as follows.
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Definition 5.2.4 ([23, Definition 3.4]). Let X be a separated scheme of finite type
over Q. Assume that there exists a Puiseux polynomial f satisfying the following
condition: for any separated scheme X of finite type over Z satisfying that Xg = X,
there exists a finite subset Sy of P such that for any finite subset S of P containing
Sy, the Puiseux polynomial f is the ceiling (resp. floor) Puiseux polynomial of
(#X(Fq))qe@g' Then, we call f the ceiling (resp. floor) Puiseuz polynomial of X

and denote it by €x (resp. §x).

The following facts are useful for verification of the uniqueness of the ceiling and
floor Puiseux polynomials of X and their practical calculation.

Theorem 5.2.5 (cf. Serre [43, Theorems 4.12 and 4.13]). Let X be a separated
scheme of finite type over Z and | be a prime number. Then, there exists a finite
subset 3 of P (independent of 1) such that for every p € P\ (X U {l}) and every
m € N, the following equality holds:

2dim Xp

#X(Fpn) = Y (=1) Tr(o,™ | Hi(Xg Q).

=0

where o, is the p-th power Frobenius automorphism in Gal(F,/F,), which acts on
H(Xg, Qi) via the specialization map Hi(X, Qi) = Hl(Xg, Q).

Corollary 5.2.6 ([23, Corollary 3.6]). Let X', be separated schemes of finite type
over Z such that Xo = Yg. Then, there exists a finite subset X' of P such that the
following equality holds for every q € P, :

#X(Fq) = #y(Fq)

In particular, in the setting of Definition |5.2.4, if f is the ceiling (resp. floor) Puiseuz
polynomial of (#X (Fy))epy for some X and for some Sx with an arbitrary S O Sk,
then it coincides with the ceiling (resp. floor) Puiseux polynomial of X .

According to this corollary, it is sufficient to verify the condition in Defini-
tion B24 not for all X but for a single X'. Moreover, the ceiling and floor Puiseux
polynomials for such an X are unique respectively if they exist. Using this fact,
we obtain the ceiling and floor Puiseux polynomials for the generic fibres of specific
schemes which appeared in Subsection bI2 as follows.

Example 5.2.7 ([23, Example 3.7]). Let X be a monoid scheme of finite type such
that Xy is separated. Thus, it holds that

Cx,(t) =Y To(t—1)" and Fx,(t) = Toqmyl(t—1)"
zeX rzeX

by Theorem BT and Corollary b286. Indeed, it is sufficient to take X = Xy and

Sx = {2}. In particular, it holds that €x, = §x, if and only if the torsion subgroup
of 0%, is 2-torsion for all z € X.
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Example 5.2.8 ([23, Example 3.8]). Put X = A, o. By Theorem 6bT6 and Corol-
lary BZX6, it holds that

Cao(t) =T, () =t —n.

Indeed, it suffices to take X = A,, and Sy as the set of prime numbers less than n.

Example 5.2.9 ([23, Example 3.9]). Put X = G, o. By Theorem B 17 and Corol-
lary BZZ6, it holds that

€, o(t)=t—2 and Fg,  (t)=t—n.

Indeed, it is sufficient to take X = G,, and Sy = {2}. In particular, it holds that
€, = Bg., if and only if n = 2.

Example 5.2.10 ([23, Example 3.10]). Put X = C3. By Theorem bIX and Corol-
lary BZX6, it holds that

t—1 if Ai
Coalt) = 1 ?S & Square, and  Fea(t) =1t — 1.
g t+1 if A is not a square, e

Indeed, it is sufficient to take X = C® and Sy as the set of prime numbers dividing
2A. In particular, it holds that CC@ = SC@ if and only if A is square, which is

equivalent to C@ = Gy,0- Note that even if A is not a square, the scalar extension

(base change) C§ ® Q(v/A) can be identified with the Q(v/A)-lift of the monoid
scheme G,,, r, .

5.2.2 Ceiling/Floor Puiseux polynomial of a projective curve
and its maximal/minimal reduction

Let C be a smooth proper curve over Q which is geometrically irreducible of genus
g > 0. Then, by the spreading out principle (see Poonen [40, Theorem 3.2.1]), there
exist a finite subset S¢ of P and a smooth proper scheme C of finite type over Z[Sg']
such that Cp = C.

For ¢ = p™ € Py, the Hasse-Weil bound (see Serre [43, §4.7.2.2]) implies that

q—29\/q+1<#CF, <q+29/q+ 1

The closed fiber Cg, of C is called F,-mazimal (resp. Fy-minimal) if #C(FF,) attains
the Hasse-Weil upper (resp. lower) bound, i.e.

#C(F,) =q+29\/q+1 (resp. #C(F,) = q—2g9/q +1).

In view of the ceiling (resp. floor) Puiseux polynomial, we are interested in the
distribution of the prime powers ¢ for which Cg, is F-maximal (resp. F,-minimal).
By the definition of the ceiling (resp. floor) Puiseux polynomial of C', we obtain the
following proposition.
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Proposition 5.2.11 ([23, Proposition 3.11]). Assume that there exist infinitely
many prime numbers p € P\ Sc for which Cg, is Fym-mazimal (resp. Fpm-minimal)
for some m € N. Then, it holds that

Colt) =t+2gt"* +1 (resp. Fo(t) =t — 2gt'/% + 1).

5.2.3 Ceiling/Floor Puiseux polynomial of an elliptic curve

Let E be an elliptic curve defined over Q. Like Subsection B222, there exist a finite
subset Sy of P and an elliptic curve &€ over Z[S,'] such that £ = E. Then, the
following fact is known concerning a supersingular elliptic curve.

Lemma 5.2.12 (see e.g. Silverman [44, p. 155]). Suppose that p € P\ (SpU{2,3}).
Then, the following conditions are equivalent:

(1) &, is supersingular, i.e. #E(F,) = p + 1.

(2) &, is Fpn—2-mazimal and Fp-minimal for any k € N, i.e. #E(Fpun—) =
p*=2 4 2p?k =1 11 and #E(Fpar) = p* — 2p?k 4 1.

(3) &, is Fy2-mazimal.

(4) It holds that

_ —~ HEFpm) | L+ pT?
Z(&r,,T) := exp (; =T ) = 0D )

Proof. Let a be an eigenvalue of the p-th power Frobenius endomorphism on the
Tate module of E. Then, it holds that

HEFpm) =1 — (am + Z_:> +p" (5.1)

for any m € N (see e.g. Silverman [44, Theorem 2.3.1]). In particular, by specialising
it to m = 1, the equivalence (1) < a? = —p follows. The equation a? = —p is
equivalent to (2) and (3), respectively. Moreover, the equivalence (1) < (4) follows

since
Z(&,,T) = ex E 1-— oz‘—}-—m +p™ s
Fp> p m P m

B (1-— (;";)(1 — gT) 1+ (#EF,) —p — )T + pT?
(1-T)(1—pI) (1-T)(1—pT) ‘
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Proposition BZT1 and Lemma BZT2 (1) < (2) lead us to the natural question
whether there exist infinitely many prime numbers p such that &g, is supersingular.
The answer is known to be affirmative due to Elkies as follows.

Theorem 5.2.13 (Elkies [1Y9]). Let E be an elliptic curve over Q. Then, there exist
infinitely many prime numbers at which E has good supersingular reduction.

Remark 5.2.14 (|23, Remark 3.14]). In fact, Elkies [20] obtained a similar result
for every elliptic curve over an arbitrary number field F' (of finite degree) which has
at least one field embedding F' C R.

As the consequence of Theorem B2T3 and Lemma (1) & (2), we see
that there exist infinitely many prime numbers p € P\ Sg for each of which &, is
F,m-maximal for some m € N. Therefore, we can determine the ceiling (resp. floor)
Puiseux polynomial of an elliptic curve defined over QQ as follows.

Corollary 5.2.15 ([23, Corollary 3.15]). Let E be any elliptic curve over Q. Then,
it holds that

Cpt) =t +2t"2+1 and Fp(t)=t—2t"2 +1.

Moreover, the absolute zeta functions of € and §g are

= ! an s :(S_—%)Q
QQE(S)_S<S—1)2(S—1) d C%'E( ) S(S—l)'

2

Remark 5.2.16 ([23, Remark 1.7]). According to Corollary b2TH, it holds that

Gen(5) = (ﬁ) and Gy, (5) = (_>

where ® denotes the tensor product that we replace m(py, ..., p,) to —m(p1,. .., pr)
in the definition of the Kurokawa tensor product in Definition BT23. These are
compatible with the factorizations €x(t) = (t'/2 +1)? and Fp(t) = (t'/2 — 1)2.

Remark 5.2.17 (|23, Remark 3.16]). If X is a monoid scheme of finite type whose
Z-lift is a smooth projective variety, then Deitmar, Koyama and Kurokawa deduced
the equality

#X(F1) = Nx, (1) = Xtop(Xz(C))

from the Weil conjecture for Xg, (cf. the proof of [I4, Theorem 2.1]). In fact, we
could formally obtain the similar equality

HEF)” = 0= xi0p(€(C))
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if we substituted m = 0 in Equation (b) in the proof of Lemma 5212, which is
the consequence of the Weil conjecture for &,. Moreover, the Puiseux polynomial
S satisfies that

SE(l) - Xtop(E((c)) = XtOP<Sl X Sl)

These observations are all consistent with the philosophy we mentioned in Re-
mark [CT8. On the other hand, the Puiseux polynomial € is not consistent with
it. In this view, it is fair to say that (3, is better than (¢, .

Remark 5.2.18 ([23, Remark 3.17]). According to Charles [6], for any pair of ellip-
tic curves Ep, Fy over a number filed K, there are infinitely many prime ideals of K
at which the reductions of F; and E, are geometrically isogenous. Corollary BZ2T3
might suggest that “the reductions modulo 1”7 of all elliptic curves over K are “ge-
ometrically isogenous over F;” in some sense. On the other hand, if K = Q, then
Corollary b=2T3 shows that both € and §g are determined purely in terms of the
Betti numbers of the topological 2-dimensional torus S! x S!. In particular, they
are independent of the isogeny class of E. This might even suggest that all elliptic
curves over Q are “isogenous over [F;” at least in view of Tate’s isogeny theorem
over [F, (see e.g. Silverman [44, I11.7.7]).
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Appendix A

Ceiling /Floor Puiseux polynomial
of an elliptic curve in the case of

P=P\S

Let S be a finite subset of P. In this appendix, we discuss the ceiling and floor
Puiseux polynomials of the sequence (#& (Fp))pep\s instead of (#& (IE‘q))qe]P,IE in Sec-
tion b2, As a result, in the case of elliptic curves defined over QQ with complex mul-
tiplication, we obtain the same Puiseux polynomial as its ceiling and floor Puiseux
polynomial.

Definition A.0.1 ([23, Definition A.1]). Let X be a separated scheme of finite type
over Q. Assume that there exists a Puiseux polynomial f satisfying the following
condition: for any separated scheme X of finite type over Z satisfying that Xp = X,
there exists a finite subset Sy of P such that for any finite subset S of P containing
Sy, the Puiseux polynomial f is the ceiling (resp. floor) Puiseux polynomial of
(#X(Fp))pEP\S' Then, we call f the prime ceiling (resp. floor) Puiseuz polynomial
of X and denote it by @ (resp. Fy).

Remark A.0.2 (|23, Remark A.2]). Comparing it with Definition B2Z4, the first
condition in Lemma B=22 gets weaker and the second one gets stronger for A =

(#X(]Fp))pEP\S than for A = (#X(Fq»qeﬂﬂg'
Let E be an elliptic curve defined over Q. As mentioned in Subsection b=2X3,

there exist a finite subset Sp of P and an elliptic curve € over Z[Sz'] such that
Eo = E. Then, for p € P\ Sg, the Hasse bound implies that

p+1—=2p<#EF,) <p+1+2\p.

Then, p is called a champion (resp. trailing) prime if the equality
#EFp) =p+ 14 [2v/p] (resp. #E(Fp) =p+1—[2y/p])
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holds (cf. James and Pollack [25]). Let 7, (resp. 7) be the set of champion (resp.
trailing) prime numbers for £ and 7% (x) := 7% N (0, 2] for every € (0,00). Then,
the following is obvious:

Proposition A.0.3 (cf. Proposition BZT). Assume that #7@% = 00, then it holds
that €y = € and 'y = FE.

For a CM elliptic curve over Q, the following fact on 73 (z) is known.

Theorem A.0.4 (James and Pollack [25, Theorem 1]). Suppose that E has complex
multiplication over Q. Then, the following asymptotic relation holds:

9 1'3/4

:t —_—
() 3 logx

In particular, it holds that #Wg = 00.

According to Theorem [A_Q 4, the prime ceiling (resp. floor) Puiseux polynomial of
a CM elliptic curve coincides with the Puiseux polynomial in Proposition A0 3. On
the other hand, for an elliptic curve defined over Q without complex multiplication,
it is conjectured in [26, Conjecture 2.3] that

214

mh(@) ~op- e (2= 0),

log
where cp € (0,00) is a constant. Currently, the above estimate of 75 (z) in the
case where E is a non-CM elliptic curve is verified only under some assumptions
such as the Generalised Riemann Hypothesis (cf. David, Gafni, Malik, Prabhu and
Turnage-Butterbaugh [I0]).
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Appendix B

Another proofs of Lemma
and Theorem 4.4.12

In this chapter, we give another proof of Lemma 45 using ergodic theory. More-
over, we show another version of Theorem B4 T2 whose conditions are simpler.

B.1 Another proof of Lemma 4.4.5

Lemma B.1.1 (Lemma BA3R). [t holds that
log(1 — pu) = Si(u Zf@p Jlog (1 —u™) € Q[p,u].

Moreover, for p € C, the region of absolute convergence of the series in the right-
hand side s

{uED‘]u|<ﬁ} if p#0,1,
C if p=0,
D if p=1.

Another proof of Lemma |{.4.5. We assume that p # 0,1. We show that the series
Sie(u) does not converge absolutely for |u| > min{ﬁ, 1}. If |u| > 1, then Si(u)
does not converge absolutely. Hence, we may assume that |p| > 1 and it is sufficient
to prove that Sy (u) does not converge absolutely for ﬁ < |u| < 1.

Now, we show that S;» (u) does not converges absolutely for P < lu| < 1. Assume
that Arg“ € Q. Then, we put A;gr“ = k; (k1,ko € Z, kg # O) and Niap = {kam |

m e N} Then, since u" € [| i 1) for any n € Ny, it holds that

Z‘Kﬂ Ylog (1 —u™)| > Z |kp(n)log (1 —u™)| = Z |mp(n)]10gl_un.

nE Nrat nENrat



Put N, := {n eN ‘ n > max{logw log = 1,3}}. Since ¢ <n — [5] — 1 for each
n € N,, we have

w\:

31+1 _ 13)+1 n
S () leldé d:|p|2 ol _ lol2 o™
ol —1 lpl—1 2

n#£dln n#£d|n d=1
Thus, for any n € N,, it holds that
n n n o lel" el
Inkp(n)| > |p[" — Z M (3) Pt > |p" - 5 T 9
n#£d|n

Since (1 - %)_w > e for any x > 1 and the natural density of NV, is equal to kiz > 0,
it holds that

i o1
|k,(n)] log |k,(n)] log —_ > log
5 ottt s 3 oo S W

NnE Nrat NE Nrat NENrat NN
ERPNE
1 1\ 1
= E log(1—— = E — =00
n p|"
nENratNNp NnENratNNp

Assume that Arg“ ¢ Q. We put ¢, := Arcsin |u|™, ¥, := Arcsin 5—— 2|p\”’

2
1 1 1
Gf::Arccos —_ 1— —— £, [|ul? — — |ul?* =1
Sl (\/ PE: \/ o 4|p|2n> i
1 1 1
= Arccos | ————— + <1——> (1——) ,
< 4([ul[p]*)" \/ 4lp[*" A([ul|pl)?

and O, = [67,0,]U 21 — 6, ,21 — 6] as described in Figure B1. Note that
Im
n S
L+ o
0,

n 9n Re

1 L+ |ul”

1
L+ g

Figure B.1: The definitions of ¢, ¥,, 6 in the complex plane
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| Arg(1 —u™)| < ¢, when n € ©,,. Since ;" is strictly monotonically decreasing and
0, > 5 by a simple calculation, we have ;7 < T and 0, > 7 for any n € N. Putting

O = [3,5] we have ©,, D © for any n € N. Slnce |Arg(1—u )| >, > 3o |n for n
satisfying that Argu™ € © C 9,,,
> lmp(m)log (L=u) > > [sp(n)|log (1 —u")[ > 3~ |Arg(1 —u")
n=1 neN, neN,
p|" lp" 11 1
> A u| > Ll = -
2 D gplAwll=wlz ) Garm=g 2w
neN,NN neN,NN neN,NN

where N := {n € N | Argu” € O}. Therefore, it is sufficient to prove that the
natural density of NV is positive.

Put 0 := % and T := R/Z. Let .: R — T be the natural isomorphism defined
by «(z) := x mod Z and Ry: T — T be the map satisfying that Ry(z) = «(x + 0).
Put © := ¢ ([}, 1]). Then, we have the equality N = {n € N | Rj(0) € ©}. Since
0 ¢ Q, the continuous function Ry on T is uniquely ergodic [I8, Example 1.3 and
Example 4.11]. Since © is an interval in T, for any z € T

. 1 . - B 1
Jim - {n € No N[0, M) | Rj(x) € 8} = mn(©) = -,

where my is a Lebesgue measure on T [I8, Example 4.18 and Lemma 4.17] (also see
Einsiedler and Ward [I8, Example 1.3]). Substituting x = 0 gives the inequality

HNOLM) 1 Sy
Jim T2 = im —#{n € No N[0, M) | Bj(0) € B} = 5 > 0.
Thus, the natural density of N is positive. =

B.2 Another version of Theorem

While the conditions in Theorem EZ4T2 are so complicated, the conditions in the
following similar theorem are simpler. Note that, however, Theorem B2 1 cannot
treat the counting function of an absolute Riemann surface, since it violates the
second condition.

Theorem B.2.1. Let ® be a nonempty finite subset of C and put d(®) := max,cqe |p|.
Set A = A\g := max {d(®), 1} and

= ct’ € Ayawy (¢, € C\{0}).

ped

Put @y :={p € ®||p| =2} = {p1,..., 0} and O := Argp’“ . Assume the following
technical conditions:
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(1) It holds that

> @ #0,

PEPmax
(2) 1,04,...,0, are linearly independent over Q.
Then, the region of absolute convergence of S, (s) is {s € C||s| > Ao }.

Proof. We use the same notations in Section B-4. By Theorem E-476, the series
St (s) converges absolutely for |s| > A. Now, we show that Sy, (s) does not converge
absolutely for |s| < A. If A = 1, that is, |p| < 1 for each p € ®, then the series
log(1 — s™™) does not converge absolutely for |s| < A = 1. Thus, we may assume
that A > 1. It holds that

o0

Z\M Jog (1—s7")| =

n=1

Kp(n n
S| ia(m o (1 - 57|

ped

Put M := % and fix 0 < e < % satisfying that

PEPmax Cp

2M
4P 0 max |c,| + M~

e<
By the assumption, it holds that M > 0. Set
N = {n €N | Vp € Dy, |/ — 1] < e},
2 n
Ny = N | (log\)tlog ——— < —{—J—l.
A\ {ne ’(og ) ogg(/\_l) n=15

Since

D o S (),

putting R, := me (Z) Am ( v-lImargp _ 1), we have

> e =)y >
c C,| —
(n) ot nkx(n r

cpRp
Z nky(n)

PEDmax PEPmax PEPmax PEPmax PEPmax
Then, it holds that
|R | m \/7mar _ | _V—1Inar m Fmar
e I I P
. L3 e 9 ()\ngﬂ _ /\) . 9
B T P N ) D S I P W

86



for each n € N.. Moreover, since

2
At —1)

for n € Ny, we have |R,| < 2e\" for each n € N. N N,. Since

<e€

A5l
nkx(n) > A" — —+ (

A—1 1__>An

2
for any n € N, it holds that

Z CpRn Z CpRn Z 28)\"|Cp| _ Z 4E|Cp|

PEPmax TUReA (n) PEPmax n,i)\(n) PEPmax (1 o %) An PEPmax 2 -
< Z Mc,| _ M A <M

e #Dpaxmax|c,|  #F#Pax o max lcp| —

for each n € N. N N,. Therefore, the desired inequality

Kp(n CpRn
> artml=| Y ol -| 2

nkx(n)
PEPmax PEPmax PEPmax

~—

>2M - M =M

>

x

follows for any n € N. N N,.

Since

1 n 1 Algl+t g 1 1
_ — m<
An Z"“<m>A —\n A—1 <An—L%J—1(A—1)<A—1’

n#mln

it holds that

ko) | _ lZmnu(%W S g 01
AL Xt G| 714 5 5 g 1 (2) A7)
el (1el)"
< p|1()i> — 0 (n— o0)
=55

for p € @\ Pyax. Hence, for each p € ® \ ®y,ax, there exists n, € N such that,

Kp(n) M
ra(n) | #®[c,|
for each n > n,. For any n € N, if n > max{n, | p € ® \ Py}, then it holds that

Kp(n)
Z CP/{)\(n) S Z | p|

ﬂeq)\(}max pGCD\‘I)max

TL

M (#P — #Pma) M
<2 #P 7P

n

EQ\QII]
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Therefore, by putting N :={n € N.N N, | n>max{n, | p € ®\ Ppax}}, we have

Kp(n)| (n) (n)
Zcﬁ,ﬂ(n) =D o (n) + ), o« (n)
Pe@ p€¢’max PG‘I)\CDmax

Fp(1) Fp(n)
> c,—2 — c,—2
pe;max ’ I{A (n> pe(b\zq)max ’ KJA (n)
> M . (#q) - #@max)M — #q)rnaxM
#o #o

for any n € N. Therefore, it holds that

Z‘M )log (1 —s7")| > #(I)maXMZ‘m )log (1 —s7")].

neN

Set 0 = 5~ and g = (01,...,6;). Let Vs and Ny (x) be the sets in Lemma B2 TR.
Then, we have Ny, (0) C N.. Indeed, if n € Ny, (0), then it holds that

> (2 < ()

PEPmax

by taking the arguments of any p € ®p., in —7 < Argp < 7. Then, since we have
| Arg p"| < € for each p € .y, it holds that

eV-InAwgp 1| <V2—2cose <¢
for any p € ®,,.. Thus, if n € N&s(O), then n € N..

Since the natural density of Ny (0) C N is positive by Lemma EZTS, the
natural density of N’ := Ny (0) N N is positive. By Lemma B35, the series
Y nent |Fa(n)log (1 — s7)| diverges for |s| < A. Therefore, the series Sy, (s) does
not converges absolutely for |s| < A. O
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