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Foreword
This is an impressive book that provides a comprehensive treatment of
a plethora of mathematical ideas and results from different civilizations
and cultures before the time of Pythagoras to the present. Since
numbers have held the attention of humans from the dawn of
civilization, the history of mathematics is intertwined with the history
of civilization. And among the numerous mathematical luminaries in
history, Pythagoras occupies a lofty position as one of the most
in�luential thinkers—both in terms of his mathematics and his
philosophy. Thus Professor Agarwal has done a great service by writing
this book focusing on the intellectual contributions of Pythagoras, and
providing a global and historical perspective by discussing the
mathematical developments before his time, and touching upon a
variety of signi�icant problems that have engaged, and continue to
engage, many of the most gifted scienti�ic minds of later generations up
to the present.

Pythagoras was both a mathematician and a philosopher. He had a
number of students and followers (the Pythagoreans), and his
teachings in�luenced the development of mathematics and philosophy
throughout the Mediterranean region for several centuries. Prof.
Agarwal provides in Chap. 1, a detailed account of the fascinating life,
work, and teachings of Pythagoras, describing also what the Greek
philosopher-mathematician learned from other cultures during his
travels.

The name of Pythagoras is most famously associated with The
Pythagoras	Theorem which states that for a right-angled triangle, the
square on the hypotenuse is the sum of the squares on the other two
sides. Pythagoras neither discovered nor proved this theorem, but he
and his pupils were interested in right-angled triangles with positive
integer sides. The Pythagoras theorem is central to all developments in
geometry including the study of the lengths of curves, since distance
between two points in two and higher dimensional spaces is
determined to using this fact for right-angled triangles. In Chap. 5, Prof.
Agarwal provides a detailed and thorough account of the history of the
Pythagoras theorem, and gives �ive different proofs of it. And with the
Pythagorean equation with integer solutions as a starting point, Prof.



Agarwal analyzes in Chap. 6 more general Diophantine equations
including Fermat’s assertion whose resolution after 300 years is one of
the crowning achievements of twentieth-century mathematics.

The Pythagoreans also studied sequences of integers associated
with geometrical �igures, such as triangular numbers, squares,
pentagonal numbers, and so on, and more generally, �igurate numbers.
Chapter 7 is a detailed treatment of such �igurate numbers and certain
number theoretic questions involving �igurate numbers. The proof of
the irrationality of  is attributed to Pythagoras in classic number
theory textbooks such as that by Hardy and Wright. Regardless of who
�irst proved the irrationality of , it was this realization that began
the theory of irrational numbers, a subject that remains an active area
of research to this day. In general, it is very dif�icult to con�irm the
irrationality of a given number. The irrationality and the transcendence
of  were established only in the nineteenth century, and that �inally
settled in the negative one of the three problems of Greek antiquity,
namely to construct using only a ruler and compass, a square equal in
area to a given circle. The �inal Chap. 8 of the book is an account of
some major developments in the study of irrational and transcendental
numbers.

In summary, this book has a lot to offer—mathematically,
historically, and even philosophically. It is written in a style that would
appeal to lay persons, yet has a substantial amount on the history of
various mathematical developments that will be useful even for
researchers. We should be thankful that Prof. Agarwal, a very proli�ic
and reputed researcher in the �ield of differential equations, has spent
so much time in writing this book in the area of mathematical history,
which experts and non-experts will de�initely enjoy.

Professor	Krishnaswami	Alladi



Preface
Eric Temple Bell (1883–1960, USA) in his treatise [61] The	Magic	of
Numbers remarked, “If one man more than another is to be credited
with starting the mathematical and physical sciences on their course
from antiquity to the present it is Pythagoras. And if western
civilization means the technology and commerce of recurrent industrial
revolutions detonated by the application of experiment and
mathematics to the physical word, Pythagoras was its prime mover. All
this is on the strictly scienti�ic side. On the side of purely intellectual
activity, the numerology (number mysticism) of Pythagoras and his
Brotherhood is the source of essential germinal ideas in metaphysics of
the sciences of Plato of Athens (around 427-347 BC, Greece).”
According to Aristotle (around 384–322 BC, Greece) “The so-called
Pythagoreans, who were the �irst to take up mathematics, not only
advanced this subject, but saturated with it, they fancied that the
principles of mathematics were the principles of all things.” Bertrand
Arthur William Russell (1872–1970, England-USA) in [440] A	History	of
Western	Philosophy contends that the in�luence of Pythagoras on Plato
and others was so great that he should be considered the most
in�luential philosopher of all time. He concludes that “I do not know of
any other man who has been as in�luential as he was in the school of
thought.”

Besides philosophy, the following two attributes are due to
Pythagoras: The explicit recognition that proof by deductive reasoning
offers a foundation for the structures of number and form (in the sense
we still know and follow it), and the daring conjecture that nature can
be understood by human beings through mathematics, and that
mathematics is the language most adequate for idealizing the
complexity of nature into appropriable simplicity. Once deductive
mathematics was accepted as real mathematics all the saints and sages
(ancient philosophers, who by study, experiments, concentration of
minds, and perhaps intuition [unreliable source of knowledge], arrived
at the �ixation of certain laws governing life) previous work was
condemned or called trivial applied to practical problems such as land
surveying, commerce, and counting.



To glorify Pythagoras achievements, and as a whole of Greeks, on all
prior mathematical works several damaging remarks have been
written, for example, according to Henry James Sumner Maine (1822–
1888, Scotland-France), “Except the blind forces of nature, nothing
moves in this world which is not Greek in its origin”; Walter William
Rouse Ball (1850–1925, England) [53] wrote “Oriental mathematics
may be an interesting curiosity, but Greek mathematics is the real
thing”; “The Hindoos, like the Chinese, have pretended that they are the
most ancient people on the face of the earth, and that to them all
sciences owe their creation. But it is probably that these pretensions
have no foundation; and in fact no science or useful art (except a rather
fantastic architecture and sculpture) can be de�initely traced back to
the inhabitants of the Indian peninsula prior to the Aryan invasion”;
Godfrey Harold Hardy (1877–1947, England) recorded “The Greeks are
not clever schoolboys or scholarship candidates, but fellows at another
college”; John Edensor Littlewood (1885–1977, England) noted
“Compared with what the Greeks achieved, the mathematics of Egypt
and Babylonia is the scrawling of children just learning to write, as
opposed to great literature. These civilizations barely recognized
mathematics as a distinct discipline, so that for over a period of 4000
years hardly any progress was made in the subject”; Anthropologist
Ralph Linton (1893–1953, USA) stated hypothetically that “... if Albert
Einstein (1879-1955, Germany-USA) had been born into a primitive
tribe which was unable to count beyond three, life–long application to
mathematics probably would not have carried him beyond the
development of a decimal system based on �ingers and toes”; in 1967,
A� rpád Szabó (1913–2001, Hungary) writes “Before the development of
Greek culture the concept of deductive science was unknown to the
Eastern people of antiquity. In the mathematical documents which have
come down to us from these peoples, there are no theorems or
demonstrations, and the fundamental concepts of deduction, de�inition,
and axiom have not yet been formed. These fundamental concepts
made their �irst appearance only with the Greek mathematics.” Most
importantly, he proclaimed that if one means by a proof any
explanatory note that serves to convince and to enlighten, then one
�inds an abundance of proofs in ancient mathematical texts other than
those of the Greeks (it also means that mathematics was existing before



Greeks). Further, “We must not forget that what constitutes ‘proof’
varies from culture to culture, as well as from age to age.” In addition,
Bell in [61] writes “A proof that convinces the greatest mathematicians
of one generation may be glaringly fallacious or incomplete to a
schoolboy of a later generation.”

We also note that the history of most mathematical subjects often
traces a long way back in the timeline, where a process of slow
evolution and introduction of new ideas led to some major discovery,
which affects the foundations of modern mathematics. In fact, most of
the times, ideas existed in the past, and were even applied in problem
solving; however, it took a long time period to generalize the theory and
systematically prove these ideas. Thus, mathematics has never been a
single person process. For example, we will see that Isaac Newton
(1642–1727, England) used simple interpolation in 1665 to generalize
millennia-old binomial expansion, which was proved by Niels Henrik
Abel (1802–1829, Norway) only in 1826; several results of Leonhard
Euler (1707–1783, Switzerland) are based on simple (sometimes
tedious) calculations, which were proved several years later; Srinivasa
Ramanujan (1887–1920, India) compiled nearly 3900 results (mostly
identities and equations) during his short lifetime, a small number of
these results were actually false and some were already known, in
recent years most of his claims have now been proven correct. George
Gheverghese Joseph (born 1928, India) in his book [289] of 1991
focused mainly on the achievements of Kerala (India) in astronomy and
mathematics and the transmission of mathematics from India to
Europe. In his book “Beyond Numeracy” of 1992, John Allen Paulos
(born 1945, USA) tells this story: “A German merchant of the �ifteenth
century asked an eminent professor where he should send his son for a
good business education. The professor responded that German
universities would be suf�icient to teach the boy addition and
subtraction, but he would have to go to Italy to learn multiplication and
division. Before you smile indulgently, try multiplying or even just
adding the Roman numerals CCLXIV, MDCCCIX, DCL, and MLXXXI
without �irst translating them.” While Paulos provides no source for this
story, there seems to be some truth as the whole of Europe was waking
up from the dark ages between the �ifth and fourteenth centuries.



In 2005, Vangipuram Lakshmikantham (1924–2012, India-USA),
Srinivasa Leela (born 1936, India-USA), and Jonnalagadda Vasundhara
Devi (born 1964, India) in [329] focused on the origin of the
mathematics and corrected the chronology which was distorted by
Western historians of mathematics. They have specially reported
several pre-Pythagoras accomplishments of Indians for which
historians have credited to Pythagoras and other Europeans. Their
work was further extended and explained by Agarwal and Sen in 2014,
see [14]. This book also lights on the very humanity of almost 400
mathematicians, their mode of thought, and struggle in their
achievement. David Gray (USA) in his article Indic	Mathematics:	India
and	the	Scienti�ic	Revolution of 2011 writes “The study of mathematics
in the West has long been characterized by a certain ethnocentric bias,
a bias which most often manifests not in explicit racism, but in a
tendency toward undermining or eliding the real contributions made
by non-Western civilizations. The debt owed by the West to other
civilizations, and to India in particular, go back to the earliest epoch of
the ‘Western’ scienti�ic tradition, the age of the classical Greeks, and
continued up until the dawn of the modern era, the renaissance, when
Europe was awakening from its dark ages.” He concludes by asserting
that “the role played by India in the development (of the scienti�ic
revolution in Europe) is no mere footnote, easily and inconsequentially
swept under the rug of Eurocentric bias. To do so is to distort history,
and to deny India one of its greatest contributions to world civilization.”

In Chap. 1, we present a comprehensive study of Pythagoras,
Pythagoreanism, and the early Pythagoreans through an analysis of the
many representations of the individual and his followers, allowing
them to complement and critique each other. This includes major
events and struggles in his life since birth till death, details of his
philosophy (The Golden Verses and Symbols), and dramatic
mathematical and astronomical achievements which made him
immortal. We shall also report the origin of most of his
accomplishments with supporting statements of distinguished
scholars.

In mathematics one of the major contributions of Pythagoras is to
give divine	signi�icance to most of the natural numbers, and an attempt
to �ind mathematical explanations for everything in the Universe in



terms of numbers (natural and rational) including in geometry. In Chap.
2, we begin with natural numbers whose very origin is a mystery;
however, it is generally perceived that they have in some philosophical
sense a natural/divine existence independent of man. This is followed
by the number sense which is intuitive understanding of the natural
numbers, their magnitude, their patterns and relationships, and how
they are affected by the basic operations (addition, subtraction,
multiplication, and division). We shall exhibit that number sense is not
only the natural ability of primitive man and children, but also there are
recorded incidences of birds, animals, insects, and aquatic creatures
who show through their behavior a rudimentary number sense, namely,
comparing/sorting. Next, we shall provide the origin of negative
numbers, and Brahmagupta’s (born 30 BC, India) treatment of positive
and negative numbers in terms of “fortunes” (dhana) and “debts”
(rina), also his rules for dealing with negative numbers (very similar to
those we still use today). We shall convince the reader that only
through continuous effort and struggle from the middle of the
nineteenth century negative numbers received their relevance logically
across the world.

This is followed by the origin of zero to whom the status of a
number was given by Hindus. Its discovery took place within an
environment that was at once mystical, philosophical, religious,
cosmological, mythological, and metaphysical. Brahmagupta de�ined
zero as the result of the subtraction of a number by itself, and laid down
the basic rules; however, he struggled when it came to division by zero.
In fact, it took several centuries to realize that mathematically 0/0 is
neither meaningful nor meaningless, it is indeterminate, and it may
have any value but only in the limiting sense. Most importantly the
number zero led to the decimal system. From the thirteenth century,
when calculations could be performed “in writing,” slowly the
importance of zero and the place-value system was recognized all over
the world, and prominent mathematicians and philosophers started to
understand their importance and making constructive comments.

In Sect. 2. 7, we shall mainly preset several examples from physics,
mathematics, games, and puzzles where large numbers appear in a very
natural process. Large numbers will appear in later chapters routinely.
One of the major struggles in mathematics has been to accept that



in�inity is a legitimate concept. In Sect. 2. 8, we shall begin with Hindu
mythology according to which zero is also a term Ananta, which means
in�inite (in�inite void or void in�inite), and in Hindu philosophy God is
in�inite and within us. The in�inite remains the same, even though the
in�inite Universe which has no beginning or end has come out of it, for
details see Lakshmikantham [330]. For general reading see the
exceptional book [439] of Rudy Rucker (born 1946, USA). We shall
discuss Jainas classi�ication of numbers into three groups enumerable,
innumerable, and in�inite (nearly in�inite, truly in�inite, and in�initely
in�inite). We shall carefully de�ine and illustrate potential and actual
in�inity. We shall show that from the beginning Greek philosophers and
mathematicians refused to accept or confused with the concept of
in�inity and this continued till eighteenth century. In fact, during this
period several prominent mathematicians perpetrated all sorts of
blunders, made false proofs and drew incorrect conclusions. Finally,
Georg Ferdinand Ludwig Philipp Cantor (1845–1918, Russia-Germany)
during 1871–84 systematically mathematized the concept of in�inity.
His classi�ication of countable and uncountable sets became a turning
point in whole of mathematics. In this section we shall also introduce
in�initely small numbers or in�initesimals, which eventually led to the
discovery of calculus.

Section 2. 9 deals with number mysticism, which is based on the
idealistic belief that numbers are not only symbols of reality, but the
�inal substance of real things, and possess spiritual and magical powers.
While the origin of number mysticism is unknown, but it is believed
that it started along with the birth of natural numbers. For Pythagoras
only �irst ten numbers were of spiritual signi�icance (some claim �irst
50) and some human attribute. We shall discuss a special geometric
arrangement of the numbers ten, which Pythagoreans called Tetraktys
and recognized it as fate, the Universe, the heaven, and even God, and
honored it by never gathering in groups larger than ten. We shall also
discuss about numerology, which is an offshoot of number mysticism
and to this day persists in otherwise unaccountable omens and
superstitions in most of the religions. In Sect. 2. 10, we have collected
several numbers which have some special properties. This includes
palindromic numbers, and magic squares which have been considered
strong talismans against evil, and possession of a magic square was



thought to insure health and wealth. Finally, in Sect. 2. 11, we have
introduced complex numbers. This includes their origin, basic rules,
representations, Euler’s most curious formula, and roots of unity.

To make this book accessible to wider audiences, in Chap. 3, some
basic questions which are vaguely discussed in existing books have
been clearly explained and embellished through interesting examples
from several diverse �ields. These questions will also pave the way to
appreciate the later chapters. To summarize, we shall show that despite
of numerous attempts from primordial to modern leading philosophers
and mathematicians, the word mathematics is too subtle to de�ine
exactly; however, a mathematics teacher and a mathematician can be
differentiated and de�ined assuredly. We shall reveal that history of
mathematics deepens our respect for human cultures and collaboration
across time regardless of their location, and presents us with role
models. We shall also exhibit the human nature of mathematicians who
are very often believed to be bizarre individuals. We shall detail basic
prerequisites for the deductive mathematics such as a mathematical
statement and a mathematical de�inition. We shall rigorously de�ine
axioms and list them for geometry, natural numbers, �ields, and sets. We
shall establish that occasionally eliminating or changing an axiom from
the earlier assumed axioms has led to altogether new mathematics,
which is as consistent as earlier, and often more useful.

Then we shall de�ine only that segment of logic that is necessary in
mathematics. This prepares us to de�ine the terms
theorem/result/proposition, lemma, and corollary, which are the heart
of whole mathematics. Even an obvious proposition in mathematics
without its proof is meaningless so we shall carefully study the term
mathematical proof. Then we shall discuss several widely used
methods to prove theorems and illustrate each with elementary, but of
paramount interest, examples. In mathematics there are many innocent
looking problems for which classical mathematical proofs are not
within the reach of humans. For one of such problems, namely, four
color theorem, a major breakthrough came in 1976 with the assistance
of electronic computer. Since then such proofs have been added in the
vocabulary of mathematics as computer-based proofs, and have been
successfully applied to several unsolved problems. This has
meticulously �illed the gap between mathematicians and computer



scientists. However, among mathematicians there is a disagreement
whether to accept computer-based proofs 100%. Certainly, such proofs
provide guidance in understanding the problem better, but loses the
�lavor of classical mathematics.

An example that disproves a mathematical statement (shows that it
is false) is called a counterexample. It is beyond doubt that often the
construction of a counterexample is challenging. We shall provide a few
simple examples to clear up this important concept in mathematics.
Next we shall take up one of the most demanding questions in
mathematics “can proofs be exact.” We shall conclude that today’s proof
of a theorem is never permanent, within a few years (sometimes
several years) it is modi�ied/simpli�ied/generalized, and later (often)
you as well as your proof is being criticized. Contemplating this in mind,
we shall mention several proofs that are excessively long for which
mathematicians are searching for shorter proofs. A mathematical
statement that has not yet been rigorously proved is called a conjecture.
We shall cite and explain several conjectures, some of which are
challenging from the last several years. A statement for which different
valid logical arguments lead to different conclusions (namely true and
false) is called a paradox. We shall discuss several paradoxes, some of
which are entertaining. We shall also discuss in detail four paradoxes of
Zeno of Elea (around 495–435 BC, Greece) which require the
acceptance of in�inity. While deciding of bad, good, and beautiful
mathematics is individualistic, several mathematicians/philosophers
have tried to response conclusively. We have tried to recognize the
difference between bad, good, and beautiful mathematics through
simple examples. In the last Sect. 3. 20, we shall take up mainly three
classical problems of antiquity. We shall show that Euclidean tools are
not enough to solve these problems. The most important aspect of
these problems is that the failure of solving these problems has led to
substantial amount of new and deeper mathematics.

In Chap. 4, we shall study subsets of natural numbers. We shall
begin with the sets of prime and composite numbers whose union is
the set of natural numbers. In Sect. 4. 2, we shall discuss Eratosthenes of
Rhodes’ (around 276–194 BC, Greece) method known as Sieve of
Eratosthenes which is apparently the �irst methodical attempt to
separate the primes from the set of natural numbers; Ramanujan highly



composite numbers; Square spirals of Stanislaw Marcin Ulam (1909–
1984, Poland-USA) and his co-workers; Two jewels in number theory
proved by Euclid of Alexandria (around 325–265 BC, Egypt-Greece),
namely, Fundamental Theorem of Arithmetic which ensures every
integer  is either prime or can be expressed as a product of
primes (thus prime numbers are the “atoms” of the natural numbers),
and In�inity of Prime Numbers (which makes their study fascinating);
Theorem of Peter Gustav Lejeune Dirichlet (1805–1859, France) which
ensures every arithmetic sequence  in which a
and d are relatively prime (no common factors other than 1) contains
an in�initude of primes; Present status of Joseph Louis François
Bertrand’s (1822–1900, France) assertion that between any number
and its double there exists at least one prime; and palindromic primes.

In Sect. 4. 3, we shall provide easily veri�iable divisible tests by
certain integers, especially for all primes up to 50, which help in
con�irming for a given number of reasonable size to be composite. In
Sect. 4. 4, we shall examine Pére Marin Mersenne (1588–1648, France)
numbers and primes denoted as . We shall af�irm
that  is the largest known prime. It is not known whether
there exist in�initely many Mersenne primes, if every Mersenne number
is square free, and if there are in�initely many composite Mersenne
numbers. An integer  is said to be perfect (the nomenclature is
due to Pythagoras) if it is equal to the sum of its proper divisors
(excluding itself and including 1). In Sect. 4. 5, we shall prove Euclid’s
result which provides the construction of all even perfect numbers, and
its stronger version due to Euler. The largest known even perfect
number is 

In 1640, the father of modern number theory, Pierre de Fermat
(1601–1665, France), also known as the	prince	of	amateurs	and
mischievous	genius (see Michael Sean Mahoney, 1939–2008, USA
[356,357]), conjectured that Fermat numbers 
without exception are prime. In Sect. 4. 6, we shall follow Euler to show
that  and hence composite. In fact, no other Fermat
primes  with  have been found. In Sect. 4. 7, we shall provide
the proof of Fermat’s Little Theorem: If p is prime and a any positive
integer, then p divides  We shall also show that the converse of



this result does not hold. This innocent looking result turned out to be
fundamental for the progress of number theory. A desire of every
number theorist is to �ind a function  that yields only prime
numbers, and the sequence of primes so obtained is in�inite. Some
known attempts which are only of theoretical importance have been
discussed in Sect. 4. 8. John Wilson’s (1741–1793, England) Theorem
states: If n is a prime, then the quantity  is a whole
number. Joseph Louis Lagrange (1736–1813, Italy-France) not only
completed John Wilson’s result: n is prime iff (both necessary and
suf�icient) n divides  but also proved it; however, his proof
uses complicated arguments. In Sect. 4. 9, we shall give an elementary
proof of the complete result, and because of occurrence of  in the
result we conclude that this result is also only of theoretical interest.

In number theory Christian Goldbach’s (1690–1764, Prussia-
Russia) Conjecture: Every even  is the sum of two, not necessarily
distinct, primes, and is widely known for its simplicity in stating and
complexities in proving. In Sect. 4. 10, we shall summarize the efforts
made in settling Goldbach’s conjecture. Primes of the form p and 
are called twin primes. For these primes the famous conjecture is:
There are in�initely many twin primes. In Sect. 4. 11, we shall provide
the present status of this conjecture. In Sect. 4. 12, we shall consider one
of the most important function in number theory, namely, , which
represents the number of primes less than or equal to a given number

 Karl Friedrich Gauss (1777–1855, Germany) conjectured that 
is asymptotically equal to the ratio  His conjecture now known
as the Prime Number Theorem was independently proved by Jacques
Salomon Hadamard (1865–1963, France) and Charles de la Vallée
Poussin (1866–1962, Belgium). Since then, several proofs of prime
number theorem have been offered, some of these we shall summarize.
A pair of integers in which each is the sum of the divisors of the other is
called an Amicable Pair, or the Friendly Pair. In Sect. 4. 13, we shall
discuss Thabit ibn Qurra’s (826–901, Turkey-Iraq) general formula
which leads to certain types of amicable pairs, and its generalization
due to Euler. Unfortunately, their results require the primality of three
numbers in advance. Although more than  amicable



pairs are known, theoretically it is not known if the number of amicable
pairs is �inite or in�inite.

In Sects. 4. 14 and 4. 15, we shall respectively discuss Fibonacci
(Leonardo of Pisa, around 1170–1250, Italy) and François E� douard
Anatole Lucas (1842–1891, France) numbers. For these numbers we
shall provide recurrence relations, explicit solutions, identities, and
generating functions. We shall notice that Fibonacci numbers occur in
nature in many surprising ways. It has been conjectured that there are
in�initely many Fibonacci as well as Lucas primes. In Sect. 4. 16, we shall
provide the construction of Golden Section/Ratio (also known as Divine
Proportion)  and show its connection with Fibonacci
and Lucas numbers. The number  is found in nature, art, architecture,
poetry, music, and of course mathematics. Psychologists have shown
that the golden ratio subconsciously affects many of our choices, such
as where to sit as we enter a large auditorium, where to stand on a
stage when we address an audience, and so on.

The main aim of Sect. 4. 17 is to discuss Gauss Law of Quadratic
Reciprocity, which he called the gem of arithmetic, and remained
fascinated by it throughout his life. In fact, out of 246 known proofs of
this law 8 belongs to Gauss. In Sect. 4. 18, we shall prove that there are
in�inite number of primes of the form  and  any number
of the form  cannot be expressed as a sum  of two perfect
squares; and Fermat’s Two Square Theorem: if n is a prime number,
then it can be expressed as a unique (except the order) sum of two
squares iff either  or  Fermat’s this result is cited in
any discussion of mathematical beauty. In Sect. 4. 19, we shall sate and
partially prove Adrien-Marie Legendre’s (1752–1833, France) Three-
Square Theorem: An integer n can be represented as the sum of three
squares of integers, i.e.,  iff n is not of the form

 for nonnegative integers h and  In this result the
representation is not necessarily unique. In Sect. 4. 20, we shall prove
Lagrange’s Four-Square Theorem: Every positive integer can be written
as the sum of four integer squares. In this result, the representation is
also not necessarily unique.

Keeping in mind that the converse of Fermat’s Little Theorem does
not hold, a composite number n is called Carmichael Number (after



Robert Daniel Carmichael, 1879–1967, USA) provided n divides 
for all integers  In Sect. 4. 21, we shall provide a characterization of
Carmichael numbers. In Sect. 4. 22, we shall discuss the importance of
the numbers 714 and 715, and the new mathematics that has emerged
from these numbers. In Sect. 4. 23, we shall discuss Bell Primes, Marie-
Sophie Germain (1776–1831, France) Primes, Balanced Primes,
Ferdinand Gotthold Max Eisenstein (1823–1852, Germany) Real
Primes, Primorial Primes, Fortunate Numbers, Good Primes, Denis
Arthur Higgs (1932–2011, England), and Ramanujan Primes, which are
special subsets of prime numbers that have been studied with great
interest. In Sect. 4. 24, we shall conclude this chapter by answering the
necessity to �ind next larger prime number. It is interesting to note that
a few prime numbers were known almost 22,000 years back; Hindus
had adequate knowledge of prime, perfect, and amicable numbers,
much before the days of Pythagoreans; and Fibonacci numbers were
known to Hindus by the name matrameru during 500 BC.

An ever fresh result in geometry is Pythagoras (or Pythagorean)
Theorem: If a and b are the lengths of the two legs of a right triangle,
and c is the length of the hypotenuse, then the sum of the areas of the
two squares on the legs equals the area of the square on the
hypotenuse, i.e.,  This equation has been ranked very high
among all mathematical equations, and appreciated throughout the
history for its simplicity and variety of applications. In Chap. 5, we shall
provide its origin which is at least 5200 years old. For Pythagorean
theorem almost 500 different proofs are known; out of these we shall
provide �ive which are elementary and have historical importance.
Among these we include a proof owing to President James Abram
Gar�ield (1831–1881). We shall also furnish the converse of
Pythagorean theorem. Then we shall detail �ive important
generalizations of Pythagorean theorem which were contributed by
Hippocrates of Chios (around 470 BC, Greece), Alexandrian Claudius
Ptolemaeus (Ptolemy, around 90–168, Egypt-Greece), Pappus of
Alexandria (around 290–350, Egypt, was either Greek or a Hellenized
Egyptian), ibn Qurra, and the Law of Cosines which �irst appeared in
Euclid’s Book II (Propositions 12 and 13) and explicitly stated by
Jemshid al-Kashi (around 1380–1429, Persia). Next, we shall generalize
Pythagorean theorem in vector spaces, and show how it encompasses



for rectangular solids. We shall also prove three abstract results which
are due to Jean Paul de Gua de Malves (1713–1785, France), D.R.
Conant (USA) and W.A. Beyer (USA), and Eisso Atzema (USA). Finally,
we shall discuss Pythagorean theorem in non-Euclidean geometry.
Speci�ically, we shall present spherical law of cosine which was
recorded in the �irst book on Astronomy Surya	Siddhanta, hyperbolic
law of cosine which was �irst known to Franz Adolph Taurinus (1794–
1874, Germany), Pythagorean theorem in Riemannian geometry which
was �irst given by George Friedrich Bernhard Riemann (1826–1866,
Germany) in his doctoral address in 1854, and give reason why
Pythagorean theorem fails in Elliptic geometry. We shall conclude this
chapter with 11 historical problems and an example that requires
Pythagorean theorem.

A set of three positive integers  and c which satis�ies
Pythagorean relation  is called Pythagorean	triple and
written as an ordered triple  A triangle whose sides form a
Pythagorean triple is called a Pythagorean triangle, which is clearly a
right triangle. A Pythagorean triple  is said to be primitive if

 have no common divisor other than  In Chap. 6, we shall make
a systematic investigation of primitive Pythagorean triples. In Sect. 6. 2,
we shall show that Hindus, Babylonians, Egyptians, and Chinese were
having ample knowledge of Pythagorean triples several centuries
before Pythagoras. In Sect. 6. 3, we shall provide Euclid’s proposition
which gives the characterization of all primitive Pythagorean triples.
This proposition was later proved by several mathematicians; we shall
break the proof in six parts and give complete details. In this section we
shall also furnish a table of primitive Pythagorean triples with

 In Sect. 6. 4, for the primitive Pythagorean triples we shall
provide 36 elementary results which can be considered as the modern
beginning of the number theory. For example, we shall show that in a
primitive Pythagorean triple  either a or b is divisible by 
either a or b is divisible by  and either  or c is divisible by  and
hence the product ab is divisible by  and the product abc is divisible
by  As an another example, we shall show that perimeter of a
primitive Pythagorean triangle and its area are the same only for the
Pythagorean triple 



In Sect. 6. 5, we shall provide triples ensuring the construction of
right-angled triangles whose sides are rational numbers. For this, we
shall assume that a rational side or rational hypotenuse is given in
advance. A Heronian triangle  has integer sides whose area is
also an integer. Clearly, every Pythagorean triple is a Heronian triple,
and hence there are in�initely many primitive Heronian triples;
however, the converse is not true. In Sect. 6. 6, for a given Heronian
triangle we shall provide Brahmagupta’s proportional condition which
the triple  must satisfy, and for a given triple  suf�icient
conditions so that it is a Heronian triangle. A congruent number is a
positive integer that is equal to the area of a rational right triangle. In
Sect. 6. 7, we shall list �irst ten congruent numbers and provide the
simplest rational right triangle for the congruent number  So far, to
decide if a given positive integer is congruent remains an open number-
theoretic problem.

Fermat’s claim of 1637 that the equation  has no
positive integer solutions for  and c if  is known as Fermat’s
Last Theorem. In Sect. 6. 8, we shall record the continuous struggle of
several outstanding mathematicians for 350 years to prove this result,
until Andrew John Wiles (born 1953, England) resolved it in 1994. For
this, he employed known theories from many branches of mathematics;
his original 200-page-long proof (it would be 1000 pages if all details
are provided) was published in 1995 after condensing it to 129 pages.
Apparently only very few people understand Andrew Wiles’s proof, and
the world is waiting for a simpler proof. A tuple of four integers 
and d such that  is called Pythagorean quadruple, and

 is called primitive if the greatest common divisor of its
numbers is  In Sect. 6. 9, we shall provide a few characterizations for
the construction of Pythagorean quadruple. In Sect. 6. 10, we shall
report several identities which not only generalize Pythagorean
quadruple but also parameterizes the sum of three cubes into a cube,
i.e., of the form  In an effort to generalize Fermat’s
Last Theorem, in 1769, Euler conjectured that 
implies  From Sect. 6. 10 it follows that Euler’s conjecture holds
for  In Sect. 6. 11, we shall provide counterexamples to show that
his conjecture is not true for  and  For  the validity of



the conjecture is unknown. We shall also provide several examples for
 which support Euler’s conjecture. Finally, in Sect. 6. 12, we

shall discuss Eugéne Charles Catalan (1814–1894, Belgium-France) and
Subbayya Sivasankaranarayana Pillai (1901–1950, India) conjectures.
Catalan conjecture con�irms that the only solution in natural numbers
of the equation  for  is

 Pillai’s conjecture (which is a
generalization of Catalan’s conjecture) says for �ixed positive integers

 the equation  has only �initely many
solutions  with  So far for the Pillai’s
conjecture the number of solutions has been calculated only for some
particular cases.

Figurative numbers are numbers that can be represented in a
geometric pattern, usually by dots/pebbles arranged in various regular
and discrete patterns. It has been accepted that Pythagoreans were the
�irst to study triangular and square �igurative numbers. Nicomachus of
Gerasa (around 60–120, Syria-Greece) in his book Introduction	to
Arithmetic (see [394]) of around 100 AD collected earlier works of
Pythagoreans on natural numbers, and presented cubic �igurative
numbers (solid numbers). Since then, the study of �igurative numbers
continues to be a source of interest and motivation to both amateur and
professional mathematicians. In Chap. 7, we shall study 34 different
types of �igurative numbers, starting with triangular numbers. For each
type of �igurative number, we shall provide: recurrence relation (which
leads to an in�inite sequence), the general term, various equalities,
numerous properties, explicit relation with other numbers, necessary
condition for a given number to be a �igurative number, generating
function, sum of �irst n and inverse of all terms of the sequence, and
some possible applications. We shall also provide sums of �irst n
positive integers with positive integer exponents, and some bounds
when the exponents are positive fractions. Fermat in 1638 claimed that
every positive integer is expressible as at most  k-gonal numbers
(Fermat’s Polygonal Number Theorem). His theorem was fully resolved
in 1813 by Augustin-Louis Cauchy (1789–1857, France). A dif�icult
triangular case (every positive integer is the sum of three or fewer
triangular numbers) was disposed of by Gauss in 1796. In the



literature, Gauss result is known as EGPHKA theorem, and he wrote it
as EGPHKA! num 

One of the greatest discoveries in the whole of mathematics is the
invention of irrational numbers, and then their understanding. In Chap.
8, we shall demonstrate that Vedic Ascetics more than 5000 years back
were unsuccessful in �inding exact values of the numbers  and 
The ancient records (supported by great philosophers, mathematicians,
and historians) stipulate that Vedic Ascetics were also de�inite that
these numbers are incommensurable/irrational. We shall exhibit that
the claim of the historians of mathematics that Pythagoras proved the
irrationality of  is only conjectural. In fact, the �irst geometric proof
of the irrationality of  appeared only in Meno (Socratic dialogue by
Plato) almost two hundred years after Pythagoras. Since then several
different proofs of the irrationality of  and in general for  for
any natural number N which is not a perfect square have been given.
We have provided some of these important proofs. The next major
understanding of irrational numbers came from the scholars of the
Islamic Middle East toward the end of the �irst millennium CE. They
started treating irrational numbers as algebraic objects, and most
importantly provided a geometric interpretation of rational numbers
on a horizontal straight line. Since then research continues for the
known as well as unknown/expected irrational numbers, their subset
of transcendental numbers, and their computation to trillions of
decimal places, we have detailed some of these advancements. We have
also discussed Dedekind-Cantor axiom of the nineteenth century which
provides geometric interpretation of all real numbers, and thus
completes the Islamic work. Particularly, for the number  we have
arranged individual’s contributions chronologically to show that each
continent of the world has contributed in this fascinating �ield of
mathematics. We have also provided very simple proofs of the
irrationality of e and  and transcendence of e and 

We conclude this book with the note that mathematically
interesting sequences of numbers are those that continue without end.
If the primes were �inite, they would be of considerably less interest;
and if it is established ultimately that the perfect numbers are �inite,
their interest will become merely historical. Odd and even numbers, the



primes and composite numbers, the squares, the cubes, the curious
pentagonal numbers, algebraic numbers, irrational numbers,
transcendental numbers, all are in�inite. These in�inite sequences of
numbers among the in�inite sequences of the natural numbers �irst
suggested the revolutionary idea which is cornerstone of the modern
theory of the in�inite.

We hope in future readers of this book will justify (at least
remember) the statement of Archimedes of Syracuse (287–212 BC,
Greece) “the man who �irst states a theorem (poses a problem) deserves
as much credit as the man who �irst proves it.” The present
mathematical knowledge has only reached its present high level
through the labors of numerous centuries for which one cannot
underestimate the in�luence of every culture, personality, philosophy,
region, religion, society, and social status. Of course, the focus of
mathematical scholarship has shifted from place to place throughout
history.

The main purpose of this book is to create interest among students
and teachers at all levels, and hopefully its content should be accessible
even to non-mathematicians. In the book we have combined history,
philosophy, religion, mathematics, and elementary computation. Only at
few places we have used sophisticated mathematical terms, which
readers can easily skip without any lack of consistency. We have
completely avoided tedious proofs, but illustrated the importance of the
results with simple examples. To make this collection stimulating, we
have included amusing anecdotes, puzzles, and historical problems. Our
book requires a certain degree of intellectual maturity and a
willingness to do some thinking on one’s own.

A book of this nature cannot be written without deriving many
valuable ideas from several sources. We express our indebtedness to all
authors, too numerous to acknowledge individually, from whose
specialized knowledge we have been bene�itted. We have also
immensely bene�itted from several websites, especially en.wikipedia.org
and www-history.mcs.st-andrews.ac.uk. Our sincere thanks to Number
Theorists Heng Huat Chan (born 1967, Singapore), Carl Bernard
Pomerance (born 1944, USA), and Stephen George Simpson (born
1946, USA) for clarifying doubts during the process of writing this book
over the period of more than three years.
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1.	Life	and	Teaching	of	Pythagoras
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1.1	 Introduction
Pythagoras is one of the most unexplained personalities in history. He is
among those individuals given the status of becoming a
myth/omnipotent in his own lifetime. Since he followed typical oriental
tradition (the knowledge was passed from one generation to the next
mainly by word to mouth), whatever little we know about him is from
the imaginations and a great many humorous and anecdotal fables
thrown in by the historians who wrote (frequently contradict one
another) and painted his picture hundreds of years after him, which
continues even today. He has been called as mystic philosopher, master
among masters, blend of genius and madness, mysterious, semidivine
sage, divinity, God-like �igure, whereas some have shown doubt that
such a person ever existed. He is considered to be a remarkably
signi�icant �igure in the advancement of mathematics, science, pre-
Socratic philosophy (the study of the fundamental nature of knowledge,
love of wisdom, reality, and existence, the word philosophia is due to
him, and by this he meant the one who is attempting to �ind out),
metaphysics (the term was named by a �irst century CE editor who
assembled various small selections of works of Aristotle, it deals with
the �irst principles of things, including abstract concepts such as being,
knowing, substance, cause, identity, time, and space), metempsychosis
(the transmigration/reincarnation at death of the Soul/Atma/Self of a
human being or animal into a new body of the same or a different
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species), musica universalis (a perfectly harmonious music produced by
the movement of celestial bodies but to be inaudible on the Earth),
ethics, and politics, even though we know comparatively little about his
own achievements (according to custom his followers referred all
discoveries back in the name of their revered master).

Although a lot of these, as has been discovered in recent years, was
already known several centuries before him, the Pythagorean legacy
lasted well over more than two and a half millenniums and continues to
provoke thoughts among scientists including mathematicians even
today, starting from high school students. His philosophy appeared
suddenly and unexpectedly in Einstein’s formulation of the general
theory of relativity. Today, Pythagoras is revered as a prophet by the Ahl-
al-Tawhid or Druze faith along with philosopher Plato. Plato (meaning
broad) is a nickname, his real name was Aristocles, and he died at a
wedding feast. Alfred North Whitehead (1861–1947, England) argued
that “In a sense, Plato and Pythagoras stand nearer to modern physical
science than does Aristotle. The two formers were mathematicians,
whereas Aristotle was the son of a doctor (student of Plato and teacher
of Alexander the Great, 356–323, BC).” In this chapter we shall discuss
various stages of Pythagoras’s life starting from his birth to death, and
those topics his name historians have associated willfully. Philosophy:
Golden Verses (seventy-one lines), which are Human and Divine Virtues
whose aim is to make a Good Men who becomes one of the gods; thirty-
nine symbols that set high divinity, moral, and discipline; also,
reincarnation and transmigration of the soul. Mathematics: numbers
rule the universe; even and odd numbers; arithmetic (Foundation of all
mathematics, pure or applied. It is the most useful of all sciences, and
there is, probably, no other branch of human knowledge that is more
widely spread among the masses. In Book VII of his master work The
Republic, Plato advises: “We must endeavor to persuade those who are
to be the principal men of the state to go and learn arithmetic.”),
geometry, and harmonic means; �igurative numbers; consonant
intervals; relations between mathematics and music; Pythagorean
theorem; Pythagorean triples; incommensurability; regular polygon;
and regular polyhedra (Platonic solid). Astronomy: Kosmos; twelve
concentric spheres; Philia.



1.2	 Life	of	Pythagoras
Pythagoras was born in around 582 BC (there is no certainty regarding
the exact year) on the island of Samos (it was a thriving cultural hub
known for its feats of advanced architectural engineering, including the
building of the Tunnel of Eupalinos, and for its riotous festival culture; it
was also a major center of trade in the Aegean Sea, south of Chios, north
of Patmos and the Dodecanese, and off the coast of Asia Minor, where
traders brought goods from the Near East), Samos is also the birthplace
of the astronomer and mathematician Aristarchus (around 310–230 BC,
Greece), who said that the Sun, and not the Earth, was the center of our
Universe. Aristarchus is also known for the trigonometric inequality that
states that if  and  are acute angles (i.e., between 0 and a right angle)
and , then

In 1955, the town of Tigani on the island of Samos is renamed as
Pythagoria. A statue of Pythagoras is built at the town’s harbor.
Pythagoras busts are in the Capitoline Museums, Rome, and in the
Vatican Museums, Vatican City, showing him as a “tired-looking older
man.” Pythagoras was born to Pythais (his mother, a native of Samos),
and Mnesarchus or Mnesarch (his father, an opulent merchant who
came from the Phoenician city of Tyre; Diogenes Laërtius (around 180–
240, Greece) in his book [326] published in 2013 mentions that he was a
gem cutter or engraver). There is a story that Mnesarchus brought corn
to Samos at a time of famine, and he was granted citizenship of Samos as
a mark of gratitude. Iamblichus of Chalcis (around 245–325, Syria) for
whom Emperor Julian (331—363, Constantinople) wrote “that he was
posterior indeed in time, but not in genius, to Plato,” tells the story that
the Pythia (name of one of the highest priestesses of the Temple of
Apollo at Delphi who also served as its oracle, also known as the Oracle
of Delphi) prophesied that his pregnant mother would give birth to a
male child supremely beautiful, wise, and of bene�it to humankind. We
are also told that he was born of the virgin Parthenis and fathered by the
God Apollo, the Hellenic God of music, prophecy, and learning (blessed



with a superhuman ancestry) for spreading Apollonian wisdom to the
people.

When Pythagoras was born, people, in general, were superstitious
and had strong beliefs in spirits and supernatural forces/occurrences.
Religious cults (speci�ic system of worship) were popular in that era.
Only little is known of Pythagoras childhood, and in fact, all descriptions
of his physical appearance such as he was six feet tall, his body was as
perfectly formed as that of Apollo, in his presence everyone felt humble
and afraid, are likely to be made up except that he had a striking
birthmark on his thigh (some say he had golden thigh, a proof of his
divinity). It is anticipated that he had two brothers, although some
sources say that he had three. As a child, Pythagoras spent his early
years in Samos but travelled widely with his father. There are accounts
of Mnesarchus returning to Tyre with Pythagoras and that he was taught
there by the Chaldeans (Semitic people of Chaldea who seized Babylon
from the Assyrians in the seventh century BC, giving rise to the Neo-
Babylonian or Chaldean dynasty 625–539 BC) and the learned men of
Syria. It seems that he also visited Italy with his father.

Pythagoras parents wanted that their son got the best possible
education. They arranged for the child’s instruction in Lyre (kithara)
playing, gymnastics, and painting. During his childhood as well as
boyhood days, his mother and father both had immense in�luence on his
highly receptive mind. They provided the most vital building block of his
multifaceted character. Pythagoras learnt a lot in science and philosophy
from Pherecydes of Syros (around 600–520 BC, Greece), his �irst teacher.
Pherecydes authored a book on cosmogony (the branch of science that
deals with the origin of the Universe, especially the solar system),
derived from three divine principles, Zas, Cthonie and Chronos, known
as the “Pentemychos.” It formed a bridge between the mythological
thought of Hesiod (around 750–650 BC, Greek) and pre-Socratic
philosophy. Pythagoras remained in touch with him until Pherecydes
death. At the age of 18, shortly after the death of his father, Pythagoras
went to Lesbos, a Greek island located in the northeastern Aegean Sea.

In Lesbos, Pythagoras worked and learnt from (Sophos) Thales of
Miletus (around 625–545 BC, Greece). According to Proclus Diadochus
(410–485, Greece), the last major Greek philosopher, Thales was the
�irst to go to Egypt in search of wisdom and knowledge. Thales is



considered Greek’s earliest naturalist, �irst who used demonstrative and
deductive reasoning of Greek geometry, astronomer, philosopher,
engineer, and one of the “seven wise men of antiquity” (others are:
Pittacus of Mytilene (around 640–568 BC), Bias of Priene (�l. in sixth
century BC), Solon of Athens (around 638–558 BC), Cleobulus of Lindos
(�l. in 600 BC), Periander of Corinth (around 634–585 BC), and Chilon of
Sparta (�l. around 555 BC). In mathematics his special case of the
inscribed angle theorem is well known. He also stated that for any two
equiangular triangles, the ratio of any two corresponding sides is always
the same. Aristotle, known as the Father of Western Philosophy, records
Thales teaching (perceived as a valuable gift and not as a hard duty)
that, “all things are full of gods,” and another ancient source attributes to
him the statement, “the mind of the world is God and the whole is
imbued with soul and full of sprits.”

Thales is remembered by several apposite but probably apocryphal
anecdotes. He astounded the Egyptians by calculating the height of a
pyramid using proportionate right-angled triangles; diverted the river
Halys, the frontier between Lydia and Persia, to enable a Lydian army
under Croesus to cross; taught that a year contained about 365 days
(Sun to complete its orbit about the Earth), and not twelve months of
thirty days; believed that the Earth is a disc-like body �loating on water;
and correctly forecasted a plentiful olive crop one year after several bad
crops, bought all olive presses around Miletus, and made a huge pro�it
by renting them. He is believed to have predicted that a total solar
eclipse would occur during May of 585 BC; however, it was not until long
after the sixth century that Chaldean astronomers could give reasonably
accurate predictions of eclipses of the Moon, though they were never
able to predict that an eclipse of the Sun would be seen in a particular
region. Thales was not the kindest of people. It is said that once when he
was transporting some salt, which was loaded on mules, one of the
animals slipped in a stream, dampened its load, and so caused some of
the salt to dissolve. Finding its burden thus lightened it rolled over at the
next ford to which it came. To break it of this trick, Thales loaded it with
rags and sponges that absorbed the water, made the load heavier, and
soon effectually cured it of its troublesome habit. Thales never married.
When Solon asked why, Thales arranged a cruel ruse whereby a
messenger brought Solon news of his son’s death. According to Plutarch



of Chaeronea (around 46–120, Greece), Solon then “…began to beat his
head and to do say all that is usual with men in transports of grief.” But
Thales took his hand, and with a smile said, “These things, Solon, keep
me from marriage and rearing children, which are too great for even
your constancy to support, however, be not concerned at the report, for
it is a �iction.” Another favorite tale Plato told was that one night when
Thales, while walking and stargazing, fell into a ditch, whereupon a
pretty Thracian girl mocked him for trying to learn about the heavens,
while he could not see what was lying at his feet. The following theory of
Thales’ is silly: He believed that this globe of lands is sustained by water
and is carried along like a boat, and on the occasions when the Earth is
said to quake, it is �luctuating because of the movement of the water. It is
no wonder, therefore, that there is abundant water for making the rivers
�low since the entire world is �loating.

Thales introduced skepticism and criticism to Greek philosophy,
which separates the Greek thinkers from those of earlier civilizations.
His philosophy is called monism—the belief that everything is one.
When Thales was asked what is most dif�icult, he said, “To know thyself.”
Asked what is most easy, he replied, “To give advice,” and when asked
what was the strangest thing he had ever seen, he answered “An aged
tyrant.” Thales founded the Ionian School, which continued to �lourish
until about 400 BC. Anaximander of Miletus (around 610–547 BC,
Greece) and Anaximenes of Miletus (around 585–525 BC, Greece) were
his meritorious students. The importance of the Ionian School for
philosophy and the philosophy of science is without dispute. The most
in�luential lessen Pythagoras learned from Thales was the value of time
in the pursuit of knowledge. Iamblichus informs us that Pythagoras
refrained from wine and meat for the rest of his life. He used to eat only
moderate portions of simple foods, his periods of sleep were short, his
mind sharp, his spirit pure, and the health of his body excellent. Next,
Pythagoras studied with Anaximander, who was the �irst of the Greeks
to explain the origins of man, and one of the earliest thinkers of exact
sciences, and interested in geometry and cosmology (the science of the
origin and development of the Universe). Anaximander believed that
from �ish evolved man, and gods were born, but the time is long between
their birth and their death. Anaximander produced the �irst map of the
known, inhabited world, and taught that heavenly bodies travel along



concentric celestial spheres. Both the personalities had profound impact
on the thinking process about the visible and invisible worlds of young
Pythagoras.

According to Iamblichus, on the recommendation of Thales, who
himself visited Egypt to learn mathematics, Pythagoras came to acquire
knowledge mainly with the priests at Memphis who were renowned for
their wisdom, at the age of 23, and stayed in Egypt until he was 44.
There is some evidence that Pythagoras went to Egypt with a letter of
introduction written by the tyrant Polycrates who was then controlling
the city of Samos. Polycrates had an alliance with Egypt, and there were
therefore strong links between Samos and Egypt at that time. During
these 21 years, he visited many temples and took part in many
discussions with the priests (according to Porphyry of Tyre, 233–305,
Lebanon, Pythagoras was refused admission to all the temples except
the one at Diospolis (i.e., Thebes) where he was accepted into the
priesthood after completing the rites necessary for admission, the �irst
foreigner ever to do so). The writer Antiphon of Rhamnos (around 480–
411 BC, Greece) claimed in his lost work On	Men	of	Outstanding	Merit
that Pythagoras learned to speak Egyptian from the Pharaoh Amasis II
himself. In Egypt he accumulated and absorbed mathematics, medicine,
herbalism (practice of the medicinal and therapeutic use of plants) and
was instructed in the stages of the evolution of the soul. He was
introduced to the Egyptian sciences of architecture (mainly system of
measuring) and music and admitted into the most secret mystery
rituals. For his rest of the life he also adopted the secrecy of the Egyptian
priests, refusal to eat beans (Aristotle relates that abstention from beans
is advised either because they resemble privy parts, or because they are
like the gates of Hades, or because they are destructive, or because they
are like the nature of the Universe, or, �inally, because they are
oligarchical, being used in the choice of rulers by lot; whereas others
have added beans generate belching, indigestion, and bad dreams, or
because a bean has the shape of a human head, or dead friend’s souls
were inside the beans) and animal �lesh, refusal to wear cloths made
from animal skins, and striving for purity. From Egyptian priests, he also
advanced his knowledge of geometry that he was already acquainted
with the teachings of Thales and Anaximander (geometry was
systematically studied by Egyptian priests because the periodical



inundations of the Nile River obliterated property lines). According to a
Christian theologian Clement of Alexandria (150–215, Greece),
Pythagoras was a disciple of Soches, an Egyptian arch prophet.

When Pythagoras was 44 years old, Cambyses II, the king of Persia,
invaded Egypt. Polycrates abandoned his alliance with Egypt and sent
40 ships to join the Persian �leet against the Egyptians. After Cambyses
had won the Battle of Pelusium in the Nile Delta and had captured
Heliopolis and Memphis, Egyptian resistance collapsed. The historian
Herodotus of Halicarnassus (around 484–425 BC, Greece) portrays
Cambyses as a mad king who committed many acts of sacrilege during
his stay in Egypt, including the slaying of the sacred Apis calf.
Pythagoras was taken prisoner and taken to Babylon (the largest and
most sophisticated city in that part of the world in those days). Soon
after, Polycrates was killed and Cambyses died either by committing
suicide or as the result of an accident. Iamblichus writes that Pythagoras
“…was transported by the followers of Cambyses as a prisoner of war.
Whilst he was there he gladly associated with the Magoi (priests in
Zoroastrianism and the earlier religions of the western Iranians) …and
was instructed in their sacred rites and learnt about a very mystical
worship of the gods. He also reached the acme of perfection in
arithmetic and music and the other mathematical sciences (cluster of
intertwined subjects) taught by the Babylonians….” From magi he also
mastered most advanced astronomy (in astronomy we observe, record
our observations, reduce them whenever possible to numerical
statements, and frame hypotheses to correlate what we observe). In
Babylonia, he learned “the motion of God is circular, God’s body is like
light, and his soul is like truth” (however, according to Zhmud [548]
stories of his travels to Egypt and other lands are probably spurious).

Pythagoras returned to Samos when he was about 55. There he
con�ided to a friend: “I am a different man, I am reborn. Through this
puri�ication, my center of being has changed. Now truth is not a concept
to me, but a life.” In Samos the people welcomed him warmly and
possessed by his nobility and passion. They were very curious to see
him after hearing marvelous deeds (mesmerism) that he had subdued a
razing huge bear by simply “the power of his voice” and “in�luence of
touch” at the beast and commanding it in the name of Apollo to abstain,
and converse with rivers (once the spirit of a river arose a voice,



“Pythagoras, I greet thee”). In Samos Pythagoras started an organization
which he called the semicircle. Iamblichus records that “…he formed a
school in the city [of Samos], the ‘semicircle’ of Pythagoras, which is
known by that name even today, in which the Samians hold political
meetings. They do this because they think one should discuss questions
about goodness, justice and expediency in this place which was founded
by the man who made all these subjects his business. Outside the city he
made a cave the private site of his own philosophical teaching, spending
most of the night and daytime there and doing research into the uses of
mathematics….” Supposedly, the school became so renowned that the
brightest minds in all of Greece came to Samos to hear Pythagoras teach.
During that period, Darius of Persia (around 550–486 BC) was in control
of Samos, but this con�licts with the writings of Porphyry and Laërtius
who claimed that Polycrates was still in control of Samos when
Pythagoras returned there.

The political affairs of Pythagoras native city were not conducive to
philosophy, so in less than two years he moved to Croton (now Crotone,
on the heal of southern Italy, then the wealthiest and most learned city
of Magna Graecia inhabited largely by Greeks). Iamblichus gives two
reasons for him leaving. First Pythagoras tried to use his symbolic
method of teaching which was similar in all respects to the lessons he
had learnt in Egypt. The Samians were not very keen on this method and
treated him in a rude and improper manner. Second, he was dragged
into all sorts of diplomatic missions by his fellow citizens and forced to
participate in public affairs in which he was least interested. Iamblichus
further narrates a magical feat, within a few days after Pythagoras
arrived at Croton, he saw �ishermen pulling in a large haul of �ish.
Pythagoras told them how many �ish they had. When they tallied their
catch, they were stunned to learn that he was correct. When Pythagoras
ordered the men to return the �ish to the sea, they thought it best to
comply. As if by a further miracle, not one �ish died. He was welcomed
eagerly in Croton and served as an advisor to elites and gave them
frequent advice. There he started a semi-religious school that was
mainly involved in teaching and learning of mathematics (more a
humanity than a science), music, philosophy, astronomy, and their
relationship with religion. Several commentators have af�irmed that
Pythagorean School was in the house of Milo of Croton (sixth century



BC, Italy) who was a loyal Pythagorean, and by profession army
commander and wrestler who secured many victories in the most
important athletic festivals of ancient Greece. Aristotle called Milo “an
excessive eater” as he used to eat nine kilograms of meat and the same
amount of bread every day, and drank ten liters of wine.

Initially, Pythagoras had a group of as many as 600 talented students
of all ranks, male and female (who broke a law which forbade their
going to public meetings). Each member of this group had already
established personal controls of self-discipline. The Pythagorean Order
(also known as putative Pythagoreanism movement) was largely a
mystical organization (like the earlier Orphic cult which proposed new
doctrine by which to live, preaching temperance, communal living and
domination, emphasized transmigration of souls after death into new
bodies, and most importantly government by only very few
enlightened), in some ways a monastery, rather than a school as we
know today. He divided those who attended his school into two main
sects akousmatikoi (from akousma, “esoteric teachings”) and
mathematikoi (from mathematikos, “scienti�ic”), whom we prefer to
term as probationers and Pythagoreans (Pythagoras followers, the term
coined by Herodotus) [however, Zhmud [548] writes the distinction
between mathematikoi and akousmatikoi was a much later fabrication].
Some historians have claimed that Pythagorean School consisted of two
groups of disciples: the insiders (“Esoteric Pythagoreans”) and the
outsiders (the Exoteric, also called Pythagoristae). Dicaearchus of
Messana (around 350–285 BC, Greece) one of Aristotle’s students wrote
that the majority were probationers who had to maintain silence (called
echemythia) for �ive years. Porphyry stated in his Vita	Pythagorae:
“What Pythagoras said to his associates there is no one who can tell for
certain, since they observed a quite unusual silence.”

Pythagoras’s teaching methods were followed by the Hugh of Saint
Victor (1096–1141, Duchy of Saxony-France), a leading theologian and
writer on mystical theology (the study of the nature of God and religious
belief), who in his The	Didascalion (a comprehensive early encyclopedia,
as well as commentaries on the Scriptures and on the Celestial
Hierarchy of Pseudo-Dionysius I) writes “for seven years, according to
the number of the seven liberal arts (grammar, rhetoric, and logic [the
trivium] and geometry, arithmetic, music, and astronomy [the



quadrivium, which was long considered to constitute a necessary and
suf�icient course of study for a liberal education]), no one of his pupils
dared ask the reason behind statements made by him; instead, he was to
give credence to the words of the master until he had heard him out, and
then, having done this, he would be able to come at the reason of those
things himself.” At no time they were allowed (akousmata: a list of rules
laid down) to wear garments made of wool, touch a white rooster, and
eat meats (modern scholars doubt that he ever advocated for complete
vegetarianism, this term was coined in the West by 1847) or beans.
There is a extensively repeated story that a group of Pythagoreans was
murdered when they chose to die at the hands of their enemies rather
than escape capture by hiding in a �ield of beans. Another story is that in
the town of Tarentum he observed an ox in a pasture feeding on green
beans. He advised the herdsman to tell his ox that it would be better if
he ate other kinds of food. The herdsman laughed, remarking he did not
know the language of oxen, but if Pythagoras did, he was welcome to tell
him so himself. Pythagoras approached the ox and whispered into the
ear for a long time. The ox never again ate beans and lived to a very old
age near the temple of Hera in Tarentum, where he was treated as
sacred. If any of his pupil failed to survive their low-protein diet, he
could take solace in the belief that he would be reborn again, perhaps in
another form.

Pythagoreans had all things in common, holding the same
philosophical and political beliefs, engaged in the same pursuits, their
food and dress were simple, their discipline severe, their mode of life
arranged to encourage self-command, temperance, purity, and
obedience, were taught by Pythagoras himself. The beliefs that
Pythagoras held were: (1) at its deepest level, reality is mathematical in
nature, (2) philosophy can be used for spiritual puri�ication, (3) the soul
can rise to union with the divine, (4) both the Universe and man, the
macrocosm and microcosm, are constructed on the same harmonic
proportions (also known as The Golden Ratio, see Sect. 4. 16), Leonardo
da Vinci’s (1452–1519, Italy) famous drawing of the Vitruvian man of
1490 can be called Pythagorean in its examination of harmony between
microcosm and macrocosm), (5) all existing objects were fundamentally
composed of form and not of material substance, (6) certain symbols
have a mystical signi�icance, in particular, ten-pointed tetraktys or tetrad



(a triangular �igure consisting of ten points arranged in four rows: one,
two, three, and four points in each row, which is the geometrical
representation of the fourth triangular number, see Sects. 2. 9 and 7. 2)
that symbolizes all the visible and invisible dimensions of creation, (7)
all brothers of the order should observe mutual regards, devotion to
each other, strict loyalty, and secrecy (not to reveal sensitive information
that could be misinterpreted without proper training and might
compromise the society), (8) excess brings lust, intoxication, and
uncontrolled emotions, which drive men and women into abyss, (9)
greed brings envy, theft, and exploitation, (10) all disease is caused by
indigestion, (11) remove your shoes before worship, and (12) hard
physical work is a slow poison destructive of creative thinking. He also
advised that it is best to make love to women in winter, but not in the
summer, and only occasionally in autumn and spring.

Pythagoras warned his disciples that when they prayed, they should
not pray for themselves; that when they asked things of the gods they
should not ask things for themselves, because no man knows what is
good for him and it is for this reason undesirable to ask for things which,
if obtained, would only prove to be injurious. Pythagoras advocated to
them following several advantages of knowledge over other earthly
possessions (see Seven Great Bible Verses About Earthly Possessions)
such as wealth, fame, beauty, power, and strength: Knowledge bene�its
not only the individual, but also society; without knowledge, we are
unable to enjoy the bene�its of other goods; knowledge is not
diminished when used or given away; most men and women, by birth or
nature, lack the means to advance in wealth and power, but all have the
ability to advance in knowledge; unlike the body, which in spite of all our
care will decay and die, knowledge lasts throughout life, and for some,
brings immortal fame; knowledge always leads men and women to serve
others. He adds “the most cleansing of all puri�ications from the taints of
many lives is the pursuit of knowledge for its own sake.”

Relating complete mankind to a gathering at the Olympic Games,
Pythagoras proclaimed “Men are of three kinds; the lowest come to the
Games to buy and sell; the next higher to compete; the highest come to
look on, so it is with life.” For Pythagoras, the dyad (something that
consists of two elements or parts) was the source of opposites that
brings harmony on the Earth. The following ten dyads of Pythagoras



have been preserved by Aristotle in his Metaphysics: Limited and
Unlimited, as ultimate principles, or truths; numerical oddness and
evenness are equated with Limited and Unlimited; one and plurality
(many); right and left; male and female; motionlessness and movement;
straight and crooked; light and darkness; good and evil; and square and
oblong. It is ambiguous whether an ultimate One, or Monad (a term
meaning unit used by Pythagoras to signify a variety of entities from a
genus to God) was presented as the cause of the two categories. In
ancient Chinese philosophy (before 600 BC) dyads was known as Yin
and Yang, which represents the belief that the world arises out of the
interplay of opposite forces. Within the human body, traditional Chinese
physicians believe, Yin and Yang forces must be balanced. Acupuncture,
the insertion of needles into speci�ic spots on the body to relieve pain or
disease, a practice developed many centuries ago in China is believed to
“negate,” or unblock, the pathways in the body in order to restore
balance and health.

According to Pythagoras east was more important than the west, the
morning than the evening, the beginning than the end, city planners
than city builders, and gods were more worthy of honor than demigods,
heroes, and men. He advised that one should be mindful of the gods at
all times, giving them praise, and granting them credit for what appear
to be our own accomplishments. Pythagoras taught that nothing
happens by chance or fortune, but everything takes place according to a
divine plan. This is depicted by an episode about the Pythagorean,
Thymaridas of Tarentium (400–350 BC, Greece) who was sailing from
his country. His companions were there for the purpose of bidding him
farewell. He was about to embark when one of his companions said to
him, “Thymaridas, I pray that the gods grant you all you desire.” He
responded, “Pray for better things, my friend. Pray that what happens to
me may conform to the desires of the gods.” Thymaridas knew that
whatever the outcome of his journey, it would be wrong to question the
wisdom of divine providence. Pythagoras also placed particular
emphasis on the importance of physical exercise (he used to stand on
one leg), therapeutic dancing, daily morning walks along scenic routes,
and athletics. He has been quoted as saying, “No man is free who cannot
command himself.”



In Croton amongst his most attentive auditors was Theano (around
546 BC, Greece), the young and beautiful daughter of Pythonax of Crete
(an Orphic philosopher and physician) who was a great supporter of
Pythagoras. According to Porphyry, in spite of the disparity of their ages,
Pythagoras married her when he was 60. The couple had three children
(some say seven): two sons, Mnesarchus (named after his grandfather)
and Telauges (who apparently died while still a young man), and a
daughter, Damo (according to Iamblichus, she married to Meno the
Crotonian). Pythagoras regarded the bearing and raising of children as
sacred responsibilities. He maintained that this was a duty of men and
women to the gods, so that their worship might continue into future
generations. There is a strong conviction that Theano wrote several
texts including a treatise on the principle of the golden mean (she told
Hippodamus of Thutrium 498–408 BC, Greece, that her treatise On
Virtue contained the doctrine of the golden mean) the felicitous middle
between the extremes of excess and de�iciency, but all are lost. She is
also credited for not only inspiring Pythagoras during the years of his
life but after his death continued to promulgate his doctrines. She also
wrote a biography of her husband, but unfortunately it is also lost.

Pythagoras cult known as the secret	brotherhood reached its peak in
Croton and spread in many southern Italian cities including some parts
of the Middle East. The members of brotherhood exclusively and
systematically applied deductive reasoning in solving mathematical
problems. A distinctive badge of this brotherhood, by which they could
recognize each other, was the beautiful star pentagram/Pentalpha (like
a star in the �lag, and the headquarters building of defence, of the United
States)—a �it symbol of the mathematics (see Fig. 1.1). It was also
Pythagorean emblem of health. In several cultures pentagon is still used
as a symbol of faith. Further, over the period of 2500 years scientists
have discovered its numerous mathematical properties. E� douard Schuré
(1841–1929, France) in [455], Bell, and others have related the
following incident to illustrate the bond of fellowship between
Pythagoreans: “One of them who had fallen upon sickness and poverty
was kindly taken in by an innkeeper. Before dying he traced a few
mysterious signs (the pentagram, no doubt) on the door of the inn and
said to the host, ‘Do not be uneasy, one of my brothers will pay my
debts.’ A year afterwards, as a stranger was passing by this inn he saw



the signs and said to the host, ‘I am a Pythagorean; one of my brothers
died here; tell me what I owe you on his account.”’

Fig.	1.1 Pentagram
Around 510 BC Croton attacked and defeated several neighboring

colonies in southern Italy, including Caulonia, Terina, and Sybaris, and
there are some propositions that Pythagoras was involved in these
combats. Then, around 509 BC, Cylon a noble from Croton led a revolt
against the Pythagoreans. Iamblichus quotes (perhaps due to Porphyry):
“Cylon, a Crotoniate and leading citizen by birth, fame and riches, but
otherwise a dif�icult, violent, disturbing and tyrannically disposed man,
eagerly desired to participate in the Pythagorean way of life. He
approached Pythagoras (around 509 BC), then an old man, but was
rejected because of the character defects just described. When this
happened Cylon and his friends vowed to make a strong attack on
Pythagoras and his followers. They started with false propaganda which
disgruntled the minds of the common people against the Pythagoreans.
Thus a powerfully aggressive zeal activated Cylon and his followers to
persecute the Pythagoreans to the very last man.” While Iamblichus
himself does not accept this version and argues that the attack by Cylon
was a minor affair, it is believed that in the decisive moment of the
revolt, a meeting house was set on �ire as 40 Pythagoreans were
debating inside. Some accounts state that Pythagoras also died in the
�ire; others have it that he died of grief, sorrowing over how dif�icult a
task it was to elevate humanity. However, the general agreement is that
Pythagoras with some of disciples escaped to Tarentum and
reestablished themselves at once as a philosophical and mathematical
society, and they continued to �lourish for another several years, and
then they had to move again, this time to Metapontus where he lived
four years before he died at the age of 99 in 481 BC.



According to tradition, Pythagoras was buried in Metapontus. After
the death of Pythagoras Crotonians repented of losing the great
philosopher and master. It was apparently Aristaeus of Croton (6th-5th
BC, Greece), a Pythagorean, who according to Iamblichus married his
widow Theano, helped in reestablishing the Pythagorean community in
Croton, and became its head. The successors to Aristaeus were
Mnesarchus (the son of Pythagoras), Boulagoras, Gartydas of Croton,
Aresas of Lucania, Diodorus of Aspendus, Philolaus of Croton (around
480–405 BC), and Archytas of Tarentum (around 428–347 BC) who
saved Plato when his life was in peril at the court of Dionysius I or
Dionysius the Elder (around 432–367 BC, Greece), the tyrant of
Syracuse. Philolaus is said to have published a detailed summary of
Pythagorean philosophy and science (see Burkert [109] and Huffman
[269]), whereas Archytas besides being a mathematician also known for
his enlightened attitude in his treatment of slaves and in the education
of children (see Huffman [269,270]). Iamblichus provides a list of 235
famous Pythagoreans, seventeen of whom are women. In this list some
of the distinguished Pythagoreans who pursued mathematics are
Hippasus of Metapontum (around 530–450 BC, Greece) made his
discovery of the existence of irrational numbers (cannot be written as
the fraction of two integers); Philolaus systematized Pythagoras’s
number theory; Theodorus of Cyrene (around 431 BC, Libya-Greece)
was the mathematical teacher of Plato, he showed how to construct a
line segment of length  (the sign  was introduced in 1525 by
Christoff Rudolff, 1499–1545, Germany-Austria) for any positive integer

 and Archytas solved the problem of doubling the cube with a
geometric construction.

It is strange historians have not mentioned even a single
Pythagorean who followed footsteps of Pythagoras in practicing
supernaturalism, mysticism, or superstitiousness. The new era of
Pythagoreanism initiated by Plato’s disciples to claim that the
separation of layers of reality and positing a pair of abstract ultimate
principles are not the innovations of Plato but belong to the very core of
Pythagoreanism. The brotherhood virtually disappeared in the late third
century BC. However, his teachings underwent a major revival in the
�irst century BC among Middle Platonists, coinciding with the rise of
Neopythagoreanism. In 1917, an underground basilica, known as Porta



Maggiore	Basilica, was discovered in Rome. It is dated to the �irst
century BC and believed to be the only historical meeting place for the
neo-Pythagoreans. Pythagorean teachings as portrayed in Ovid’s
Metamorphoses (Bk XV:60–142) in�luenced the modern vegetarian
movement. To keep Pythagoras immortal, bibliographers have
repeatedly added the following spurious stories:

During a single day, Pythagoras was present in Metapontum in Italy,
and in Tauromenium in Sicily, instructing disciples in both places,
although these cities are separated by land and sea, by some 200 miles.
Some say he was able to travel this distance by means of a golden dart
given to him by Abaris the Hyperborean (a legendary sage, healer, and
priest of Apollo).

One year, when Pythagoras traveled to Olympia for the athletic
games, he met with a group of friends and fell into a discussion of
prophecies, omens, and divine signs. He took the position that men of
piety continually receive messages from the gods if they but attune
themselves to their calling. Flying over his head at that moment was an
eagle, who, at his signal, turned, descended, and perched on
Pythagoras’s arm. After stroking her awhile and continuing his
conversation, he released her.

A shepherd reported that he had heard the sound of chanting coming
from the tomb of a Pythagorean teacher. A student of the deceased,
without hesitation, asked what the song was, not questioning at all the
possibility that the dead might sing.

Pythagoras is believed to have had a remarkable wheel by means of
which he could predict future events, and to have learned hydromancy
from the Egyptians. He believed that brass had oracular powers, because
even when everything was perfectly still there was always a rumbling
sound in brass bowls.

The historians have misled the world by reporting that Pythagoras
was a contemporary of Lord Gautama Buddha “The Enlighten One” (the
historical founder of Buddhism), who actually lived during (1887–1807
BC). In fact, Pythagoras lived during the time of Chinese philosopher and
writer Lao Tse (Born 601 BC and departed to the West in 531 BC).
Several renowned authors and philosophers have strongly suggested
that toward the end of Egypt’s visit, priests recommended Pythagoras to
go to India (Greater Bharat) for mastering mathematics, astronomy,



music, mysticism, Yoga, various religious doctrines, and philosophy. He
made his way through Persia to India, where he continued his education
under the Ajivikas, Jaina, and Brahmin priests (learned men, teachers,
interpreters of Hindu life, temple priests, astrologers, gurus, pandits
specializing in sacred law and Vedic exegesis, indispensable at every
wedding and funeral, and occupying the most exalted niche in the Indian
caste system) of the university of ancient Taxila (founded before tenth
century BC) which was located in the city of Taxila (modern day
Pakistan), on the eastern bank of the Indus river. Sophist Lucius Flavius
Philostratus (around 170–250, Greece) claims that Pythagoras also
studied under Hindu sages in India. In the book India	in	Greece
published in 1852, in England, by the Greek historian Edward Pococke
(1604–1691) reports that Pythagoras, who taught Buddhist philosophy,
was a great missionary. His name indicates his of�ice and position;
Pythagoras in English is equivalent to putha-gorus in Greek and Budha-
guru (or Prithviguru) in Sanskrit (one of the oldest languages of the
world which was literary instrument of mathematicians, astronomers,
and all Hindu scholars), which implies that he was a Buddhist spiritual
leader (this explains the close parallels between Indian and Pythagorean
teaching, living, philosophy, and religion). However, in spite of huge
population of Buddhist in China (around 245 million), the part of the
title of the book of Swetz and Kao Was	Pythagoras	Chinese?	… [502]
cannot be justi�ied.

In [132], Henry Thomas Colebrooke (1765–1837, England) has
shown that the doctrines of Pythagoras were rooted in India. He says:
“Adverting to what has come to us of the history of Pythagoras, I shall
not hesitate to acknowledge an inclination to consider the Grecian to
have been indebted to Indian instructors.” In [452], Leopold von
Schröder (1851–1920, Estonia-Austria) says Pythagoras was “the
bringer of Indian traditions to Greece.” In [283], James Jeans (1877–
1946, England) was the �irst to point out the striking similarities
between the theories of Pythagoras and those of Sankhya system (one of
the six stika schools of Hindu philosophy which was composed before
1200 BC). Pythagoras’s emphasis on number, i.e., Sankhya, James says,
indicates his Indian inspiration. Frank Higgins in his book [262]
maintains that Pythagoras remained in India for several years and
learned from the Brahmins of Elephanta and Ellora. He further adds that



the name of Pythagoras is still preserved in the records of the Brahmins
as Yavancharya, the Ionian Teacher. Burkert [109] and Kahn [291] in
their books have stated that the Greek and the Indians “had to meet
regularly at the New year festival at Persepolis.” Bernabé and Mendoza
[68] in their work mention about a curious instance of a meeting of
Socrates (around 470–399 BC, Greece, he was sentenced to death by the
drinking of a mixture containing poison hemlock, because he was found
guilty of corrupting the minds of the youth of Athens and of impiety “not
believing in the gods of the state”) with an Indian, transmitted or
invented by Aristoxenus of Tarentum (around 360–300 BC, Greece)
[fragment 53]. An analysis of this meeting has been documented by
Lacrosse [323]. The following quotations are also well known:

Francois Marie Arouet Voltaire (1694–1778), one of the greatest
French writers and philosophers: “I am convinced that everything has
come down to us from the banks of Ganga—Astronomy, Astrology, and
Spiritualism. Pythagoras went from Samos to Ganga 2600 years ago to
learn Geometry. He would not have undertaken this journey had the
reputation of the Indian science had not been established before.”

Thomas Stearns Eliot (1888–1965), American-British poet, Nobel
Laureate (1948): “I am convinced that everything has come down to us
from the banks of the Ganga—Astronomy, Astrology, Spiritualism, etc. It
is very important to note that some 2,500 years ago at the least
Pythagoras went from Samos to the Ganga to learn Geometry but he
would certainly not have undertaken such a strange journey had the
reputation of the Brahmins’ science not been long established in
Europe.”

If we do not agree with the fact that Pythagoras was in India for
several years, at least we can certainly say that he was in�luenced by
ideas from India, transmitted via Persia and Egypt.

1.3	 Philosophy	of	Pythagoras
In view of Heraclitus of Ephesus (around 535–475 BC, Greece),
nicknamed as Weeping Philosopher, Pythagoras pursued research and
inquiry more assiduously than any other man. He compounded his
wisdom from polymathy and bad arts. Pythagoras had a profound
in�luence in the writings of Plato (it is very likely a copy of Philolaus’



work came into the possession of Plato), for example, Timacus and
Phaedo exhibit Pythagorean teachings. Mainly Plato advocated that true
knowledge could be acquired only through philosophical contemplation
of abstract ideas and not through observation of the accidental and
imperfect things in the real world. Athenian rhetorician Isocrates (436–
338 BC, Greece) states that, above all else, Pythagoras was known as the
eponymous founder of a new way of life, while Iamblichus, in particular,
presents the “Pythagorean Way of Life” in [277,278] as a pagan
alternative to the Christian monastic communities of his own time.
Godfrey Higgins (1772–1833, England) in [263] �inds several striking
circumstances in which the history of Pythagoras agrees with the
history of Jesus. Johannes Reuchlin (1455–1522, Germany) synthesized
Pythagoreanism with Christian theology and Jewish Kabbalah, arguing
that Kabbalah and Pythagoreanism were both inspired by Mosaic
tradition and that Pythagoras was therefore a kabbalist. Aristotle and
his disciples Dicaearchus, Aristoxenus and Heraclides Ponticus (around
387–312 BC, Turkey-Greece) wrote treatises on Pythagoras, which are
no longer extant.

According to Hermippus of Smyrna (third century BC, Greece)
Pythagoras was familiar with and an admirer of Jewish customs and
wisdom, and he introduced many points of Jewish law into his
philosophy. Ion of Chios (around 490–420 BC, Greece) and Empedocles
of Acragas (around 495–435 BC, Greece) expressed appreciation for
Pythagoras in their poems. Herodotus described Pythagoras as “not the
most insigni�icant” (important sophist) of Greek sages and states that
Pythagoras taught his followers how to attain immortality. Pythagorean
ideas on mathematical perfection also impacted ancient Greek art.
Publius Nigidus Figulus (around 98–45 BC, Greece) founded the
neopythagoreanist School of Philosophy. Pythagoras appears as a
character in the last book of Ovid’s Metamorphoses (�irst published in
eighth century), where Ovid has him expound upon his philosophical
viewpoints. Pythagoras continued to be regarded as a great philosopher
throughout the Middle Ages and his philosophy had a major impact on
scientists such as Nicolaus Copernicus (1473–1543, Poland), Galileo
Galilei (1564–1642, Italy), Johannes Kepler (1571–1630, Germany-
Czechoslovakia), and Newton. The Pythagoras crater located near the
northwestern limb of the Moon was named in his honor. The Pythagoras



Awards, established in 2009, are given annually to Bulgarian nationals
by the Ministry of Science and Education of Bulgaria in recognition for
outstanding scienti�ic achievements. These awards are considered as the
Bulgarian Nobel Prizes.

The	Golden	Verses, written in dactylic hexameter (seventy-one lines
in the form of rhythmic poetry in Greek), are believed to have been
known in the third century BC, and some claim to have been composed
by Empedocles. These fragments are traditionally attributed to
Pythagoras and constitute an important source of Pythagorean
doctrines and philosophy and are assumed to be read each morning and
evening by disciples. These verses have enjoyed great popularity and
widely distributed also quoted throughout since then, especially after
their translations �irst in modern Greek: Chrysea Ep , then in Latin:
Aurea carmina, next in French: Vers d’or in 1706 by André Dacier
(1651–1722, France) and in 1813 by Antoine Fabre d’Olivet (1768–
1825, France), and �inally in English by several authors, e.g., in 1707 by
Nicholas Rowe (1674–1718, England) and in 1995 by Johan Carl Thom
(born 1954, South Africa). The following comprehensive list of self-
explanatory Golden Verses (with minor changes) has been given at
several places, especially in the book of Firth [190]:
1. First worship the immortal gods, as they are established and

ordained by the Law.  
2. Reverence the Oath, and next the Heroes, full of goodness and light. 
3. Honor likewise the Terrestrial Daemons by rendering them the

worship lawfully due to them.  
4. Honor likewise your parents, and those most nearly related to you.  
5. Of all the rest of mankind, make him your friend who distinguishes

himself by his virtue.  
6. Always give ear to his mild exhortations, and take example from his

virtuous and useful actions.  



7. Avoid as much as possible hating your friend for a slight fault.  
8. [And understand that] Power is a near neighbor to necessity.  
9. Know that all these things are as I have told you; and accustom

yourself to overcome and vanquish these passions.  
10. First gluttony, then sloth, sensuality, and anger.  
11. Do nothing evil, neither in the presence of others, nor privately.  
12. But above all things respect yourself.  
13. In the next place, observe justice in your actions and in your words. 
14. And do not accustom yourself to behave yourself in anything

without rule, and without reason.  
15. But always make this re�lection, that it is ordained by destiny that

all men shall die.  
16. And that the goods of fortune are uncertain; and that just as they

may be acquired, they may likewise be lost.  
17. Concerning all the calamities that men suffer by divine fortune.  
18. If you suffer, suffer in patience, and resent them not.  
19. But do your best to remedy them, and bear in Mind.  
20. And consider that fate does not send the greatest portion of these

misfortunes to good men.  
21. There are many sorts of reasonings among men, good and bad.  
22. But do not be disturbed by them, not allow them to harass you.  



23. But if falsehoods be advanced, hear them with mildness, and arm
yourself with patience.  

24. Observe well, on every occasion, what I am going to tell you.  
25. Do not let any man either by his words, or by his deeds, ever

seduce you.  
26. Nor entice you to say or to do what is not pro�itable for yourself.  
27. Consult and deliberate before you act, that you may not commit

foolish actions.  
28. For it is the part of a miserable man to speak and to act without

re�lection.  
29. But do the thing which will not af�lict you afterward, nor oblige you

to repentance.  
30. Never do anything which you do not understand.  
31. But learn all you ought to know, and by that means you will lead a

very pleasant life.  
32. In no way neglect the health of your body.  
33. But give it drink and food in due measure, and also the exercise of

which it needs.  
34. Now by measure, I mean what will not discomfort you.  
35. Accustom yourself to a style of living which is neat and decent, but

not luxurious.  
36. Avoid anything which might give rise to envy.  
37. And do not be prodigal out of season, like someone who does not

know what is decent and honorable.  



38. Neither be covetous nor niggardly; a due measure is excellent in
these things.  

39. Do only the things that cannot hurt you, and deliberate before you
do them.  

40. Never allow sleep to close your eyelids, after you went to bed.  
41. Never sleep before going over the acts of the day in the mind.  
42. In what have I done wrong? What have I done? What have I

omitted that I ought to have done?  
43. If in this examination you �ind that you have done wrong, reprove

yourself severely for it.  
44. And if you have done any good, rejoice.  
45. Practice thoroughly all these things; meditate on them well; you

ought to love them with all your heart.  
46. This will put you in the way of divine virtue.  
47. I swear it by he who has transmitted into our souls the sacred

quaternion, the source of nature, whose cause is eternal.  
48. But never begin to set your hand to any work, until you have �irst

prayed the gods to accomplish what you are going to begin.  
49. When you have made this habit familiar to you.  
50. You will know the constitution of the Immortal gods and of men.  
51. Even how far the different beings extend, and what contains and

binds them together.  
52. You shall likewise know that according to Law, the nature of this

Universe is in all things alike.  



53. So that you shall not hope what you ought not to hope; and nothing
in this world shall be hidden from you.  

54. You will likewise know that men draw upon themselves their own
misfortunes voluntarily, and of their own free choice.  

55. Unhappy they are! They neither see nor understand that their good
is near them.  

56. Few know how to free themselves from their own misfortune.  
57. Such is the fate that blinds humankind, and takes away his senses.  
58. Some, like wheels, are carried in one direction, some in another,

pressed down by ills innumerable.  
59. For fatal strife, natural, pursues them everywhere, tossing them up

and down; nor do they perceive it.  
60. Instead of provoking and stirring it up, they ought to avoid it by

yielding.  
61. Oh! Jupiter, our Father! If you would deliver men from all the evils

that oppress them.  
62. Show them what fate is about to overtake them.  
63. But be of good heart, the race of man is divine.  
64. Sacred nature reveals to them the most hidden mysteries.  
65. If she imparts to you her secrets, you will easily perform all the

things which I have ordained you.  
66. And by the healing of your soul, you will deliver it from all evils,

from all af�lictions.  
67. But you should abstain from the food, which we have forbidden,

which in the puri�ications and in the deliverance of the soul.  



68. And in the deliverance of thy soul, decide between the courses
open to you, and thoroughly examine all things.  

69. Leave yourself always to be guided and directed by the
understanding that comes from above, and that ought to hold the
reins.

 

70. And when, after having deprived yourself of your mortal body, you
arrived at the most pure Aither (the primordial God of light and the
bright, blue ether of the heavens).

 

71. You shall be a God, immortal, incorruptible, and Death shall have
no more dominion over you.  

Primary emphasis of these verses is on Human Virtues, whose aim is
the making of Good Men; and Divine Virtues, so that a Good Men
becomes one of the gods. In the introduction of Firth’s book, Annie
Besant (1847–1933, England) has clearly stated that “Pythagoras
brought from India the wisdom of the Buddha, and translated it into
Greek thought, adding to its austere grandeur the beauty characteristic
of Greece, as Grecian art made tenderer the stern outlines of Indian
sculpture. Those whose thought runs on Greek lines will here �ind the
oldest wisdom garbed in Grecian grace, retaining the beauty of
simplicity, and adding the fairness of form.” Firth’s book also contains
notes on The Golden Verses from the commentaries of Hierocles of
Alexandria (active around 430, Greece), and the related work of
Democrates (Greece), Demophilus (Greece), Joannes Stobaeus (�l. in �ifth
century, Greece), Sextus Empiricus (around 160–210, Greece), and
Iamblichus (see [277]). Firth’s book also gives details of thirty-nine
symbols/symbola/aphorisms	of	Pythagoras that were �irst gathered and
interpreted in detail by Iamblichus in his book [276] and translated
from Greek into English by Thomas Taylor (1758–1835, England) in
1818. These well-documented symbols that we denote in Roman
numbers (still used today, mainly for decorative purposes: on clock
faces, for chapter numbers in books, and so on) set high divinity, moral,
philosophy, and discipline, and according to commentators of
Pythagoras are considered favorite method of instruction used in the



Symbol	I.

Symbol	II.

Symbol	III.

Pythagorean School in Croton. Wolfgang Amadeus Mozart (1756–1791,
Austria) incorporated Masonic and Pythagorean symbolism into his
opera The Magic Flute.

When going to the temple to adore Divinity neither say nor
do any thing in the interim pertaining to the common affairs of life: This
Symbol preserves a divine nature such as it is in itself pure and
unde�iled; for the pure it won’t to be conjoined to the pure. It also
causes us to introduce nothing from human affairs into the worship of
Divinity: for all such things are foreign from, and contrary to, religious
worship. This Symbol also greatly contributes to science; for in divine
science, it is necessary to introduce nothing of this kind, such as human
conceptions, or those pertaining to the concerns of life. We are exhorted
to nothing else, therefore, by these words than this: that we should not
mingle sacred discourses and divine actions with the instability of
human manners. (One should have exclusive and unswerving devotion:
undivided adherence when the whole mind, heart, and soul are given to
God.)

Neither enter into a temple negligently, nor in short adore
carelessly, not even though you should stand at the very doors
themselves: With the preceding this symbol also accords. For if the
similar is friendly and allied to the similar, it is evident that since the
gods have a most principal essence among wholes, we ought to make
the worship of them a principal object. But he who does this for the
sake of anything else gives a secondary rank to that which takes the
precedence of all things, and subverts the whole order of religious
worship and knowledge. Besides, it is not proper to rank illustrious
goods in the subordinate condition of human utility, nor to place our
condition in the order of an end, but things more excellent, whether
they be works or conceptions, in the condition of an appendage.

Sacri�ice and adore unshod: An exhortation to the same
thing may also be obtained from this Symbol. For it signi�ies that we
ought to worship the gods and acquire a knowledge of them orderly and
modestly, and in a manner not surpassing our condition on the Earth. It
also signi�ies that in worshipping them, and acquiring this knowledge,
we should be free from bonds, and properly liberated. But the Symbol
exhorts that sacri�ice and adoration should be performed not only in the



Symbol	IV.

body, but also in the energies of the soul; so that these energies may
neither be detained by passions, nor by the imbecilities of the body, nor
by generation, with which we are externally surrounded. But everything
pertaining to us should be properly liberated and prepared for the
participation of the gods.

Disbelieve nothing wonderful concerning the gods, nor
concerning divine dogmas: This Symbol in like manner exhorts to the
same virtue. For this, dogma suf�iciently venerates and unfolds the
transcendency of the gods. Affording us a viaticum and recalling to our
memory that we ought not to estimate divine power from our judgment.
But it is likely that some things should appear dif�icult and impossible
to us, in consequence of our corporeal subsistence, and from our being
conversant with generation and corruption; from our having a
momentary existence; from being subject to a variety of diseases; from
the smallness of our habitation; from our gravitating tendency to the
middle; from our somnolence, indigence and repletion; from our want
of counsel and our imbecility; from the impediments of our soul, and a
variety of other circumstances, although our nature possesses many
illustrious prerogatives. At the same time, however, we perfectly fall
short of the gods, and neither possess the same power with them, nor
equal virtue. This Symbol, therefore, in a particular manner introduces
the knowledge of the gods, as beings who are able to affect all things. On
this account it exhorts us to disbelieve nothing concerning the gods. It
also adds, nor about divine dogmas, that is to say, these belonging to the
Pythagoric philosophy. For these being secured by discipline and
scienti�ic theory are alone true and free from falsehood, being
corroborated by all various demonstration accompanied with necessity.
The same Symbol is also capable of exhorting us to the science
concerning the gods; for it urges us to acquire a science of that kind
through which we shall be in no respect de�icient in things asserted
about the gods. It is also able to exhort the same things concerning
divine dogmas and a disciplinative progression. For disciplines alone
give eyes to and produce light about all things in him who intends to
consider and survey them. For from the participation of disciplines, one
thing before all others is effected, that is to say, a belief in the nature,
essence, and power of the gods, and also in those Pythagoric dogmas
that appear to be prodigious to such as have not been introduced to, and



Symbol	V.

Symbol	VI.

Symbol	VII.

Symbol	VIII.

are uninitiated in, disciplines. So that the precept disbelieve not is
equivalent to participate, and acquire, those things through which you
will not disbelieve; that is to say, acquire disciplines and scienti�ic
demonstrations.

Declining from the public ways, walk in unfrequented paths:
We believe that this Symbol also contributes to the same thing as the
preceding. For this exhorts us to abandon a popular and merely human
life; but thinks �it that we should pursue a separate and divine life. It
also signi�ies that it is necessary to look above common opinions; but
very much to esteem such as are private and arcane; and that we should
despise merely human delight; but ardently pursue that felicitous mode
of conduct which adheres to the divine will. It likewise exhorts us to
dismiss human manners as popular, and to exchange for these the
religious cultivation of the gods, transcending a popular life. (Those who
desire wisdom must seek it in solitude.)

Abstain from Melanurus (black termination) for it belongs
to the terrestrial gods: This Symbol also is allied to the preceding. Other
particulars therefore pertaining to it we shall speak of in our discourse
about the Symbols. So far then as it pertains to exhortation it
admonishes us to embrace the celestial journey, to conjoin ourselves to
the intellectual gods, to become separated from a material nature, and
to be led, as it were in a circular progression to an immaterial and pure
life. It further exhorts us to adopt the most excellent worship of the
gods, and especially that which pertains to the primary gods. Such,
therefore, are the exhortations to the knowledge and worship of
Divinity.

Govern your tongue before all other things, following the
gods: For it is the �irst work of wisdom to convert reason to itself and to
accustom it not to proceed externally, but to be perfected in itself and in
a conversion to itself. But the second work consists in following the
gods. For nothing so perfects the intellect as, when being converted into
itself, it at the same time follows Divinity. (This Symbol warns man that
his words, instead of representing him, misrepresent him, and that
when in doubt as to what he should say, he should always be silent.)

The wind is blowing, adore the wind: This Symbol is also
a token of divine wisdom. For it obscurely signi�ies that we ought to love



Symbol	IX.

Symbol	X.

Symbol	XI.

the similitude of the divine essences and powers, and when their words
accord with their energies, to honor and reverence them with the
greatest earnestness. (The �iat of God is heard in the voice of the
elements, and that all things in Nature manifest through harmony,
rhythm, order, or procedure the attributes of the Deity.)

Cut not �ire with a sword: This Symbol exhorts to prudence.
For it excites in us an appropriate conception with the respect to the
propriety of not opposing sharp words to a man full of �ire and wrath,
nor contending with him. For frequently by words, you will agitate and
disturb an ignorant man and will yourself suffer things dreadful and
unpleasant. Heraclitus also testi�ies to the truth of this Symbol, for he
says, “It is dif�icult to �ight with anger; for whatever is necessary to be
done, bene�its the soul.” For many by gratifying anger have changed the
condition of the soul, and have made death preferable to life. But by
governing the tongue and being quiet, friendship is produced from
strife, the �ire of anger being extinguished, and you yourself will not
appear to be destitute of intellect. (Do not vex with sharp words a man
swollen with anger.)

Remove yourself from every vinegar bottle: The truth of the
preceding is testi�ied by the present Symbol. For it exhorts to prudence
and not to anger; since that which is sharp in the soul and which we call
anger is deprived of reasoning and prudence. For anger boils like a
kettle heated by the �ire, being attentive to nothing but its own
emotions, and dividing the judgment into minute parts. It is proper
therefore that the soul being established in quiet should turn from
anger, which frequently attacks itself as if it touched sounding brass.
Hence it is requisite to suppress this passion by the reasoning power.

Assist a man in raising a burden; but do not assist him in
laying it down: This Symbol exhorts to fortitude, for whoever takes up a
burden signi�ies an action of labor and energy; but he who lays one
down, of rest and remission. So that the Symbol has the following
meaning. Do not become either to yourself or another the cause of an
indolent and effeminate mode of conduct; for every useful thing is
acquired by labor. But the Pythagoreans celebrate this Symbol as
Herculean, thus denominating it from the labors of Hercules. For, during
his association with men, he frequently returned from �ire and
everything dreadful, indignantly rejecting indolence. For rectitude of



Symbol	XII.

Symbol	XIII.

Symbol	XIV.

Symbol	XV.

conduct is produced from acting and operating, but not from
sluggishness. (Aid the diligent but never to assist those who seek to
evade their responsibilities, for it is a great sin to encourage indolence.)

When stretching forth your feet to have your sandals put
on, �irst extend your right foot; but when about to use a foot bath, �irst
extend your left foot: This Symbol exhorts to practical prudence,
admonishing us to place worthy actions about us as right-handed; but
entirely to lay aside and throw away such as are base, as being left-
handed.

Speak not about Pythagoric concerns without light: This
Symbol exhorts to the possession of intellect according to prudence. For
this is similar to the light of the soul, to which being inde�inite it gives
bound, and leads it, as it were, from darkness into light. It is proper,
therefore, to place intellect as the leader of everything beautiful in life,
but especially in Pythagorean dogmas; for these cannot be known
without light. (Do not attempt to interpret the mysteries of God and the
secrets of the sciences without spiritual and intellectual illumination.)

Step not beyond the beam of the balance: This Symbol
exhorts us to the exercise of justice, to the honoring equality and
moderation in an admirable degree, and to the knowledge of justice as
the most perfect virtue, to which the other virtues give completion, and
without which none of the rest are of any advantage. It also admonishes
us that it is proper to know this virtue not in a careless manner, but
through theorems and scienti�ic demonstrations. But this knowledge is
the business of no other art and science than the Pythagorean
philosophy alone, which in a transcendent degree honors disciplines
before everything else.

Having departed from your house, turn not back; for the
furies will be your attendants: This Symbol also exhorts to philosophy
and self-operating energy according to intellect. It clearly manifests too
and predicts, that having applied yourself to philosophy, you should
separate yourself from everything corporeal and sensible, and truly
meditate upon death, proceeding, without turning back, to things
intelligible and which always subsist according to the same and after a
similar manner, through appropriate disciplines; for journeying is a
change of place; and death is the separation of the soul from the body.
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But we should philosophize truly and without sensible and corporeal
energies, employing a pure intellect in the apprehension of the truth of
things, which knowledge, when acquired, is wisdom. But having applied
yourself to philosophy, turn not back nor suffer yourself to be drawn to
former objects and to corporeal natures together with which you were
nourished. For by so doing you will be attended by abundant
repentance, in consequence of being impeded in sane apprehensions by
the darkness in which corporeal natures are involved. But the Symbol
denominates repentance, the furies. (It is better to know nothing about
Divinity than to learn a little and then stop without learning all.)

Being turned to the Sun, make not water: The exhortation
of this Symbol is as follows: Attempt to do nothing which is merely of an
animal nature; but philosophize, looking to the heavens and the Sun. Let
the light of truth also be your leader, and remember that no abject
conceptions must be admitted in philosophy; but ascend to the gods
and wisdom through the survey of the celestial orbs. Having likewise
applied yourself to philosophy and puri�ied yourself by the light of truth
which is in it; being also, converted to a pursuit of this kind, to theology,
to physiology, and so astronomy, and to the knowledge of that cause
which is above all these; no longer do anything of a merely brutal
nature.

Wipe not a seat with a torch: This Symbol also exhorts
the same thing. For since a torch is of a purifying nature in consequence
of its rapid and abundant participation of �ire, in the same manner as
what is called Sulfur, the Symbol not only exhorts not to de�ile it, since it
is itself abstergent of de�ilements, nor to oppose its natural aptitude by
de�iling that which is an impediment to de�ilement; but rather that we
should not mingle the peculiarities of wisdom with those of the merely
animal nature. For a torch through the bright light it emits is compared
to philosophy; but a seat through its lowly condition to the merely
animal nature.

Nourish a cock; but sacri�ice it not; for it is sacred to the
Sun and the Moon: This Symbol advises us to nourish and strengthen
the body and not neglect it, dissolving and destroying the mighty tokens
of union, connection, sympathy, and consent of the world. So that it
exhorts us to engage in the contemplation and philosophy of the
Universe. For though the truth concerning the Universe is naturally
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occult, and suf�iciently dif�icult of investigation, it must, however, at the
same time, be enquired into and investigated by man, and especially
through philosophy. For it is truly impossible to be discovered through
any other pursuit. But philosophy, receiving certain sparks, and as it
were viatica, from nature, excites and expands them into magnitude,
rendering them more conspicuous through the disciplines which it
possesses. Hence, therefore, we should philosophize. (A warning against
the sacri�ice of living things to the gods is given, because life is sacred
and man should not destroy it even as an offering to the Deity. Further,
it is advised to man that the human body should be nurtured and
protected.)

Sit not upon a bushel: The Symbol may be considered
more Pythagorically, beginning from the same principles with those
above. For since nutriment is to be measured by the corporeal and
animal nature, and not by a bushel, do not pass your life in indolence
nor without being initiated into philosophy; but dedicating yourself to
this, rather provide for that part of you which is more divine, which is
soul, and much more for the intellect which soul contains; the
nutriment of which is measured, not by a bushel, but by contemplation
and discipline.

Nourish not that which has crooked nails: This Symbol also
in a more Pythagorean manner advises us to communicate and impart
and prepare others to do so, accustoming them to give and receive
without depravity and abundantly; not indeed receiving everything
insatiably and giving nothing. For the physical organization of animals
with crooked nails is adapted to receive rapidly and with facility, but by
no means to relinquish what they hold, or impart to others, through the
opposition of the nails in consequence of their being crooked; just as
the �ish called crang, are naturally adapted to draw anything to
themselves with celerity, but relinquish it with dif�iculty, unless by
turning from, we avoid them. But hands were indeed suspended from us
by nature, that through them we might both give and receive, and the
�ingers, also, are naturally attached to the hands, straight and not
crooked. In things of this kind, therefore, we must not imitate animals
with crooked nails, since we are fashioned by our maker in a different
way, but should rather be communicative and impart to each other,
being exhorted to a thing of this kind by the fabricators of names
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themselves, who denominated the right hand more honorable than the
left, not only from receiving but from being capable of imparting. We
must act justly therefore, and through this philosophize. For justice is a
certain retribution and remuneration equalizing the abounding and
de�icient by reciprocal gifts.

Cut not in the way: This Symbol manifests that truth is
one, but falsehood multifarious. But this is evident from hence, that
what any particular thing is can be predicted only in one way, if it be
properly predicted; but what it is not, may be predicted in in�inite ways.
Philosophy, too, appears to be a path or way. The Symbol therefore says,
choose that philosophy, and that path to philosophy in which there is no
division, and in which you will not dogmatize things contradictory to
each other, but such as are stable and the same with themselves, being
established by scienti�ic demonstration through disciplines and
contemplation; which is the same thing as if it said, philosophize
Pythagorically. And this is indeed possible. But the philosophy which
proceeds through things corporeal and sensible, and which is employed
by the moderns even to satiety, which likewise considers Divinity,
qualities, the soul, the virtues, and in short, all the most principal causes
of things to be body—this philosophy easily eludes the grasp and is
easily subverted. And this is evident from the various arguments of its
advocates. On the other hand, the philosophy that proceeds through
things incorporeal, intelligible, immaterial, and perpetual, and which
always subsist according to the same, and in a similar manner, and
never, as far as possible to them, admit either corruption or mutation,
being similar to their subjects—this philosophy is the arti�icer of �irm,
stable, and undeviating demonstrations. The precept, therefore,
admonishes us when we philosophize, and proceed in the way pointed
out, to �ly from the snares of, and avoid all connection with, things
corporeal and multifarious, but to become familiar with the essence of
the incorporeal natures, which at all times are similar to themselves,
through the truth and stability which they naturally contain.

Receive not a swallow into your house: This Symbol
admonishes as follows: Do not admit to your dogmas a man who is
indolent, who does not labor incessantly, and who is not a �irm adherent
to the Pythagorean sect, and endued with intelligence; for these dogmas
require continued and most strenuous attention, and an endurance of
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labor through the mutation and circumvolution of the various
disciplines which they contain. But it uses the swallow as an image of
indolence and an interruption of time, because this bird visits us for a
certain part of the year, and for a short time becomes as it were our
guest; but leaves us for the greater part of the year and is not seen by us.
(This warns the seeker after truth not to allow drifting thoughts to
come into his mind nor shiftless persons to enter into his life. He must
ever surround himself with rationally inspired thinkers and with
conscientious workers.)

Wear not a ring: This Symbol is an exhortation to the
Pythagorean doctrine: A ring embraces those that wear it after the
manner of a bond; and a peculiarity of it is neither to pinch nor pain the
wearer, but in a certain respect to be accommodated and adapted to
him. But the body is a bond of this kind to the soul. The precept,
therefore, wears not a ring, is equivalent to, Philosophize truly, and
separates your soul from its surrounding bond. For philosophy is the
meditation of death and the separation of the soul from the body.
Betake yourself, therefore, with great earnestness to the Pythagorean
philosophy, which through intellect separates itself from all corporeal
natures, and is conversant through speculative disciplines with things
intelligible and immaterial. Liberate yourself also from sin and from
those occupations of the �lesh which draw you aside from, and impede
the philosophic energy; likewise, from superabundant nourishment and
unseasonable repletion, which con�ine the soul like a bond and
incessantly introduce a crowd of diseases, and interruptions of leisure.

Inscribe not the image of God in a ring: This Symbol,
conformably to the foregoing conception, employs the following
exhortation: Philosophize, and before everything consider the gods as
having an incorporeal subsistence. For this is the most principal root of
the Pythagorean dogmas, from which nearly all of them are suspended,
and by which they are strengthened even to the end. Do not, therefore,
think that the gods use such forms as are corporeal, or that they are
received by a material subject and by body as a material bond, like other
animals. But the engravings in rings exhibit the bond which subsists
through the ring, its corporeal nature, and sensible form, and the view,
as it were, of some partial animal which becomes apparent through the
engraving; from which especially we should separate the genus of the
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gods as being eternal and intelligible, and always subsisting according
to the same and in a similar manner, as we have particularly, most fully,
and scienti�ically shown in our discourse concerning the gods.

Behold not yourself in a mirror by the light of a lamp: This
Symbol advises us in a more Pythagorean manner to philosophize, not
be taking ourselves to the imaginations belonging to the senses, which
produce indeed a certain light about our apprehensions of things; but
this light resembles that of a lamp, and is neither natural nor true. It
admonishes us, therefore, rather to betake ourselves to scienti�ic
conceptions about intellectual objects, from which a most splendid and
stable purity is produced about the eye of the soul, resulting from all
intellectual conceptions and intelligibles, and the contemplation about
these, and not from corporeal and sensible natures. For we have
frequently shown that these are in a continual �lux and mutation and do
not in any manner subsist stably and similar to themselves, so as to
sustain a �irm and scienti�ic apprehension and knowledge in the same
manner as the objects of Intellectual vision.

Be not addicted to immoderate laughter: This Symbol
shows that the passions are to be subdued, Recall, therefore, into your
memory right reason, and be not in�lated with prosperity nor abject in
calamity; being persuaded that no worthy attention takes place in either
of these. But this Symbol mentions laughter above all the passions,
because this alone is most conspicuous, being, as it were, a certain
ef�lorescence and in�lammation of the disposition proceeding as far as
to the face. Perhaps, too, it admonishes us to abstain from immoderate
laughter, because laughter is the peculiarity of man with respect to
other animals; and hence he is de�ined to be a risible animal. It is
shown, therefore, by this precept that we should not �irmly adhere to
the human nature, but acquire by philosophizing an imitation of divinity
to the utmost of our power; and withdrawing ourselves from this
peculiarity of man, prefer the rational to the risible in the distinction
and difference which we make of him with respect to other animals.

Cut not your nails at a sacri�ice: The exhortation of this
Symbol pertains to friendship. For of our relations and those allied to us
by blood, the nearest of kin are brothers, children, and parents, who
resemble those parts of our body which when taken away produce pain
and mutilation by no means tri�ling, such as �ingers, hands, ears,
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nostrils, and the like. But others who are distantly related to us, such as
the daughters of cousins, or the sons-in-law of uncles, or others of this
kind, resemble those parts of our body from the cutting off of which no
pain is produced, such as hair, nails, and the like. The Symbol, therefore,
wishing to indicate those relations who have been for a time neglected
by us through the distance of their alliance, employs the word nails, and
says: Do not entirely cast off these; but if at sacri�ices, or any other time,
you have neglected them, draw them to you, and renew your familiarity
with them.

Offer not your right hand easily to everyone: The
meaning of this Symbol is, Do not draw up, nor endeavor to raise, by
extending your right hand, the unadopted and uninitiated. It also
signi�ies that the right hand is not to be given easily even to those who
have for a long time proved themselves worthy of it through disciplines
and doctrines, and the participation of continence, the quinquennial
silence, and other probationary trials. (This warns the disciple to keep
his own counsel and not offer wisdom and knowledge to such as are
incapable of appreciating them.)

When rising from the bed clothes, roll them together and
obliterate the impression of the body: This Symbol exhorts that, having
applied yourself to philosophy, in the next place you should familiarize
yourself with intelligible and incorporeal natures. Rising therefore from
the sleep and nocturnal darkness of ignorance, draw off with you
nothing corporeal to the daylight of philosophy, but purify and
obliterate from your memory all the vestiges of that sleep of ignorance.
(Those who had awakened from the sleep of ignorance into the waking
state of intelligence must eliminate from their recollection all memory
of their former spiritual darkness.)

Eat not the heart: This Symbol signi�ies that it is not
proper to divulse the union and consent of the Universe. And still
further it signi�ies this, be not envious, but philanthropic and
communicative; and from this it exhorts us to philosophize. For
philosophy alone among the sciences and arts is neither pained with the
goods of others, nor rejoices in evils of neighbors, these being allied and
familiar by nature, subject to the like passions, and exposed to one
common fortune; and evinces that all men are equally incapable of
foreseeing future events. Hence it exhorts us to sympathy and mutual
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love, and to be truly communicative, as it becomes rational animals.
(You should not vex yourself with grief.)

Eat not the brain: This Symbol also resembles the
former; for the brain is the ruling instrument of intellectual prudence.
The Symbol, therefore, obscurely signi�ies that we ought not to
dilacerate nor mangle things and dogmas which have been the objects
of judicious deliberation. But these will be such as have been the subject
of intellectual consideration, becoming thus equal to objects of a
scienti�ic nature. For things of this kind are to be surveyed, not through
the instruments of the irrational form of the soul, such as the heart and
the liver; but through the pure rational nature. Hence to dilacerate these
by opposition, is inconsiderate folly; but the Symbol rather exhorts us to
venerate the fountain of intelligence and the most proximate organ of
intellectual perception, through which we shall possess contemplation,
science, and wisdom; and by which we shall truly philosophize, and
neither confound nor obscure the vestiges which philosophy produces.

Indignantly turn from your excrements and the parings
of your nails: The meaning of this Symbol is as follows: Despise things
which are connascent with you, and which in a certain respect are more
destitute of soul, since things which are more animated are more
honorable. Thus, also when you apply yourself to philosophy, honor the
things which are demonstrated through soul and intellect without
sensible instruments, and through contemplative science, but despise
and reject things which are opined merely through the connascent
instruments of sense without intellectual light, and which are by no
means able to acquire the perpetuity of intellect.

Receive not Erythinus (a �ish of a red color): This
Symbol seems to be merely referred to the etymology of the name.
Receive not an unblushing and impudent man, nor on the contrary one
stupidly astonished, and who in everything blushes and is humble in the
extreme through the imbecility of his intellect and dianötic power
(power of the soul which reasons scienti�ically). Hence this also is
understood: Be not yourself such a one.

Obliterate the mark of the pot from the ashes: This
Symbol signi�ies that he who applies himself to philosophy should
consign to oblivion the confusion and grossness which subsists in
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corporeal and sensible demonstrations and that he should rather use
such as are conversant with intelligible objects. But ashes are here
assumed instead of the dust in the tables, in which the Pythagoreans
completed their demonstrations.

Draw not near to that which has gold, in order to
produce children: The Symbol does not here speak of a woman, but of
that sect and philosophy which has much of the corporeal in it, and a
gravitating tendency downward. For gold is the heaviest of all things in
the Earth, and pursues a tendency to the middle, which is the
peculiarity of corporeal weight; but the term to draw near not only
signi�ies to be connected with, but always to approach toward, and be
seated near, another.

Honor a �igure and a step before a �igure and a tribolus:
The exhortation of this Symbol is as follows: Philosophize and diligently
betake yourself to disciplines, and through these, as through steps,
proceed to the thing proposed; but reject the progression through those
things that are honored and venerated by the many. Prefer also the Italic
philosophy, which contemplates things essentially incorporeal, to the
Ionic, which makes bodies the principal object of consideration.

Abstain from beans: This Symbol admonishes us to
beware of everything which is corruptive of our converse with the gods
and divine prophecy. (See above.)

Transplant mallows indeed in your garden; but eat
them not: This Symbol obscurely signi�ies that plants of this kind turn
with the Sun, and it thinks �it that this should be noticed by us. It also
adds transplant, that is to say, observe its nature, its tendency toward,
and sympathy with, the Sun; but rest not satis�ied, nor dwell upon this,
but transfer, and as it were transplanting your conception to kindred
plants and pot herbs, and also to animals that are not kindred, to stones,
and rivers, and in short to natures of every kind. For you will �ind them
to be proli�ic and multiform, and admirably abundant; and this to one
who begins from the mallows, as from a root and principle, is signi�icant
of the union and consent of the world. Not only, therefore, do not
destroy or obliterate observations of this kind, but increase and
multiply them as if they were transplanted.



Abstain from animals: This Symbol exhorts to justice, to all the honor of
kindred, to the reception of similar life, and to many other things of a
like kind. From all this, therefore, the exhortatory type through symbols
becomes apparent, which contains much in it of the ancient and
Pythagorean mode of writing.

Pherecydes and so his student Pythagoras, and later Alcmaeon of
Croton (�l. �ifth century BC, Greece) and Epictetus (around 50–135
Greece) were devout believer in the doctrines of metempsychosis and
said the soul is invisible, immortal, and a string-like self-moving number,
especially its reincarnation after death into a new body (the end of life is
death and the end of death is life) of the same or a different species until
it is liberated (unite with the Divine, Moksha, or Nirvana) by means of
spiritual puri�ication. However, the notion of metempsychosis was
coined thousands of years before in India: Sage Veda Vyasa, born 3374
BC, India, along with his disciples Jaimani, Paila, Sumanthu, and
Vaisampayana codi�ied the four Vedas [Veda means wisdom, knowledge,
or vision]; Rigveda contains hymns and prayers to be recited during the
performance of rituals and sacri�ices, and it mentions that in the earliest
age of the gods, existence was born from nonexistence; Samaveda
contains melodies to be sung on suitable occasions; Yajurveda contains
sacri�icial formulas for ceremonial occasions, and the concept of
metempsychosis with details similar to Greeks; and Atharvaveda is a
collection of magical formulas and spells. According to Plato, the souls of
cowards are reincarnated in the bodies of women; the souls of the
stupid animate four-footed beasts and birds; and an utterly worthless
soul, being unworthy to breathe pure air, must content itself with the
body of a �ish. For Pherecydes and Pythagoras the number of souls in the
Universe is �ixed, and the present life is a punishment for the sins of
some previous existence. Pherecydes propounded his teaching on the
soul in terms of a pentemychos (�ive-nooks, or �ive hidden cavities), the
most likely origin of the Pythagorean use of the pentagram. This
teaching is referenced by Xenophanes of Colophon (around 560–478 BC,
Greece), the Greek poets Ion of Chios, and Herodotus. Pythagoras
believed that the soul of man is divided into three parts intelligence
(nous), reason (phren), and passion (thumos). Female Pythagorean
Aesara of Lucania (fourth or third century BC, Greece) is also known for
her theory of the tripartite soul, which she believed consisted of mind,



spiritedness, and desire. Further, according to Ebenezer Cobham Brewer
(1810–1897, England), three parts of the soul are: the ethereal,
luminous, and celestial, the soul in a state of bliss in the stars; the
Luminous, the soul that suffers punishment of sin after death; The
terrestrial, what vessel the soul occupies on the Earth. Pythagoras also
believed that soul encloses the heart and the brain; intelligence and
reason are found in the brain, and passion is based in the heart. He also
advised that to be strong of soul rather than strong of body.

Philostratus and Laërtius claimed that Pythagoras knew not only
who he was himself, but also who he had been. In fact, he remembered
previous four lives in detail: First he had been Euphorus (a young hero
who died in the Trojan ranks after having wounded Patroclus), secondly
Aethalides (son of Hermes, the Greek God of the Word, of thought and
magic, the swift-moving messenger of the Divine and guardian of souls
in the Afterlife, who gave blessings to Aethalides that he can recollect
everything that happened in this life, as well as the life beyond the grave
and on into new incarnations), thirdly philosopher Hermotimus (who
recognized and demonstrated the shield of Euphorus in the temple of
Apollo), fourth Pyrrhus (a �isherman from Delos), and now he was
Pythagoras. He was also able to recognize the souls of others. Once,
upon seeing a dog being severely beaten, he rushed over and restrained
the dog’s owner, saying, “You must stop this. I know from the sound of
his cries that within this animal is the soul of my late friend Abides who
died in Memphis twelve years ago.” Another time, he identi�ied the soul
of the legendary Phrygian King Midas inhabiting the body of Myllias, a
citizen of Croton. At Pythagoras’s urging, Myllias traveled to Asia to
perform expiatory rites at Midas’ tomb. Leonardo da Vinci wrote down
in one of his notebooks an anecdote about Pythagoras’s belief in the
transmigration of the soul. An imaginative conjecture is that Pythagoras
returned in the �ifth century as Merlin, then as the English philosopher
Francis Bacon (1561–1626, England). After an incarnation as the Count
Saint-Germain (1691 or 1712–1784, died in Germany), his next life was
supposedly Hermann Gring in the twentieth century.

We shall not go any further into the philosophical theories of the
Pythagoreans but shall devote mainly with their mathematical
accomplishments as has been documented by the historians of
mathematics and show that most of it was already known several



centuries earlier, and we shall also present in simplest possible terms
current extensions of their investigations.

1.4	 Mathematics	of	Pythagoras
Pythagoras instead of worshiping the dead as he did with his Egyptian
teachers gave “divine signi�icance” to most numbers and attempted to
�ind mathematical explanations for everything in the Universe in terms
of numbers including in geometry “possibly the most mischievous
misreading of nature in the history of human error” (see Bell [61]). He
paid homage to every numerical relationship such as equation and
inequality (arithmetic then). He believed that maturity began at age 14,
marriage occurred in the 21st year, and the normal life span ended at 70
years. Pythagoras always advised Reason	Answer	All (reason is immortal,
all else is mortal), and his motto was All	is	Number, “Numbers Rules the
Universe,” “Number is the Ruler of Forms and Ideas and the Cause of
gods and Demons,” “Number is the Wisest.” It has been claimed that
from the writings of Orpheus (legendary musician, poet, and prophet in
Greek mythology), Pythagoras learned that the eternal essence of
number is the source of immortality, and from this he reasoned that the
fundamental nature of the gods is numerical. Pythagoras perception was
supported by several later writers: Philolaus in his work added “All
things which can be known have number; for it is not possible that
without number anything can be either conceived or known.” For Plato,
numbers were “the highest degree of knowledge” and constituted the
essence of outer and inner harmony. Nicomachus “All things that have
been arranged by nature according to a workmanlike plan appear, both
individually and as a whole, as singled out and set in order by
Foreknowledge and Reason, which created all according to Number,
conceivable to mind only and therefore wholly immaterial; yet real;
indeed, the really real, the eternal.” Plotinus (204/5–270, Egypt-Italy)
proclaimed “Number exists before objects which are described by
number. The variety of sense objects merely recalls to the soul the
notion of number.” Saint Augustine (354–430, Algeria) had written in his
City	of	God that “we must not despise the science of numbers, which, in
many passages of Holy Scripture, is found to be of eminent service to the
careful interpreter.” Neither has it been without reason numbered



among God’s praises: “Thou hast ordered all things in number, and
measure, and weight.” In the �ifth century, Anicius Manlius Severinus
Boethius (around 475–526, Italy) declared “All things, do appear to be
formed of numbers.”

Nicholas of Cusa (1401–1464, Germany-Italy) advanced a step
beyond Pythagoras: The numbers were not the things their generation
from the Monad symbolized, but merely an image, comprehensive to a
�inite mind, of the reality known only to the deity. John Dee (1527–1608,
England) said “All things (which from the very �irst original being of
things, have been framed and made) do appear to be formed by reason
of numbers. For this was the principle example or pattern in the mind of
Creator.” Bishop George Berkeley (1685–1753, Ireland) accorded
number the status of reality. For Gauss “the prince of mathematicians,”
“Number alone of all mathematical concepts was a necessity of rational
thought, if not actually a creation of the mind.” In 1801, he asserted that
number is purely a psychic reality, a free creation of mind. Further,
James Clerk Maxwell (1831–1879, Scotland) aforementioned “Thus
number may be said to rule the whole world of quantity, and the four
rules of arithmetic may be regarded as the complete equipment of the
mathematician.” Julius Wilhelm Richard Dedekind (1831–1916,
Germany) said: “The numbers are a free creation of human mind.”
According to Oswald Arnold Gottfried Spengler (1880–1936, Germany):
“Number is the symbol of causal necessity. Like the conception of God, it
contains the ultimate meaning of the world–as–nature. The existence of
numbers may therefore be called a mystery, and the religious thought of
every Culture has felt their impress.” Hermann Minkowski (1864–1909,
Russian-Germany) felt “Integers are the fountainhead of all
mathematics.” Paul Erdös (1913–1996, Hungary) once said, “I know
numbers are beautiful. If they aren’t beautiful, nothing is.”

Pythagoras identi�ied some human attribute to most numbers (see
Sect. 2. 9). The multiplication table that we know of today is sometimes
attributed to Pythagoras; however, the oldest known multiplication
tables were used by the Babylonians more than 4000 years back.
Pythagoreans used deductive methods to prove ten basic results about
even and odd numbers (originally this classi�ication is due to Jainas),
mainly they employed de�initions of unit and even and odd numbers,
and geometry. These results can be listed as follows: If as many even



numbers as we please be added together, the whole is even; if as many
odd numbers as we please be added together, and their multitude be
even, the whole will be even; if as many odd numbers as we please be
added together, and their multitude be odd, the whole will also be odd; if
from an even number an even number be subtracted, the remainder will
be even; if from an even number an odd number be subtracted, the
remainder will be odd; if from an odd number an odd number be
subtracted, the remainder will be even; if from an odd number an even
number be subtracted, the remainder will be odd; if an odd number by
multiplying an even number makes some number, the product will be
even; if an odd number by multiplying an odd number makes some
number, the product will be odd; if an odd number measures an even
number, it will also measure the half of it. Everything in the world we
live in involves evenness and oddness. Evenness can be de�ined as a
term that means a balance between equal measurements, fair quantities,
and neutral stability. On the other hand, oddness can be described in
terms as being an uneven element, irregular varieties, and an additional
essence. Pythagoreans also worked with Prime, Perfect, and Amicable
Numbers (see Sect. 4. 13). Thus they planted the seeds that would grow
into modern number theory (earlier higher arithmetic). Some authors
with caution have also credited him for the indirect method also.
Pythagoras divided the mathematical subjects into four disciplines:
numbers absolute (arithmetic), numbers applied (music), magnitudes at
rest (geometry), and magnitudes in motion (astronomy).

For a given pair of two positive numbers a and  any number
b between a and c in some sense is called a mean (or average) of a and 
Pythagoreans considered following ten means b of a and 



It is rather easy to show that in all above ten means 
In mathematics, AM, GM, and HM (�irst it was called the subcontrary
mean) are classical and appropriately used for situations when the
average of rates is desired. These three means were de�ined by
Pythagoras (Archytas reports these means in his work by name) by
ratios/proportions because of their importance in geometry and music.
There is a general consensus that Pythagoras brought the statement
known as perfect	or	musical	proportion  or

 or  from Babylon to
Croton. This relation immediately gives an alliance between AM, GM, and
HM, namely,  i.e., GM is the geometric mean of
AM and HM. This relation delighted and mysti�ied the ancient Greeks
including Plato. Further, these means satisfy the inequalities

 where equality holds if and only if  It also
follows that HM can be expressed as the reciprocal of the AM of the
reciprocals of the given numbers. A simple calculation also shows that

 It is also easy to show that there



exists a number k such that  and  Since
8 is the HM of 12 and  Philolaus called the cube a “geometrical
harmony.” Pappus in his Synagoge (Mathematical	Collection) provided a
construction for the harmonic mean of the segment OA and OB as
follows. On the perpendicular to OB at B lay off  and let the
perpendicular to OB at A meet OC at the point  Join  and let H be
the point at which ED cuts  Then,  is the desired harmonic
mean between  and  see Fig. 1.2. In fact, from the
similarity of triangles OAE and  as well as of triangles HAE and

 we infer that

Fig.	1.2 Construction of harmonic mean
The study of the Pythagorean means is closely related to the study of

majorization and Schur convex (Issai Schur, 1875–1941, Russia)
functions. The harmonic and geometric means are concave symmetric
functions of their arguments, and hence Schur concave, while the
arithmetic mean is a linear function of its arguments, so both concave
and convex. For a set of n positive real numbers  AM, GM,
and HM are respectively de�ined as   and

 Again it follows that  Similar to AM,
GM, and HM, there are Arithmetic Progression (AP), Geometric
Progression (GP), and Harmonic Progression (HP), which are de�ined as
follows:

A sequence of the form
 is

called AP. The numbers are said to form an AP with �irst term a and the
common difference  It is clear that the step from each number to the



next is the same number  It is to be noted that
 i.e., each number after the

�irst is half of its left and right neighbors. For this reason, each number
after the �irst is called the AM of its immediate predecessor and
immediate successor. Sulbasutras (around 3200 BC) are considered to
be appendices to the Vedas. Only seven Sulbasutras are extant, named
for the sages who wrote them: Apastamba, Baudhayana (born 3200 BC),
Katyayana, Manava, Maitrayana, Varaha, and Vidhula. The four major
Sulbasutras, which are mathematically the most signi�icant, are those
composed by Baudhayana, Manava, Apastamba, and Katyayana. In India,
Vedic mathematics was traditionally taught through aphorisms or
Sutras. A Sutra is a thread of knowledge, a theorem, a ground norm, a
repository of proof. Sulbasutras (see Agarwal and Sen [14]) contain
several examples of AP. In Rhind Papyruses (around 1850 and 1650 BC)
out of 87 mathematical problems two problems deal with APs and seem
to indicate that Egyptian scriber Ahmes (around 1680–1620 BC) knew
how to sum such series. For example, Problem 40 concerns an AP of �ive
terms. It states: divide 100 loaves among 5 men so that the sum of the
three largest shares is 7 times the sum of the two smallest (

). There is a discussion of AP in the works of Archimedes (for most of his
works, see Thomas Little Heath (1861–1940, England, [256]), Hypsicles
of Alexandria (�l. around 200 BC, Greece), Brahmagupta, Diophantus of
Alexandria (around 250, was either a Greek, a Hellenized Babylonian, an
Egyptian, a Jew, or a Chaldean), Zhang Qiujian (around 430–490, China),
Bhaskara II or Bhaskaracharya (working 486, India), Alcuin of York
(around 735–804, England-France), Dicuilus (�l. 825, Ireland), Fibonacci
(Leonardo of Pisa, around 1170–1250, Italy), Johannes de Sacrobosco
(around 1195–1256, England), Levi ben Gershon (1288–1344, France).
Abraham De Moivre (1667–1754. England) predicted the day of his own
death. He found that he slept 15 minutes longer each night, and
summing the arithmetic progression, calculated that he would die on
November 27, 1754, the day that he would sleep all 24 hours.

A sequence of the form  is
called GP. Here,  is called the scale factor and  the common
ratio. If we denote the general term as  then GP satis�ies the
difference equation (recurrence relation)  It is also



interesting to see that  It seems �irst appearance of GP is
in Sulbasutras. GPs are also found in Babylonian tablets dating back to
2100 BC. GPs were repeatedly used by Plato.

A sequence of the form

is called HP, i.e., a sequence obtained by taking the reciprocals of an
arithmetic progression. Here,  and  is not a natural number.
If we denote the general term as  then it follows
that  i.e., each number after the �irst is the
harmonic mean of its immediate neighbors. Pythagoras himself is
credited to use �irst HPs in his music theory.

Eurytus (around 400 BC, Greece) was a disciple of Philolaus and
Laërtius. He persuaded further Philolaus’ teaching to discover
connections between objects and numbers by employing extremely
simple method. Archytas con�irms that Eurytus announced a certain
number of pebbles are the same as in a group of people, and in a herd of
horses. Aristotle extended Eurytus’ observation to geometrical �igures
by a �ixed number of pebbles/points/dots arranged in a speci�ic way. For
example, three points arranged in a certain way are necessary and
suf�icient to de�ine a triangle, four to de�ine a quadrangle, and so forth.
In the literature, natural numbers that are portrayed in orderly
geometrical con�iguration of points and have been labeled as
Pythagoreans	Figurative	Numbers. We shall discuss such numbers in
detail in Chap. 7.

First major power of numbers that Pythagoras accomplishments was
in acoustics. According to a well-recorded fable, one day while walking
down a street he heard melodious sound coming from a blacksmith’s
shop. He went into the shop and anxiously heard the sound of hammers
striking a piece of iron on an anvil (a heavy iron block with a �lat top,
concave sides, and typically a pointed end, on which metal can be
hammered and shaped). His �irst perception was that the difference in
tone might be due to the strength of the workers, so he requested them
to exchange hammers. He noticed that the disparity in resonance was
not due to the men, not from the force of the stroke, not the shape of the
hammer, not the changes in the beaten iron, but rather from the
vibrations of metal sheets followed by the weights of the hammers
which were six, eight, nine, and twelve pounds. He found that the



hammers whose weights were in a ratio of  i.e.,  (the six and
twelve pounds) produced the interval of an octave, those in a ratio of

 (the nine and twelve pounds) gave the sound of a fourth, and those
in a ratio of  (the eight and twelve pounds) produced the musical
interval known as a �ifth. (The names octave, fourth, and �ifth come from
the position of these intervals in the musical scale, called consonant
intervals, Pythagoras called them “perfect intervals.” There is a claim
that the 45,000-year-old Divje Babe Flute used a diatonic scale; however,
there is no proof or consensus of it even being a musical instrument.
There is evidence that the Sumerians and Babylonians used a version of
the diatonic scale. Almost 9,000-year-old �lutes found in Jiahu, China,
indicate the evolution, over a period of 1,200 years, of �lutes having 4, 5,
and 6 holes to having 7 and 8 holes, the latter exhibiting striking
similarity to diatonic hole spacings and sounds.) Pythagoras further
realized that the ratios of these three pleasing intervals were all derived
from the numbers one, two, three, and four. Pythagoras then
experimented with bells; water-�illed glasses; pipes cutting them to
precisely varying lengths; stretched strings in musical instruments,
specially Lyre and Monochord; triangles; and pans of varying sizes. In all
cases he found the same general relationship: the more massive an
object, the lower the pitch of its sound. With this discovery, Pythagoras
advocated that simple ratios of whole numbers rule the laws of musical
harmony—and generally, the entire universal phenomena. Perhaps this
was the �irst time a natural phenomenon was described in terms of a
precise quantitative expression (the �irst recoded facts of mathematical
physics), and it was an understandable extrapolation that “Numbers
Rules the Universe” and that the “essence” of all things is number.

Pythagoras applied his achievement to tuning the stringed
instruments so that they would consistently produce musically
consonant intervals. In musical tuning, the Pythagorean	comma is the
small interval (or comma) between two enharmonically equivalent
notes such as C and B. Archytas gave the numerical ratios for the
intervals of the tetrachord on three scales, the enharmonic, the
chromatic, and the diatonic. He held that sound was due to impact and
that higher tones correspond to quicker, and lower tones to slower,
motion communicated to the air. However, Aristoxenus, like his friend
and teacher Xenophilus of Chalcidike in Thrace (fourth century BC), who



died in Athens at the age of 105, maintained that the true method of
determining intervals was by the ear, not by numeral ratio, and the
dominant notes of the Universe are proportion, order, and harmony.
Pythagoras was an excellent musician, use to play Lyre, sing songs, and
often recite from the Odyssey and the Iliad of Homer (�l. ninth or eighth
century BC). He used music as a means to control such passions as
sadness, anger, lust, despondency, envy, and pride. He was able to pacify
both animals and people; in fact, he can be regarded as the founder of
music therapy.

One anecdote of Pythagoras reports that when he encountered some
drunken youths trying to break into the home of a virtuous woman, he
sang a solemn tune with long spondees and the boys’ “raging
willfulness” was quelled. Another anecdote we are told is: One night,
while walking through Croton and observing the skies, he encountered a
young man from Tauromenia. Although they were strangers, the man
accosted Pythagoras in the street as he passed by and refused to stop
when asked to do so. Later that night, further in�lamed by drinking and
music, the Tauromenian set out to burn down the house of another man.
When Pythagoras encountered the man a second time, he ordered a
�lute player who stood by the change his Phrygian song into a spondaic
rhythm. The young man’s rage was immediately repressed and he was
persuaded to return home peacefully. According to Iamblichus, music
featured as an essential organizing factor of his life: The disciples would
sing hymns to God Apollo together regularly, they used the Lyre to cure
illness of the soul or body, and poetry recitations occurred before and
after sleep to aid the memory. The relations between mathematics and
music, �irst discovered by Pythagoras, had a great impact in Renaissance
(fourteenth century to seventeenth century) Europe, where cathedrals
were designed according to the musical proportions  and

 In 1618, Robert Fludd (1574–1637, England) sketched mundane
Monochord (also called celestial or divine monochord), which shows
God’s hand tuning a giant monochord, a string stretched along a
sounding board on which the planetary orbits are superimposed over
the intervals of the musical scale, see the book [361] of Eli Maor (born
1937, Israel-USA).

It was in Egypt, Babylonia, or India where he probably learnt that the
square on the hypotenuse (the longest side of a right triangle) of a right-



angled triangle equals the sum of the squares on the other two sides.
Here the square on the hypotenuse means the geometrical square
constructed on the side, and the sum of two squares is equal to a third
square meant that the two squares could be cut up and reassembled to
form a square identical to the third square. This theorem is known to the
world by his name, i.e., the Pythagoras (or Pythagorean) Theorem,
although it was neither discovered nor proved by Pythagoras (see Chap.
5). The converse of this theorem that led to positive integers that satisfy
this relation are known as Pythagorean Triples; however, these triples
were known and used long before Pythagoras (see Chap. 6). A most
obvious right-angled triangle of all-with one legs leads to the
incommensurable or irrational (not logical or reasonable) number 
whose �inding is also attributed to the Pythagoreans. In Chap. 8, we will
see that the irrationality of  was discussed several centuries before
him. Pythagorean theorem is often cited as the beginning of
mathematics in western world. Pythagoreans also knew that the sum of
the angles of a triangle is equal to two right angles and that a regular
polygon (�igure whose sides and angles are all equal) with n sides has
sum of interior angles  right angles and sum of exterior angles is
equal to four right angles. According to Proclus for geometry,
Pythagoreans had a conventional phrase “a �igure and a platform, not a
�igure and a sixpence,” by which they implied that the geometry that is
deserving of study is that which, at each new theorem, sets up a
platform to ascend by and lifts the soul on high instead of allowing it to
go down among the sensible objects and so become subservient to the
common needs of this mortal life. Proclus, quoting from Eudemus of
Rhodes (around 350–290 BC, Greece), Pythagoras “changed the study of
geometry into the form of a liberal education, for he examined its
principles to the bottom and investigated its theorems in an intellectual
manner.” Thus, his naming geometry as historia, or inquiry, is
convincing.

For Pythagoreans geometry consisted of studying the various forms
—squares, triangles, circles, etc., and the relationships between them
and their parts. They related numbers/algebra to geometry; for
example, to multiply  they constructed a square with each side
equal to 2 units. The area of this square,  is equal to the product of its
sides, i.e., they constructed �igures of a given area. This construction



they used to solve equations such as  by geometrical
means. The Pythagoreans noted that when we attempt to tile a �loor
with square tiles, we succeed because the meeting point of four right-
angled corners leaves no space, that is, four right angles add up to 
Their next observation was that six equilateral triangles (see Fig. 1.3)
meeting at a point also leave no space.

Fig.	1.3 Six equilateral triangles meeting at a point
A geometric solid whose faces are all identical, i.e., regular polygons,

meeting at the same three-dimensional angles, is called a solid regular
polygon or regular polyhedra. There are only �ive possible regular
polyhedra (see Fig. 1.4):

Fig.	1.4 Regular polyhedra (platonic solids)

Historians of mathematics have speculated different priorities about
the invention of regular polyhedra, e.g., the �irst three were known to the



Egyptians, whereas Pythagoras discovered the remaining two;
Pythagoras may have been familiar or invented �irst, second, and �ifth,
whereas the discovery of the third and fourth belongs to Theaetetus
(around 417–369 BC, Greece); Proclus credits Pythagoras with the
discovery of all �ive. Let us believe that Pythagoras knew �irst four
regular polyhedra (it is also believed that among these regular
polyhedra Pythagoras asserted that of all solids the sphere is the one
perfect, and thus the most beautiful �igure of all), and Theaetetus not
only discovered the �ifth, he also gave a mathematical description of all
�ive and may have been responsible for the �irst known proof that no
other regular polyhedra exist. In the literature the entire group of �ive
regular polyhedra is better known as Platonic	solid because Plato in his
dialogue Timaeus described a familiar construction of these solids from
the appropriate regular polygons, and assigned the �irst four identical
with the four primal elements (�ire, Earth, air, water) of all material
bodies: tetrahedron, with its sharp points and edges, to the element �ire;
hexahedron, with its four-square regularity, to the element Earth;
octahedron, its minuscule components are so smooth that one can
barely feel it, to the element air; icosahedron, �lows out of one’s hand
when picked up, as if it is made of tiny little balls, to the element water.

The faces of all but the hexahedron are triangles. This blemish was
easily obliterated by splitting each face of the hexahedron into two
triangles by a diagonal of the square. To earlier Pythagoreans
dodecahedron was the most mysterious of the solids; however, Plato
also assigned to dodecahedron, with 12 pentagonal faces (also referred
to as twelve primordial gods in Greek mythology, and twelve
convolutions of the human brain), to the heavens with its 12
constellations. Thus, his systematic development of a theory of the
Universe is based on these �ive regular polyhedra. Aristotle added a �ifth
element, ether (which could be neither seen, tasted, smelled, weighted,
not touched) the interpenetrative substance permeating all of the other
elements and acting as a common solvent and common denominator of
them (Hindus called it Akasha) and proposed that the heavens were
made of this element, but he had no interest in matching it with Plato’s
�ifth solid. Aristaeus the Elder (around 370–300 BC, Greece) wrote on
the �ive regular solids and on conic sections. Euclid in his Elements (A
systematic and logical compilation of the works based on his experience



and achievements of his predecessors in the three centuries just past,
consisting 13 books [chapters or parts] with 465 propositions [in
mathematics a proposition is a statement of interest which we prove] on
plane and solid geometry, and number theory. This work set the trends
how mathematics is written and studied even today. Since 1482,
Elements has appeared in more editions than any work other than Bible,
and it has been translated into countless languages. However, in some of
the propositions there are certain gaps as he tacitly used some unstated
assumptions.) last Book XIII has completely mathematically described
the Platonic solids and their properties. This work has been considered
as the crown of the entire work. Of all Platonic solids the tetrahedron
encloses the smallest volume for its surface, while the icosahedron
encloses the largest.

The symmetry, structural integrity, and beauty of Platonic solids
have inspired architects, artists, and artisans from ancient Egypt to the
present. Kepler in his 1596 publication Mysterium	Cosmographicum
offered a model of the Solar System in which Platonic solids were
installed one another and separated by a series of inscribed and
circumscribed spheres. According to him the distance relationships
between the six planets (Mercury, Venus, Earth, Mars, Jupiter, and
Saturn) known at that time could be perceived in terms of the Platonic
solids enclosed within a sphere that represented the orbit of Saturn. The
solids were arranged with the innermost being the octahedron, followed
by the icosahedron, dodecahedron, tetrahedron, and �inally the
hexahedron, thereby dictating the structure of the solar system and the
distance relationships between the planets by the Platonic solids. Thus,
Kepler resuscitated the idea of using the Platonic solids to explain the
geometry of the Universe in his �irst model of the cosmos. Kepler was
very proud of his model and said he valued it more than the Electorate
of Saxony. He decorated his diagram of the tetrahedron with the drawing
of a bon�ire; hexahedron with a carrot, a tree, and miscellaneous
gardening implements; octahedron with clouds and birds; icosahedron
with a lobster and some �ish; and dodecahedron with the Sun, Moon,
and star. However, later he had to discard his idea, but it led to his three
laws of orbital dynamics, the �irst of which was that the orbits of planets
are ellipses rather than circles, which changed completely the course of
physics and astronomy.



1.5	 Astronomy	of	Pythagoras
Pythagoras invented the word kosmos or cosmos (not Carl Sagan, 1934–
1996, as recon�irmed by American physicist and Nobel laureate Leon
Lederman, 1922–2018) to refer to everything in our Universe, from
human being to the Earth to the whirling stars overhead. Kosmos is an
untranslatable Greek word that imposes upon the observed heavens
exact laws of harmony and adornment. According to Pythagoras, the
secrets of the kosmos, many of which are not perceptible to common
human senses, are disclosed by pure thought and reasoning through a
process that can be expressed in terms of numbers and relationships
involving numbers. According to Pythagoras, kosmos is formed of twelve
concentric spheres. The farthest sphere is the �ixed stars embedded like
tiny jewels, where God and deities live (in some communities this
thought process continues even today). Next, at equal distance from
each other in descending order, there are seven planets (fate-deciding
gods in astrology) Saturn, Jupiter, Mars, Venus (highly revered planet
because it was the only planet bright enough to cast a shadow, it is called
“the morning star” as it is visible before sunrise, and as “the evening
star” it shines forth immediately after sunset), Mercury, the Sun, and the
Moon (Pythagoras referred to the Sun and the Moon as gods, as these
heavenly bodies are the origin of the principle that is the cause of living
things). Below the sphere of the Moon are the spheres of �ire, air, and
water. These planets and essential spheres rotate around the Earth in a
circular (the most perfect of all shapes) motion, and the Earth revolves
in a stationary position at the center of the Universe. In this ordering,
the farthest sphere was perfect in all aspects, and then each was down to
the sphere of the Moon. Below the Moon there was increasing disorder,
and the Earth was regarded as the least perfect of all spheres.

Pythagoras established that day and night were a result of the
Earth’s revolution, and the change in seasons was due to the tilt of the
Earth’s axis relative to the Sun. He taught that the Moon shines by the
re�lected light of the Sun and thus implied the nature of solar and lunar
eclipses. From Pythagoras originated the doctrine of the “harmony of
the spheres,” a theory according to which the heavenly bodies emit
constant tones that correspond to their distances from the Earth.
Pythagoras reputedly claimed to hear the “music of the spheres” and



thus produce an inaudible symphony. According to Porphyry, Pythagoras
taught that out of nine, seven Muses [the word museum derives from the
Muses] (daughters of Zeus and Mnemosyne): Calliope (epic poetry), Clio
(history), Euterpe (�lutes and music), Thalia (comedy and pastoral
poetry), Melpomene (tragedy), Terpsichore (dance), Erato (love poetry
and lyric poetry), Polyhymnia (sacred poetry), Urania (astronomy) were
actually the seven planets singing together. The notion music of the
spheres became an inspiration for many Renaissance scientists
including Kepler who spent/wasted almost thirty years of his life
seeking to discover the laws of planetary motion in musical harmony,
before formulating his three laws about the motion of the planets.
However, nothing is known about Pythagoras’s teachings regarding the
in�luence of planetary movement on human behavior (astrology).

When Pythagoras was asked why humans exist, he said, “to observe
the heavens,” and he used to claim that he himself was an observer of
nature, and it was for the sake of this that he had passed over into life.
When the same question was asked to Anaxagoras (around 500–428 BC,
Greece) he quoted the same words of Pythagoras and added “To observe
the heavens and the stars in it, as well as the Moon and the stars’, since
everything else at any rate is worth nothing.” However, Burkert
condemns all earlier commentators of Pythagoras. He writes (see
Burkert [109]) “Pythagoras was a charismatic political and religious
teacher, the number philosophy attributed to him was really an
innovation by Philolaus. Pythagoras never dealt with numbers at all, let
alone made any noteworthy contribution to mathematics. The only
mathematics the Pythagoreans ever actually engaged in was simple,
proof less arithmetic, but that these arithmetic discoveries did
contribute signi�icantly to the beginnings of mathematics.” Bernabé and
Mendoza [68] after their instructive comparison of the Pythagorean and
Vedic cosmogony, with little hesitation, af�irm that some of these ideas
“arrived to the Greeks through direct contact between wise men and
priests; but it is also probable that some of them were transmitted
through secondary channels, for example by way of traders, soldiers and
slaves, in the same way that other fables and folk-tales travel from one
culture to another.” See also the concluding remarks in Afonasin and
Afonasina [8] and the book of Dahlquist [145].



Philia is an ancient Greek word that is usually translated as
friendship or affection, and its opposite is phobia. Aristotle gives
following examples of philia: young lovers, lifelong friends, cities with
one another, political or business contacts, parents and children, fellow
voyagers and fellow soldiers, members of the same religious society, or
of the same tribe, and a cobbler and the person who buys from him. But,
to Pythagoras, philia is a cosmic force that attracts all the elements of
nature into harmonious relationships. It helps to preserve the order of
planets as they move across the sky, and encourage men and women,
once their souls have been puri�ied, to help one another. He taught that
each person has a responsibility to observe the law of philia in every
aspect of life, in particular, cultivates friendship between: gods and men,
the body and the three parts of the soul, citizens and states, and
husband, wife, children, and neighbors.

Pythagoreans honored friendship so highly is exhibited by the
following anecdote told by Aristoxenus, and after him Marcus Tullius
Cicero (106–43 BC, Italy), Diodorus Siculus (90–30 BC, Greece), and
several others: Pythagoreans Pythias and Damon traveled to Syracuse
during the reign of the tyrannical Dionysius I. Pythias was accused of
conspiring to assassinate the tyrant and sentenced to death. Pythias
requested if his execution is unavoidable, he may be allowed to return
home one last time to settle his affairs and bid his family farewell.
Dionysius I refused his request, convinced that, once released, Pythias
would �lee and never return. But then Damon offered himself as a
hostage in Pythias’ absence, and when the tyrant insisted that, should
Pythias not return by an appointed day and time, Damon would be
executed in his stead, Damon agreed and Pythias was released. Pythias
promised to return on the appointed day and time came and went,
Dionysius I called for Damon’s execution—but just as the executioner
was about to kill Damon, Pythias returned. Confessing to his friend for
the delay, Pythias clari�ied that on the passage back to Syracuse pirates
had captured his ship and thrown him overboard, but that he swam to
shore and made his way back to Syracuse as quickly as possible, arriving
just in time to save his friend. Dionysius I was so astonished by and
pleased with their unquestioning loyalty that he pardoned Pythias. The
tyrant then sought to become their third friend, but it was denied.
Another version (which makes more sense) says that it was planned by



Dionysius I and his courtiers to test Pythagoreans live up to their
reputation.

1.6	 Cup	of	Pythagoras
A Pythagorean cup (also known as the greedy cup) looks like a normal
drinking cup, except it was designed to hold an optimal amount of wine,
forcing people to consume only in moderation—a virtue of great regard
among ancient Greeks. The cup has a central column in it, which is
positioned directly over the stem of the cup and over a hole at the
bottom of the stem. A small open pipe runs from this hole almost to the
top of the central column, where there is an open chamber. The chamber
is connected by a second pipe to the bottom of the central column,
where a hole in the column exposes the pipe to (the contents of) the
bowl of the cup. When the cup is �illed, wine rises through the second
pipe up to the chamber at the top of the central column. As long as the
level of the wine does not rise beyond the level of the chamber, the cup
functions as normal. If the level rises further, however, the entire wine
spills through the chamber into the �irst pipe and out of the bottom.
Most modern toilets operate on the same mechanism: When the water
level in the bowl rises high enough, a siphon is created, which empties
the bowl.

1.7	 Doctrine	of	Pythagoras
Frank Higgins [262] provides an excellent summary of the Pythagorean
doctrine as follows: “Pythagoras’s teachings are of the most
transcendental importance to Masons, inasmuch as they are the
necessary fruit of his contact with the leading philosophers of the whole
civilized world of his own day, and must represent that in which all were
agreed, shorn of all weeds of controversy. Thus, the determined stand
made by Pythagoras, in defense of pure monotheism, is suf�icient
evidence that the tradition to the effect that the unity of God was the
supreme secret of all the ancient initiations is substantially correct. The
philosophical school of Pythagoras was, in a measure, also a series of
initiations, for he caused his pupils to pass through a series of degrees
and never permitted them personal contact with himself until they had



reached the higher grades. According to his biographers, his degrees
were three in number. The �irst, that of Mathematicus, assuring his
pupils pro�iciency in mathematics and geometry, which was then, as it
would be now if Masonry were properly inculcated, the basis upon
which all other knowledge was erected. Secondly, the degree of
Theoreticus, which dealt with super�icial applications of the exact
sciences, and, lastly, the degree of Electus, which entitled the candidate
to pass forward into the light of the fullest illumination which he was
capable of absorbing”:

Eli Maor, in his book [361], mentions that during his recent visit to
Pythagoria, he noticed that in Samos, Pythagoras is a household name,
the main square is named after him, as is a street, a high school, and at
least one Hotel. Martin Bohner (born 1966, Germany-USA) visits
Samos every few years, he also hikes up to the cave where Pythagoras
used to hide, seen the tunnel, his statue, and purchased a few
Pythagorean cups.
For further speculative details of Pythagoras’s life, philosophy,
mathematics, and astronomy, see Bamford [54], Day [157], De Vogel
[161], Dreyer [170], Friedricks [199], Von Fritz [201], Gorman [217],
Leslie [343], McClain [364], O’Meara [400], Philip [409], Riedweg
[433], Strohmeier and Westbrook [499], Taylor [507], and Thesleff
[508].
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2.1	 Introduction
Consciously/unconsciously/subconsciously in every aspect of our life we
use numbers. In fact, number is the key to all arts, sciences, technologies,
and all philosophies. According to Plato “Arithmetic has a very great and
elevating effect, compelling the soul to reason about abstract number,”
Aristotle “The elements of numbers are the elements of things, and that
the whole heaven is a harmony and a number. He further says,
Pythagoreans considered number as the substance of all things,” John
Locke (1632–1704, England) “The simple modes of number are of all other
the most distinct; even the least variation, which is a unit, making each
combination as clearly different from that which approacheth nearest to it,
as the most remote, two being as distinct from one, as two hundred, and
the idea of two as distinct from the idea of three, as the magnitude of the
whole Earth from that of a mite,” and Auguste Comte (1798–1857, France)
“There is no inquiry which is not �inally reducible to a question of
numbers; for there is none which may not be conceived of as consisting in
the determination of quantities by each other, according to certain
relations.”

In the domain of the history of numbers, at least, human intelligence is
universal and that the progress has been achieved in the mental, cultural
and collective endowment of the whole humankind. Owing to the genius of
the Indian arithmeticians that three signi�icant ideas were combined: nine
numerals which gave no visual clue as to the numbers they represented
and which constituted the pre�iguration of our modern numerals, the
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discovery of the place-value system, which was applied to these nine
numerals, making them dynamic numerical signs, and the invention of
zero and in�inity and their enormous operational potential, see Dutta
[175]. In India numbers were in search of enlightenment. As far as we
could go in the past, the concepts of natural numbers, rational and
irrational numbers, zero, in�inity, and the place-value system among others
referred in mathematical portion of Vedic	Samhitas (a collection of all four
Vedas). A dice made of �ired clay dating from 3000 BC has been found in
northern Iraq; however, the ancient players did not have symbols for
numbers, that is why they marked the sides of the dice with dots. In this
chapter mainly we shall study natural, negative, and rational numbers,
number zero, and legitimacy of in�inity. We shall also discuss properties
and mystic aspect of natural numbers that is specially the union with the
divine or sacred. The last section will be devoted to complex numbers. The
irrational numbers we shall study in detail in Chap. 8.

2.2	 Natural	Numbers
From early times numbers were words, which refer to collections of
objects. Around 4000 BC, special symbols for numbers appeared in the
river valleys of the Indus (which was home to more than �ive million
people), the Nile, the Tigris and Euphrates, and the Yangtze. As these
symbols evolved, their utility slowly improved, and they began to assist
man in assimilating, combining, distinguishing, remembering, and
expressing big numbers. The next step forward was the creation of names
for the numbers and (due to applications to practical problems) the basic
operations. The signs for these operations  and  respectively,
�irst appeared in the works of Nicole Oresme (1320–1382, France) in
1360, Johann Widmann (1462–1500, Czechoslovakia) in 1489, John Napier
(1550–1617, Scotland) in 1618, and Johann Heinrich Rahn (1622–1676,
Switzerland) in 1659. In antiquity, counting was considered a talent as
mystical and arcane as casting spells and calling the gods by name. In the
Egyptian Book	of	the	Dead, when a dead soul is challenged by Aqen, the
ferryman who conveys departed spirits across a River Styx in the
netherworld, Aqen refuses to allow anyone aboard “who does not know
the number of his �ingers.” The soul must then recite a counting rhyme to
tally his �ingers, satisfying the ferryman.

Almost from the last 2500 years philosophers have been unsuccessful
in providing satisfactory answer to the questions like “what is an integer”



and “in what sense do integers exist?” However, at least we can say
numbers are abstract objects of the mind that allow us to understand our
world and our lives with greater clarity. The numbers  in
general represented as  have been called as natural	numbers or positive
integers because it is generally perceived that they have in some
philosophical sense a natural/divine existence independent of man. We
will never know if there existed a genius who, when, where, and how
invented or introduced these natural numbers (the very origin of numbers
is a mystery), but it is generally accepted that these numbers came down
to us, ready-made, from an antiquity most of whose aspects are preserved
in folklore rather than in historical documents. In India, the earliest
written �irst nine integers in Sanskrit appeared in the Vedic Samhita and
the Brahmana (commentaries on the Vedas) as follows: eka (1), dvi (2), tri
(3), catur (4), panca (5), sat (6), sapta (7), asta (8), and nava (9). Here we
also �ind the derived decuple terms for the �irst nine multiples of ten: dasa
(10), vimsati (20), trimsat (30), catvarimsat (40), pancasat (50), sasti (60),
saptati (70), asiti (80), and navati (90); also terms for powers of ten up to
Koti (ten million).

While natural numbers are primarily used for counting �inite
collections of objects, there is hardly any aspect of our life in which natural
numbers do not play a signi�icant-though generally hidden part, e.g., time
you woke up today, your birthday, your phone number. In fact, natural
numbers are building blocks of all sciences and technologies. Number
Theory, which mainly deals with properties, relationships,
speculations/conjectures, and answers/formulas to amusing problems of
natural numbers, without the need for a real life application—in fact,
mathematics done purely for the sake of doing mathematics—has been
classi�ied as Pure	Mathematics. According to Hardy “The theory of
numbers, more than any other branch of mathematics, began by being an
experimental science. Its most famous theorems have all been conjectured,
sometimes a hundred years or more before they were proved; and they
have been suggested by the evidence of a mass of computations.” Isaac
Albert Barnett (1894–1974, England-USA) said: To discover mathematical
talent, there is no better course in elementary mathematics than number
theory. Since antiquity, number theory has captivated the best minds of
every era. An important feature of number theory is that challenging
problems can be formulated in very simple terms; however, hidden within
their simplicity is complexity. Some of these problems have been
instrumental in the development of large parts of mathematics. Amateurs



and professionals are on an almost equal footing in this �ield. The set
(Bernhard Placidus Johann Nepomuk Bolzano, 1781–1848, Czech
Republic, introduced the notion of set [in German: Menge]) of all natural
numbers is denoted as 

2.3	 Number	Sense
This faculty can be de�ined as an intuitive understanding of the integers,
their magnitude, their patterns and relationships, and how they are
affected by the basic operations. A child between twelve and eighteen
months is able to recognize if an object is removed from or added to a
small collection. This simple number sense, the ability to distinguish
“plenty” and “few” without counting, is a useful tool for a conscious being
and a fundamental ability of humans. For primitive man and children,
mathematics is simply a comparison of small collections. So far as
nonhuman living beings are concerned, there are recorded incidences of
birds, animals, insects, and aquatic creatures who show through their
behavior a rudimentary number sense, namely, comparing/sorting. Birds
have shown that they can be trained to determine the number of seeds in
different piles of seeds. Birds navigate accurately over hundreds of miles of
open sea, and, according to one theory, can use the stars for guiding them
at night. It was recently reported that �ive penguins were taken by airplane
from their home at Wilkes Station to Mcmurdo Sound, in Antarctica. When
they were released, three of them waddled more than 2000 miles across
the bleak and monotonous ice to return to their native rookery. Mothers of
domestic animals and other animals have shown that they can de�initely
determine and perceive when one of their young is missing from the
group. Animals such as dogs, horses, and elephants are displayed to have
the abilities to add, subtract, and count. Clever	Hans a horse owned by
Wilhelm von Osten (Germany) became famous around 1904 for
performing arithmetical and other intellectual tasks. Then a wealthy
German businessman named Karl Krall (1863–1929) announced he had
trained three other horses which were smarter than Hans. These horses
could not only solve complex mathematical calculations and recognize
people, he said, they could also transmit the correct answer to questions
via the newly invented telephone. Nobel Laureate, Maurice Polydore Marie
Bernard Maeterlinck (1862–1949, Belgium) went to inspect these
educated German horses and concluded, “You rub your eyes and ask
yourself in the presence of what new creature you stand. You look for some



trace, obvious or subtle, of the mystery. You feel yourself attacked in your
innermost citadel where you held yourself impregnable.” The behavior of
insects, such as the solitary wasp, indicates some basic mathematical
understanding. The mother wasp lays her eggs in individual cells and
provides each egg with a number of live caterpillars, on which the young
will feed on when they hatch. Honey bees can keep track of directions by
using the Sun, and they use the state of polarization of the light to tell them
where the Sun is when it is cloudy. Marine mammals could be far more
skilled at math than was ever thought possible before, for example,
Dolphins may use complex nonlinear mathematics when hunting. Salmon
�ind their way back to the streams where they were born, very possibly
identifying their native location because it smells to them like home. Mice
learn from experience what turns to make in order to “run” a maze and to
end up at the place where food will reward them. It is observed that a cat
makes no objection when she was relieved of two of her six kittens, but
was plainly distressed when she was deprived of three.

2.4	 Rational	Numbers
A positive rational	number is de�ined as the exact ratio/fraction/quotient
of two positive integers  where  Here p is called the numerator
(the numberer), whereas q the denominator (namer). The ancient Chinese
called the numerator “the son” and the denominator “the mother.” It is very
likely that the notion of rational numbers also dates to prehistoric times,
but owing to the lack of a good notation in the beginning, they were not
treated as numbers. Around 4000 BC, rational numbers were used to
measure various quantities, such as length, weights, and time in the Indus
river valley. Thus, then rational numbers were suf�icient for all practical
measuring purposes. The Babylonians used elementary arithmetic
operations for rational numbers as early as 2000 BC. We also �ind ancient
Egyptians texts describing how to convert general fractions into their
special notation. Ancient Greek and Indian mathematicians made studies
of the theory of rational numbers, as part of the general study of number
theory, see Elements and Sthananga	Sutra (around third century). Note
that rational numbers are dense, i.e., between two rational numbers (no
matter how close they are) there is a rational number. The set of all
positive rational numbers is denoted as 



2.5	 Negative	Numbers
Throughout the ancient history negative solutions of linear and quadratic
equations have been called as absurd/ugly/unpleasant solutions. First
systematic use of negative numbers in mathematics for �inding the
solutions of determinate and indeterminate systems of linear equations of
higher order with both positive and negative numbers appeared in the
commentary by Liu Hui (around 220–280, China) on the Jiuzhang	Suanshu
(Nine Chapters on the Mathematical Art), see Shen et al. [475], which came
into being in the Eastern Han Dynasty (202 BC–220 AD) and is believed to
have been originally written around 1000 BC, much before Han Dynasty;
however, multiplication of negative numbers never used. In appreciation,
the historian Jean-Claude Martzloff (1943–2018, France) theorized that
the importance of duality in Chinese natural philosophy made it easier for
the Chinese to accept the idea of negative numbers (see [362]).
Brahmagupta in his treatise Brahma-sphuta-siddhanta (Brahma’s correct
system) treated positive numbers in the sense of “fortunes” (dhana) and
negative numbers as “debts” (rina), which we still use in taxes, income,
loans, and other things. Clearly, fortunes and debts are equalled to the
inverse of the other. These terms continued until the twelfth century.
Brahmagupta also set rules for dealing with negative numbers (very
similar to the methods we still use today). He also found negative solutions
of quadratic equations.

Bhaskara II gave  and  as the roots of the equation
 but cautioned, “The second value in this case is not to be

taken, for it is inadequate; people do not approve of negative roots.” He
also expressed: The square of a positive number, as also that of a negative
number, is positive; and the square root of a positive number is two-fold,
positive, and negative; there is no square root of a negative number, for a
negative number is not a square. Ibn Yahya al-Maghribi Al-Samawal
(around 1130–1180, Iraq) stepped away from fortunes and debts and
produced an algebra with positive, negative numbers, and an “empty
power.” Michael Stifel (1486–1567, Germany) in his famous work
Arithmetica	Integra (1554) dealt with negative numbers where he called
them numeri absurdi (absurd numbers). Ch’in Chiu-Shao (around 1202–
1261, China) also known as Qin Jiushao, on the counting board used black
and red colors for negative and positive numbers. Fra Luca Bartolomeo de
Pacioli (1447–1517, Italy) is credited with a knowledge of the rule of signs



on such evidence as  In 1545, Girolamo
Cardano (1501–1576, Italy) in his book Ars	Magna (crown of all algebra up
to his time) recognized negative numbers and stated their rules, specially
“minus times minus gives plus.” Despite this, he was still reluctant to use
negative numbers in practical calculations. In fact, he called negative
solutions “�ictitious,” whereas positive solutions were deemed “true.”

In 1572, Rafael Bombelli (1526–1573, Italy) claimed that he
understood the rules of addition in such instances as  where 
are positive integers. François Viéte (1540–1603, France) rejected negative
roots. Thomas Harriot (1560–1621, England) in his book Artis	analyticae
praxis (Practice of the Analytic Art), which appeared posthumously in
1631, allowed negative number in an equation, but refused to admit
negative roots. Albert Girard (1595–1632, France) was among the �irst to
note the geometric meaning of a negative solution to an equation: “The
minus solution is explicated in geometry by retrograding; the minus goes
backward where the plus advances.” He even gave an example of a
geometric problem whose algebraic translation has two positive and two
negative solutions and noted on the relevant diagram that the negative
solutions were to be interpreted as being laid off in the direction opposite
that of the positive ones. René Descartes (1596–1650, France) avoided
using negative quantities, which he called “false,” on the grounds that
nothing should be less than “nothing” though he did not forbid their use.
John Wallis (1616–1703, England) rejected the idea that a negative
number is less than nothing but accepted the view that it is something
greater than in�inity. He argued that since the ratio  when a is positive,
is in�inite, then, when the denominator is changed to a negative number, as
in  with b negative, the ratio must be greater than in�inity. Wallis is
credited for giving some geometric meaning to negative numbers by
inventing the number line. In 1659, Johann van Waveren Hudde (1629–
1704, Netherland) used a letter to denote a positive or a negative number
reluctantly. Newton assigned af�irmative motion as progression and
negative motion as regression. This paved the way for him to progress on
his path of physics. The formal in�inite binomial expansion, i.e.,

(2.1)



here,

(2.2)

applied to  gives  a meaningless
result which did not astonish Euler [during his seventy-six years there was
scarcely an aspect of mathematics which he did not leave more
systematized, then he had found it]. Further, dividing  into x and

 into  and then adding the results obtained the ridiculous result
found by Euler

for all x different from 0 and  Clearly, for  a nonnegative integer,
(2.2) gives the binomial	coef�icients

(2.3)

and the in�inite expansion (2.1) reduces to the �inite expansion known as
binomial	theorem (�irst explicitly appeared in the writings of Brahmagupta,
see Biggs [71], and then in Halayudha’s meruprastaara, around 975)

(2.4)

The ancient Greeks did not have to deal with negative numbers because
their math was founded on geometric ideas. In fact, Diophantus in one of
the problems of his collection had a negative four as the formal solution
which he considered “absurd” (he is also credited to be the �irst Greek
mathematician who frankly recognized fractions as numbers).
Unfortunately, in Britain pessimistic attitude toward negative numbers
continued till the eighteenth century, in fact, William Frend (1757–1841,



England) took the view that negative numbers did not exist, whereas his
contemporary Francis Maseres (1731–1824, England) in 1759 wrote that
negative numbers “darken the very whole doctrines of the equations and
make dark of the things which are in their nature excessively obvious and
simple.” He came to the conclusion that negative numbers were
nonsensical. Even as late as in the nineteenth century, the English
mathematician Augustine De Morgan (1806–1871) said, “We have showed
the symbol  to be void of meaning, or rather self contradictory and
absurd. Nevertheless, by means of such symbols, a part of algebra is
established which is of great utility.” However, from the middle of the
nineteenth century, negative numbers received their relevance logically
across the world. Today, negative numbers are used in everyday life
without even realizing, e.g., temperature, purchases, electrical charges, and
withdrawals.

2.6	 Zero	as	a	Number
In Sanskrit Sunya is a word with meaning “zero,” “nothing,” “empty,” or
“void.” George Joseph [289] suggests that its origin can be traced in
Rigveda. Sunya for several centuries constituted the central element of a
mystical and religious philosophy which had become a way of thinking.
Sunya is derived from the root, svi, meaning “hollow.” It is also the root
word for sunyata, which means “emptiness” or “nothingness.” Sunya has
many synonyms: Abhra (atmosphere), Akasha, Ambara (space), Ananta
(immensity of space), Antariksha (space), Gagana (canopy of heaven is
represented by human beings either by a semicircle or by a complete
circle; graphically the little circle for zero might have originated from this
perception), Jaladharapatha (voyage on water), Kha (empty space), Nabha
(sky, atmosphere), Nabhas (sky, atmosphere), Purna (fullness, wholeness,
integrity, completeness), Randhra (hole), Shunya (void), Vindu/Bindu
(point or dot, represents the Universe in its non-manifest form, before its
transformation into the world of appearances), Vishnupada (foot of Lord
Vishnu), Vyant (sky), Vyoman (sky, space), and hence represents the
Universe.

The idea of “nothingness” is fundamental in Buddhist philosophy also,
and it is called as Madhyamaka (middle way) which teaches that every
thing in the world is empty, impermanent, impersonal, painful, and
without original nature. According to Buddha in Sunya there is no form, no



sensation, no idea, no volition, no consciousness, no eyes, no ears, no nose,
no tongue, no body, no mind, no color, no noise, no smell, no taste, no
contact, no elements, no ignorance, no knowledge, and no aging or death.
Thus, the Indian concept of zero far surpassed the heterogeneous notions
of vacuity, nihilism, nothingness, insigni�icant, absence, and nonbeing of
Greek and Latin philosophies. For ancient Hindus Sunya was not the
number zero, rather it was a mechanical device to indicate an empty space;
however, with Sunya the symbol zero,  (a dot inside a circle) had been
invented; but the number zero was yet to be discovered. Unparalleled
“Archimedes rejected zero, which is the bridge between the realms of the
�inite and the in�inite, a bridge that is absolutely necessary for calculus and
higher mathematics.” The mathematical and astronomical tablets from the
Seleucid era (312–63, BC) employ a numerical system which includes a
separation mark for zero. The zero occurs either at the beginning of a
number or within it, but never at the end.

Bakhshali Manuscript (around 200 BC) was found in 1881 in the
village Bakhshali in Gandhara, near Peshawar, North-West India (present-
day Pakistan). The very word manuscript comes from the Latin words
meaning “written by hand.” It has been held at the Bodleian Libraries
(England) since 1902. It is written in an old form of Sanskrit on birch barks
of which only about 70 (mutilated) are available. This manuscript gives
various algorithms and techniques for a variety of problems, such as
computing square roots, dealing with negative numbers (using  as a
negative sign), and �inding solutions of quadratic equations. The text
contains negative numbers and zero as well as several numerical entries
expressed in numerical symbols. Ptolemy used a circular symbol for zero
at the end of a number. A black dot on a third-century manuscript has been
identi�ied by Oxford University as the mathematical symbol for zero. A dot
was also used for zero in the Sharada system of Kashmir (eight to twelve
centuries) and in the vernacular notations of Southeast Asia. The point is
the most insigni�icant geometrical �igure, constituting as it does the circle
reduced to its simplest expression, its center.

The Muslims translated the Hindu’s Sunya as sifr (khala, faragh, [it led
to the word cipher which means secret code]), and in east (Asia, Baghdad)
they also represented it by dot “ ,” whereas in west (North Africa, Spain)
by circle “ .” Zero found its way to Europe through the Moorish conquest
of Spain, but then the sifr was assimilated to a near-homophone in Latin,
zephyrus, meaning “the west wind” and, by rather convenient extension, a
mere breath of wind, a light breeze, or—almost—nothing. Fibonacci in his



treatise Liber	Abaci (The Book of Calculation) of 1202 wrote of the symbol
as zephirum, the term remained in use in Italy until the �ifteenth century,
except in Venetian dialect it was called ze�iro, and its contraction �inally
became zero. Jordanus Nemorarius (1225–1260, Germany) changed it to
Spanish word cifra. In various spelling, the term sifra, cyfra, cyphra,
zyphra, tzphra, etc., continued to be used to mean zero by some
mathematicians for many centuries. In the translation of Maximus
Planudes’ (1260–1305, Bithynia) work Psephophoria	kata	Indos (Methods
of Reckoning of the Indians) in 1340, the symbol was called as Tzipha, and
this form was still used as late as the sixteenth century. In Italian it was
called Zenero, Cenero, and Zephiro. Since the fourteenth century, zero has
been used as shown in the records of 1491 by Calnadri and of 1494 by
Pacioli. The Latin word nulla appears in Italian translations of Muslim
writings of the twelfth century, and also in French by Nicolas Chuquet
(around 1445–1488, France) in his work Triparty	en	la	science	des	nombres
(he also used negative numbers as exponents but referred to them as
absurd numbers), and German of the �ifteenth century. The English word
cipher was used for zero by Adrian Metiers (France) in 1611, Pierre
Hérigone (1580–1643, France) in 1634, Bonaventura Francesco Cavalieri
(1598–1647, Italy) in 1643, and Euler in 1783, even though the more
modern German word Ziffer had been introduced. For zero several other
names are in common use such as nil, aught, nada, naught, nix, nought,
zilch, zip, zot, and the list continues. In modern uses zero is denoted as 0,
which is an interesting return to the Greek name omicron, although
negative numbers and zero were impossible in Greek geometry, for a line
cannot be zero or less in length. Aczel [2] in his book advocates that zero
�irst appeared in Cambodia (then a part of Greater Bharat), which cannot
be believed. Jean Chevalier (1906–1993, France) and Alain Gheerbrant
(1920–2013, France) in their collection of 1982 Dictionary	of	Symbols
write “In drawings and pictograms, the canopy of heaven is universally
represented either by a semicircle or by a circular diagram or by a whole
circle. The circle has always been regarded as the representation of the sky
and of the Milky Way as it symbolizes both activity and cyclic movements.
Thus the little circle, through a simple transposition and association of
ideas, came to symbolise the concept of zero for the Indians.”

To recognize the unique understanding of zero among the positive and
negative numbers, we arrange them in order. The positive numbers to the
right and negative numbers to the left, with every consecutive distance 
But then the distance between  and 1 is twice the distance between any



other pair, and hence they are not consecutive. Thus, to preserve the
regularity between  and  the Hindu scholars �illed the gap by giving
the status of a number to zero 0 (logically at home with the natural
numbers)

Among the integers, zero is unique, being neither negative nor positive,
provides mirror images of natural numbers  only number
which has an in�inite number of divisors, and lies between two odd
numbers  and 1 and hence even, also above all the most basic concept
in the progress of all modern sciences, astronomy, industries, abstract
mathematics, specially, modern algebra (cornerstone of modern
mathematics). The set of integers including positive, negative, and zero is
denoted as  and the set of all rational numbers is represented by  It
is clear that 

The problem of setting the rules to consider negative and zero as
numbers with regard to the basic operations Brahmagupta (he de�ined
zero as the result of the subtraction of a number by itself, and for zero used
the symbol a dot underneath numbers) laid down the following rules: A
debt plus or minus zero is a debt, a fortune plus or minus zero is a fortune,
zero plus or minus zero is a zero, a debt subtracted from zero is a fortune,
a fortune subtracted from zero is a debt, from a fortune or debt if you
subtract itself you obtain zero, the product of zero multiplied by a debt or
fortune is zero, the product of zero multiplied by zero is zero, the product
or quotient of two fortunes is one fortune, the product or quotient of two
debts is one fortune, the product or quotient of a debt and a fortune is a
debt, and the product or quotient of a fortune and a debt is a debt.
Brahmagupta, however, struggles when it comes to division by zero:
Fortune or debt when divided by zero is a fraction the zero as
denominator. Zero divided by fortune or debt is either zero or is expressed
as a fraction with zero as numerator and the �inite quantity as
denominator, and zero divided by zero is zero. Clearly, he is wrong in
claiming that zero divided by zero is zero.

Bhaskara II called zero as Ganita	Chakra	Chudamani (the gem in the
circle of mathematicians), further in his treatise Bijaganita (Basic
Arithmetic) writes: A quantity divided by zero becomes a fraction the
denominator of which is zero. This fraction termed an in�inite quantity
(Euler viewed that  is twice as big as ). In this quantity consisting of



that which has zero for its divisor, there is no alteration, though many may
be inserted or extracted; as no change takes place in the in�inite and
immutable God when worlds are created or destroyed, though numerous
orders of beings are absorbed or put forth. Bhaskara II also could not
divide zero by zero, in fact, he could set the problem. “What number is it,
which multiplied by zero, and added to half itself, and multiplied by three,
and divided by zero, amounts to the given number 63”? He was simply
thinking of the equation

which by factoring out the zeros in the numerator and “canceling”
becomes  an equation whose solution is 14. However, he did
correctly state other properties of zero such as  and 
Mahavira (817–875, India) who said “Whatever object exists in this
moving and non-moving world, cannot be understood without the base of
Ganit, i.e. mathematics” in his text Ganita-Sara-Samgraha.

In appreciation of Bijaganita the mathematician and historian of
mathematics David Eugene Smith (1860–1944, USA) commented “
oriental mathematics possesses a richness of imagination, an interest in
problem solving and poetry, all of which are lacking in the treatises of the
West, although abounding in the works of China and Japan.” The Arabs
were particularly attracted by the poetical, the rhetorical, and the
picturesque in the Hindu treatment of the subject, more than by the
abstract approach. Mahavira brings himself to the point of admitting that
one could not divide by zero writes: A number remains unchanged when
divided by zero. Thus, Hindu mathematicians and astronomers were
unsuccessful in denying Aristotle’s command “we must not divide by zero,”
which he realized in connection with speed through a vacuum. Fallacies
resulting from division by 0 are rarely presented in simple form that they
may be detected at a glance. For this, we assume  and 
and  Multiplying both sides of the equation  by

 we obtain  Rearranging the
terms, we have  Factoring out

 we get  Now dividing
both sides by  i.e., dividing by zero, we get  or

 which is evidently absurd. In fact, even today mathematically,



 is neither meaningful nor meaningless, it is indeterminate, and it can
have any numerical value. (There are seven indeterminate forms which are
typically considered in the literature: 
and ) In conclusion, zero is the only number which can be divided by
every other number, and the only number which can divide no other
number. In fact, if any mathematical model represents the physical
problem exactly, then division by exact zero must not be occurring in the
model. Recently, Saitoh [443] in his book has tried to show division by zero
is possible in a natural sense, but it is too early for the mathematical
community to appreciate its repercussions.

Sage Veda Vyasa is also the narrator of the epic Mahabharata of which
The	Bhagavad	Gita (meaning “The Song of the Supreme”) is a part. In this
epic there is a phrase which says a combination of nine (digits) always
(suf�ices) for any count (or calculation). Aryabhata (born 2765 BC, India)
whose legacy continues to baf�le mathematicians and astronomers, for
details of his astonishing contributions, see Agarwal and Sen [14] and
Keller [304], invented a unique method of recording numbers which
required perfect understanding of zero and the place-value system. A
decimal system was already in place in India during the Harappan period,
which emerged before 2600 BC along the Indus River valley, as indicated
by an analysis of Harappan weights and measures. In fact, weights
corresponding to ratios of

 and 500 have been
identi�ied. A bronze rod marked in units of  inches points to the
degree of precision demanded in those times. Puranas (meaning ancient, is
a vast genre of Indian literature, dated before 2000 BC, and texts were
composed primarily in Sanskrit during 350–750) are named after Hindu
deities such as Brahma (the creator), Vishnu (the preserver), Shiva (the
destroyer), and Shakti (Shiva’s power), and legends, heroes, astronomy,
and philosophy that contain religious aspects. In the Puranas, nine
ordinary names of numbers and the term shunya play a great importance
in the place-value system. In Agnipurana, the eighth text, it is written that
“after the place of the units, the value of each place is ten times that of the
preceding place,” i.e., from left to right in units, tens, hundreds, 
positions (if zero is added to the right of the representation of a given
number, the value of the number is multiplied by ten). Similarly, in the
Shivapurana, it is explained that usually “there are eighteen positions for
calculation,” the text also points out that “the Sages say that in this way, the



number of places can also be equal to hundreds.” Thus any number r can
be written as in decimal	expansion

(2.5)

where  are integers 0 to  and  are positive integers. Here the
�irst summation is referred to as the integer part, whereas the second
summation as the decimal part.

According to Kaplan [296] Sumerian system (around 2000 BC), which
was found by the Babylonians, had place-value system (using 60 symbols)
including placeholder zero as a pair of angled wedges to represent an
empty number column, but they never developed the idea of zero as a
number. However, Seife [458] believes that the wedges represented only
an empty space. Daivajna Varahamihira (working 123 BC) in his Pancha-
Siddhanta mentioned the use of zero in mathematical operations. Mayans
(1500 BC-900 AD), who lived in Central America, occupying the area,
which today is southern Mexico, Guatemala, and northern Belize,
developed zero as a placeholder around 350 AD and used it to denote a
placeholder in a vertical place-value system (using 20 symbols), which is
considered one of their cultures greatest achievements. The Mayans
started numbering days with the number zero. The place-value system and
zero were discovered in the middle of the reign of the Gupta Dynasty,
whose empire stretched the whole length of the Ganges Valley and its
tributaries from 240 to approximately 535, known as the classical period.
Sarvanandi’s (around 458, India) Lokavibhaga (Parts of the Universe), the
Jaina cosmological text, contains names of the �irst nine numbers, uses the
place-value system (with the term Sthanakramad) and zero sometimes
expressed in word-symbols.

Bhaskara II mentions a tradition, according to which zero and the
place-value system were invented by the God Brahma. In other words,
these notions were so well established in Indian thought and tradition that
at this time they were considered to have always been used by humans,
and thus to have constituted a “revelation” of the divinities. In the �ifth
century, the �irst nine Indian numerals taken from the Brahmi notation
(initiated during the reign of the Buddhist King Asoka 1472–1436 BC, and
in the Buddhist inscriptions of Nana Ghat and Nasik) began to be used
with the place-value system and the decimal system and were completed
by a sign in the form of a little circle or dot which constituted zero. Thus,



Indian place-value system was born out of a simpli�ication of the Sanskrit
place-value	system as a consequence of the suppression of the word-
symbols for the various powers of ten. Xiahou Yang (around 400–470,
China) noted that to multiply a number by  or 10000 all that
needs to be done is that the rods on the counting board are moved forward
by  or 4 decimal places. Similarly to divide by  or
10000 the rods are moved backward by  or 4 decimal places. From
the sixth century onward, the use of the place-value system and zero began
to appear frequently in documents from India and Southeast Asia.
Jinabhadra Gani (529–589, India), a Svetambara Jain monk, in his notable
work Brihatkshetrasamasa gives an expression for the number
3200400000000 in the simpli�ied Sanskrit system using the place-value
system, which proves that he was well acquainted with zero and the place-
value system.

In 594, the date of the donation charter engraved on copper of Dadda
III of Sankheda, in Gujarat (India), uses nine numerals according to the
place-value system. In 598, a Shaka inscription date in Cambodia is written
in Sanskrit word-symbols according to the place-value system. Severus
Sebokht (575–667, Syria) in 662 wrote “I shall not now speak of the
knowledge of the Hindus, …of their subtle discoveries in the science of
astronomy—discoveries even more ingenious than those of the Greeks and
Babylonians—of their rational system of mathematics, or of their methods
of calculation which no words can praise strongly enough—I mean the
system using nine symbols. In 683, Shaka vernacular inscriptions of
Kedukan Bukit in Malaysia and of Trapeang Prei in Cambodia are written
using the place-value system including zero. In 687, a Shaka inscription
date in Champa (Vietnam, Indianized civilization of Southeast Asia) is
expressed using Sanskrit word-symbols according to the place-value
system. The poet Subandhu (seventh century, India) made direct
references to the Indian zero (in the form of a dot) as a mathematical
processing device. In the seventh century, Hindu scholars introduced to
Islamic and Arabic mathematicians further west the ideas of zero and
place-value system. A Sanskrit inscription of 732 from Java (Indonesia,
[then a part of Greater Bharat] contains the Shaka date which is expressed
using the place-value system and word-symbols of the Indian astronomers.

Gautama Siddhanta (different from Gautama Siddhartha, the Buddha),
Chinese Buddhist astronomer of Indian origin, author of a work on
astronomy and astrology entitled Kaiyuan	Zhanjing (718–729), where he



describes zero, the place-value system, and Indian methods of calculation,
replacing the counting rods (used by mathematicians for calculation in
ancient East Asia, specially in China). Lalla (around 720–790, India) in his
two volumes work Shishyadhividdhidatantra (On the Computation of the
Positions of the Planets) and (On the sphere) used abundant usage of the
place-value system by means of Sanskrit numerical symbols. Abu Jafar
Mohammed Ibn Musa al-Khwarizmi (780–850, Khwarazm-Iraq) around
820 wrote a treatise in Arabic which is entitled as Hindu-Arabic	Numerals
(the word Hindu-Arabic came from the Catholic authorities to the counting
systems borrowed from the Islamic world), it describes the Indian place-
value system based on the numerals  and 0 (these ten
�igures in Arabic were called zephirum), but his original work has been
lost; however, its Latin translation Algoritmi	de	numero	Indorum (al-
Khwarizmi on the Hindu Art of Reckoning), a name given to the work by
Baldassarre Boncompagni (1821–1894) in 1857, has survived. Al-
Khwarizmi also developed quick methods for multiplying and dividing
numbers (it freed the use of abacus/swan-pan), which are known as a
corruption of his name (while between the tenth and �ifteenth centuries
algorithm was synonymous with positional numeration, today it applies to
any mathematical procedure consisting of �inite or an inde�inite number of
steps, each step applying to the result of the one preceding it; in particular,
the role of the algorithm is fundamental to the use of mathematical
machines). This Latin translation after several centuries became crucial in
the introduction of Hindu-Arabic numerals to medieval Europe.

In 830, Govindaswami (around 800–860, India), in his famous treatise
which is a commentary on the Mahabhaskariya of Bhaskara I, illustrates
many examples of using a place-value system. Mahavira in 850, Haridatta
(�l. around 683, India) in his Grahacaranibandha, and Shankaranarayana
(around 840–900, India) in his notably text Laghubhaskariyavivarana of
869 frequently used the place-value system. The inscriptions of Gwalior
temple (875–876, India) use zero (in the form of a little circle) and the
nine numerals (in Nagari) according to the place-value system. Toward the
end of the ninth century the philosopher Shankaracharya (700–750) made
a direct reference to the Indian place-value system in his work
Sharirakamimamsabhashya (great commentary on the Vedantasutra). Abu
Arrayhan Muhammad ibn Ahmad al-Biruni (973–1048, Uzbekistan–
Afganistan, travelled to India and testi�ied that the Indian attainments in
mathematics were unrivalled and unsurpassed) in his works used Indian
place-value system and methods of calculations. A manuscript Codex



Vigilanus of 976 (now kept in a museum of Madrid) by Vigila, a monk in a
Spanish monastery records: The Indians have an extremely subtle
intelligence, and when it comes to arithmetic, geometry, and other such
advanced disciplines, other ideas must make way for theirs. The best proof
of this is the nine �igures with which they represent each number no
matter how large. Shripati (�l. in 1045, India) works include
Siddhantashekhara in which the place-value system of the Sanskrit
numerical system is used frequently.

Rabbi Abraham ben Meir Ibn Ezra (around 1089–1167, Spain) wrote
three treatises on numbers which helped to bring the Indian symbols,
place-value system, and ideas of decimal fractions to the attention of some
of the learned people in Europe. In his work ibn Ezra called zero as galgal
(meaning wheel or circle). Despite ibn Ezra’s books, these ideas were not
accepted among European mathematics for several more centuries.
Fibonacci in his Liber	Abaci (the �irst Western books to describe the Hindu-
Arabic numeral system) states that “The nine Indian numerals are …with
these nine and with the sign  which in Arabic is sifr, any desired number
can be written.” This is considered as an important link between the
Hindu-Arabic number system and the European mathematics. In 1247,
Chiu-Shao wrote Shushu	Jiuzhang (Mathematical treatise in nine sections)
which uses the symbol 0 for zero. A little later, in 1303, Zhu Shijie (1249–
1314, China) wrote Siyuan	Yujian (Jade mirror of the four elements), which
again uses the symbol 0 for zero. After the Mongol period (1206–1368),
the circle-zero Chinese used as an ordinary �igure.

By the �ifteenth century, the numerals were showing up on coins and
gravestones, and zero appeared in the middle of every Renaissance
painting. In 1585, Simon Stevin (1548–1620, Belgium–Netherland)
published a 36-page booklet, La	Thiende (The Tenth) in Leiden, which is an
account of decimal fractions and their daily use. By the end of 1600s, this
booklet became a turning point, as Europeans realized the simplicity of
Hindu-Arabic numerals over the cumbersome Roman numerals which
were in common usage in Europe (Napier was the �irst to use comma or
point to separate decimals from the integers). In particular, zero began to
come into widespread use as it played a fundamental role in Descartes
Cartesian coordinate system, and in calculus, developed independently by
Newton and Gottfried Wilhelm von Leibniz (1646–1716, Germany).
Calculus paved the way for physics, engineering, computers, and much of
�inancial and economic theory. Zero/vanishing point in paintings forms
part of a linear perspective scheme. It is the point in �ictive space which is



supposed to appear the furthest from the viewer—the position at which all
receding parallel lines meet.

The discovery of zero took place within an environment which was at
once mystical, philosophical, religious, cosmological, mythological, and
metaphysical (for a detailed history of zero, its role in life, and
mathematics (see Sen and Agarwal [466]). In India, the use of zero and the
place-value system has been a part of the way of thinking for so long that
people have gone as far as to use their principal characteristics in a subtle
and very poetic form in a variety of Sanskrit verses. While the importance
of zero and the place-value system was well recognized and used in Asia, it
took several centuries for Europeans to fully understand their simplicity
and practicability. In fact, the local merchants of Pisa (the home city of
Fibonacci), the trading class, neglected Fibonacci’s Liber	Abaci. They were
more interested in prosperity and did not want to be bothered with giving
up Roman numerals and adopting a zero. However, Fibonacci’s
mathematician friends realized immense superiority of the new number
system and slowly over time gave up the Roman numerals. After
Fibonacci’s work, some regions of Europe believed that the number zero
was evil, and “not of God.” Therefore, Europeans banned the number zero
from being used, but people would still use “sifr” in secret code cipher.

Recently, Annewies van der Hoek (born 1943, USA) said “Medieval
religious leaders in Europe did not support the use of zero, they saw it as
satanic. God was in everything that was. Everything that was not was of the
devil.” In popular language, words derived from sifr soon came to be
associated not with �igures in general but with “nothing” in particular: In
thirteenth-century Paris, a “worthless fellow,” was called cyfre	d’angorisme
or cifre en algorisme, i.e., “an arithmetical nothing.” Similarly, a recent
example appearing in the newspapers is “a lousy nothing divided by
nothing.” In appreciation to place-value system, Severus Sebokht wrote
“subtle discoveries” of Indian astronomers as being “more ingenious than
those of the Greeks and the Babylonians” and “their valuable methods of
computation which surpass description” and then goes on to mention the
use of nine numerals. From the thirteenth century, when calculations could
be performed “in writing,” slowly the importance of zero and the place-
value system was recognized all over the world, and prominent
mathematicians and philosophers started making constructive comments:

Simon Jacob (1510–1564, Germany) says: “It is true that it (the abacus)
is useful for everyday calculations, where we often need to calculate sums,
subtract or add, but in technical work, which is rather more complicated,



an abacus is often an encumbrance. I am not claiming that such
calculations cannot be carried out on the lines [of the abacus] but, just as a
man without baggage has the advantage over one who is heavily loaded, so
calculating with �igures has the advantage over calculating on the lines.”

Simon Stevin in his “l”	Arithmétique of 1558 writes that Arithmetic is
the science of numbers and number is that which explains the quantity of
each thing. He makes a point that number represents quantity, any type of
quantity at all. Number is no longer to be only a collection of units, as
de�ined by Euclid.

Pierre Simon de Laplace (1749–1827, France): “It is India, that gave us
the ingenious method of expressing all numbers by means of ten symbols,
each receiving a value of position as well as an absolute value, a profound
and important idea which appears so simple to us now that we ignore its
true merit. But its very simplicity, the great ease which it has lent to all
computations, puts our arithmetic in the �irst rank of useful inventions;
and we appreciate the grandeur of this achievement the more when we
remember that it escaped the genius of Archimedes and Apollonius of
Perga (around 262–200 BC, Greece), two of the greatest men produced by
antiquity.”

George Bruce Halsted (1853–1922, USA): “The importance of the
creation of the zero mark can never be exaggerated. This giving to airy
nothing, not merely a local habitation and a name, a picture, a symbol, but
helpful power, is the characteristic of the Hindu race whence it sprang. It is
like coining the Nirvana (the supreme state of nonexistence, reincarnation
and absorption of the being in the Brahman) into dynamos. No single
mathematical creation has been more potent for the general on-go of
intelligence and power.”

Whitehead: “The point about zero is that we do not need to use it in the
operations of daily life. No one goes to buy zero �ish. It is in a way the most
civilized of all the cardinals, and its use is only forced on us by the needs of
cultivated modes of thought.”

Swami Vivekananda (1863–1902, born Narendranath Datta, India): “…
the ten numerals, the very cornerstone of all present civilization, were
discovered in India, and are, in reality, Sanskrit words.”

Einstein: “The horizon of many people is a circle with a radius of zero.
They call this their point of view.”

Tobias Dantzig (1884–1956, USA): “In the history of culture the
discovery of zero will always stand out as one of the greatest single
achievements of the human race.”



Bibhuti Bhusan Datta (1888–1958, India): “The Hindus adopted the
decimal scale vary early. The numerical language of no other nation is so
scienti�ic and has attained as high a state of perfection as that of the
ancient Hindus. In symbolism they succeeded with ten signs to express any
number most elegantly and simple. It is this beauty of the Hindu numerical
notation which attracted the attention of all the civilised people of the
world and charmed them to adopt it.” He also writes “From Arabia, the
numerals slowly marched towards the West through Egypt and Northern
Arabia; and they �inally entered Europe in the eleventh century. The
Europeans called them the Arabic notations, because they received them
from the Arabs. By the Arabs themselves, the Eastern as well as the
Western has unanimously called them the Hindu �igures (Al-Arqan-Al-
Hindu).”

Jekuthial Ginsburg (1889–1957, USA): “The Hindu notation was carried
to Arabia about 770 AD by a Hindu Scholar named Kanaka who was invited
from Ujjain to the famous Court of Baghdad by the Abbaside Khalif Al-
Mansur, Kanka taught Hindu astronomy and mathematics to the Arabian
scholars; and, with the help, they translated into Arabic the Brahma-
Sphuta-Siddhanta of Brahmagupta. The recent discovery by the French
savant M.F. Nau proves that the Hindu numerals were well-known and
much appreciated in Syria about the middle of the seventh century AD.”

Arthur Llewellyn Basham (1914–1986, England) observed: “Most of
the great discoveries and inventions of which Europe is so proud would
have been impossible without a developed system of mathematics, and
this in turn would have been impossible if Europe had been shackled by
the unwieldy system of Roman numerals. The unknown man who devised
the new system was from the world’s point of view, after the Buddha, the
most important son of India. His achievement, though easily taken for
granted, was the work of an analytic mind of the �irst order, and he
deserves much more honor than he has so far received.”

Dalai Lama (born 1935, China): “A zero itself is nothing, but without a
zero you cannot count anything; therefore, a zero is something, yet zero.”

John Horton Conway (1937–2020, England) and Richard Kenneth Guy
(1916–2020, England–Canada): Waclaw Sierpinski (1882–1969), the great
Polish mathematician… was worried that he had lost one piece of his
luggage. “No, dear!” said his wife. “All six pieces are here.” “That can’t be
true,” said Sierpinski, “I’ve counted them several times, zero, one, two,
three, four, �ive.”



Stephen William Hawking (1942–2018, England): “The concept of
emptiness is now central to modern physics: the entire known Universe is
seen as zero sum game.”

Agarwal and Sen [14] “In the world, although there are about four
thousand languages of which several hundred are widespread, there are
only several dozen alphabets and writing systems that represent them;
however, we can safely say that there is but one single place-value system
that uses zero and nine numerals, symbolically  by
which any number can be expressed and understood rather easily. This gift
of India has truly united the Universe in the language of numbers.”

Sen and Agarwal [466] “As with the invention of the wheel, modern
science and technology would not be possible without the humble zero.
Mathematics would be no more than a bookkeeper’s art if zero were to be
banished to the forbidden zone of the intellect.”

Sen and Agarwal [466] “In the real world (of physics and chemistry),
the phantom of zero haunts and taunts all those who seek the truth behind
the visible and tangible. There is a limit to which you can lower the
temperature of anything, and that limit is called “Absolute Zero.” Then
there are other types of “zero” in nature: the “quantum zero” and the
“relativistic zero.” Both of these zeros are bizarre and counter-intuitive.
The �irst tells that a vacuum (empty space) is not only non-empty but is
also “full of force.” The other says that the Universe as we understand it
could be populated by many so-called “black holes” (in mathematical lingo
“singularities”) within which the known laws of physics appear to break
down. Like dividing by zero, attempts to unveil the mysteries of these
physical zeros often bring about what appear to be paradoxes (see Sect. 3. 
18) to the �inite mind. And then there is the “most tantalizing” and “most
unfathomable” zero of all in the Universe: the birth of our own Universe at
the “zeroth” hour of the “Big Bang.”

Peter Gobets, secretary of the ZerOrigIndia Foundation (The Zero
Project), said “The Indian (or numerical) zero, widely seen as one of the
greatest innovations in human history, is the cornerstone of modern
mathematics and physics, plus the spin-off technology.” He also remarked
“The numeral and concept of zero, imported from India, has manifested in
various ways. So commonplace has zero become that few, if any, realize it
astounding role in the lives of every single person in the world.”

Van der Hoek: “From this philosophy, we think that a numeral to use in
mathematical equations developed, we are looking for the bridge between
Indian philosophy and mathematics.”



Librarian Richard Ovenden (born 1964, England) said “the discovery
was of vital importance to the history of mathematics and the study of
early South Asian culture. These surprising research results testify to the
subcontinents rich and longstanding scienti�ic tradition.”

Marcus Peter Francis du Sautoy (born 1965, England) said, “Today we
take it for granted that the concept of zero is used across the globe and is a
key building block of the digital world. But the creation of zero as a
number in its own right, which evolved from the placeholder dot symbol
found in the Bakhshali manuscript, was one of the greatest breakthroughs
in the history of mathematics”:

For the question “What does Prob(A)  mean?” The most probable
answer is “A in an impossible event.” But that is not true. Consider a
circular disk (see Fig. 2.1) which is calibrated between 0 and 
coincides with zero. At the center of the disc, there is an elastic pointer.
If we push the pointer, it rotates for a suf�iciently long time and �inally
stops.

Fig.	2.1 Prob(A)

Prob [the pointer will stop between 10 and 20]
Prob [the pointer will stop between 10 and 15]
Prob [the pointer will stop between 10 and 11]
Prob [the pointer will stop between 10 and 10.1]
and �inally
Prob [the pointer will stop at 10]
Does this mean that the pointer will never stop at 10? No. The same is

true for the pointer stopping at any particular point. This shows that
Prob(A)  indicates that A is very very rare or an “almost impossible”
event, as it is called, i.e., [P(A) ]  is an impossible event.



2.7	 Large	and	Small	Numbers
Positive numbers which are signi�icantly larger than those typically
used/required in everyday life appear frequently in �ields such as
mathematics, cosmology, cryptography, and statistical mechanics. In
particular, large numbers have immense applicability in science and
technology, especially with the advent of silicon technology-based high-
speed digital computers. Modern names of large numbers are Million 
Billion  Trillion  Quadrillion  Quintillion  Sextillion

 Septillion  Octillion , Nonillion  Decillion 
Undecillion  Duodecillion  Tredecillion  Quattuordecillion

 Quindecillion  Sexdecillion  Septendecillion 
Octodecillion  Novemdecillion  Vigintillion  (so far all
powers of the form ), Googol  Centillion 
and Googolplex  (which if written will easily �ill space out to the
most distant visible star). Some of these names were introduced by Jehan
Adam (�l. in �ifteenth century, France) and Chuquet, whereas googol and
googolplex were invented by a nine-year-old child Milton Sirotta in 1938.

In the Bhagavad Gita, Lord Krishna manifested himself as the entire
Cosmos—of 2 trillion Galaxies and Multiverses as his corporeality—this is
known as Visvarupa Darsana—all appearing in a singularity of
concentrated light. In the epic Mahabharata the combined number of
warriors and soldiers in both armies was approximately  million;
however, some authors claim that one billion 660 million and  men
fall in this battle and  escaped (which is obviously an
exaggeration). Almost 3500 BC the Egyptians had far outgrown the
primitive inability to think boldly in terms of large numbers. A royal mace
of about that time records the capture of 120,000 human prisoners,
400,000 oxen, and 1,422,000 goats. The large number

 attracted Babylonians in numerology,
which in the literature known as Plato’s Nuptial	Number by which perhaps
he advocated eugenics, astrology, and a strange number mysticism. For
Aryabhata, the fundamental period was the Mahayuga of 4,320,000 years,
the last quarter of which, the Kaliyuga, began in 3102 BC For
Brahmagupta, the fundamental period was the Kalpa of 1000 Mahayugas.
In Hinduism one of the main religious epic Ramayana (written in Sanskrit
around 300 BC by the sage Valmiki) contains  couplets divided into



seven books. It uses a scale of hundred thousand  to mention terms
up to  (mahaugha).

Buddhist work Lalitavistara	Sutra also composed around 300 BC lists
numbers in multiples of 100 from koti  (in Sanskrit another meaning
of koti is “supreme”) up to tallakshanaam  Hindus also reveled in
large numbers, especially in their pantheon (  deities) and their
mythical chronology. However, the correct meaning of this is that there are
only 33 supreme divinities: Eight Vasus (deities of material elements)—
Dyaus (sky), Prithvi (Earth), Vayu (wind), Agni (�ire), Nakshatra (stars),
Varuna (water), Surya (Sun), Chandra (Moon); Twelve Adityas (personi�ied
deities)—Indra (Shakra), Aryaman, Tvashtr, Varuna, Bhaga, Savitr,
Vivasvat, Amsha, Mitra, Pushan, Daksha, Vishnu (this list sometimes varies
in particulars); Eleven Rudras, consisting of Aja, Ekapada, Ahirbudhanya,
Tvasta, Rudra, Hara, Sambhu, Trayambaka, Aparajita, Ishana, and
Tribhuvana; Two Ashvins (or Nasatyas), twin solar deities. The Jainas had
an interest in the enumeration of very large numbers, which was
intimately tied up with their philosophy of time and space. They could
conceive of such huge units of time as  days,
which was termed as Sirsaprahelika. Jains texts also use auxiliary terms
like sahassa (thousand) and koti and use them to write large numbers. An
anonymous Jaina work Amalasiddhi has terms for all powers of 10 up to

 (da sa-ananta). In the Jaina text Anuyogadvara-sutra (around 100 BC)
the total number of human beings is described variously as “the product of

 and ” (i.e., ), as a number which “can be divided by two 96 times,”
and it is also said that this number, “when expressed in terms of
denominations like koti-koti ( ),” “occupies 29 places (sthana).” Indeed,
the number  requires
precisely 29 digits in the decimal notation.

The ancient Chinese used the words for large numbers in a poetic
manner to create new words. Xu Yue, Wade-Giles Hsü Yüeh (around 185–
227, China), in one of his books provides three methods of assigning the
powers of 10 up to  to traditionally established terms for “large
numbers” and allusively mentions a method of inde�inite generation of
even larger numbers. The world population was estimated  billion for
the year 2020, it was projected as  billion as of July 1, 2021, and it was
expected to be 8 billion by 2023, around 140 million babies are born every
year in the world, and about 60 million people die every year. The
cosmologists believed that the Universe came into being as a highly



dynamic event between 10,000 and 20,000 million years ago, Big-Bang
theory suggests Universe was born about 13.7 billion years ago, whereas
in recent years the present age of the Universe is assessed as

 The age of the Earth has been estimated as 
years (Erdös once gave a lecture called “My First Two-and-a-Half Billion
Years in Mathematics.” His justi�ication? “When I was a child the Earth was
said to be two billion years old. Now scientists say it is four and a half
billion. So that makes me two and a half billion). An educated guess is that
there are of the order of 130 million important books in the world.

In real world applications we have: There are more than 
molecules in a cubic centimeter of gas under normal conditions; the total
number of atoms in the Universe is  there are 86 billion neurons
and 85 billion nonneuronal cells in a normal human brain, and in the
whole body about  trillion cells (every second a single cell divides to
make two new cells, which is a unique ability for living organisms, these
cells join forces to form organs); scientists at CERN’s Large Hadron
Collider may have created the world’s hottest man-made temperature,
forming a quark–gluon plasma that could have reached temperatures of
5.5 trillion degrees Celsius or 9.9 trillion Fahrenheit, which is already
about 250,000 times hotter than the center of the Sun; at standard room
temperature and pressure, we take approximately 25 sextillion molecules
every time in a breath; in our body each red blood cell carries about 270
million molecules of hemoglobin; Avogadro’s number (the number of
atoms, molecules, etc., in a gram mole (gram molecule) of every chemical
substance)  Loschmidt’s constant (the number of
molecules in one cubic meter of a gaseous substance under ordinary
conditions of temperature and pressure)  the
speed of light in vacuum, denoted as  is  meters (186282 mi)
per second; distance from the Earth to Moon is  mi; distance from
the Earth to Mars is about 140 million mi; distance from the Earth to Sun is
93.417 million mi; distance from the Earth to nearest star Proxima
Centauri is about  light years away (one light year is approximately 6
trillion miles); some astronomers estimate that there are over eleven
billion planets in the Milky Way (its radius is 52,850 light years); James
Webb Space Telescope, which was launched on December 25, 2021, shows
a portion of the center of our galaxy (a huge collection of gas, dust, and
billions of stars and their solar systems) about 25,000 light years.



Before the discovery in physics of a whole array of “new” elementary
particles, Arthur Stanley Eddington (1882–1944, England) in 1931
estimated the number of charged particles in the universe as  and in
1938 gave a strange and powerful argument that, among other things, led
to a value for the total number of protons and the same number of
electrons in the observable Universe. This number (known as Eddington’s
number) was

,

Several other large known numbers are: Hubble Constant (after Edwin
Powell Hubble, 1889–1953, USA) 70(km/s)/Mpc, Mpc stands for
megaparsec (  km); Dirac large numbers hypothesis (after Paul
Adrien Maurice Dirac, 1902–1984, England) leads to  [hypothesis is a
supposition or proposed explanation made on the basis of limited
evidence as a starting point for further investigation]; Chandrasekhar limit
(after Subrahmanyan Chandrasekhar (1910–1995, India–USA)

 kg; and von Weizsäcker ratio (after Carl Friedrich Freiherr
von Weizsäcker, 1912–2007, Germany), 

At freezing temperature, planetoids circle the Sun at speeds of 3 miles
per minute, thus taking  years to orbit the Sun. The number of
words printed since the Guttenberg Bible in 1456 until the 1940’s is about

 It is estimated that about 117 billion members of our species have
ever been born on the Earth. Probiotics up to 100 billion CFU (Colony-
Forming Unit) supplement are available in the market. In 2021, the USA
government spent  trillion dollars. Based on retail sales generated in
the �inancial year 2020, Walmart Inc. was by far the world’s leading
retailer with retail revenues reaching over 559 billion dollars. On
September 19, 2019 and again on November 14, 2022, Amazon founder
Jeffrey Preston Bezos (born 1964, USA) pledged to donate majority of his
net worth, currently $124 billion, to �ight climate change and unify
humanity. In 2022, Americans’ holdings of corporate equities and mutual
fund shares fell to $33 trillion at the end of the second quarter, down from
$42 trillion at the start of the year. The list of losers includes Elon Reeve
Musk (born 1971, South Africa, USA) about $115 billion, Bezos $85 billion,
and Mark Elliot Zuckerberg (born 1984, USA) $78 billion. In February
2023, Gautam Shantilal Adani (born 1960, India) shed more than $100
billion in days.



Statista (German company) data suppliers estimate that the USA has
 million smartphone users in 2020. The term perihelion refers to the

point in the orbit of a planet or other astronomical body, at which it is
closest to the Sun: For the planets in the solar system Mercury, Venus,
Earth, Moon (satellite planet), Mars, Jupiter, Saturn, Uranus, Neptune, and
Pluto, it is, respectively, 

 million kilometers. Currently, FBI’s (Federal
Bureau of Investigation) master criminal �ingerprint �ile contains the
records of approximately 47 million individuals, while civil �ile represents
approximately  million individuals. Magic Kingdom at Disney World in
Florida was the world’s most-visited theme park in 2018, with a whopping

 million visitors. New York city has two million rats, thriving on the
streets, in sewers, in both abandoned and un-abandoned buildings, in the
parks, in the subways, in shoe stores, and in restaurants:

In his treatise The	Psammites, or Sand	Reckoner, Archimedes says:
“There are some, King Gelon, who think that the number of sand grains
is in�inite in multitude; and I mean by sand not only that which exists
about Syracuse and the rest of Sicily, but all the grains of sand which
may be found in all the regions of the Earth, whether inhabited or
uninhabited. Again there are some who, without regarding the number
as in�inite, yet think that no number can be named which is great
enough to exceed that which would designate the number of the Earttis
grains of sand. And it is clear that those who hold this view, if they
imagined a mass made tip of sand in other respects as large as the mass
of the Earth, including in it all the seas and all the hollows of the Earth
�illed up to the height of the highest mountains, would be still more
certain that no number could be expressed which would be larger than
that needed to represent the grains of sand thus accumulated. But I will
try to show that of the numbers named by me some exceed not only the
number of grains of sand which would make a mass equal in size to the
Earth �illed up in the way described, but even equal to a mass the size of
the Universe.” Archimedes concluded that the diameter of the Universe
was no more than  stadia (about 2 light years), and that it would
require no more than  grains of sand to �ill it.
Archimedes’s Cattle Problem, also known as bovinum problema, or
Archimedes’ reverse was found in old Greek and Latin manuscripts in
1773 by Gotthold Ephraim Lessing (1729–1781, Germany). It is
originally a Greek poem of forty-four lines which has been translated in



English as follows: “The Sun God had a herd of cattle consisting of bulls
and cows, one part of which was white, a second black, a third spotted,
and a fourth brown. Among the bulls, the number of white ones was one
half plus one third the number of the black greater than the brown; the
number of the black, one quarter plus one �ifth the number of the
spotted greater than the brown; the number of the spotted, one sixth
and one seventh the number of the white greater than the brown.
Among the cows, the number of white ones was one third plus one
quarter of the total black cattle; the number of the black, one quarter
plus one �ifth the total of the spotted cattle; the number of spotted, one
�ifth plus one sixth the total of the brown cattle; the number of the
brown, one sixth plus one seventh the total of the white cattle. What was
the composition of the herd?” If we let in integers  (the
number of white, black, spotted, and brown bulls) and  (the
number of white, black, spotted, and brown cows), then mathematically
the problem leads to solving a system of seven linear equations with
eight unknowns (Diophantine equations)

This system of equations is indeterminate and has in�initely many
solutions. The smallest solution in integers is

which gives a total of  cattle. The other solutions are integral
multiples of these. In 1880, Carl Ernst August Amthor (1845–1916,
Germany) tackled a more intricate cattle problem which requires that

 is a square number and  a triangular number (see Sect.
7. 2). He used logarithmic tables to �ind the smallest solution as

 cattle, far more than could �it in the observable Universe.
In 1965, Williams et al. [535] used a combination of the IBM 7040 and
IBM 1620 computers to show that the solutions to this problem are
numbers with 206544 or 206545 digits.
Chess is a brain-storming game and distinctly different from any game of
chance. According to legend, chess/shaturanja was invented (around
1500 years back) by Grand Vizier Sissa Ben Dahir, and given as a gift to
King Shirham of India. It has also been claimed that the origin of chess



dates beginning of the seventh century written in Pahlavi (Persian) and
Harshacharita (Sanskrit). Chess then found its way to China and to
Europe through the Arab countries. Historians believe that chess,
nicknamed the royal game, was employed in India to teach the military
strategy to Indian princes. Only two players play chess on a chessboard
which is a  checkered board with a black square in each player’s
lower left corner. Each player controls their own army of 16 chessmen.
The player who controls white moves �irst. The goal is to capture the
opponent’s king. The capture is known as checkmate. The checkmate
occurs once the king is under attack, and can neither move nor be
helped by its own army of chessmen. Chess is a zero sum game, i.e., one
person’s gain is equivalent to another’s loss, so the net change in wealth
or bene�it is zero. It has not been proved feasible to estimate the total
number of games of chess; but it has been shown that the number is less
than  Further, the computational complexity of the deterministic
chess algorithm is exponential, needing the evaluation of  possible
moves starting from the �irst (initial) move.

The King Shirham was so delighted with his Grand Vizier that he
offered him any reward he requested, provided that it sounded reasonable.
The Grand Vizier requested the following: “Just one grain of wheat on the
�irst square of a chessboard. Then put two on the second square, four on
the next, then eight, and continue, doubling the number of grains on each
successive square, until every square on the chessboard is reached.”
Ostensibly, King Shirham underestimated the number of grains and
laughed at Sissa because he had asked such a small gift. When he had
someone to calculate the total number of grains, it took more than a week
before he came back with the solution. King Shirham undoubtedly became
very pale when he got the answer: The aggregated number of grains on all
squares of a chessboard would be

This is the harvest of all the wheat of the world, of several decades.
Obviously, King Shirham could not ful�ill Grand Vizier’s desire. The moral
of this tale is even intelligent people in haste overcon�idence can be easily
deluded. The above tale was recorded in 1256 by Iibn Khallik n (1211–
1282, Iran), and it has been retold in several languages.

Another version of this fable is in the �ifteenth century, Ambalappuzha
Sree Krishna Swamy Temple (Kerala/India) dedicated to Lord Krishna was



built by the local ruler Chembakasserry Pooradam Thirunal-
Devanarayanan Thampuran who was chess enthusiast. One day Lord
Krishna appeared in the form of a sage in the court of the king and
challenged him for a game of chess. The king gladly accepted his invitation,
and to make the game more interesting, and con�ident in his playing
abilities, the king asked the sage to choose a prize if he won. Sage
reluctantly said being a man of a few material needs, all he needed was a
few grains of rice. The number of rice itself shall be determined on the
chessboard in the following manner. One grain of rice shall be placed in the
�irst square, two grains in the second square, four in the third square, and
so on with each successive square doubling the amount of its predecessor.
The king considered the requested reward insigni�icant given the vast
riches in his empire. The king obviously lost the game, and the sage
appealed for the agreed-upon prize. As he started putting grains of rice to
the chessboard, the king quickly realized the true nature of the sage’s
demand. The royal stockpiles soon ran out of grains of rice and the king
determined he would never be able to repay the debt. Upon seeing the
dilemma, the sage appeared to the king in his true-form and told the king
that he did not have to pay the debt immediately but could pay him over
time. The king would serve paal payasam (pudding made of rice and milk)
in the temple freely to the pilgrims every day until the debt was paid off.
According to Thomas Henry Huxley (1825–1895, England), the chessboard
is the world; the pieces are the phenomena of the universe; the rules of the
game are what we call the laws of nature.

Shen Kuo (1031–1095, Japan) besides grain problem also considered
the problem to calculate the number of positive con�igurations of a weiqi
board (that is, of a go-board) of size  points of intersection
in which each point may be unoccupied, occupied by a white pawn, or
occupied by a black pawn. His solution is  which is approximately the
same as 

In a lore of India there is a tale about a stone, a cubic mile in size, a
million times harder than a diamond. Every million years a holy man
visits the stone to give it the lightest possible touch. How long does it
take to wear the stone away? On the basis of reasonable estimates of the
wear from each touch, this works out to be the order of  years. If you
calculate the number of “atoms” of carbon in cubic mile of density 
times that of the ordinary diamond, you get a number of the order of

 We have put the word atom in quotes, because one is really dealing



with an interlocked crystal structure: But “the lightest possible touch”
would seem to imply removing one atom at each touch. Removing one
every  years then indicates that  years would perhaps be
required.
Another story in which a large number plays the chief role also comes
from India and pertains to the problem of the “End of the World” (Rouse
Ball [53]), the historian of mathematical fancy tells the story in the
following words: It is interesting to compare this purely legendary
prophecy of the duration of the Universe with the prediction of modern
science. According to the present theory concerning the evolution of the
Universe, the stars, the Sun, and the planets, including our Earth, were
formed about  years ago from shapeless masses. We also
know that the “atomic fuel” that energizes the stars, and in particular
our Sun, can last for another  or  years.
Thus the total life period of our Universe is de�initely shorter than

 years, rather than as long as the  billion years
estimated by Indian legend! But, after all, it is only a legend!
The strength of the traditional Japanese samurai sword is legendry. The
master sword maker prepares the blade by heating a bar of iron until it
is white hot, then folding it over, and pounding it smooth. He does this
15 times. Each time the metal is folded, the layers of steel are doubled (a
geometric sequence). For a sword of 15 folds, the blade contains  or

 layers of steel.
The Tower of Brahma is a romantic legend constructed by Lucas in
1883, as an enhancement to the popular game he invented, The Tower of
Hanoi (amusingly, the original version of this problem, dating back to
ancient Tibet). According to the legend of the Tower of Brahma, in the
Indian city of Benares/Varanasi, beneath a dome that marked the center
of the world, is to be found a brass plate in which are set three diamond
needles, “each a cubit high and as thick as the body of a bee.” Brahma
placed 64 disks of pure gold on one (�irst) of these needles at the time of
creation. Each disk is a different size, and each is placed so that it rests
on top of another disk of greater size, with the largest resting on the
brass plate at the bottom and the smallest at the top. Within the temple
are priests whose job is to transfer all the gold disks from their original
needle to one of the others (third), without ever moving more than one
disk at a time. No priest can ever place any disk on top of a smaller one,
or anywhere else except on one of the needles. When the task is done,



and all 64 disks have been successfully transferred to another needle,
“tower, temple, and Brahmins alike will crumble into dust, and with a
thunder-clap the world will vanish.” If  denotes the minimum
number of moves required to move k disks from the �irst needle to the
third needle, then The Tower of Hanoi Problem mathematically leads to
the difference equation

whose solution is  Thus, the number of steps required to
transfer all the disks is again the same number  so if a priest
makes one move a second, night and day, the solution would require
slightly more than �ifty-eight thousand billion years.
In 1626, Peter Minuit (1580–1638, Germany) purchased Manhattan
Island (the nucleus of New York City) from the Indians for trade goods
worth a mere 60 guilders  $24. If he could have invested this money
with an annual rate of 5% compounded quarterly in 2021 (

 i.e., for 1580 quarters), its worth could have been
enormous. In fact, if we denote  the investment after nth quarter, then
it follows that

and its solution is  which for  gives
approximately $8023458723, whereas if the rate was 8%, then
approximately $929999308299777.
Second-order indeterminate equations, of the form 
where N is an integer, were �irst discussed by Brahmagupta. For their
solution, he employed his “Bhavana” method and showed that they have
in�initely many solutions. Unfortunately, it has been recorded that
Fermat was the �irst to assert that such equations have in�initely many
solutions. In the literature these equations mistakenly known as Pell’s
equations. In fact, the English mathematician John Pell (1611–1685) has
nothing to do with these equations. Euler mistakenly attributed to Pell a
solution method that had in fact been found by another English
mathematician, William Viscount Brouncker (1620–1684, Ireland), in
response to a challenge by Fermat. Bhaskaracharya used his method
cakravala or “cyclic process” for �inding integer solutions of an equation
like  the smallest pair of integers  satisfying this
equation turns out to be  This



problem was again solved by Fermat in 1657. The equation
 was also solved by Fermat, and its smallest solution is

Ramanujan, the genius who was one of the greatest mathematicians of
our time and the mystic for whom “a mathematical equation had a
meaning because it expressed a thought of God.” Once, Hardy went to
see Ramanujan when he was in a nursing home and remarked that he
had traveled in a taxi with a rather dull number, 1729, at which
Ramanujan exclaimed, “No, Hardy, 1729 is a very interesting number. It
is the smallest	number that can be expressed as the sum of two cubes in
two different ways ( ), and the next such
number is very large.” We are told Ramanujan was endowed with an
astounding memory and remembered the idiosyncrasies of the �irst
10000 integers to such an extent that each number became like a
personal friend to him. The signi�icance of the number 1729 was �irst
noticed in 1657 by Bernard Frénicle de Bessy (1604–1674, France). In
mathematics, the smallest integer that can be expressed as a sum of two
positive integer cubes in n distinct ways is called the nth taxicab number
(nth Hardy-Ramanujan number) and denoted as  From this
de�inition, in spite of , it follows that

 is not a taxicab number. In 1938, Hardy and Edward Maitland
Wright (1906–2005, England) established that such numbers exist for
all positive integers  and their proof was easily programmed to
generate such numbers. But, unfortunately their proof, and hence the
computation, makes no claim of these numbers to be the smallest
possible. Until now only 6 taxicab numbers with the help of computer
are known:



The problem of �inding integer solutions of the Diophantine equation
 where k equals any integer from 1 to 100 attracted

interest from the works of Mordell [377], and Miller and Woollett [372].
Clearly, if  all are positive, then none of these can be greater than

 For example,   and
 However, only positive integers do not give solutions

for all values of  and so the search began for  in 
But, even then the stubborn cases  and 42 remain unsolved and
had to wait more than 65 years. In fact, recently Booker [79] and Booker
and Sutherland [80] provided solutions for several values of k (beyond
100 also) in terms of large numbers:



The 15 Puzzle (Gem Puzzle, Boss Puzzle, Game of Fifteen, Mystic Square,
etc.) consists of a square shallow box of wood or metal which holds 15
little square blocks numbered from 1 to 15. There is actually room for
16 blocks in the box so that the 15 blocks can be moved about and their
places interchanged. The number of conceivable positions is

 A problem consists of bringing about a
speci�ic arrangement of the blocks from a given initial position, which is
usually the normal position given in Fig. 2.2.

Fig.	2.2 The 15 Puzzle
This puzzle was invented as early as 1874 by a postman Noyes Palmer

Chapman (1820–1892, USA); however, Samuel Loyd (1841–1911, USA)
claimed from 1891 until his death that he invented the 15 puzzle. This
puzzle became a craze specially in USA, Germany, and France (as such
whole of Europe); it was played in the streets, in factories, and in the royal
places (just like smart phone today). To garner attention to the 15 puzzle
tournaments were staged and huge prizes were offered for the solution(s),
but apparently no one ever won any of these prizes. In 1879, William
Woolsey Johnson (1841–1927, USA) and William Edward Story (1850–
1930, USA) proved that from any given initial order only half of all the
conceivable positions can actually be obtained. In conclusion, there are
about ten trillion starting positions which give success and about ten



trillion lead to failure. This problem has been generalized in several
different directions:

The n-Queens Puzzle is an arrangement of n queens on an 
chessboard so that no queen can attack another queen. This means that
no two queens can be placed in the same row, in the same column, or on
the same diagonal. In 1848, Max Friedrich William Bezzel (1824–1871,
Germany) proposed the eight queens puzzle and was �irst fully solved by
Franz Christian Nauck (1815–1874, Germany) in 1850. He showed that
there are 92 con�igurations that kept the eight queens from each other’s
throats, with all but 12 of the solutions being fundamental solutions
(differ only by the symmetry operations of rotation and re�lection of the
board are counted as one). A fundamental solution is presented in Fig.
2.3.

Fig.	2.3 8-Queens Puzzle
From trial it immediately follows that for  and  the puzzle

has no solutions. For all natural numbers  the existence of solutions
was established in 1874 by E. Pauls (Germany). However, the exact
number of solutions is only known for  The asymptotic growth
rate of the number of solutions is  For  all solutions are

, whereas the fundamental solutions are
 This puzzle has attracted numerous number of

mathematicians including Gauss, Adam Wilhelm Siegmund Günther
(1848–1923, Germany), James Glaisher, and Edsger Wybe Dijkstra (1930–
2002, The Netherlands):

In 1974, Ernö Rubik (born 1944, Hungary) combined mathematics, art,
and science to invent Rubik’s Cube (originally called the Magic Cube),
which is a three dimensions combination puzzle. Rubik’s Cube is the
world’s best-known addictive puzzle and has fascinated fans since its
launch in 1980. This cube has



 combinations,
but only one solution. In 2010, computer has shown that the Rubik’s
Cube can be solved in 20 moves.
Bubonic plague, Cholera, HIV/AIDS, In�luenza, and Smallpox are some of
the most brutal killers in human history. The outbreaks of these diseases
across international borders are de�ined as pandemic. The well-known
pandemics are: “Plague of Justinian” during 542–750 from which half of
Europe’s population—almost 100 million died; “Black Death/Pestilence”
during 1346–1353 causing the deaths of 75–200 million people, peaking
in Europe from 1347 to 1351 and killing at least 25 million people, 30 to
60 percent of the European population; and “Third Plague Pandemic”
during 1855–1960 taking life of almost 15 million people mainly in
China and India. Donald Ainslie Henderson (1928–2016, USA) in his
work “The eradication of smallpox – An overview of the past, present,
and future” reports that during the twentieth century alone an
estimated 300 million people died of the disease. “Spanish Flu
Pandemic” during 1918–1919 killed 17 to 100 million people.
“HIV/AIDS Pandemic” during 1981-present has approximately taken life
of 36 million humans. “Hong Kong Flu” during 1968–1970 killed at least
1 million people. Beginning in December 2019, in the region of Wuhan,
China, a new “novel” coronavirus began appearing in human beings. It
has been named Covid-19. This new virus spreads incredibly quickly
between people, due to its newness—no one on the Earth has an
immunity to Covid-19. In March 2020 it was declared a pandemic, and
by the end of that month, the world saw more than a half-million people
infected and nearly 30,000 deaths. As of June 7, 2023, with Covid-19, a
total of 767,750,853 people have infected and among these 6,941,095
have died, and also a total of 13,396,086,098 vaccine doses have been
administered.

Like large numbers, positive numbers that are signi�icantly smaller
than those typically used in everyday life also appear frequently in real
world applications. Modern names of small numbers are: One-Millionth

 One-Billionth  One-Trillionth  One-Quadrillionth 
One-Quintillionth  One-Sextillionth  One-Septillionth 
One-Octillionth  One-Nonillionth  and so on. Paramanu
(Supreme Atom) is the smallest indivisible material particle and has a
taste, odor, and color. This is different to our notion of the atom and is
more like what we call a molecule, the smallest particle that constitutes a



part of a compound body. The paramanu and the paramanu raja (or grain
of dust of the �irst atoms) have long been the smallest units of length and
weight in India. These are found in the Lalitavistara, where the paramanu
corresponds to  mm and the paramanu raja  g. In
view of quantum mechanics, the usual conception of continuous time does
not extend to intervals shorter than  second. The Ludwig
Boltzmann (1844–1906, Austria–Italy) constant (the number that relates
the average energy of a molecule to its absolute temperature)

 joules/kelvin; the Max Planck (1858–1947,
Germany) constant E (energy of a vibrating molecule was quantized) is
proportional to the frequency  of vibration, i.e., ) here

 joule seconds. Newton’s universal gravitational
constant (  where M and m are the masses of two bodies
separated by a distance r)  cm g s  The distance
between the nucleus and electron of a hydrogen atom is

 meters. The weight of one atomic mass unit (a.m.u.)
is 

From a well-shuf�led deck of 52 cards, we deal off 13 cards, one after
another, and then �ind that we have thus obtained a “speci�ied hand,” i.e.,
we have obtained (the order of obtaining them not being important)
exactly the group of 13 cards we speci�ied before dealing? The
probability of this event will be

Hence, billions of hands are equally likely to occur, and the probability is
very small.
For one of the most popular lotteries in the United States, Mega Millions,
your odds of winning are about 1 in 176 million. If you are playing a
single-state lottery, like the California Super Lotto, your odds increase—
to 1 in 42 million.
In Hamlet there are about  letters and spaces, and there being
101 keys on a standard computer keyboards (inputting character sets
including alphabets, numbers, symbols, or functions) so that the chance
that each time a monkey hitting the right key is ), the overall



probability of producing Hamlet by chance is unity divided by 101
raised to the power,  i.e.,  which is almost zero.
In 1928 the New York Times carried a cabled story from Paris, dated
February 21. It reported the fact that six persons had been found guilty
of the “accidental” death of a M. Desnoyelles. He had been in a
sanatorium, and a medicine had been prescribed for him. But the chief
physician gave M. Desnoyelles a prescription really intended for another
patient named Desmalles. Second, the chief physician failed to check
that the prescription, dictated to a clerk, was written as he had ordered.
Third, the intern who �illed the prescription confused two drugs and
introduced one of a poisonous nature. Fourth, the order for the
prescription was mistakenly written on a slip used for medicines for
internal use, rather than externally as the doctor intended. Fifth, the
head pharmacist, who was supposed to check all prescriptions, was
busy. He left the matter to his assistant, and she neglected to check.
Sixth, an assistant “corrected” the error in name and wrote on the
medicine that it was intended for M. Desnoyelles. Seventh, the intern
who administered the medicine disregarded the indicated dose, handed
the bottle to the patient, and instructed him to “take a good big drink.”
The probability of this strange event is very rare.
Life Magazine (Life, March 27, 1950, p. 19), also see Weaver [529],
reported that all �ifteen members of the choir of a church in Beatrice,
Nebraska, due at choir at  p.m., were late the evening of March 1,
1950. The minister and his wife and daughter had one reason (his wife
delated to iron the daughter’s dress); one girl waited to �inish a
geometry problem; one could not start her car; another could not start
her car; two lingered to hear the end of an especially exciting radio
program; one mother and daughter were late because the mother had to
call the daughter twice to wake her from a nap, and so on. The reasons
seemed rather ordinary, but there were ten separate and quite
unconnected reasons for the lateness of the �ifteen persons. It was
rather fortunate that none of the �ifteen arrived on time at  p.m.,
for at  p.m. the church building was destroyed in an explosion. The
members of the choir, Life reported, wondered if their delay was “an act
of God.” The probability of this curious episode is very small.
While many people fear the risks of air travel, your odds against dying in
an airplane crash are relatively low, approximately 800,000 to 1. Your
odds against dying in a car accident, approximately 5000 to 1, are much
greater than in an airplane.



It takes an electric impulse one-billionth of a second to travel 8 inches.
One-billionth of a second has come to be called a nanosecond. Light
travels one foot in one nanosecond. Computers today are built to
perform millions of operations per second.

2.8	 In�inity	is	a	Legitimate	Concept
In�inity (without end) is just a phantom of the mind (outside our range of
detection) of something that has no end, it is not a real number, and it has
tantalized and often troubled the mankind. Before 1874, in�inity was not
even considered a legitimate mathematical concept/necessity. However,
now the concept of in�inity, though not imposed upon us either by logic or
by experience, is one of the most important concepts in mathematics,
physics, statistics, and metaphysics. In Hindu mythologies and
cosmologies, as we have noted, surprising thing is that zero is also a term
Ananta that means in�inite (in�inite void or void in�inite), limitlessness,
endless, without an end, boundless; however, it becomes intelligible from
the fact that Ananta refers to a huge celestial serpent Adishesha	or
Anantashesha representing eternity and the immensity of space all at once.
It is shown resting on the primordial waters of original chaos. Lord Vishnu
is lying on the serpent, between two creations of the world, �loating on the
“ocean of unconsciousness.” The serpent is always represented as coiled
up, in a sort of �igure eight on its side (like the symbol  [lemniscate],
which was adopted in mathematics by Wallis for in�inity in 1657, Romans
used it to denote the number 1000, Voltaire described the  as a “love
knot,” and he was skeptical about the sign making the idea of in�inity any
clearer) and theoretically has a thousand heads. It is considered to be the
great king (Nagas) and lord of hell (Patala). Each time the serpent opens its
mouth it produces an earthquake because there is a belief that the serpent
also supported the world on its back. It is the serpent that at the end of
each Kalpa, spits the destructive �ire over the whole of creation. According
to Hindu philosophy, God is in�inite and within us, but seems to become
limited by our body-mind complex giving a feeling of �initude, which is the
cause of all limitations.

According to Vedas, the in�inite remains the same, even though the
in�inite universe that has no beginning or end has come out of it, see
Lakshmikantham [330]. From abstract zero to in�inity was a single step
which Hindu scholars took early and nimbly. In fact, vanishing point links
zero and in�inity. The “AUM” symbol (or OM) symbolizes the universe and



the ultimate reality, and hence in�inity. It is the most important Hindu
symbols. At the dawn of creation, from emptiness �irst emerged a syllable
consisting of three letters - A-U-M, where A stands for Brahma, U for
Vishnu, and M for Shiva. Deities and qualities associated with Ananta also
appear in Buddhism and Jainism, see Surya Prajnapti (400 BC). For where
all causes concur by the blending and altering of atoms or elements in the
physical universe, there their effects must also appear.” Jainas classi�ied
numbers into three groups enumerable (lowest, intermediate, and
highest), innumerable (nearly innumerable, truly innumerable, and
innumerably innumerable), and in�inite (nearly in�inite, truly in�inite, and
in�initely in�inite). The �irst group, the enumerable numbers, consisted of
all the numbers from 2 (1 was ignored) to the highest. An idea of the
“highest” number is given by the following extract from the Anuyoga
Dwara Sutra: Consider a trough whose diameter is that of the Earth
(100,000 yojana) and whose circumference is  yojana. Fill it up
with white mustard seeds counting one after another. Similarly, �ill up with
mustard seeds other troughs of the sizes of the various lands and seas. Still
the highest enumerable number has not been attained. But once this
number, call it  is attained, in�inity is reached via the following sequence
of operations

and so on.
Jainas recognized �ive different kinds of in�inity: in�inite in one

direction, in�inite in two directions, in�inite in area, in�inite everywhere in
space, and in�inite everywhere in space and at all times. Thus, they were
the �irst to discard the idea that all in�inities were the same or equal, and to
conceive two basic types of trans�inite numbers, a concept, which was
brought to Europe by Cantor in the late nineteenth century. Like Hindus all
theologians and metaphysicians from Plotinus have supposed the God to
be in�inite (God’s in�inity is called transcend mundane in�inity). In Chinese
mythology “Turtles all the way down” is an expression of the problem of
in�inite regress. The saying alludes to the mythological idea of a World
Turtle that supports the Earth on its back. It suggests that this turtle rests
on the back of an even larger turtle, which itself is part of a column of
increasingly large turtles that continues inde�initely.

Babylonians and Egyptians dealt at least subconsciously with the
concept of the mathematical in�inite. Ancient Greeks coined the terms
apeiron (unbounded, inde�inite, unde�ined, and formless) and peras (limit



or bound), which are now labeled as potentially	in�inite and actually
in�inite (completed, de�inite, extended, or existential and consists of
in�initely many elements), respectively. (We remark that unbounded is not
necessarily in�inite, e.g., by the theory of relativity the universe is
unbounded and �inite.) For Anaximander apeiron was the principle or
main element composing all things, some sort of basic permanent
substance, whereas for Plato apeiron was more abstract, having to do with
inde�inite variability. In fact, Plato had two in�inities, the Great and the
Small. The potential in�inite is a group of numbers or group of “things” that
continues without terminating. For example, when we list natural numbers
as  there always exists another number to proceed the one before;
similarly a geometric line with a starting point could extend on without
end. Also, an in�inite sequence (re�lecting the in�initeness of the material
world in space and time) of divisions might start  but
the process of division cannot be exhausted or completed (if it has any real
meaning). From the fact that the process of adding or dividing never comes
to an end ensures that these activities exist potentially, but not that the
in�inite exists separately. In view of in�initely divisibility each object would
in principle contain a potentially in�inite collection of particles; however,
quantum mechanics rules out (often formulated in terms of an in�inite-
dimensional Hilbert space [after David Hilbert, 1862–1943, Germany], but
these dimensions are more useful �ictions than solid realities) this notion.
Potential in�inity can be observed in reality also, e.g., the Earth turning on
its axis, planets revolving around the Sun, the cycle of generations, the
accumulation of knowledge, and the list continues.

The actual in�inity involves never-ending sets or “things” within a space
that has a beginning and end; it is a sequence/series that is technically
“completed” but consists of an in�inite number of members. Zeno is
remembered for his eponymous paradoxes (see Sect. 3. 18) of motion that
are rooted in deep questions about the nature of time and space and in
some misconceptions about in�inity. In fact, according to Aristotle, “Zeno’s
argument makes a false assumption in asserting that it is impossible for a
thing to pass over or severally to meet with in�inite[ly many] things in
�inite time.” Some say that Zeno directed his paradoxes against
Pythagoreans thought of space as the sum of points. Anaxagoras statement
“There is no smallest among the small and no largest among the large; but
always something still smaller and something still larger” stipulates zero
and in�inity. Ponticus proposed that cosmos is in�inite. Aristotle handled



the topic of in�inity in physics and in metaphysics. According to him, actual
in�inities cannot exist in the real world because they are paradoxical (in an
in�inite collection, since it would have a proper part that was bounded by it
and smaller than it, and yet in�inite too, which is absurd). It is impossible
to say that you can always “take another step” or “add another member” in
a completed set with a beginning and end, unlike a potential in�inite.
According to him “In�inity turns out to be the opposite of what people say
it is. It is not “that which has nothing beyond itself” that is in�inite, but
“that which always has something beyond itself ’.” He further argued that
actual in�inity is not applicable to geometry, so not relevant to
mathematics, and hence only potential in�inity is important.

Aristotle’s rejection of the actual in�inite refuted Zeno’s paradoxes.
Further, his in�luence continued for more than a millennium, which
deferred a lot of major concepts in mathematics. According to Metrodoros
of Chios (�l. fourth century BC, Greece), “To consider the Earth as the only
inhabited world in the in�inite universe is as absurd as to assert that in an
entire �ield sown with millet, only one grain will grow. That the universe is
in�inite with an in�inite number of worlds follows from the in�inite number
of causalities that govern it. If the universe were �inite and the causes that
caused it in�inite, then the universe would be comprised of an in�inite
number of worlds. Eudoxus of Cnidus (around 400–347 BC, Greece) and
Archimedes used potential in�inity to develop a technique (in�inite
process), later known as the method of exhaustion, whereby area of
curved �igures was calculated by halving the measuring unit at successive
stages until the remaining area was below some �ixed value (the remaining
region having been “exhausted”). For example, Archimedes found the area
of a parabolic segment from the in�inite series

which has sum  He was able to �ind this sum by considering only the
potential in�inity of terms

 by showing that
each of these terms is less than  and each number less than  is
exceeded by some term in the sequence. By avoiding actual in�inity, both of
them foreshadowed the concept of the limit (a decisive step in whole of
mathematics, particularly in calculus), which had to wait more than two
millennia.



Brahmagupta talked of in�inity, de�ining it as the opposite/inverse of
zero, a concept which reached Europe after more than a millennia (zero
and in�inity are simply opposite poles on the Riemann sphere). Seife [458]
endorses that zero is powerful because it is in�inity’s twin. They are equal
and opposite, yin and yang. They are equally paradoxical and troubling. In
the Middle Ages an enormous amount of scholastic logic was expended on
the theory of the in�inite as it applies to Christian theology. In fact, Roger
Bacon (1219/20–1292, England), Nicholas of Cusa (man is �inite and can
never attain the in�inite, he may apprehend his existence through
mathematics, the only truth of science), Thomas Digges (1546–1595,
England), and Giordano Bruno (1548–1600, Italy) all believed that
universe is in�inite whose center is everywhere and circumference
nowhere. Medieval thinkers were not limited to Aristotle’s potential
in�inity. In particular, Gregory of Rimini (1300–1358, Italy) maintained,
against Aristotle, that God or the Absolute could create an actually in�inite
stone. Gregory explained that God could do this by creating equal-sized
bits of the stone at each of the times  John
Baconthorpe (around 1290–1347, England) had argued that actual in�inity
exists in number, time, and quantity; Galileo said the continuum actually
consists of in�initely many indivisibles; Blaise Pascal (1623–1662, France)
claimed that like the in�inity of numbers, humans are not able to conceive
the in�inity of God; and Leibniz was in favor of actual in�inity. Seventeenth
and eighteenth centuries mathematicians had little understanding of
in�inite series. They often applied, to such series, operations that hold for
�inite series but apply to in�inite series only under certain restrictions. Not
being aware of the restrictions, the laughable results were obtained. For
example, Luigi Guido Grandi (1671–1742, Italy) in his book Quadratura
Circuli	et	Hyperbolae of 1703 discussed the result of adding 1 and 
alternately taken in�initely many times

If we apply the rules of arithmetic (see Sect. 3. 9), while calculating the
sum, then we arrive at very strange results. Let us denote the sum as 
Then,

Associating 1 and  in pairs and using the property of  we easily get



Thus it seems reasonable to assume that the sum is  However if we
associate the terms a little differently, we have

If we use the following combination of associativity, commutativity, and 
we have

Using similar arguments repeatedly, we can prove S to be equal to any
natural number. Let us now write

Thus using different combinations of the rules applied above, we can show
that S is equal to any integer—positive, negative, or zero. Now applying the
binomial expansion (2.1), we have 
Putting  we get  Therefore,  If
we multiply both sides by  we get



Therefore, Grandi felt that any rational number could be derived from 
The “original” and “obvious” value of S is  Therefore, Grandi claims that
the world is created out of nothing. This claim has been supported by
Leibniz. In fact, he further added that Grandi’s conclusion may sound
metaphysical, but there is more metaphysical truth in mathematics than is
generally believed. As an another example, let S denote the sum of the
convergent series

Then

since all terms after the �irst cancel out. Again

since all terms after the �irst term cancel out. It follows that 
Similarly, consider the series



If we rearrange these terms as we would be prompted to do in �inite
arithmetic, we obtain

Thus,

Therefore, 
According to Morris Kline (1908–1992, USA), “the ignorance about the

nature of in�inity was so universal, that, in the words of mathematicians,
“Newton, Liebniz, Johann Bernoulli (1667–1748, Switzerland), Euler, Jean
le Rond d’Alembert (1717–1783, France), Lagrange, and several
eighteenth-century men struggled with in�inite series. They perpetrated all
sorts of blunders, made false proofs, and drew incorrect conclusions; they
even gave arguments that, now with hindsight, we are obliged to call
ludicrous.” The majority of pre-modern thinkers agreed with the well-
known quote of Gauss: “I protest against the use of in�inite magnitude as
something completed, which is never permissible in mathematics. In�inity
is merely a way of speaking, the true meaning being a limit which certain
ratios approach inde�initely close, while others are permitted to increase
without restriction.”

In physics in�inities are believed/imagined and are limited to space (it
spreads out in�initely in all directions, and galaxies �ill all of the space
throughout the entire in�inite Universe; Bruno strongly advocated that the
Universe is one, in�inite, immobile…. It is not capable of comprehension
and therefore is endless and limitless, and to that extent in�inite and
indeterminable, and consequently immobile), time (it was before us;
provided we do not believe in Big Bang theory which physicists adhered
took place about 15 billion years ago, it is with us, and will be after us; for
which physicists are mostly silent), energy (it cannot be created or
destroyed; so it will continue forever), divisibility (matter is in�initely
divisible). However, many parts of mathematics demand that we accept
some form of in�inity in a de�inite sense. In fact, in�inity is the lifeblood of



mathematics, a substantial part of the abstract mathematics deals with
in�inite dimensions and in�inite extensions, but we cannot conceptualize it.

In�inity occurs, for instance, as the number of mathematical points
even on a �inite continuous line/space (see Chap. 8) or as the size of the
endless sequence of counting numbers  When we expand
numbers in decimals, we get three different types of expansions:
Nonterminating Decimal Numbers:

 Recurring Decimals:
  and Nonrecurring

Decimals:   Thus, in the
representation (2.5), m or/and n can be in�inite. It is to be noted that any
number r is rational if and only if its decimal part terminates or recurring,
e.g.,  Hence, in the philosophy of
mathematics, the existence of actual in�inity is generally accepted.

The actual in�inity is contrasted with potential in�inity, in which a
nonterminating process produces a sequence with no last element, and
where each individual result is �inite and is achieved in a �inite number of
steps. As a result, potential in�inity is often formalized using the concept of
limit. In 1350, Albert of Saxony (around 1320–1390, Germany) showed
that one can take a proper subset of an in�inite set and rearrange its
elements so that it shows itself to be just as big and unbounded as the
in�inite set of which it is a proper part. He noted that if one has an
in�initely long beam of wood, with equal width and depth, one can saw it
up into equal-sized cubic blocks with which one can �ill the whole of
Euclidean three-dimensional space. (Surrounded the �irst block with

 more blocks, making a cube of side 3, then surrounded that cube
with  more blocks, making a cube of side 5; and so on.) In modern
terminology, what Albert observed is that there is a one-to-one
correspondence/mapping/function (it needs no counting, the method
employed in antiquity, but formalized by Jains) between the set of triples

 with n a positive integer and the set of triple  with 
and c any integers. William Shakespeare (1564–1616, England)
commented “A could be bounded in a nutshell, and count myself a king of
in�inite space.”

In the early 1600s Galileo proposed that “in�inity should obey a
different arithmetic than �inite numbers.” According to him “part” means
some but not all. In a �inite collection there are always more things in the
whole collection than in any one of its parts. Galileo in his Dialogues



Concerning	the	Two	New	Sciences,	First	Day observed that there is a one-to-
one correspondence between the set  of positive integers and the subset
S of  consisting of the squares of positive integers.

This impelled Galileo to observe that even though there are many positive
integers that are not squares, there are as many squares as there are
positive integers. This led Galileo to be faced with a property of an in�inite
set that he found bothersome. There can be a one-to-one correspondence
between a set and a proper subset of the set. While Galileo concluded
correctly that the number of squares of positive integers is not less than
the number of positive integers, he could not bring himself to say that
these sets have the same number of elements (in the literature his
observation is famous as Galileo’s paradox). He concluded that the
Attributes of Equality, Majority, and Minority have no place in In�inities,
but only in terminate quantities. Similarly, we have  (all even
integers),  (all odd integers), and

 (the set of all integers )

Newton in the seventeenth century boldly used the mathematical
in�inity. His conception of the deity is of some mathematical interest for its
insistence on the in�inite as a characteristic attribute of the supreme being.
The deity, according to Newton,“is supreme, or most perfect. He is eternal
and in�inite, omnipotent and omniscient; that is, his duration reaches from
eternity to eternity; his presence from in�inity to in�inity…. He is not
eternity and in�inity, but eternal and in�inite; he is not duration or space,
but he endures and is present. He endures forever and is everywhere
present; and, by existence always and everywhere, he constitutes duration
and space…. He is utterly void of all body and bodily �igure…” William
Blake (1757–1827, England) remarked “To see the world in a grain of
sand. And a heaven in a wild�lower: Hold in�inity in the palm of your hand,
And eternity in an hour.”

The drastic change was initialized by Bolzano; he recognized that one-
to-one correspondence between an in�inite set and a proper subset of itself



is common and was comfortable with this fact, contrary to Galileo’s
feelings. According to him a multitude which is larger than any �inite
multitude, i.e., a multitude with the property that every �inite set (of
members of the kind in question) is only a part of it, I will call an in�inite
multitude. What had baf�led Galileo and excited Bolzano led to Dedekind a
proper de�inition of an in�inite set during the last part of the nineteenth
century. According to him, a set S is in�inite if it contains a proper subset
that can be put in one-to-one correspondence with  This de�inition was
the �irst hint that it may be possible to talk consistent mathematics about
“the in�inite,” and without it, Cantor’s theory of sets of points, fundamental
in modern analysis, would not exist. In 1887, Dedekind published a proof
that the mindscape (thought world) is in�inite.

Finally, Cantor during 1871–84 systematically mathematized the works
of Jainas of 200–875 AD on set theory (Jainas introduced several different
types of sets, such as cosmological, philosophical, �inite, in�inite,
trans�inite, and variable sets. They called the largest set an omniscient set,
and the conceptual set containing no elements was known as the null set.
They also de�ined the concept of a union of sets and used the method of
one-to-one correspondence for the comparison of trans�inite sets. In order
to determine the order of comparability of all sets, they considered
fourteen types of monotone sequences.) to put in�inity on a �irm logical
foundation and described a way to do arithmetic with in�inite quantities
useful to modern mathematics. According to Cantor, “A set is a Many that
allows itself to be thought of as a One.” He �irmly said in mathematics
actual in�inities exist. Thus, the in�inite sets  and

 are examples of
actual in�inity. The series  and

 respectively, are examples of potential and
actual in�inities. The series  known as Harmonic
Series (the nomenclature comes from the overtones or harmonics in
music) is an example of potential in�inity. Oresme around 1350 showed
that



Thus, the series  is an example of actual
in�inity on the extended real number line  Cantor also de�ined
the intellectual pursuit of the Absolute in�inity as a form of soul’s quest for
God. Besides one-to-one correspondence between arbitrary in�inite sets,
he called two sets are equivalent or have the same cardinal	number
(cardinality, answers the question “How many”?), which in short written as

 provided there is a one-to-one correspondence between their
respective members. Clearly, between two �inite sets a one-to-one
correspondence can be set if and only if they have the same number of
elements. The cardinality of empty set  is always taken as  whereas for
an arbitrary set with n elements, e.g.,  it is  For two �inite
sets A and  it is clear that

 and
 If a cardinal

number is not �inite, it is called trans�inite	cardinal. Cantor called a set
countable (denumerable) if it is equivalent to the set  The cardinal
number of a denumerable set is denoted by  (the Hebrew �irst letter,
called aleph not/zero), and it is not a positive integer at all. Countable
in�inite sets are considered of smallest size. Thus, from the above, it
follows that the set of all even integers, the set of all odd integers, the set of
all integers, and the set of all square numbers have the same cardinality

 Each member of a denumerable set can be assigned a �ixed place (such
as �irst, second, third,…), i.e., members can be written as sequences and
therefore also called ordinal	numbers. The following properties of
countable sets are fundamental:
(R1). Every subset of a countable set is countable.  



(R2). The union of a countable number of countable sets is also a
countable set.  

(R3). The Cartesian product of two countable sets A and B is countable.  
(R4). The set of intervals with rational numbers as endpoints is

countable.  
For illustration we shall show (R3). We arrange the elements of the sets

A and B as  and  so that  can be
written as

Now we de�ine a one-to-one mapping from  to  as follows:

(draw the diagonal zigzag path).
Now we shall show that the set of all rational numbers  which

appears to be more numerous than the set of natural numbers, is
countable. For this, we note that  where  is the set of
rational numbers with denominator  i.e.,

 Now each  is equivalent to
 and is thus countable. Hence, the set  is the countable union of

countable sets and hence from (R2) must be countable.
From this and (R1) it follows that the set of all rational numbers

contained in any given interval is countable. However, these rational
numbers cannot be arranged as an increasing sequence. This follows from
the fact that there is no smallest rational number among the numbers
exceeding a given rational number:

In 1885, Carl Gustav Axel Harnack (1851–1888, Germany) considered
 any list of real numbers, that is, the points on the real line

 denoted as  He observed that these numbers can be
covered by line segments of total length as small as we please, say  Just
take a line segment of length  break it in half, and use a segment of
length  to cover the number  Then break the remaining segment



of length  in half and use a segment of length  to cover  and so
on. Thus we cover  by  Hence all numbers  are
covered by  It follows that the numbers  do
not include all real numbers. In fact, far from �illing the whole line, the
set of numbers  has the total length zero! In particular, the
in�inity of rationales have the total length zero.
Now we shall demonstrate that if the elements of a set A speci�ied by a
�inite number of parameters each of which can independently take on
any value belonging to a countable set. Then, the set A is countable. For
this, we write the elements of the set A as  where

 are parameters. We assume, without loss of generality,
that these parameters are natural numbers. For each

 we set  It is clear
that  is a natural number and  Now given any ,
let  denote the set of all elements of A for which  It is
clear that every set  is �inite and  Therefore, from
(R2) the set A is countable.

From the above result it immediately follows that the set  of all
algebraic polynomials of a �ixed degree n with rational coef�icients

is countable. Thus, from (R2) we can conclude that the set of all
algebraic polynomials  with rational coef�icients is
countable.

A real number is called algebraic if it is a zero of an algebraic
polynomial with integer coef�icients. For example, the number  is
algebraic because it is a zero of the polynomial  Thus whole
numbers, fractions, and their square roots, cube roots, and so on are
algebraic. The imaginary number i is an algebraic number because it is a
solution to the polynomial equation  Since each algebraic
polynomial can have only a �inite number of distinct real zeros, the
countability of the set  immediately implies that the set of all algebraic
numbers is countable. Real numbers which are not algebraic numbers are
called transcendental	numbers, e.g., the numbers  (known as universal
constants) are transcendental, see Chap. 8:

In 1947 [206], George Gamow (1904–1968, Ukraine–USA) elucidated
(R2) by considering Hilbert’s Grand Hotel/Paradox. There are rooms for



a countable in�inity of countable in�inities of guests. Suppose, say, that
the guests arrive on in�inite buses numbered  and that each
bus has guests numbered  The guests in bus 1 can be
accommodated as follows: Put guest 1 in room 1, and then skip 1 room;
put guest 2 in room 3, and then skip 2 rooms; put guest 3 in room 6, and
then skip 3 room;  (the guests from the �irst bus are taking rooms
numbers in the sequence of triangular numbers (see Sect. 7. 2). Thus the
�irst bus �ills the rooms. After the �irst bus has been unloaded, the
unoccupied rooms are in blocks of  rooms, so we can unload
the second bus by putting its guests in the leftmost room of each block.
After that, the unlocked rooms are again in blocks of  rooms,
so we can repeat the process with the third bus, and so on. This also
shows that  and  (instead of respectively
implying  and ), in fact, for any integer 
Thus, the rules of addition, multiplication, and exponential for
denumerable sets are different from the cardinality of �inite sets. In
1897, Friedrich Wilhelm Karl Ernst Schröder (1841–1902, Germany)
and Felix Bernstein (1878–1956, Switzerland) proved that if A and B are
sets such that  and  then

 To illustrate this result, we note that
 and , and it follows that

Cantor further used the so-called diagonal argument (see Chap. 8) to
show that for every trans�inite cardinal there exists a larger trans�inite
cardinal, which he denoted by  for every trans�inite cardinal there
exists a next larger trans�inite cardinal, which he denoted by  and so on.
He proved that these alephs include all possible trans�inite cardinals. Then,
in 1874 he showed that the set of all real numbers  is uncountable (the
quanta of light are unidenti�iable and uncountable; electrons are
unidenti�iable but countable) and is of higher power than the set 
Cantor denoted the number of the continuum (the size of real numbers) by
the German character  He could not establish where the number of the
continuum stood among the alephs (known as continuum problem);
however, he conjectured that , which is known as Cantor’s
continuum hypothesis (CH), and it is equivalent to  (a �inite set S
with n elements contains  all possible subsets, so that the cardinality of
the set S is n and its so-called power set  is ). In 1940, Kurt



Friedrich Gödel (1906–1978, Czech Republic–USA) proved that the
continuum hypothesis could not be proven to be false, whereas in 1963,
Paul Joseph Cohen (1934–2007, USA) proved that continuum hypothesis
could not be proven to be true. Thus (CH) is undecidable, and hence it is
possible to adopt this statement, or its negation. The undecidability of
(CH) was already suspected in 1922 by Albert Thoralf Skolem (1887–
1963). Sets that have a greater power than  are known. We shall discuss
details about these concepts in Chap. 8. Here we note that Medieval
thinkers were aware of the paradoxical (here synonymous with
contradiction) fact that line segments of varying lengths seemed to have
the same number of points. This fact can be seen easily geometrically: For
this, it suf�ices to show that there are as many points on the short line as
there are on the long line. In Fig. 2.4, we take the line AB and the longer
line  place them parallel to each other, and join the ends AC and 
We extend CA and DB until they intersect at  It is then easy to see that
any line drawn from O through the two lines AB and CD will intersect them
at points P and  respectively. For every point Q on the longer line, there
will be a point P on the shorter which can be paired in one-to-one
correspondence with it.

Fig.	2.4 One-to-one correspondence
The topic of in�initely small numbers or in�initesimals (means

something distinguishable from zero, yet which is exceedingly small-so
minute that no �inite multiplication of it can be made of an observable size,
except multiplication of in�inite numbers with in�initesimals can yield real,
detectable numbers) led to the discovery of calculus in the late 1600s by
Newton and Leibniz (almost two hundred years before Cantor). Earlier to
them rudimentary form of calculus was known in India and Islam (see
Katz [300]). Archimedes application of the method of exhaustion
possessed all the elements essential to an in�initesimal analysis. Newton
introduced his theory of in�initesimals, to justify the calculation of
derivatives (�luxions), or slopes of functions. In fact, to �ind the slope, i.e.,
the change in y over the change in x for a line touching a curve  at



a given point  he found it useful to look at the ratio between dy and
 where dy is an in�initesimal change in y produced by moving an

in�initesimal amount dx from  However, since in�initesimals were
something new, Newton’s contemporaries heavily criticized them. For
example, the Italian Jesuit Girolamo Saccheri (1667–1733) rejected an
improper use of the in�initesimals. Specially, on �luxions, Bishop Berkeley
in his tract The	Analyst:	or	a	discourse	addressed	to	an	in�idel
mathematician of 1734 wrote a knowledgeable and extremely witty attack:
“And what are these �luxions? The velocities of evanescent increments. And
what are these same evanescent increments? They are neither �inite
quantities, nor quantities in�initely small, nor yet nothing. May we not call
them ghosts of departed quantities?” His criticisms were well founded and
important, as they focused the attention of mathematicians on a logical
clari�ication of the calculus.

According to Bishop Berkeley “our only knowledge of this world is
what comes to us through our senses, and he went so far as to say that
physical objects only exist relative to the mind.” Bishop Berkeley’s
objections are justi�ied because a belief in the in�initesimal does not
triumph easily. Later Euler added “If a nonnegative quantity was so small
that is smaller than any given one, then it certainly could not be anything
but zero. To those who ask what the in�inity small quantity in mathematics
is, we answer that it is actually zero. Hence there are not so many
mysteries hidden in this concept as they are usually believed to be. These
supposed mysteries have rendered the calculus of the in�initely small quite
suspect to many people”. Yet when one thinks boldly and freely, the initial
distrust will soon mellow into a pleasant certainty. A majority of educated
people will admit an in�inite in space and time, and not just an
“unboundedly large.” But they will only with dif�iculty believe in the
in�initesimal, despite the fact that the in�initesimal has the same right to
existence as the in�initely large.

Simon Stevin was one of the �irst to open a new and productive period
in the application of in�initesimals to mathematical problems. In 1748,
Euler [180] published a seminal text in Latin which laid the foundations of
mathematical analysis (calculus). In 1877, Paul David Gustav du Bois-
Reymond (1831–1889, Germany) claimed that in�initesimal is a
mathematical quantity and has all its properties in common with the �inite.
However, Cantor vehemently opposed to in�initesimals. Finally, the use of
in�initesimal numbers gained a �irm footing with the development of



nonstandard analysis by the mathematician Abraham Robinson (1918–
1974, Germany–USA) in the 1960s. His method is based on enlarging the
real numbers to the set of hyperreal	numbers. He completely denied the
existence of any type of in�inity. It is to be noted that Newton’s calculus is
about functions, whereas Leibniz’s calculus is about relations de�ined by
constraints. In Newton’s calculus the concept of limit is built into every
operation, whereas in Leibniz’s calculus the limit is a separate operation. It
was to be over 100 years, however, before calculus was to be made
rigorous by Cauchy and Karl Theodor Wilhelm Weierstrass (1815–1897,
Germany), in the sense that the derivative and the integral were formed in
terms of limits, instead of terrifying in�initesimal analysis.

In the beginning Cantor’s work on in�inite sets provoked heated
controversy. His claim that the in�inite sets are unbounded offended the
religious view of the time that God had created a complete universe, which
could not be wholly comprehended by man. Cantor’s revolutionary ideas
were opposed with emotion, much of it blind and bitter. His former
mentor, Leopold Kronecker (1823–1891, Germany), ridiculed Cantor’s
theory as a “scienti�ic charlatan,” a “renegade” and a “corrupter of youth.”
He prevented him from gaining a position at the University of Berlin.
However, Cantor stood �irm: “I was logically forced, almost against my will,
because in opposition to traditions which had become valued by me, in the
course of scienti�ic researches, extending over many years, to the thought
of considering the in�initely great, not merely in the form of the
unlimitedly increasing… but also to �ix it mathematically by numbers in the
de�inite form of a “completed in�inite.” I do not believe, then, that any
reasons can be urged against it which I am unable to combat.” In
connection with the mathematical in�inite Luitzen Egbertus Jan Brouwer
(1881–1966, Netherland) followed Kronecker, he also refused to admit
that a proposition is either true or false unless some means for deciding
which prescribed. In 1906, Jules Henri Poincaré (1854–1912, France)
wrote that there was no actual in�inity; he saw the Cantorians as being
trapped by contradictions. He referred to Cantor’s proofs and theories as
mathematics’ “grave disease.” Ludwig Josef Johann Wittgenstein (1889–
1951, Austrian–British) argued that Cantor’s proofs of in�inity were
“ridden through and through with the pernicious idioms …” dismissing his
work as “utter nonsense” that is both “laughable” and unquestionably
“wrong.” According to Abraham Robinson, in�inite totalities do not exist in
any sense of the word (i.e., either really or ideally). More precisely, any
mention, or purported mention, of in�inite totalities is, literally,



meaningless. However, Weierstrass and Hilbert were impressed with
Cantor’s work and defended Cantor to his detractors. Bertrand Russell
declared “the solution of the dif�iculties which formerly surrounded the
mathematically in�inite is probably the greatest achievement of which our
age has to boast.” Abraham Fraenkel (1891–1965, Germany–Israel) said
“Thus the conquest of actual in�inity may be considered an expansion of
our scienti�ic horizon no less revolutionary than the Copernican system or
than the theory of relativity, or even of quantum and nuclear physics”:

Hilbert’s remarks on in�inity and Cantor’s work are of exceptional
importance: From time immemorial, the in�inite has stirred men’s
emotions more than any other question. No other question has ever
moved so profoundly the spirit of man; no other idea has so fruitfully
stimulated his intellect; yet no other concept stands in greater need of
clari�ication than that of the in�inite. Indeed, shedding light on the
in�inite has been a daunting task for mathematicians and philosophers
down through the ages. The in�inite is nowhere realized. Neither is it
present in nature nor is it admissible as a foundation of our rational
thinking—a remarkable harmony between being and thinking. In a
certain sense, mathematical analysis is a symphony of the in�inite.
Owing to the gigantic simultaneous efforts of Friedrich Ludwig Gottlob
Frege (1848–1925, Germany), Dedekind and Cantor, the in�inite was set
on a throne and revelled in its total triumph. In its daring �light the
in�inite reached dizzying heights of success. From the paradise created
for us by Cantor, no one will drive us out (the paradise of which Hilbert
was speaking was, of course, a massively non-�initistic paradise, chock
full of actual in�inities). In 1904, the Royal Society awarded Cantor its
Sylvester Medal (after James Joseph Sylvester, 1814–1897, England), the
highest honor it can confer for work in mathematics.
The simple differential equation  has an in�inite number of
solutions  where c is an arbitrary constant. The simple
continuous function  can be made discontinuous at
every point of the interval  Mathematically interesting sequences
of numbers are those that continue without end. The set of all
convergent/divergent sequences/series is in�inite.
In�inity Void is a hyperrealistic metaverse (a virtual-reality space in
which users can interact with a computer-generated environment and
other users) with an aim to provide immersive experience to the users
backed by powerful graphics.



The following citations about in�inity are interesting:
There are among the marvels that surpass the bounds of our
imagination and that must warn us how gravely one errs in trying to
reason about in�inities by using the same attributes that we apply to
�inities. (Galileo)
Mathematical motion is just an in�inite succession of states of rest, i.e.,
mathematics reduces dynamics to a branch of statics. (d’Alembert)
The known is �inite, the unknown in�inite; intellectually, we stand on an
island in the midst of an illimitable ocean of inexplicability. Our business
in every generation is to reclaim a little more land. (Huxley)
Hilbert’s famous address in memory of Weierstrass (use for in�inity):
“The in�inite! No other question has ever moved so profoundly the spirit
of man; no other idea has so fruitfully stimulated his intellect; yet no
other concept stands in greater need of clari�ication than that of the
in�inite .” “Our �irst naive impression of nature and matter is that of
continuity. Be it a piece of metal or a volume of liquid, we invariably
conceive it as divisible into in�inity, and ever so small a part of it appears
to us to possess the same properties as the whole.”
I saw … a quantity passing through in�inity and changing its sign from
plus to minus. I saw exactly how this happened … but it was after dinner
and I let it go. (Winston Leonard Spencer Churchill, 1874–1965,
England)
There are at least two different ways of looking at the numbers: As a
completed in�inity and as an incomplete in�inity… regarding the
numbers as an incomplete in�inity offers a viable and interesting
alternative to regarding the numbers as a completed in�inity, one that
leads to great simpli�ications in some areas of mathematics and that has
strong connections with problems of computational complexity.
(Edward Nelson, 1932–2014, USA)
Mathematics as we know it and as it has come to shape modern science
could never have come into being without some disregard for the
dangers of the in�inite. (David Marius Bressoud, born in 1950, USA)

2.9	 Number	Mysticism	of	Pythagoras
Just as the Babylonians associated with each of their gods a number up to
60, the number indicating the rank of the God in the heavenly hierarchy
(60 was the number of Anu, the god of heaven, and 30 was the number of



Sin, the lunar god), so did the Pythagorean theory was dominated by the
idealistic belief that numbers were not only symbols of reality, but the �inal
substance of real things, and possess spiritual and magical powers, which
was called as “number mysticism” (to appreciate or dislike this it is
necessary to enter into that condition of mind/thoughts which takes any
analogy to represent a real bond). According to Iamblichus, Pythagoras
once said that “number is the ruler of forms and ideas and the cause of
gods and demons.” According to Poincaré “Religious values vary with
longitude and latitude. While , and 60 were especially
favored, we �ind practically every other number invested with occult
signi�icance in different places and at different times.”

Pythagoreans regarded even numbers (a set of pebbles which could be
arranged into two equal rows), represented as  as unlimited, soluble,
therefore ephemeral, feminine, weak (when divided they are empty in the
center), and pertaining to the earthly nature (evil), and odd numbers
including 1 (a set of pebbles that could not be arranged into two equal
rows because there would always be a single pebble left over), represented
as  as limited, �inite, indissoluble, masculine, partaking of celestial
nature (good). There is a striking correspondence in Chinese mythology.
They considered the odd numbers symbolized white, day, heat, Sun, �ire;
the even numbers, on the other hand, black, night, cold, matter, water,
Earth. The numbers were arranged in a holy board, the Lo-Chou, which
had magic properties when properly used. Everything in the world we live
involves evenness and oddness. On the contrary to Pythagoreans, evenness
can be de�ined as a term that means a balance between equal
measurements, fair quantities, and neutral stability, whereas oddness can
be described as an uneven element, irregular varieties, and an additional
essence. In Hinduism, an amount of money is always gifted as multiple of
10 plus  For Pythagoras only �irst ten numbers were of spiritual
signi�icance (some claim �irst �ifty) and some human attribute. However,
since the numbers greater than 10 are the prolongation of �irst ten
numbers, and the order and the �inite takes antecedence over the
unlimited and the in�inite, it becomes clear that the properties of �irst ten
numbers disclose not only the nature of all integers, but also the pattern of
the universe as it exists in the mind of god. Ward Rutherford (born 1927,
Channel Islands) writes in his account of the Pythagoreans’ linkage of
numbers with even the most abstract notions. Porta Maggiore Basilica as
well as Hadrian’s Pantheon in Rome was built based on Pythagorean



number mysticism. Pythagoras devoid practical applications. In what
follows, besides �irst ten numbers, we will also add interesting attributes
of some selected numbers greater than ten.

Number 1, was called Monad/Ousia, it was acknowledged as all-good,
all-wise, all-knowing, true happiness, harmony, order and friendship,
eternal, reason, unchangeable, undifferentiated soul of the universe.
Parmenides (around 480 BC, Greece), Xenophanes, Plato, Aristotle, and
Plotinus followed Pythagoras to consider Monad as a term for God (of
reason). Gnostics used the term Monad to refer to the most primal aspect
of God. Monad is both male and female, odd and even, itself not a number,
but the source and progenitor of numbers,

 and so on (creator itself cannot be
creation, in fact, Aristotle reasonably observed, the measure is not
measures but the	measure), and hence origin of all things, the beginning
and ending of all things, yet itself not knowing a beginning or ending.
According to Bruno, “Monad was his pagan substitute for the deity
sanctioned by the Aristotelian theologians.” As late as 1547, one of the
questions Ludovico Ferrari (1522–1565, Italy) sent to Niccoló Fontana
(nickname Tartaglia, 1500–1557, Italy) as part of the challenge
competition (see Agarwal and Sen [14]) was whether unity was a number.
Tartaglia complained that the question did not have to do with
mathematics but with metaphysics. He then hedged his answer by
asserting that unity was a number “in potential” but not one “in actuality.”
However, Simon Stevin writes in ‘l’	Arithmétique in Capitals THAT UNITY IS
A NUMBER. His argument was “If from a number is subtracted no number,
the number remains; but if from  we take,  does not remain; hence, 
is not no number.” According to the Vedic tradition there is only one
manifesting sound indicative of the Supreme Being (Para-Brahman), and
that is called “Om,” as far as the human ears could capture it. Leibniz
observed that 1 and 0 are the only digits in the binary scale of notation
(Pingala, about 500 BC, India, a Sanskrit grammarian, presented the �irst
known description of a binary numeral system, see Agarwal and Sen [14],
and Nooten [397]. Leibniz tried to reunite the Protestant and Catholic
churches. According to Laplace, Leibniz in binary arithmetic saw the image
of Creation. He imagined that Unity represented God, and zero the void;
that the Supreme Being drew all beings from the void, just as unity and
zero express all numbers in the binary system of numeration. The story is
that Leibniz communicated his idea to the Jesuit Grimaldi who was the
president of the Chinese tribunal for mathematics in the hopes that it



would help convert into Christianity the Emperor of China, who was said
to be very fond of the Sciences.)

In geometry, Monad precedes every point, and because a point is the
beginning of a line, a line of a �lat surface, a surface of a three-dimensional
solid, and so on. Number 1 has only one divisor namely one itself, all other
numbers have at least two divisors namely themselves and one. Any
number when multiplied by one yields a product that is itself and when
divided, a quotient that is itself. There is one: Moon, Sun, Venus,  In a
normal human body there is one: brain, heart, mouth, nose,  In
science, hydrogen is the atomic number  The number 1 symbolizes the
leadership and indicates the priority in a major accomplishment. George
Washington (1732–1799) served as the �irst president of USA during
1789–1797. Alexey Arkhipovich Leonov (1934–2019, Soviet Union–
Russia) was the �irst human to conduct a spacewalk on March 18, 1965.
Neil Alden Armstrong (1930–2012, USA) was the �irst human to walk on
the Moon on July 21, 1969. Valentina Tereshkova (born 1937) was the �irst
Soviet Union woman in space in 1963. Sally Ride (1951–2012) was the
�irst American woman in space in 1983. Queen Victoria (1819–1901, UK)
became the �irst monarch to take up residence at Buckingham Palace.
Theodore Roosevelt (1858–1919) was the �irst American to win the Nobel
Peace Prize in 1906. Winston Churchill was the �irst Prime Minister of
Great Britain to receive the Nobel Prize in Literature in 1953. Strengths, at
nine letters long, is the longest word in the English language with only one
vowel. According to Hindus, the �irst person to enter the home after house-
warming ceremony has to be a person of good intentions and superior will
so that the house gets all blessings from gods and everything goes
favorably to the owner. In 1950s French mathematicians who worked
under the collective pseudonym of “Monsieur Nicholas Bourbaki”
embarked on the development of an encyclopedic description of all
mathematics. They devoted 200 pages simply to introduce the innocent
looking concept, the number 1.

Number 2, was called Dyad, the mark of matter, the senses, opinion,
chaos. It signi�ies polarization, opposition, divergence, inequality,
divisibility and mutability (for example, knower and known), the principle
of exiting at one time in one way, and another time in another way. Ten
foremost dyads of Pythagoras we have listed in Sect. 1. 2. Dyad breaks away
from the perfection and unity of Monad. The Monad is limited and
expresses moderation, the Dyad is unlimited and expresses excess, defect
and the capacity for in�inity and indeterminacy. A Dyad is also considered



the most basic and fundamental social group. The twin deities of the Hindu
pantheon are Saranyu and Vivashvant (also called Dasra and Nasatya).
They symbolize the nervous and vital forces and are supposed to
respectively represent the morning star and the evening star. They are the
offspring of horses, hence their name. These divinities are considered as
the “Primordial couple” who appeared in the sky before dawn in a horse
drawn chariot. Dyad was also associated with the head of the Egyptian
Horus, and in Greek mythology Rhea “the mother of the gods” and
therefore associated with Gaia and Cybele. In the Garden of Eden, there
were two trees, namely, the tree of life and that of knowledge of good and
evil that Adam and Eve were commanded not to eat from. In a normal
human body, there are two: arms, ears, eyes, kidneys, legs, nostrils,
Two is the atomic number of Helium. Ancient Chinese proceeded a step
further to Greeks, they also refused to consider two as a number, as it is the
creator of all even numbers, see Solomon [489]. In the year 1905, only two
automobiles were registered in the entire state of Missouri, and only two
head-on automobiles collisions were registered.

Number 3, was called Triad, the �irst true number—a principle of
everything that is whole and perfect, and according to Aristotle permits all
things with a beginning, middle, and an end. From the duality a third
element is implied, the act of knowing, the �low of consciousness. As Triad
implies past, present, and future, it embodies wisdom and foresight;
people act correctly when they consider all three parts of time. All
knowledge falls under the Triad, and it was considered to hold powers of
prophecy and providence. Consequently, God Apollo delivered his oracles
from a tripod, and three libations are always offered to the gods. Three is
the �irst and commonest of all innumerable trinities that have dominated
religions since the dawn of history, for example, trinity of Hindu deities are
Brahma, Vishnu, and Shiva, whereas their respective tridevi’s are
Saraswati (education, creativity, and music), Lakshmi (wealth, fortune,
power, beauty and prosperity, and associated with Maya), and Parvati
(power, nourishment, harmony, devotion, and motherhood), also trinities
are Dharma–Artha–Kama and Satva–Raja–Tama; in Sumerian theology the
oldest triad is Anu (gods of heaven), Enlil (Earth), and Enki (water); in
Egyptian mythology the divine family is Osiris, Isis, and Horus; further
there were three aspects to the Egyptian Sun God Khepri (rising), Re
(midday), and Atum (setting); holy trinity in Christianity (God the Father,
God the Son [Jesus Christ], and God the Holy Spirit); and there are three
days entombment of Christ. In the Babylonian �lood legend, Utnapishtim



(the Babylonian Noah) simultaneously releases a dove, a raven, and a
swallow. There are three gifts of the magi (Gold, Frankincense, and Myrrh).

According to ancient Greek mythology, the modern world began when
the three brothers Zeus, Poseidon, and Hades rolled dice for the universe.
On that occasion, Zeus won the �irst prize, the heavens, Poseidon took
second prize, the seas, and Hades had to settle for hell. In Mohammedan
religion, the divorce (used to) takes place on the utterance of the word
“Talakh” three times. Triad infuses the world of matter with its three
dimensions, and the world of the three-part soul. Triad in the human cycle
is birth, life, and death. There are three aspects of the manifestation
(creation, preservation, destruction), and three states of consciousness
(awake, asleep, and dreaming). From the earliest times, sacri�ices and
vows have been repeated three times. There is a common superstition that
events take place in threes and that the third time will be lucky. Primary
colors are only three red, blue, and yellow (black and white are not
considered colors). A Triad consists of three people and is considered
more stable than a dyad because the third group member can act as the
mediator during con�lict. There are three receptacle worlds (receptacle of
principles, receptacle of intelligences, and receptacle of quantities). Three
is the atomic number of Lithium. Plato saw three as being symbolic of the
triangle, the simplest spatial shape, and considered the world to have been
built from triangles.

Number 4, was called Tetrad, depicting everything in the Universe, both
natural and numerical. Tetrad represents justice (male virtue), because it
was the �irst perfect square (ignoring the trivial  and ), the product of
equals (four dots make a square and even today we speak of “a square
deal”). In Hinduism Lord Brahma has four faces (Chaturmukha) forming
itself within and from the in�inite circle, he also has four arms and he is
often depicted holding one of the four Vedas in each hand. There are four:
aims of human life (Dharma, Artha, Kama, and Moksha), stages to a man’s
life (brahmacharya, grihastha, banaprastha, and sannyasa), primary castes
(Brahmana, Kshatriya, Vaishya, and Shudra), yugas (cycles of 4,320,000
years) [Satya, Dvapara, Treta, and Kali], and great kings (Vaishravana,
Virupaksha, Virudhaka, and Dhritarashtra). The swastika symbol (see
Freed and Freed [195]) is traditionally used in Hindu religions as a sign of
good luck and signi�ies good from all four directions. In Hinduism, the
sacred mountain Kailash has four sides from which four rivers �low to the
four quarters of the world (the Ganges, Indus, Oxus, and Sita) dividing the
world into four quadrants, Mount Meru buttressed by four terrestrial



mountain ranges that extend in four directions, and between them lie four
sacred lakes, through which the celestial river divides into four earthly
rivers, which �low to the four corners and irrigate the four quadrants of the
Earth. According to Egyptian cosmogony, the heavenly roof as supported
by four pillars, mountains, or women at the cardinal points.

In Buddhism there are four noble truths (the truth of suffering, the
truth of the cause of suffering, the truth of the end of suffering, and the
truth of the path that leads to the end of suffering), and four main
pilgrimage sites (Lumbini, Bodh Gaya, Sarnath, and Kusinara). In
Christianity there are four Gospels (Matthew, Mark, Luke, and John), and in
Judaism there are four holy cities (Jerusalem, Hebron, Safed, and Tiberius).
In Islam there are four: holy cities (Mecca, Medina, Jerusalem, and
Damascus), arch angels (Jibraeel [Gabriel], Mikaeel [Michael], Izraeel
[Azrael], and Isra�il [Raphael]), and holy books (Taurait, Zaboor, Injeel, and
Quran). There are four seasons (spring, summer, fall, and winter), four
primal elements, four essential musical intervals, four kinds of planetary
movements, four faculties (intelligence, reason, perception, and
imagination), the man has four ages (childhood, adolescence, youth, and
old age), and the Earth has four cardinal points (north, south, east, and
west). There are four types of animal (creeping, �lying, four-legged, and
two-legged), and the four mathematical sciences of the quadrivium. Four
points in space give rise to the �irst three-dimensional solid, the pyramid.
Four dimensions of space-time are the framework of the physical Universe,
according to relativity. Franklin Delano Roosevelt (1882–1945) the 32nd
president of the USA declared four fundamental freedoms (Freedom of
Speech, Freedom of Religion, Freedom from Want, and Freedom from
Fear). The number 4 is avoided in Japan because the word for 4. shi,
sounds similar to the Japanese word for death.

Number 5, was called Pentad, it represents marriage, because it was
the union of the �irst feminine and the �irst masculine number 
thus it gives life to the Universe. It also represents reconciliation and
concord, and hence sacred to Aphrodite, Goddess of love. Pentad
manifested through the �ive Platonic solids. The �ive-pointed star (see Fig.
1. 1), which contains “triple-interwoven triangle,” was recognized as
Pythagorean order. Pythagoras divided the globe into �ive climatic zones
(tropical, dry, mild, continental, polar). The God Shiva has �ive faces, and
his mantra is also called panchakshari (�ive-worded) mantra. The epic
Mahabharata revolves around the battle between Duryodhana and his 99
other brothers and the �ive pandava princes—Dharma, Arjuna, Bhima,



Nakula, and Sahadeva. Bhagavad Gita mentions [also Sikh in their canon]
�ive evils [�ive thieves] (Kama [desire], Krodha [anger], Lobha [greed],
Moha [delusion], and Ahankar [ego or excessive pride]). In Hindu
philosophy Prana describes the �ive breaths that are said to govern the
vital functions of the human being (prajna, apana, vyana, udana, and
samana). There are �ive gifts of cow (milk, curds, dung, ghi, and urine). In
Buddhism there are �ive virtues (Sat [truthful living], Santokh
[contentment], Daya [compassion], Nimrata [humility], and Pyaar [love]).
The Lord blessed �ive loaves and fed 5,000. In Islam, the number 5 is a
good omen, and in fact, there are the �ive Pillars of Islam (Shahadah
[declaration of faith], Salat [prayer], Zakat [giving alms], Sawm [fasting
during Ramadan], and Hajj making the pilgrimage to Mecca]). Prayers are
performed �ive times every day. Islamic law categorizes human behavior
into �ive classes (Wajib [obligatory], Sunnat or Sunnah [recommended],
Mubah [neutral], Makruh [not recommended but not forbidden], and
Haram [forbidden]). In Sikhism, �ive sacred symbols known as panj	kakars
are Kesh (unshorn hair), Kangha (comb), Kara (steel bracelet), Kachhehra
(soldier’s shorts), and Kirpan (sword). There are �ive: organs of perception
(ears [hearing], skin [touch], eyes [sight], tongue [taste], and nose [smell]),
organs of action (speech, hands, legs, anus, and genitals), and �ive
inhabitants of the world (plants, �ishes, birds, animals, and humans). Our
skin responds to �ive basic sensations (pressure, touch, cold, heat, and
pain). Five is also referred to a hand because of �ive �igures. Five is the
atomic number of Boron. In English alphabet, there are �ive vowels

 Five is the midpoint of the number 10; whatever method we
use to add up to 10, 5 will be found to be the arithmetic mean, e.g.,

 Five is also the only prime number (divisible by
1 and itself only) that is the sum of two consecutive primes, namely 2 and
3, with these indeed being the only possible set of two consecutive primes.
The Roman symbol X for ten represents two “V”s, placed apex to apex,
which shows the importance of �ive.

Number 6, was called Hexad, it was the �irst perfect number, appears
from both the addition and the multiplication of its factors: 
and  and hence it re�lects a state of health and balance. It is
seen in the six extensions of geometrical forms, in the six directions of
nature (north, south, east, west, up, and down). Like Pentad it arises out of
the �irst odd and even numbers only by multiplication,  rather than
by addition, and from this it is associated with androgyny. The Hexad



participates in the arithmetic mean—  the geometric mean—
 and the harmonic mean—  and seen in music as 

Thus the Pythagoreans used to praise the number six in very vivid
eulogies, concluding that the Universe is harmonized by it and, thanks to it,
comes by wholeness and permanence as well as perfect health. The
ancient Hebrews explained that God chose to create the world in six days
instead of one because six is more perfect number (on day 1 light is
created, on days 2 and 3 heaven and Earth appear, �inally, on days 4, 5, and
6 all living creatures are created). The Romans attributed the number six
to the goddess of love, for it is made by the generation of the sexes: from
three, which is masculine since it is odd, and from two, which is feminine
since it is even. Six similar coins can be arranged around a central coin of
the same radius so that each coin makes contact with the central one (and
touches both its neighbors without a gap). This makes 6 the answer to the
two-dimensional kissing	number	problem. The Earth has six climates zones
(tropical, arid, Mediterranean, temperate, continental, and polar). Euouae,
a medieval musical term, is the longest English word consisting only of
vowels, and the word with the most consecutive vowels. Pythagoreans also
realized that like squares, six equilateral triangles (see Fig. 1. 3) meeting at
a point (add up to ) leave no space in tilling a �loor.

Number 7, was called Heptad/Hebdomad, it cannot be generated by
the operation of any other numbers and hence expresses virginity,
symbolized by the virgin Goddess Athena, and has a mystique power.
Combined from the second triangular and the second square numbers (see
Chap. 7), it is the number of the primary harmony  the geometric
proportion  and the sides  around the right angle of the
archetypal right-angled triangle. Since it cannot be divided by any number
other than itself, it represents a fortress or acropolis. Heptad was sacred
because it was the number of days of the week named after the Sun, the
Moon, and the �ive planets visible to the naked eye: Mars (French Mardi),
Mercury (French Mercredi), Jupiter (French Jeudi), Venus (French
Vendredi), and Saturn (English Saturday). The English Tuesday,
Wednesday, Thursday, and Friday are named after Teutonic deities that
supposedly correspond to the Roman gods after whom the planets were
named. Week is in fact the time it takes the Moon to pass from one phase
to another, from new Moon to half Moon, from half Moon to full Moon.
Heptad was also sacred because Apollo’s birthday was celebrated on the
seventh day of each month. Pythagorean mathematical pattern in music



gives seven an important place, for there are seven distinct notes in the
musical scale corresponding roughly to the white notes on a piano.
Counting from 1, the eighth note up the scale is the exceedingly
harmonious octave (the name for eight).

In Hinduism there are seven sages or Saptarishi, named after seven
stars (Atri, Angiras, Kratu, Marichi, Pulaha, Pulastya, and Vashistha), they
are said to form the seven stars of the Little Bear which is situated on
exactly the same line as the “axis of the world.” There are seven ancient
scientists Rishis (Valmiki, Kashyap, Sukra, Baches, Vyas, Khat, and Kalidas).
There are seven sacred rivers of ancient Brahmanism known as
Saptasindhava (Ganga, Yamuna, Sarsvati, Satlaj, Parushni, Marurudvridha,
and Arjikiya). Our body contains seven chakras (Root, Sacral, Solar plexus,
Heart, Throat, Third eye, and Crown), horse with seven heads of the
chariot which Surya, the Brahmanic god of the Sun, raced across the sky,
there are seven footsteps at the time of marriage (Sapta-padi); in Sumerian
religion there are seven gods (An, Enlil, Enki, Ninhursag, Nanna, Utu, and
Inanna); in ancient Egypt there were seven paths to heaven and seven
heavenly cows; in Greek mythology there are seven wise men; in Christian
tradition there are seven deadly sins (pride, greed, lust, envy, gluttony,
wrath, and sloth), seven virtues (chastity, temperance, charity, diligence,
kindness, patience, and humility), seven spirits of God (spirit of the
wisdom, spirit of Lord, spirit of understanding, spirit of counsel, spirit of
power, spirit of knowledge, and spirit of the fear of the Lord), seven joys of
the Virgin Mary (annunciation, nativity of Jesus, adoration of the Magi,
resurrection of Christ, ascension of Christ to Heaven, pentecost or descent
of the Holy Spirit upon the Apostles and Mary, and coronation of the Virgin
in Heaven), seven devils cast out of Magdalen; for seven days seven priests
with seven trumpets invested Jericho (Palestinian city in the West Bank),
and on the seventh day they encompassed the city seven times; in the book
of Genesis we are told that “God rested from His work on the seventh day”;
in Rome there are seven hills (Aventine, Caelian, Capitoline, Esquiline,
Palatine, Quirinal, and Viminal); there are seven winds (Sirocco, Aeolian,
Gale, Zephyr, Squall, Wuther, and Haboob); and there are seven colors in
rainbow (red, orange, yellow, green, blue, indigo, and violet).

In India until very recently grandmother used to give wishes to
newlywed bride to have seven children. There are seven seas (Arctic,
North Atlantic, South Atlantic, North Paci�ic, South Paci�ic, Indian, and
Southern oceans); however, according to the Vishnu Purana, the seven seas
are (Lavana [salt], Iksu [sugar-cane], Sura [wine], Sarpi [clari�ied butter or



Ghee], Dadhi [yoghurt], Dugdha [milk], and Jala [water]). In China 7
determines the stages of life of a girl: she gets her milk teeth at seven
months, loses them at seven years, reaches puberty at  years,
and reaches menopause at  In general, Chinese do not consider
seven as a lucky number. All the of�ices of the Church are arranged in
accordance with number symbolism. The mass itself is composed of 7
parts, or of�ices. The full episcopal procession is led by 7 acolytes,
indicating the 7 gifts of the spirit. There are exactly seven generations from
David to the birth of Christ. Then follow the pontiff, 7 subdeacons (7
columns of wisdom), 7 deacons (from apostolic tradition). The Zikkurats,
towers of Babel, originally 3 or 4 stories in height but never 5 or 6, were
dedicated to the 7 planets and came to consist of 7 steps, faced with glazed
bricks of the 7 colors, their angles facing the 4 cardinal points. These 7
steps symbolize the ascent to heaven, and a happy fate is promised the
person who ascent to their submit. The tree of life, with 7 branches, each
bearing 7 leaves, is perhaps the ancestor of the 7-branched candlestick of
the Hebrews. Even the goddesses are called by 7 names and boast of them.
In 1966, Manana Ndabezitha Karenga (born 1941, USA) created Kwanzaa
the �irst pan-African holiday which has seven principles of African
Heritage described as “a communitarian African philosophy” (Umoja
[unity], Kujichagulia [self-determination], Ujima [collective work and
responsibility], Ujamaa [cooperative economics], Nia [purpose], Kuumba
[creativity], and Imani [faith]). There are seven parts of the body (head,
neck, torso, two arms, and two legs). The head has seven ori�ices (2
nostrils, 2 eyes, 2 ears, and a mouth), the lyre has seven strings, and
according to Shakespeare the life of men and women has seven ages
(infant, child, adolescent, young adult, adult, elder, and old person).

Herodotus and Callimachus of Cyrene (around 305–240 BC, Greece)
made the early list of the seven wonders of the Ancient World (The Great
Pyramid at Giza [erected in Egypt around 2600 BC by Khufu, 2589–2566
BC], Colossus of Rhodes [Greece Island], Hanging Gardens of Babylon
[Iraq], Lighthouse of Alexandria [Egypt], Mausoleum at Halicarnassus
[Turkey], Statue of Zeus at Olympia [Greece], Temple of Artemis [Turkey]),
since then the list keeps on changing. A popular nursery rhyme relates: As
I was going to St. Ives, I met a man with seven wives, each wife had seven
sacks, each sack had seven cats, each cat had seven kits, kits, cats, sacks,
and wives, how many were going to St. Ives? The origin of this rhyme
seems to be the problem 79 in Rhind mathematical papyrus. Several
versions of this riddle have survived in different ages and cultures. The



1937 German fairy tale Snow White has seven dwarfs (Bashful, Doc, Dopey,
Grumpy, Happy, Sleepy, and Sneezy).

Number 8, was called Octad/Ogdoad, it was signi�icant because it is the
�irst cube  and is thus associated with safety, steadfastness, and
everything in the Universe which is balanced and regulated. It is the source
of all the musical ratios and is called “Embracer of Harmonies,” it is also
known as Eros, as it is a symbol for lasting friendship. The heavens are
made up of nine spheres, the eighth of which encompasses the whole,
which introduces into the Octad a notion of all-embracing presence. There
are eight phases of Moon (new Moon, waxing crescent, �irst quarter,
waxing gibbous, full Moon, waning gibbous, third quarter, and waning
crescent). In Hinduism, eight is the number of wealth and abundance, and
according to cosmogony there are eight divinities/guardians of the
horizons and the points of the compass (Indra, Agni, Yama, Nirriti, Varuna,
Kuvera, Vayu, and Ishana). In Buddhism, the branches of the Eightfold Path
are embodied by the Eight Great Bodhisattvas (Manjusri, Vajrapani,
Avalokitesvara, Maitreya, Ksitigarbha, Nivaranavishkambhi, Akasagarbha,
and Samantabhadra). Further, in Buddhism 8 is a lucky number, possibly
because of the eight petals of the lotus, a plant associated with luck in
India and a favorite Buddhist symbol. In Chinese mythology there are 8
immortals (He Xian Gu, Cao Gou Jiu, Li Tie Guai, Lan Cai, Lü Dongbin, Han
Xiang Zi, Zhang Guo Lao, and Zhongli Quan) representing separately male,
female, the old, the young, the rich, the noble, the poor, and the humble
Chinese. Further, in China, 8 determines the stages of life of a boy: He gets
his milk teeth at eight months, loses them at eight years, reaches puberty
at  and loses sexual virility at  The Jews practiced
circumcision on the 8th day after birth. At their Feast of Dedication, they
kept 8 candles burning, and this Feast lasted 8 days. Eight prophets were
descended from Rahab. There were 8 sects of Pharisees. In the eighth
century it was pointed out by Alcuin that the second origin of the human
race was made from the de�icient number eight (see Sect. 4. 5), since in
Noah’s Ark there were eight human animals (Noah [8th in direct descent
from Adam], his wife, his three sons, and their wives) from whom the
entire human race sprung, this second origin being thus more imperfect
than the �irst, which was made according to the perfect number (see Sect.
4. 5) six. The square of any odd number, less one, is always a multiple of 
The eight beatitudes are the teachings of Lord Jesus Christ during his
Sermon on the Mount (Beatitudes Mountain) in which he describes the



attitudes and actions that should characterize his followers and disciples.
In Islam there are seven hells but eight paradises, signifying God’s mercy.
The atomic number of oxygen is 

Number 9, was called Ennead/Nonad, that which brings to fruition,
nine months for birth, and the number of the muses that complete dance
and movement. Ennead is the number of completion and ful�illment,
wisdom and good leadership, and heaven. In Hinduism it is the number of
Lord Brahma (the Creator), and represents Navaratna (Dhavantari [pearl],
Kshapanaka [ruby], Amarasimah [topaz], Shanku [diamond], Vetalabhatta
[emerald], Ghatakarpara [lapis-lazuli], Kalidasa [coral], Varahamihira
[sapphire], and Varauchi [not identi�ied to any speci�ic gem]), these
Sanskrit names are of courtiers of the legendary King (Vikramaditya, 102
BC-18 AD, India), and gems have immaculate auspicious powers. Navaratri
is an annual Hindu festival that spans over nine nights (perhaps these nine
days were associated with the nine numerals of the place-value system). It
is dedicated to Goddess Devi Durga/Parvati and her nine avatars
(Shailaputri, Brahmacharini, Chandraghanta, Kushmanda, Skandamata,
Katyayani, Kaalaratri, Mahagauri, and Siddhidatri). In Chinese it is the
ninth day of the Chinese New Year which is the birthday of the Jade
Emperor/God (the ruler of heaven), the Double Ninth festival is an old
Chinese tradition celebrated on the ninth day of the ninth lunar month. In
Hebrews it is a symbol of truth, further in some of the Hebrew writings it
is taught that God has 9 times descended to this Earth (Garden of Eden,
confusion of tongues at Babel, destruction of Sodom and Gomorrah, Moses
at Horeb, Sinai when the Ten Commandments were given, Balaam, Elisha,
Tabernacle, and Temple at Jerusalem), and it is taught at the 10th coming
this Earth will pass away and a new one will be created. In biblical term,
the Fruit of the Spirit sums up to nine attributes of a person (love, joy,
peace, patience, kindness, goodness, faithfulness, gentleness, and self-
control). A group of nine deities in Egyptian mythology worshiped at
Heliopolis (the Sun god Atum, his children Shu and Tefnut, their children
Geb and Nut, and their children Osiris, Isis, Set, and Nephthys).

Jacques de Longuyon (active 1290–1312, France) in his Voeux	du	Paon
introduced Nine Worthies (Pagans [Hector, Alexander the Great, Julius
Caesar], Jews [Joshua, David, Judas Maccabeus], and Christians [King
Arthur, Charlemagne, Godfrey of Bouillon]). In Catholicism, a novena is the
act of saying prayers for nine consecutive days. The Bah ’s faith/religion
was established in the nineteenth century, which teaches the essential
worth of all religions and the unity of all people; they consider the number



nine a symbol of completeness and ful�illment, as the highest single digit
number; their nine-pointed star may symbolize nine great religions of the
world; their Houses of Worship have nine sides, nine doors, and nine
gardens. Norse cosmology divided the Universe into nine realms with
Yggdrasil (the tree of life) in their midst (Asgard [Realm of the Aesir God],
Al�heim [Realm of the Light Elves], Jotunheim [Realm of the Giants],
Midgard [Realm of the Humans], Muspelheim [Realm of the �ire giant or
the forces], Nidavellir [Realm of the Dwarves], Ni�lheim [Realm of the mist
world], Svartal�heim [Realm of the Black Elves], and Vanaheim [Realm of
the Vanir gods]). Grete Waitz (1953–2011, Norway) won the New York
Marathon nine times. Ludwig van Beethoven (1770–1827, Germany)
wrote nine symphonies. Lady Jane Grey (1537–1554, England) was Queen
of England for nine days (10th of July–19th of July 1553). The ninth
President William Henry Harrison (1773–1841, USA) was the �irst
president to die in of�ice. There is a famous saying that a cat has nine lives.

One property of nine known since antiquity known as “casting out
nines” or “rule of nine” is that when divided into any power of ten, nine
always leaves a remainder of one. Since the days of performing
computations on counting boards, nine has been used as a check on the
computation. Suppose we multiply  by  to obtain

 To check the answer, we add the digits

and then divide each of these sums by nine, noting only the remainders are
 and  If the computation is correct, the remainder of the numbers

being multiplied will produce the remainder of the product. Since
 our multiplication seems to be correct. However, there is

always a possibility that digits might have been transposed in the answer, a
common error which the check will not catch. The same check can be used
for addition and subtraction as well as for division. The sum of the two
numbers we multiplied will leave the remainder of �ive; their difference, a
remainder of one. For checking division, we follow the standard rule that
the dividend a should equal the divisor b multiplied by the quotient plus
the remainder, or  But instead of using the whole number
for this check, we cast out nines and use only the remainders

Number 10, was called Decade/Decad, it was considered the greatest
and perfect of all because it holds all things through a single form and



power. It contains in itself the �irst four integers—one, two, three, and four
 it is the smallest integer n for which there are just as

many primes between 1 and n as non-primes, and it gives rise to an
equilateral triangle named as tetraktys (see Fig. 2.5). For the Pythagoreans,
the tetraktys was the sum of the divine in�luences that hold the Universe
together, or the sum of all the manifest laws of nature. They recognized
tetraktys as fate, the Universe, the heaven, and even God and honored it by
never gathering in groups larger than ten. Iamblichus states that the
tetraktys was so revered by the members of the brotherhood that they
shared the following oath, “I swear by him who has transmitted to our
minds the holy tetraktys, the roots and source of ever-�lowing nature.” At
its top is the essence of light that illuminates the world of Deity without
burning. Its base becomes the square platform of a pyramid, rooted in the
world. It is alleged that the Pythagorean musical system was based on the
Tetractys as the rows can be read as the ratios of 4:3 (perfect fourth), 3:2
(perfect �ifth), 2:1 (octave), forming the basic intervals of the Pythagorean
scales. For Plato number ten was the archetypal pattern of the Universe.
Theon of Smyrna (around 70–135 AD, Turkey–Greece) believed that
Tetraktys is composed of man, family, village, and city. According to Bell
[59], “Pythagoras asked a merchant if he could count. On the merchants’
replying that he could, Pythagoras told him to go ahead. One, two, three,
four…, he began, when Pythagoras shouted Stop! What you name four is
really what you would call ten. The fourth number is not four, but decad,
our tetractys and inviolable oath by which we swear.” The Tetraktys stands
like the altar before the bridal couple. In his dialogue De	verbo	miri�ico
(1494), Reuchlin compared the Pythagorean tetractys to the ineffable
divine name YHWH, ascribing each of the four letters of the
tetragrammaton a symbolic meaning according to Pythagorean mystical
teachings. Andrew Gregory (England) concludes that the tradition linking
Pythagoras to the tetractys is probably genuine. The triangular �igure of
four rows, respectively, represents Monad (a point), Dyad (a line), Triad (a
plane), Tetrad (a tetrahedron), adding up to the perfect number Decade,
the unity of a higher order.



Fig.	2.5 Tetraktys
By connecting the ten dots of the tetractys, nine equilateral triangles

are formed. Inadvertently, the tetractys occurs (generally coincidentally) in
the following: the arrangement of bowling pins in ten-pin bowling, the
arrangement of billiard balls in ten-ball pool, the baryon decuplet, an
archbishop’s coat of arms, the “Christmas Tree” formation in association
football, a Chinese checkers board, and the list continues.

Aleph and other letters of the Hebrew alphabet are shown on a
Kabbalistic diagram representing one of the ten emanations of God during
creation (Keter [the divine crown], Hokhmah [wisdom], Binah
[understanding], Hesed [mercy], Din [justice], Tif ’eret [beauty], Nezah
[eternity], Hod [glory], Yesod [foundation], and Shekhinah [God’s presence
in the world]). With the use of decimal system number ten became a
signi�icant number. The Rigveda is made up of ten books of hymns
celebrating the chief Vedic gods. In Hindus epic Ramayana, the demon king
Ravana is 10-headed. There are ten major incarnations of Lord Vishnu
(Matsya, Kurma, Varaha, Narasimha, Vamana, Parashu-Rama, Rama,
Krishna, Buddha, and Kalki). It is considered as a fortunate number in the
sense that one’s plans are likely to be carried out according to his/her
desires. Jews believe that God gave the Ten Commandments to Moses on
two tablets of stone at Mount Sinai (do not have any other gods, do not
make or worship idols, do not disrespect or misuse God’s name, remember
the Sabbath and keep it holy, honor your mother and father, do not commit
murder, do not commit adultery, do not steal, do not tell lies, and do not be
envious of others), and in Buddhism 10 Commandments are (do not
destroy life, do not take what is not given you, do not commit adultery, tell
no lies and deceive no one, do not become intoxicated, eat temperately and
not at all in the afternoons, do not watch dancing nor listen to singing or
plays, wear no garlands nor perfumes or any adornments, sleep not in
luxurious beds, and accept no gold or silver). Humans have ten �ingers and
ten toes. In all Indo-European languages, as well as Semitic, Mongolian,
and most primitive languages, the base of numeration (the number of



digits or a combination of digits that a system of counting uses to
represent numbers) is ten. For the conversion from the base 10 to any base

 several algorithms are known, for example, see Krishnamurhty
[318].

Number 11, was called Hendecad, it is a master number, because it has
its own unique and powerful vibrations. Those in�luenced by it tend to �ind
inner strength in times of trial, coping well with crisis and chaos.
Hendecad often symbolically associated with the God Rudra (  Shiva). In
the Babylonian creation myth Enuma Elish Tiamat, the God of chaos, is
supported by 11 monsters. The ancient Roman equivalent of a police force
comprised 11 men whose job was to hunt down criminals. Apollo 11 was
the �irst manned spacecraft to land on the Moon. The approximate
periodicity of a sunspot cycle is 11 years. Several sports involve teams with
11 members (American football, football [soccer], cricket, hockey).

Number 12, was called Dodecad/Duodecade, it represents authority,
completeness, magical symbolism, mythology, perfection, and
religiousness. The number 12 is strongly associated with the heavens.
Most calendar systems—solar or lunar—have twelve months in a year. The
Sumerians, Assyrians, and Babylonians used base 12 and its multiples and
divisors very widely in their measurements. The ancients recognized 12
main northern stars and 12 main southern stars. Hindu astrology depends
on 12 Rasi/Zodiac signs: Aries (March 21–April 19), Taurus (April 20–May
20), Gemini (May 21–June 20), Cancer (June 21–July 22), Leo (July 23–
August 22), Virgo (August 23–September 22), Libra (September 23–
October 22), Scorpio (October 23–November 21), Sagittarius (November
22–December 21), Capricornus (December 22–January 19), Aquarius
(January 20–February 18), and Pisces (February 19–March 20). In Chinese,
12 Chinese Zodiac signs represent animals that have their unique
characteristics, and each returns after 12 years: Rat (2020, resourceful,
versatile, kind), Ox (2021, dependable, strong, determined), Tiger (2022,
brave, con�ident, competitive), Rabbit (2023, elegant, kind, responsible),
Dragon (2024, con�ident, intelligent, enthusiastic), Snake (2025, enigmatic,
intelligent, wise), Horse (2026, animated, active, energetic), Goat (2027,
calm, gentle, sympathetic), Monkey (2028, sharp, smart, curiosity),
Rooster (2029, observant, hardworking, courageous), Dog (2030, lovely,
honest, prudent), and Pig (2031, compassionate, generous, diligent).
According to Hindus the Sun God Surya has 12 names (Mitra, Ravi, Surya,
Bhanu, Kha, Pusha, Hiranyagarbha, Marichin, Aditya, Savitr, Arka, and
Bhaskara). There are 12 Gods of Greece (Zeus, Hera, Poseidon, Demeter,



Athena, Apollo, Artemis, Ares, Hephaestus, Aphrodite, Hermes, and
Hestia).

According to the Hebrew Bible, the twelve lost tribes of Israel (Reuven,
Shimon, Levi, Yehuda, Issachar, Zevulun, Dan, Naphtali, Gad, Asher, Joseph,
and Benjamin) were said to have descended from the 12 sons of the
patriarch Jacob (who was later named Israel) by two wives, Leah and
Rachel, and two concubines, Zilpah and Bilhah. There were 12 Roman Gods
(Jupiter, Juno, Mars, Mercury, Neptune, Venus, Apollo, Diana, Minerva,
Ceres, Vulcan, and Vesta). In Christianity 12 is the number of Christ’s
disciples (Judas, Thomas, James, Philip, John, Judas Thaddeus, Matthew,
Andrew, Peter, Bartholomew, and Simon). King Arthur’s Round Table had
12 knights plus King Arthur himself (their names vary). The human body
has twelve cranial nerves (Olfactory, Optic, Oculomotor, Trochlear,
Trigeminal, Abducens, Facial, Vestibulocochlear, Glossopharyngeal, Vagus,
Accessory, and Hypoglossal). Each �inger has three articulations (or
phalanxes); and if you leave out the thumb (as you have to, since you use it
to check off the phalanxes counted), you can get to 12 using only the
�ingers of one hand. 12 is the number of inches in a foot, ounces in the
ancient pound, hours about the clock, and the words dozen and gross are
used for counting eggs and oysters as higher units. Twelve is the kissing
number in three dimensions, and the atomic number of Magnesium.

Number 13 is considered as an unlucky number because of the
Babylonian Code of Hammurabi (Babylonian king, around 1811–1750 BC);
there were 13 people present on the Jesus Christ’s last supper, and the
13th to sit on the table was the apostle Judas Iscariot, who later betrayed
Christ; according to Julian calendar October 13, 1307 was Friday and
following the order of King Philip the IV of France the Knights Templar
were arrested, tortured, and many were killed; Friday the 13th was a
horror �ilm series involving a mass murderer named Jason Voorhees (�irst
appearance Friday the 13th, 1980 and last appearance Friday the 13th,
2009); the end of the Mayan calendar’s 13th Baktun was superstitiously
feared as a harbinger of the apocalyptic 2012 phenomenon; a year with 13
full moons instead of 12 created troubles for the monks in-charge of the
calendars; the baptismal name Adolfus Hitler (1889–1945, Austria–
Germany) contains 13 letters; Alfred Joseph Hitchcock (1899–1980,
England–USA) could not complete his 13th �ilm in 1922; in 20 years out of
35 Friday on the 13th, 15 times Wall Street recorded losses; 1979’s Super
Bowl XIII was a huge �inancial setback for sports Bookies.



There is another cause as to why there is a fear of number 13. The
occult symbolism that stood for number 13 was represented by a mystic
picture of “A skeleton with a scythe in its bony hands reaping down men,”
which different pundits have explained differently. Triskaidekaphobes
contemplate Friday the 13 is a cursed/miserable/catastrophic day; they
have a great phobia of everything related to the number 13, so they try to
avoid everything labeled 13. Many tall buildings do not have a 13th �loor,
some hospitals avoid the 13th bed, there is no row 13 in planes, the
numbers of racing cars as well as triathlon skip from 12 to 14, there are no
13th seats in opera-houses in Italy (however, traditionally in Italy, Friday
the 13th was not considered unlucky), it is considered to be unlucky to
have thirteen guests on a dinner table (specially in France), and many
people avoid getting married or buying a house on a day marked by this
dreaded number. In a tarot card deck, XIII is the card of Death, usually
picturing the Pale horse with its rider. However, number 13 combines
energy of numbers 1 and 3 and hence has a great power, also according to
medieval theology  (Commandments plus Trinity) and hence
the number had some positive aspects. In Hinduism it is considered
auspicious to name a baby girl on the 13th day of her life. In Judaism all
boys and most reform and conservative girls become bar or bat Mitzvahs
at age 13, i.e., a full member of the Jewish faith. According to Rabbinic
commentary on the Torah, Lord has 13 attributes (merciful before a
person sins, merciful after a person has sinned and repented, all-powerful,
compassionate, gracious, slow to anger, abundant in kindness, af�luence in
truth, keeping mercy for thousands, forgives sins committed willfully,
forgives sins committed in de�iance of His will, forgives sins committed
unwittingly, and cleansing).

In Confucianism there are Thirteen Classics, in Tai Chi there are
thirteen postures (consisting of Eight Gates and Five Steps), and in Aztec
mythology there are Thirteen Heavens. Sizdah Bedar also known as
Nature’s Day is an Iranian festival held annually on the thirteenth day of
Farvardin (same as Aries), the �irst month of the Iranian calendar, a festival
dedicated to pranks and spending time outdoors. In ancient cultures, the
number 13 represented femininity, because it corresponded to the number
of lunar (menstrual) cycles in a year (  days). In some of the
ancient writings, it is said, “He who understands the number 13 will be
given power and dominion.” In Catholicism the apparitions of the Virgin of
Fátima in 1917 were believed to occur in Portugal on the 13th day of six
consecutive months, and it is also associated with Saint Anthony of Padua



since his feast day falls on June 13. In Islam among Shi’ites, 13 signi�ies the
13th day of the month of Rajab (the Lunar calendar), which is the birth of
Imam Ali. Neo-Pagans, French, and Italians use to consider 13 as a lucky
number. In Gurmukhi as well as Hindi the number 13 is called Terah
(yours). According to famous Sakhi/story of Guru Nanak Dev Ji, when he
was an accountant at a town of Sultanpur Lodhi, he was distributing
groceries to people. When he gave groceries to the 13th person, he kept
saying, “Yours, yours, yours…” remembering God. People reported to the
emperor that Guru Nanak was giving out free food to the people. When
treasures were checked, there was more money than before. The Vaisakhi,
which commemorates the creation of “Khalsa” or pure Sikh, was celebrated
on April 13 for many years. Thirteen is the minimum age of consent in
Argentina, Burkina Faso, Japan, two Mexican states, Niger, and in the
United States to create an account in compliance with Children’s Online
Privacy Protection Act. Colgate University was founded in 1819 by 13 men
with 13 dollars, 13 prayers, 13 articles, the campus address is 13 Oak
Drive in Hamilton, New York, and the male a cappella group is called the
Colgate 13.

The Great Seal of the United States consists 13 olive leaves, 13 stars, 13
arrows, and there are thirteen stripes on the American �lag representing
the thirteen British colonies that declared independence from the
Kingdom of Great Britain. The Thirteenth Amendment to the United States
Constitution abolished slavery and involuntary servitude (except as a
punishment for crime). In 1970 the Apollo 13 NASA Moon mission became
famous as “successful failure.” It returned to the Earth safely, but exploded;
however, all the crew members survived a catastrophic accident. There are
13 Archimedean Solids (cuboctahedron, great rhombicosidodecahedron,
great rhombicuboctahedron, icosidodecahedron, small
rhombicosidodecahedron, small rhombicuboctahedron, snub cube, snub
dodecahedron, truncated cube, truncated dodecahedron, truncated
icosahedron, truncated octahedron, and truncated tetrahedron). Thirteen
is the �irst number within the teen numerical range 13–19. Thirteen is the
smallest number whose fourth power can be written as a sum of two
consecutive square numbers  and the sum and the
difference of 2 consecutive squares  Thirteen is the
sixth prime number, second star number, one of only three known John
Wilson primes , seventh Fibonacci number, and third centered
square number. In the standard 52-card deck of playing cards, there are



four suits, each of 13 ranks. In rugby league each side has 13 players on the
�ield at any given time. The birth and death rates of renowned people in
every discipline seem to be the same for the number thirteen as of any
other number in the range 1–30. Thirteen letter words such as
compassionate, confrontation, embarrassment, encouragement,
entertainment, understanding, and unfortunately give a mixed reaction.
Thus, it all depends on an individual in which way he chooses to perceive
the number thirteen and because of the power of thoughts gets the
expected results.

Numbers 35 and 36, Plutarch called the number 35 “harmony” because
it represents the sum of the �irst feminine and the �irst masculine cube

 He also showed that 36 is the �irst number that is both square
 and rectangular  that it is the multiple of the �irst square

numbers, 4 and  and the sum of the �irst three cubes,  It is
also a parallelogram  or  and is named “agreement” because in
it the �irst four odd numbers unite with the �irst four even

Number 40 is found important in many religions such as Hinduism,
Sumerian, Buddhism, Judaism, Christianity, and Islam. In Judaism forty is
often used for time periods, for example, forty days and forty nights lasted
the rain which brought about the great deluge; for forty days and forty
nights Moses conferred with Jehovah on Mount Sinai; forty years were the
children of Israel wandering in the wilderness; one of the prerequisites for
a man to study Kabbalah is that he is forty years old, and the list continues.
Six, seven, and forty were the ominous number of the Hebrews.

Number 60 is called sixty. Inheriting from the Sumerian and Akkadian
civilizations, the Babylonians and Persians preferred sixty and its
multiples. According to Theon of Alexandria (around 335–405, Greece),
the Sumerians chose base 60 because it was the “easiest to use” as well as
the lowest of “all the numbers that had the greatest number of divisors.”
The same argument also cropped up 1,300 years later by Wallis, and again,
in a slightly different form, in 1910, when Adolphe Lö�ler (Switzerland)
argued that the system arose “in priestly schools where it was realised that
60 has the property of having all of the �irst six integers as factors.” In
1789, Vincenzo Formaleoni (1752–1797, Italy) suggested that Sumerian
system derived from exclusively “natural” considerations; on this view, the
number of days in a year, rounded down to 360, was the reason for the
circle being divided into 360 degrees, and the fact that the chord of a



sextant (one sixth of a circle) is equal to the radius gave rise to the division
of the circle into six equal parts. This would have made 60 a natural unit of
counting. This proposition was repeated in 1880 by Moritz Benedikt
Cantor (1829–1920, Germany). In 1889, Carl Ferdinand Friedrich
Lehmann-Haupt (1861–1938, Germany) believed he had identi�ied the
origin of base 60 in the relationship between the Sumerian “hour” (danna),
equivalent to two of our current hours, and the visible diameter of the Sun
expressed in units of time equivalent to two minutes by current reckoning.

In 1927, Otto Eduard Neugebauer (1899–1990, USA) proposed that the
source of base 60 is in terms of systems of weights and measures. Other
speculation was made in 1986 by Daniel Joseph Boorstin (1914–2004,
USA) Mesopotamians got to 60 by multiplying the number of planets
(Mercury, Venus, Mars, Jupiter, and Saturn) by the number of months in the
year, i.e.,  Anu, the God of heaven, Babylonians attributed to the
number 60. Xerxes the Great (around 518–465 BC, Persia) punished the
Hellespont with 300 lashes, and Darius ordered the Gyndes to be dug up
into 360 ditches, because one of his holy horses had drowned in the river.
In Hinduism, the 60th birthday of a man is called Sashti	Poorthi, which
represents a milestone in his life. Sixty occurs several times in the Bible,
for example, as the age of Isaac when Jacob and Esau were born, and the
number of warriors escorting King Solomon. In time, 60 is the number of
seconds in a minute, and the number of minutes in an hour. In geometry, it
is the number of seconds in a minute, and the number of minutes in a
degree. Out of 13 Archimedean solids four (great
rhombicosidodecahedron, snub dodecahedron, truncated icosahedron,
and truncated dodecahedron), have 60 vertices. The sixteenth year of
marriage is called the diamond wedding anniversary. In many countries a
person becomes a senior citizen at  Since sixty is the smallest number
that is divisible by the numbers 1 to 6 and has exactly 12 divisors, it is easy
to use in expressing fractions. Sixty is also the product of the side lengths
of the smallest whole number right triangle  a Pythagorean triple.
It is the smallest number that is the sum of two odd primes in six ways

Number 100, called one hundred, represents perfection and reason for
celebration. There are 100: years in a century; centimeters in a meter;
yards in an American football �ield; pennies in one dollar; letter tiles in a
Scrabble game; and sebaceous (oil) glands in our one square inch of skin.
Hundred is the: square of  basis of percentages; sum of the �irst nine



prime numbers; sum of the �irst 10 odd numbers; sum of the cubes of the
�irst four positive integers, i.e.,  and square of the
sum of the �irst four positive integers, i.e.,  There
are exactly hundred prime numbers whose digits are in strictly ascending
order, and the hundredth such prime is  In many old editions of
the Bible, the number  appears at the end of a prayer as a
substitute for amen. A Googol is the number 1 followed by 100 zeroes. On
the Celsius scale, 100 degrees is the boiling temperature of pure water at
sea level. The United States Senate has 100 Senators. In the game of
cricket, scoring 100 runs (a century) is a major feat for a batsman. The
record number of points 100 scored in one NBA game by a single player,
set by Wilton Norman Chamberlain (1936–1999, USA) of the Philadelphia
Warriors on March 2, 1962.

Number 108 has the power of 1 that stands for God or higher truth, 0
that stands for emptiness or completeness in spiritual practice, and 8 that
stands for in�inity or eternity. It has been considered as a sacred number in
mathematics, geometry, astrology, and numerology for thousands of years,
mainly in several eastern religions and spiritual traditions. In India more
than 5000 years ago, it was known that the distances of the Moon and Sun
from the Earth are 108 times the diameters of these heavenly bodies,
respectively (the observed values are  for the Moon and  for
the Sun). Vedic cosmology postulates, 108 is the basis of creation,
represents the Universe, and all our existence. In Hinduism the number
108 is very powerful because there are 108: Divya Desams (temples of
Lord Vishnu); Mukhya Shivaganas (attendants of Shiva); gopis (followers
of Lord Krishna); Upanishads (sacred texts of wisdom from ancient sages),
names of each deity, Sanskrit alphabet (54 letters, each has a feminine, or
Shakti, and masculine, or Shiva, quality), and for the Holy River Ganga the
multiplication of its longitude of 12 degrees (79 to 91) and latitude of 9
degrees (22 to 31). Thus, they use Japa mala (a string of 108 beads made
from Tulasi wood) to recite all mantras (or silent repetition of a mantra)
with the belief that each unit brings closer to God within. In Ayurveda
(traditional Hindu system of medicine), there are 108 marma points (vital
points of life forces) known as Shri Yantra in our body. In pranayama (the
Yogic practice of regulating breath) it is believed that if an individual can
be so calm as to only breathe 108 times in one day, enlightenment will be
achieved. As a mark of respect, the numbers 108/1008 are pre�ixed to the
name of a learned Sadhu or Sanyasi.



In Buddhism, there are said to be 108 earthly temptations, 108 lies, and
108 delusions of the mind. Soon after the birth of the Buddha, 108
Brahmans were invited to the name-giving ceremony. Buddha has 108
names, and there are 108 lamps devoted to him. In Kathmandu there are
exactly 108 images of Buddha. Some Buddhist temples have 108 steps and
108 columns. The Lankavatara Sutra has a section where the Bodhisattva
Mahamati asks Buddha 108 questions. Tibetan Buddhist malas or rosaries
are usually 108 beads and have 108 sacred books, and Zen priests wear
Juzu (a ring of prayer beads) around their wrists, which consists of 108
beads. In Jainism, the total number of ways 108 of Karma in�lux (Aasrav) is
calculated by multiplying 4 Kashays (anger, pride, conceit, greed), 3
karanas (mind, speech, bodily action), 3 stages of planning (planning,
procurement, commencement), and 3 ways of execution (own action,
getting it done, supporting or approval of action). Sarsen Circle
Stonehenge, whose structure is similar to that of PhNom Bakheng (an
ancient Shiva Temple in Cambodia), has a diameter of 108 feet. In Japan, at
the end of the year, a bell is chimed 108 times in Buddhist temples to �inish
the old year and welcome the new one. Each ring represents one of 108
earthly temptations a person must overcome to achieve nirvana. There are
several close links between 108 and 9:  and

 and  and
 also  and  We further have the relation

 108 is an important symbolic number in several
martial arts and karate styles. 108 degrees Fahrenheit is the internal
temperature at which the human body’s vital organs begin to fail from
overheating.

Number 365, in the Jewish faith there are 365 “negative
commandments.” The letters of the deity Abraxas, in the Greek notation,
make up the number 365. This number was subsequently viewed as
signifying the levels of heaven. The Bible states that Enoch lived for 365
years before entering heaven alive. The number 365 is based on the
passage of the Sun through the twelve divisions of the Zodiac, which is the
origin of the calculation of the year period that is found in every
civilization; thus several solar calendars have a year containing 365 days.
It is the product of two prime numbers 5 and 73. It is the smallest number
that has more than one expression as a sum of consecutive square
numbers 



Number 1000, called one thousand, often interpreted in the sense of
the multitude or the incalculable, often associated with: the attributes of
many Hindu Brahmanic divinities (the Thousand arms, the Thousand rays,
or the Thousand of the Brilliant all denote the Sun god Surya; the
Thousand names denoted the gods Vishnu and Shiva; the Thousand eyes
refer to the gods Vishnu and Indra, etc.); or mythological �igures (such as
the demon Arjuna who is referred to by the name Thousand arms of
Arjuna). This number is also associated with: Mercy; Charity, Sympathy;
the Mouths of the Ganga (jahnavivaktra); the Arrows of Ravi (  Surya);
Ananta (the serpent with thousand heads); the lotus with a thousand
petals, etc.

William John Warner (1866–1936, Ireland), popularly known as Cheiro
(the term came from “cheiromancy”) as an young adult, went to India
for three years in search of knowledge. In his most popular book [124]
on numerology writes “The ancient Hindus (Brahmins) together with the
Chaldeans and Egyptians, were the absolute masters of the occult or
hidden meaning of numbers, in their application to time and in their
relation to human life.” “In India Brahmins kept in their hands from
almost prehistoric times studies and practices of an occult nature which
they regarded as sacredly as they did their own religious teaching.
Among other thing they had theories on the occult signi�icance of
numbers and their in�luence and relation to human life.” “The ancient
Hindu searches after Nature’s laws, it must be remembered, were in
former years masters of all such studies, but in transmitting their
knowledge to their descendants, they so endeavored to hide their
secrets from the common people that in most cases the key to the
problem became lost, and the truth that had been discovered became
buried in the dust of superstition and charlatanism.” He correctly
predicted for Arthur James Balfour (1848–1930, U.K.) to be eventually
Prime Minister; Russian Revolution and alliance with China; World War
II; England’s Trade Union strikes of 1926, the time of his own death. In
1925, he predicted the future partition of India, and the sinking of the
Titanic, 13 years before it sank. Number mysticism had its precursor in a
sort of numerology that to this day persists in otherwise unaccountable
omens and superstitions. Numbers in one way or another create and
in�luence our realism that serves as the basis for studying their intrinsic
qualities—which we call numerology. Numerologists for an individual
consider his name, date of birth, time of birth, place of birth, etc., and



somehow covert it into a number between 1 and 9, and based on the
property of that number forecast a person’s life, successes and
misfortunes, and to parents of newborns suggest a good name for their
child based on the best prognosis against their birth date. Cheiro’s
system of numerology is based on the following three steps:

Step1. Connect each letter of the alphabet to a number, as follows:
1 = A, I, J, Q, Y, 2 = B, K, R, 3 = C, G, L, S, 4 = D, M, T,
5 = E, H, N, X, 6 = U, V, W, 7 = O, Z, 8 = F, P.

 

Step2. Look at each letter of the person’s name, assign the numbers given
in step 1, add them, and then reduce them through further
addition of digits until we reach a single number. For example, for
the name RAVI PRAKASH AGARWAL, we have

RAVI = R+A+V+I = 2+1+6+1 = 10 = 1+0 = 1
PRAKASH = P+R+A+K+A+S+H = 8+2+1+2+1+3+5 = 22 = 2+2

=4
AGARWAL = A+G+A+R+W+A+L = 1+3+1+2+6+1+3 = 17 = 1+7

=8.

 

Now adding these single digit numbers leads to 1+4+8 = 13, which further
reduces to as 1+3=4. Thus the Name Number of Ravi Prakash Agarwal is 4.

If we stop at double digit number 13, then from the above number
mysticism, we get only mixed reaction. However, for the single digit 4 we
can use Cheiro’s following classi�ication:
Step3. For numbers 1,2,3,4,5,6,7,8,9 the following list gives names of

planets, days, lucky colors, precious stones (which carry potent
messages of power, honor, and love), and characteristic nature.

 

Number 1 – The Sun, Sunday, Golden, Ruby. The brightest star in the sky,
without which we would not be here. As such, symbolizes leadership,
and the one that everybody looks up to. This number stands for the
forefront of creative original capabilities, enduring strength, focus, and
positivity. Nothing holds Number 1 back in their quest to rise to the top.
Number 2 – The Moon, Monday, White, Pearl. Like the Sun, stands out
from the crowd, but in mastery of the creative planes. As such creativity
and artistry are key strengths, but always carried out with restraint.
Kindness and tact are positive features of this number. However, number



2 people thrive in positive environments, easily scattered, timid, helpful,
and secret keeper.
Number 3 – Jupiter, Tuesday, Yellow, Sapphire. A large and dominant
planet, so it re�lects good fortune, success, fame, material comfort, and
happiness. An authority �igure and delegator, is disciplined, and expects
the same from others. While a natural born leader, this does not make
number 3 a friend to everybody.
Number 4 – Uranus, Wednesday, Blue, Ruby. De�inition of a true
individual, if not a maverick. Thinking outside of the box and contrary to
popular belief and expectation. It represents the law of justice without
mercy, tolerance, or sympathy. It is cold, intellectual, and slow in its
nature.
Number 5 – Mercury, Thursday, Green, Emerald. Flows and glides
effortlessly just like liquid mercury. Excellent with other people,
especially other number 5’s! Very strong willed, but just as much open
to acting on an acute sense of instinct. Dreams up ideas and has the will
to make them happen. But far too easy to wind up the wrong way. It
seeks present happiness and cares little for cost or consequence. Good
in communication, changeability, temperament, writing, and talking.
Number 6 – Venus, Friday, Yellow, Diamond. Attraction is the key
concept to number 6, so it represents love, harmony, beauty, art,
decoration, sympathy, and cooperation. Just as people are drawn fondly
to them, number 6’s attach themselves to their dreams and ambitions
with long-lasting faithfulness. Appreciate the �iner things in life and
highly cultured.
Number 7 – Neptune, Saturday, White, Pearl. A healthy independence
permeates the number 7. The freedom to move about and travel is
craved, and there is a thirst for knowledge about the world. They do not
naturally seek out wealth, but still do well for themselves by their
originality and application to the task at hand, not least their talent for
self-expression. Can be a bit far fetched at times, for better or for worse.
It is the number of inventors, musicians, composers, researchers, and
shows loneliness and aloofness.
Number 8 – Saturn, green, sapphire. Intense, strong, and an important
outlier. Has a crucial arm in overturning systems and making history. It
symbolizes justice with mercy, and proponent of robust philosophy and
conduct. However is seldom on the same page as others and can get
isolated, if not reviled. It deals with the law of Karma.



Number 9 – Mars, red, coral. Gains strength through con�lict, learns from
battles lost, but in the end always strives toward victory. Likes being in-
charge, those beneath a number 9 �ind them temperamental. Has a lot of
potential for success but needs guidance not to fall victim to their own
impulsiveness and reckless behavior.

Thus Ravi Prakash Agarwal whose number is 4, must be following
justice without mercy, tolerant or sympathetic. Next, we are interested in
his date of birth which is 7th October 1948, and it gives

, addition of these numbers
gives . Thus for Ravi Prakash Agarwal Birth
Number is 3, which according to above classi�ication shows he must have
good fortune, successful, famous, material comfort, and happiness.

An alternative method to assign each letter of the alphabet to a number
is A = 1, B = 2, , Z = 26, and then add all numbers. Thus, for Ravi Prakash
Agarwal, we get 187, which further gives

. Hence, the above classi�ication
indicates Ravi Prakash Agarwal likely to be an inventor, a musician, a
composer, or a researcher.

There are several shocking reincarnation stories for which science has
no explanation. In his book Cheiro rewrites an extraordinary case of St.
Louis of France (1215–1270) and King Louis XVI (1754–1793), which was
originally published in 1852 in a book entitled Research	into	the	Ef�icacy	of
Dates	and	Names	in	the	Annals	of	Nations. It will certainly add to one more
stories who �irmly believe in the theory of reincarnation. Clearly, there was
an interval of exactly 539 years between the birth of St. Louis and Louis
XVI. Birth of Isabel, sister of St. Louis 1225, add interval 539 gives 1764—
Birth of Elizabeth, sister of Louis XVI 1764. Death of Louis VIII, father of St.
Louis 1226, add interval 539 gives 1765—Death of the Dauphin, father of
Louis XVI 1765. Minority of St. Louis commences 1226, add interval 539
gives 1765—Minority of Louis XVI commences 1765. Marriage of St. Louis
1231, add interval 539 gives 1770—Marriage of Louis XVI 1770. Majority
of St. Louis (King) 1235, add interval 539 gives 1774—Accession of Louis
XVI, King of France 1774. St. Louis concludes a peace with Henry III 1243,
add interval 539 gives 1782—Louis XVI concludes a peace with George III
1782. An Eastern prince sends an ambassador to St. Louis desiring to
become a Christian 1249, add interval 539 gives 1788—An Eastern prince
sends an ambassador to Louis XVI for the same purpose 1788. Captivity of
St. Louis 1250, add interval 539 gives 1789—Louis XVI deprived of all
power 1789. St. Louis abandoned 1250, add interval 539 gives 1789—



Louis XVI abandoned 1789. Birth of Tristan (sorrow) 1250, add interval
539 gives 1789—Fall of the Bastille and Commencement of the Revolution
1789. Beginning of Pastoral under Jacob 1250, add interval 539 gives 1789
—Beginning of the Jacobins in France 1789. Death of Isabel d’Angouleme
1250, add interval 539 gives 1789—Birth of Isabel d’Angouleme in France
1792. Death of Queen Blanche, mother of St. Louis 1253, add interval 539
gives 1792—End of the White Lily of France 1792. St. Louis desires to
retire and becomes a Jacobin 1254, add interval 539 gives 1793—Louis
XVI quits life at the hands of the Jacobins. St. Louis returns to Madeleine in
Provence, add interval 539 gives 1793—Louis XVI interred in the cemetery
of the Madeleine in Paris 1973.

After Cheiro’s book, several other numerologists have used similar
methods to study individuals: pattern of thinking, behavior, profession,
�inance, and in general his/her comprehensive personality, e.g., see
Katakkar [299].

The best known instance of numerology is the “number of the beast,”
666, from the biblical Revelation to John (13:18). Curiously, Revelation is
the 66th book in the Bible, and the number of the beast occurs in verse 18,
which is 6+6+6. But who is the beast? The German Protestant scholar
Andreas Helwig (1572–1643) in 1612 added up the Roman numerals in
the phrase Vicarius Filii Dei (“Vicar of the Son of God,” a title falsely
ascribed to the pope) and omitted all the other letters (that is, I = 1, V [and
U, which appears as V in Latin inscriptions] = 5, L = 50, C = 100, D = 500)
and got 666, proving that the beast is the Roman Catholic Church. This
interpretation was taken up by some Seventh-day Adventists in the
nineteenth century, but the same method applied to the name Ellen Gould
White (1827–1915, USA), a founder of Seventh-day Adventism, also yields
666, provided that the W counts as two V’s. Hitler sums to 666 if one uses
the code A = 100, B = 101, and so on. Stifel a Protestant, October 3, 1533,
and other time used a clever rearrangement of the letters LEO DECIMVS to
“prove” that Leo X was 666, whereas Pietro Bongo (died 1601, Italy) a
Catholic, unraveled 666 as Martin Luther. In contrast to 666, the number
888 (in Greek) is considered by students of Occultism to be the number of
Jesus Christ in His aspect as the Redeemer of the world. Readers of War
and	Peace of Count Lev Nikolayevich Tolstoy (1828–1910, Russia) �ind that
“L’Empereur Napoleon” can also be made equivalent to the number of the
beast.

In numerology, Angel	Numbers are number sequences (usually three or
four-digit numbers) that contain repetition (such as 222 or 7777) and/or



patterns (such as 4321 or 8686). Angel numbers exhibit the ways in which
you are moving through the world. In numerology, 000 or 0000 signi�ies a
fresh start; 111 or 1111 shows extraordinary support; 222 or 2222
indicates a divine collaboration; 333 or 3333 shows opportunity to add
your unique talents and abilities to a situation; 444 or 4444 suggests that
you are in the process of grounding, rooting, and cultivating an
infrastructure that is truly built to last; 555 or 5555 is often associated
with change, evolution, love, and abundance; 666 or 6666 although
religiously considered as the number of the beast, it can be a gentle, much-
needed reminder to treat yourself with kindness and understanding: 777
or 7777 stipulates good fortune—especially �inance wise; 888 or 8888 is
considered as the most divine numbers; 999 or 9999 gives warning to step
outside your comfort zone, expand your horizons, and explore new
territory.

In numerology the Karmic	Debt	Number is your unique number that is
determined by your life lessons and what you are working on in this
lifetime. It is a number that corresponds to the lessons you have yet to
learn and the ones that have already been mastered. It is calculated by
adding the digits of your birth day and month. There are only four Karmic
debt numbers 13, 14, 16, and 19. As an example, Ravi Prakash Agarwal has
no Karmic debt number (see his birthday). Each of these four karmic debt
numbers holds a signi�icant meaning and indicates a speci�ic set of
dif�iculties that a person would need to work through in this lifetime.
Number 13 signi�ies you will have to work harder and learn more lessons
in order to achieve career success; 14 indicates there was an abuse of
freedom in a past life so you need to maintain moderation and self-control;
16 relates to past life transgressions when it comes to love so you must be
more thoughtful of others and consider how you affect them; 19 is related
to the abuse of power in a past life, and hence do not fall victim to ego-
based behavior or stubbornness.

Numerology found expression in another form called GEMATRIA. Every
number in Hebrew and Greek stood for both sound and number. The
number	of	the	word was the sum of the numbers represented by each letter
in the word, and two words were regarded equivalent if they stood for the
same number. Gematria was practiced very extensively in old days, and
there are indications of it even in Biblical passages. For example, the word
amen, which is  in Greek. These letters have the numerical values

 totaling  Thus, in
many old editions of the Bible, the number 99 appears at the end of a



prayer as a substitute for amen. An interesting illustration of gematria is
also found in the graf�iti of Pompeii: “I love her whose number is 545.” It
was also used for interpreting the past and foretelling the future.

2.10	 Some	Interesting	Numbers
There are several numbers that have curies properties (see Le Lionnais
[348]). In this section, we shall discuss a few of such numbers.

Simple multiplication and addition give

Sum of consecutive squares a square

Square numbers containing all the ten digits unrepeated



Number 45. The sum of all nine and ten digit numbers is 45:

the sum of the quotients, i.e., 
Number 153. According to John in the Gospel , “Simon Peter went
up, and drew the net to land full of great �ishes, an hundred and �ifty and
three: and for all there was so many, yet was not the net broken.”
Mathematically, the number 153 has several obscure properties, for
example,  and hence 17th
triangular number (see Sect. 7. 2), also 
Among all the numbers, the following are the only four that can be
represented by the cubes of their digits

If we begin with any integer multiple of  add up the cubes of its digits,
then take the result and sum the cubes of its digits, and so on, we
eventually end up with  For example, consider the number 13701
that is a multiple of  Now successively we have

The square root of 153 is 12.369, which is the number of lunar months
in a solar year.
Take any number of three digits, reverse it, subtract the smaller, reverse
the result, and add, and you will always have 1089. For example, 287
when reversed is 782,  (subtract the smaller), 594 (495
is reversed), 
8712 and 9801 are the only 4-digit numbers that are the integral
multiples of their reversals, i.e.,  and 



There are no other numbers below  that have the following
property  and 
In 1949, Dattatreya Ramchandra Kaprekar (1905–1986, India)
discovered an sticking property of the number 6174 which in now
known as Kaprekar constant. Take any four-digit number N with at least
two unequal digits. One can even take a one, two, or three-digit number
and consider it as a four-digit number by padding it with zeros on the
left. For example, 1 can be considered as 0001. From the four-digit
number chosen, form new numbers A and B by writing the digits of N in
decreasing and increasing order, respectively. Find 
This T is known as Kaprekar transformation. Kaprekar observed that in
at most seven transformations, any four digit gets changed to 6174, and
the process stops thereafter, since  As
examples, note that under

 and
 It is also

interesting to note that 
A natural number N of k digits is called Kaprekar number if it is squared,
and then its representation can be partitioned into two positive integer
parts (the right part with k digits and the left part with the k or 
digits) whose sum is equal to the original number. There are in�initely
many Kaprekar numbers, and �irst few of them are 1 (by convention),

9999. As an example, 
, and

 The restriction
that the partitions are positive is essential, in fact, 10 is not a Kaprekar
number 
In 1955, Kaprekar introduced Harshad	(giving	joy)	numbers: A natural
number with the property that it is divisible by the sum of their digits is
called Harshad number. There are in�inite Harshad numbers. In 1977,
Ivan Morton Niven (1915–1999, Canada–USA) took interest in these
numbers, and in 1994, Helen Giessler Grundman (USA) proved that
there is no sequence of more than 20 consecutive Harshad numbers and
found the smallest sequence of 20 consecutive Harshad numbers, each
member of which has 44363342786 digits. Clearly,

 the biblical
number 666, and the taxicab 1729 are Harshad numbers, but 



are not Harshad numbers. The number 6804 is called a multiple
Harshad number because  and

In 1963, Kaprekar de�ined Devlali (after the town where he lived) or Self
numbers as integers that cannot be generated by taking some other
number and adding its own digits to it. For example, 109 is not a self-
number because  whereas 108 is a self-number,
since it cannot be generated from any other integer. He also gave a test
for verifying this property in any number. In the literature these
numbers are also referred to as Colombian numbers. First few self-
numbers are  Since

 and
 these are not self-numbers.

If we put after 1 any number of zeros and divide by 7, we get repetitions
of the same number 142857 which from time immemorial has been
called the “Sacred Number.” Now if we add this �igure, we get 27 that
when added together gives the number 9.
A palindromic	number remains the same when its digits are reversed.
For example, the �irst 25 palindromic numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151. Thus, it
has re�lectional symmetry across a vertical axis. The term palindromic is
derived from palindrome, which refers to a word or sentence (such as
racecar or name no one man) whose spelling is unchanged when its
letters are reversed. Clearly, there are ten palindromic numbers with
one digit, for  digits the number of palindromic numbers is

 Thus, there are 9 palindromic numbers with two digits,
90 with three as well as of four digits. The �irst 15 palindromic square
numbers are 0, 1, 4, 9, 121, 484, 676, 10201, 12321, 14641, 40804,
44944, 69696, 94249, 698896. Clearly, there are palindromic numbers
whose square is also palindromic, e.g., 11. Also there are palindromic
numbers whose square is not palindromic, e.g., 33. The �irst 10
palindromic cube numbers are 0, 1, 8, 343, 1331, 1030301, 1367631,
1003003001, 10662526601, 1000300030001. It is known that

 is the unique known palindromic cube that has a
non-palindromic root number. Methuselah (a biblical patriarch and a
�igure in Judaism, Christianity, and Islam) is said to have lived 969 years.
This number is a palindrome. It is also the 17th tetrahedral number (see
Sect. 7. 23).



A Chinese myth says that in about 2200 BC, a divine tortoise emerged
from the Yellow River. On his back was a special diagram of numbers
from which all of mathematics was derived. The Chinese called this
diagram Lo Shu and represented the numbers by knots tied in white and
black cords. The Lo Shu diagram

is the �irst known Magic	Square: A magic square is an  square with
a whole number written inside each cell, so that the sum of the numbers
in every row, in every column, and in each of the main diagonals is equal.
This number is called the magic	number. The magic number of the above

 magic square is 15. Varahamihira examined the Pandiagonal
Magic	Squares (a magic square with the additional property that the
broken diagonals, i.e., the diagonals that wrap round at the edges of the
square, also add up to the magic constant) of order four. For example,
the magic number of the following  pandiagonal magic square is
34, and note that 

Arab traders brought the Chinese square to Europe during the Middle
Ages, when the Black Death was killing millions of people. Magic squares
were considered strong talismans against evil, and possession of a magic
square was thought to insure health and wealth. Some �irst rate
mathematicians have contributed to the fascinating subject of magic
squares. It is of interest to know that even with a few integers an
exceedingly large number of magic squares can be formed. In fact,
Fermat in 1640 showed that with the �irst sixty-four natural numbers,
the number of different magic squares that can be formed will be more
than  One of the most popular and persistent
number challenges is the magic square.
In the following �igure a  magic square known as Sallow’s	Magic
Square (named after Lee Cecil Fletcher Sallows, born 1944, England) has



been given. Each sub-square has been either shaded or unshaded.
Further, each square has a number as well as a letter in it. The magic of
this square is as follows: Choose the number from any square. Spell out
that number. You will �ind every letter of that spelling somewhere in the
square. If the letter is in an unshaded square, take the number of that
square with positive sign, and if the letter is in a shaded square, take the
number of that square with negative sign. Find the sum of the numbers
corresponding to all the letters in the spelling of the chosen number
taking the numbers with proper signs as explained above. You will see
that this sum is equal to the number chosen to start with. For example

In the following we have two squares, and the one on the left is a magic
square known as Sallow’s	Alphamagic	Square with the magic constant
45. This square is related to the one on the right as follows: Spell out
each entry in the �irst square, and place the number of letters in the
corresponding position in the second square. Thus the �irst entry is 5,
and since the word “�ive” has 4 letters, the �irst entry in the second
square is 4. Similarly, for the other members in the square. The
interesting fact is that the second square so obtained is also a magic
square with the magic constant 21.

2.11	 Complex	Numbers



A complex	number is an expression of the form  where a and 
and i is just a symbol. The set of all complex numbers is denoted as

 For a complex number, 
is the real	part of  and  is the imaginary	part (or lateral part)
of  If  then z is said to be a purely	imaginary	number. Two complex
numbers, z and w, are equal; i.e.,  if and only if, 
and  Clearly,  is the only number that is real as well
as purely imaginary. The origin of imaginary numbers dates all the way
back to Heron of Alexandria (around 75 AD, Egypt) when he attempted to
�ind the volume of a frustum of a pyramid, which required computing the
square root of  (though negative numbers were not conceived in
the Hellenistic world). Later, around 850 AD, the Mahavira wrote “as in the
nature of things, a negative is not a square, it has not a square root.”
Cauchy made the same observation a little less than a thousand years later
(in 1847).

In 1545, Cardano attempted to solve the following problem: Divide 10
into two parts, one of which multiplied into the other shall produce  It
is evident that this question is impossible, as the product of such parts can
be at most  Cardano called this problem as “manifestly impossible”;
however, he considered  and  or equivalently, the
quadratic equation  to get the two
numbers  and  and then stated, “putting aside the
mental tortures involved, multiply  by  making

 whence the product is 40.” He did not pursue the matter but
concluded that the result was “as subtle as it is useless.” Although
eventually rejected, it was the �irst time that the square root of a negative
number was explicitly written. And “the mere writing down of the
impossible gave it a symbolic existence.” Cardano’s solution in Ars	Magna
for the cubic  was given as

(2.6)

the so-called Cardano formula. When applied to the historic example
 the formula yields 

Although Cardano claimed that his general formula for the solution of the
cubic was inapplicable in this case (because of the appearance of ),



square roots of negative numbers could no longer be so lightly dismissed,
whereas for the quadratic (e.g., ) one could say that no solution
exists, for the cubic  a real solution, namely  does
exist; in fact, the two other solutions,  are also real. (This work
really instigated the whole �ield and later others worked upon the basis of
his solution, including his contemporaries like the Italian mathematicians
Scipione del Ferro, 1465–1526, Tartaglia, and Ferrari.) It now remained to
reconcile the formal and “meaningless” solution

 of  found by using
Cardano’s formula, with the solution  found by inspection. The task
was undertaken by Bombelli (he called complex numbers by the
alternative name “minus of minus”) about 27 years after the publication of
Cardano’s work. Bombelli had the “wild thought” that since the radicals

 and  differ only in sign, the same might be true of
their cube roots. Thus, he let  and

 where  and  are to be determined.
He proceeded to solve for a and b by manipulating these expressions
according to the established rules for real variables. He deduced that 
and  and thereby showed that, indeed,

Bombelli had thus given meaning to the “meaningless.” This event
signaled the birth of complex numbers. Breakthrough was achieved by
thinking the unthinkable and daring to present it in public. To formalize
his discovery, he developed a calculus of arithmetic operations with
complex numbers. His rules, in modern symbolism  are

He also included examples involving addition and multiplication of
complex numbers, such as  and

However, complex numbers were shrouded in mystery, little
understood, and often entirely ignored. In fact, for complex numbers,
Simon Stevin in 1585 remarked that “there is enough legitimate matter,



even in�initely much, to exercise oneself without occupying oneself and
wasting time on uncertainties.” Napier called complex numbers as the
ghosts of real numbers. Wallis in his Treatise	on	Algebra published in 1685
pondered and puzzled over the meaning of imaginary numbers in
geometry. He wrote, “These Imaginary Quantities (as they are commonly
called) arising from the Supposed Root of a Negative Square (when they
happen) are reputed to imply that the Case proposed is Impossible.”
Leibniz made the following statement in 1702: “The imaginary numbers
are a �ine and wonderful refuge of the Divine Sprit, almost an amphibian
between being and non-being.” Christiaan Huygens (1629–1695, The
Netherlands), a prominent Dutch mathematician, astronomer, physicist,
horologist, and writer of early science �iction, was just as puzzled as
Leibniz. In reply to a query, he wrote to Leibniz: “One would never have
believed that  and there is something
hidden in this which is incomprehensible to us.” Euler was candidly
astonished by the remarkable fact that expressions such as 
etc., are neither nothing, nor greater than nothing, nor less than nothing,
which necessarily constitutes them imaginary or impossible. In fact, he
was confused by the absurdity

 Similar
doubts concerning the meaning and legitimacy of complex numbers were
to Girard and Newton and persisted for two and a half centuries.

Despite of several doubts, during the same period complex numbers
were extensively used in both physics (to describe the very real world
around us) and pure mathematics, and a considerable amount of
theoretical work was done by such distinguished mathematicians as
Descartes (who coined the term imaginary	number in 1637, the
terminology, with its aura of the �ictional, is perhaps unfortunate but still
used in lieu of the word complex, before him these numbers were called
sophisticated, impossible, or subtle), and Euler (who was the �irst in 1777 to
designate  by  one of the best-known symbols of mathematics
which we use today); De Moivre in 1730 noted that the complicated
identities relating trigonometric functions of an integer multiple of an
angle to powers of trigonometric functions of that angle could be simply
reexpressed by the well-known formula

(2.7)



and many others. Complex numbers also found applications in
hydrodynamics by d’Alembert and in map projection by Johann Heinrich
Lambert (1728–1777, Switzerland).

In 1797, Casper Wessel (1745–1818, Norway) an obscure surveyor
presented before the Danish Academy of Sciences a report on the
geometrical interpretation of complex quantities in Danish. This report
passed unnoticed, and only one hundred years later the Academy issued a
French translation, Essai	sur	la	représentation	analytique	de	la	direction. In
the same year, 1797, the twenty-year-Gauss was defending his doctor’s
thesis on the fundamental theorem of algebra, in which he implicitly used
a geometrical representation of the complex domain. In 1806, Jean-Robert
Argand (1768–1822) an obscure Parisian bookkeeper Swiss by birth,
published an essay on the geometric interpretation of the complex
numbers. This again passed unnoticed until about ten years later when it
was republished in a prominent mathematical journal. Finally, in 1831
Gauss, in an essay formulated with precision the mathematical equivalence
of plane Cartesian geometry with the domain of the complex numbers
(which dispelled much of the mystery surrounding complex numbers). He
interpreted real numbers as points on the x-axis, and the imaginaries as
points on the y-axis of a rectangular Cartesian system of coordinates,
whose intersection point represents the number  With this perception,
the xy-plane became complex plane (sometimes it is called as the Argand
diagram). In the Gaussian interpretation a rotation through  takes the
positive real number axis into the positive imaginary number axis. Gauss
did not give a basis for this representation; however, he derived from it the
right to operate with imaginary numbers. By means of this interpretation
we can also obtain a geometric picture of those numbers which are
generated by the addition of an imaginary and a real number, for example,

 can be represented as the  on the complex plane. In
general, each complex number  can be represented as the point

 in the complex plane, and vice versa. This establishes a one-to-one
correspondence between the set of all complex numbers and the set of all
points in the complex plane.

We can justify the above representation of complex numbers as
follows: Let A be a point on the real axis such that  (see Fig. 2.6).
Since  we can conclude that twice multiplication of the
real number a by i amounts to the rotation of OA through two right angles
to the position  Thus, it naturally follows that the multiplication by i



is equivalent to the rotation of OA through one right angle to the position
 Hence, if  is a line perpendicular to the real axis  then all

imaginary numbers are represented by points on 

Fig.	2.6 Complex plane
Geometric applications of complex numbers appeared in several

memoirs of prominent mathematicians such as August Ferdinand Möbius
(1790–1868, Germany), George Peacock (1791–1858, England), Giusto
Bellavitis (1803–1880, Italy), De Morgan, and Ernst Eduard Kummer
(1810–1893, Germany). In the next three decades, further development
took place. Especially, in 1833 William Rowan Hamilton (1805–1865,
Ireland) gave an essentially rigorous algebraic de�inition of complex
numbers as ordered pairs of real numbers. However, a lack of con�idence
in them persisted; for example, the English mathematician and astronomer
Sir George Biddell Airy (1801–1892) declared: “I have not the smallest
con�idence in any result which is essentially obtained by the use of
imaginary symbols.” The English logician George Boole (1815–1864) in
1854 called  an “uninterpretable symbol.” Kronecker believed that
mathematics should deal only with whole numbers and with a �inite
number of operations and is credited with saying: “God made the natural
numbers; all else is the work of man.” He felt that irrational, imaginary, and
all other numbers excluding the positive integers were man’s work and
therefore unreliable. A similar remark was made by Stifel “just as an
in�inite number is not a true number, so an irrational number is not a true
number.” However, Hadamard said the shortest path between two truths in
the real domain passes through the complex domain, and Edward Charles
Titchmarsh (1899–1963, England) said “There are certainly people who
regard  as something perfectly obvious but jib at  This is
because they think they can visualize the former as something in physical
space but not the latter. Actually,  is a much simpler concept.”



From Gauss’s representation we can geometrically visualize those
numbers that are generated by the addition and subtraction of two
complex numbers. In fact, for the numbers , we
have  Following Wessel
the multiplication of z and w is

 The division was
introduced as the inverse operation of multiplication. On setting

 we have  which means
 On comparing reals with reals, imaginaries

with imaginaries, we obtain  and
therefore

We also note that, for any integer 

(2.8)

Thus, for the set  the usual laws of arithmetic are consistent with those
de�ined in  However, from the above geometric representation of
complex numbers, it is clear that two complex numbers such as  and

 cannot be compared. For example, i is neither greater or less than
 In fact, in either case,  should be greater than zero. Therefore,

the concept of betweenness of  is lost for  The absolute	value or
modulus of the number  is denoted by  and given by

 The term absolute value is due to Weierstrass, whereas
modulus is due to Argand. Since  and

 it follows that  and
 Now, let  and  and

then  Hence,  is just the
Euclidean distance between the points  and  and the absolute value of
a complex number is just its distance from the origin. The complex
conjugate of the number  is denoted by  and given by

 Geometrically,  is the re�lection of the point z about the real
axis. The following relations are immediate:
1.  



2.  and  if and only if  
3.  if and only if  
4.  if and only if  for some  
5.  
6.  
7.  
8.  
9.  
10.  
11. (2.9) 
12. (2.10) 

As an illustration, we shall show only 11 and 12. Each of these is called
a triangle	inequality. For (2.9), we have



It is clear that, in (2.9), equality holds if and only if 
i.e.,  is real and nonnegative. If  then since 
this condition is equivalent to 

For (2.10) we apply the inequality (2.9) to the complex numbers
 and  to get

and hence

(2.11)

Similarly, we have

(2.12)

Combining inequalities (2.11) and (2.12), we obtain (2.10).
The concepts of angle and radius that originated in the work of

Hipparchus (around 190–120 BC, Greece) led to polar	coordinates, also
known as -coordinates. In the recent literature, Jacob Bernoulli
(1654–1705, Switzerland) has been credited as the inventer of polar
coordinates. In 1729, Jacob Hermann (1678–1733, Switzerland) a student
of Jacob Bernoulli proclaimed that it was as easy to graph a locus in the
polar coordinate system as it was to graph it in the Cartesian coordinate
system. To represent a complex number in –coordinates, for the point

 in the Cartesian plane associating  we let 
and  to be its angle measured counterclockwise from the positive x-axis
to the line joining  to the origin, i.e.,  Then, z can be
expressed in polar (trigonometric) form (see Fig. 2.7) as

(2.13)

The number  is called an argument of  and we write 

Fig.	2.7 Polar coordinates



To �ind  we usually compute  and adjust the quadrant
problem by adding or subtracting  when appropriate (see Fig. 2.8). Recall
that  The argument of  is not de�ined.

Fig.	2.8 Right quadrant

From (2.13) it is clear that  is not unique, in fact any one of the
values  can be used. The principal	value of 
denoted by  is de�ined as that unique value of  such that

If we let  and
 then for the multiplication, we have

(2.14)

Thus,  Similarly, for the
division, we have

(2.15)

and hence,  and  And,

In the fourteenth century, Madhava of Sangamagramma (1340–1425,
India) invented the ideas underlying the in�inite series expansions of
functions, power series, the trigonometric series of sine, cosine, tangent,
and arctangent (these series have been credited to James Gregory (1638–
1675, England), Brook Taylor (1685–1731, England), and Newton in
1670). We recall for real 

(2.16)



(2.17)

(2.18)

and

(2.19)

In (2.19), Euler courageously replaced x by  used (2.8), separated real
and imaginary parts, and then used (2.16) and (2.17), to get

The obtained identity

(2.20)

is one of Euler’s famous formula of 1743 which all at once discloses a
connection between functions that seem to be of entirely different types. If
we let  in this formula, we have

(2.21)

which shows that a unsolvable equation  for real x has a complex
solution  Rewriting (2.21) as

(2.22)

we have Euler’s most curious formula (credit for its �irst discovery might
belong to Roger Cotes, 1682–1716, England, who published an identity



involving the log of both sides of this equation, in 1714), which was
considered by some of his metaphysically inclined contemporaries as of
mystic signi�icance. Indeed, it contains the most important �ive symbols of
modern mathematics and was regarded as a sort of mystic	union, in which
arithmetic was represented by 0 (the additive identity) and 1 (the
multiplicative identity), algebra by the symbol i (the imaginary unit),
geometry by  (the circular constant), and analysis by the transcendental
e (the base of the natural logarithms, see Sect. 8. 21). However, for many
mathematicians, equation (2.22) is the paragon of mathematical beauty,
because this extremely simple, compact formula relates all the most
important numbers in mathematics in a totally unexpected way.

Now replacing x by  in (2.20), we get

(2.23)

Relations (2.20) and (2.23) immediately give Euler’s de�initions of cosine
and sine in terms of complex exponents

(2.24)

From the exponential representation (2.20) of complex numbers, De
Moivre’s formula (2.7) follows immediately. In fact, we have

From (2.13) and (2.20), it is clear that any complex number can be
written as  By using the multiplicative
property of the exponential function, we have

(2.25)

for any positive integer  If  we de�ine  by
 Now since  it follows that

Hence, formula (2.25) is also valid for negative integers 
Now we shall follow Euler’s work of 1751 to see if (2.25) holds for

 For this, �irst we shall �ind the “roots of unity,” i.e., solutions of



the cyclotomic	equation  Clearly, 1 has two square roots 
found by solving  Similarly, unity has three cube roots, which
are obtained as the solutions of

The �irst factor gives  and the second, as an application of the
quadratic formula, yields  and

 By considering 
Euler showed that the four fourth roots of unity are  and  He
also obtained the �ive �ifth roots of unity by solving the equation

 as

(2.26)

Clearly, the last four of these are imaginary. Then, in view of the formula
(2.25), he realized that the numbers

are mth roots of unity, i.e., satisfy the equation  All these roots lie
on the unit circle centered at the origin and are equally spaced around the
circle every  radians (see Fig. 2.9 for ).

Fig.	2.9 Roots of unity
Hence, all of the distinct m roots of unity are obtained by writing

(2.27)



From these considerations, it follows that (2.25) holds for 
and m distinct roots of a complex number  i.e., solutions of

 are given by

(2.28)

The product of two mth roots of unity is itself an mth root of unity.
Indeed, if  and  then  Also, the
reciprocal of an mth root of unity is itself that root. For this, from ,
it follows that  i.e.,  Generally, any power of the
mth root of unity is also an mth root of unity:

For the equation  Cardano’s formula (2.6) gives

(2.29)

Now since

from (2.28), we have

and similarly

Applying these in (2.29) and using (2.24), we get the three solutions of
 respectively, corresponding to  and  as



For Cardano’s equation  we shall recover the three
solutions from Cardano’s solution (2.6). For this, we note that

, which implies that  i.e.,
 Further, since

we have

Now since

and

all three solutions of (3.37) are

Thus corresponding to  respectively, we have



The general acceptance of the complex numbers and complex analysis
is due to the delegant works of Cauchy, Abel, Pierre Alphonse Laurent
(1813–1854, France), Riemann, Karl Gottfried Neumann (1832–1925,
Germany), Poincaré, Carl David Tolmé Runge (1856–1927, Germany),
Charles Emile Picard (1856–1941, France), Charles Proteus Steinmetz
(1865–1923, Poland–USA), and Henri Cartan (1904–2008, France),
especially due to Abel who was the �irst to boldly use complex numbers,
with a success that is well-known. Various developments in the nineteenth
and twentieth centuries enabled us to gain a deeper insight into the role of
complex numbers in mathematics (algebra, analysis, e.g., improper
integrals, differential equations, geometry, and the most fundamental work
of Dirichlet in number theory); engineering (stresses and strains on
beams, resonance phenomena in structures as different as tall buildings
and suspension bridges, control theory, signal analysis, quantum
mechanics, �luid dynamics, electric circuits, aircraft wings, and
electromagnetic waves); and physics (relativity, fractals, e.g., sets due to
Benoit Mandelbrot (1924–2010, Poland–France–USA), Gaston Maurice
Julia (1893–1978, Algeria–France), and Pierre Joseph Louis Fatou (1878–
1929, France) sets, and the equation of Erwin Rudolf Josef Alexander
Schrödinger (1887–1961, Austria–Hungary) to describe the quantum
theory of atom). By the latter part of the nineteenth century, all vestiges of
mystery and distrust of complex numbers could be said to have
disappeared (in fact, since early 1930s complex analysis has become one
of the required courses for undergraduate as well as graduate students
and several text books at all level have been written, e.g., for recent
publications, see Agarwal et al. [12] and Pathak et al. [408], and for easy
reading Nahin [386]); however, some resistance continued among a few
textbook writers well into the twentieth century. Although scholars who
employ complex numbers in their work today do not think of them as
imaginary/mysterious, these quantities still have an aura for the



mathematically naive. For example, the famous twentieth-century French
intellectual and psychoanalyst Jacques Lacan (1901–1981) saw a sexual
meaning in  On a playful note in the famous novel, The	Da	Vinci	Code
of 2006, the imaginary number i is joked to be the code to the world’s
secrets.

In recent years complex numbers have been de�ined in various other
(essentially equivalent) ways some of which are as follows:
1. Points or vectors in the plane  
2. Ordered pairs of real numbers  
3. Operators (i.e., rotations of vectors in the plane)  
4. Numbers of the form  with a and b real numbers  
5. Polynomials with real coef�icients modulo  
6. Matrices of the form  with a and b real numbers  
7. An algebraically closed, complete �ield (a �ield is an algebraic structure

which has the four operations of arithmetic)  
We conclude this chapter with the following impressive remarks of
Gauss which he wrote in 1831: “Our general arithmetic, so far
surpassing in extent the geometry of the ancients, is entirely the
creation of modern times. Starting originally from the notion of absolute
integers it has gradually enlarged its domain. To integers have been
added fractions, to rational quantities the irrational, to positive the
negative, and to the real the imaginary. This advance, however, had
always been made at �irst with timorous and hesitating steps. The early
algebraists called the negative roots of equations false roots, and this is
indeed the case, when the problem to which they relate has been stated
in such a form that the character of the quantity sought allows of no
opposite. But just as in general arithmetic no one would hesitate to
admit fractions, although there are so many countable things where a
fraction has no meaning, so we ought not deny to negative numbers the
rights accorded to positive, simply because innumerable things admit of



no opposite. The reality of negative numbers is suf�iciently justi�ied
since in innumerable other cases they �ind an adequate interpretation.
This has long been admitted, but the imaginary quantities—formerly
and occasionally now improperly called impossible, as opposed to real
quantities—are still rather tolerated than fully naturalized; they appear
more like an empty play upon symbols, to which a thinkable substratum
is unhesitatingly denied even by those who would not depreciate the
rich contribution which this play upon symbols has made to the treasure
of the relations of real quantities.”
For further general reading about numbers, see Adler and Coury [6],
Bigelow [70], Burger [107], Conant [136], Crump [143], Dantzig [150],
Davenport [153], Davis [156], Dedekind [158], Dickson [164], Dodge
[168], Flegg [192], Freidberg [196], Freitag and Freitag [197], Kaplan
and Kaplan [297], Georg [211], Hopper [267], Hurford [272], Ifrah [280],
Khinchin [306], Landau [333], Menninger [365], Michell [367], Muir
[379], Ogilvy and Anderson [399], Ore [402], Schimmel [450], Schröder
[453], de Lubicz [456], Shanks [469], Sierpinski [478], Spencer [492],
Thurston [509], Upensky and Heasler [516], and Vinogradov [521].
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306.
A.	Ia.	Khinchin, Three	Pearls	of	Number	Theory, Graylock	Press, Rochester, N.Y., 1952.

318.
E.V.	Krishnamurhty, Complementary two-way algorithms for negative radix conversions, IEEE
Trans.	Computers,C-20(1971), 543–550.

330.
V.	Lakshmikantham, Hybrid uni�ied theory, Nonlinear	Analysis,67(2007), 2769–2783.

333.
E.	Landau, Elementary	Number	Theory, trans. by J. Goodman, Chelsea, New York, 1952.

348.
F.	Le	Lionnais, Les	nombres	remarquables, Hermann, Paris, 1983.

362.
J.-C.	Martzloff, The	History	of	Chinese	Mathematics, trans. by S. Wilson, Springer-Verlag, New
York, 1994.

365.
K.	Menninger, Number	Words	and	Number	Symbols:	A	Cultural	History	of	Numbers, MIT	Press,
Cambridge, 1969.

367.
J.	Michell, The	Dimensions	of	Paradise:	The	Proportions	and	Symbolic	Numbers	of	Ancient
Cosmology, Harper	&	Row, New York, 1988.

372.
J.C.P.	Miller	and	M.F.C.	Woollett, Solutions of the Diophantine equation J.
London	Math.	Soc.,30(1955), 101–110.

377.
L.J.	Mordell, On the integer solutions of the equation J.	London	Math.
Soc.,28(1953), 500–510.

379.
J.	Muir, Of	Men	and	Numbers:	The	Story	of	Great	Mathematics, Dover, New York, 1996.

386.
P.	Nahin, An	Imaginary	Tale, Princeton	University	Press, Princeton, NJ, 1998.

397.
B.	van	Nooten, Binary numbers in Indian antiquity, J.	Indian	Philosophy,21(1993), 31–50.

399.
C.S.	Ogilvy	and	J.	Anderson, Excursion	in	Number	Theory, Oxford	University	Press, New York,
1966.

402.
O.	Ore, Number	Theory	and	Its	History, McGraw-Hill, New York, 1948.

408.
H.K.	Pathak,	R.P.	Agarwal	and	Y.J.	Cho, Functions	of	a	Complex	Variables, CRC	Press, Boca
Raton, 2015.



443.
S.	Saitoh, Division	by	Zero	Calculus–	History	and	Development, Scienti�ic	Research	Publishing,
Inc., USA, 2021.

450.
A.	Schimmel, The	Mystery	of	Numbers, Oxford	University	Press, Oxford, 1993.

453.
M.R.	Schröder, Number	Theory	in	Science	and	Communication, Springer-Verlag, New York,
1997.

456.
R.A.	Schwaller	de	Lubicz, A	study	of	numbers:	A	Guide	to	the	Constant	Creation	of	the	Universe,
Translated from the French by C. Bamford, Inner	Traditions	International, Rochester, 1986.

458.
C.	Seife, Zero:	The	Biography	of	a	Dangerous	Idea, Penguin, New York, 2000.

466.
S.K.	Sen	and	R.P.	Agarwal, Zero,	A	Landmark	Discovery,	the	Dreadful	Void,	and	the	Ultimate
Mind, Academic	Press,	Elsevier, Amsterdam, 2015.

469.
D.	Shanks, Solved	and	Unsolved	Problems	in	Number	Theory, Spartan, New York, 1962.

475.
K.	Shen,	J.N.	Crossley	and	A.W.C.	Lun, The	Nine	Chapters	on	the	Mathematical	Art, Oxford
University	Press	and	Science	Press, Beijing, 1999.

478.
W.	Sierpinski, Elementary	Theory	of	Numbers, trans. by A. Hulaniki, 2nd ed., North-Holland,
Amsterdam, 1988.

489.
B.S.	Solomon, One is no number in China and the West, Harvard	Journal	of	Asiatic
Studies,17(1954), 253–260.

492.
D.D.	Spencer, Key	Dates	in	Number	Theory,	History	from	10529	B.C.	to	the	Present, Camelot,
Ormond Beach, FL, 1995.

509.
H.A.	Thurston, The	Number-System, Interscience, New York, 1956.

516.
J.	Upensky	and	M.A.	Heasler, Elementary	Number	Theory, McGraw-Hill, New York, 1939.

521.
I.M.	Vinogradov, An	Introduction	to	the	Theory	of	Numbers, Pergamon	Press, New York, 1955.

529.
W.	Weaver, Lady	Luck:	The	Theory	of	Probability, Doubleday	&	Company,	Inc., Garden City, New
York, 1963.

535.
H.C.	Williams,	G.A.	German	and	C.R.	Zarnke, Solution of the cattle problem of Archimedes,
Mathematics	of	Computation,19(1965), 671–674.



(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. P. Agarwal, Mathematics	Before	and	After	Pythagoras
https://doi.org/10.1007/978-3-031-74224-8_3

3.	Mathematics,	Mathematicians,	and
Proofs
Ravi P. Agarwal1  

Emeritus Research Professor, Department of Mathematics and
Systems Engineering, Florida Institute of Technology, Melbourne,
Florida, USA

 

3.1	 Introduction
Mathematics has often been regarded as a role model for all of science—a
paragon of abstraction, logical precision, and objectivity. The origins of
mathematics lie in the mists of antiquity. In this chapter, we shall see
inspite of several attempts from ancient and modern leading philosophers
and mathematicians, the word mathematics is too subtle to enunciate;
however, the de�initions of a mathematics teacher and a mathematician
can be differentiated and de�ined undoubtedly. We shall detail the
importance of the history of mathematics in its further development; in
fact, it is essential to know what has already been done before working in a
particular �ield of mathematics, especially, on a particular problem we
intend to work. We shall reveal the human nature of mathematicians who
are very often believed to be eccentric individuals. We shall explain basic
requirements for the deductive mathematics such as a mathematical
statement and a mathematical de�inition. We shall carefully de�ine axioms
and list them for geometry, natural numbers, �ields, and sets. We shall
demonstrate that sometimes eliminating or changing an axiom from the
earlier assumed axioms has led to altogether new mathematics, which is as
consistent as earlier, and sometimes more useful. Next, we shall de�ine
only that part of logic which is required in mathematics and illustrate it
through several interesting examples. We shall then be ready to spell out
the terms theorem/result, lemma, and corollary, which are the heart of
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whole mathematics. Any result in mathematics without its proof is
incomplete; in fact, there is a famous quote “mathematics is equivalent to
proof”; and we shall examine critically the term mathematical proof. We
shall also discuss several commonly used methods to prove theorems and
illustrate each with elementary, but of paramount interest, examples. Since
the invention of electronic computers, several results that were not within
the reach of humans have been successfully solved; however, among
mathematicians there is a con�lict whether to accept computer-based
proofs 100%. Certainly, while such proofs provide inside of a result but
loses the �lavor of classical mathematics. A counterexample to a
mathematical statement is an example that satis�ies the statement’s
condition(s) but does not lead to the statement’s conclusion. While a
counterexample is suf�icient to disprove a given mathematical statement,
often its construction is challenging. We shall provide a few simple
examples to clear up this important concept in mathematics.

One of the most pressing questions in mathematics is “can proofs be
exact”; we shall take up this problem seriously and show that your today’s
proof of a theorem is never permanent, within a few years (sometimes
several years) it is modi�ied/simpli�ies/generalized, and later (often) you
and your proof are being criticized. In line with this, we shall mention
several proofs that are excessively long for which mathematicians are
looking for shorter proofs. In mathematics, an inference formed without
proof is called a conjecture. We shall list and explain several conjectures,
some of which are challenging from the last several years. A statement for
which different approaches lead to different conclusions (namely, true and
false) is called a paradox. We shall discuss several paradoxes, some of
which are entertaining. We shall also discuss in detail Zeno’s four
paradoxes that require the acceptance of in�inity. We have made an
attempt to answer what is bad, good, and beautiful mathematics. While the
answers to these questions are more individualistic, several
mathematicians/philosophers have tried to response conclusively. In the
last section we shall take up mainly three classical problems of antiquity.
We shall show that Euclidean tools are not enough to solve these problems.
The most important feature of these problems is that the failure of solving
these problems has led to substantial amount of new mathematics.

3.2	 Can	We	De�ine	Mathematics?



The term mathematics has its roots from a long-established Greek word
mathematikoi (from mathematikos), which means mathematical study, or
astronomical, or scienti�ic, or disposed to learn. Its development was
contemporaneous with that of philosophy, and it was seen as an
unsurpassed exercise in pure thought, a subject at once ideal, immaterial,
and eternal. Pythagoras has been credited to coin the label mathematics,
and its �irst part, “math,” comes from an old Indo-European root that is
related to the English word “mind.” He grouped arithmetic, astronomy,
geometry, and music together and for several centuries’ mathematics
referred to only these four subjects (in the Middle Ages it was called as the
quadrivium). We owe him the following twofold branches of mathematics,
see Fig. 3.1.

Fig.	3.1 Branches of mathematics

However, as we have noted in the monograph by Agarwal and Sen [14],
at least empirical (based on observation, sensory experience, or intuition,
which are secrets of scienti�ic power) and heuristic (not regarded as �inal
and strict but merely as provisional and plausible but achieves better
understanding) study of arithmetic, astronomy, and geometry began
thousands/millions of years before Pythagoras. After Pythagoras several
different de�initions of mathematics have been proposed. Each one tries to
de�ine mathematics with a speci�ic context in mind. Chronologically, some
de�initions given by prominent philosophers/mathematicians (even
politicians) are as follows:

Mathematics is like draughts (checkers) in being suitable for the young,
not too dif�icult, amusing, and without peril of the state. (Plato)
Mathematics is the study of “quantity.” (Aristotle)
The mathematical sciences particularly exhibit order, symmetry, and
limitation; and these are the greatest forms of the beautiful. (Aristotle)
Mathematics consists of objects and of valid statements. (Aristotle)



Mathematics is the gate and key of the sciences, which the saints
discovered at the beginning of the world …and which has always been
used by all the saints and sages more than all the sciences. Neglect of
mathematics works injury to all knowledge, since he who is ignorant of
it cannot know the other sciences or the things of this world. And what
is worse, men who are thus ignorant are unable to perceive their own
ignorance and so do not seek a remedy. (Roger Bacon)
Mathematics is the language of science, but important clues about the
behavior of various equations can be obtained by observing physical
processes. (Galileo)
Mathematics is the science of order and measure. (Descartes)
Mathematics-the unshaken foundation of science, and the plentiful
fountain of advantage to human affairs. (Isaac Barrow, 1630–1677,
England)
Mathematics is like swine; everything is good. (Lagrange)
Mathematics is concerned only with the enumeration and comparison of
relations. (Gauss)
Mathematics is persistent intellectual honesty. (Moses Aaron
Richardson, 1793–1871, England)
Mathematics is the science of what is clear by itself. (Carl Guslov Jacob
Jacobi, 1804–1851, Prussia now Germany)
Mathematics is the science which draws necessary conclusions.
(Benjamin Peirce, 1809–1880, USA)
Mathematics seems to endow one with something like a new sense.
(Charles Robert Darwin, 1809–1882, England)
Mathematics is the work of the human mind, which is destined rather to
study than to know, to seek the truth rather than to �ind it. (Evariste
Galöis, 1811–1832, France)
Mathematics is not (as some dictionaries today still assert) merely “the
science of measurement and number,” but, more broadly, any study
consisting of symbols along with precise rules of operation upon those
symbols, the rules being subject only to the requirement of inner
consistency. (George Boole)

 what is physical is subject to the laws of mathematics, and what is
spiritual to the laws of God, and the laws of mathematics are but the
expression of the thoughts of God. (Thomas Hill, 1818–1891, USA)
Mathematics and Poetry are  the utterance of the same power of
imagination, only that in the one case it is addressed to the head, and in
the other, to the heart. (Thomas Hill)



Mathematics is a branch of logic (an interdisciplinary �ield which studies
truth and reasoning). (Dedekind)
Mathematics is the science of quantity. (Charles Sanders Peirce, 1839–
1914, USA)
Mathematics is the science of self-evident things. (Felix Christian Klein,
1849–1925, Germany)
Mathematics is the art of giving the same name to different things.
(Poincaré)
Mathematics in its widest signi�icance is the development “of all types of
formal, necessary and deductive reasoning.” (Whitehead)
Mathematics is the most powerful technique for the understanding of
pattern, and for the analysis of the relationships of patterns.
(Whitehead)
Mathematics is a game played according to certain rules with
meaningless marks on paper. (Hilbert)
Mathematics knows no races or geographic boundaries; for
mathematics, the cultural world is one country. (Hilbert)
Mathematics is that peculiar science in which the importance of a work
can be measured by the number of earlier publications rendered
super�luous by it. (Hilbert)
Mathematics consists of everything which can be formulated and proved
by means of the language and axioms. (Ernst Friedrich Ferdinand
Zermelo, 1871–1953, Germany, and Abraham Fraenkel)
Mathematics is a subject identical with logic. (Bertrand Russell)
Mathematics as the science in which we never know what we are talking
about, nor whether what we say is true. (Bertrand Russell)
The whole of mathematics is nothing more than a re�inement of
everyday thinking. (Einstein)
Mathematics is not only the model along the lines of which the exact
sciences are striving to design their structure; mathematics is the
cement which holds this structure together. A problem, in fact, is not
considered solved until the studied phenomenon has been formulated as
a mathematical law. Why is it believed that only mathematical processes
can lend to observation, experiment, and speculation that precision, that
conciseness, that solid certainty which the exact sciences demand?
(Dantzig)
Mathematics is the art of problem solving. (George Polya, 1887–1985,
Hungary-USA)



Mathematical thinking is not purely ‘formal’; it is not concerned only
with axioms, de�initions, and strict proofs, but many other things belong
to it; generalizing from observed cases, inductive arguments, arguments
from analog, recognizing a mathematical concept in, or extracting it
from, a concrete situation. (Polya)
In the year 1941, Richard Courant (1888–1972, Germany-USA) and
Herbert Robbins (1915–2001, USA) published their book What	Is
Mathematics? [140], which was than highly commended by several
distinguished scholars, e.g., Bell reported work as “inspirational
collateral reading,” Hermann Klaus Hugo Weyl (1885–1955, Germany)
af�irmed it as “a work of high perfection,” Harold Calvin Marston Morse
(1892–1977, USA) considered it as “a work of art,” and Einstein
appreciated it with high praises. In the preface of the second edition of
this work mathematics is de�ined as follows: “mathematics is nothing
but a system of conclusions drawn from de�initions and postulates that
must be consistent but otherwise may be created by the free will of the
mathematician.”
Mathematics is the motley of techniques of proof. (Wittgenstein)
Mathematics is a tool which ideally permits mediocre minds to solve
complicated problems expeditiously. (Floyd Alburn Firestone, 1898–
1986, USA)
Mathematics is a development of thought that had its beginning with the
origin of man and culture a million years or so ago. To be sure, little
progress was made during hundreds of thousands of years. (Leslie Alvin
White, 1900–1975, USA)
Mathematics is a spirit of rationality. It is this spirit that challenges,
simulates, invigorates and drives human minds to exercise themselves to
the fullest. It is this spirit that seeks to in�luence decisively the physical,
normal and social life of man, that seeks to answer the problems posed
by our very existence, that strives to understand and control nature and
that exerts itself to explore and establish the deepest and utmost
implications of knowledge already obtained. (Morris Kline)
Mathematics today is the instrument by which the subtle and new
phenomena of nature that we are discovering can be understood and
coordinated into a uni�ied whole. In this some of the most advanced and
newest branches of mathematics have to be employed and contact with
an active school of mathematics is therefore great asset for theoretical
physicists. (Homi Jehangir Bhabha, 1909–1966, India)



Mathematics is like a chest of tools, before studying the tools in detail, a
good workman should know the object of each, when it is used and what
it is used for. (Walter Warwick Sawyer, 1911–2008, England)
In mathematics you start with some of the things you want and you try
to �ind postulates to support them. (Richard Wesley Hamming, 1915–
1998, USA)
Mathematics is security, certainty, truth, beauty, insight, structure,
architecture. I see mathematics, the part of human knowledge that I call
mathematics, as one thing—one great, glorious thing. Whether it is
differential topology, or functional analysis, or homological algebra, it is
all one thing. …They are intimately interconnected, they are all facets of
the same thing. That interconnection, that architecture, is secure truth
and is beauty. (Paul Richard Halmos, 1916–2006, Hungary-USA)
Mathematics is, after all, not a collection of theorems, but a collection of
ideas. (Halmos)
The study of mental objects with reproducible properties is called
mathematics. (Philip J. Davis, 1923–2018, USA)
Mathematics seeks to reduce complexity to a manageable level and also
to improve structure where no structure is apparent. (Michael George
Aschbacher, born 1944, USA)
Mathematics is the oldest venue of human intellectual inquiry. (Steven
George Krantz, born 1951, USA).
Mathematics is not about choosing the right set of axioms, but about
developing a framework from these starting points. (Richard B Wells,
born 1953, USA)
Mathematics is pure language—the language of science. It is unique
among languages in its ability to provide precise expression for every
thought or concept that can be formulated in its terms. (Alfred Adler,
born 1930, USA)
Mathematics has also been de�ined as follows: Mathematics is a natural
part of man’s cultural heritage; mathematics is the accumulation of
human wisdom in an effort to understand and harness the physical,
social, and economic worlds; mathematics is a bridge across centuries,
civilizations, linguistic barriers, and national frontiers; there is no
national prejudice in mathematics; mathematics is a language, and a
language can be learned only by continuously using it; mathematics is a
tool that ideally permits mediocre minds to solve complicated problems
expeditiously; mathematics is the study of numbers, data, quantity,
structure, space, models, and change; mathematics is the measurement,



properties, and relationships of quantities and sets using numbers and
symbols; mathematics is something that man himself creates, and the
type of mathematics he works out is just as much a function of the
cultural demands of the time as any of his other adaptive mechanisms;
mathematics sheds light on much of the Universe but very little on
human psychology; mathematics is the science which uses easy words
for hard ideas; mathematics is a living, breathing, changing organism
with many facets to its personality; mathematics is a way of thinking
which enables to see unifying patterns in diverse context; mathematics
allows us to make logical decision based on observations; mathematics
is not just a profession, rather it is a cumbersome and tyrannical
taskmaster; mathematics is the most problem-solving oriented of all
sciences; and, mathematics seeks regularities and pattern in behavior,
motion, number, or shape, or even in the substrata of chaos. The portrait
of mathematics shows a human face.

A variety of quips and clichés can also de�ine mathematics: “It’s an art,”
“it’s a science—in fact, it’s the queen and servant of science,” “it’s just
circus artistes,” “it’s what I use when I balance my checkbook,” “a game
that we play with rules we’re not quite sure of,” a certain type of human
experience, and the apologetic favorite “something I was never good at,”
and the list can go on and on.

About mathematics several interesting positive views have also been
proposed. Perhaps from these we can �ind some more de�initions of
mathematics.

Mathematics reminds you of the investible form of the soul; she gives life
to her own discoveries; she awakens the mind and puri�ies the intellect;
she brings light to our intrinsic ideas, she abolishes the oblivion and
ignorance which are ours by birth. (Proclus)
In mathematics I can report no de�iciency, except it be that men do not
suf�iciently understand the excellent use of the Pure Mathematics.
(Francis Bacon)
If a man’s wit be wandering, let him study mathematics. (Francis Bacon)
…the Universe stands continually open to our gaze, but it cannot be
understood unless one �irst learns to comprehend the language and
interpret the characters in which it is written. It is written in the
language of mathematics, and its characters are triangles, circles, and
other geometric �igures, without which it is humanly impossible to



understand a single word of it; without these, one is wandering about in
a dark labyrinth. (Galileo)
If there is anything that can bind the heavenly mind of man to this
dreary exile of our earthly home and can reconcile us with our fate so
that one can enjoy living-then it is verily the enjoyment of the
mathematical sciences and astronomy. (Kepler)
The chief aim of investigations of the external world should be to
discover the rational order and harmony which has been imposed on it
by God and which He revealed to us in the language of mathematics.
(Kepler)
Music is a secret mathematical exercise, and he who engage in it is
unaware that he is manipulating numbers. (Leibniz)
There is no philosophy, which is not founded upon knowledge of the
phenomena, but to get any pro�it from this knowledge it is absolutely
necessary to be a mathematician. (Daniel Bernoulli, 1700–1782, The
Netherlands-Switzerland)
No employment can be managed without arithmetic, no mechanical
invention without geometry, mathematical demonstrations are better
than academic logic for training the mind to reason with exactness and
distinguish truth from falsity even outside of mathematics. (Benjamin
Franklin, 1706–1790, USA)
What science can there be more noble, more excellent, more useful for
men, more admirably high and demonstrative, than mathematics.
(Benjamin Franklin)
In any serious and honest attempt to solve a mathematical problem,
there is a faithful look at truth. (Lagrange)
Trigonometry…is most valuable to every man. There is scarcely a day in
which he will not resort to it for some of the purposes of common life.
The science of calculation also is indispensable as far as the extraction of
the square and cube roots. Algebra as far as the quadratic equation and
the use of logarithms are often of value in ordinary cases. But all beyond
these is but a luxury, a delicious luxury indeed, but not to be indulged in
by one who is to have a profession to follow for his subsistence. In this
light I view the conic sections, curves of the higher orders, perhaps even
spherical trigonometry, algebraical operations beyond the second
dimension, and �luxions. (Thomas Jefferson, 1743–1826, USA)
The profound study of nature is the most fecund source of mathematical
discoveries. The fundamental elements are those which recur in all
natural phenomena. (Jean Baptiste Joseph Fourier, 1768–1830, France)



The advancement and perfection of mathematics are intimately
connected with the prosperity of the state. (Napoléon Bonapartet,
1769–1821, France)
He who does not employ mathematics for himself will some day �ind it
employed against himself. (Johann Friedrich Herbart, 1776–1841,
Germany)
All the measurements in the world are not the equivalent of a single
theorem that produces a signi�icant advance in our greatest of science.
(Gauss)
Mathematics is queen of the sciences and number theory the queen of
mathematics. (Gauss)
In mathematics there are no true controversies. (Gauss)
Life is good for two things, discovering mathematics and teaching
mathematics. (Baron Siméon Denis Poisson, 1781–1840, France)
There is no branch of mathematics, however abstract, which may not
someday be applied to the phenomena of the real world. (Nicolai
Ivanovich Lobachevsky, 1792–1856, Russia)
History shows that those heads of empires who have encouraged the
cultivation of mathematics, the common nature of all exact sciences, are
also those whose reigns have been the most brilliant and whose glory is
the most durable. (Michel Floréal Chasles, 1793–1880, France)
The moving power of mathematical invention is not reasoning but
imagination. (De Morgan)
During the three years which I spent at Cambridge my time was wasted,
as far as academical studies were concerned …I attempted mathematics,
and even went during the summer of 1828 with a private tutor …but I
got on very slowly. The work was repugnant to me, chie�ly from my not
being able to see any meaning in the early steps in algebra. This
impatience was very foolish, and in after years I have deeply regretted
that I did not proceed far enough at least to understand something of
the great leading principles of mathematics, for men thus endowed
seem to have an extra sense. (Charles Darwin wrote in his
autobiography)
The most distinct and beautiful statement of any truth must take at last
the mathematical form. (Henry David Thoreau, 1817–1862, USA)
It may well be doubted whether, in all the range of science, there is any
�ield so fascinating to the explorer-so rich with hidden treasures-so
fruitful in delightful surprises-as Pure Mathematics. (Charles Lutwidge
Dodgson, 1832–1898, England, pen name: Lewis Carroll)



The essence of mathematics is in its freedom. (Cantor)
Mathematics is one of the oldest of sciences; it is also one of the most
active; for its strength is the vigor of perpetual youth. (Andrew Russell
Forsyth, 1858–1942, England)
Every kind of science, if it has only reached a certain degree of maturity,
automatically becomes a part of mathematics. (Hilbert)
“Mathematics, even in its present and most abstract estate, is not
detached from life. It is just the ideal handling of the problems of life…”
(Cassius Jackson Keyser, 1862–1947, USA)
The true spirit of delight…is to be found in mathematics as surely as in
poetry. (Bertrand Russell)
We have overcome the notion that mathematical truths have an
existence independent and apart from our minds. It is even strange to us
such a notion could ever have existed. Yet this is what Pythagoras would
have thought–and Descartes, along with hundreds of other great
mathematicians before the nineteenth century. Today mathematics is
unbounded; it has cast off its chains. Whatever its existence, we
recognize it to be as free as the mind, as prehensile as the imagination.
(Edward Kasner, 1878–1955, USA)
To all of us who hold the Christian belief that God is truth, anything that
is true is a fact about God, and mathematics is a branch of theology…
(Hilda Phoebe Hudson, 1881–1965, England)
Mathematics, as much as music or any other art, is one means by which
we rise to a complete self-consciousness. The signi�icance of
mathematics resides precisely in the fact that it is an art; by informing us
of the nature of our own minds it informs us of much that depends on
our minds. It does not enable us to explore some remote region of the
eternally existent; it helps to show us how far what exists depends on
the way we exist. We are the lawgivers of the Universe; it is even
possible that we can experience nothing but what we have created, and
that the greatest of our mathematical creations is the Universe itself…
Mathematics is of profound signi�icance in the Universe, not because it
exhibits principles we obey, but because it exhibits principles that we
impose. (John William Navin Sullivan, 1886–1937, England)
The mathematical phenomenon always develops out of simple
arithmetic, so useful in everyday life, out of numbers, those weapons of
the gods; the gods are there, behind the wall, at play with numbers.
(Charles-E� douard Jeanneret known as Le Corbusier, 1887–1965,
Switzerland-France)



Mathematical study and research are very suggestive of mountaineering.
Edward Whymper (1840–1911, England) made several efforts before he
successfully climbed the Matterhorn (a mountain of the Alps) in 1865
and even then it cost the life of four of his party. Now, however, any
tourist can be hauled up for a small cost, and perhaps does not
appreciate the dif�iculty of the original ascent. So, in mathematics, it may
be found hard to realize the great initial dif�iculty of making a little step
which now seems so natural and obvious, and it may not be surprising if
such a step has been found and lost again. (Louis Joel Mordell, 1888–
1972, USA-England)
If people do not believe that mathematics is simple, it is only because
they do not realize how complicated life is. (John Louis von Neumann,
1903–1957, Hungary-USA)
If you want to become historian, learn mathematics. If you want to
become a doctor, learn mathematics. (Grigore Moisil, 1906–1973,
Romania)
Mathematics has given man miraculous power over nature. (Morris
Kline)
Mathematics is the surest way to immortality. (Erdös)
Creativity is the heart and soul of mathematics at all levels. The
collection of special skills and techniques is only the raw material out of
which the subject itself grows. To look at mathematics without the
creative side of it, is to look at a black-and-white photograph of a
Cezanne; outlines may be there, but everything that matters is missing.
(Robert Creighton Buck, 1920–1998, USA)
Mathematics abounds in bright ideas. No matter how long and hard one
pursues her, mathematics never seems to run out of exciting surprises.
And by no means are these gems to be found only in dif�icult work at an
advanced level. All kinds of simple notions are full of ingenuity. (Ross
Honsberger, 1929–2016, Canada)
Mathematics is an art, a creative art, that cannot be reduced to logic any
more than Shakespeare’s King Lear or Beethoven’s Fifth Can. (Roger
Penrose, born 1931, England).
The apex of mathematical achievement occurs when two or more �ields
which were thought to be entirely unrelated turn out to be closely
intertwined. Mathematicians have never decided whether they should
feel excited or upset by such events. (Gian-Carlo Rota, 1932–1999, Italy-
USA)



Mathematics is a natural component of our being. It arises from our
body, brain and our daily experiences in the world. (Jean-Pierre
Changeux, born 1936, France)
Mathematics is a part of physics. Physics is an experimental science, a
part of natural sciences. Mathematics is the part of physics where
experiments are cheap. (Vladimir Igorevich Arnold, 1937–2010, Soviet
Union, now Ukraine)
Mathematics is an art that contains its own justi�ication, in the same way
that Michelangelo’s sculptures live inside the stone until they are
liberated by the chisel. (Enrico Bombieri, born 1940, Italy)
The great strength of mathematics is its unreal reality! (Ian Nicholas
Stewart, born 1945, England)
…working in mathematics satis�ies a personal intellectual curiosity and
desire to work on one’s own ideas. (Krantz [316]).

We also encounter some negative views about mathematics: Sir
William Hamilton (1788–1856, Scotland), the famed philosopher, logician,
and meta-physicist, viewed mathematics in a way that may be construed
as a cruel attack on mathematics and hence on mathematicians:
“Mathematics freeze and parch the mind,” “an excessive study of
mathematics absolutely incapacitates the mind for those intellectual
energies which philosophy and life require,” “mathematics cannot conduce
to logical habits at all,” “in mathematics dullness is thus elevated into
talent, and talent degraded into incapacity,” and “mathematics may distort,
but can never rectify, the mind” (see Bell [59]). Introduction of exactness
(in mathematics and logic) is arti�icial and forced. It is not therefore
applicable to this terrestrial life but only imaginary celestial existence
(Bertrand Russell). We are talking here about theoretical physics, and
therefore of course mathematical rigor is irrelevant and impossible
(Edmund Georg Hermann (Yehezkel) Landau, 1877–1938, Germany).
Mathematics that is certain does not refer to reality, and mathematics that
refers to reality is not certain (Einstein). As the complexity of a system
increases, our ability to make precise yet signi�icant statements about its
behavior diminishes, until a threshold is reached beyond which precision
and signi�icance (or relevance) become mutually exclusive characters
(Lot�i Aliasker Zadeh, 1921–2017, Azerbaijan-USA). Mathematics is a
human endeavor, and mathematical truths are uncertain like any other
truths (Reuben Hersh, 1927–2020, USA, see [261] and its review by
Auslander [44]). Mathematics is mired in a language of symbols foreign to
most of us and [it] explores regions of the in�initesimally small and the



in�initely large that elude words, much less understanding. So specialized
is mathematics today…that most mathematical papers appearing in most
mathematics journals are indecipherable even to most mathematicians
(Robert Kanigel, born 1946, USA). Henry Oldenburg (1618–1677,
Germany) pioneered the idea of refereed scienti�ic journals in 1665.

The following parable (which has been widely spread around the
world) of “The Blind Men and the Elephant” (a story from the Buddhist
Sutra) is relevant to our attempt to de�ine mathematics. Several prominent
citizens were engaged in a hot argument about God and the different
religions and could not come to an agreement. So they approached Buddha
to �ind out what exactly God looks like. Buddha asked one his disciple to
get a large majestic elephant and four blind men. He then brought the four
blind men to the elephant and told them to �ind out what the elephant
would “look” like. The �irst blind man touched the elephant’s leg and
reported that it “looked” like a pillar. The second blind man touched its
tummy and said that an elephant was an inverted ceiling. The third blind
man touched the elephant’s ear and said that it was a piece of cloth. The
fourth blind man held on to the tail and described the elephant as a piece
of rope. And all of them ran into a hot argument about the “appearance” of
an elephant. The Buddha asked the citizens: “Each blind man had touched
the elephant but each of them gives a different description of the animal.
Which answer is right?” “All of them are right,” was the reply. Why?
Because everyone can only see part of the elephant. They are not able to
see the whole animal. This famous “blind men” episode is not meant to
disrespect any mathematician. We state it only to point out that “any
de�inition of mathematics, however elaborate or epigrammatic, will fail to
lay bare its fundamental structure and the reasons for its universality”
(Herman Weyl).

Similar views were lay down by Mark Kac (1914–1984, Poland-USA)
and Ulam: “We shall not undertake to de�ine mathematics, because to do so
would be to circumscribe its domain…The structure, however, changes
continually and sometimes radically and fundamentally. In view of this, an
attempt to de�ine mathematics with any hope of completeness and �inality
is, in our opinion, doomed to failure.” In fact, the characteristic feature of
mathematics is that it itself has no meaning, and its function is to connect
postulates with observations. Mathematics can be correlated beautifully
with a banyan tree which lives for hundreds of years, its roots grow from
branches which mature into thick, woody trunks, which can become
indistinguishable from the primary trunk with age, and its each part has its



own unique medical uses (the bark and seeds are used as a tonic to
maintain body temperature and treat diabetes, and roots are used to
strengthen teeth and gums by brushing with them). In conclusion, within
few years each branch itself is called mathematics, and scientists start
searching its applications in all of arts, sciences, engineering, and
technology. The primary trunk of the banyan tree can be contemplated as
natural numbers and geometry (originated in India, Babylonia, Egypt, and
Greece). Thus, we can say that the de�inition of mathematics continues to
change with time and innovation. It also depends on to whom you would
ask: for elementary school children mathematics is natural numbers and
the basic operations and negative and decimal numbers; for students in
high school mathematics is learning rules and formulas to solve equations
and elementary geometry and trigonometry (triangle measurement); for
undergraduate students mathematics is calculus, differential equations,
and linear algebra; and for graduate students and researchers it narrows
down to a particular topic/branch they are working.

Nonetheless, mathematics rewards its creator and learner with a
strong sense of aesthetic satisfaction. It helps us understand man’s place in
the Universe and enables us to �ind order in chaos. Under certain axioms,
mathematics is the most absolute, everlasting, precise, signi�icant, and
universal (not reserved for any nationality or a group) subject. It is
perceived as the highest form of thought in the world of learning. It
furnishes a strong sense of rationale to scienti�ic community of their new
discoveries (especially for experimental sciences) through well-
established mathematics. It also shows how mathematics is woven into the
fabric of our lives in diverse means than we perceive. Poincaré noted
“Mathematics with one method-mathematical model studies various
events of the real world.” Most of the branches of science and technology
provide mathematics with interesting problems to investigate, and
mathematics provides science and technology with powerful tools to use
in analyzing data. In fact, mathematics is found in almost every �ield of
human endeavor: Algebra and number theory are used in cryptography;
computational �luid dynamics in aircraft	and	automobile	design and
weather	modeling	and	prediction; differential equations in aerodynamics,
�luid	mechanics,	and	�inance; discrete mathematics in communications	and
information	technology; formal systems and logic in computer
programming; geometry in computer-aided	engineering	and	design;
nonlinear control in operation	of	mechanical	and	electrical	systems;
numerical analysis in essentially	all	applications; optimization in asset



allocation and shape	and	system	design; statistics (the practice of drawing a
mathematically precise line from an unwarranted assumption to a
foregone conclusion) in design	of	experiments and analysis	of	data	sets;
stochastic processes in signal	analysis; and the list goes on and on. Even
the most esoteric and abstract parts of mathematics, number theory, and
logic, for example, are now used routinely in applications. No doubt,
mathematics is one of the greatest creations of mankind—if it is not
indeed the greatest. Mathematics will live forever.

Mathematics could be a matter of life and death! During the Russian
Revolution, the famous mathematical physicist Igor Yevgenyevich Tamm
(1895–1971), suspected of being a communist agitator, was detained by
some anticommunist vigilantes. When asked what he did for a living,
Tamm said that he was a mathematician. The armed leader of the gang
then ordered Tamm to �ind the remainder when the Brook Taylor series of
a certain function was truncated after a certain number of terms. Although
quivering, Tamm managed to give the correct answer to the leader and was
let go. Tamm went on to win the Nobel Prize in Physics in 1958. He never
discovered the identity of the mysterious gang leader, but no doubt spared
no effort to impress upon his students the importance of mathematics!

Up to the �irst half of the twentieth century, there were three main
schools of thought on the issue of “mathematical philosophy/reality” (they
spent almost 40 years quarreling with each other and then went back to
sleep): Platonism/Logistic (modern espousers were Gottlob Frege,
Bertrand Russell, Alonzo Church, 1903–1995, USA, Gödel, and Willard Van
Orman Quine 1908–2000, USA), Constructivism/Intuitionism (founder Jan
Brouwer), and Formalism (originator Hilbert). Generally, the Platonists
believe that the whole of mathematics exists eternally, independently of
man, and the job of the mathematician is to discover these mathematical
truths. For the Platonists (most practicing mathematicians seem to belong
to this group), if mathematical objects constitute an ideal nonmaterial
world, how does the human mind establish contact with this world? Is
there a mental faculty which can directly perceive an ideal reality just as
our physical senses perceive physical reality? Is this then a second ideal
entity, the counterpart on the subjective level of the ideal mathematical
reality on the objective level? For the Platonists, this mental faculty is akin
to the “soul” for believers in the hereafter—they know it is there, but no
questions can be asked about it. This position makes Platonism a dif�icult
doctrine for any scienti�ically oriented person to defend. The constructivist
asserts that there are certain primitive objects (the natural numbers), and



only mathematical objects that can be “constructed” from these primitive
ones in a �initistic (�inite mathematical objects) way are meaningful. They
purport as a universal and unmistakable intuition the notions of the
constructive and of the natural numbers, that is, the notion of an operation
which can be iterated, which can always be repeated one more time. This
dogma, however, is not tenable in the light of historical, pedagogical, or
anthropological experience. The natural number system seems an innate
intuition only to those who have achieved such a level of sophistication
that they cannot remember or conceive of the time before they acquired it.

Finally, the formalist takes the position that mathematics consists
merely of formal symbols or expressions that are manipulated according
to preassigned rules or agreements. In other words, they believe that
mathematics simply provides a language for other disciplines and has no
intrinsic meaning of its own. They take the stance that a mathematical
formula is just a mathematical formula, and our belief that it has content is
an illusion that need not be defended or justi�ied. From this standpoint, a
problem of principal concern to mathematicians becomes totally invisible.
This is the problem of giving a philosophical account of the actual
development of mathematics and the mathematics of the classroom. As
most mathematicians would testify, mathematics grows by a process of
successive criticism and re�inement of theories and the advancement of
new and competing theories and not by the deductive pattern of
formalized mathematics. There are numerous examples of great
mathematicians who could recognize new results before they could supply
a formal proof. In the classroom, some of students’ favorite questions are
“Why do you make this particular de�inition”? or “Why do you carry out
this particular construction”? To which many lecturers, in�luenced by
formalism, like to answer: “Just because it works.” Formalism denies
completely the utilitarian (utilitarianism is the moral philosophy that right
actions are those that bring about more good for the people affected than
any alternative) aspect of mathematics and can say nothing about its
growth.

Thus, as an example, for Platonists number two is that Platonic “form”
or ‘idea’ in virtue of which things have the property of two-ness; for
logicists number two is  i.e., two is a set
of all unordered pairs; for constructivists number two is the concept which
expresses the principle of “two-ity”; and for formalists number two is just
a class of expressions manipulated according to certain rules. Hence each
of these schools has a different view for number two. What is the true



answer? Fortunately, Professor Cuthbert Calculus (French: Professeur
Tryphon Tournesol) meaning “Professor Tryphon Sun�lower” is a �ictional
character in The Adventures of Tintin and was able to discover this when
attending a conference in France. The number two is a pair of platinum
balls kept at room temperature in the second drawer at the Bureau of
Standards in Paris.

In a more humanistic approach, which is being advocated more
recently, the meaning of mathematics is found in the shared understanding
of human beings. In this respect, mathematics is similar to an ideology, a
religion, or an art form; it deals with human meanings and is intelligible
only within the context of culture. In other words, mathematics is a
humanistic study. The special feature of mathematics that distinguishes it
from other humanities is its science-like quality. Its conclusions are
compelling, like the conclusions of natural science. They are not simply
products of opinion and not subject to permanent disagreement like the
ideas of literary criticism. Without any doubt, mathematics does the exact
thing. And the most important and beautiful fact about Math is it never lies
itself. Mathematical knowledge is fallible, corrigible, tentative, and
evolving, as is every other kind of human knowledge. However, “…by and
large it is uniformly true in mathematics that there is a time lapse between
a mathematical discovery and a moment when it is useful; and that this
lapse of time can be anything from thirty to a hundred years, in some cases
even more; and that the whole system seems to function without any
direction, without any reference to usefulness, and without any desire to
do the things which are useful” (Lord Kelvin, 1824–1907, England).

3.3	 Who	Is	a	Mathematician?
Mathematicians, by their nature and their very way of thinking, abstract
the situations presented by simple examples/observations and de�ine an
abstract structure. Then, they give a name to such structure. One of the
advantages of de�ining such an abstract structure is that instead of
studying a large number of particular examples, separately, we can study
their representative abstract structure only once, and all conclusions
drawn from such a single study will apply to particular examples. Creating
and identifying such structures and studying them are the strength of
mathematicians. According to Bell [60], “unless a man adds something new
to mathematics, he is not a mathematician. By this standard, the Moslems
were not mathematicians in their extremely useful work of translation,



and commentary.” However, they researched and extended the theoretical
and applied science of the Indians, Greeks, and Romans of an earlier era in
ways that preserved and strengthened man’s knowledge in these
important �ields. Thus a mathematician must invent at least one new result
in the �ield of his interest, and the scienti�ic community and students must
accept its signi�icance. In conclusion, mathematicians create and conserve
mathematics. Other quotations about mathematicians are:

Mathematicians draw tangible �igures as an aid to their investigations,
“they are not thinking about these �igures but of those things which the
�igures represent: thus it is the square in itself and the diameter in itself
which are the matter of their arguments, not that which they draw;
similarly when they model or draw objects, which may themselves have
images in shadows or in water, they use them in turn as images,
endeavoring to see those absolute objects which cannot be seen
otherwise than by thought. (Plato)
Mathematicians are really seeking to behold the things themselves,
which can be seen only with the eye of the mind. (Plato)
Mathematicians are people who do real work as opposed to academic
work. (Plato)
Mathematicians are like Frenchmen; whatever you say to them they
translate into their own language, and forthwith it is something entirely
different. (Johann Wolfgang von Goethe, 1749–1832, Germany)
A mathematician is a blind man in a dark room looking for a black hat
which isn’t there. (Charles Darwin)
We are servants rather than masters in mathematics. (Charles Hermite,
1822–1901, France)
“Do you know what a mathematician is” Lord Kelvin once asked a class.
He stepped to the board and wrote

Putting his �inger on what he had written, he turned to the class. “A
mathematician is one to whom that is as obvious as that twice two
makes four is to you.”
Mathematicians do not deal in objects, but in relation between objects;
thus, they are free to replace some objects by others so long as the
relations remain unchanged. Content to them is irrelevant: they are
interested in form only. (Poincaré)



A scientist worthy of the name, above all a mathematician, experiences
in his work the same impression as an artist; his pleasure is as great and
of the same nature. (Poincaré)
A mathematician, like a painter or poet, is a maker of patterns. If his
patterns are more permanent than a painter’s, it is because they are
made with ideas. The mathematician’s patterns, like the painter’s or the
poet’s, must be beautiful; his ideas, like the colors or the words, must �it
together in a harmonious way. Beauty is the �irst test: there is no
permanent place in the world for ugly mathematics. (Hardy)
A mathematician is in the �irst instance an observer, a man who gazes at
a distant range of mountains and notes down his observations. If he sees
a peak and wishes someone else to see it, he points to it, either directly
or through the chain of summits which leads him to recognize it himself.
When his pupil also sees it, the research, the argument, the proof is
�inished. (Hardy)
Hardy’s [249] view on what mathematics is and what a mathematician
does: “I believe that mathematical reality lies outside us, and that our
function is to discover or observe it, and that the theorems which we
prove, and which we describe grandiloquently as our ‘creations’ are
simply our notes of our observations.” Those who persist in their belief
that “mathematical reality lies outside us” have at least one
unanswerable argument on their side. Invention may be free, they
admit, but free only within the law.
Mathematicians are of two types: the ‘we can’ men believe (possibly
subconsciously) that mathematics is a purely human invention; the
‘there exists’ men believe that mathematics has an extra-human
existence of its own, and that ‘we’ merely come upon the eternal	truths of
mathematics in our journey through life, in much the same way that a
man taking a walk in a city comes across a number of streets with whose
planning he had nothing whatever to do (Bell).
The mathematician may be compared to a designer of garments, who is
utterly oblivious of the creatures that his garments may �it. To be sure,
his art originated in the necessity for clothing such creatures, but this
was long ago; to this day a shape will occasionally appear which will �it
into the garment as if the garment had been made for it. Then there is no
end of surprise and of delight. (Dantzig)
Mathematicians are the law-givers of the Universe and that the Universe
itself is the greatest of our mathematical creations. (Sullivan)



Summing up the value system of the modern mathematicians: …all the
different �ields of mathematics are as inseparable as the different parts
of a living organism; as a living organism mathematics has to be
permanently recreated, each generation must reconstruct it wider,
larger and more beautiful. The death of mathematical research would be
the death of mathematical thinking which constitutes the structure of
scienti�ic language itself and by consequence the death of our scienti�ic
civilization. Therefore, we must transmit to our children strength of
character, moral values and drive towards an endeavoring life. (Jean
Leray, 1906–1998, France)
Mathematicians may like to rise into the clouds of abstract thought, but
they should, and indeed they must, return to earth for nourishing food
or else die of mental starvation. (Morris Kline)
What’s the best part of being a mathematician? I’m not a religious man,
but it’s almost like being in touch with God when you’re thinking about
mathematics. God is keeping secrets from us, and it’s fun to try to learn
some of the secrets. (Halmos)
A mathematician is a machine that turns coffee into theorems. (Alfred
Rényi, 1921–1970, Hungary)
A typical mathematician is a Platonist on working days and a formalist
on Sundays. This means that when he pursues his mathematical studies,
he is convinced that he deals with an objective reality, the features of
which he is trying to �igure out. But if he is confronted with the demand
to give a philosophical explanation of this reality, he prefers to pretend
that he ultimately does not believe in it. (Hersh)
Much of the mathematics was either initiated in response to external
problems or has subsequently found unexpected applications in the real
world. This whole linkage between mathematics and science has an
appeal to its own, where the criteria must include both the
attractiveness of the mathematical theory and the importance of the
applications. As the current story of the interaction between geometry
and physics shows, the feedback from science to mathematics can be
extremely pro�itable, and this is something I found doubly satisfying. Not
only can we mathematicians be useful, but we can create works of art at
the same time, partly inspired by the outside world. (Michael Francis
Atiyah, 1929–2019, England-Lebanon)
In the broad light of day mathematicians check their equations and their
proofs, leaving no stone unturned in their search for rigor. But, at night,
under the full moon, they dream, they �loat among the stars and wonder



at the miracle of the heavens. They are inspired. Without dreams there is
no art, no mathematics, no life. (Michael Atiyah)
A mathematician �inds mathematical truths by way of insight, intuition,
and sometimes even leaps of faith. (Penrose)
Mathematicians are those humans who advance human understanding
of mathematics. (William Paul Thurston, 1946–2012, USA)
A mathematician is someone who: Observes and interprets phenomena,
analyzes scienti�ic events and information, formulates concepts,
generalizes concepts, performs inductive reasoning, performs analogical
reasoning, engages in trial and error (and evaluation), models ideas and
phenomena, formulates problems, abstracts from problems, solves
problems, uses computation to draw analytical conclusions, makes
deductions, makes guesses, proves theorems, and the list continues.
(Keith James Devlin, born 1947, England-USA)
…the difference between a physicist and a mathematician is this: After a
physicist has worked on a problem for many years and solved it, he/she
is convinced that he is a great historical genius and he/she celebrates.
After a mathematician has worked on a problem for many years and
solved it, he/she decides that the problem is trivial and that he/she is an
idiot. (Krantz [317])
A mathematician is an individual who proves his ignorance with
equations. (Khalid Masood)
A mathematician is an explorer, and usually an explorer who has no idea
what he/she is looking for. It is part of the ordinary course of life to
make mistakes, to spend days on calculations that come to no
conclusion, to pursue paths that end up being meaningless. But if one
continues to analyze and to think critically and to stare mercilessly at all
these efforts, then one may draw useful conclusions. In the end, one may
formulate a theorem. And then, with an additional huge expenditure of
hard work, one may prove that theorem. It is a great adventure, with
many pitfalls and missteps. But that is the life of a mathematician.
(Anonymous)

However, with the present standards, the above quotations are too
restrictive. At the same time, “The mathematical requirements for even the
most developed economic structures of antiquity can be satis�ied with
elementary household arithmetic which no mathematician would call
mathematics” (Neugebauer). Today, mathematicians besides developing
new theoretical mathematics (pure mathematics) and publishing their
research in scienti�ic Journals, professionals (applied mathematicians) use



mathematical theory, computational techniques, algorithms, and the
computer technology to solve mathematical, physical, economic,
environmental, scienti�ic, engineering, military, political, medical
technology, and business problems and try to relate mathematics with life
and social sciences. Specialists such as statisticians, actuaries, and
operations research analysts are also applied mathematicians.
Furthermore, mathematicians love mathematics, have passion for
mathematics, and are eager to know new results in mathematics and their
applications. Although pure and applied mathematics are not distinctly
de�ined and often overlap each other, pure mathematicians develop new
principles and recognize previously unknown relationships between
existing principles of mathematics, whereas applied mathematicians use
theories and techniques to formulate and solve practical problems. While
pure mathematics has existed since several millennia, the concept was
embellished around the year 1900, especially from the works of Gauss,
Hardy, and Ramanujan in number theory. Mathematicians collaborate (one
of the best examples is Hardy and Ramanujan) which is the key in order to
advance the next generation of mathematics. “It seems plausible that in
100 years we will no longer speak of mathematicians as such but rather of
mathematical	scientists. This will include traditional, pure mathematicians
to be sure, but also of others who use mathematics for analytical purposes.
It would not be all surprising if the notion of Department of Mathematics
at the college and university level gives way to Division of Mathematical
Sciences.”

Like musicians, mathematicians have created speci�ic
vocabulary/symbols and alphabetical identi�ications (mostly Greek) to
make a mathematical statement simple, precise, effective, and
understandable. For example, until the sixteenth century algebra was
mostly rhetorical, that is, each equation was expressed in ordinary
language. The next stage of algebra, which was initiated by Brahmagupta
and Diophantus and continued by the Arabian mathematicians, has been
called syncopated, and in it symbols are partially used. Finally, symbolic
algebra, which we use today, became established through the works of
Viéte, Descartes, Wallis, and Leibniz. These three phases of algebra have
been recognized by Georg Heinrich Ferdinand Nesselmann (1811–1881,
Poland-Germany) in 1842. In the nineteenth century, symbols were used to
write most mathematics as formulas. These formulas played a key role in
advancing all mathematics, particularly algebra, to great heights. Although
Gauss once remarked that mathematical proofs depend on notions, not on



notations, in appreciation of mathematical formulas, Heinrich Hertz
(1857–1892, Germany), the discoverer of electromagnetic waves, said
“One cannot escape the feeling that these mathematical formulas have an
independent existence and an intelligence of their own, that they are wiser
than we are, wiser even than their discoverers, that we get more out of
them than was originally put into them.” Furthermore, according to Morris
Kline, “the true value of mathematical formulas lies in the fact that they
apply to so many varied situations on heaven and earth.”

Archimedes, Newton, and Gauss have been considered complete
mathematicians due to the fact that they enriched every branch of the
subject that they touched. According to Laplace “Newton was a most
fortunate man because there is just one universe and Newton had
discovered its laws.” According to Bell, Poincaré [was] the last man to take
practically all mathematics, pure and applied, as his province. Few
mathematicians have had the breadth of philosophic vision that Poincaré
had and none in his superior in the gift of clear exposition. Unfortunately,
despite of unmatched contributions, there is always a tendency to consider
mathematicians as an aloof/dumb natured.

3.4	 Why	History	of	Mathematics	Is	Important?
A study of the history of any subject—knowing what and how it has
happened earlier—puts the learning of that subject in proper perspective
and can help to make progress in the right direction. The history of
mathematics is a monumental subject covering more than 10,000 years of
human pursuit; it examines the bona �ide origin of discoveries in
mathematics and of mathematical sciences, also essential part of the
world’s culture and civilization. It helps in uncovering secrets, and to �ind
the missing pieces, it assists in understanding the reasons and results, it
provides a linkage between the de�inition of a mathematical concept and
its applications, it re�lects some of the noblest thoughts of countless
generations, and most importantly it gives a pride of priority of the nation.
The following famous quotations manifest the importance of
studying/knowing the history of mathematics:

In most sciences one generation tears down what another has built, and
what one has established, another undoes. In mathematics alone each
generation adds a new story (better storey) to the old structure.
(Hermann Hankel, 1839–1873, Germany)



But in science the credit goes to the man who convinces the world, not
to the man to whom the idea �irst occurs. (Francis Darwin, 1848–1925,
England)
To foresee the future of mathematics, the true method is to study its
history and its present state. (Poincaré)
It would be an injustice to pioneers in mathematics to stress modern
mathematical ideas with little reference to those who initiated the �irst
and possibly the most dif�icult steps. Nearly everything useful that was
discovered in mathematics before the seventeenth century has either
been so greatly simpli�ied that it is now part of every regular school
course, or it has long since been absorbed as a detail in some work of
greater generality. (Bell)
Mathematics is a unique aspect of human thought, and its history differs
in essence from all other histories. Only in mathematics there is no
signi�icant correction-only extensions. Each great mathematician adds
to what came previously, but nothing needs to be uprooted. (Isaac
Asimov, 1920–1992, Russia-USA)
Mathematicians scrutinize, memorize, and derive formulas and
theorems everyday of their lives, but not many of them realize that the
current level of mathematical knowledge has resulted from the
strenuous labors of countless generations. In fact, a fair majority of the
biggest breakthroughs in mathematics were made possible through the
work of people other than those who have been credited in the history
books. In many instances, the fault lies with the historians themselves,
who inject their own opinion into their texts rather than reporting
unbiased fact. One cannot underestimate the in�luence of every culture,
personality, philosophy, region, religion, society, and social status on
mathematical development throughout the centuries. (Agarwal and Sen
[14])

Thus mathematics can be learnt differently/systematically only
through historical notes right from early stages. For this, from the last
century several books (at all levels) on the history of mathematics have
been written (mostly about the history of European mathematics, specially
glorifying the contributions of Greek philosophers, and in general
intellectual superiority of Europeans), for example, see Aaboe [1], Carl
Benjamin Boyer (1906–1976, USA) [100], Burton [110], Cajori [114], Eves
[181], Heath [257,258], Victor Joseph Katz (born 1942, USA) [301],
Neugebauer [391], Russell [440], and Scott [457]. Some scienti�ic journals
are solely devoted to ancient but unknown mathematical �indings, which



affects the trends of future research. Furthermore, now an almost
inconceivable amount of literature is available on Internet. Inspired by
Lakshmikantham et al. [329], in our monographs and articles Agarwal and
Sen [14], Sen and Agarwal [463,465], Agarwal et. al. [13], and Agarwal and
Hans Agarwal [19], we have recorded the essential discoveries of
mathematics in correct chronological order, following the birth of ideas on
the basis of prior ideas ad in�initum; these works also examine
contemporary events occurring side by side in different countries or
cultures, re�lecting some of the noblest thoughts of generations; it
documents the winding path (e.g., struggle of hundreds of years to develop
now casually used concepts such as negative numbers, place value, zero,
irrational numbers, and transcendental numbers) of mathematical
scholarship throughout history and, most importantly, the thought process
of each individual that resulted in the mastery of their subject; it implicitly
addresses the nature and character of every mathematician as we try to
understand their visible actions; it offers amusing anecdotes and after
dinner jokes which reveal the human nature of mathematicians, who are
very often believed to be abnormal individuals.

3.5	 Are	Mathematicians	Smart?
The dictionary de�ines smart person as having or showing a quick-witted
intelligence. An extended de�inition of a smart person is one who responds
quickly and effectively, comprehend, having complete logical reasoning
skills and successfully applying them to solve political, social, economic,
and scienti�ic problems and/or having emotional intelligence. However,
smartness is judged differently in different contexts, e.g., a student is smart
if he shows quick intelligence or ready mental capability, a businessman is
smart if he is shrewd or sharp in dealing with others, a politician is smart if
he relates to the state, government, the body politic, public administration,
policy-making, etc. In general, a young guy looks smart if he is handsome,
dresses nicely, and has muscles to show. According to Plato mathematics
strengthens your mind much as physical exercise strengthens your body,
helping you negotiate a variety of mental challenges. The 16th president of
the United States Abraham Lincoln (1809–1865, USA) believed mastering
Elements on geometry increased his cognitive capacities, in particular his
linguistic and logical abilities. Arthur Ignatius Conan Doyle (1859–1930,
England) in 1887 created the characters Sherlock Holmes for his A	Study	in
Scarlet in which Dr. Watson (a �ictional character) described the deductive



powers of Sherlock Homes in these words: “His conclusions were as
infallible as so many propositions of Euclid.” Mohandas Karamchand
Gandhi (Mahatma Gandhi, 1869–1948, India) in his The	Story	of	My
Experiments	with	Truth wrote: When however, with much effort I reached
the thirteenth proposition of Euclid the utter simplicity of the subject was
suddenly revealed to me. A subject which only required a pure and simple
use of one’s reasoning powers could not be dif�icult. Ever since that time
geometry has been both easy and interesting to me. Al-Qifti (around 1172–
1248, Egypt) said of Euclid “Nay, there was no one even of later date who
did not walk in his footsteps.” Einstein added his own tribute: “If Euclid
failed to kindle your youthful enthusiasm, then you were not born to be
scienti�ic thinker.” While these observations are phenomenal as Elements
provides much of the foundation for today’s mathematical thought, in spite
of a mathematician thinks mathematical problems logically and/or tries to
relate mathematics with almost every real world phenomenon, he is slow
in grasping and responding and aloof in his own thoughts. Thus,
mathematicians have been labeled as absent-minded, arrogant, eccentric,
and egocentric.

3.6	 Are	Mathematicians	Intelligent?
The dictionary de�ines intelligent person as having ability to acquire and
apply knowledge and skills to deal with new or dif�icult situation/problem.
To �ind the intelligence of a person, psychologists have developed
intelligence quotient (IQ) test, as the score goes higher, the person’s
intelligence is considered greater. In spite of its broad popularity, this test
has been controversial throughout history. Some of the examining factors
of the IQ test are language skills, mathematical abilities, memory,
processing speed, reasoning abilities, and visual-spatial processing. Since
mathematics is one of the factors of the IQ test and mathematics requires
critical and analytical thinking, problem-solving, quantitative reasoning,
ability to manipulate precise and intricate ideas, construct logical
arguments and expose illogical arguments, and communication and most
importantly has a universal language (bad English and Greek alphabets),
practicing math makes mathematicians intelligent. Although, it is generally
perceived that intelligence implies smartness; however, sometimes
intelligent people do not use their intelligence in a smart way. For this, it is
important to note that intelligence is connected with intellect which is
responsible for the faculty of reasoning and understanding objectively,



especially with regard to abstract or academic matters; hence if it is not
properly trained with the time, hasty decisions and/or overcon�idence
(dangerous for mathematicians) may end up taking wrong decisions.

The following fable suggests mathematicians are smart and intelligent
within their own world: “A psychologist wanted to study the thinking
patterns of different types of scientists. So he brought together at one
place, many scientists, each of them belonging to a different �ield of
science-one zoologist, one geologist, one mathematician etc. He arranged
an experiment for each of them. The experiment consisted of lifting one
speci�ied inanimate object (say a duster for de�initeness) from the �loor of
the room and placing it on a table. The psychologist saw to it that each
scientist performed the experiment independently, i.e., without observing
how it was performed by the other scientists, as he knew that scientists
are known to copy other scientists. There were, of course, many observers
to watch the scientists performing the experiment. Each scientist came
forward one by one, lifted the duster from the �loor, and placed it on the
table in the normal way. The mathematician’s turn to perform the
experiment was at the end. The psychologist and the other observers were
eager to see how the mathematician would perform the experiment as
mathematicians are generally considered weird and eccentric. The
mathematician walked slowly and gracefully, lifted and placed the duster
on the table almost exactly the same way as any other scientist did. Here
the �irst part of the experiment was over. The second part of the
experiment consisted of lifting the same duster, this time kept on a chair,
and placing it on the same table used in the �irst part of the experiment.
Again, each scientist came forward, lifted the duster from the chair and
placed it on the table in the normal way. Last came the mathematician,
he/she lifted the duster from the chair, placed it on the �loor, pointed her
�inger from the �loor to the table and calmly said that this problem was
previously solved.”

3.7	 What	Is	a	Mathematical	Statement?
A statement is a set of words that is complete in itself, typically containing
a subject and predicate, question, exclamation, or command and consisting
of a main clause and sometimes one or more subordinate clauses. We are
born with capability to reason every statement (generally, it improves with
age and education). Immanuel Kant (1724–1804, Germany) divided
statements into two categories: analytic and synthetic. Analytic statements



are those that are true by de�inition, whereas synthetic statements are
possibly true but not necessarily true. A mathematical statement
(proposition) is either true or false, i.e., any statement which can be
anticipated to be true and false is not a mathematical statement. For
example, the sum of two natural numbers is greater than 0 is a true
mathematical statement, the sum of two negative integers is greater than 0
is a false mathematical statement, and the sum of any two integers is
greater than 0 is not a mathematical statement. Similarly, 
is not a mathematical statement, because the symbols are not de�ined. If

 for all  real numbers, then this is a false proposition; if
 for some real numbers, then this is a true proposition. Help

me please and your place or mine? are also not mathematical statements.
An important aspect of human intellect is by using connecting words such
as “and,” “or,” “if, then,” “either, or,” etc. two mathematical statements can
be combined to make a new mathematical compound statement. For
example, consider the statements: squares are rectangles and rectangles
have four sides, and then squares are rectangles and rectangles have four
sides is a compound statement.

3.8	 What	Is	a	Mathematical	De�inition?
In mathematics, a de�inition gives an unambiguous meaning to a new term
(in terms of certain other terms of which the meaning is already known) or
characterizes a concept and occurs repeatedly. A mathematical de�inition
is never self-contradictory and hence cannot be wrong. De�initions are the
starting point of serious mathematics and clarify/simplify expressions. To
acquire a great wealth of plane geometric facts (Euclidean Geometry),
Euclid began his book I of Elements with the following 23 de�initions (in
fact, 22; the last one is a postulate), so the reader would know precisely
what his terms meant.
1. A point is that of which there is no part (i.e., it has no width, no

length, and no thickness; one of his less illuminating de�initions,
because some physical space is required for something to exist).

 

2. And a line is a length without breadth.  
3. And the extremities of a line are points.  



4. A straight line is (any) one which lies evenly with points on itself.  
5. And a surface is that which has length and breadth only.  
6. And the extremities of a surface are lines.  
7. A plane surface is (any) one which lies evenly with the straight lines

on itself.  
8. And a plane angle is the inclination of the lines to one another, when

two lines in a plane meet one another, and are not lying in a straight
line.

 

9. And when the lines containing the angle are straight then the angle is
called rectilinear.  

10. And when a straight line stood upon (another) straight line makes
adjacent angles (which are) equal to one another, each of the equal
angles is a right angle, and the former straight line is called a
perpendicular to that upon which it stands.

 

11. An obtuse angle is one greater than a right angle.  
12. And an acute angle (is) one less than a right angle.  
13. A boundary is that which is the extremity of something.  
14. A �igure is that which is contained by some boundary or boundaries.  
15. A circle is a plane �igure contained by a single line [which is called a

circumference], (such that) all of the straight lines radiating towards
[the circumference] from one point amongst those lying inside the
�igure are equal to one another.

 

16. And the point is called the center of the circle.  
17. And a diameter of the circle is any straight line, being drawn through

the center, and terminated in each direction by the circumference of
the circle. (And) any such (straight line) also cuts the circle in half.

 



18. And a semi-circle is the �igure contained by the diameter and the
circumference cuts off by it. And the center of the semi-circle is the
same (point) as (the center of) the circle.

 

19. Rectilinear �igures are those (�igures) contained by straight lines:
trilateral �igures being those contained by three straight lines,
quadrilateral by four, and multilateral by more than four.

 

20. And of the trilateral �igures: an equilateral triangle is that having
three equal sides, an isosceles (triangle) that having only two equal
sides, and a scalene (triangle) that having three unequal sides.

 

21. And further of the trilateral �igures: a right-angled triangle is that
having a right angle, an obtuse-angled (triangle) that having an
obtuse angle, and an acute angled (triangle) that having three acute
angles.

 

22. And of the quadrilateral �igures: a square is that which is right-angled
and equilateral, a rectangle that which is right-angled but not
equilateral, a rhombus that which is equilateral but not right-angled,
and a rhomboid that having opposite sides and angles equal to one
other which is neither right-angled nor equilateral. And let
quadrilateral �igures besides these be called trapezia.

 

23. Parallel lines are straight lines which, being in the same plane, and
being produced to in�inity in each direction, meet with one another in
neither (of these directions).

 

Euclid began his book VII of Elements with the following 22 de�initions
for positive integer greater than unity, i.e., natural numbers. These
de�initions remain unchanged from the last almost 2300 years.
1. A unit is that by virtue of which each of the things that exist is called

one. (Iamblichus claims the Pythagoreans used a different de�inition:
unity is the boundary between number and parts of a number.)

 

2. A number is a multitude composed of units.  
3. A number is a part of a number, the less of the greater, when it

measures the greater. (In other words, a number a is a less part of  



another number b if there exist a number n such that )
4. But parts when it does not measure it.  
5. The greater number is a multiple of the less when it is measured by

the less.  
6. An even number is that which is divisible into two equal parts.  
7. An odd number is that which is not divisible into two equal parts, or

that which differs by a unit from an even number.  
8. An even-times-even number is that which is measured by an even

number according to an even number.  
9. An even-times-odd number is that which is measured by an even

number according to an odd number.  
10. An odd-times-odd number is that which is measured by an odd

number according to an odd number.  
11. A prime number is that which is measured by a unit alone.  
12. Numbers relatively prime are those which are measured by a unit

alone as a common measure.  
13. A composite number is that which is measured by some number.  
14. Numbers relatively composite are those which are measured by some

number as a common measure.  
15. A number is said to multiply a number when the latter is added as

many times as there are units in the former.  
16. And when two numbers having multiplied one another make some

number, the number so produced be called plane, and its sides are
the numbers which have multiplied one another. (This is the
beginning of algebra with geometry.)

 



17. And when three numbers having multiplied one another make some
number, the number so produced be called solid, and its sides are the
numbers which have multiplied one another.

 

18. A square number is equal multiplied by equal, or a number which is
contained by two equal numbers.  

19. And a cube is equal multiplied by equal and again by equal, or a
number which is contained by three equal numbers.  

20. Numbers are proportional when the �irst is the same multiple, or the
same part, or the same parts, of the second that the third is of the
fourth.

 

21. Similar plane and solid numbers are those which have their sides
proportional.  

22. A perfect number is that which is equal to the sum its own parts
(factors).  

3.9	 What	Is	an	Axiom?
According to the New World Encyclopedia, the term axiom comes from the
Greek word axíoma coined by Aristotle “that which is thought worthy or
�it’ or ‘that which commends itself as evident.” In mathematics, an axiom,
postulate (mainly in classical geometry, but now meaning is different), or
assumption (used synonymously) is a mathematical statement that is
regarded as being established, accepted, innocuous, or self-evidently true,
to serve as a premise or starting point (building block) for further
reasoning and arguments. According to Aristotle “Every demonstrative
science must start from indemonstrable principles. Otherwise, the steps of
demonstration would be endless.” Thus, axioms are important to get right,
because all of mathematics rests on them and should not be contradicting
each other. For each particular area of modern mathematics, we start with
necessary de�initions and require a set of axioms (just like rules before
starting any game), e.g., to develop Euclidean Geometry; Euclid in the �irst
book of the Elements after de�initions of point, line, circle, and other terms
stated �ive postulates (common-sensical geometric facts drawn from our



experience) and a list of common notions (very basic, self-evident
assertions):

Euclid’s postulates (also known as “ ” axioms) in modern language
are as follows:
1. A straight line segment can be drawn joining any two points.  
2. Any straight line segment can be extended inde�initely in a straight

line.  
3. Given any straight line segment, a circle can be drawn having the

segment as radius and one endpoint as center.  
4. All right angles are congruent.  
5. If two lines are drawn which intersect a third in such a way that the

sum of the inner angles on one side is less than two right angles, then
the two lines inevitably must intersect each other on that side if
extended far enough. This postulate is known as the parallel	postulate.

 

The �irst three postulates became the common convention for Greek
mathematicians in acknowledging geometrical constructions. They do not
explicitly say what tools can be used, but in order to abide by these
postulates, only an unmarked	straightedge and a collapsible	compass are
permitted, which are called Euclidean	tools (instruments of the gods).

Euclid’s common assertions are as follows:
(a). Things that are equal to the same thing are also equal to one another,

i.e., if  and if  then  (the transitive property).  
(b). If equals are added to equals, then the wholes are equal, i.e., if 

and if  then  (Addition property of equality).  
(c). If equals are subtracted from equals, then the differences are equal,

i.e., if  and if  then  (subtraction property
of equality).

 

(d). Things that coincide with one another are equal to one another. This
is speci�ically geometrical, where equality means congruence.  



(e). The whole is greater than the part, i.e.,  
The following axioms that completely de�ine the natural numbers were

formulated by Guiseppe Peano (1858–1932, Italy):
1. 1 is a natural number.  
2. For each natural number n there is a unique successor  
3. 1 is not the successor of any natural number.  
4. Two natural numbers are equal if their successors are equal.  
5. Any set of natural numbers which contains 1 and the successor of

every natural number p whenever it contains p is the set  
A �ield, de�ined by Eliakim Hastings Moore (1862–1932, USA) in 1893,

is a set of scalars, denoted by  in which two binary operations, addition
 and multiplication , are de�ined so that the following axioms hold:

1. Closure	Property	for	Addition	and	Multiplication: If  then
 and  

2. Commutative	Property	for	Addition	and	Multiplication: If  then
 and  

3. Associative	Property	for	Addition	and	Multiplication: If  then
 and  

4. Additive	and	Multiplicative	Identity	Properties: There exists a zero
element, denoted by  in F such that for all

, and there exists a unit element, denoted
by  in F such that for all 

 

5. Additive	and	Multiplicative	Inverses: For each  there is a unique
element  such that , and for each

 there is a unique element  such that
 



6. Left	Distributivity: If  then  
7. Right	Distributivity: If  then  

From the above axioms it immediately follows that the sets  and 
are not �ields, whereas the set , the set of all real numbers  and the
set of complex numbers  are �ields. Clearly,  Also, if

 then exactly one of the following statements is true: 
or  i.e., axiom	of	order also known as trichotomy	law holds. As we
have seen earlier, this law does not hold for the set 

The idea that algebraic operations like addition and multiplication
should behave consistently in every number system, especially when
developing extensions to established number systems Hankel in 1867
explicitly formulated the Principle	of	Permanence. This principle can be
stated as a de�inition as follows: A collection of symbols in�inite in number
shall be called a number	�ield and each individual element in it a number, if:
1. Among the elements of the collection we can identify the sequence of

natural	numbers.  
2. We can establish criteria of rank which will permit us to tell of any two

elements whether they are equal, or if not equal, which is greater;
these criteria reduce to the natural criteria when the two elements are
natural numbers.

 

3. For any two elements of the collection, we can devise a scheme of
addition and multiplication which will have the commutative,
associative, and distributive properties of the natural operations
bearing these names and which will reduce to these natural operations
when the two elements are natural numbers.

 

The Axiom	of	Archimedes states that for any given real number x there
exists an integer n such that n is greater than 

Let A be a non-empty set of real numbers. A number  is called a
least	element of A if  for every  A non-empty set S of real
numbers is said to be well-ordered if every non-empty subset of S has a
least element. Every non-empty �inite set of real numbers is well-ordered.
None of the sets  and R have a least element (if x is a number, then

 is another number which is smaller), so none of these sets is well-



ordered. Although it may appear evident that the set  is well-ordered,
this statement cannot be shown from the properties of positive integers.
Consequently, this statement is accepted as an axiom and stated as follows:

Well-Ordering	Principle: The set  is well-ordered.
The subset  is said to be bounded	above if there exists 

such that  implies  The number M is called an upper	bound
of  Similarly, the subset  is said to be bounded	below if there
exists  such that  implies  The number m is called a
lower	bound of  The set S is said to be bounded if it is bounded above and
below. If the set S has at least one upper bound, then there are in�initely
many upper bounds greater than it. If S has no upper bound, then S is said
to be unbounded	above. If there is a least number among the upper bounds
of the set  then this number is called the least	upper	bound or supremum
of the set  Similarly, if the set S has at least one lower bound, then there
are in�initely many lower bounds smaller than it. If S has no lower bound,
then S is said to be unbounded	below. If there is a greatest number among
the lower bounds of the set  then this number is called the greatest
lower	bound or in�imum of the set  The supremum and/or in�imum of
the set S may not be members of  e.g., the set  (open interval) does
not contain either its in�imum or its supremum which are 1 and 2,
respectively. From these de�initions it follows that supremum and in�imum
of sets, if exist, are unique. The existence of supremum and in�imum of
non-empty sets bounded above and below, respectively, is the following
completeness axiom:

Completeness	axiom: If S is any non-empty subset of  that is bounded
above (below), then S has a supremum (in�imum) in  The completeness
axiom is also known as the continuity	axiom in 

Additional popular axioms are those of axiomatic	set	theory due to
Zermelo and Abraham Fraenkel known as the Zermelo-Fraenkel (ZF)
axioms, which are listed as follows:
1. The	Axiom	of	Extension: Two sets are equal (are the same set) if they

have the same elements.  
2. The	Empty	Set	Axiom: A set with no members exists and can be written

as  
3. The	Axiom	of	Separation: A subset can be formed from a set, and

consist of some elements from the set.  



4. The	Pair-Set	Axiom: Given two objects of a and  the set  can be
formed.  

5. The	Union	Axiom: Two or more sets can be formed into a union of
those sets.  

6. The	Power	Set	Axiom: Given a set, a set of all possible subsets can be
formed (power set).  

7. The	Axiom	of	In�inity: There exists a set with in�initely many elements.  
8. The	Axiom	of	Foundation: Sets are comprised of simpler sets, so every

non-empty set has a minimal member.  
9. The	Axiom	of	Replacement: A function can be applied to every member

of a set, and the answer is still a set.  
In addition to these basic axioms, there is a tenth axiom called the

Axiom	of	Choice (AC), in short (ZFC). It states “Given in�initely many non-
empty sets, one element from each set can be chosen.” While this axiom is
clear for non-empty �inite sets, it does not follow from (ZF) for non-empty
in�inite sets. Although originally controversial, the axiom of choice is now
used without reservation by most mathematicians, and it is included
among the nine axioms of set theory. For (ZFC) Bertrand Russell found an
analogy: For any (even in�inite) collection of pairs of shoes, one can pick
out the left shoe from each pair to obtain an appropriate collection (i.e.,
set) of shoes; this makes it possible to directly de�ine a choice function. For
an in�inite collection of pairs of socks (assumed to have no distinguishing
features), there is no obvious way to make a function that forms a set out
of selecting one sock from each pair, without invoking the axiom of choice.

In 1930, Gödel showed that (ZFC) cannot disprove (CH), and in 1963,
Paul Cohen showed that (ZFC) cannot prove (CH). That means (CH) can be
added to the standard axioms of set theory without creating a
contradiction.

After years of struggle, mathematicians have shown that virtually all
mathematical concepts and results can be formulated within axiomatic set
theory. This has been recognized as one of the greatest achievements of
modern mathematics and, as a result, we can now say that “set theory is a
unifying theory for mathematics.” In fact, all mathematical objects can be



de�ined as sets. Consequently, the results of mathematics can be viewed as
statements about sets. Thus it can be said that “mathematics can be
embedded in set theory,” or “set theory is woven into the fabric of modern
mathematics.”

3.10	 Does	Abolishing	an	Axiom	Lead	to	New
Mathematics?
We begin with the following excerpt of Bell [61]: “An axiom generally
implies a compulsion of rational thought or a restriction of possible action;
abolition of the axiom as a necessity invites free invention. In the past,
abolition of axioms also invited persecution, today in all sciences except
social it merely invites personal abuse, if even that.” In what follows we
shall provide some examples where carefully abolishing/challenging an
axiom opened altogether a new way of considering a system which turned
out to be more beautiful, practical, useful, and often corrected existing
theories.

From Dedekind’s de�inition of an in�inite set, “An in�inite set is one
which can be placed in one-to-one correspondence with a proper part of
itself,” the ancient assertion of mathematics found in Elements, that the
whole is greater than the part has no place in in�inite quantities, it works
only for �inite quantities (see Euclid’s assertion (e)).
For almost 2000 years Euclidean geometry stood indisputable as the
mathematical model of space. However, Euclid himself was not
comfortable with the parallel postulate (Euclid’s Postulate 5) as it was
not self-evident in nature. He suspected it might not be necessary. For
this postulate several leading mathematicians unsuccessfully tried to
prove it from the other four axioms. However, many of them were
successful only in proving its equivalent, e.g., Proclus: A line parallel to a
given line has a constant distance from it; Hasan Ibn al-Haytham (965–
1040, Iraq-Egypt): If a straight line moves so that one end always lies on
a second straight line and so that it always remains perpendicular to
that line, then the other end of the moving line will trace out a straight
line parallel to the second line (his de�inition characterized parallel lines
as lines always equidistant from one another and also introduced the
concept of motion into geometry); Omar Khayyám (1048–1131, Iran):
Two convergent straight lines intersect, and it is impossible for two
convergent (approached one another) straight lines to diverge in the



direction in which they converge; Nasir al-Din al-Tusi (1201–1274,
Iran): In 1250 the author wrote detailed critiques of the parallel
postulate and later attempted to derive a proof by contradiction
(reductio ad absurdum); Wallis: There exist similar (but not equal)
triangles, whose angles are equal but whose sides are unequal; Saccheri:
There exists at least one rectangle, a quadrangle whose angles are all
right angles; John Playfair (1748–1819, Scotland): In a plane, given a line
and a point not on it, at most one line parallel to the given line can be
drawn through the point (known as Playfair’s axiom); Legendre (his
books on geometry [339] and number theory [340] are still
remembered): A line perpendicular in one arm of an acute angle also
intersects the other arm, and also the sum of the angles of a triangle is
equal to two right angles, i.e., ; Gauss: There exist triangles of
arbitrarily large area; and Eric Wolfgang Weisstein (born 1969, USA): In
a right-angled triangle, the square of the hypotenuse equals the sum of
the squares of the other two sides (Pythagoras Theorem), and the list
goes on.

Finally, the parallel postulate out of three choices, impossible,
meaningless, and improperly posed, was avoided by the third possibility.
In 1823, Lobachevsky and Janos Bolyai (1802–1860, Hungary-Romania)
independently realized that entirely self-consistent “non-Euclidean
geometry” could be created in which the parallel postulate did not hold,
i.e., the sum of the angles of a triangle is more than or less than  Nasir
al-Tusi considered the cases of non-Euclidean geometry now known as
elliptical (also known as Riemannian geometry) and hyperbolic geometry
(also known as Bolyai-Lobachevskian geometry), but he ruled out both of
them; however, his son Sadr al-Din wrote a book on the subject in 1298,
which was later published in Rome in 1594 and was studied by European
geometers. Gauss had also discovered but suppressed the existence of non-
Euclidean geometry. Upon hearing of Bolyai’s results in a letter from
Bolyai’s father, Farkas Bolyai, Gauss stated: “If I commenced by saying that
I am unable to praise this work, you would certainly be surprised for a
moment. But I cannot say otherwise. To praise it would be to praise myself.
Indeed the whole contents of the work, the path taken by your son, the
results to which he is led, coincide almost entirely with my meditations,
which have occupied my mind partly for the last thirty or thirty-�ive years.”
In the history of science, non-Euclidean geometry in the beginning was
treated as mere curiosities invented by mathematicians; however, later it
became an example of a scienti�ic revolution, in which mathematicians and



scientists changed the way they viewed and taught their subjects. Eugenio
Beltrami (1835–1900, Italy) demonstrated that Euclid’s geometry and the
classical non-Euclidean geometries were either all logical admissible or all
logically inadmissible. Non-Euclidean geometry turned out to be a very
useful tool for Einstein in conceiving the general theory of relativity. A
bibliography of non-Euclidean geometry up to 1911 lists about 4000 titles
of books and research papers by about 1350 authors, and since 1911 the
subject has expanded enormously. Much of the recent work has
disseminated by physics, especially general relativity. Non-Euclidean
geometries have taught mathematicians that it is useful to regard
postulates as purely formal statements and not as facts based on
experience. In conclusion, Euclidean geometry is an approximation to
reality, just like Newtonian gravity.

The following well-known story related to non-Euclidean geometry is
fascinating: “There were two friends. One was a mathematician, and the
other, a politician. They were fast friends throughout even though they
belonged to different professions. Once, the politician friend told his
mathematician friend: ‘We are birds of the same feather. We both talk
nonsense. The day before yesterday, I came to meet you in your school. You
were teaching in the class. I did not want to disturb you; therefore, I did
not call you outside. But your voice being loud, I could hear what you were
teaching. You were telling your students that the sum of the angles of a
triangle is  We did study something like this, but I do not remember
exactly what it was. So I assumed that what you were telling in the class
was correct. I came to meet you yesterday too and you were teaching. But
this time I heard you telling your students that the sum of the angles of a
triangle is greater than  Now how can this be so? In one class, you tell
that the sum is  and in the other you tell that the same sum is greater
than  Mathematics being an exact subject, only one of these two
statements can and must be true-or am I wrong? We politicians are famed
for telling one thing on one platform and exactly the opposite on another
platform. So I say we both are birds of the same feather, we both talk
nonsense.’ To this the mathematician replied, Yes, my friend, we both talk
nonsense. But there is a difference I talk consistent nonsense, while you
talk inconsistent nonsense. My statements though they may look
contradictory have to be consistent with respect to the axioms with which
I started the subject.”



Closure	Property:
Associative	property:
Identity	Element:

William Rowan Hamilton in 1833 constructed a rigorous theory of
complex numbers based on the idea that a complex number is an
ordered pair of real numbers. This work was done independently of
Gauss, who had already published the same ideas in 1831, but with
emphasis on the interpretation of complex numbers as points in the
complex plane. Rowan Hamilton subsequently tried to extend the
algebraic structure of the complex numbers, which can be thought of as
vectors in a plane, to vectors in three-dimensional space. This project
failed; however, the year 1843 marked a triumph for Rowan Hamilton
after several years of searching for a way to multiply his quaternions
(Rowan Hamilton never learned that Gauss had discovered quaternions
in 1819 but kept his ideas to himself). A quaternion is a kind of
hypercomplex number since it represents a force acting in three
dimensions rather than in the plane. Quaternions involve the symbols 

 and  the imaginary number. Rowan Hamilton could add and
subtract quaternions, but he could not �ind any product that did not
abolish the commutative property for multiplication,  Rowan
Hamilton was strolling along the Royal Canal in Dublin when he
suddenly realized that a mathematical system could be consistent
without obeying the commutative law. This happened at Brougham
Bridge, and he carved on it the famous formula

 This insight freed algebra and paved the way
for multiplication of matrices, which is noncommutative. After decades
of his death Rowan Hamilton’s quaternions found applications in
mechanics, geometry, and mathematical physics. Rowan Hamilton’s
invention of quaternions initiated the study of several other different
types of algebras in which one after another postulates of �ield were
discarded (as too restrictive) or modi�ied. As an example we de�ine here
group theory which studies algebraic objects called groups and
considered a topic in abstract algebra. Starting from Lagrange (also
Cauchy and Galöis) group theory has attracted attention of great
mathematicians, and it has a wide range of applications in real world
problems. A group denoted as  is a set G together with a binary
operation  so that the following axioms hold:

If  then 
If  then 



Inverse	Element:

Commutative	Property:

There exists an element  such that for all

For each  there is a unique element  such
that 

If in addition to above axioms
If  then 

also holds, then  is called abelian group, after Abel.

Clearly, all the above axioms of a group are subset of a �ield. It follows
from the de�inition that the unit element in any group is unique, and the
inverse of any given element in the group is also unique. A simple example
of an abelian group is ; however  and  are not groups.

Heliocentric and Geocentric are two feasible interpretations of the
arrangement of our Universe, including the solar system. The
heliocentric model contemplates that the Sun is the center and all
planets circle around the Sun. The geocentric model asserts that the
Earth is at the center of the Universe, and every other celestial body
rotates around the Earth. The Aitareya Brahmana of the Rigveda, Chap.
3, Verse 44 (Rigveda before 3000 BC) states “The Sun does never set nor
rise.” Aryabhata claimed that the Earth rotates on its own axis, the Earth
moves round the Sun, and the Moon rotates round the Earth; incredibly
he believed that the orbits of the planets are ellipses. The Babylonians
assumed that the Earth was the center of the Universe and everything
revolved around it. Philolaus believed that the world is one and was
created from the Central Fire, which is equidistant from top and bottom
of the Universe. He supposed that a sphere of the �ixed stars, the planets,
the Sun, Moon, and Earth all revolved in uniformly round this Central
Fire. He presumed the Sun to be a disk of glass that re�lects the light of
the Universe. Ponticus proposed that the Earth rotates on its axis, from
west to east, once every 24 hours. Aristarchus in�luenced by a concept
presented by Philolaus and asserted that the Earth and the other planets
(Venus, Mercury, Mars, Jupiter, and Saturn) revolve around the Sun;
however, his hypothesis was ignored in favor of Aristotle’s strong
support of the geocentric theory. Hipparchus thought to be the �irst to
calculate a heliocentric system, but he abandoned his work because the
calculations showed the orbits were not perfectly circular.



Ptolemy following the Babylonian and Greek view (lead by Hipparchus)
that the Earth is the center of the Universe wondered why at certain times
of the year it appears that Mars is moving backward, in retrograde	motion.
Ptolemy postulated a system wherein each body orbiting the Earth spins
on a circle of its own, called an epicycle. Ptolemy required approximately
80 equations to describe, quite accurately, the locations of all the heavenly
bodies of what we now call the solar system. He estimated that the Sun
was at an average distance of 1210 Earth radii, while the radius of the
sphere of the �ixed stars was 20,000 times the radius of the Earth.
However, he rejected the idea of a spinning Earth as absurd as he believed
it would create huge winds. Ptolemy’s geocentric model (superhuman
effort of mathematical genius) was believed to be mandatory by the
theology of the time. This cosmology was later adopted by the early
Christian thinkers and perpetuated for a thousand years after the fall of
Rome. This “geocentric theory” was consistent with the Christian belief
that the “Son of God” was born at the center of the Universe. Accepting
Ptolemaic system and the geocentric model, al-Battani (858–929, Turkey)
showed that the distance between the Sun and the Earth varies. However,
later several Islamic astronomers including al-Haytham criticized
Ptolemaic model and marked it as unworkable. In fact, Nasir al-Tusi
developed a heliocentric model. Oresme opposed the theory of a stationary
Earth as proposed by Aristotle and advocated the motion of Earth;
however, he later rejected his own ideas. Nilakanthan Somayaji (around
1444–1544, India) gave the correct formulation for the equation of the
center of the planets and a heliocentric model of the solar system.
Leonardo da Vinci wrote “Il sole non si move” (the Sun does not move).
Finally, Copernicus challenged the axiom that the Earth is at the center of
the solar system and developed a mathematical model in which the Sun is
at the center and all planets move around the Sun. This reduced the
number of equations describing the motion of the planets from Ptolemy’s
80 down to 30. Although Copernicus realized that his theory implied an
enormous increase in the size of the Universe, he declined to pronounce it
in�inite. His book De	revolutionibus	orbium	coelestium appeared in 1543,
after his death. The main features of his model are:
1. The center of the cosmos (this term was coined by Pythagoras) is the

Sun.  



2. Around the Sun, Mercury, Venus, Earth, and Moon, Mars, Jupiter, and
Saturn move in order in their own orbits, and the stars are �ixed in the
sky.

 

3. The motion of the celestial bodies is uniform, eternal, and circular or
compounded of several circles.  

4. The Earth has three motions: daily rotation, annual revolution, and
annual tilting off its axis.  

5. The backward motion of the planets is as the Earth’s motion.  
6. The distance from the Earth to the Sun is small compared to the

distance to the stars.  
The Vatican ignored Copernicus’ book as it only suggested that the

mathematical model putting the Sun at the center makes more sense. He
did not assert that this is the way things are.

The heliocentric model of Copernicus marked the beginning of the
scienti�ic revolution. In fact, as a consequence of this theory, Galileo by the
end of 1609 turned his newly invented telescope on the night sky and
made remarkable discoveries which convinced him of the truth of
Copernicus’ heliocentric theory. He had seen mountains on the Moon,
rather than a perfect sphere as Aristotle had claimed. Galileo observed the
Milky Way, which was previously believed to be a nebula, and found it to be
a multitude of stars packed so densely that they appeared to be clouds
from the Earth. He saw four small bodies orbiting Jupiter that he named Io,
Europa, Callisto, and Ganymede, which later astronomers changed to the
Medicean	stars. In 1612, after a long series of observations, he gave
accurate periods for the	Medicean	stars. He also observed the planet
Neptune but did not realize that it was a planet and took no particular
interest in it. In the same year, opposition arose to the heliocentric theory
that Galileo supported. In 1614, from the pulpit of Santa Maria Novella,
Father Tommaso Caccini (1574–1648, Italy) denounced Galileo’s opinions
on the motion of the Earth, judging them to be dangerous and close to
heresy. Galileo went to Rome to defend himself against these accusations,
but in 1616 Cardinal Roberto Bellarmino (1542–1621, Italy) personally
handed Galileo an admonition forbidding him to advocate or teach
Copernican astronomy. When three comets appeared, he became involved



in a controversy regarding the nature of comets, arguing that they were
close to the Earth and caused by optical refraction. This was not acceptable
to the Jesuits, and they considered Galileo to be a dangerous opponent. In
1630, he returned to Rome to apply for a license to print the Dialogue
Concerning	the	Two	Chief	World	Systems (Ptolemaic and Copernican),
which was published in Florence in 1632 with formal authorization from
the Inquisition and the Roman Catholic Church. This book takes the form
of a dialogue between Salviati, who argues for the Copernican system, and
Simplicio, who is an Aristotelian philosopher. Soon after the publication of
this book the Inquisition banned its sale and ordered Galileo to appear
before the Holy Of�ice in Rome under suspicion of heresy. Because of the
illness he was unable to travel to Rome until 1633. Galileo’s adherence to
experimental results and their honest interpretation led to his rejection of
blind allegiance to authority, both philosophical and religious. The
Inquisition found Galileo guilty and forced him to recant (publicly
withdraw) his support of Copernicus. They forbade further publication of
his work and condemned him to life imprisonment, but because of his
advanced age allowed him serve his term under house arrest, �irst with the
Archbishop of Siena, and then at his villa in Arcetri outside of Florence. It
was a sad end for so great a man to die condemned of heresy. In 1992, 350
years after Galileo’s death, Pope John Paul II (1920–2005, Poland-Vatican
City) gave an address on behalf of the Catholic Church in which he
admitted that errors had been made by the theological advisors in the case
of Galileo. He declared Galileo’s case closed but did not admit that the
Church itself had made mistakes.

Kepler avidly accepted Copernicus’ heliocentric theory and went so far
as to defend it in public while still a student. During 1617–1621, Kepler
formulated his three laws by studying many years’ worth of data about the
motion of the planets (elliptical orbits) that had been gathered by Tycho
Brahe (1546–1601, Sweden-Czechoslovakia). For this, his only strategy
was numerous calculations.
1. Every planet describes an ellipse, with the Sun at one focus. The other

focus is just a mathematical point at which nothing physical exists.  
2. The radius vector from the Sun to a planet sweeps out equal areas in

equal intervals of time.  
3. The squares of the periodic times of planets are proportional to the

cubes of the semimajor axes of the orbits of the planets.  



These laws signi�icantly increased accuracy in predicting the position
of the planets and placed heliocentrism on a �irm theoretical foundation.
Descartes in his �irst cosmological treatise, written between 1629 and
1633 and titled The	World, included a heliocentric model but later
abandoned it in the light of Galileo’s treatment. Finally, Newton conceived
that Kepler’s laws could be derived, using calculus, from his inverse square
law of gravitational attraction. In fact, this is one of the main reasons that
Newton developed the calculus. The �irst law made a profound change in
the scienti�ic outlook on nature. From ancient times circular motion had
reigned supreme, but now the circle was replaced by the ellipse. The
second law is an early example of the in�initesimal calculus. The period of
the Earth is 1 year; therefore according to the third law, a planet situated
twice as far from the Sun would take nearly 3 years to complete its orbit.

Giambattista Benedetti (1530–1590, Italy) in 1553 challenged the
Aristotelian axiom that heavier objects fall faster than lighter objects.
Galileo enunciated the correct mathematical law for the acceleration of
falling bodies, which states that the distance traveled starting from rest
is proportional to the square of time, and the law of time, which states
that velocity is proportional to time. There is an apocryphal story that
Galileo dropped a cannonball and a musket ball simultaneously from the
leaning tower of Pisa to demonstrate that bodies fall at the same rate. He
also concluded that objects retain their velocity unless a force acts upon
them, contradicting the Aristotelian hypothesis that objects naturally
slow down and stop unless a force acts upon them. Although Mo Tzu
(around 470–391 BC, China), al-Haytham, and Jean Buridan (around
1300–1358, France) had proposed the same idea centuries earlier,
Galileo was the �irst to express it mathematically. Galileo’s Principle	of
Inertia states that “A body moving on a level surface will continue in the
same direction at constant speed unless disturbed.” This principle was
incorporated into Newton’s laws of motion as the �irst law.
Einstein challenged the axiom that events at different places can be
simultaneous: In physics, the relativity of simultaneity is the concept
that distant simultaneity—whether two spatially separated events occur
at the same time—is not absolute but depends on the observer’s
reference frame, which gave birth to special theory of relativity.
Brouwer challenged the axiom that Aristotle’s logical law of the
excluded middle “There cannot be an intermediate between



contradictions, but of one subject we must either af�irm or deny any one
predicate” is universally applicable.

Axioms play a key role not only in mathematics but also in other
sciences, notably in theoretical physics. In particular, the work of Newton
is essentially based on Euclid’s postulates, augmented by a postulate on
the nonrelation of space-time (space is distinct from body and that time
passes uniformly without regard to whether anything happens in the
world) and the physics taking place in it at any moment. In 1905, Newton’s
postulates were replaced by those of Einstein’s special relativity (the laws
of physics are the same and can be stated in their simplest form in all
inertial frames of reference, and the speed of light c is a constant,
independent of the relative motion of the source) and later on by those of
general relativity (the laws of physics have the same form in all inertial
reference frames; light propagates through empty space with a de�inite
speed c independent of the speed of the observer [or source], and in the
limit of low speeds, the gravity formalism should agree with Newtonian
gravity). Physicists are trying to rewrite the axioms of quantum theory
from scratch in an effort to understand what it all means.

3.11	 What	Is	Logic?
In the simplest possible terms logic is a science that deals with the rules
and processes used in sound thinking and reasoning. It is not an invention
of men but a timeless gift to mankind from the immortal gods. In one form
or another, this belief has persisted for well over 2000 years. The main
constituent of logic is a premise(s) which is a statement in an argument
that provides reason or support for the conclusion. Although, several
different types of logic are known and used, the following four are the
main. Informal	Logic which according to Ralph Henry Johnson (born 1940,
Canada-USA) is a branch of logic whose task it is to develop non-formal
standards, criteria, procedures for the analysis, interpretation, evaluation,
criticism, and construction of argumentation in everyday discourse. For
example, Premises: Isabella saw a black cat on her way to work. At work,
Isabella got �ired. Conclusion: Black cats bring bad luck. Formal	Logic was
created by Aristotle and organized by his ancient commentators under the
title Organon; it deals with abstract propositions, statements (or
assertively used sentences), and deductive arguments (drawing truth of a
conclusion from something known or assumed). For example, Premises:
Socrates is a man. All men are mortal. Conclusion: Therefore, Socrates is



mortal. Symbolic	Logic was advanced by John Venn (1834–1923, England)
to develop and represent logical principles by means of a formalized
system consisting of primitive symbols and combinations of these
symbols, axioms, and rules of inference.

In symbolic logic a single letter is used to denote a statement. For
example, letter p may be used for the statement eleven is an even number
and written as  is an even number. A statement is said to have truth
value T or F according as the statement is true or false. For example, the
truth value of  is  whereas for

 is  The knowledge of truth value of a statement
enables us to replace it by some other “equivalent” statement. From given
statements new statements can be produced by using the following
standard logical connectives: If p is a statement, then its negation  is
the statement not  e.g., if  7 is even number, then  7 is not an
even number, or 7 is an odd number; if from a statement p another
statement q follows, we say p implies q and write  e.g., if n is an
even integer, then  is an odd integer; the statements p and q are
denoted as  and called the conjunction of the statements p and 
e.g.,  is positive and  is negative; the statement p or q is denoted
as  and is called the disjunction of the statements p and  e.g., if 
Scott is a member of the �inancial committee and  Scott is a member of
the executive committee, then  Scott is a member of the �inancial
committee or of the executive committee; and two statements p and q are
said to be equivalent if one implies the other, i.e.,  and
we denote this as  e.g., ABC is an equilateral triangle 

 Propositions that involve the phrases such as if and
only if (iff), is equivalent to, or the necessary and suf�icient condition are of
the type  Mathematical	Logic was systematized by George Boole
and De Morgan; it is the study of formal logic within mathematics. For
example,  Mathematical logic and symbolic logic
are often used interchangeably. According to Herman Weyl, “ logic is the
hygiene which the mathematician practices to keep his ideas healthy and
strong.” Logic also has numerous applications in computer science; in fact,
it is used in the design of computer circuits, the construction of computer
programs, and the veri�ication of the correctness of programs, and the list
continues.

Each type of logic could include deductive reasoning, inductive
reasoning (a method of drawing conclusions by going from the speci�ic to



the general, e.g., prediction/forecasting, or behavior), or both. With
deductive reasoning always correct logical arguments are achieved,
whereas inductive reasoning may or may not provide a correct conclusion.
The following well-known interesting puzzles illustrate what kind of
thinking needed to �ind their solution:

An archaeologist found himself trapped inside a chamber of a royal
Egyptian tomb. The chamber had one single door with a keyhole, but
there was no sign of any key. Inside the chamber, he found three boxes
marked I, II, and III with the following inscriptions on their respective
covers:
I. “The key of the door is in this box.”  
II. “The key of the door is not in this box.” 
III. “The key of the door is not in Box I.”  
And on the wall behind the boxes were inscribed the following
statements: “At most one of the three statements on the boxes is true. If
you open the wrong box or more than one box, the chamber will
immediately collapse and bury you alive.” Which box should the
archaeologist open to get out of the chamber?

Denote the statements on Boxes I, II, and III by , and ,
respectively. Since  and  are negations of each other, one of them
must be true. But at most one of the three given statements is true. It
follows that  must be false. Therefore, the key is in Box II.
Four cards are laid in front of you, each of which is explained has a letter
on one side and a number on the other. The sides that you see read E, 2,
5, and F. Your task is to turn over only those cards that could decisively
prove the truth or falsity of the following rule: “If there is an E on one
side, the number on the other side must be a 5.” Which ones do you turn
over? Clearly, the E should be turned over, since if the other side is not a
5, the rule is untrue. And the only other card that should be �lipped is the
2, since an E on the other side would again disprove the rule. Turning
over the 5 or the F does not help, since anything on the other side would
be consistent with the rule but not prove it to be true.



This is a puzzle about a man condemned to be hanged. The man was
sentenced on Saturday. “The hanging will take place at noon,” said the
judge to the prisoner, “on one of the seven days of the next week. But
you will not know which day it is until you are informed on the morning
of the day of the hanging.” The judge was known to be a man who always
kept his word. The prisoner, accompanied by his lawyer, went back to his
cell. As soon as the two men were alone the lawyer broke into a grin.
“Don’t you see”? he exclaimed. “The judge’s sentence cannot possibly be
carried out.” “I don’t see,” said the prisoner. “Let me explain. They
obviously can’t hang you next Saturday. Saturday is the last day of the
week. On Friday noon you would still be alive and you would know with
absolute certainty that the hanging would be on Saturday. You know this
before you were told so on Saturday morning. That would violate the
judge’s decree.” “True,” said the prisoner. “Saturday, then is positively
ruled out,” continued the lawyer. “This leaves Friday as the last day they
can hang you. But they can’t hang you on Friday because by Thursday
afternoon only two days would remain: Friday and Saturday. Since
Saturday is not a possible day, the hanging would have to be on Friday.
Your knowledge of that fact would violate the judge’s decree again. So
Friday is out. This leaves Thursday as the last possible day. But Thursday
is out because if you are alive Wednesday afternoon, you’ll know that
Thursday is to be the day.” “I get it,” said the prisoner, who was
beginning to feel much better. “In exactly the same way I can rule out
Wednesday, Tuesday and Monday. That leaves only tomorrow. But they
can’t hang me tomorrow because I know it today!” The prisoner is thus
convinced, by what appears to be unimpeachable logic, that he cannot
be hanged without contradicting the conditions speci�ied in his
sentence. Then, on Thursday morning, the hangman arrives. Clearly, he
did not expect him. What is more surprising, the judge’s decree is now
seen to be perfectly correct. The question is what is wrong with the
reasoning provided by the lawyer? The answer is lawyer believes that
there is no alternative to prisoner’s being executed by Friday at the
latest, which means that he cannot be executed on Friday.

There are many versions of this puzzle. During World War II, the
Swedish Broadcasting Company made the following announcement on the
radio: A	civil-defense	exercise	will	be	held	this	week.	In	order	to	make
sure	that	the	civil-defense	units	are	properly	prepared,	no	one	will
know	in	advance	on	what	day	the	exercise	will	take	place. Suppose
that it was made on a Monday morning. Then the exercise must take place



sometime before the following Monday. It cannot happen on Sunday, for by
then people will know that it has to take place on Sunday. Since it is to be
unexpected, Sunday is ruled out. Also, Saturday is ruled out. Since the
exercise cannot take place on Sunday, it also cannot happen on Saturday,
for you would know it in advance. If it has not happened during the week
so far and if it cannot happen on Sunday, then people would know that it
was going to take place on Saturday. So, it cannot. Friday is no good either.
With both Saturday and Sunday out, if it has not happened by Friday,
everyone will expect it. Similar reasoning applies to Thursday, Wednesday,
Tuesday, and Monday itself. Therefore, the civil defense exercise cannot
happen at all. But on Wednesday morning, the air-raid sirens wailed and
the exercise took place anyway. Irrefutable logic has been refuted by
reality.

One of the clearest versions of this puzzle came from Martin Gardner
(1914–2010, USA). A loving husband tells his wife that she will receive an
unexpected gift for her birthday. It will be a gold watch. Now the wife uses
logic. Her husband would not lie to her. Since he has said the gift would be
unexpected, it will be unexpected. But she now expects a gold watch.
Therefore, it cannot be a gold watch. But, of course, it is. And it is
unexpected, for she had used logic to show that it could not be a gold
watch.

There is a common feature of the above three puzzles, i.e., two people
are required. One (A) says that something will happen and that it will be
unexpected. The other person (B) reasons that these conditions are
contradictory. Hence the event cannot happen. But it happens anyway.

Following Greek traditions set by Thales and Pythagoras and
epitomized by Euclid in his Elements from the last 2500 years mathematics
continues to be a formal logical deductive system in which hypotheses
(axioms and assumptions) lead to conclusions and has been titled as
axiomatic-deductive	science or axiomatic	mathematics. An important aspect
of this passage is that the content of mathematics is no longer de�ined by
quantity or space, rather it could be about anything as long as it exhibits
the pattern of assumption-deduction-conclusion. It is vigorously accepted
that comparing to empirical axiomatic mathematics is more precise,
conceptual, subtle, systematic, and provides mechanism for analyzing
deeper extensions. However, whatever ancient Rishis have offered
empirically has turned out genuine with axiomatic mathematics also. For
example, Hindus discovered what is known as the precession	of	the
Equinoxes and their calculation such an occurrence takes place every



25827 years, our modern science after labors of hundreds of years has
simply proved them to be correct. How or by what means they were able to
arrive at such a calculation has never been discovered. Similarly, the
judgment of the Hindus as to the length of what is now known as the cycle
of years of the planets has been handed down to us from the most remote
ages. Modern science also has proved it to be correct. We should also keep
in mind seriously Morris Kline’s quote “Logic does not dictate the contents
of mathematics, the uses determine the logical structure.” However,
mathematics students become more skeptical in their reasoning—they
begin to think more critically.

In 1931, Gödel answered the fundamental questions: “Can I prove that
math is consistent?” and “If I have a true statement, can I prove that it’s
true?” in his Incompleteness	Theorems. These theorems state that any
logical system either has contradictions or statements that cannot be
proved, yet powerful enough to serve as a basis for all of the mathematics
that we do. His theorems are considered one of the greatest intellectual
achievements of modern times. Most importantly his work showed that
mathematics is not a �inished object, as had been believed. Furthermore, a
computer can never be programmed to answer all mathematical questions.
After these theorems philosophers of mathematics lost interest in their
three different schools of thought. The present attitude of most
mathematicians is best purported by Jean Alexandre Eugéne Dieudonné
(1906–1992, France). “In everyday life, we speak as Platonists, treating the
objects of our study as real things that exist independently of human
thought. If challenged on this, however, we retreat to some sort of
formalism, arguing that in fact we are just pushing symbols around
without making any metaphysical claims. Most of all, however, we want to
do mathematics rather than argue about what it actually is. We’re content
to leave that to the philosophers.”

3.12	 What	Are	Theorem,	Lemma,	and	Corollary?
A theorem is a general mathematical statement not self-evident but
established/proved by logical deduction, an undoubted truth established
by means of accepted truths. In addition to the word theorem, other
similar terms are proposition, result, observation, and fact, the choice
often depending on the signi�icance or degree of dif�iculty in its proof. The
word theorem has come from Middle French théoréme, from Late Latin the

r , and from Ancient Greek (especially Eudoxus) theorema,



“speculation, proposition to be proved.” Thales suggested many early
mathematical results and is typically credited with beginning the tradition
of a rigorous, logical proof before the general acceptance of a theorem, e.g.,
he demonstrated that the angles at the bases of any isosceles triangle are
equal. However, it was Eudoxus who began the grand tradition of
organizing mathematics into theorems. The �irst major collection of
mathematical theorems was developed by Euclid in his Elements, which set
candidly standards of future mathematics. A mathematician develops a
new mathematical statement based on a simple example(s), experience,
observation, and/or intuition (empirical) that seems to be true. This
original mathematical statement is only given the status of a theorem
when it is proven true by logical deduction. Understanding a theorem is
not like reading novels or history; one needs to think slowly about every
argument and normally reread the same material later several times. A
lemma is a proven mathematical result, possibly quite important, that is
useful in establishing the truth of some other results. The German word for
lemma is “hilfsatz,” whose English translation is “helping theorem,” so a
lemma is usually considered as a helpful result. Often, complicated proofs
are easier to understand when they are established using a series of
lemmas and putting them together in a logical way. A corollary is a
mathematical result that can be deduced from, and is thereby a
consequence of, a theorem that has been proved.

3.13	 What	Is	a	Mathematical	Proof?
In logical terms, a theorem consists of some propositions  
called hypotheses and a proposition C called its conclusion. A theorem is
true provided  A formal	proof of a
theorem consists of a sequence of propositions, ending with the conclusion

 that are regarded valid. To be valid a proposition may be one of the
hypotheses and may be derived or inferred from the propositions known
earlier. A formal proof with a valid sequence of propositions is called a
valid	proof. Even if one of the propositions is invalid, then the argument is
called a fallacy. A great proof not only establishes the truth of the matter,
but it also enlightens, it is the heart of mathematics, almost a holy concept,
it is what mathematics tick, and the progress of mathematics depends on
proving theorems. It is one of the highest intellectual achievements of
humankind. Those mathematical theorems whose validity can be



demonstrated by only nontrivial proofs are highly regarded for revealing
valuable relationships. Thus akin to saying that a writer’s job is to
construct sentences, a composer’s job is to assemble notes, and an artist’s
job is to draw and color, the job of a mathematician is to establish the truth
of a mathematical statement by providing a proof which remains
unequivocally true from there on. A mathematical proof is essential to
understand, acquire, contribute, and communicate mathematical
knowledge to readers. However, in a proof we leave out steps and make
small leaps and leave details to the reader—because we want to get the
ideas across in the most concise and elegant and effective manner possible.
Mathematical proofs are written by humans, studied by humans, judged by
humans, and appreciated by humans. While mathematicians take
mathematical proofs seriously, not only the layperson but even great
scientists fail to appreciate proofs. When young Harish Chandra Mehrotra
(1923–1983, India-USA) said to his supervisor Dirac that he was troubled
as he could not �ind proof even though he was sure his answer was correct,
Dirac said “I don’t care about proofs, I want to know the truth!” It has to be
pronounced that while in sciences, and certainly in everyday life, we tend
to accept the truth of a principle when experiments repeatedly con�irm it,
in mathematics any number of cases, though perhaps suggestive, are by no
means a proof. We also note that in geometry SSS, the letters stand for
“Side-Side-Side,” and it means if you have two triangles and you can show
that the three pairs of corresponding sides are congruent, then the two
triangles are congruent. This is a postulate, not a theorem, meaning that it
cannot be proved, but it appears to be true, so everybody accepts it. We
begin with the following quotations:

A proof is a matter not of external discourse but of meditation within
the soul. (Aristotle)
Faith is different from proof; the latter is human, the former is a Gift
from God. (Pascal)
Mathematical proofs, like diamonds, are hard as well as clear, and will be
touched with nothing but strict reasoning. (John Locke)
Gauss used to boast that an architect did not leave up the scaffolding so
that people could see how he constructed a building. Just so, a
mathematician does not leave clues as to how he constructed or found a
proof. (Gauss)
A proof is a sequence of formulae each of which is either an axiom or
follows from earlier formulae by a rule of inference. (Hilbert)



Mathematicians can never put onto paper the complete process of
reasoning, but rather must settle for such an abstract of the proof as is
suf�icient to convince a properly instructed mind. (Bertrand Russell)
Proof is an idol before which the mathematician tortures himself.
(Eddington)
Every scienti�ic theory is a system of sentences which are accepted as
true and which may be called laws	of	asserted	statements or, for short,
simply statements. In mathematics, these statements follow one another
in a de�inite order according to certain principles, and they are, as a rule,
accompanied by considerations intended to establish their validity.
Considerations of this kind are referred to as Proofs, and the statements
established by them are called Theorems. (Alfred Tarski, 1902–1983,
Poland-USA)
Rigor is to the mathematician what morality is to man. (André Weil,
1906–1998, France)
An elegantly executed proof is a poem in all but the form in which it is
written. (Morris Kline)
A proof tells us where to concentrate our doubts. (Morris Kline)
The sequence for the understanding mathematics may be: Intuition,
trial, error, speculation, conjecture, proof. The mixture and the sequence
of these events differ in different domains, but there is general
agreement that the product is rigorous proof-which we know and can
recognize, without the formal advice of the logicians. (Leslie Saunders
Mac Lane, 1909–2005, USA)
Physics has provided mathematics with many �ine suggestions and new
initiatives, but mathematics does not need to copy the style of
experimental physics. Mathematics rests on proof–and proof is eternal.
(Mac Lane)
Only professional mathematicians learn anything from proofs. Other
people learn from explanations. (Ralph Philip Boas Jr. 1912–1992, USA)
Proofs aren’t there to convince you that something is true—they are
there to show you why it is true. (Andrew Mattei Gleason, 1921–2008,
USA)
Proof is the glue that holds mathematics together. (Michael Atiyah)
The overwhelming majority of research papers in mathematics is
concerned not with proving, but with reproving; not with axiomatizing,
but with reaxiomatizing; not with inventing, but with unifying and
streamlining; in short, with what Thomas Kuhn (1922–1996, USA) calls
“tidying up.” (Rota)



A good proof is one that makes us wiser. It is just like the solution to
Pell’s equation

it simply does not increase our understanding of the equation
 (Yuri Ivanovich Manin, 1937–2023, Russia)

Modern mathematics is nearly characterized by the use of rigorous
proofs. This practice, the result of literally thousands of years of
re�inement, has brought to mathematics a clarity and reliability
unmatched by any other science. But it also makes mathematics slow
and dif�icult: it is arguably the most disciplined of human intellectual
activities. Groups and individuals within the mathematics community
have from time to time tried being less compulsive about details
arguments. The results have been mixed, and they have occasionally
been disastrous. (Arthur Michael Jaffe, born 1937, USA, and Frank
Stringfellow Quinn, III, born 1946, Cuba-USA)
There are no theorems in analysis–only proofs. (John Brady Garnett,
born 1940, USA)
…it is impossible to write out a very long and complicated argument
without error; so, is such a “proof” really a proof? (Aschbacher)
Indeed, every mathematician knows that a proof has not been
‘understood’ if one has done nothing more than verifying step by step
the correctness of the deductions of which it is composed, and has not
tried to gain a clear insight into the ideas which have led to the
construction of this particular chain of deductions in preference to every
other one. (Bourbaki Group in an article entitled “The architecture of
mathematics”)
Proofs remain important in mathematics because they are our signpost
for what we can believe in, and what we can depend on. They are
timeless and rigid and dependable. They are what hold the subject
together, and what make it one of the glories of human thought. (Krantz
[317])
Mathematical proof no longer had a valid role in modern thinking. (John
Horgan, born 1953, USA, see [268], also see amendment by Krantz
[315])

Polya in his book of 1945 How	to	Solve	It suggested the following
brilliant four steps when solving a mathematical problem: 1. First, you



have to understand the problem. 2. After understanding, make a plan. 3.
Carry out the plan. 4. Look back on your work. How could it be better?

Now we shall discuss frequently used methods of proofs and illustrate
how these work in practice. It is important to notice that only one type of
proof does not work for all results, so out of several different types of
known proofs one has to be clever to choose the right method which
provides the cleanest result.
Geometric	Proofs. It is likely that the idea of demonstrating a
conclusion �irst arose in connection with geometry, which originally
meant the same as “land measurement.” Like all other types of proofs,
geometric proofs are the demonstration of a mathematical statement,
true or false, using logic to arrive at a conclusion. In a geometrical proof
we draw a �igure(s) to clearly visualize what are the given statements
and what has to be proved. Mostly we learn geometric proofs in high
school, and this later forms the basis of understanding higher
mathematics. The following two examples illustrate most of the aspects
of geometric proofs.
We shall prove that the angle subtended by a diameter of a circle at any
point in the circumference is a right angle. This result is known as
Thales Theorem; however, it was known earlier to Babylonians and
Indians. It is a particular case of the inscribed angle theorem mentioned
and proved in Euclid’s Elements (III:31). To visualize this result, we �irst
draw Fig. 3.2.

Fig.	3.2 Thales theorem

We are given a circle whose center is at  diameter is  and an
arbitrary (but �ixed) point B is on its circumference. We need to show that

 Clearly, , and hence  and
 are isosceles triangles. Thus,  and

 Now since the sum of the angles of a triangle is equal
to  in the  we have



and hence 
We shall show that the internal bisector of an angle of a triangle divides
the opposite side internally in the ratio of the corresponding sides
containing the angle. For this, �irst we draw Fig. 3.3.

Fig.	3.3 Bisector of an angle

We are given triangle ABC and AD the internal bisector of 
which meets BC at  We need to prove that  We
draw a line  (  stands for parallel) which meets the extended
line BA at  Since  and the line AC is the transversal, it follows
that  We also have  and

 Combining these three relations, we �ind that
 Thus, in view of sides of opposite to equal angles are

equal, it follows that  Now since in , it
follows that 

Empirical	and	Heuristic	Proofs. We provide the following examples of
empirical and heuristic proofs due to Newton and Euler, which were
later demonstrated regressively and became jewels of mathematics.
In 1665, Newton	developed	binomial	expansion (2. 1) empirically. For this,
we recall Pascal’s triangle (see Agarwal and Sen [14] for its origin; it has
various applications in mathematics and interesting hidden secrets
which have caught the interest of numerous mathematicians) which is
based on binomial coef�icients (2. 3).

Going a step further to Wallis, Newton calculated the area of the
sequence of curves  from 0 to an arbitrary
value x (compared to the �ixed value 1), i.e.,



and then realized that the coef�icients of the various powers of x satisfy

which leads to Pascal’s triangle (Fig. 3.4). Newton was originally interested
in computing the area of a circle, and for this he needed the values in the
column corresponding to  (see Sect. 8. 13). To �ind these values, he
simply interpolated the binomial coef�icients (2. 3) and the entries in the
column  he found



Fig.	3.4 Pascal’s triangle
Newton could now �ill in the table for columns corresponding to

 for any positive integer  He recognized further that in the
original table (Pascal triangle) each entry was the sum of the number to its
left and the one above that. If, in his table with extra columns interpolated,
he amended that rule marginally to read that each entry should be the sum
of the number two columns to its left and the one above that, the new
entries found by the binomial coef�icient’s formula (2. 3) satis�ied that rule
as well. Not only did this give Newton con�idence that his interpolation
was correct but also convinced him to add columns to the left
corresponding to negative values of  The sum rule made it clear to him
that in the column  the �irst number had to be  while the next
number had to be  since  and 0 was the second entry in
the column  Similarly, the third number in the  column was

 the fourth , and so on. Of course, the binomial coef�icient formula
gave these same alternating values of 1 and  as well. Newton’s
interpolated table for calculating the area under  from 0 to x
was then the following:



Newton soon realized that, �irst, there was no necessity of dealing only
with fractions with denominator  The multiplicative rule for  would
apply for any fractional value of  positive or negative. Second, he realized
that the terms  for n integral “could be interpolated in the same
way as the areas generated by them; and that noting else was required for
this purpose but to omit the denominators  etc., which are in the
terms expressing the areas” (and, of course, reduce the corresponding
powers by 1). Finally, there was no reason to limit himself to binomials of
the form  With appropriate modi�ication, the coef�icients of the
power series for  for any value of n could be calculated using the
formula for the binomial coef�icients. Thus, Newton had discovered,
although hardly proved, the general binomial theorem. He was, however,
completely convinced of its correctness because it provided him in several
cases with the same answer that he had derived in other ways. The
convergence of Newton’s general binomial theorem was proved only in
1826 by Abel.

In 1740, Philippe Naudé (1684–1745, France) observed the following
relation  where  is the number of ways of writing n
as the sum of distinct whole numbers, and  is the number of ways
of writing n as the sum of odd numbers (not necessarily distinct). To
better understand what Philippe wanted to prove, we consider 
so that  i.e., 
and hence there are exactly 6 ways of writing 8 as the sum of distinct
whole numbers, and

i.e., , and hence there are exactly six ways of writing 8 as the
sum of odd numbers. Philippe wrote a letter to Euler inquiring about
this problem, and within days, Euler sent back a heuristic	proof of

 for all natural numbers  First Euler wrote

and realized that



Now recalling the geometric series

(3.1)

which converges to  as  provided  (this was
shown by Madhava), i.e.,

(3.2)

Next Euler introduce  where

and noticed that

which is the same as

Euler then recognized that

Finally, to prove that  for all  we need to only show that
 i.e.,



For this, we multiply and divide  by
 to obtain

which is the same as

and hence

The following example is also of heuristic	proof	appeared	in	a 1747
memoir	of	Euler. It offered a “most extraordinary law of the number
concerning the sum of their divisors.” For ease of exposition, we shall
adopt today’s notation  sum of all divisors of n (including 1 and
n). For instance,  and  iff n is a
prime. Euler devised a table of  for n in the range  It
looks pretty erratic.

(The table is self-explanatory. For instance, the entry in the row labeled
40 and column labeled 7 is )

He then gave the rule, the recurrence relation



(3.3)

where (i) the signs  and  each arise in succession, (ii) the sequences
continue as long as the number under the sign  is nonnegative (so
sequence stops somewhere), (iii) if  turns up, it is to be interpreted as

 (iv) the sequence  follows the
pattern in which differences between consecutive terms are

 As illustration, Euler computed a few
examples to convince the reader of the validity of his rule. He then said
“The examples that I have just developed will undoubtedly dispel any
qualms which we might have had about the truth of my formula.” He
continued “I confess I did not hit on this discovery by mere chance, but
another proposition opened the path to this beautiful property—another
proposition of the same nature which must be accepted as true although I
am unable to prove it.” What Euler referred to is his investigation of the
in�inite product

in 1741. This investigation was motivated by the problem of Naudé. By
actually computing the product, Euler observed that the pattern came out
as

Euler noticed that alternate exponents formed two sequences

The �irst sequence is that of pentagonal numbers of the general form
 (see Sect. 7. 5). The second sequences is obtained from the

�irst by adding, respectively,  i.e., with nth term being
 Thus, Euler observed that the following remarkable formula

might hold:



According to Euler,“this is quite certain, although I cannot prove it.”
However, he did prove it 10 years later. He could not possibly guess that
both series and product were part of the theory of elliptic modular
functions developed by Jacobi 80 years later! Euler in his 1747 memoir
further said “As we have thus discovered that those two in�inite
expressions are equal even though it has not been possible to demonstrate
their equality, all the conclusions which may be deduced from it will be of
the same nature, that is, true but not demonstrated. Or, if one of these
conclusions could be demonstrated, one could reciprocally obtain a clue to
the demonstration of that equation; and it was with this purpose in mind
that I maneuvered those two expressions in many ways.”

Euler applied calculus to “explain” his proposed rule (3.3). He assumed
that the observation about the equality of the series and product was
correct, i.e.,

Then

from the product, and hence

which is the same as

(3.4)

Also,



from the series,

(3.5)

Putting  he obtained from (3.4) by expanding each term
as a geometric series

Each power of x arises as many times as its exponent has divisors, and
each divisor arises as a coef�icient of the same power of  (For example,
terms involving  yield  with  being all the
divisors of 6.) Hence,  From
(3.5) he obtained

Substituting the new expression for  he obtained �inally

The coef�icient of  is

continued as long as the number under the sign  is nonnegative, and if
 arises, substituted by  which is the same as (3.3). He then said

“This reasoning, although still very far from perfect demonstration, will
certainly lifts some doubts about the most extraordinary law that I
explained here.”



The following example shows reliance on formal manipulation and
careless handling of limits and convergence of Euler in 1748. To �ind the
familiar series expansion of  he begins with a number  and �irst
writes  where w is taken to be an in�initely small number
and k is a constant depending only on  For any real number  he puts

 so that

which can be expanded by Newton’s binomial expansion (2. 1) into

Because w is in�initely small, j will be in�initely large; this allowed Euler
of passing to the limit, to assume that

Thus, he concluded that

so that, when 

Because the number e is the value of a when  (Euler identi�ied k
with  which is being equal to ), it follows that

(3.6)

To Euler this series well suited for computing  in fact, in 1748, he
obtain a numerical value to 23 decimal places:

He also used formal manipulations to derive the in�inite series
expansions of the sine and cosine functions. Euler began with the relation



(2. 7) with  signs, i.e.,  The two
choices of signs allowed him to solve for  as

Euler then assumed z to be an in�initely small number and n to be an
in�initely large one, so that  and

Substituting and simplifying, this gave him the series for  as

Finally, in view of the sizes of z and  he concluded that nz will be a �inite
quantity, say  This transforms the series to the well-known form
(2. 16). Reasoning along similar lines, he presented the in�inite series for

 as (2. 17).
Principle	of	Mathematical	Induction. According to Polya, “induction is
the process of discovering general laws by the observation and
combination of particular instances. It is used in all of science, even in
mathematics. Mathematical induction is used in mathematics alone to
prove theorems of a certain kind.” In fact, mathematical induction is not
a method of discovery but a technique of proving rigorously what has
already been discovered. It is very likely that al-Karkhi (953–1029, Iraq)
was the �irst to use mathematical induction to validate his discoveries of
the general binomial theorem and Pascal’s triangle. This was followed by
Francesco Maurolico (1494–1575, Italy), who used the method of
mathematical induction to establish a variety of properties of integers.
In 1838 De Morgan presented the �irst clear explanation of the method
of mathematical induction, a term that he coined. Mathematical
induction is used to establish the truth of an in�inite list of propositions
which depend on natural numbers. This method can be described as
follows: All the propositions  where  is an
integer, are true provided (i)  is true, and (ii)  implies 
for all  The �irst step (i) is called the basis	of	induction,



whereas the second step (ii) is called the inductive	step. The principle of
mathematical induction is also called the “Domino Principle.” In fact, we
push the �irst domino (the initial step). This falling domino then pushes
the next one, which in turn pushes the next one, which in turn pushes
the next one, “ad in�initum” (the induction step). We shall illustrate this
method in the following examples.
For all integers , the following inequality holds:

(3.7)

Let  Clearly,  is true (basis of
induction). Now suppose that  is true for a given natural number

 Then, from (3.7), we have

(3.8)

and

which implies

(3.9)

Combining (3.8) and (3.9), we get

Hence,  holds (inductive step) whenever  holds. By the
principle of mathematical induction, we conclude that  is true for all

We shall show that the binomial	theorem (2. 4) holds. For this, we let
 Clearly,  is true (basis of

induction). To show the inductive step, we need Pascal’s identity in the
form



(3.10)

which follows immediately from (2. 3). Now we have

In relation to harmonic series, the number de�ined by

where , is called a Harmonic	Number, and it arises frequently in
the analysis of computer algorithms. We shall show that for all 

 Clearly,  is 
Since  (the basis of induction) is true. For the inductive
step, we assume that for  is true, that is,

 Now  has the left side
, and because  is true, in view of the

de�inition of  we have

Hence  is true whenever  is true.
We shall prove that well-ordering principle follows by mathematical
induction (in fact both are equivalent). Precisely we shall show that for
any �ixed integer  any non-empty set of integers  has a least



element. For this, let S denote the set of integers  with no least
member and let : Every element of S is greater than or equal to 
By de�inition of  is true. Suppose that  is true for some

 We have to prove that  is true. Assume the contrary. If
 is false, then some number  is in  But  is true.

So no number  is in  Hence  the only integer 
and not  will be in S and will be the least element of  This is
impossible because  Thus if  is true, so is  By
induction,  is true for all  and hence S is empty. So there cannot
be a set S with integers  having no least element. This establishes
the truth of the well-ordering principle.
Direct	Proofs. A direct proof is a way of showing the truth or falsehood
of a given statement by a straightforward combination of established
facts, usually axioms, existing lemmas, and theorems, without making
any further assumptions. For example, we shall show that for every
natural number n with two or more digits, the product of the digits of n
is less than  For this, in view of (2. 5), n can be written as

 Thus, the product of the digits of
n is  Now since each  it follows that

 As another example, we shall
demonstrate that there exists a power of 7 that has exactly 100 digits.
For this, �irst we note that  leads to the sequence of
digits  Now since,  it
follows that  has more than 100 digits. As a �inal step, we need to
show that the sequence S does not skip any natural number. We assume
that  has s digits; then since  and  has

 digits,  has either s digits or  digits. In conclusion, there
exists at least one k so that  has exactly 100 digits.

Given two integers  and  we say a divides b or a is a divisor of b
(written as ) if there is an integer c such that  If a does not
divide  then we write  For example,  but  The
divisibility of numbers is encountered constantly in practice and also plays
an important role in some questions of mathematical analysis. In the
following result we establish some basic properties of divisibility.



Theorem	3.1 Let  and	c	be	integers	with 

(i). If  then  
(ii). If  and  where  then  
(iii). If  and  then  for	all	integers	x	and  
(iv). If  and  where  then  i.e.,  
(v). If  where  then  
(vi). If  then  The	integer  is	called	the	conjugate	divisor	of  

Proof For part (i), let  Then there exists an integer q such that
 Therefore,  Since qc is an integer, 

For part (ii), let  and  Then there exist integers  and  such
that  and  Consequently, 
Since  is an integer, 

For part (iii), let  and  Then there exist integers  and  such
that  and  Hence, for integers x and

 Since  is an
integer, 

For part (iv), let  and  Then it follows that  and 
for some integers  and  Therefore, 
Dividing by  we obtain  Hence  or 
Therefore 

For part (v), let  Then it follows that  for some integer 
Furthermore,  since  So  Hence,

For part (vi), it suf�ices to note that  █

Theorem	3.2	(Euclidean	Division) If	a	and	b	are	integers	such	that
 then	there	exist	unique	integers	q	(called	quotient)	and	r	(called

remainder)	such	that  and 



Proof If  then we have  and  If  and  we let
S to be the set of natural numbers of the form 
Clearly,  and hence S is non-empty. Thus by the well-
ordering principle, S has a least element, say,  If 
then  but this implies that  If  then

 which implies that  and 
However, this contradicts our de�inition of  Therefore, it is necessary
that  To show uniqueness, suppose that

 where  But this implies that
 i.e.,  and hence 

which is impossible. Thus, r is unique, and this in turn implies that q is also
unique. █

The proof of Theorem 3.2 can be easily modi�ied to prove the following
corollary.

Corollary	3.1 If	a	and	b	are	integers	such	that  then	there	exist
unique	integers	q	and	r	such	that  and 

As examples, for  we have  and hence
 for  we have  and hence

 and for  we have  and
hence 

We say that d is the greatest	common	divisor of integers a and b
(written as ) iff (i) d is a common divisor of a and  i.e., 
and  and (ii) d is the greatest such divisor, i.e., if  and  then

 For example,  It is clear that if a
and b are not both zero, then the set of common divisors of a and b is a set
of integers that is bounded above by the largest of  and  Hence, by
the well-ordering principle for the integers, the set has a largest element,
so the  exists, unique, and  Furthermore, if
a and b are nonzero integers, then from the de�inition it follows that

(3.11)

also for a nonzero integer  Hence, we can assume that
both a and b are positive. The greatest common divisor of arbitrary



number of integers  denoted as  is
de�ined analogously.

Lemma	3.1 If  then 

Proof Let  Since  and  it follows from 
that  Thus d is a common divisor of b and  Now let c be any common
divisor of b and  i.e.,  and  but then from  it follows that

 Thus c is also a common divisor of a and  and hence  Now
from the de�inition it follows that  █

Theorem	3.3	(Euclidean	Algorithm) If	a	and	b	are	integers	such	that
 and

then	for	n	large	enough,	say  we	have

and 

Proof The strictly decreasing sequence  cannot
contain more than b integers. This means that one of the remainders must
be zero. Suppose that it is ; then  Now from a
successive application of Lemma 3.1, we have

█

For integers a and  an integer of the form  where , is
called a linear	combination of a and  The following result is due to
E� tienne Bézout (1730–1783, France).



Theorem	3.4 If	a	and	b	are	integers	and  then	there	exist
integers	x	and	y	such	that  In	fact,

Proof To prove this result, we shall use Euclidean algorithm backward. In
fact, successively, we have

This represents d as a linear combination of  and  Next, we
eliminate  by using  to get

We continue eliminating the remainders  until we get
integers x and y such that  █

In Theorem 3.4 the integers x and y are not unique. Indeed, if
 and  then  is as well.

Furthermore, from Theorem 3.4 the following corollaries follow.

Corollary	3.2 Let	a	and	b	be	two	integers,	not	both  Then ,
and	if	c	is	any	common	divisor	of	a	and  then 

Proof Since  there exist integers  and  such that
 Since  and  it follows by Theorem 3.1(iii) that c

divides  Therefore,  █

Corollary	3.3 Let	a	and	b	be	integers,	not	both  Then	a	and	b	are
relatively	prime	(coprime),	i.e.,  iff	there	exist	integers	x	and	y
such	that 

As examples to Corollary 3.3, we have  because
 and for every positive integer n and

every integer   because



Let  be a sequence of positive integers for which
 and  Then 

and  are relatively prime for every nonnegative integer  For this,
�irst we note that if  then

 Indeed, if ,
then since  and  it follows that  or 
which is a contradiction since  Now using mathematical
induction, we shall show that  Since

 the initial step is clear. For the inductive
step, we assume that  then

 and if 
then  For this sequence it also
follows that  for all n by repeatedly applying 
Erdös asked Lajos Pósa (born 1947, Hungary) to prove that if you
choose  integers from 1 to  at least two of them are relatively
prime. In an instant, Pósa realized that when you choose more than half
of the numbers from 1 to  two of them must be consecutive, and
consecutive numbers are always relatively prime.
As examples of the Euclidean algorithm, we have

and hence  and  From the
procedure given in Theorem 3.4, it also follows that

We say that m is the least	common	multiple of positive integers a and b
(written as ) if it is the smallest positive integer that is
divisible by both a and  For example,

 The relation between  and 
of two positive integers a and b is  Indeed,
clearly if  then  and since if 



then  and hence  which in
view of  impels that 

Gauss in his 1798 in�luential treatise Disquisitiones	Arithmeticae
(systematizing the then-completely unsystematized theory of numbers
and making out a path for others to follow gratefully), which was �irst
published in 1801, introduced the concept of congruence, which later
became a powerful technique. He explained that he was induced to adopt
the symbol  because of the close analogy with algebraic equality.
According to Gauss, “if a number n measures the difference between two
numbers a and  then a and b are said to be congruent with respect to 
if not, incongruent.” In the form of a mathematical de�inition, this becomes
the following: Let n be a �ixed positive integer. Two integers a and b are
said to be congruent modulo  symbolized by  if n divides
the difference  that is, provided that  for some integer 
This relation is read as “a is congruent to b modulo n.” For example,

 It
is to be noted that any two integers are congruent modulo  whereas two
integers are congruent modulo 2 when they are both even or both odd. It is
also clear that if  and  for some integers  and 
then  Thus, if  then each integer a is congruent,
modulo  to precisely one of the integers  Here r is
called a least	positive	residue of a mod  if  then r is
called a least	or	absolutely	least	residue of a mod  Hence, in particular, if
n is an odd integer, then  or  (primes of the form

 have been named as Pythagorean	primes, whereas of the form
 as Gaussian	primes) for some integer  The following result is a

useful characterization of congruence modulo n in terms of remainders on
division by 

Theorem	3.5 For	a	and	b	arbitrary	integers,  iff	a	and	b
leave	the	same	nonnegative	remainder	when	divided	by 

Proof If  then  for some integer  On division
by  we �ind that b leaves a certain remainder  i.e.,  where

 Therefore, 
which shows that a has the same remainder as  Conversely, suppose we
can write  and  with the same remainder



 Then,  whence
 i.e.,  █

Congruence can be viewed as a generalized form of equality, in the sense
that its behavior with respect to addition and multiplication is reminiscent
of ordinary equality. Some of the elementary properties of equality that
carry over to congruences appear in the next theorem.

Theorem	3.6 Let  be	�ixed	and  be	arbitrary	integers.	Then
the	following	properties	hold:
(1).  (re�lexive	property).  
(2). If  then  (symmetric	property).  
(3). If  and  then  (transitive

property).  
(4). If  and  then  and 
(5). If  then  and  
(6). If  then  for	any	positive	integer  
Proof For any integer  we have  so that 
and hence property (1) follows. Now if  then 
for some integer  Hence,  and since  is an
integer, this yields property (2). To show property (3), note that there exist
integers p and q such that , and hence

 which implies  i.e.,
 which is the same as  Similarly, if 

and  then there exist integers r and s such that
, and hence

; thus
 Similarly, we have



 i.e., 
This completes the proof of property (4). Property (5) is a special case of
properties (4) and (1). The proof of property (6) is by induction. The
statement obviously holds for ; now we assume it is true for some
�ixed  From property (4), it follows that  and

 together imply that  or equivalently
 █

Congruence reduces considerably the labor in certain types of
computations. Properties (1)–(3) in Theorem 3.6 con�irm that
congruence is an equivalence	relation. The relation 
does not imply  for example,  but

 however, later we shall show that it holds if
 and in general, if , then 

The general congruence upon which the ancient method of checking a
computation by “casting out nines” rests is  If we look
at all numbers for the same modulus, we �ind that they fall into nine
different groups:

Every number falls in one of these nine groups and no number in more
than one group.
We shall show that every palindromic integer with an even number of
digits is divisible by 11. For this, let a palindromic integer m have 2n
digits and can be written as  We
expand this as



Since  in view of Theorem 3.6(4) and (6), the above
expression on taking (mod 11) leads to

which is the same as

and hence 
Let  be a sequence of positive integers generated by the recurrence
relation  Then,  and  are
relatively prime. For this by induction, it follows that

 Clearly, it suf�ices to show that for a given
 for each  and  are relatively prime. We de�ine

 From Theorem 3.4, it is known that

Now since  we have

and hence, from Corollary 3.3, 
For an alternative veri�ication of the above result, we let p be a prime

that divides at least one  Let q be the smallest k such that p divides 
We shall show by induction on n that  Thus, p does not
divide  So any prime divides at most one of the  which implies that

’s are pairwise relatively prime. For the initial step, we have
 For the inductive

step, we let ; then

Congruence is used to describe cycles in the world of the integers. For
example, the day of the week is a cyclic phenomenon in that the day of
the week repeats every 7 days. In fact, it can be utilized very accurately
with the help of astronomers’ concept of the Julian day. To avoid the



confusion which results from months and years of unequal lengths, they
number the days consecutively from January 1, 4713 BC, the beginning
of the Julian era. January 1, 1930, which fell on Wednesday, was by this
numbering Julian day  With this information and the
congruence relationship based on the modulus 7, we can compute

January 1,1930 J.D. 2,425,978 2(mod 7) = Wednesday
January 1,1960 J.D. 2,436,935 4(mod 7) = Friday

For the Gregorian and Julian calendar, Julius Christian Johannes Zeller
(1822–1899, Germany) in 1883 formulated Zeller’s	congruences: For
determining the day of the week for any given date, his formula is

where D is the day of the month, X is the �irst two digits of the year, Y is
the last two digits of the year,  is the usual greatest integer function,
and M is the month according to the numbering, March , April ,
May , June , July , August , September , October ,
November , December , January , and February .
Because of this wacky numbering, it is important to subtract 1 from the
year when dealing with a date in January and February. For example, the
date of January 7, 1999 gives us  and after
subtracting  Plugging this into the formula gives us

From the code Sunday , Monday , Tuesday , Wednesday ,
Thursday , Friday , Saturday  we see that January 7, 1999 was
on a Thursday.
This problem is from Brahmagupta’s work on congruences. Given that
the Sun makes 30 revolutions through the ecliptic in  days, how
many days have elapsed (since the Sun was at a given starting point) if
the Sun has made an integral number of revolutions plus  of
a revolution, that is, “when the remainder of solar revolutions is ”
If y is the number of days sought and x is the number of revolutions,



then, because 30 revolutions take  days, x revolutions take
 days. Therefore,  or

 Thus, we need to solve  808(mod 1096) and
 (mod 3). ( )

If , and n are integers such that  and x is unknown,
then the linear	congruence is de�ined as  and by a solution
of such an equation we mean an integer  for which  It
is clear that the linear congruence has a solution iff there are integers x
and k such that  The following result provides necessary and
suf�icient condition when a linear congruence has a solution.

Theorem	3.7 Let  Then	the	linear	congruence
 has	at	least	one	solution	iff  Furthermore,	if

 then	the	solution	is	unique	modulo 

Proof We need to show that there exists an integer k such that
 Since  and  it follows that  and hence  for

some  Now from Theorem 3.4 there exist integers r and s such that
; thus  Hence,  is a

multiple of  or  which on letting  is the same
as  Now assume that , and the linear
congruence has two solutions, say, w and  i.e.,  and

 and then  But then in view of
 it follows that  █

Theorem	3.8 Let  If  then	the	linear	congruence
 has	exactly	d	distinct	solutions	modulo 

Proof Let  Then, it follows that
 and  Thus in view of Theorem 3.7, we

�ind that this linear congruence has a unique solution, say,  Now we shall
show that , are the only distinct solutions of the
linear congruence  For this, in view of 
and  we note that



and hence  We also note that

This shows that  has d distinct solutions. To show these are
the only solutions, for �ixed  let  be one
solution and v be any solution (other than obtained d solutions) of

 Then, we have  which implies that
 or  or  for some  Finally, since

u is the least residue  and all least residues  are of the
form  v must be one of these. █

We have seen above that  and hence
 has only one solution  modulo 987;

similarly the only solution of  is 
Furthermore, since , the linear congruence

 has three solutions modulo  To �ind
these solutions, we note that

, and the only solution of  is  Thus, all
the three required solutions are  and

Related with linear congruence there are linear equations of
Diophantine type  however, linear equations were not a part
of Gauss study. In fact, such equations were �irst examined in Sulbasutras,
and Aryabhata used the Kuttaka (pulverize) method to solve these
equations. His method is essentially the same as the Euclidean algorithm,
Theorem 3.3. We state the following result for such equations.

Theorem	3.9 Let ;	then	the	equation  has	a
solution	iff  Furthermore,	if  is	the	solution	of	this	equation,	then	it
has	an	in�inite	number	of	solutions	given	by

The following two examples follow the traditions of Chinese starting as
early as the �irst century.



Consider the following problem: If horses cost 8 coins and cows cost 6
coins, how many of each animal can be purchased for 106 coins. For this,
let x be the number of horses and y be cows; then we are given

 Since  and from the inspection
 is a solution, and from Theorem 3.9, all solutions of this

equation can be written as  Now since x and y
have to be nonnegative integers, we must have  and

 which gives  and hence the integer values of
s are  Therefore, in total there are four solutions,

 and 
Cockerels cost 5 qian each, hens 3 qian each, and three chickens 1 qian.
If 100 fowls are bought for 100 qian, how many cockerels, hens, and
chickens are there? Let  and z be the numbers of cockerels, hens,
and chickens, respectively. Then, we are given the equations

Eliminating the unknown z from these equations, we �ind
 Comparing this equation with , we have

 Now since

it follows that  is a solution of 
Thus, from Theorem 3.9 all solutions of fowls problem can be written as

Next, since the number of fowls must be nonnegative, we must have
 and  which gives  Thus, the

only choices for an integer s are  and these choices
give the following solutions:

 and
 Zhang Qiujian without explaining the method

(perhaps by trial and error) gives only the last three (positive) solutions.



Now we shall prove a result whose origin is third century AD. The
result is extensively used for computing with large integers, as it allows
replacing a computation for which one knows a bound on the size of the
result by several similar computations on small integers. In recent years
this result has found applications in cryptography.

Theorem	3.10	(Chinese	Remainder	Theorem) The	system	of	linear
congruences

(3.12)

where  if  has	a	unique	least	solution
modulo 

Proof Let  Since  if
 it follows that  Thus from

Theorem 3.7, it follows that there exists a unique  such that
 We claim that  is the

required solution. For this, since  for all 
it follows that  for all  Now to show
the uniqueness, let y be also a solution. Then,

 Thus,  This
means  is the common multiple of all  But since

 if  this implies that  and hence
 █

To illustrate Theorem 3.10, we consider the system

Clearly,  satisfy  if
 Since

 it follows
that



Thus, we have

We can verify this solution as

The following problem is from ancient Chinese origin: A band of 17
pirates stole a sack of gold coins. When they tried to divide the fortune
into equal portions, 3 coins remained. In the ensuing brawl over who
should get the extra coins, one pirate was killed. The wealth was
redistributed, but this time an equal division left 10 coins. Again, an
argument developed in which another pirate was killed. But now the
total fortune was evenly distributed among the survivors. What was the
least number of coins that could have been stolen? This problem leads to
the system

Clearly,  satisfy  if
 Since , it

follows that



Thus, we have

We can verify this solution as

Constructive	Proofs. A technique for proving that there is an object
with a certain property such that something happens. To do so,
construct, guess, produce, or devise an algorithm to produce the desired
object. Then show that the object you constructed has the certain
property and satis�ies the something that happens. Until the end of
nineteenth century, all mathematical proofs were essentially
constructive. We shall lay out this method in the following examples.
If  and f are real numbers such that  then the
two equations  and  can be solved for real
numbers x and  For this, we multiply the equation  by 
and the equation  by  and then subtract the two
equations one obtains  From the hypothesis,

 and so dividing by  yields
 A similar argument shows that

Consider the quadratic equation

(3.13)

where for simplicity we assume that  (if  (3.13) reduces to a
linear equation, and if , we multiply the equation by ) and 
are given real numbers. To �ind the solutions of (3.13), we complete the
square to rewrite it as



which gives

and hence the solutions of (3.13) are given by the quadratic	formula

(3.14)

Using �irst the  sign and then the  sign, we get two different
solutions, except when  in which case (3.13) has two
repeated solutions. If  solutions are real and if

, the solutions are complex, which are complex conjugates
of each other.
Theorems 3.2, 3.3, and 3.4 are excellent examples of �inite algorithms
and hence provide constructive methods. The following systematic steps
for �inding the maximum (largest) value in a �inite sequence of integers
is another signi�icant example of a �inite algorithm: 1. Set the temporary
maximum equal to the �irst integer in the sequence, 2. compare the next
integer in the sequence to the temporary maximum, and if it is larger
than the temporary maximum, set the temporary maximum equal to this
integer, 3. repeat the previous step if there are more integers in the
sequence, and 4. stop when there are no integers left in the sequence.
The temporary maximum at this point is the largest integer in the
sequence. On repeating this algorithm we can also arrange all numbers
of the sequence in decreasing order.
A number  real or complex is said to be a root	of	multiplicity  of
the equation  if

 If  then
 is said to be a simple	root. Bolzano’s	bisection	method/algorithm for

�inding a root of the equation  can be described as follows: Let
 be a continuous function, and let 

be such that  (this ensures that the equation 
has a root in ). Now let  be the midpoint of the
interval  If  a zero of  has been found, and the process



terminates here. Otherwise,  and either  or
 We then select a new interval  by taking

either  and  if  or  and  if
 We continue this process, which either will terminate

after a �inite number of steps or will lead to intervals
 such that

(3.15)

(3.16)

or

By this construction the intervals , satisfy

(3.17)

and

(3.18)

From (3.17) and (3.18) it is clear that the sequences  are
monotone, and

Furthermore, from the continuity of  and (3.15), it follows that

Hence,  is a zero of  which lies in each interval
 Thus, from (3.18), we have

(3.19)



Inequality (3.19) is an a priori error estimate. In particular, if we let
 then since  we have

Proofs	by	Disjunction	Elimination. This type of proofs is also known
as proofs	by	cases or simply as proofs	by	elimination. Here we allow one
to eliminate a disjunctive statement (a compound statement formed by
joining two or more statements with the connector “or” ) one by one
from a logical proof.
We shall show that if a is a negative real number, then  is a
maximum of the function  For this, we let x to be a real
number. It suf�ices to show that  or
equivalently,  This is clearly true if

 so we assume that  Then either  or
 Assume that  Because  and 

it follows that  The proof for the case
 is similar.

We shall prove that if n is a positive integer, then either n is prime or n is
a square, or n divides  If  then  is a square and the
proposition is true. Similarly, if  then n is prime and again the
proposition is true. So suppose that  is neither prime nor a square.
Because  is not prime, there are integers a and b with 
and  such that  Also, because n is not square, 
This means that a and b are integers with  That is, a
and b are two different terms of  Thus, 
divides 
Proofs	by	Contrapositive. In this technique instead of proving ,
we prove its equivalent form  i.e., NOT C implies NOT H.
This means we interchange the hypothesis and the conclusion with the
negative statements.
Suppose that S and T are sets of real numbers with  We shall
show that if S is not bounded, then T is not bounded. For this, we shall
assume that T is bounded and show that S is bounded. Hence, there is a
real number  such that, for all  Now let 
Because  it follows that  But then  and so S is
bounded.



To prove the statement that “if n is a positive integer such that
 or  then n is not a perfect square,” we

shall use contrapositive argument to show that “if n is a perfect square
then  or  For this, it suf�ices to note that
if n is even, i.e.,  then  and hence  and
if n is odd, i.e.,  then  and therefore

 We further note that since  is even, if n is odd,
then  For example, 
Generalized	Pigeonhole	Principle states that “if N objects are placed into
k boxes, then there is at least one box containing at least 
objects.” This principle is also called Dirichlet	Drawer	Principle after
Dirichlet who stated this in 1834. To prove this principle, we shall use
contrapositive form. We assume that none of the boxes contains more
than  objects, but then using  the total
number of objects must be

Thus the total number of objects is less than  As an example, in a
party of 200 people, at least  people were born in the
same month.
Contradiction	Method. According to Hardy, “this method is a wonderful
logical tactic. By assuming the opposite of what we intend to show, we
seem to be putting the eventual goal in jeopardy. Yet, in the end, calamity
is averted. He described proof by contradiction as “one of
mathematicians’ �inest weapons. It is far �iner gambit than any chess
gambit; a chess player may offer the sacri�ice of a pawn or even a piece,
but a mathematician offers the game.” Hippocrates invented the proof by
contradiction. Mathematically, for proving that the statement H implies
the statement C, we work forward from the assumption that H and not C
are true to reach a contradiction to some statement that you know is
true. We shall illustrate this method through following examples which
demonstrate certain numbers and certain geometric constructions
cannot exist. We shall also show how it helps in proving the uniqueness
of the solutions and �inding solutions of some puzzles.
Let x and y be real numbers. We shall show that the indeterminate
equation  has no integer solution. For this, we assume



that x and y are integer solutions of  But then,
 implies that  which is not true. This

contradiction establishes the result.
We shall show that if  then  For contradiction we
assume that there exist  so that  But then,

 i.e.,  is even. But this implies that x is even, and hence
there exist  such that  Putting this in our equation leads
to  which is the same as  Since  is
an integer, this means  which is not true.
By construction we have seen that the equations

 have a solution provided  We
shall show that these equations have a unique solution (to prove this we
do not need the existence of a solution). For contradiction, we assume
that  and  are two different solutions of the equations (a
generally used tactics), so that

(3.20)

(3.21)

(3.22)

(3.23)

Subtracting (3.22) from (3.20) and (3.23) from (3.21) yields

(3.24)

(3.25)

Multiplying (3.24) by d and (3.25) by b and then subtracting (3.25) from
(3.24), it follows that  Because, by hypothesis,

 one has  and hence  A similar
sequence of algebraic manipulations establishes that , and thus
the uniqueness is proved. Thus, the obtained solution of these equations
is the only solution.



We shall show that if a is a positive real number, then there is a unique
real number x such that  For contradiction, we assume that x and
y are two different real numbers for which  and  Hence it
follows that  Because  it
must be that  By the quadratic formula,

Now x is real, so it must be that  But then  and this
contradicts the hypothesis that 
We shall use contradiction to show the nonexistence of a quadrilateral
with sides of length  and  We assume the contrary by
assuming that there exists such a quadrilateral. We depict this assumed
quadrilateral in Fig. 3.5.

Fig.	3.5 Assumed quadrilateral
We drew the dotted diagonal which splits the quadrilateral into two

triangles and assumed x be the diagonal’s length. As any side of a triangle
is shorter than the sum of the other two, in  we know

 The same principle applied to  yields 
Combining these inequalities gives  which
certainly contradicts our assumption. In our demonstration, we
considered the sides in the order  and  Clearly, there are other
con�igurations, such as  but similar reasoning still leads to a
contradiction.

Three men (let us name them A,B, and C) have been sentenced to long
terms in prison, but due to over crowed conditions, one man must be
released. The warden devises a scheme to determine which man is to be
released. He tells the men that he will blindfold them and then paint a
red dot or blue dot on each forehead. After he paints the dots, he will
remove the blindfolds, and a man should raise his hand if he sees a red



dot on one of the other two prisoners. The �irst man to identify the color
of the dot on his own forehead will be released. Of course, the men
gladly agree to this. The warden blindfolds the men, as promised, and
then paints a red dot on the foreheads of all three men. He removes the
blindfolds and, since each man sees a red dot (in fact two red dots), each
prisoner raises his hand. Some time passes when A exclaims, “I know
what color my dot is! It’s red!” A is then released. A’s conclusion is based
on contradicting argument. He assumes, to the contrary, that his dot is
blue. Then, B knows A has blue dot and C has red dot (B raised his
hand). Similarly, C knows A has blue dot and B has red dot. As a
consequence, if A has blue dot, both B and C know they have red dot. But
time has passed, and they (B and C) have not determined the color of
their dots; A’s dot must be red.

In the late nineteenth and early twentieth century, there was
controversy in the mathematical world as to whether a theorem is really
proved if it is only proved by contradiction. For example, Brouwer’s
existence proof of his �ixed-point theorem was followed by wholesale
rejection by contradiction. There was a feeling that a proof is stronger and
more convincing if it is not by contradiction. With the rise of computer
science and interest in computability, this became a serious issue in certain
circles. However, after the work of Alan Mathison Turing (1912–1954,
England) who cracked the Enigma code by applying ideas of proof by
contradiction in the context of computing machines, proofs by
contradiction are accepted as valid by all but a tiny number of
mathematicians and computer scientists.
Proofs	Require	More	Than	One	Method. We present some examples
where to prove a statement more than one method is needed.
We shall show that if  then pq is even iff p or q is even. If p or q
is even, then by direct argument pq is even. To show pq even implies p or
q is even, we shall apply contrapositive argument. We assume that both
p and q are odd, i.e.,  and  but then

 Since  is an
integer, pq is odd. As a corollary, if  we have  even iff x is
even.
Let  We shall show that for every integer  is even iff x
is even. First we shall use direct argument to show that if x is even, then

 is even. We let  and then
 Since  is an integer,  is even. To



prove the converse, i.e., if  is even, then x is even, we shall employ
mathematical induction. For this the intimal step that  even implies x
is even we have already proved in the previous example. For the
inductive step we assume that  even implies  is even,
now  is even, but then again from the previous
example either x is even (then the result is proved), or  is even
(then by assumption x is even).
Let  We shall use proof by cases and contrapositive argument
to show that x and y are of the same parity iff  is even. If x and y are
of the same parity, then both are either even or odd. Thus, there exist

 such that  or  But then
 or  However, since

 and  are integers, in both the cases  is even.
Conversely, we shall show that if  is odd, then x and y are of
different parity. For this, there exists  such that 
and hence  Now if y is odd, i.e., 
then  But, since  is an integer, x
must be even. Also, if y is even, i.e., , then

 and since  is an integer, x must
be odd.
Nonconstructive	Proofs. In this form of proof, we establish the
existence of a solution but give no indication as to how it might be found.
We follow Dov Jarden (1911–1986, Israel) work of 1953 to show that
there exist irrational numbers a and b such that  is rational. Consider
the irrational numbers  If the number  is
rational, we are done. If  is irrational, we consider the numbers

 and  so that 

is rational. Note that in this proof we could not �ind irrational numbers a
and b such that  is rational.
In calculus there are several results that allow us to give nonconstructive
proofs, e.g., Extreme Value Theorem, Intermediate Value Theorem,
Rolle’s Theorem, Mean Value Theorem, Cauchy’s Mean Value Theorem,
Darboux Theorem, and many others, see Agarwal et al. [16]. We shall
show that every polynomial with real coef�icients

 of odd degree (n is odd)



has at least one real zero. For de�initeness, we assume that 
Clearly,  is continuous on  Also,  and

 Thus, there exist real numbers a and b such
that  This ensures that there exists an 
such that  In particular, since for the polynomial

 we have  and
 there exists an  such that 

Statistical	Proofs. This type of proofs demonstrates the validity of
propositions only to a certain extent. Often, the conclusions are based on
the experimental data, the facts, and the tests. Statistical proofs are
normally used to convince the public about the current status and
predict the future estimations in physical and social sciences, business,
humanities, government, and manufacturing. While statisticians derive
their conclusions using mathematics heavily, their proofs usually are not
mathematical, rather fall within the branch known as mathematical
statistics. However, in recent years statistical proofs have been
employed even in pure mathematics such as cryptography, chaotic
series, and analytic number theory (uses complex analysis, its
foundations were laid by Euler). Similarly, in probabilistic proofs (e.g.,
based on opinion survey), examples are shown to exist only to certain
degree of con�idence, by using methods of probability theory. As an
example, in 2004, Pascu [407] has given a probabilistic proof of the
fundamental theorem of algebra. It is expected that probabilistic proofs
might become a useful tool for verifying mathematical propositions and
large computations.

3.14	 What	Is	a	Computer-Based	Proof?
In Agarwal and Sen [14] we have provided sizable history of
computational devices beginning from abacus (probably invented in
Babylon in 2400 BC) to electronic	computers (�irst invented by John
Vincent Atanasoff, 1903–1995, USA) and beginning of supercomputers
(unveiled by Seymour Roger Cray, 1925–1996, USA, in 1976, the CRAY-1).
These devises were invented to do from basic arithmetic operations to
encompass mathematical research in areas of science where computing
was the sole alternative and was beyond human capabilities, as it has
zillions of possibilities. In mathematical subjects such as numerical linear
algebra, numerical solutions of ordinary and partial differential equations,



discrete mathematics (e.g., in its search for mathematical structures like
groups), number theory (primarily testing and factorization),
cryptography, and computational algebraic topology, these devices are
immensely used. From late the 1950s programs have been developed so
that computer can rediscover several results of geometry and propose
thousands of conjectures in Graph	Theory (a branch of mathematics),
which mathematicians gladly accepted. Mathematicians (including
computational scientists) also accepted without any doubt algorithms that
were mathematical and computer-assisted rather than computer-based,
for example, see AKS in Sect. 4. 3. However, during the 1970s and 1980s, an
unsettling image entered the mathematical consciousness. It is the image
of computers, with their lightning speed and virtual infallibility, taking
over the job of proving theorems. This compelled mathematicians to
reconsider the very nature of proof, in fact, evoked controversy because it
re�lected a continuing desire for human understanding of a proof, in
addition to knowledge that the theorem is true. Specially, Thurston
suggested that traditional proofs may be set aside in favor of
experimentation, that is, testing of thousands or millions of examples, on
the computer. However, supplying compelling evidence of a fact is not a
proof (see Mertens Conjecture in Sect. 3.17), and hence mathematical
proofs will never be obsolete. In what follows we provide a few examples
where proofs required enormous calculations by computers.

Four	Color	Conjecture/Theorem. The four color conjecture was �irst
proposed in 1840 during his lecture by Möbius; it states that given any
separation of a plane into contiguous regions, producing a �igure called a
map, at most four colors are needed to color the regions of the map so
that no two adjacent regions have the same color. This problem belongs
to graph theory. In 1852, the same conjecture occurred to a student
Francis Guthrie (1831–1899, England-South Africa) when he was
coloring a map of the counties of England. He communicated this
conjecture to his mentor De Morgan. Then within a few years, some of
the best known mathematicians of the time became aware of this
conjecture. For example, in the following map we must make regions

 and C of different colors because they share pairwise boundaries,
but then it would be impossible to color region D unless a fourth color
was introduced.

It is clear that anyone wishing to resolve this conjecture had one of the
two options. Either come up with a speci�ic counterexample—that is, a



particular map—that cannot be colored with four colors or else devise a
general proof that any map can be so colored. For mathematicians a
counterexample proved elusive. Every map they created, no matter how
intricate and convoluted, could be colored with four colors. Then, in 1879,
a London lawyer Alfred Bray Kempe (1849–1922), a former student of
Arthur Cayley (1821–1895, England), published a proof of the four color
conjecture. Others also published alternative proofs, e.g., in 1880, Peter
Guthrie Tait (1831–1901, Scotland). Kempe was honored. However, after
11 years, in 1890, Percy John Heawood (1861–1955, England) identi�ied a
subtle mistake in Kempe’s proof. Other proofs were demolished more
easily, e.g., Tait’s proof was shown incorrect by Julius Peter Christian
Petersen (1839–1910, Denmark) in 1891. Thus the problem returned to
the status of a conjecture. Nevertheless, Heawood was able to use Kempe’s
work to provide an elementary proof of �ive color theorem (�ive colors
suf�ice to color a map). On the other hand, there are maps, e.g., Fig. 3.6, for
which three colors are insuf�icient. So �ive colors are plenty, but three are
too few, and hence it all comes down to 4.

Fig.	3.6 Four color conjecture
To prove four color theorem, in 1976, Kenneth Ira Appel (1932–2013,

USA) with his colleague Wolfgang Haken (1928–2022, Germany-USA) of
the University of Illinois used 1200 hours of a supercomputer time to
perform an extremely complex analysis involving a set of 1936 maps. Their
demonstration also required hundreds of pages of manual analysis, see
[34–37]. However, their computer proof of the four color conjecture
busted dramatically upon the mathematical scene with the resolution. In
fact, their proof was not accepted by all mathematicians because the
computer-assisted proof was infeasible/intractable for a human to check
by hand. Although the proof has gained wider acceptance, doubts continue
to persist, because it can be checked only by another machine. As
mathematician Ronald Lewis Graham (1935–2020, USA) asked when
mulling over this complicated issue, “The real question is this: if no human
being can ever hope to check a proof, is it really a proof?” Till today to this
point the question has no de�inite answer, although as computer proofs
become more common mathematicians will probably feel more



comfortable with them. It is fair to say, however, that most mathematicians
would breathe a sigh of relief if the Four Color Theorem were established
with a two-page proof—short, ingenious, and elegant—rather than with
the brute-force machinations of a computer. Traditionalists long for the
good old days of mathematics unplugged. The shortest known proof of the
Four Color Theorem of 2011 still has over 600 cases, and each case has to
be checked by a computer program.

Party	Problem	(Ramsey’s	Theorem). In 1920s, Frank Plumpton Ramsey
(1903–1930, England) proposed a theory which deals with the
distribution of subsets of elements of sets. His theory has been phrased
as a question about the relationship between people at a party. What is
the minimum number of guests that must be invited to guarantee that at
least m people will all know each other (friends) or at least n people will
all not know each other (enemies)? This number is called Ramsey
number and denoted as  where the integers m and n are greater
than 2. This problem also belongs to graph theory. From interchanging
the concept of friends and enemies, it follows that 
i.e., Ramsey numbers are symmetric. Now, we shall show that

 For this, among a group of n people either there is a pair of
friends, and if not, then every pair of people are enemies. Furthermore,
if we have a group of  people all of whom are enemies of each
other, then there is neither a pair of friends nor a subset of n of them all
of whom are mutual enemies. In 1955, Robert E. Greenwood (1881–
1999, USA) and Gleason computed

 Some other known
Ramsey numbers are

 In 1993,
Stanislaw P. Radziszowski (born 1953, Poland-USA) and Brendan
Damien McKay (born 1951, Australia) employed computer-assisted
proof to show that  which was published in 1995.
Radziszowski and Brendan McKay estimated that their proof consumed
the equivalent of 11 years of computation by a standard desktop
machine. That may be a record, Radziszowski said, for a problem in pure
mathematics. While mathematicians have accepted their result, the
question of computation of  for large m and n is of social and
moral issue. For Ramsey numbers some lower and upper bounds in
terms of numbers  are known, e.g.,  and



 For several particular cases of , much
sharper bounds are known, e.g.,

In the winter of 1988, a team at Concordia University in Canada, led by
Clement Wing Hong Lam (Canada), proved the nonexistence of �inite
projective planes of order 10. Using a CRAY–1A supercomputer from the
US Institute of Defense Analysis (IDA) and VAX machines at Concordia,
they spent 3 years and a total of over 2000 hours of computer time to
complete the proof. No one could guarantee that no mistake had been
made, and, if a mistake was indeed made, it would be dif�icult to
pinpoint whether it was a machine fault or a mathematical error.
The Travelling	Salesman	Problem (in short TSP) was mathematically
formulated by Rowan Hamilton as follows: Given n cities and the
distances between each pair of cities, �ind the shortest path that passes
through each city only once and returns to the city of origin. For this
problem many heuristics and exact algorithms are known, so that some
instances with tens of thousands of cities can be solved completely;
further problems with millions of cities can be computationally
approximated within a small error. Several variations of this problem
also have been studied.

For mathematical proofs several philosophical questions have been
extensively addressed: Does every theorem have a proof? For the same
theorem, why are several proofs useful? Is it the case that proof is
mathematics or mathematics is proof? What is the difference between a
beautiful proof and an ugly proof? What is the role of proof in
understanding the mathematics? Does the concept of a valid proof vary
from culture to culture, as well as from age to age? This list continues.
Earlier we have succinctly answered some of these questions, and we shall
take up some more in Sects. 3.16 and 3.19. We conclude this section with
the remark that like mathematics, a proof cannot be de�ined. We have seen
over the course of 50 years of teaching that there is a constant decline in
the appreciation of proofs; in fact, students try to avoid proofs, and they
are usually happy with numerical or computational examples. If this trend
continues, in the near future the de�inition of proof will be very different.
However, professional mathematicians will de�initely continue seeking
traditional pure mathematical proofs.



3.15	 What	Is	a	Counterexample	in	Mathematics?
To prove a general statement requires a series of logical arguments; to
disprove it requires but a single speci�ic instance in which the statement
fails. The latter is called a counterexample, and a good counterexample is
priceless. However, �inding counterexamples is not as easy as it might
seem; in fact, certain propositions had to wait for many years, while others
have refuted all efforts of great mathematicians.

Consider the statement if a and b are positive numbers; then
 Over the years hundreds of thousands of students

have invoked this very formula, as any mathematics teacher will
con�irm. But it is fallacious, and to show this we need a counterexample.
For this, if  and  then 
whereas  This lone counterexample is enough to
dispose off the statement. Similarly, to show for positive integers

, it suf�ices to consider  and  Indeed,
then we have  whereas 
If n is an odd prime number, then the only possibilities for n are  and

 We consider the statement that for every
natural number  are primes. For such type of
statement which involves natural numbers, a useful �irst step is to
substitute speci�ic numbers k and determine whether the statement is
true. If the statement is false, a counterexample is found quickly,
allowing us to reject the statement. For example, in our statement for

, and  respectively, take the values
, and  Thus,  is not prime for

 and  is not prime for  Hence, our statement is not
true for all natural numbers 
Sophie Germain, living	in	an	era	of	male	chauvinism, wrote to Gauss, in
her letter dated February 20, 1807: “If the sum of the nth powers of any
two numbers is of the form  then the sum of the two numbers
is also of that form.” Gauss in his reply, dated April 30, 1807, gave a
single counterexample to disprove her proposition. He showed that

 is of the
form  but  is not of the form



 Another similar example is

Jacques Ozanam (1640–1718, France) stated “The sum of all the divisors
of  is a prime.” G.W. Kraft gave a counterexample of  showing
that the sum  of all the
divisors of  with sum 511 which is not a prime, since 
Thus Kraft’s single counterexample smashed Ozanam’s statement.

3.16	 Can	Proofs	Be	Exact?
According to Agarwal and Sen [14], “a proof is an explanatory note that
the human senses can perceive and that leads the mind and intellect to
establish the validity of a fact or argument. Proofs express subjective truth,
not universal truth. Since humans have limited perceptive power, there are
innumerable subtle assumptions that must be made during the process of
proof which are beyond human intellect; therefore any proof can never be
exact. This is why we accept whatever truth can be established within our
human limitations. Yet the great Sages and Rishis of history possessed
extraordinarily subtle insight as well as unique experiences, which led
them to establish certain truths. These are known as empirical theories,
and are simply well-founded empirical generalizations or laws about the
properties and behaviors of objects that are obtained by examining a large
number of instances and seeing that they conform without exception to a
single general pattern. These theories could never be questioned and have
withstood the test of time. One accepts such theories because of his total
faith in the wisdom of these sages, or because he believes this to be the
primary (or the sole) path to knowledge.”

It should be noted that proof has different shades of meaning
depending upon the �ield in which it is considered. For example, within the
legal system, the burden of proof in a civil court is “preponderance of
evidence,” whereas in a criminal court it is “beyond a reasonable doubt.”
Furthermore, the proof of one man’s guilt in court does not mean that all
men are guilty, but in geometry we must be able to prove that what is true
of one triangle, for instance, is true of all triangles. In a private or public
workplace, policies are established by the owner or by a set of elected or
appointed individuals, and these policies become the accepted “truth” of
the matter. As a result, every employee is expected to adhere to these
policies, and when an employee is alleged to have violated these policies, it



becomes the responsibility of the owner or the corporation to prove that
such alleged violations of the policies have taken place. In this situation,
the proof may involve altered data, inaccurate document, or lack of
acceptable performance, and so on. In the scienti�ic world, truth is
established by experiments. After hypotheses are proposed, experiments
are conducted, and based on the data gathered and analysis performed,
conclusions are obtained in the form of either statements or mathematical
laws. They are published in scienti�ic Journals for anyone interested to
verify. As soon as a general acceptance takes place in the scienti�ic
community, it serves as the proof, and these conclusions become the
accepted “truth” of that particular scienti�ic idea or concept. In the
business world, statistical analyses of data are performed, and conclusions
are derived. These are published, and after a general acceptance these
conclusions become the accepted “truth” of the matter. In political or
international matters, organizations or group of individuals are entrusted
with �inding the “truth” of a given issue, and they come up with their
conclusion based on classi�ied intelligence reports, site visits, interviews,
and other such activities.

Another way in which a proof can come is in the form of existing
buildings or through archeological discoveries. For example, the fact that
very knowledgeable people existed hundreds of years ago can be inferred
by the existence of the Great Pyramid at Gizeh, whom the Greeks called
Cheops (�lourished around 2680 BC), is one of the most massive buildings
ever erected. It has at least twice the volume and 30 times the mass (the
resistance an object offers to a change in its speed or direction of motion)
of the Empire State Building in New York and is built from individual
stones weighing up to 70 tons each. The slope of the face to the base (or
the angle of inclination) of the Great Pyramid at Gizeh is  The
same angle also appears in the ancient Hindu Srichakra. According to
Herodotus four groups of a hundred thousand men labored 3 months each
over 20 years to build this pyramid; however, calculations show that not
more than 36,000 men could have worked on the pyramid at one time
without bumping into one another. Another example is the existence of
Brihadeeswarar	Temple in the city of Thanjavur, State of Tamil Nadu, India.
This temple is a part of the United Nations Educational, Scienti�ic, and
Cultural Organization’s (UNESCO) World Heritage Sites. This temple
turned 1,000 years old in 2010! However, what was used as a proof, and
therefore accepted, may change with time either due to better
understanding or a new discovery. Furthermore, in scienti�ic



Iraq	and	Weapons	of	Mass	Destruction	(WMD):

Atomic	Theory:

Cold	Fusion:

measurements, due to uncertainty, the absolute truth cannot be found
although we may get extremely close to doing so. These facts are
supported by the following a few examples:

On March 19, 2003, the
United States and Britain with other allies launched Operation Iraqi
Freedom that brought about the end of Saddam Hussein’s regime and
ultimately resulted in his capture. As U.S. forces moved through Iraq, there
were initial reports that chemical and biological weapons might have been
uncovered, but closer examinations produced negative results. Although
several classi�ied information was presented, data reviewed and analyzed,
very serious discussions and debates took place at the United Nations and
across the globe, no major WMD have yet been found. On March 19, 2013,
on the tenth anniversary of the war, National Security Archive released the
brie�ing book of declassi�ied documents which indicates that the US
invasion of Iraq turned out to be a textbook case of �lawed assumptions,
wrong-headed intelligence, propaganda manipulation, and administrative
ad hockery.

In 1913, Niels Henrik David Bohr (1885–1962,
Denmark) developed a model for the atom. He proposed that electrons are
revolving in concentric circles around the nucleus just as planets are
revolving around the Sun. Thus, using this “planetary model,” he
successfully explained the hydrogen spectra. However, this model could
not be extended to other atoms with more than one electron. In 1926,
Schrödinger took Bohr’s model one step further. Using complex
mathematical analysis, he obtained equations (functions) that give the
probability of �inding an electron at a given distance away from the
nucleus of an atom. Thus, Bohr (orbit) model became the Quantum
mechanical (orbital) model of the atom.

Cold Fusion is a hypothetical type of nuclear reaction that
would occur at, or near, room temperature. Hot Fusion takes place
naturally within stars under immense pressure and at very high
temperatures. In 1989, Martin Fleischmann (1927–2012, England) and
Bobby Stanley Pons (born 1943, USA) reported, based on their electrolysis
experiments, that they have observed cold fusion. They also reported that
they measured small amounts of nuclear byproducts, including neutrons
and tritium. These reported results received wide media attention and
raised hopes of a cheap and abundant source of energy. Many scientists



Radiocarbon	Measurements:

Astronomy:

Hindu	Mythology:

tried to replicate the experiment and hopes faded due to the large number
of negative replications, the withdrawal of many positive replications, the
discovery of �laws and sources of experimental error in the original
experiment, and �inally the discovery that Fleischmann and Pons had not
actually detected nuclear reaction byproducts. By late 1989, most
scientists considered cold fusion claims to be dead.

Radiocarbon measurements have a range of
uses, from analyzing archaeological �inds to detecting fraudulent works of
art, to identifying illegal ivory trading, and to assessing the regeneration of
brain cells in neurological patients. Radiocarbon dating works by
measuring how much the fraction of carbon 14 versus nonradioactive
carbon in an object has changed and therefore how long the object has
been around. Fossil fuel emissions could soon make it impossible for
radiocarbon dating to distinguish new materials from artifacts that are
hundreds of years old. Carbon released by burning fossil fuels is diluting
radioactive carbon 14 and arti�icially raising the radiocarbon “age” of the
atmosphere, according to a paper published in the journal Proceedings of
the National Academy of Sciences (PNAS). Using Marine records, research
is on-going to recalibrate carbon 14 dating work that has been done
previously. Although this may shift the ages by only a few hundred years, it
could help narrow the window of key events and therefore our current
understanding of human history.

Recently NASA announced that it found water on Mars in
solid or gaseous form. How was that possible? Based on scienti�ic
experiments, analysis of photographs, etc. This conclusion may be revised,
augmented, or completely negated at a later date. At present, it is not
known how this discovery may change. For example, at one point, Pluto
was considered to be a planet. However, on August 24, 2006, members of
the International Astronomical Union voted on a new de�inition of a
planet, and as a result, Pluto lost its status as a planet.

In the original version of the Valmiki	Ramayana, a
vivid description of a total solar eclipse is given in the �irst 15 slokas of the
23rd sarga of the Aranyakandam, but there is indeed a mention of Rahu as
the cause. It is suggested in the Mahabharata that during the 18-day long
war between the Pandavas and Kauravas, there were only 13 days
between a Full Moon and a possible total solar eclipse presumed to have
been seen over the battle �ield of Kuruksetra. Also, solar eclipse is
mentioned in the Mahabharata, where Lord Krishna skillfully used his



Religion:

Perimeter	of	an	Ellipse:

knowledge of eclipse predictions to save the life of Arjuna, the great
warrior. A sizable portion of the 35th chapter of the Bhagvata	Purana is
devoted to narrating a fable as to why Rahu is responsible for all the solar
and lunar eclipses by “swallowing” the Sun or the Moon. The Surya
Siddhanta gives detailed methods for making ecliptic calculations. It was
around this time that Rahu and Ketu were astronomically de�ined to be the
ascending and the descending nodes of the lunar orbit, intersecting the
plane of the Earth’s orbit. The astronomical signi�icance of Rahu and Ketu
was reduced to mere imaginary points of intersection between the lunar
orbit and the plane of the ecliptic. Clearly, whatever the reason that was
considered a long time ago has changed!

In a religious sense, proof may be dif�icult to even describe. For
example, Sri Chandrasekharendra Saraswati Mahaswamiji (1894–1994,
India), or the Sage of Kanchi, was the 68th Jagadguru of the Kanchi
Kamakoti Peetham. He was usually referred to as Paramacharya,
Mahaswami, or Maha Periyavar. He was widely considered as one of the
greatest Indian sages of recent times. By all accounts, he was considered
as a “living God” by thousands and thousands of individuals. What “Proof”
did they have? None other than PERSONAL EXPERIENCE. How can this be
de�ined and explained? In 1920, while on his death bed, Ramanujan
cryptically wrote down functions that he said were revealed to him by the
goddess Namagiri. Ramanujan believed that 17 new functions that he
discovered were “mock modular forms” that looked like theta functions
when written out as an in�inite sum but were not super-symmetric.
Unfortunately, he could not prove them. After more than 90 years, in 2012,
it was proved that these functions indeed mimicked modular forms but do
not share their de�ining characteristics, such as super-symmetry. How can
the experience of Ramanujan be proved?

In all of these cases mentioned above, we considered examples from
�ields other than mathematics. In what follows we shall show that the
history of mathematics is full of erroneous proofs and why any proof can
never be exact.

In the following list each result is wrongly stated by a leading
mathematician(s), but a modi�ied version was later rigorously proved.

Archimedes proved that the area formula for
an ellipse:  where a and b are the semi-major and semi-minor
axes, respectively. If  this reduces to the well-known formula



Rational	Cubes:

Uniform	Convergence:

Matrix	Multiplication:

for the area of a circle, namely,  Now, consider the square
whose sides are tangential to the circle. The ratio of the area of the
circle to that of its tangential square is  and this ratio happens to
coincide with that of the perimeters of the circle and the square. So, by
analogy, it seems perfectly reasonable to guess that, as the ratio of the
area of an ellipse to that of its tangential rectangle is  it should
also be equal to the ratio between their perimeters. In this case, since
the perimeter of the rectangle is  the perimeter of the ellipse
would be  Note that when 
this reduces to the correct formula (for the perimeter of a circle).
Indeed, Fibonacci did propose this formula, which of course we now
know is wrong. As a matter of fact, the perimeter of an ellipse is not
simple to compute. Ramanujan proposed the following two
approximate formulae  and

Exactly p is also known in terms of in�inite series and integral

In 1798, Legendre claimed that 6 is not the sum of two
rational cubes, which as Gabriel Lamé (1795–1870, France) pointed out
in 1865 is false as 

In his Cours d’analyse of 1821, Cauchy “proved”
that if a sum of continuous functions converges pointwise, then its limit
is also continuous. However, Abel observed 3 years later that this is not
the case. For the conclusion to hold, “pointwise convergence” must be
replaced with “uniform convergence.” As a counterexample, a Fourier
series of sine and cosine functions, all continuous, may converge
pointwise to a discontinuous function such as a step function.

Cayley asserted that if the product of two
nonzero square matrices, A and  is zero, then at least one of the
factors must be singular (non-inevitable). Cayley was correct, but
surprisingly he overlooked an important point, namely, that if 
then A and B must both be singular.



Intersection	Theory:

Dirichlet’s	Principle:

Kronecker-Weber	Theorem:

Wronskians:

Groups	of	order	64:

Grunwald-Wang	Theorem:

Rokhlin	Invariant:

In 1848, Jakob Steiner (1796–1863, Switzerland)
claimed that the number of conics tangent to 5 given conics is

 but later realized this was wrong. The correct number 3264
was found by Ernest Jean Philippe Fauque de Jonquiéres (1820–1901,
France) around 1859 and Michel Chasles in 1864. However, these
results, like many others in classical intersection theory, do not seem to
have been given complete proofs until the work of William Edgar Fulton
(born 1939, USA) and Robert Duncan MacPherson (born 1944, USA) in
1978.

The principle of Dirichlet (the assumption that
the minimizer of a certain energy functional is a solution to Poisson’s
equation) was used by Riemann in 1851 in the study of complex
analytic functions, but Weierstrass found a counterexample to one
version of this principle in 1870, and Hilbert stated and proved a
correct version in 1900.

The proofs of this theorem by Kronecker
in 1853 and Heinrich Martin Weber (1842–1913, Germany) in 1886
both had gaps. The �irst complete proof was given by Hilbert in 1896.

In 1887, Paul Mansion (1844–1919, Belgium) claimed in
his textbook that if a Wronskian (after Józef Maria Hoëné-Wroński,
1776–1853, Poland) of some functions vanishes everywhere, then the
functions are linearly dependent. In 1889, Peano pointed out the
counterexample  and  The result is correct if the functions are
analytic.

In 1930, George Abram Miller (1863–1951, USA)
published a paper claiming that there are 294 groups of order 64.
Marshall Hall, Jr. (1910–1990, USA) and James Kuhn Senior (1935–
2020, USA) in 1964 that the correct number is 267.

Wilhelm Grunwald (1909–1989, Germany)
published an incorrect proof in 1933 of an incorrect theorem, and
George William Whaples (1914–1981, USA) later published another
incorrect proof. Shianghao Wang (1915–1993, China) found a
counterexample in 1948 and published a corrected version of the
theorem in 1950.

Vladimir Abramovich Rokhlin (1919–1984, Russia)
in 1951 incorrectly claimed that the third stable stem of the homotopy
groups of spheres is of order 12. In 1952 he discovered his error: It is in



Nielsen	Realization	Problem:

Classi�ication	of	N-Groups:

fact cyclic of order 24. The difference is crucial as it results in the
existence of the Rokhlin invariant, a fundamental tool in the theory of 3-
and 4-dimensional manifolds.

Saul Kravetz (127–1974, USA) claimed to
solve Jakob Nielsen (1890–1959, Denmark) realization problem in 1959
by �irst showing that Teichmüller space is negatively curved, but in
1974 Howard Masur (USA) showed that it is not negatively curved.
Finally, the problem was solved in 1980 by Steven Paul Kerckhoff (born
1952, USA).

The original statement of the classi�ication
of N-groups by John Griggs Thompson (born 1932, USA) in 1968
accidentally omitted the Tits group, though he soon �ixed this.
The following is the list of proofs which were originally shown to be
wrong.

In 1803, Giovanni Francesco Giuseppe Malfatti (1731–1807, Italy)
claimed to prove that a certain arrangement of three circles would
cover the maximum possible area inside a right triangle. However, to
do so he made certain unwarranted assumptions about the
con�iguration of the circles. It was shown in 1930 that circles in a
different con�iguration could cover a greater area, and in 1967 that
Malfatti’s con�iguration was never optimal.
In 1806, André Marie Ampére (1775–1836, France) claimed to prove
that a continuous function is differentiable at most points, but in 1872
Weierstrass surprised the mathematical community by giving the
following function which is continuous everywhere, but nowhere
differentiable

where a is a real number with  is an odd integer, and
 We also have nowhere continuous functions, e.g., in

1829 Dirichlet de�ined the function  by

In fact, for this function  does not exist at any 



In 1878, Cayley incorrectly claimed that there are three different
groups of order 6. This mistake is strange because in an earlier 1854
paper he correctly stated that there are just two such groups.
In 1891, Karl Theodor Vahlen (1869–1945, Austria) published a
purported example of an algebraic curve in three-dimensional
projective space that could not be de�ined as the zeros of three
polynomials, but in 1941 Oskar Perron (1880–1975, Germany) found
three equations de�ining Vahlen’s curve. In 1961, Martin Kneser
(1928–2004, Germany) showed that any algebraic curve in projective
3-space can be given as the zeros of three polynomials.
In 1898, George Abram Miller published a paper incorrectly claiming
to prove that the Mathieu group  (after E� mile Léonard Mathieu,
1835–1890, France) does not exist, though in 1900 he pointed out
that his proof was wrong.
In 1900, Charles Newton Little (1858–1923, USA) claimed that the
writhe of a reduced knot diagram is an invariant. However, in 1974,
Kenneth Perko (USA) discovered a counterexample called the Perko
pair, a pair of knots listed as distinct in tables for many years that are
in fact the same.
In 1905, Henri Léon Lebesgue (1875–1941, France) tried to prove the
(correct) result that a function implicitly de�ined by a René-Louis
Baire (1874–1932, France) function is Baire, but his proof incorrectly
assumed that the projection of a Félix E� douard Justin E� mile Borel
(1871–1956, France) set is Borel. Mikhail Yakovlevich Suslin (1894–
1919, Russia) pointed out the error and was inspired by it to de�ine
analytic sets as continuous images of Borel sets.
In 1908, Josip Plemelj (1873–1967, Slovenia) claimed to have shown
the existence of a Fuchsian differential equations with any given
monodromy group (Hilbert’s 21st Problem), but in 1989 Andrei
Andreevich Bolibrukh (1950–2003, Russia) discovered a
counterexample.
In 1911, Hardy and Littlewood announced their �irst joint work at the
meeting of the London Mathematical Society. The result was never
published because they later discovered that their proof was
incorrect.
In 1929, Lazar Aronovich Lyusternik (1899–1981, Poland-Russia) and
Lev Genrikhovich Schnirelmann (1905–1938, Russia) published a
proof of the theorem of the three geodesics, which was later found to



be �lawed. The proof was completed by Hans Werner Ballmann (born
1951, Germany) about 50 years later.
In 1934, Francesco Severi (1879–1961, Italy) claimed that the space
of rational equivalence classes of cycles on an algebraic surface is
�inite-dimensional, but in 1968 David Bryant Mumford (born 1937,
USA) showed that this is false for surfaces of positive geometric genus.
In 1961, Jan-Erik Ingvar Roos (1935–2017, Sweden) published an
incorrect theorem about the vanishing of the �irst derived functor of
the inverse limit functor under certain general conditions. However,
over 40 years later, Amnon Neeman (born 1957, Israel-Australia)
constructed a counterexample.
In 1994 and 1999, Gaoyong Zhang (China-USA) published two papers
in the Annals of Mathematics. In the �irst paper he proved that the
1956 Busemann-Petty	problem in  (after Herbert Busemann, 1905–
1994, Germany-USA, and Clinton Myers Petty, 1923–2021, USA) has a
negative solution, and in the second paper he proved that it has a
positive solution.

The following is the list of proofs for which the status is not clear.
Hilbert’s 16th problem consists of two similar problems in different
branches of mathematics: An investigation of the relative positions of
the branches of real algebraic curves of degree n (and similarly for
algebraic surfaces) and the determination of the upper bound for the
number of limit cycles in two-dimensional polynomial vector �ields of
degree n and an investigation of their relative positions. For the
question whether there exists a �inite upper bound for the number of
limit cycles of planar polynomial vector �ields of degree  Evgenii
Mikhailovich Landis (1921–1997, Russia) and Ivan Georgievich
Petrovsky (1901–1973, Russia) claimed a solution in the 1950s, but it
was shown wrong in the early 1960s. In 1991/1992, Yulij Sergeevich
Ilyashenko (born 1943, Russia) and Jean E� calle (born 1947, France)
showed that every polynomial vector �ield in the plane has only
�initely many limit cycles; however, in an article published in 1823,
Henri Claudius Rosarius Dulac (1870–1955, France) had already
claimed that a proof of this statement contains a gap.
Italian school of algebraic geometry. Most gaps in proofs are caused
either by a subtle technical oversight or before the twentieth century
by a lack of precise de�initions. A major exception to this is the Italian
school of algebraic geometry in the �irst half of the twentieth century,



where lower standards of rigor gradually became acceptable. The
result was that there are many papers in this area where the proofs
are incomplete or the theorems are not stated precisely. This list
contains a few representative examples, where the result was not just
incompletely proved but also hopelessly wrong.
In 1933, George David Birkhoff (1884–1944, USA) and Waldemar
Joseph Trjitzinsky (1901–1973, Russia-USA) published a very general
theorem on the asymptotics of sequences satisfying linear
recurrences. The theorem was popularized by Jet Wimp (born 1934,
England-USA) and Doron Zeilberger (born 1950, Israel) in 1985.
However, while the result is probably true, Birkhoff and Trjitzinsky’s
proof is not generally accepted by experts, and the theorem is proved
only in special cases.
In 1978, Wilhelm Paul Albert Klingenberg (1924–2010, Germany)
published a proof that smooth compact manifolds without boundary
have in�initely many Closed	Geodesics. His proof was controversial, and
there is no consensus on whether his proof is complete.
In 2003, Daniel Kálmán Biss (born 1977, USA) published a paper in
the Annals of Mathematics claiming to show that Matroid	Bundles are
equivalent to real vector bundles, but in 2009 published a correction
pointing out a serious gap in the proof.

Proofs often extend to hundreds of pages or more and are so
complicated that years of intensive study may pass before they are
con�irmed by the handful experts in the �ield. Can we assume 100%
validity of such proofs? Marianne Freiberger (born 1972, Germany)
writes “these days mathematics contains proofs so long and complex
that a few people are able to check and understand them in full, yet once
a result has made it through the peer review process and into a journal,
its truth is taken as read.” We hope over time the essence of such proofs
becomes clearer, and more concise and enlightening versions are
written. The following is a small list of excessively long mathematical
proofs.

In 1799, Paolo Ruf�ini (1765–1822, Italy) almost proved there is no
solution in radicals to general polynomial equations of degree 5 or
higher with arbitrary coef�icients. His 500-pages proof was largely
ignored, but then in 1824, Abel published a proof that required just
six pages. In the literature this result is known as Abel-Ruf�ini
theorem.



In 1890, Wilhelm Karl Joseph Killing (1847–1923, Germany) classi�ied
the complex �inite-dimensional simple Lie algebras and discovered
the exceptional Lie algebras. He published his 180-pages work in four
research papers.
In 1894, Johann Gustav Hermes (1846–1912, Germany) gave the
ruler-and-compass construction of a polygon of 65537 sides in over
200 pages.
In 1905, Emanuel Lasker (1868–1941, Germany) proved in 98 pages a
special case of the result: Every ideal can be decomposed as an
intersection, called primary decomposition, of �initely many primary
ideals. The general result now known as Lasker-Noether theorem was
proved by Amalie Emmy Noether (1882–1935, Germany-USA) in
1921. Present-day less than one-page proofs are known of this
important theorem.
In 1966, Shreeram Shankar Abhyankar (1930–2012, India-USA)
proved the resolution of singularities for three-fold in characteristic
greater than 6 which covered about 500 pages (in the form of several
research papers). In 2009, Steven Dale Cutkosky (USA) simpli�ied this
to 69 pages.
In 1966, Harish Chandra provided the discrete series representations
of Lie groups in a long series of papers totaling around 500 pages. His
later work on the Plancherel theorem (after Michel Plancherel, 1885–
1967, Switzerland) for semisimple groups added another 150 pages.
In 1974, Thompson gave the classi�ication of N-groups in six papers
totaling about 400 pages. He also needed his earlier results, which
brought to total length up to more than 700 pages.
In 1974, Pierre René, Viscount Deligne (born 1944, Belgium) proved
Ramanujan conjecture (about tau function) and Weil conjectures
(about zeta functions of varieties over �inite �ields) in only 30 pages;
however, he used results from algebraic geometry and étale
cohomology that estimated to be about 2000 pages long.
In 1980s, the classi�ication of �inite, simple groups, which originated
around 1890, was completed. The demonstration consists of 500
articles totaling nearly 15000 pages and written by more than 100
workers. It has been said that the only person who grasped the entire
proof was its general contractor, Daniel Gorenstein (1923–1992, USA).
In 1983, Dennis Arnold Hejhal (born 1948, USA) proved a general
form of the Atle Selberg (1917–2007, Norway) trace formula which
consists of two volumes with a total length of 1322 pages.



In 2000, Frederick Justin Almgren (1933–1997, USA) gave a proof of
regularity theorem (the singular set of an m-dimensional mass-
minimizing surface has dimension at most ) in 955 pages.
In 2004, Aschbacher and Stephen Smith (born 1948, USA) published
the classi�ication of the simple quasithin groups in 1221 pages, which
is one of the longest single papers ever written.

Recent research on ancient Indian and Chinese mathematics shows that
there were other methods of investigating mathematical truths and of
making new and useful applications other than commonly accepted
proof methods as described by Euclid. Unfortunately, in all exiting
literature these methods have not either been mentioned or completely
condemned. For example, according to Morris Kline (1972), “as our
survey indicates, the Hindus were interested in and contributed to the
arithmetical and computational activities of mathematics rather than to
the deductive patterns. Their name for mathematics was Ganita, which
means the	science	of	calculation. There is much good procedure and
technical facility, but no evidence that they considered proof at all. They
had rules, but apparently no logical scruples. Moreover, no general
methods or new viewpoints were arrived at in any area of mathematics.”
Hindu mathematicians for proof used the word upapattis (a common
word in Buddhism, Pali, Hinduism, Sanskrit, Jainism, Prakrit, Marathi,
and Hindi). Some of the important features of upapattis in Indian
mathematics are as follows (see Srinivas [494] and Sudhakaran [501]):
1. The Indian mathematicians are clear that results in mathematics,

even those enunciated in authoritative texts, cannot be accepted as
valid unless they are supported by yukti or upapatti. It is not enough
that one has merely observed the validity of a result in a large
number of instances.

 

2. Several commentaries written on major texts of Indian mathematics
and astronomy present upapattis for the results and procedures
enunciated in the text.

 

3. The upapattis are presented in a sequence proceeding
systematically from known or established results to �inally arrive at
the result to be established.

 

4. In the Indian mathematical tradition the upapattis mainly serve to
remove doubts and obtain consent for the result among the  



community of mathematicians.

5. The upapattis may involve observation or experimentation. They
also depend on the prevailing understanding of the nature of the
mathematical objects involved.

 

6. The method of tarka or “proof by contradiction” is used occasionally.
But there are no upapattis which purport to establish the existence
of any mathematical object merely on the basis of tarka alone. In this
sense the Indian mathematical tradition takes a “constructivist”
approach to the existence of mathematical objects. However, in India
over the centuries there were several scholars well-versed in Tarka
Sastras starting from Adi Shankara (788–820 CE).

 

7. The Indian mathematical tradition did not subscribe to the ideal that
upapattis should seek to provide irrefutable demonstrations
establishing the absolute truth of mathematical results.

 

8. There was no attempt made in Indian mathematical tradition to
present the upapattis in an axiomatic framework based on a set of
self-evident (or arbitrarily postulated) axioms which are �ixed at the
outset.

 

9. While Indian mathematicians made great strides in the invention
and manipulation of symbols in representing mathematical results
and in facilitating mathematical processes, there was no attempt at
formalization of mathematics.

 

Karl Raimund Popper (1902–1994, Austria-England) believed that
nothing can ever be known with absolute certainty. He had a concept of
“truth up to falsi�iability.” There is a widespread notion that once
something has been proved mathematically, then it is, as it were, set in
stone that we have a mathematical proof that remains “true for all time”
(as an of�icial certi�ication). “Not so,” says James R. Meyer (Ireland). He
writes that most mathematical proofs that anyone will encounter fall a
long way short of idealistic concepts. In conclusion, the standards of
mathematical proof also keep on changeling according to time. Thus,
Greeks who conceived of the world as being made in a mathematical
mold—a conception that is still held by most people, seems to be falling
apart.



3.17	 What	Is	a	Conjecture	in	Mathematics?
In 1963, Popper pioneered the use of the term conjecture in scienti�ic
philosophy. A conjecture in mathematics is an unproved intuitive and
shrewd guess or opinion, preferably based on some experience or other
source of wisdom such as patterns, made by a person with skilled
mathematical insight. Conjectures in mathematics have been a source of
constant challenge to the human brain. Some of them have been proved
and received the status of theorems (Conjecture Proof  Theorem),
while many remain unsolved from centuries but believed to be correct, and
others have been disproven through counterexamples. The quality of a
conjecture is judged by the simplicity, and the time gap between it is
proposed and the day it is proved or disproved. It is a glorious day for
mathematics and the mathematician when a certain long-standing
conjecture is proved or disproved. The following are some examples:

Kepler Conjecture: In 1611, Kepler posed the problem “what is the most
ef�icient way to pack balls of the same size into space”? As a
mathematical result it states that no arrangement of equally sized
spheres �illing Euclidean three-dimensional space has a greater average
density than that of the cubic close packing (face-centered cubic) and
hexagonal close packing arrangements. The density of these
arrangements is around  In 1990, Wu-Yi Hsiang (born
1937, China-USA) claimed to have proven the Kepler conjecture by using
spherical trigonometry; however, the current consensus is that Hsiang’s
almost 100-page proof is incomplete. In 2003, Thomas Callister Hales
(born 1958, USA) used a long computation on a computer to verify
conjecture, which was accepted for publication in 2005 (published in
2008 [243]), but with 99% correctness of the proof; however, in 2014 it
was veri�ied to be correct. In 2017, the formal proof of Hales has been
accepted, so Kepler conjecture is now Kepler theorem.
Graeco-Latin Squares: Following Ozanam consider the 16 picture cards
from the usual pack of playing cards, namely, four aces, four kings, four
queens, and four jacks. These 16 cards can be classi�ied into two
different ways: (i) according to their denominations, ace, king, queen,
and jack, and (ii) according to their suit, club, diamond, heart, and spade.
Now suppose that we want to arrange these 16 picture cards in a 
square (i.e., a square having four rows and four columns) in such a way
that every denomination and every suit must occur once and only once



in each row and in each column. Now let the Latin (or Roman) letters
 stand for the denomination namely ace, king, queen, jack,

respectively, and let the Greek letters  and  denote the four
suits namely club, diamond, heart, and spade, respectively. Thus 
indicates the club ace, and similarly , etc. Thus we have the 16
picture cards represented by . Figure 3.7
then gives one of the arrangements that satis�ies the requirements laid
down above by us. Observe that each Latin letter and each Greek letter
occur once and only once in each row and each column of the 
square. Also observe that all the 16 possible representations or
combinations  have found places in the cells of the square.

Fig.	3.7  Graeco-Latin square
Such a square con�iguration is called a Graeco-Latin square of order 

The name is so given because the Greek and Latin letters are used in its
construction. Graeco-Latin square of order 4, given in Fig. 3.7, can be
obtained by super-imposing on each other the two squares given in Fig.
3.8, and four different symbols are used; in one, symbols used are

, while in the other they are  Actual symbols used
are immaterial; one could use, for example, 1,2,3,4 if one likes. What is
important, however, is that each symbol used must occur once and only
once in each row and in each column of the square. One can verify that this
is so in the case of each of the squares of Fig. 3.8. A square satisfying this
property is called a Latin square irrespective of the nature of the symbols
used in constructing the square (maybe, the �irst time such a square was
constructed, Latin letters were used). Thus each of the two squares in Fig.
3.8 is a Latin square.



Fig.	3.8 4-Graeco-Latin squares
Two Latin squares, which when superimposed gives a Graeco-Latin

square, are called orthogonal Latin squares. The two Latin squares of Fig.
3.8 are thus orthogonal Latin squares (orthogonal to each other). One can
also notice that the second Latin square of Fig. 3.8 is obtainable from the
�irst by establishing a one-one correspondence between the Latin and
Greek letters used in them and by suitably rearranging the rows of the �irst
square. If we want to construct all possible Graeco-Latin squares by �irst
systematically enumerating all possible Latin squares and superimposing
two using every possible pair out of them and verifying whether what we
get is a Graeco-Latin square or not, we should �irst try the exercise with
Latin squares of order 3. This will give us the feeling, idea, and insight of
the amount of effort involved in the construction of Latin and Graeco-Latin
squares of higher orders. We can prove that there are at least

 Latin squares of order  Now we can verify that
there are only 12 Latin squares of order 3. The number of possible Latin
squares increases rapidly as n increases. There are 576 Latin squares of
order 4 and 161,280 of order 5. Furthermore, there are never more than

 mutually orthogonal Latin squares of order 
Now the question is can we have a Graeco-Latin square of order n for

any positive integer  In 1782, Euler made the conjecture: “A Graeco-
Latin square of order  does not exist.” Thus,
according to Euler’s conjecture, Graeco-Latin squares of order 
do not exist. One can easily verify that a Graeco-Latin square of order 2
cannot exist. In 1901, Gaston Tarry (1843–1913, France) used mechanical
aids to verify that Graeco-Latin squares of order 6 do not exist. In 1959,
Sharadchandra Shankar Shrikhande (1917–2020, India) along with Raj
Chandra Bose (1901–1987, India) and Ernest Tilden Parker (1926–1991,
USA) disproved Euler’s conjecture; in fact, they showed any order

 Graeco-Latin square exists, i.e., Graeco-Latin squares
exist for all orders  except  An example of a  Graeco-



Latin square is given in Fig. 3.9. Here digits have been used instead of
Greek and Roman letters. It is interesting to note that the  square at
the right-hand bottom corner of this  Graeco-Latin squares is itself
a Graeco-Latin square. Bose, Shirkhande, and Parker constructed many
different Graeco-Latin squares of order  and each of them contained
such a Graeco-Latin square of order  Graeco-Latin squares �ind
applications in designing experiments in biology, agriculture, medicine,
sociology, marketing, etc.

Waring Conjecture: In 1770, Edward Waring (1736–1798, England)
emitted the conjecture that every integer  is the sum of a �ixed
least number  (Little Gee) of sth powers of integers  For 
this is the result proved by Lagrange in 1770 and Euler in 1773 that
every positive integer  is a sum of four integer squares  (known
as Four-Square	Theorem, see Sect. 4. 20), i.e.,  For example,

 and  Next, 
was established from 1909 to 1912 by Arthur Josef Alwin Wieferich
(1884–1954, Germany) and Aubrey John Kempner (1880–1973,
England-USA). In 1939, Leonard Eugene Dickson (1874–1954, USA)
showed that the only integers requiring nine cubes are

 and
 Wieferich also proved

that only 15 integers require eight cubes:
15,22,50,114,167,175,186,212,231,238,303,364,420,428, and 454. For
example,  It is also known that every other
integer larger than 454 can be represented as the sum of at most seven
positive cubes. The largest number known requiring seven cubes is
8042.



Fig.	3.9  Graeco-Latin square
Waring himself proved no single case of his problem, nor did he offer

any suggestion for its solution. For all that he or anyone else in the
eighteenth century knew  might not exist. Hilbert’s proof of Waring’s
conjecture in 1909 established the existence of  for every  but did
not determine its numerical value for any  Hardy and Littlewood during
1920–1928 invented an analytic method (the spirit of which is applicable
to many other extremely dif�icult questions in arithmetic) for Waring’s
problem. The problem af�iliated with  is that of �inding  (Big Gee),
de�ined as the least integer n such that every positive integer beyond a
certain �inite value is the sum of n the sth powers of integers 
Speci�ically, Hardy and Littlewood showed that

 for  or  and
 for all  Their work remained the standard till

Ivan Matveevich Vinogradov (1891–1983, Russia), who developed his own
more penetrating technique in the 1930s. The best value of  up to
1933 was  and in contrast with Hardy and Littlewood’s

 it was shown in 1836 that  is either 16 or 17. In 1986,
Ramachandran Balasubramanian (born 1951, India), François Dress



(France), and Jean-Marc Deshouillers (born 1946, France) �inally
established that  There are only seven integers which cannot be
expressed as the sum of fewer than 19 fourth powers

 For example,  and
 After that every integer can be

represented as the sum of at most 18 fourth powers. It has also been
proven that there are in�initely many positive integers which require at
least 16 fourth powers. In 1964 and 1940, respectively, it was proved that

 and  by Jingrun Chen (1933–1996, China) and Pillai.
For  Dickson and Pillai in 1936 proved almost simultaneously an
explicit formula for  valid for all  except
possibly for certain doubtful cases (this formula was earlier conjectured by
Euler in 1772). However, these doubtful cases were disposed of by Niven in
1943. Thus, after 173 years Waring’s guess was �inally proved.

Riemann Hypothesis/Conjecture: The well-known Riemann	Zeta
Function is de�ined as

(3.26)

(for real s this series was considered by Euler in 1737). In 1859 memoir
On	the	Number	of	Primes	Less	Than	a	Given	Magnitude, Riemann made
six conjectures regarding the zeta function. By almost 1920, �ive of them
were proved right. The sixth is now known as the Riemann hypothesis,
which asserts that on the Argand diagram for s the nontrivial zeros of
the zeta function lie on the line  (trivial zeros are at

). Many efforts and achievements have been made
toward proving this celebrated hypothesis, but it is still an open
problem. Its importance and fascination can be understood by the
following anecdotes: Hilbert, once said that, were he awakened after
having slept for a thousand years, his �irst question would be, has the
Riemann hypothesis been proved? Hardy once took a risky boat and
wrote a post card to Bohr, “I have proved Riemann’s hypothesis.” His
argument was that if the boat sank and he drowned, everybody would
believe that Hardy had proved the hypothesis, but since God would not
afford Hardy such a great honor, he could not allow the boat to sink. In
2000, during the centennial of Hilbert’s 23 problems, Bombieri
considered it to be the most important unsolved problem in pure



mathematics. In the year 2000, Clay Mathematics Institute selected
seven well-known problems known as The Millennium Prize Problems
and pledged US dollar 1 million prize for the correct solution of any of
them. Riemann hypothesis is one of those seven problems. Around 1914,
Hardy proved something short of the hypothesis. He proved that an
in�inite number of solutions of the zeta functions lie on  But
that does not amount to saying that all did as claimed by the conjecture.
In 1919, Polya stated that “most” (i.e., 50% or more) of the natural
numbers less than any given number have an odd number of prime
factors. He showed that the truth of this statement would imply the
Riemann hypothesis. Unfortunately, in 1958, Colin Brian Haselgrove
(1926–1964, England) proved that Polya’s statement is wrong. In 2004,
Riemann’s conjecture was veri�ied on computer for the �irst  zeros.
Few number theorists doubt that the Riemann hypothesis is true; in fact
Selberg was once a sceptic, whereas Littlewood always was.

The following sensational news was reported in a 1945 issue of Time
magazine: The German-American mathematician Hans Adolph
Rademacher (1892–1969) had announced a solution to one of the most
famous of all mathematical problems—the Riemann Hypothesis. However,
he later had to withdraw the claim because Carl Ludwig Siegel (1896–
1981, Germany) found an error. In 2018, Michael Atiyah at the Heidelberg
Laureate Forum gave a lecture in which he claimed to have proved the
hypothesis. But unfortunately, his proof also turned out to be another
failed attempt. In anticipation of Riemann’s hypothesis (and other
unproved conjectures of a similar character), numerous profound
theorems specially in number theory have been proved, which require the
most re�ined analysis of the twentieth century. These are called conditional
proofs: The conjectures assumed appear in the hypotheses of the theorem,
for the time being. These “proofs,” however, would fall apart if it turned out
that the hypothesis was false, so there is considerable interest in verifying
the truth or falsity of conjectures of this type. The Riemann hypothesis has
been repeatedly generalized, and the more far-reaching the
generalizations, the more central they appear to be to the structure of
modern number theory. It also has potential implications in physics.

Mertens Conjecture: An nth root of unity (see Sect. 2. 11) is said to be
primitive if it is not an th root of unity. If n is a prime
number, then all nth roots of unity, except 1, are primitive. The Möbius
function  is de�ined in 1831 as the sum of the primitive nth roots of



unity. It has values in  depending on the factorization of n into
prime factors:  if n is a square-free positive integer with an
even number of prime factors, e.g.,   if n is a
square-free positive integer with an odd number of prime factors, e.g.,

 and  if n has a squared prime factor, e.g.,
 Möbius found that the probability of  having its value 

and 1 is the same to  The Mertens	function (after Franz Mertens,
1840–1927, Poland) is de�ined as  In 1897,
Mertens made the conjecture that for all 
However, it was earlier conjectured in 1885 by Thomas Joannes Stieltjes
(1856–1894, The Netherlands) in a letter to Hermite. It has been shown
that Mertens conjecture implies the Riemann hypothesis. By the early
1980s computers had shown that Mertens conjecture indeed holds for
at least the �irst 10 billion integers; however, in 1985, Andrew Michael
Odlyzko (born 1949, Poland-USA) and Hermanus Johannes Joseph Te
Riele (born 1947, The Netherlands) proved the Mertens conjecture is
false. In 1987, János Pintz (born 1950, Hungary) showed that the �irst
counterexample appears below  whereas in
2016, Greg Hurst (USA) has shown the example must be above  In
2006, Tadej Kotnik (Slovenia) and Te Riele have lowered the upper
bound to  However, no explicit counterexample is
known. It is a striking example of a mathematical conjecture proven
false despite a large amount of computational evidence in its favor.
Poincaré Conjecture: In 1904, Poincaré thought he had proved that
“every simply connected, closed 3-manifold is homeomorphic to the 3-
sphere,” but later an error was discovered. This conjecture has
fascinated mathematicians for 100 years, because it has important
implications for the geometry of our universe and is of central interest
to mathematicians and cosmologists alike. In the spring of 1986, the
New York Times reported with quite a bit of fanfare that the English
mathematician Colin Rourke (born 1943, England) and his graduate
student Eduardo R go from Portugal had solved the famous problem—
the Poincaré Conjecture. However, a fatal error was found in the proof.
In 2002 and 2003, Grigori Yakovlevich Perelman (born 1966, Russia)
gave sketchy proofs of the Poincaré conjecture (and the more powerful
geometrization conjecture of Thurston: Each of certain three-
dimensional topological spaces has a unique geometric structure). On



March 18, 2010, it was announced that Perelman had met the criteria to
receive the �irst Clay Millennium Prize for resolution of the Poincaré
conjecture, but on July 01, 2010, he rejected the prize of 1 million
dollars, by saying I am not interested in money or fame; I do not want to
be on display like an animal in a zoo. After his work several
mathematicians have published proofs with the details �illed in, which
come to several hundred pages. In 1961, Stephen Smale (born 1930,
USA) had already proved the Poincaré conjecture for all dimensions
greater than or equal to 5, and for dimension 4 it was settled in 1982 by
Michael Hartley Freedman (born 1951, USA).
Carmichael’s Totient Function Conjecture: In 1760, Euler introduced the
totient function  The number of positive integers less than n and
relatively prime to  so that if n is prime,  As an example,
since each number  is relatively
prime to  In 1907, Carmichael claimed to have proved
the conjecture that for every n there is at least one other integer 
such that  but in 1922 he retracted his claim and stated
the conjecture as an open problem. Using computational techniques
Kevin Barry Ford (born 1967, USA) in 1998 has shown that any
counterexample to this conjecture must be at least 
Bieberbach Conjecture: Let  be the class of functions which are
analytic and one-to-one in the unit disk  and are normalized by
the conditions  and  The class  has many
interesting properties. A function  in terms of Maclaurin’s series
(after Colin Maclaurin, 1698–1746, Scotland) can be expressed as

(3.27)

In 1916, Ludwig Bieberbach (1886–1982), a German mathematician
(remembered as a notorious uniform-wearing Nazi and vicious anti-
Semite, who sought to eliminate Jews from the profession of German
mathematics) conjectured that in (3.27) the coef�icients

 This conjecture attracted the attention of several
distinguished mathematicians. The proof for the case  was known
to Bieberbach. In the year 1923, Charles Loewner (1893–1968,
Czechoslovakia-USA) used a differential equation to treat the case

 whereas in 1925, Littlewood proved that  for all 
showing that the Bieberbach conjecture is true up to a factor of 



Several authors later reduced the constant in the inequality below 
Variational methods were employed in 1930s, which led to the
conjecture established for  in 1955 by Paul Roesel Garabedian
(1927–2010, USA) and Menahem Max Schiffer (1911–1997, Germany-
USA) and for  by Roger Pederson (1930–1996, USA) in 1968 and
Mitsuru Ozawa (Japan) in 1969. The case  was settled by Pederson
and Schiffer in 1972. From time to time, proofs of other special cases
were announced, but they have not been substantiated. Finally, 12 years
later Louis de Branges de Bourcia (born 1932, France-USA) in the year
1984 proved the general case. As expected, his proof is not simple—it
ran to over 350 pages. At one point, even computer was used to validate
the work; however, the proof itself does not rely on a machine. In 1985,
Richard Allen Askey (1933–2019, USA) and George Gasper (born 1939,
USA) proved Bieberbach conjecture (also now known as de Branges’s
theorem) in the traditional manner which also shortened Branges’s
proof considerably.
Ramanujan’s Conjecture About the Partition Function: Integer 4 can be
obtained from positive integers, using only addition, in �ive different
ways:  These are called
partitions of 4, and the fact is denoted as  In general,  an
arithmetical function (originates in trying to learn certain properties of
numbers), stands for the number of partitions of positive integer 
Actual computation shows that the partition function  increases
very rapidly with  in fact

 has the enormous value 
Ramanujan’s conjecture regarding this partition function is “If

 where m is  or  and  then
 Sarvadaman Chowla (1907–1995, England-

India-USA) showed that Ramanujan’s conjecture failed for  For
his proof, he used the table of partitions prepared by Hansraj Gupta
(1902–1988, India) in 1967. Later it was also found that Ramanujan’s
conjecture failed for  In 1918, Hardy and Ramanujan proved
what is considered one of the masterpieces in number theory: Namely,
that for large n the partition function satis�ies the relation



where the constant  For  the right-hand side of
the relation is approximately  which is remarkably close to the
actual value of  In 1937, Rademacher re�ined their work into the
�irst known formula for  It is interesting to note that Euler in 1753
gave the following generating	function (for a given sequence , the
corresponding generating function  is de�ined by the series

) for the sequence 

A typical case related to the above partition is to �ind rth partition of
the positive integer n denoted as  For example,

 and  The earliest studies of r-
partitions occur in gambling and games of chance, where several dice are
thrown simultaneously. In 1699, Leibniz wrote to Johann Bernoulli “Have
you ever considered the number of partitions or divulsions of a given
number, namely, the number of ways it may be broken up into two, three,
etc., pieces? It seems to me that this is not an easy problem, and yet it
would be worth knowing.” Leibniz work was studied systematically by
Euler in 1741. The �inal result is known as mu1tinomial theorem.

Ramanujan’s Hypothesis or Tau Conjecture: Let  denote the sum of
the sth powers of the divisors of  If  its divisors are  If

 In order to calculate  generally,
Ramanujan introduced the arithmetical tau function,  In 1616,
Ramanujan conjectured that  is of the form  Hardy
called it Ramanujan’s hypothesis. It is more generally known as the tau
conjecture. It meant that the value of  for some



constant  for all  (say). Ramanujan himself had proved that
 But the power 7 here, of  is much more than  and

very much short of proving the conjecture. Two years later, Hardy came
little closer to the proof when he proved  Hendrik Douwe
Kloosterman (1900–1968, The Netherlands) got closer in 1927 and
Harold Davenport (1907–1969, England) and Hans Oscar Emil Salié
(1902–1978, Germany) still closer in 1933. Robert Alexander Rankin
(1915–2001, Scotland), Hardy’s student, proved in 1939 that

 Finally, Viscount Deligne proved the conjecture in
1974 using algebraic geometry. This is considered as one of the
sparkling achievements of the twentieth century. For this great
achievement Deligne was awarded the Fields Medal, which is considered
as the Nobel prize for mathematics.
Collatz  Conjecture: Hailstone sequence  of integers
(because numbers go up and down like hailstones) with  is
de�ined as

For example, with  the hailstone sequence is 7, 22, 11, 34, 17, 52,
26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1,  In 1937, Lothar Collatz
(1910–1990, Germany) conjectured that for any  the
hailstone sequence eventually reaches to 1 and then continues
inde�initely to 1, 4, 2, 1,  In the literature it is also known as 
Ulam conjecture, Kakutani’s problem (after Shizuo Kakutani, 1911–
2004, Japan-USA), the Thwaites conjecture (after Bryan Thwaites, born
1923, England), Hasse’s algorithm (after Helmut Hasse, 1898–1979,
Germany), and the Syracuse problem. For Collatz’s conjecture Erdös said
(con�irmed by Collatz himself in 1988) “Mathematics may not be ready
for such problems.” In 1985, Jeffrey Clark Lagarias (born 1949, USA)
gave a heuristic probabilistic argument to support the conjecture;
however, in 2010, he added Collatz conjecture is an extraordinarily
dif�icult problem, completely out of reach of present-day mathematics.
As of 2020, the conjecture has been checked by computer for all starting
values up to 

On September 8, 2019 Terence Chi-Shen Tao (born 1975, Australia-
USA) posted a proof (Almost All Orbits of the Collatz Map Attain Almost



Bounded Values. https:// arxiv. org/ pdf/ 1909. 03562. pdf), showing that—
at the very least—the Collatz conjecture is “almost” true for “almost” all
numbers. While his result is not a full proof of the conjecture, it is a major
advance on a problem that does not give up its secrets easily. Modestly he
said “I wasn’t expecting to solve this problem completely, but what I did
was more than I expected.” In 2019, Journal of Mathematics (Article ID
6129836), in 2021, International Journal of Mathematics Trends and
Technology (67, 178–182), and in January and February 2022 issues of the
Journal Advances in Pure Mathematics (www. scirp. org/ journal/ apm)
articles have appeared claiming the proofs of Collatz’s conjecture.
However, at this point only one can hope that experts will con�irm the
legitimacy of at least one of these proofs.

Jacobian Conjecture: In 1939, Eduard Ott-Heinrich Keller (1906–1990,
Germany) claimed that if a polynomial function from an n-dimensional
space to itself has Jacobian determinant (after Jacobi) which is a
nonzero constant, then the function has a polynomial inverse. This
conjecture was widely publicized by Abhyankar. For this conjecture over
the period of 60 years several incomplete proofs have been announced.
This list includes three proofs of Beniamino Segre (1903–1977, Italy).
Erdös-Straus Conjecture: The table of decompositions of fractions

 as a sum of two, three, or four unit fractions (numerator
equal to one and a positive integer as its denominator), e.g.,

found in the Rhind mathematical papyrus has been the matter of
wonder and stirred controversy for quite some time between the
historians. Fibonacci, in 1202, published an algorithm for expressing any
rational number between 0 and 1 as a sum of distinct unit fractions; this
was rediscovered and more intensely investigated by Sylvester in 1880.
In 1884, he proved that any proper fraction  can be written as a sum
of distinct unit fractions. This is certainly true when the numerator

 For  Sylvester assumed  to be the largest unit fraction
less than  Then

which implies that  Since

https://arxiv.org/pdf/1909.03562.pdf
http://www.scirp.org/journal/apm


by induction,  is the sum of distinct unit fractions.
Furthermore, none of them is  since

This completes the proof by induction and gives a procedure to �ind a
distinct unit fraction sum equal to a given proper fraction. To apply
Sylvester method for  we note that  and

 and hence  For  this is
the only sum of two distinct unit fractions. In fact, if p is prime, then 
can be expressed as a sum of two distinct unit fractions in exactly one
way. For this, if , then  Now 
can be factored into distinct factors in only one way:  Hence if

, we have  and  Clearly, this is
different from the three unit fractions given above from the Rhind
mathematical papyrus. Thus for a given proper fraction , there may
be more than one unit fraction. Similarly, we can check that

 and

(these are the only sums of two unit fractions as claimed by Ionascu and
Wilson, see [281]); we also have

 Furthermore, Sylvester’s
method for the same fraction gives

In 1948, Erdös and Ernst Gabor Straus (1922–1983, Germany-USA)
conjectured that for every  there exist  natural
numbers, not necessarily distinct and not necessarily unique, so that

 i.e.,  can be written as a sum of three positive
unit fractions. For example, we have



When  with p prime and q any other integer, solutions for n can be
simply derived from those for p by multiplying those denominators by 
For example,

Thus in view of fundamental theorem of arithmetic (Theorem 4. 1) to prove
Erdös-Straus conjecture, it suf�ices to show that for every prime 

 is a sum of three unit fractions. This problem has not yet been solved,
although several partial results, generalizations for several other fractions

 and number of possible representations have been studied
extensively. We refer here to an excellent survey paper of Graham [223]
and among several known identities list the following:

Palindrome Number Conjecture: Take any non-palindromic natural
number with two or more digits, add its inverse ordinal number,
continue to use the inverted number of sum plus sum; repeating this
process continuously leads to a palindromic number. In 1979, Gardner
claimed that of the �irst 10000 numbers, only 251 do not produce a
palindromic number in  steps. However, his claim is wrong;
numbers 89 and 98 need the following 24 steps (89 or 98)  187 
968  1837  9218  17347  91718  173437  907808 



1716517  8872688  17735476  85189247  159487405 
664272356  1317544822  3602001953  7193004016 
13297007933  47267087164  93445163438  176881317877

 955594506548  1801200002107  8813200023188. Fred
Gruenberger (1918–1998, USA) in 1984 showed that among the �irst
100000 numbers, 5996 numbers apparently never generate a
palindromic number. The �irst few such numbers are 196, 887, 1675,
7436, 13783, 52514, 94039, 187088, 1067869, 10755470. Recently in
[528] Wang et. al. have shown that the palindrome number conjecture is
not true (their proof is under scrutiny). They also claimed that 196, 295,
394, 493, 592, 691, 790, 1495, 1585, 1675, 1765, 1855, 1945, 227386
are the counterexamples. Thus, we can conclude that for two digits
numbers palindrome number conjecture is true.

3.18	 What	Is	a	Paradox?
The ancient Greek word parádoxos (derived from two Greek words; para:
meaning faulty, disordered, false, contrary to, or abnormal; and doxa:
meaning opinion) was �irst time used in English as paradox in 1540, and it
meant for a statement that is seemingly self-contradictory yet not illogical
or obviously untrue, perhaps a vicious circle. A paradox, in De Morgan’s
special sense of the word, was any curious tale about science or scientists
that he had come across in his extensive reading, any piece of gossip,
choice examples of lunacy, assorted riddles, and puns. In fact, paradoxes
are most important to human logic because it exposes weakness in our
reasoning; however, some claim paradoxes are compact energy sources,
talismans. Paradoxes can be found abundantly throughout: mathematics,
physics, logic, philosophy, economics, biology, and mechanics (in
hydrodynamics it is used in the sense of an inconsistency between
experimental facts and conclusions based on plausible arguments). The
very existence of a paradox can be used to drive some interesting facts
about the relationship between mind and the Universe. In mathematics,
the logicists considered paradoxes to be the common errors, caused by
errant mathematicians and not by a faulty mathematics. The intuitionists,
on the other hand, considered paradoxes to be clear indications that
classical mathematics itself is far from perfect. They felt that mathematics
had to be rebuilt from the bottom up. Indeed from time to time challenging
paradoxes have been contemplated which have shaken the basic
foundation of a particular �ield and thus forced mathematicians to rethink



a fresh from the beginning. We list some of the famous paradoxes that are
counterintuitive and so astonishing.

Epimenides of Crete (around sixth century BC, Greece) is remembered
for the Liar	Paradox: A Cretan says “All Cretans always do lie.” If that
Cretan is speaking the truth, in that case he is lying, and if he is lying,
then he is telling the truth. There are several variants of this paradox,
e.g., popular in medieval Europe and often quoted in literature is Plato:
What Socrates is about to say is false. Socrates: Plato has spoken
correctly. According to Eubulides of Miletus (fourth century BC, Greece),
and also Bertrand Russell, the statement “I am lying” is true only if it is
false and false if it is true. Chrysippus of Soli (around 279–206 BC,
Turkey-Greece) wrote: If someone says: “All people lie” is that person
telling the truth or lying? Bhartrhari (�ifth century AD, India) formulated
it as “everything I am saying is false.” Philip Edward Bertrand Jourdain
(1879–1919, England) in 1913 had an interesting calling card. On the
one side was written “The statement on the other side of this card is
true.” On the other side was written “The statement on the other side of
this card is false.” The simplest versions of the Liar Paradox are the
statements “This sentence is false,” “I am a compulsive liar,” and
Pinocchio says “My nose will grow now.”
Eubulides is also known for the Small	Heap	Paradox: Suppose we have a
small heap (sorites in Greek) of stones. If we remove a stone from a
heap, then of course it will be smaller. But even if we add a stone to the
small heap, it will remain small. Now let us start from the “heap” of a
single stone which is de�initely small. Since addition of a stone does not
affect the smallness of the heap, one can go on adding a stone at a time
and still continue to get a “small” heap. This leads to the paradoxical
situation where every heap is small. Thus, smallness is a fuzzy concept.

In 1926, Bertrand Russell proposed a dual of the small heap paradox
known as Bald	Man’s	Paradox. We have a bald man. Can you specify the day
from when he would have been declared bald? Of course, he was not bald
when he was a young man of 25. But thereafter he started losing hair.
When he lost his �irst hair, nobody called him bald, nor after losing the
second, third, and so on. But today he is called bald, so there must have
been a hair such that before its fall, he was not bald, and after its fall, he
was declared bald. Thus, the difference between baldness and non-
baldness is just one hair!



Achilles	Cannot	Overtake	the	Tortoise.

Zeno put forth four paradoxes which confounded thinkers for centuries
(until Cantor’s development of the theory of in�inite sets) the accepted
notions of space and time and the relation of the discrete to the
continuous. These paradoxes arose because he was attempting to
rationally understand the notions of in�inity for the �irst time. He tried to
express his intuitions that a line/space cannot be conceived of as a set of
points (see Fig. 2. 4), and time cannot be discrete/instantaneous. Thus,
he must be credited in setting a stage for the very foundation of
mathematics and physics. Bertrand Russell described Zeno’s arguments,
in some form, have “afforded grounds for almost all the theories of space
and time and in�inity which have been constructed from his day to our
own.”

Suppose there is a race between
Achilles (the ancient Greek hero famed for his strength and being several
times faster than the tortoise) and a tortoise (the slowest creature on the
Earth). Achilles offers a small concession to the poor creature. Achilles
stands a few steps behind the tortoise when the race starts (Fig. 3.10).
Zeno claims that because of this, Achilles cannot win the race. To
understand this suppose that Achilles is at point A and the tortoise is at
point  when the race starts. If Achilles is to overtake the tortoise, then
he �irst has to reach the tortoise. For this to happen, both Achilles and the
tortoise will have to be at the same point, say  at the same time. In other
words, Achilles will have to cover the length AP in the same amount of
time that the tortoise requires to cover the length 

Fig.	3.10 Race between Achilles and a tortoise

Since the line segment TP is a part of the line segment  and since
the whole is always greater than its part (Euclid’s assertion (e)), the
segment AP has more points in it than the segment  Thus Achilles can
win the race, only if he crosses more points than the tortoise in the same
time interval. Is this possible? Zeno’s argument is an emphatic “no,” based
on the following “self-evident” facts.



I. An instant is the last indestructible part of time. There is no fractional
instant.  

II. A point is the last indestructible part of a line. There is no fraction of a
point.  

If Achilles is faster than the tortoise, he will cover more points per instant
than the tortoise does. Does he cover (say) two points while the tortoise
covers just one, in an instant? If so, then the next question arises; how
much time does he take to cross a point? Half an instant? Since a half-
instant does not exist, Achilles must cover only a point in an instant.
Similarly, the assumption that the tortoise, being slow, may take two
instants to cross a point is absurd (the word absurd comes from the Latin
absurdus meaning unmelodious or discordant). Thus both Achilles and the
tortoise cover just a point per instant. Clearly, Achilles cannot win over the
tortoise, as he is required to cover “more points” in the same “amount” of
instants. In fact, as late as the nineteenth century, some European scholars
were arguing that Zeno was correct, and Achilles had lost the race!

Grégoire de Saint-Vincent (1584–1667, Belgium) was the �irst to use
the method of in�inite series to argue against Zeno’s paradox, as follows:
Suppose Achilles is ten times as fast as the tortoise, e.g., suppose Achilles
runs 10 meters/sec, and the tortoise crawls 1 meter/sec. If the tortoise has
a 10 meter head start, then at time  Achilles’ position at  is

 and the tortoise’s position at  is 10 m. Achilles’
position at time  sec is 10 m, and the tortoise’s position at
time  sec is 11 m. Continuing on with this argument,

At “stage n,”

and

Now recalling the geometric series (3.2) (Zeno’s time in�inite number of
steps, which was not acceptable as the problem had to be resolved in a
�inite number of steps), it follows that



Horses	Cannot	Meet.

No	One	Can	Cross	a	Field.

An	Arrow	in	Motion	Is	at	Rest.

so that Achilles catches up with the tortoise after 10/9 seconds, at the 11-
and 1/9- meter mark. Thus, mathematically the major takeaway from this
paradox was that an in�inite series is also summable.

If two horses approach each other, crossing a point
per instant, then effectively they are crossing two points per instant. As
examined above, this is impossible. Hence, the two horses running toward
each other cannot meet.

In order to cross a �ield, you will �irst have to
cross half of it. But in order to cross the half, you will have to cross half of
the half, i.e.,  of the distance. Repeating the argument, you will have to
cover in�initely many distances  To cover any
positive distance, you will need some positive amount of time, however
small. Hence to cover in�initely many distances, you will need in�inite time.
Clearly this is not possible for a mortal.

Suppose an arrow leaves a bow and hits
the target at 300 meters in 10 seconds. If we assume (for simplicity) that
the velocity is uniform, it is obvious that it will be at the distance of 150
meters at the end of 5 seconds. More generally, given an instant of time,
we will be able to state precisely the point at which the arrow will be
found. Clearly, if we are able to locate the point precisely at each instant of
time, the arrow must be static at that point and that instant. Thus, an
arrow in �light is actually at rest.

One place where probability contradicted “common sense” occurred in
the St.	Petersburg	Paradox worked out between Daniel Bernoulli and his
bother Nicholas Bernoulli (1695–1726, Switzerland) some time before
Nicholas death from a cold caught after plunging into the freezing Neva
River. The St. Petersburg Paradox �irst appeared in 1713 in a problem
posed by Nicholas Bernoulli to Pierre Remond de Montmort (1678–
1719, France); Nicholas and Daniel began discussing the problem
somewhat later. The problem revolves around the following game
between two players: Suppose that Peter and Paul agree to play a game
based on the toss of a coin. If a head is thrown on the �irst toss, Paul will
give Peter one crown; if the �irst toss is tail, but a head appears on the
second toss, Paul will give Peter two crowns; if a head appears for the



�irst time on the third toss, Paul will give Peter four crowns, and so on,
the amount to be paid if head appears for the �irst time on the nth toss
being  crowns. What should Peter pay Paul for the privilege of
playing the game? Peter’s mathematical expectation (the sum of the
probabilities for each possible outcome of the game multiplied by the
payoff for each outcome), given by

evidently is in�inite, yet common sense suggests a very modest �inite
sum. When Georges Louis Leclerc, Comte de Buffon (1707–1788,
France) made an empirical test of the matter, he found that in 2084
games Paul would have paid Peter 10,057 crowns. This indicates that for
any game Paul’s expectation, instead of being in�inite, is actually
something less than 5 crowns. The paradox raised in the Petersburg
problem was widely discussed during the eighteenth century, with
differing explanations being given. Daniel Bernoulli sought to resolve it
through his principle of moral expectation, in accordance with which he
replaced the amounts  by

 Others preferred, as a solution of the paradox,
to point out that the problem is inherently impossible in view of the fact
that Paul’s fortune is necessarily �inite; hence he could not pay the
unlimited sums that might be required in the case of a long delay in the
appearance of a head.

For many years, because of paradoxes such as St. Petersburg Paradox,
the subject of probability theory was in ill repute. It was not until the
invention of a branch of mathematics called measure	theory pioneered by
Lebesgue in 1901 that the tools became available to put probability theory
on a rigorous footing. The celebrated Russian mathematician Andrey
Nikolaevich Kolmogorov (1903–1987) is credited with this development.

The Bertrand	Paradox is a problem within the classical interpretation of
probability theory, which was discovered by François Bertrand in 1889.
The resolution of this paradox came in the late 1930s. Fix a circle of
radius 1. Draw the inscribed equilateral triangle as shown in Fig. 3.11.
We let  denote the length of a side of this triangle. Suppose that a chord
d (with length m) of the circle is chosen “at random.” What is the
probability that the length m of d exceeds the length  of a side of the
inscribed triangle?



Fig.	3.11 Bertrand’s Paradox (a)
The “paradox” is that this problem has three different but equally valid

solutions. We now present these apparently contradictory solutions in
sequence. At the end we shall explain why it is possible for a problem like
this to have three distinct solutions.

Solution	1. Examine Fig. 3.12. It shows a shaded, open disk whose
boundary circle is internally tangent to the inscribed equilateral triangle. If
the center of the random chord d lies inside that shaded disk, then 
If the center of the random chord d lies outside that shaded disk, then

 Thus the probability that the length d is greater than the length 
is (area of shaded disk)/(area of unit disk). But an analysis of the
equilateral triangle (Fig. 3.13) shows that the shaded disk has radius 
and hence area  The larger unit has area  The ratio of these areas is

 We conclude that the probability that the length of the randomly
chosen exceeds  is 

Fig.	3.12 Bertrand’s Paradox (b)



Fig.	3.13 Bertrand’s Paradox (c)

Solution	2. Examine Fig. 3.14. We may also assume that our randomly
chosen chord is horizontal (the equilateral triangle and the chord can both
be rotated so that the chord is horizontal and one side of the triangle is
horizontal). Notice that if the height, from the base of the triangle, of the
chord d is less than or equal to , then  while if the height is
greater than  (and not more than 1), then  We thus see that
there is probability  that the length m of d exceeds the length  of a
side of the equilateral triangle.

Fig.	3.14 Bertrand’s Paradox (d)

Solution	3. Examine Fig. 3.15. We may also assume that one vertex of
our randomly chosen chord occurs at the lower left vertex A of the
inscribed triangle (by rotating the triangle we may always arrange this to
be the case). Now look at the angle  that the chord subtends with the
tangent line to the circle at the vertex A (shown in Fig. 3.16). If that angle is
between  and  inclusive, then the chord is shorter than or equal to 
If the angle is strictly between  and , then the chord is longer than

 Finally, if the angle is between  and  inclusive, then the chord is
shorter than  In sum we see that the probability is  that the



randomly chosen chord has length exceeding 

Fig.	3.15 Bertrand’s Paradox (e)

Fig.	3.16 Bertrand’s Paradox (f )

We have seen then three solutions to our problem. And they are different:
We have found valid answers to be  and  How can a perfectly
reasonable problem have three distinct solutions? And be assured that
each of these solutions is correct! The answer is that when one is dealing
with a probability space having in�initely many elements (i.e., a problem in
which there are in�initely many outcomes—in this case there are in�initely
many positions for the random chord); then there are in�initely many
different ways to fairly assign probabilities to those different outcomes.
Our three distinct solutions arise from three distinct ways to assign
probabilities: Notice that the one of these is based on area, one is based on
height, and one is based on angle.

From 1897, Cesare Burali-Forti (1861–1931, Italy), Bertrand Russell,
Julius König (1849–1914, Hungary), and others found several paradoxes
within Cantor’s set theory. This is because Cantor created set theory
“naively,” meaning non-axiomatically, and he also abandoned his own



theory. Among these paradoxes Russell’s	Paradox of 1903 is most
popular which shook the very core of the foundation of mathematics:
Most of the sets are not elements of themselves. For instance, the set of
all integers is not an integer, and the set of all horses is not a horse.
However, some sets are elements of themselves. For instance, the set of
all abstract ideas is an abstract idea. Let S be the set of all sets that are
not elements of themselves, i.e.,

Is S an element of itself? The answer is neither yes or no. For if 
then S satis�ies the de�ining property for  and hence  But if

 then S is a set such that  and so S satis�ies the de�ining
property for  which implies that  Thus neither is  nor is

 which is a contradiction. This paradox was a big blow to Gottlob
Frege’s work as during this period the second volume of his de�inite
work The	Basic	Laws	of	Arithmetic was with the printer.

To help explain his paradox to lay people, Bertrand Russell devised a
puzzle, The	Barber	Paradox, whose solution exhibits the same logic as his
paradox. (1). The men in a village are of two types: men who do not shave
themselves and men who do. (2). The village barber shaves all men who do
not shave themselves, and he shaves only those men. But who shaves the
barber? The barber cannot shave himself. If he did, he would fall into the
category of men who shave themselves. However, (2) states that the barber
does not shave such men. So barber does not shave himself. But then he
falls into the category of men who do not shave themselves. According to
(2), the barber shaves all of these men; hence, the barber shaves himself,
too. We �ind that the barber cannot shave himself, yet the barber does
shave himself—a paradox.

Some other popularizations of Russell’s Paradox are as follows: Every
municipality of a certain country must have a mayor, and no two
municipalities may have the same mayor. Some mayors do not reside in the
municipalities they govern. A law is passed compelling nonresident
mayors to reside by themselves in a certain special area A. There are so
many nonresident mayors that A is proclaimed a municipality. Where shall
the mayor of A reside? An adjective in the English language is said to be
autological if it applies to itself; otherwise the adjective is said to be
heterological. Thus the adjectives “short,” “English,” and “polysyllabic” all
apply to themselves and hence are autological, whereas the adjectives



“long,” “French,” and “monosyllabic” do not apply to themselves and hence
are heterological. Now is the adjective “heterological” autological or
heterological? Suppose a librarian complies, for inclusion in his library, a
bibliography of all those bibliographies in his library that do not list
themselves.

For Russell’s Paradox several different ways were invented to de�ine
the basic concepts of set theory so as to avoid his contradiction. One of the
simple way is, except for the power set whose existence is guaranteed, the
prerequisite must also be made that the set is a subset of a known set. This
assumption does not allow us to have “the set of all sets that are not
elements of themselves.” We can only say “the set of all sets that are
subsets of some known set and that are not elements of themselves.” When
this restriction is made, Russell’s Paradox immediately ceases. Then the
following holds: Let U be a set of sets, and let  Is

 The answer is no. For if  then S satis�ies the de�ining
property for  and hence 

Bertrand Russell’s Paradox	of	Tristram	Shandy of 1903. Tristram Shandy
is a hero of a novel of the same name by the eighteenth century novelist,
Laurence Sterne (1713–1768, Ireland-England). Shandy intends to write
an autobiography. But he encounters a peculiar problem. His life is too
eventful to complete the work. It takes him 1 year to cover the events of
a day. Obviously, however hard he may try, he cannot �inish the work.
But Shandy is immortal. He may complete the �irst day’s account during
the �irst year of his life. Second day’s in the second year, …, nth day’s in
the nth year. Does this mean that there are as many days as there are
years in the life of Shandy.
In 1904, Poincaré in his book La	Science	et	I’Hypothése	and	La	Valeur	de
la	Science emphasized that the physical continuum is not transitive.
Poincaré’s	Paradox begins as follows: Suppose we are comparing various
pieces of metals, say,  in a balance for their relative
weight. We keep  in one pan and  in the other to �ind that

 We replace  by  to observe that  and continue
in this manner to �ind

 But at each instant
of weighing, there will be a small difference between the two weights,
which even the most sensitive machine will fail to detect. And then a
stage may come when the machine will show that  In
describing denseness of real points (always there is another real



number between any two real numbers) on an in�inite continuum, he
observed that adjacent points on the continuum are so indistinguishable
from each other that they almost overlap. He describes this situation by
the equation  but 
In 1908, Bertrand Russell attributed the paradox “The least integer not
nameable in fewer than nineteen syllables” to G.G. Berry (1867–1928,
England), known as Berry’s	Paradox. This paradox is itself a name
consisting of 18 syllables; hence the least integer not nameable in fewer
than 19 syllables can be named in 18 syllables, which is a contradiction.
In 1924, Stefan Banach (1892–1945, Poland-Ukraine) and Tarski
published a joint paper proving the remarkable result that a solid ball
could be decomposed into sets, which could then be reassembled to
form two identical balls, each equal to the �irst, which contradicts
fundamental principles of physics. The result, now known as the
Banach-Tarski	Paradox, which implied that volume was a meaningless
concept. Banach-Tarski Paradox has even more dramatic formulations. It
is actually possible to take a solid ball, break it up into �initely many
pieces, and reassemble those pieces into a full-sized replica of the
Empire State Building. Their proof relied on the axioms of choice and
the measure theory of Lebesgue. The paradox caused many
mathematicians to reconsider the validity of the axiom of choice.
In 1939, Richard von Mises (1883–1953, Ukraine-USA) raised the
question of how many people must be within a room, so that the
probability of two or more people having their birthday on the same day
is more than 50%, which has become popular as The	Birthday	Paradox.
He proved that with 365 days per year only 23 people are needed to
raise the probability of two or more of them having their birthday on the
same day to 50%. With 57 people the probability is already is 99%. For a
probability of 100%, however, 366 people must be within the room. Von
Mises developed the following formula for calculating the probability
with which greater than or equal to celebrate their birthday on the same
day 
In 1954, James Francis Thomson (1921–1984, England) posed a puzzle
which has become popular as Thomson	Lamp	Paradox. Its original
version is due to Aristotle which can be elaborated as follows: Assume
that there is a lamp that comes on at time  if n is even, but
goes off at time  if n is odd. If, indeed, we can divide an
interval of time into an actually in�inite number of instances, then this



lamp is theoretically possible, and, theoretically, it would turn on and off
an actually in�inite number of times in the time interval  to 
However, at time  the lamp would be neither on nor off—because
the in�inite is neither even nor odd. But this is impossible. Hence, we
cannot divide an interval of time into an actually in�inite number of
instances.
In 1959, Gardner introduced a distinction between “dull” and
“interesting” numbers. Interesting numbers, according to Gardner, are
those that have some peculiar pattern or property that separates them
from all other numbers. Dull numbers, on the other hand, are all those
numbers that are not interesting. Gardner then went on to show the
paradoxical nature of this dichotomy, by showing that dull numbers
cannot possibly exist. His argument was to �irst list the integers in order,
letting D stand for the �irst dull number on the list. But the very fact that
D is the �irst dull number makes it interesting! Therefore, there can be
no dull numbers.

The axiomatic set theory (ZF) avoids paradoxes such as those of
Russell’s and Berry’s. The fuzzy set theory resolves the paradoxes such as
small heap and Poincaré. According to Quine, there are three
classi�ications of paradoxes: veridical paradoxes, falsidical paradoxes, and
antinomies. A fourth type of paradox was later recognized as dialetheia. A
veridical paradox is one in which even though the result seems ridiculous,
it is still true. Hilbert’s paradox is an example of a veridical paradox
because despite the outcome being laughable, it is correct. A falsidical
paradox is one that is just outright incorrect. Zeno’s paradox is false in that
it assumes something traveling at a greater speed can never catch
something going at a slower pace. An antinomy is a phrase, or statement,
that has parts within in that contradict and do not agree with other. Liar’s
paradox is an antinomy because in order for one to be true the other must
be false and vice versa. Dialetheia is a special case in which a paradox is
both true and false simultaneously. For example, “that glass is half-full” is
both true and false because it indeed is �illed halfway with water, but it is
also false because it can be said that it is half-empty rather than half-full.

3.19	 What	Is	Bad,	Good,	and	Beautiful
Mathematics?



There are several possible ways of bad mathematics. The most common is
an innocent error (and hence bad mathematics) in calculations and/or in
algebraic rules, which can be corrected swiftly. For example, forgetting the
rule that the square root of a positive number is equal to both a negative
and a positive number, which can lead to catastrophic situation such as
following: Let n be a positive integer, since  or

 subtracting  from both sides and
factoring, we get  now
adding  to both sides yields

which may be written as
 and hence taking

square roots on both sides gives
; therefore,  This

leads to an absurd conclusion that all integers are the same as 1. A wrong
application of mathematical induction also gives the same answer. For this,
let : All numbers in a set of n numbers are equal to one another.
Clearly,  is true. Suppose k is a natural number for which  is true.
Let  be any set of  numbers. Then, by the
supposition,  and 
Therefore  and  is true. Thus, it
follows that  is true for all natural numbers 

Invalid reasoning also leads to bad mathematical conclusions. For
example, since  is positive, x is positive; since  we
have  and hence  i.e.,

 since  we have  whence
 and hence  Let e denote the

eccentricity of the ellipse  It is well known that the
length r of the radius vector drawn from the left-hand focus of the ellipse
to any point  on the curve is given by  Now 
Since there are no values of x for which  vanishes, it follows that e
has no maximum or minimum. But the only closed curve for which the
radius vectors have no maximum or minimum is a circle. It follows that
every ellipse is a circle; consider the isosceles triangle ABC as in Fig. 3.17,
in which base  and altitude 



Fig.	3.17 Invalid reasoning
Clearly there is a point P on CD such that  is a

minimum. We denote DP by  Then  and
 Hence,

and

Setting  we �ind  and P lies outside the triangle
on DC produced. Hence there is no point on the segment CD for which S is a
minimum.

Although mathematicians are extraordinarily careful, sometimes bad
logic leads to bad mathematics. For example, the Principia	Mathematica is
a three-volume work on the foundations of mathematics written by
Whitehead and Bertrand Russell and published in 1910, 1912, and 1913.
This collection takes 360 pages to prove  and gets it wrong.
According to a critical article by Adrian Richard David Mathias (born 1944,
England), Robert Martin Solovay (born 1938, USA) showed that Bourbaki’s
de�inition of the number 1, written out using the formalism in the 1970
edition of Théorie	des	Ensembles, requires

,
 symbols and

,
 connective links used in

their treatment of bound variables. Mathias notes that at 80 symbols per
line, 50 lines per page, and 1,000 pages per book, this de�inition would �ill
up  books. (If each book weighed a kilogram, these books would
be about 200,000 times the mass of the Milky Way.) It appears that
Bourbaki’s proof of  written on paper would not �it inside the
observable Universe.



One of the most important tasks of mathematics is the examination of
assumptions. Mathematics enables us to see which assumptions are
necessary and which are suf�icient, and if any of the assumptions
contradicts one of the others. For example, for integers greater than 2,
being odd is necessary (but not suf�icient) to being prime, since 2 is the
only whole number that is both even and prime. A number being divisible
by 4 is suf�icient (but not necessary) for it to be even, but being divisible by
2 is both suf�icient and necessary for it to be even. For the convergence of
the series , it is necessary that  but not suf�icient. For
example, for the harmonic series   but the series
diverges. Suppose  the condition  is
suf�icient for the series to converge, but not necessary. For example, p
series  converges; however,

 Corollary 3.3 gives
necessary and suf�icient conditions for two positive integers to be
relatively prime.

Several other criteria that can be classi�ied as bad mathematics are
wrong assumptions, e.g., every bounded sequence is convergent, and in
fact, the sequence  when n is odd, and  when n is even, is
bounded but has no limit; enormous formulas, e.g., Ptolemy’s 80 equations
to describe the solar system, 15000 pages for the classi�ication of �inite,
simple groups, in theoretical physics the addition of general gauge-�ixing
term to second variation of fourth-order action in quantum gravity
involves an equation with 5000 terms; derivations constructed to produce
a correct result in spite of incorrect logic or operations, e.g., 
canceling 6 gives  proving a result with an example, e.g., to show there
is no integer a such that  and  we just let

 and con�irm the truth; not verifying all the conditions of a result,
e.g., Leibniz criteria for the convergence of an alternating series

 are 1.  are positive, 2.  3.  decreases
monotonically; we just show one or two of these and leave the other; use
the terms such as “clearly ,” “it is self-evident that ,” “it can be easily
shown that ,” “  does not warrant a proof,” “the proof is left as an
exercise for the reader,” and the list continues. Finally, mathematics is
really considered bad if your proof is correct but hard to follow for anyone
because there are too many gaps for the reader to �ill. In 1657, Pascal
realized this fact and wrote “I have made this letter longer because I lack



the time to make it short.” Similarly, Samuel Langhorne Clemens (1835–
1910, USA), best known by his pen name Mark Twain, understood this
phenomenon when he apologized to a correspondent,“I didn’t have time to
write you a short letter so I wrote you a long instead.” Although most of the
solutions discovered for Hilbert’s 20 problems which he proposed as a
challenge to the International Congress of Mathematicians, held in Paris in
1900, have been quite complex and intellectually demanding, he valued on
simplicity and intelligibility. His famous quote is “A mathematical theory is
not to be considered complete until you have made it so clear that you can
explain it to the �irst man whom you meet on the street.” Einstein made it
more relevant by saying “Everything should be made as simple as possible,
but not simpler.” However, the current mathematics has reached to the
extent that often-understanding others’ work on the same problem you are
working for several years takes weeks.

In 2007, Terence Tao [506] cautiously made an attempt to list the
desirable requirements for good mathematics: problem-solving (e.g., a
major breakthrough on an important mathematical problem), technique
(e.g., a masterful use of existing methods or the development of new tools),
theory (e.g., a conceptual framework or the choice of notation which
systematically uni�ies and generalizes an existing body of results), insight
(e.g., a major conceptual simpli�ication or the realization of a unifying
principle, heuristic, analogy, or theme), discovery (e.g., the revelation of an
unexpected and intriguing new mathematical phenomenon, connection, or
counterexample), application (e.g., to important problems in physics,
engineering, computer science, statistics, etc. or from one �ield of
mathematics to another), exposition (e.g., a detailed and informative
survey on a timely mathematical topic or a clear and well-motivated
argument), pedagogy (e.g., a lecture or writing style which enables others
to learn and do mathematics more effectively or contributions to
mathematical education), vision (e.g., a long-range and fruitful program or
set of conjectures), taste (e.g., a research goal which is inherently
interesting and impacts important topics, themes, or questions), relations
(e.g., an effective showcasing of a mathematical achievement to
nonmathematicians or from one �ield of mathematics to another), meta-
mathematics (e.g., advances in the foundations, philosophy, history,
scholarship, or practice of mathematics), rigorous (all details correctly and
carefully given in full), beautiful (e.g., the amazing identities of Ramanujan;
results that are easy (and pretty) to state but not to prove), elegant (e.g.,
pleasant, graceful, stylish, and succinct), achieving a dif�icult result with a



minimum of effort), creative (e.g., a radically new and original technique,
viewpoint, or species of result), useful (e.g., a lemma or method which will
be used repeatedly in future work on the subject), strong (e.g., a sharp
result that matches the known counterexamples or a result which deduces
an unexpectedly strong conclusion from a seemingly weak hypothesis),
deep (e.g., a result which is manifestly nontrivial, for instance, by capturing
a subtle phenomenon beyond the reach of more elementary tools),
intuitive (e.g., an argument which is natural and easily visualizable), and
de�initive (e.g., a classi�ication of all objects of a certain type; the �inal word
on a mathematical topic). However, a single work can hardly incorporate
them all; in fact, some are mutually incompatible.

We all know what we like in music, painting, or poetry, but it is much
harder to explain why we like it. The same is true in mathematics; in fact,
Cayley said “As with everything else, so with a mathematical theory;
beauty can be perceived, but not explained.” Mathematical beauty is not
linked to simplicity, complexity, or formal rigor. Bertrand Russell
eloquently observed: Mathematics, rightly viewed, possesses not only
truth but also supreme beauty—a beauty cold and austere, like that of
sculpture, without appeal to any part of our weaker nature, without the
gorgeous trappings of paintings or music, yet sublimely pure and capable
of a stern perfection such as only the greatest art can show. He also said:
The true spirit of delight, the exaltation, the sense of being more than Man,
which is the touchstone of the highest excellence, is to be found in
mathematics as surely as poetry. According to Poincaré, the mathematician
does not study pure mathematics because it is useful; [s]he studies it
because [s]he delights in it and [s]he delights in it because it is beautiful.
Hardy in his book [249] compares mathematics with painting and poetry.
For Hardy, the most beautiful mathematics was that which had no practical
applications in the outside world (pure mathematics) and, in particular, his
own special �ield of number theory. Hardy contends that if useful
knowledge is de�ined as knowledge which is likely to contribute to the
material comfort of mankind in the near future (if not right now), so that
mere intellectual satisfaction is irrelevant, then the great bulk of higher
mathematics is useless. He justi�ies the pursuit of pure mathematics with
the argument that its very “uselessness” on the whole meant that it could
not be misused to cause harm. On the other hand, Hardy denigrates much
of the applied mathematics as either being “trivial,” “ugly,” or “dull” and
contrasts it with “real mathematics,” which is how he ranks the higher,
pure mathematics. However, much of mathematics was either initiated in



response to external problems or has subsequently found unexpected
applications in the real world. This whole linkage between mathematics
and science has an appeal of its own, where the criteria must include both
the attractiveness of the mathematical theory and the importance of the
applications.

As reported by Dirac, there are two strategies for studying nature:
experimental	method, which, beginning with observed facts, looks for the
relationship that exists between them, and the mathematical	reasoning,
which only involves the search for mathematical beauty, the physical
signi�icance of which is investigated only later. For him the second method
was more pro�itable because nature manifests itself in terms of beautiful
mathematical equations. According to Erdös God has a trans�inite book
“The Book” with all the theorems and their best proofs. You do not have to
believe in God, but you have to believe in “The Book.” The best proofs,
according to Erdös, are the simplest and most elegant, though he admits
that “in some cases it’s not really clearly de�ined.” Fortunately, a handful of
proofs that belong in “The Book” can be understood by anyone with a
vague memory of high school algebra and what Erdös would call a brain
that is “open.” Understanding such a proof is a little like viewing one of
those three-dimensional pictures that appear at �irst glance to be nothing
more than a sheet of marbled paper. You relax your eyes, open your mind,
drop your prejudices, and concentrate. In a little while the surface of the
paper seems to dissolve, revealing a three-dimensional image of a dolphin
or a dinosaur. That moment is a revelation, magic, from emerging from
formlessness. Doing mathematics can feel like that. For example, in
Euclid’s Elements there are several results which are in “The Book,” e.g.,
Euclidean division and algorithm (Theorems 3.2 and 3.3), fundamental
theorem of arithmetic (Theorem 4. 1), in�initely many prime numbers
(Theorem 4. 2), characterization of perfect numbers (Theorem 4. 3),
Pythagorean theorem (Chap. 5), and the list continues. We are sure
Chinese remainder theorem (Theorem 3.10), Fermat’s little theorem
(Theorem 4. 5), and Lagrange’s four-square theorem (Theorem 4. 19) also
belong to “The Book.” Martin Aigner (born 1942, Austria) and Günter
Matthias Ziegler (born 1963, Germany) have included several such
theorems in their book [23]. In conclusion, the essence of mathematics lies
in its beauty and its intellectual challenge.

Erdös once said, having himself written clumsy proofs. Over time the
essence of such proofs becomes clearer, and more concise and enlightening
versions are written. Here we illustrate two examples that completely



support his statements. However, we do not consider the initial proof as
clumsy, rather it is the �irst most important step.

In 1960, Zdzislaw Opial (1930–1974, Poland) proved the following
interesting integral inequality: Let  be such that

 and  in  Then, the following inequality
holds:

In this inequality the constant  is the best possible. Opial’s proof is
nearly 3-pages long. In 1960 itself, Czeslaw Olech (1931–2015, Poland)
showed that in Opial’s inequality the positivity requirement of  is
unnecessary, and the inequality holds even for the functions  which
are only absolutely continuous in  Furthermore, Olech’s proof is
simpler than that of Opial. Two years later Paul Richard Beesack (Canada)
gave an even simpler proof; his proof paved the way for some nontrivial
generalizations. In 1964, Norman Levinson (1912–1975, USA) extended
Opial’s inequality to complex-valued functions. A year later C.L. Mallows
(USA) conjectured that ultimate simplicity is attained in his proof, which is
only few lines. Yet, in the same year 1965, an equally simpler proof was
offered independently by L.K. Hua (China) and R.N. Pederson (USA). Since
then hundreds of generalizations of Opial’s inequality have been published
and new applications have been provided. In 1995, Agarwal and Pang in
their book of 393 pages [9] collected most of the known results published
in the past 35 years on Opial’s type inequalities. The work published after
1995 is only in research papers. In 1981, during the General Inequalities,
three meeting at Oberwolfach (Germany) Agarwal, during questions and
answers session, proved the following: If

 then

where the constant  and asked if C can be replaced by 
However, Raymond Moos Redheffer (1921–2005, USA) gave an example to
show that  The problem of obtaining the optimal
constant C still remains unsolved.



In 1892, Aleksandr Mikhaıľovich Lyapunov (also Romanized as
Liapunov, Liapounoff, Ljapunov, or Ljapunow), 1857–1918, Russia, proved
the following result: Let q be a real-valued and continuous function
de�ined on the interval  If the so-called Hill differential equation
(after George William Hill, 1838–1914, USA)

has a nontrivial solution that vanishes at two points of  then q
satis�ies the inequality

This remarkable inequality is sharp, in the sense that the constant 4
cannot be replaced by a larger number. Moreover, one may show that if q is
a real-valued function such that the second-order Hill differential equation
has a nontrivial solution having two distinct zeros on  then the
nonnegative part  must satisfy the so-called Lyapunov
inequality

Since then and until the publication of our book in 2021 (see Agarwal et.
al. [20]) of 607 pages, research on Lyapunov’s inequality and many of its
generalizations has far exceeded 5000 publications, and numerous
applications to many branches of mathematics have been given. One of the
improvements of Lyapunov’s inequality is the so-called Hartman
inequality (after Philip Hartman, 1915–2015, USA)

has also received considerable attention.

3.20	 Do	Classical	Problems	from	Antiquity	Lead
to	New	Mathematics?
Despite ancient Greek geometers innovative work, they were unable to
settle the following three questions whose origin is only various



speculations:
Problem1. How to construct the side of a cube whose volume shall be

twice of a given cube?  
Problem2. How to trisect any triangle?  
Problem3. How to construct a square equal in area to any given circle

(also known as quadrature of a circle)?  
Following strictly Euclidean tools to �ind solutions of these three

problems left conundrums to mathematical ingenuity for over 2000 years,
but their unsuccessful attempts in�luenced modern mathematics and
helped the world to realize that it is not about calculations but
understanding and testing the reality of the world. In particular, these
problems established strong and profound links between geometry,
algebra, and arithmetic and strengthened the foundation of mathematics.
Details about these problems have been reported in short treatises of
Claude Comiers (died 1693, France) in 1677 [134], Felix Klein in 1897
[308], and Wilbur Richard Knorr (1945–1997, USA) in 1986 [310]. In
recent years, these problems have been discussed on hundreds of
websites. In what follows, we shall provide a brief account of these
problems.

For the �irst problem Heath in [257,258] has quoted Eratosthenes
comment: When the God Apollo proclaimed to the Delians by the oracle
that, to get rid of a plague they should construct an altar double of the
existing one, and their craftsmen fell into great perplexity in their efforts
to discover how solid could be made double of a (similar) solid; they
therefore went to ask Plato about it, and he replied that the oracle
meant, not that the God wanted an altar of double the size, but that he
wished, in setting the task, to shame the Greeks for their neglect of
mathematics and their contempt for geometry (believing geometry was
the root of all reality). It is estimated that the plaque accounted for
between 75 and 100000 deaths, almost 25 percent of the Athenian
population. Another version of problem’s origin also comes from Greek
mythology which relates to King Minos (son of Zeus and Europa). This
question of doubling a cube came after the passing of his late son
Glaucus. Apparently, Minos was very upset with the construction of his
son’s tomb and did not believe it was �itted for the son of a king. He



immediately thereafter ordered builders to double the size of it. The
doubling of the cube was also needed to solve the following problem:
Given a catapult, construct a second catapult that is capable of �iring a
projectile twice as heavy as the projectile of the �irst catapult.

The �irst decisive step in the problem was taken by Hippocrates: Using
analytical arguments if for a given line segment of length a, it is required to
�ind x such that  line segments of lengths x and  respectively,
may be searched such that , but then

 or  Thus,
letting  the problem is equivalent to determining a geometrical
construction, by means of Euclidean tools, for the real root of 
that is,  Later many mathematicians/philosophers used
alternative tools to solve the problem, e.g., Archytas used three surfaces of
revolution right cone, cylinder, and torus (this work is considered as one of
the �inest mathematical achievements of antiquity); Plato, in spite of his
disgust to mechanical solutions “The good of geometry is set aside and
destroyed, for we again reduce it to the world of sense, instead of elevating
and imbuing it with the eternal and incorporeal images of thought, even as
it is employed by God, for which reason He always is God,” provided a
mechanical solution; Eudoxus projected the intersection of the cone and
torus onto xy-plane, for this he discovered the curve known as Kampyle	of
Eudoxus which in Cartesian and polar coordinates can be written as

 Dinostratus (390–320 BC, Greece)
employed Hippias of Elis’s (around 460 BC, Greece) curve quadratrix
which in Cartesian coordinate appears as  Menaechmus
of Proconnesus (around 375–325 BC, Greece) used parabolas and
rectangular hyperbola  and  or  and  or

 and  (historians even say Menaechmus developed conic
sections, circles, hyperbola, parabola, and ellipse, while decoding this
problem); Philo of Byzantium’s (around 280–220 BC, Greece) line �inds the
point of intersection of a rectangular hyperbola and a circle; Nicomedes
(280–210 BC, Greece) employed his curve conchoid which in Cartesian
coordinates may be written as  Eratosthenes
used two parallel horizontal bars, two movable triangle plates, and a �ixed
triangle; Apollonius solution is similar to that of Philo; Diocles (around
240–180 BC, Greece) used his curve called cissoid which in Cartesian
coordinate appears as  Hero of Alexandria (around 75



AD, Egypt-Greece) solution is similar to to that of Philo; Sporus of Nicaea
(around 240–300, Greece) used approximations which are early examples
of integration; Pappus developed an approximate method; Pandrosion of
Alexandria (around 300–360, Greece) established a numerically accurate
approximate method; and Newton also suggested a geometric method.

The frustration of failure of not able to solve duplication problem by
Euclidean tools compounded when prominent mathematicians including
Descartes, Gauss, and Abel convinced that the problem is unsolvable. In his
treatise Disquisitiones	Arithmeticae Gauss went so far as to claim he had
proved the impossibility result. But he then proceeded to announce that in
the interest of brevity he was omitting the proof. Finally, in 1837 Pierre
Wantzel (1814–1848, France) obtained necessary and suf�icient
conditions for the solution of an algebraic equation with rational
coef�icients to be geometrically constructible in the manner speci�ied. His
proof was published in the second volume of the Journal	de	Mathématiques
pures	et	appliquées founded in 1836 by Joseph Liouville (1809–1882,
France) and was the culmination of the work started by Gauss. Wantzel’s
conditions were not satis�ied for the cubic equation  and this
demonstrated the impossibility. An improved proof of unattainability was
later given by Jacques Charles Francois Sturm (1803–1855, Switzerland),
but he did not publish it. In 2003, Abe Hisashi in his publication Amazing
Origami, (in Japanese), ISBN 4-535-78409-4 has demonstrated that
Origami can be used for doubling the cube. Menaechmus’s conic sections
have far-reaching applications throughout mathematics: Omar Khayyám
used the intersection of conic sections to solve cubic equations (a problem
closely related to duplicating the cube), the paths of the planets around the
Sun are ellipses with the Sun at one focus, parabolic mirrors are used to
converge light beams at the focus of the parabola, parabolic microphones
perform a similar function with sound waves, solar ovens use parabolic
mirrors to converge light beams to use for heating, the parabola is used in
the design of car headlights and in spotlights because it aids in
concentrating the light beam, the trajectory of objects thrown or shot near
the Earth’s surface follow a parabolic path, hyperbolas are used in a
navigation system known as LORAN (long range navigation), and
hyperbolic and parabolic mirrors and lenses are used in systems of
telescopes.

Mark Kac and Ulam asserted that “The unique and peculiar character of
mathematical reasoning is best exhibited in proofs of impossibility.



When it is asserted that doubling the cube (i.e. in constructing the cube
root of two) is impossible, the statement does not merely refer to a
temporary limitation of human ability to perform this feat. It goes far
beyond this, for it proclaims that never, no matter what will anybody
ever be able to construct the cube root of two…if the only instruments at
his disposal are a straightedge and a compass. No other science, or for
that matter no other discipline of human endeavor, can even
contemplate anything of such �inality.”
For the second problem we begin with the note that some angles, e.g.,

 degrees can be divided into three equal parts by using
only Euclidean tools. Thus, the trisection of an angle here means to
partition an arbitrary angle into three equivalent angles. The origin of
this problem is not known; however, a traditional problem in ancient
Greek geometry was the construction of regular polygons and of regular
solids. Greek mathematicians knew how to construct regular polygons
with  and 5 sides and of an even number of sides, however failed to
construct with seven sides (heptagon). As we have seen earlier in Chap.
1, they could also construct �ive regular polyhedra. Perhaps this leads to
the natural question: is it possible to construct a regular polygon with an
arbitrary number of sides with compass and straightedge? If not, which
regular polygons are constructible and which are not? To �ind a solution
of this problem, it became necessary to divide a given arbitrary angle to
an arbitrary number of times. Clearly, the trisection of an arbitrary angle
is just a particular case of this general problem. An excellent survey of
known methods for the trisection of an arbitrary angle has been
documented in [540] by Robert Carl Yates (1904–1963, USA) in 1942.
Like for the �irst problem, trisection of an angle avoiding Euclidean tools
has a long history. Hippocrates seems to be the �irst who did not use
Euclidean tools to �ind a relatively simple method to trisect any given
angle (see Fig. 3.18): Given an angle CAB, draw CD perpendicular to AB
to cut it at  Complete the rectangle  Extend FC to E, and let AE
be drawn to cut CD at  The point E is such that  The
angle EAB is  of the 



Fig.	3.18 Trisection of an angle
Then, Hippias used his quadratrix; Pappus used hyperbola

 Archimedes used his spiral
 Nicomedes used his conchoid; Nicholas of Cusa and

later Willebrord Snell (Snellius) (1580–1626, The Netherlands) showed
that for an arbitrary angle , the following approximate formula holds:

whose right side can be calculated geometrically, and this formula for
 and , respectively, gives  and

 Albrecht Dürer (1471–1528, Germany) in 1525
demonstrated that for an arbitrary angle , the following approximate
formula holds:

whose right side can be obtained geometrically, and this formula for
 and , respectively, gives  and

 Viéte showed that the problems of trisection of an angle and
the duplication of a cube both depend upon the solution of cubic
equations; Descartes used intersection of a circle 
and a parabola  to obtain trisection equation 
where  and  which follows immediately from the
equality  Pascal used his limaçon

 Tommaso Ceva (1648–1737, Italy) used
his cycloidum	anomalarum (cycloid of Ceva) ; in
1695 he also offered a mechanical trisecting tool called Ceva’s	pantograph;
and Maclaurin used his trisectrix 

Gauss in 1796 was able to construct a regular polygon with 17 sides
using Euclidean tools, and in his treatise Disquisitiones	Arithmeticae
proved that a regular polygon with n sides is constructible if n is the
product of a power of 2 and distinct prime numbers (Fermat’s primes, see
Sect. 4. 6) of the form ; in particular, when  we
see that each of the corresponding numbers  is



prime, so regular polygons with these numbers of sides are constructible.
Thus the geometric question of the possibility of construction of a regular
n-polygon with ruler and compass turns out to depend on the arithmetic
nature of the number  According to one story, Gauss approached his
colleague Abraham Gotthelf Kästner (1719–1800, Germany) with this
discovery; however, he told Gauss that the discovery was useless since
approximate constructions were “well known,” furthermore that the
construction was impossible, so Gauss’ proof had to be �lawed, and �inally
that Gauss’ method was something that he (Kästner) already knew about,
so Gauss’ discovery was unimportant. Despite Kästner’s discouraging
remarks, Gauss was so proud of this discovery that he requested that a 17
regular polygon be inscribed upon his tombstone (but, it was not, as grave
smith thought it would simply look like a circle). Gauss later toasted
Kästner, who was an amateur poet, as the best poet among
mathematicians and the best mathematician among poets. Gauss did not
prove that regular n-gons, where  and so on cannot be
constructed. This gap was �illed in 1837 by Wantzel.

In 1822, Magnus Georg Paucker (1787–1855, Estonia-Latvia), and in
1832, Friedrich Julius Richelot (1808–1875, Germany) gave the
construction of a regular polygon of 257 sides. As we have noted earlier
the construction for a regular 65537 sides was given by Hermes. In 1895,
James Pierpont (1866–1938, USA) proved that a regular polygon of n sides
(n prime) can be constructed using conic sections iff  contains no
prime factors other than 2 and  For example, a regular 7-gon can be
constructed using conics, while a regular 11-gon cannot. Similar to cube
doubling problem, Gauss in his treatise Disquisitiones	Arithmeticae also
claimed he had proved the impossibility of trisection, but later withdrew.
John Francis Lagarrigue in 1831 proposed compass of proportions to
accomplish trisection of angles and arches; Wantzel showed that his same
result of 1837 is also applicable for the cubic equation 
and this displayed the unfeasibility; in conclusion, a regular polygon with n
sides is constructible iff the cosine of its common angle is a constructible
number, that is, can be written in terms of the four basic arithmetic
operations and the extraction of square roots; and Nicolaus Fialkowski
(Poland) in 1860, having in mind that an arbitrary angle  can be bisected
into equal parts, used the geometric series (3.1), which for

 gives the following approximations of :



This expression for  with  gives ,
whereas for  (3.1) leads to the approximations

which again in particular, for  with  gives

Sylvester in 1875 announced a linkage trisector that he called A	Lady’s
fan, and his idea was used in an optical apparatus to keep moving prisms
equally inclined to each other which was called Sylvester’s	isoklinostat;
Charles-Ange Laisant (1841–1920, France) in 1875 provided two
mechanical instruments known as Laisant’s	links; Pierre René Jean
Baptiste Henri Brocard (1845–1922, France) in 1887 (seems to be the
�irst) used the tool tomahawk whose inventor is unknown; Kempe in 1875
designed a mechanical instrument known as Kempe’s	trisector; Andrew
Doyle in 1881 showed that trisection of any rectilineal angle by
elementary geometry and solutions of other problems is impossible except
by aid of the higher geometry; Amadori (Italy) in 1883 following Ceva
suggested a mechanical instrument known as Amadori’s	link; T.W. Nicalson
(England) in 1883 used a right-angled square with parallel edges whose
legs have the same width, and his procedure is named as carpenter’s
square; Philbert Maurice d’Ocagne (1862–1938, France) in 1934, then
Tadeusz Wazewski (1896–1972, Poland) in 1945, G. Peterson in 1983, and
Wladyslaw Hugo Dionizy Steinhaus (1887–1972, Poland) in 1999
approximated  by the following formula:

whose right side can be obtained geometrically, and this formula for
 and , respectively, gives  and

August Adler (1863–1923, Czech Republic-Austria) in 1906 showed
that two celluloid triangles, each having a right angle, can be drafted to
trisect any angle and obtained the same trisection equation as Descartes,



and his method is known as drafter’s	triangles; A. Aubry (France) in 1909
constructed a right circular cone whose slant height equal to three times
the base radius, and his method is called the	cone	trisector; Karajordanoff
in 1928 estimated  by the following approximate formula:

whose right side can be obtained geometrically, and this formula for
 and , respectively, gives  and 

Dobri Naidenoff Petkoff in 1941 refreshed trisection problem; Robert Lee
Durham (1870–1949, USA) in 1944 furnished a geometric construction to
approximate  by the following formula:

this approximation for  and , respectively, gives
 and  Free Jamison (USA) in 1954

provided a geometric construction (originally due to C.R. Lindberg) to
approximate  by the following formula:

which coincides with Avni Pllana’s approximation of 2003

these approximation for  and , respectively, give
 and  Orman Quine in 1990

used elementary algebra to show that some angles cannot be trisected by
ruler and compass; in 2003, Abe Hisashi in his publication Amazing
Origami also showed that Origami can be used for trisecting an angle; and
George Goodwin polished Doyle’s work in 2018 to provide trisection of
any rectilineal angle.

The problem of squaring a circle is one of the oldest and most
famous/studied/ unlimited/praised/intriguing problems in whole of
mathematics. All circles have the same shape and traditionally represent
the in�inite, immeasurable, and even spiritual world. Some circles may



be large and some small, but their “circleness,” their perfect roundness,
is immediately evident. Mathematicians say that all circles are similar.
Behind this unexciting observation, however, lies a profound fact of
mathematics: that the ratio of circumference to diameter is the same for
one circle as for another. Whether the circle is gigantic, with large
circumference and large diameter, or minute, with tiny circumference
and tiny diameter, the relative size of circumference to diameter will be
exactly the same. In fact, the ratio of the circumference to the diameter
of a circle produces the most ubiquitous/external/mysterious
mathematical number known to the human race. It is written as Pi, or
symbolically mathematicians chose the 16th letter of the Greek alphabet

 and de�ined as (see Fig. 3.19)

Fig.	3.19 Pi

Since the exact date of birth of  is unknown, one could imagine that 
existed before the Universe came into being and will exist after the
Universe is gone. Its appearance in the disks of the Moon and the Sun,
makes it as one of the most ancient numbers known to humanity. It keeps
on popping up inside and outside the scienti�ic community, for example, in
many formulas in geometry and trigonometry, physics, complex analysis,
cosmology, number theory, general relativity, navigation, genetic
engineering, statistics, fractals, thermodynamics, mechanics, and
electromagnetism. Pi hides in the rainbow and sits in the pupil of the eye,
and when a raindrop falls into water  emerges in the spreading rings. Pi
can be found in waves and ripples and spectra of all kinds, and therefore 
occurs in colors and music. The double helix of DNA revolves around  Pi
has lately turned up in super-strings, the hypothetical loops of energy
vibrating inside subatomic particles. Pi has been used as a symbol for
mathematical societies and mathematics in general, e.g.,  is used in



number theory and built into calculators and programming languages. Pi is
represented in the mosaic outside the mathematics building at the
Technische Universität Berlin. Pi is also engraved on a mosaic at Delft
University. Even a movie has been named after it.

Pi is the secret code in Alfred Hitchcock’s Torn Curtain and in The Net
starring Sandra Bullock. Pi day is celebrated on March 14 (which was
chosen because it resembles 3.14). The of�icial celebration begins at 1:59
p.m., to make an appropriate 3.14159 when combined with the date. In
2009, the United States House of Representatives supported the
designation of Pi Day. Einstein was born on Pi Day (3/14/1879). The �irst
144 digits of  add up to 666; since there are 360 degrees in a circle, some
mathematicians were delighted to discover that the number 360 is at the
359th digit position of  A mysterious 2008 crop circle in Britain shows a
coded image representing the �irst ten digits of  The website “The Pi-
Search Page” �inds a person’s birthday and other well-known numbers in
the digits of  Several people have endeavored to memorize the value of

 with increasing precision, leading to records of over 100,000 digits.
Throughout the history of  which according to Beckmann [57] “is a

quaint little mirror of the history of man,” and James Glaisher “has engaged
the attention of many mathematicians and calculators from the time of
Archimedes to the present day, and has been computed from so many
different formula, that a complete account of its calculation would almost
amount to a history of mathematics,” one of the enduring challenges for
mathematicians has been to understand the nature of the number  and
to �ind its exact/approximate value. The quest in fact started during
prehistoric era and continues to the present day of supercomputers. The
constant search by many including greatest Mathematical thinkers that the
world produced continues for new formulas/bounds based on
geometry/algebra/analysis, relationship among them, and relationship
with other numbers. Right from the beginning till modern times, attempts
were made to exactly �ix the value of  but always failed, although
hundreds constructed circle squares and claimed the success. At one point,
the quest to square the circle became such an obsession that De Morgan,
coined the term morbus	cyclometricus, the circle-squaring disease. Roger
Webster (England) called the problem squaring the circle as “Mount
Everest of mathematics.” Stories of these contributors are amusing and at
times almost unbelievable. In Chap. 8 we shall show that like other two
problems by employing only Euclidean tools squaring a circle is also
impossible. Furthermore, in this chapter we shall show that like other two



Königsberg	Bridge	Problem:

Euler’s	Polyhedral	Formula	of	1752:

problems on ignoring Euclidean tools, squaring the circle is possible but
requires more advanced techniques and mechanical instruments. In
addition, we shall provide computational details of  from the beginning
till very recent approximation to 100 trillion decimal places, and we �ind
its nature (rational/irrational/transcendental). We believe that the study
and discoveries of  will never end; there will be books, research articles,
new record-setting calculations of the digits, clubs, and computer
programs dedicated to 

In mathematics there are several other innocent looking problems
whose rigorous proofs or impossibility kept outstanding mathematicians
engaged for an extended period. We list some of these problems.

This problem asks if the seven bridges of the
city of Königsberg, formerly in Germany but now known as Kaliningrad a
part of Russia, over the river Preger can all be traversed in a single trip
without doubling back, with the additional requirement that the trip ends
in the same place it began. In 1736, Euler proved the impossibility
(negative result) of a solution of this problem, which represented the
beginning of graph theory.

For any polyhedron (a solid �igure
with many plane faces, typically more than 6),  where V 
is the number of vertexes, E is the number of edges, and F is the number of
faces. For this theorem at least 21 different proofs are known (these
different proofs serve not merely to convince but also to enlighten as they
require different tools of mathematics which helps in progressing
mathematics; failed attempts also spawn new areas of mathematical
research). For all �ive regular polyhedra, the result is immediate (see Fig.
1. 4).

The Isoperimetric	Problem is to determine a plane �igure of the largest
possible area whose boundary has a speci�ied length. For three
dimensions it states that the shape enclosing the maximum volume for its
surface area is the sphere. It was formulated by Archimedes but not
proved rigorously until 1884 by Karl Hermann Amandus Schwarz (1843–
1921, Germany).

The Fundamental	Theorem	of	Algebra states that every polynomial
equation of degree n with complex number coef�icients has n roots, or
solutions, in the complex numbers. Many incomplete or incorrect
attempts were made at proving this theorem in the eighteenth century,



including by d’Alembert in 1746, Euler in 1749, François Daviet de
Foncenex (1734–1799, France) in 1759, Lagrange in 1772, Laplace in
1795, James Wood (1760–1839, England), and Gauss in 1799. The �irst
rigorous proof was published by Argand in 1806 and then by Gauss 1815,
1816, and 1848. There have been claims that now more than 200 different
proofs are known.

Marie Ennemond Camille Jordan (1838–1922, France): The	Jordan
Curve	Theorem. This is the result that a closed non-self-intersecting curve
in the plane divides the plane into two regions—a bounded and an
unbounded one. Intuitively obvious, this theorem incredibly dif�icult to
prove in the traditional sense of the word. Jordan’s original proof of this
theorem in 1887 contains gaps. Its �irst valid proof was given by Oswald
Veblen (1880–1960, USA) in 1905.

For further reading about the topics discussed in this chapter see, Adler
[5], Berggren [66], Bittinger [72], Bloch [74], Byers [113], Carlson [115],
Coolidge [139], Cupillari [144], D’Angelo and West [149], Dedron and
Itard [159], Gerstein [212], Granier and Taylor [224], Hall [246], Hanna
[247], Hardy [248], Karpinski [298], Kaye [302], Khan [305], Kulkarni
[321], Kushyar [322], Lakshmikantham [328], Lamport [332], Lewis
[344], Mikami [371], Murthy [380], Needham [389], Pandit [404],
Paramesvaran [405], Plo�ker [411], Poincaré [414], Polya [415], Rao
[428], Reid [429], Rota [437], Sarasvati [446], Sen and Bag [467],
Snapper [487], Srinivas [494], Szabo [503], Velleman [519], Viéte [520],
and Yehuda [541].
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4.1	 Introduction
It would be preposterous to write a history of mathematics without
acknowledging prime numbers, and it would not be justi�ied to give an
account of prime numbers without providing the history of mathematics.
Prime numbers occur in almost every branch of mathematics; they are as
fundamental as they are ubiquitous, see Loweke [351]. Prime numbers are
indivisible. The traditional count of Holy Quran has 6348 verses, and in
these verses the word “Allah” (with variation bismillah) appears 2699
times; 2699 is a prime which means it is indivisible just like Allah is
indivisible. Skeptics claim that this is just a coincidence. It turned out that
prime numbers are one of the characteristics of the entire Holy Quran. A
few prime numbers were known as early as 22,000 years ago; the Rhind
mathematical Papyrus has Egyptian fraction expansions of different forms
for prime and composite numbers; Hindus had adequate knowledge of
prime, perfect, and amicable numbers, much before the days of
Pythagoreans; the sieve of Eratosthenes is still used to construct lists of
small primes. The �irst systematic treatment of number theory was given
by Euclid in Books VII, VIII, and IX of his Elements. His “fundamental
theorem of arithmetic,” “in�initude of primes” (which makes the study of
primes fascinating), and “construction of all even perfect numbers” are
three painite crystals of numbers theory. In the 1600s, Fermat took the
initiative, and through his educated guessed problems (with solutions to
only a few) in number theory, especially for prime numbers,
captivated/hypnotized the best minds then, and paved the road for
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generations to follow his footsteps. In fact, over the period of 400 years,
Mersenne, Euler, Lagrange, Gauss, Dirichlet, Pafnuty Lvovich Chebyshev
(1821–1894, Russia), Riemann, Dedekind, Hadamard, Poussin, Hardy,
Littlewood, Ramanujan, Vinogradov, Pillai, Erdös, Selberg, Jingrun Chen,
Terence Tao, and the list continues, greatly intensi�ied the theory of
primes; however, still there are more unsolved problems than solutions. In
this chapter, we shall detail some of their works (leaving behind
complicated technicalities) and discuss the present status of several
known conjectures.

4.2	 Prime	and	Composite	Numbers
An integer p greater than 1 is called a prime	number or simply prime if it
has no integer factors (or divisors) other than 1 and itself, e.g., the �irst ten
primes are  and  In some contexts, negative
counterparts of primes,  etc., are also regarded as primes. An
integer n greater than 1 is called a composite	number or just composite if it
has divisors between 1 and  e.g., the �irst ten composite numbers are

 and  Except 2 all the prime numbers are odd,
since all even numbers after 2 are divisible by the prime 2 and hence
composite. Numbers 0 and 1 are neither prime nor composite. Two
numbers a and b are called relatively	prime if  It is clear that
two consecutive odd positive integers are relatively prime. The numbers

 are called pairwise	relatively	prime if 
whenever  Odd composite numbers are Pythagoreans
called effeminate. Primes and composites play a very precious role among
all numbers. Further, they constitute a mine of beautiful interesting and
useful behavior patterns.

The Ishango	bone, unearthed in 1960 at the Lake Edward in Zaire, close
the Ugandan border. It is estimated to be 22,000 years old. It is one of the
oldest known remarkable objects that shows evidence of an understanding
of numbers beyond counting. It contains three columns of marks: the
middle column contains the sequence of numbers 
which add up to  the numbers in the left and right columns are all odd
numbers, the left column lists the prime numbers between 10 and  i.e.,

 and the right column consists of the numbers 
both side columns add up to 60. These numbers cannot be random and
suggest an understanding of multiplication and division by 2 (and perhaps



familiarity with prime numbers and the lunar cycle). So far, nobody really
knows what these prime numbers were used for 22,000 years ago. Ahmes
Papyrus contains Egyptian fraction expansions of different forms for prime
and composite numbers. The �irst de�inition of a prime numbers appeared
in the Elements (book VII) of Euclid.

Eratosthenes method/algorithm known as sieve of Eratosthenes was
apparently the �irst methodical attempt to separate the primes from the
composite numbers, and all subsequent tables of primes and of prime
factors have been based on extensions of it. His method is based on a
simple observation: if n is composite, then it has a divisor m such that

 For this, since n is composite, there are integers  and 
such that  and  If  and  are
both larger than  then  which is
impossible. From this, we can immediately conclude that if n is composite,
then it has a prime divisor less than equal to  In conclusion, if an
integer  is not divisible by a prime  then n itself is
necessarily a prime. To see how his method works to �ind all primes under

 we list all numbers 0 to 100 in an array, and we cross numbers 0 and
1 as they are not prime. Since 2 is a prime, we cross all even integers from
our listing, except 2 itself. The �irst of the remaining integers is  which
must be a prime. We keep  but cross out all higher multiples of  so that

 are now removed. The smallest integer after 3 not yet crossed
is  It is not divisible by either 2 or 3 (otherwise it would have been
canceled), hence is also a prime. Because all proper multiples of 5 are
composite numbers, we next cross  retaining 5 itself. The
�irst surviving integer 7 is a prime, for it is not divisible by  or  the
only primes that precede it. After the proper multiples of  the largest
prime less than  have been eliminated, all composite integers
under 100 have been crossed out through the sieve. The positive integers
that remain,

, are all the primes less than 100.



The compilation of such a table involves a fantastic amount of work,
which is not always rewarded. The �irst fair-sized table, one giving the least
prime factors of all numbers not divisible by 2 or 5, up to  was
published by Johann Rahn (1622–1676, Switzerland) as an appendix to his
Teusche	Algebra of 1659. In 1668, Pell extended this table to include
numbers up to  The table constructed by schoolmaster Anton
Felkel (1740–1800, Austria) gave factors of numbers not divisible by 2, 3,
or 5 up to 408,000, was published in 1776 by the Imperial Treasury of
Austria; when only a few subscriptions were received the remaining copies
were con�iscated, their pages used as paper in the manufacture of
cartridges for a war against the Turks. Jakob Philipp Kulik (1793–1863,
Austria) devoted 20 years of his life preparing, unassisted and alone, the
factors of numbers up to  He deposited the table in the library
of the Vienna Royal Academy in 1867. It was never published; moreover,
they lost the part that included the integers from 12,642,600 to
22,852,800.

Boethius reproduced the sieve of Eratosthenes. From the sieve of
Eratosthenes, a cumbersome formula can be obtained that will determine
the number of primes below n when the primes below  are known.
This formula was considerably improved in 1870 by Daniel Friedrich Ernst
Meissel (1826–1895, Germany), who showed that the number of primes
below  is  Niels Peder Bertelsen (1869–1938, Denmark)
continued these computations, and in 1893, he announced that the
number of primes below  is  (the correct last three digits are
534). In 1959, Derrick Henry Lehmer (1905–1991, USA) showed that
Bertelsen’s result is incorrect, and it should read  he also
showed that the number of primes below  is 



We observe that , and 28 is a string of �ive consecutive
composites. Now since , it is clear that

 and
 is also a string of �ive consecutive composites. Similarly, we

have  as a string of 701 consecutive
composites. From these two examples, it follows that a string of n
consecutive composites can be written as

Thus, it is possible to construct a string of arbitrarily long length (in the
theory of numbers, this term is known as “as many as we please”) of
consecutive composites. This also shows that consecutive primes can be
far apart.
Let  denote the nth prime and  the nth composite number. Thus,

 and  while  and  Of course,  for all
integers  To �ind all integers  such that  we note that

, and  Now since for all integers
 and , it follows that

 for all  Therefore, 5 and 6 are the only positive
integers n such that 
In 1915, Ramanujan called a composite number as highly	composite
number if the number of its divisors is more than those of any other
smaller composite number. For example, composite number 24 has eight
divisors, namely,  and 24 and this number 8 is more
than the number of divisors of any of the composite numbers

 and  each of them being smaller
than  Therefore, 24 is a highly composite number. From the
de�inition, it also follows that 45 is not highly composite number
because it has only six divisors  and  There are an
in�inite number of highly composite numbers, and the �irst ten are

 The corresponding numbers of divisors
are  Ramanujan listed 102 highly composite
numbers up to  but in 1926, Tirukkannapuram
Vijayaraghavan (1902–1955, India) found that he missed the number

 which has 5040 factors. If  represents the number
of highly composite numbers  then Ramanujan showed that



 Ramanujan also showed that if
 is the prime factorization of a highly composite

number, then the primes  form a string of consecutive primes;
the exponents are nonincreasing, so  the �inal
exponent  is always 1, except for the two cases  and

 where it is  For example,
 whereas

for the non-highly composite number
 Hardy aptly

described a highly composite number by the phrase “as unlike a prime
as a number can be.” Ramanujan received his BA from the Cambridge
University in March 1916 on the basis of his long paper on highly
composite numbers. In 1944, Leonidas Alaoglu (1914–1981, Canada-
USA) and Erdös showed that there exists a constant  such that

 where in 1988, Jean-Louis Nicolas (France) proved that
there exists a constant  such that  In recent years,
Achim Flammenkamp (Germany) has posted a list of the �irst 779674
highly composite numbers. In his list, 15,000th highly composite
number has the product of 230 primes.
In any set of nine positive integers which differ from each other only in
the unit’s place, e.g.,  or  or ,
there can be at most four primes. In fact, in the set , there
are exactly four primes , and  In any other such set, four of the
numbers will be even and one will be divisible by  and so we are left
with only four numbers (ending in , or 9) which can be prime. We
list nine quads which are such primes. These are the only cases of “four
primes out of nine numbers” up to 



In 1963, Ulam drew with 1 a square spiral as shown in the following
�igure. He was amused to see that the primes tended to fall on diagonal
lines. We have encircled the odd primes to show the pattern.

Encouraged by the pattern displayed by the above square spiral, Ulam,
Mark Brimhall Wells (1929–2018, USA), and Myron Stein (1919–2020,
USA) studied such spirals starting with whole numbers other than  The
following �igure gives one such square spiral starting with  In this also,
we notice that primes tend to fall on diagonals. In particular, all the 20
entries on the principal diagonal are primes (421 through 383).

In 1963, the MANIAC II mainframe computer at Los Alamos was used
to store the �irst 90 million primes. It was also used to draw a square spiral
diagram for all primes below 10 million and in that many primes were
located on its diagonal lines.

Prime numbers are considered the “building blocks” of the natural
numbers because every natural number, excluding the number 1, is either
a prime number or a product of prime numbers. This fact is known as the
fundamental	theorem	of	arithmetic; it is at the core of number theory, the
study of integers. The essence of this result �irst appeared in Euclid’s
Elements (VII:32 and IX:14), but its proof was completed by Gauss in his
Disquisitiones	Arithmeticae. For this, we need the following preliminary
results:

Lemma	4.1	(Euclid’s	Lemma) Let  and	c	be	integers,	where  If
 and  then 

Proof Since  there is some integer q such that  Since a and b
are relatively prime, from Corollary 3. 3, there exist integers x and y such



that  Thus,

Since  is an integer,  █

Corollary	4.1 If  then  where

Proof There exists some k such that  Since 
there exist s and t such that  which implies that

 Thus, it follows that  and hence
 which means  Thus, in view of Lemma 4.1,

 which is the same as  █

For an illustration of Corollary 4.1, consider the congruence
 which is the same as  Since

 it follows that 

Corollary	4.2 Let	b	and	c	be	integers	and	p	a	prime.	If  then	either
 or 

Proof If  the corollary holds, so we assume that  Since the only
positive integer divisors of p are 1 and  it follows that 
Thus, by Lemma 4.1,  █

Corollary	4.3 Let  where  be	integers	and	let	p	be	a
prime.	If  then  for	some 

Proof We proceed by induction. For  this is simply a restatement of
Corollary 4.2. Assume that if a prime p divides the product of k integers

 then p divides at least one of the integers. Now let
 be  integers, where  We show that

 for some  Let  So  By
Corollary 4.2, either  or  If  then the proof is complete.
Otherwise, , that is  However, by the induction
hypothesis,  for some  In any case,  for some

 █



From Corollary 4.3, it is clear that if all  are prime, then
 for some 

Lemma	4.2 Let  be	integers,	where	a	and	b	are	relatively
prime.	If  and  then 

Proof Since  and  there exist integers q and r such that  and
 Furthermore, since a and b are relatively prime, there exist

integers x and y such that  Multiplying by c and substituting,
we obtain

Since  is an integer,  █

Theorem	4.1	(Fundamental	Theorem	of	Arithmetic) Every	integer
 is	either	prime	or	can	be	expressed	as	a	product	of	primes,	that	is,

(4.1)
where  are	primes	(some	or	all	of	these	primes	may	be

repeated).	Furthermore,	this	factorization	is	unique	except	possibly	for	the
order	in	which	the	factors	occur.

Proof If a number  is composite by de�inition, it can be written as
 where  and  We can choose  to be the

least divisor of n and hence must be prime. Next we �ind  the least
divisor of  and continue the process, which cannot continue inde�initely,
and �inally leads to product of primes of  i.e., (4.1) holds. This process is
called the prime	factorization. To prove that such a factorization is unique,
we assume to the contrary that there is an integer  that can be
expressed as a product of primes in two different ways, say

where in each factorization, the primes are arranged in nondecreasing
order, i.e.,  and  Since the
factorizations are different, there must be a smallest positive integer r such
that  After canceling, we have

(4.2)
Now consider the integer  Either  and the left side of (4.2) is



exactly  or  and  is an integer that is the product of
 primes. In either case,  Therefore, by Corollary 4.3,

 for some j with  Because  is prime  Since
 it follows that  By considering the integer  (instead of

) we can show that  Therefore,  But this contradicts the
fact that  Hence, every integer  has a unique factorization.█

If an integer  is expressed as a product  of primes, then
the primes  need not be distinct. Consequently, we can
group equal prime factors and express n in the form

(4.3)

where  are primes such that ,
and each exponent  is a positive integer. We call this the canonical
factorization of  From the Fundamental Theorem of Arithmetic, every
integer  has a unique canonical factorization.

Since  from the uniqueness of the prime
factorization, it immediately follows that 1 is not a prime number.
From (4.3), it follows that the total number of divisors of n is

 the total number of divisors of n is odd if n is a perfect
square, and even if n is not a perfect square; and the sum of all the
divisors of n is

In fact, for , the divisors are
,

 They are even (24) in
number, and their sum is  Now from the formulas, we have the
total number of divisors of  which is
even because 360 is not a perfect square, and sum of the divisors of



 In
particular, if p is prime, then 
For a given number n, it is interesting to investigate how many distinct
prime factors it possesses. Clearly, primes have only a single distinct
prime divisor; numbers 9 and 10 are not prime, and have, respectively,
one distinct prime factor 3 and two distinct prime factors, 2 and 
numbers 30 and 60 have three distinct prime factors,  whereas
the number 100 has only two distinct prime factors, 2 and  Around
1939, Kac realized that just as the probability that a tossed coin will
come up heads is unaffected by the outcome of previous tosses, the
probability that a number is divisible by one prime is independent of
whether it is divisible by any other. Since the number of heads and tails
expected after a large number of coin tosses obeys a normal
distribution, it seemed to Kac that the number of distinct prime factors
should obey a similar law. His observation in 1940 led to a famous
Erdös-Kac theorem, also known as the fundamental theorem of
probabilistic number theory (after 10 years, it induced to a new branch
in number theory), which states that if  is the number of distinct
prime factors of  then, approximately the probability distribution of

is the standard normal distribution. This result is an extension of the
Hardy-Ramanujan theorem of 1917, which states that the normal order
of  is  with a typical error of size 

Euclid in his Elements (IX:20) used, likely to be �irst time in written, the
method of contradiction to demonstrate that there are in�initely many
prime integers. This not only makes the study of prime numbers
interesting but also retains many questions, which are still unsolved.

Theorem	4.2 There	are	in�initely	many	prime	numbers.

Proof Assume to the contrary that the number of primes is �inite. Let
 be the set of all primes in increasing order.

Consider the integer  Because  we can use
Theorem 4.1 to conclude that either  is prime, which contradicts P
contains all primes, or  has a prime factor which belongs to  i.e., there
is a prime  such that  Hence,  for some



integer  Let  Then

Since  is an integer,  which is impossible.█

The numbers  de�ined above are called Euclid	numbers. The
�irst ten Euclid numbers are 3, 7, 31, 211, 2311, 30031, 510511,
9699691, 223092871, 6469693231. It is an open question whether all
terms of this sequence are square free. Theorem 4.2 demonstrates the
existence of some prime larger than  but we do not necessarily
arrive at the very next prime after  For example,

 yields 59 as a prime
beyond  Similarly,  Generally, there
are many primes between  and 
In 1737, the connection between the zeta function (s real) and prime
numbers was discovered by Euler, who with argument  proved the
identity

(4.4)

This identity results from expanding the factor involving p as a
geometric series

On multiplying these series for all primes  we get a sum of terms of
the form

where  are distinct primes and  are positive
integers. By the canonical factorization, the products  so
obtained yield precisely all the positive integers (only once), allowing us
to conclude that the sum in question is simply  (The
convergence of this series is guaranteed for ) Because the series
for  diverges, Euler’s formula as  implies the existence of an



in�initude of prime numbers; for if there were only �initely many primes,
then the product on the right–hand side of (4.4) for  would be a
�inite product and hence would have a �inite value.
In 1556, Tartaglia claimed that  are
alternatively prime and composite. However, for  we get 
which are composite.
Euler used (4.4) to prove heuristically a striking result showing that the
sum of the reciprocals of all the primes diverges. His heuristic
arguments are as follows:

and hence

(4.5)

In 1874, Mertens rigorously proved this result. In fact, by slightly
modifying the arguments, one can show that



from which (4.5) is immediate. As a consequence of Euler’s result,
Theorem 4.2 is immediate. The number

is called Meissel-Mertens	Constant after Daniel Friedrich Ernst Meissel
(1826–1895, Germany) and Mertens.
A remarkable generalization of Theorem 4.2 was established by
Dirichlet (known as Dirichlet	Theorem), who succeeded in showing in
1837 that every arithmetic sequence,  in which a
and d are relatively prime, i.e.,  contains an in�initude of
primes (a generalization of the result of Euclid). He proved that the sum
of the reciprocals of all such primes is divergent. The condition

 is necessary, e.g., the sequence  contains only
one prime, whereas  contains none. In 1949, Selberg gave a
simple proof (without using complex analysis) of Dirichlet’s theorem. As
an application of this result, it follows that there are in�inity of primes of
the form  In fact, in Sect. 4.18,
we shall prove that there are in�inite number of primes of the form

 and  It is easier to show that all terms of any sequence
 cannot be only primes; in fact, it must also contain

in�initely many composite numbers. For this, let  be a prime,
and consider the integers  Then, the th
term of our sequence is

i.e.,  In particular, although the last digit of each term of the
sequence  is 3, it contains in�inite number of
prime as well as composite numbers. In conclusion, Dirichlet’s theorem
gives some assurance to the existence of in�inite primes of particular
form, e.g., primes with last digit 3. In addition to Dirichlet’s result, in
1944, Yuri Vladimirovich Linnik (1915–1972, Russia) asserted that
when  then for the least prime in the arithmetic
sequence denoted as , there exist positive computable constants c
and L such that  In the literature, this result is known as
Linnik’s theorem. Later investigations could only decrease the value of
the constant 



In 1845, François Bertrand asserted that between any number and its
double there exists at least one prime. He based this assertion on an
empirical study of a table of primes for all  One surprising
consequence of this proposition is that there are at least three primes
having exactly n digits, where n is any positive integer. For over �ifty
years, this proposition was known as the Bertrand’s	postulate. It was
�inally proved in 1852 by Chebyshev who has also shown that there are
primes even between much narrower limits, but his proof was very
complicated. The postulate is now known as the Bertrand-Chebyshev
Theorem. In 1899, V.I. Stanevich (Russia) proved that between n and 2n,
there is at least one prime of the form  if  and at least
one prime of the form  if  In 1911, Sylvester proved that
for all suf�iciently large n, there exists at least one prime between n and

 Again in 1911, A. Bonolis (Italy) advanced this problem
considerably by giving an approximate formula for the number of
primes between n and  According to this formula, there are not
fewer than a million primes between  and 
Later, Ramanujan in 1919 sharpened this result, Erdös in 1932 showed
[same as Stanevich] the existence of two primes between any number
greater than 7 and its double, one of the form  and another of the
form  i.e., ), Denis Hanson (Canada) in 1973 proved that
there exists a prime between 3n and  Mohamed El Bachraoui
(Morocco) in 2006 showed that there exists a prime between 2n and 
and Andy Loo (Hong Kong) in 2011 established that as n tends to
in�inity, the number of primes between 3n and 4n also goes to in�inity.
As a consequence of all these results, Theorem 4.2 is immediate.

The following two problems were posed by Landau in 1912: Does for
every , there exists a prime p such that 
(originally due to Legendre)? Are there in�initely many primes of the
form  (initiated by Euler in 1752)? The prime values of 
less than 10000 are 2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297,
1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837. It is also not known
whether for all  there is a prime p such that 
there are in�inite primes of the form  of the form

 of the form  of the form  not
divisible by 3 or 5 (due to Graham); and of the form (such as 101) for
which  is composite whenever 



Kaprekar Conjecture: Consider the prime  Add its digits to the
number itself. We get  which is a composite. Thus, we
get a composite number from a prime in just one step-adding all the
individual digits on the prime to itself. Some more primes of this type
are , and  Now consider the prime  Add to it
all its digits to get  which is also a prime. Do the
same thing to it to get  which is a composite
number. Here we get a composite number, starting from a prime, in two
steps. Some other examples of primes of this type are

, and  So our procedure is to take a prime, add
all its individual digits to get a new number, repeat the same procedure
on it if it is a prime, and continue doing this till one gets a composite
number. Some examples of primes for which we need three steps to
arrive at a composite number are , and 
Some examples of primes for which we need four steps to reach a
composite number are 277 and 

Kaprekar made the conjecture that there exit no prime for which we
need more than four steps to get a composite number by the above-
described procedure. Kaprekar’s conjecture was disproved by V.H. Joshi
(India) in 2001. He produced many primes which require �ive or six
steps to reach a composite number. From Joshi’s collection, we give here
four examples—two requiring �ive steps and two requiring six steps.
They are (i) prime number 37783 which becomes successively

Till the fourth step, we get primes; at the �ifth step, we get a composite
number 37913 whose factors are 31 and  (ii) Prime number 85601
at the end of the �ifth step becomes composite  All
the previous four steps produced primes:

 (iii) Prime number
516493 yields primes  in the
�irst �ive consecutive steps, and the sixth step produces the composite

 (iv) When the required procedure of
digits addition is applied to the prime  we successively get

 which are primes. Then
the sixth step gives the composite 
First 20 palindromic primes (sometimes called a palprime) are 2, 3, 5, 7,
11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919,
929. In the November 1980 issue of Crux	Mathematicorum appears a



table of all 93 �ive-digit and all 668 seven-digit palindromic primes. The
editor of the same Journal Léo Sauvé later (1927–2016, Canada) claimed
that there are 5172 nine-digit palindromic primes, out of which
345676543 is unique because of the �ive consecutive digits. As we have
seen every palindrome number with an even number of digits is
divisible by 11, so 11 is the only palindromic prime with an even
number of digits. It is conjectured that there are an in�inite number of
palindromic primes in base 10. The largest known as of October 2021 is

 which has  digits and was found on
October 18, 2021, by Ryan Propper and Serge Batalov (Russia).



4.3	 Prime	Factorization	of	Composite	Numbers
According to Gauss “The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into prime factors is known
to be one of the most important and useful in arithmetic. The dignity of the
science itself seems to require that every possible means be explored for
the solution of a problem so elegant and so celebrated.” A similar
characteristic remark is due to Dickson [164] “To tell whether a given
number of 15 or 20 digits is prime or not, all time would not suf�ice for the
test, whatever use is made of what is already known.” In fact, while it is
relatively easy to determine whether a small positive integer is prime or
composite and, if it is composite, to express it as a product of primes, so far
no practicable procedure is known for testing large numbers for primality,
and the effort spent on testing certain special numbers has been
enormous. We mention some tests for divisibility by certain integers,
especially for all primes up to 

Divisibility	by	 	and	other	powers	of	2. An integer n is divisible by
2 iff if n is even (or the last digit of n is even). Further, n is divisible by 4 iff
the two-digit number consisting of the last two digits of n is divisible by 
the integer n is divisible by 8 iff the three-digit number consisting of the
last three digits of n is divisible by  and so on. Therefore, the number
14236 is divisible by 4 since 36 is dividable by  but it is not divisible by 8
since 236 is not divisible by 

Divisibility	by	3	and	9. An integer n is divisible by 3 iff the sum of its
digits is divisible by  Further, an integer is divisible by 9 iff the sum of its
digits is divisible by  This procedure stops with  however, that is, it
does not extend to  For example, the sum of the digits of the integer
68877 is  which is divisible by 9, and hence 68877 is divisible by 
however, 36 is not divisible by 27 but 68877 is divisible by 27.

Divisibility	by	5. An integer is divisible by 5 iff its last digit is 5 or 
Thus, there is only one prime number whose last digit is  namely itself.

Divisibility	by	7. Double the last digit of the number n and subtract it
from the remaining truncated number. If the result is divisible by  then n
is divisible by  Continue this process if necessary. For example, for the



number 203189, successively, we have
 and

hence 203189 is divisible by  whereas for  we �ind
 and hence 29027 is not

divisible by  (In fact, 29027 is prime.)

Divisibility	by	11. Take the alternating sum of the digits of the number
 from left to right. If that is divisible by  so is the number  For

example, for the number  we have 
and hence the number 319297 is divisible by  whereas for  we
�ind  and hence 29027 is not divisible by 

Alternatively, from the number n, subtract the last digit from the remaining
truncated number. If the result is divisible by  then n is divisible by 
Continue this process if necessary. Again for the number 319297,
successively, we have

, and
hence the number 319297 is divisible by  whereas for  we �ind

 and hence 29027 is not
divisible by 

Divisibility	by	13. In the number n, add four times the last digit to the
remaining truncated number. If the result is divisible by  then n is
divisible by  Continue this process if necessary. For example, for the
number  successively, we have

and hence the number 377351 is divisible by  whereas for  we
�ind  and hence 29027 is
not divisible by 

Divisibility	by	17. From the number n, subtract �ive times the last digit
to the remaining truncated number. If the result is divisible by  then n is
divisible by  Continue this process if necessary. For example, for the
number  successively, we have

and hence the number 493459 is divisible by  whereas for  we
�ind  and hence 29027 is
not divisible by 



Divisibility	by	19. In the number n, add two times the last digit to the
remaining truncated number. If the result is divisible by  then n is
divisible by  Continue this process if necessary. For example, for the
number  successively, we have

and hence the number 551513 is divisible by  whereas for  we
�ind  and hence 29027 is
not divisible by 

Divisibility	by	23. In the number n, add seven times the last digit to the
remaining truncated number. If the result is divisible by  then n is
divisible by  Continue this process if necessary. For example, for the
number  successively, we have

and hence the number 667621 is divisible by  whereas for  we
�ind  and hence 29027 is
not divisible by 

Divisibility	by	29. In the number n, add three times the last digit to the
remaining truncated number. If the result is divisible by  then n is
divisible by  Continue this process if necessary. For example, for the
number  successively, we have

and hence the number 841783 is divisible by  whereas for  we
�ind  and hence 29027 is
not divisible by 

Divisibility	by	31. From the number n subtract three times the last digit
to the remaining truncated number. If the result is divisible by  then n is
divisible by  Continue this process if necessary. For example, for the
number  successively, we have

and hence the number 899837 is divisible by  whereas for  we
�ind  and hence 29027 is
not divisible by 

Divisibility	by	37. From the number n, subtract 11 times the last digit to
the remaining truncated number. If the result is divisible by  then n is



divisible by  Continue this process if necessary. For example, for the
number  successively, we have

and hence the number 1073999 is divisible by  whereas for  we
�ind  and hence
29027 is not divisible by 

Divisibility	by	41. From the number n, subtract four times the last digit
to the remaining truncated number. If the result is divisible by  then n is
divisible by  Continue this process if necessary. For example, for the
number  successively, we have

and hence the number 1190107 is divisible by  whereas for  we
�ind  and hence 29027 is
not divisible by 

Divisibility	by	43. From the number n, subtract 30 (or add 13) times the
last digit to the remaining truncated number. If the result is divisible by 
then n is divisible by  Continue this process if necessary. For example,
for the number  successively, we have

and hence the number 1248161 is divisible by  whereas for  we
�ind  and hence 29027 is not divisible
by 

Divisibility	by	47. From the number n, subtract 14 times the last digit to
the remaining truncated number. If the result is divisible by  then n is
divisible by  Continue this process if necessary. For example, for the
number  successively, we have

and hence the number 1364269 is divisible by  whereas for  we
�ind  and hence 29027 is not divisible
by 

Some of the above divisibility results have been proved by Hindus and
Arabs in the tenth century, al-Karkhi, Fibonacci, Chuquet, Pacioli, Juan
Martıńez Silıćeo (1486–1557, Spain), Tartaglia, Christopher Clavius
(1537–1612, Germany), and Pierre Forcadel (1500–1572, France). In



1654, Pascal and Lagrange, about hundred years later, established very
general theorems about the divisibility, but these results are only of
mathematical elegance rather than of practical value. The above tests
can easily be applied to check if a given number up to 2500 is prime. The
above tests show that the numbers  are prime, whereas
the following numbers are composite

We shall show that the integer n divides every entry of the nth row of
Pascal’s triangle, except the initial and �inal 1’s, iff n is prime. Indeed, if n
is prime and  then in (2. 3) the denominator  does
not contain n as a prime factor, thus in the reduction of  the factor n
remains in the numerator. Conversely, we assume that n is composite
and p is a prime factor of  Then it suf�ices to show that 
Indeed, if  then there exists an integer m such that 
whereas from (2. 3),  Now since
p divides  the next smaller multiple of p is  But then, the factor
p in the denominator of m cannot divide any of the integers

 in the numerator. This contradicts m is an
integer.
In 1643, Mersenne sent the number  to Fermat to �ind its
factors; he responded immediately that it is the product of two primes

 and  (some authors have claimed that Mersenne sent the
number  and Fermat factorized it to the product of two
primes  and  For this, he used his newly developed
method of factorizing large numbers, which for a given number n can be
summarized as follows: Assume n is odd, because powers of 2 can be
easily recognized and removed; assume that  where p and q are
odd and  so that  or  where

 and  are nonnegative integers; �ind the
smallest integer k such that  i.e.,  (ceiling function);
compute the sequence  until an integer

 is found for which  is a perfect square. Clearly,



 and  This process cannot be in�inite,
because eventually it will satisfy the equation

In the process of computation, the following facts help: All perfect
squares always end in  or an even number of zeros; for a
number that ends in , its tens digit will always be even ;
if it ends with 6, its tens digit will be odd  if it ends with 5, its
tens digit will be  Since  we
�ind

and hence  which gives  and
 It is obvious that if the factors of n are close, then m can be

found only in a few steps.
Recently, to check primality and �ind prime factorization of a number,
several algorithms have been written and tested on high-speed
computers. The website https:// www. numberempire. com/ 
numberfactorizer . php provides the results in a fraction of a second for
any number up to 70 digits. For example, it can be easily checked that
both of the following numbers of 70 digits are prime:

https://www.numberempire.com/numberfactorizer.php


Further, before the computer era, for the following four numbers, prime
factorization was a big challenge:

The monster group (also known as the Fischer-Griess monster, or the
friendly giant) is the largest sporadic simple group, having the order

and it has the prime factorization

This monster was predicted by Bernd Fischer (1936–2020, Germany) in
about 1973 and Robert Louis Griess (born 1945, USA) in 1976.
Banks encrypt their electronic messages for transferring funds so that
unauthorized person getting access to the communication lines cannot
decipher the messages or introduce their own transfer messages.
Insurance companies, stock brokers, and various government agencies
also need to secure communication channels. In Scienti�ic	American,
August	1977,	pp	120–124, Ronald Linn Rivest (born 1947, USA), Adi
Shamir (born 1952, Israel), and Leonard Adleman (born 1945, USA)
described the method (without explaining), perhaps it depends on
multiplying two huge prime numbers (up to 50 digits). There is no
danger in revealing the product of two primes publicly, and indeed there
are reasons to do this. An unauthorized receiver of an encrypted
message cannot decipher it without knowing the two prime factors.
Factoring the known product was then virtually impossible.
In 2002, Manindra Agrawal (born 1966, India), Neeraj Kayal (born 1979,
India), and Nitin Saxena (born 1981, India) developed the AKS



(Agarwal-Kayal-Saxena) primality test algorithm—a deterministic
primality–proving method— which is general, polynomial-time,
deterministic, and unconditional all at the same time. Earlier algorithms
developed over the centuries achieved at most three of these properties
but not all four simultaneously. The algorithm is based upon the
following theorem: an integer  is prime if and only if the
polynomial congruence  holds for all
integers  coprime to n (or even just for some such integer  in
particular for ), where x is a free variable.

4.4	 Mersenne	Primes
Mersenne in the preface to his Cogitata	Physica-Mathematica of 1644
stated that the numbers  (which stood for the primordial God
and several divinities; when n is zero the expression denotes zero; there is
nothing; when n is 1, the expression denotes unity, the In�inite God; when
n is  the expression denotes Trinity; when n is  the expression denotes

 the saptha Rishis, and so on) were prime for
, and 257 and also were composite for

all other positive integers  However, while there are mistakes in
this statement, it is provocative. In fact,  do not give primes, and
he missed  As an honor to Mersenne,  are called
Mersenne numbers, and among these numbers those which are prime are
called Mersenne primes. Thus, the solution of the Tower of Brahma/Tower
of Hanoi problem is the Mersenne number 

In 1640, Fermat communicated to Mersenne in a letter that if n is
composite, then  is composite, i.e, if  is prime, the n must be prime.
For this, if  then

of which  is obviously a factor. For example, if  we
have  In 1494, Pacioli
claimed that  is prime; however,

 Fermat’s result does not imply that if n is prime
then so is  For this, in 1536, Dutch mathematician Hudalrichus Regius
(1598–1679) made the �irst breakthrough by showing that

 i.e.,  is composite (it also shows Mersenne



primes is a proper subset of all primes). Thus, it becomes a matter of
curiosity to determine prime n for which  is a prime. As a result of this,
whenever a new prime is found, the probability is very high that the new
prime number is of the form  The veri�ication of the primality of

 have been known since time
immemorial, whereas  was discovered anonymously before
1461. It was obvious to other mathematicians that Mersenne could not
have tested for primality all the numbers which he had announced as
prime. The primality of  and  was found by Pietro Antonio Cataldi
(1552–1626, Italy) in 1588. In 1732, Euler tested  and con�irmed it to
be prime by examining all prime numbers up to  as possible
divisors. The Mersenne prime  remained the largest known prime for
the next century. In 1738, Euler noticed that Mersenne number  is
divisible by  For this, we notice that

and so  Combining these
results, we obtain

which shows that 
In 1876, Lucas devised a special method to test the primality of

Mersenne numbers. He de�ined the so-called Lucas sequence 
generated by the difference equation 
and claimed that if the th term of this sequence is divisible by

 without a remainder, then  is prime. Further, if a term of the
Lucas sequence gets larger than the  being tested, the term is divided
by  and the remainder, if any, is used to continue the sequence. For
example, to test the primality of  we compute

 Since 194 is greater than  we divide it by
127 and get a remainder of  Then the fourth term is 
which on dividing by 127 gives a remainder of  the �ifth term is

 which on dividing by 127 gives a remainder of  the
sixth and the last term is , which on dividing by 127 gives
no remainder. Therefore,  is prime. Using this method, Lucas proved



that  is prime; however, in 1891, in his Théorie	des	Nombres, he
changed his mind and listed the number  as “undecided” (it is clear
that even with his sequence no one would tackle the larger Mersenne
numbers without the assistance of an electronic computer). However, in
1913, it was con�irmed that  indeed is a prime, and it remained till
1951 the largest known prime of any type. In 1883,  was determined
to be prime by Ivan Mikheevich Pervushin (1827–1900, Russia).

In 1903, during the meeting of the American Mathematical Society,
Frank Nelson Cole (1861–1926, USA) perplexed the audience by his
wordless presentation of 

, i.e.,  is composite.
His great discovery for which he spent three years of Sundays received
standing ovation and unrestricted applause. The number  was
factorized by the most powerful computer, of the time, in the world, the
Cray, as

The primality for  and  was con�irmed by Ralph Ernest Powers
(1875–1952, USA) in 1911 and 1914, respectively. In 1934, Powers
veri�ied that  is composite. In 1922, Maurice Borisovich Kraitchik
(1882–1957, Belgium), and in 1931, Lehmer showed that  is also not
prime. In 1948, Horace Scudder Uhler (1872–1956, USA) proved that both

 and  are composite. Thus, up to the limit 257 set be Mersenne
there are only 12 Mersenne numbers  which are prime for

 and rest are composite.
In 1952, Raphael Mitchel Robinson (1911–1995, USA) used computing

machine SWAC to test the primality of  by Lucas’s method and found
two more larger prime numbers, namely,  and  Later in the
same year, he found three more larger primes, , and 
Now fast algorithms for �inding Mersenne primes  are available, and as
of March 2022, 51 Mersenne primes for the following n are known: 2, 3, 5,
7, 13, 17, 19, 31, 61, 89 (last to be discovered by hand calculations), 107,
127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213,
19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839,
859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917,
20996011, 24036583, 25964951, 30402457, 32582657, 37156667,



42643801, 43112609, 57885161, 74207281, 77232917, 82589933.
Mersenne prime  discovered in 2018 by Patrick Laroche (born
1984, USA) has 24862048 digits (it would �ill up thousands of pages), and
it is the largest known prime number of any kind till 2023. Paulo
Ribenboim (born 1928, Brazil-Canada) in his book [432] has listed prime
number records till 1995. It is an open question as to whether there exist
in�initely many Mersenne primes. It is also not known if every Mersenne
number is square free, and if there are in�initely many composite
Mersenne numbers.

Does an exponent of a Mersenne prime is also a Mersenne prime? It is
true for the �irst four cases: For the exponent  which is  which
is  which is  and  which is  However, for the
Mersenne prime , it turns out that  is not a prime,
which is of 2466 digits. Clearly,  is the smallest Mersenne prime whose
exponent is not a Mersenne prime. In conclusion, this conjuncture is false.

Sharavyn Myangat (around 1692–1763, China) also known as Ming
Antu/Minggatu around 1730 established and used the in�inite sequence

 in his book Ge	Yuan	Mi	Lu	Jie	Fa
(The Quick Method for Obtaining the Precise Ratio of Division of a
Circle), which was completed by one of his students in 1774, but
published 60 years later. Euler rediscovered this sequence while
counting the number of triangulations of convex polygons. In 1759,
Johann Andreas von Segner (1704–1777, Hungary-Slovakia-Germany)
found that the number  of triangulations of a convex polygon satis�ies
the recursive formula

(4.6)

where  which generates Minggatu’s sequence. In 1838, Catalan
discovered the same sequence in connection to parenthesized
expressions during his exploration of the Towers of Brahma/Hanoi
problem. In 1958, John Francis Riordan (1903–1988, USA) in his work
named  as Catalan	numbers, which continues in the literature.
The Catalan number  can be expressed in terms of binomial
coef�icients (2. 3) as

(4.7)



for which several proofs are known. Catalan numbers occur in
astonishingly many combinatorial problems and computer science. In
particular, they appear in binary trees, multiplication ordering, lattice
path problem, geodesy, cryptography, and even in medicine. Further, to
�ind Catalan numbers besides (4.7), several other recurrence relations
are known, and their extensive properties have been recorded. Here we
shall prove two properties which are due to Koshy and Salmassi [313].

For , the Catalan number  is odd iff n is a Mersenne number:
from (4.6), we have

Thus,  is odd iff both n and  are odd. The same argument
implies that  is odd iff  and  are both odd or

 Continuing this method of in�inite descent (in written the
earliest uses of the method of in�inite descent appear in Euclid’s Elements,
Book VII, Proposition 31. In this method, one assumes the existence of a
solution, which is related to one or more integers, and shows the existence
of another solution which is related to smaller one or more integers, and
this process in�initely continues. This leads to a contradiction. This method
was later developed/popularized by Fermat. For details, see Bussey
[112]); it follows that  is odd iff  is odd, where 
But the least value of k for which  is odd is  Thus, the sequence of
these statements terminates iff when  i.e.,

 a Mersenne number.
The only prime Catalan numbers are  and : from (4.7), it follows

that  Assume that  is prime for some 
Now from (4.6), for , we �ind  and hence

 Thus,  so  for some positive integer 
Then,  which implies that  and thus 
In conclusion,  and  are the only Catalan numbers which are prime.

4.5	 Perfect	Numbers
An integer  is said to be perfect (the nomenclature is due to
Pythagoras) if it is equal to the sum of its proper divisors (excluding itself
and including 1). For example, 6 is a perfect number, because its divisors



are  and  Similarly, 28 is a perfect number, for, its
divisors are  and  The smallest
perfect numbers 6 and 28 were known to the Hindus as well as to the
Hebrews. But 18 is not a perfect number for its positive divisors are

 and  Although perfect
numbers are regarded as arithmetical curiosities, their study has helped to
develop the theory of numbers. Besides 6 and  Pythagoreans knew two
more prefect numbers, 496 and  The basic similarity of these
numbers is apparent when they are represented algebraically. They are of
the form

We shall denote the sum of all divisors of a natural number n by  so
that a number is perfect if  i.e., if  Thus, the sum
of the reciprocals of all divisors of a perfect number is always  Indeed, it
follows from the fact that if  then  for some  hence, the sum

As an example, since the positive divisors of 6 are  and  and we
have

The problem of �inding perfect numbers is simply that of solving the
equation  To �ind solutions of this equation, we need the
following lemma.

Lemma	4.3 If	m	and	n	are	relatively	prime,	then 



Proof Using Theorem 4.1, if  and  then no q is
p and no p is  Thus, it follows that

and as we have seen earlier, it follows that

█

Euclid in Elements (IX:36) proved the following general result:

Theorem	4.3 If  is	prime,	then  is	a	perfect	number.

Proof Let  Since  is prime, 
Further, since  are relatively prime, from Lemma 4.3, we have

or

and hence  so that s is a perfect number.█

Alternatively, if  is prime, then from Theorem 4.1, the divisors
of  are

The sum of these divisors is thus

Philo of Alexandria (born 25 BC, Egypt) in his book On	the	Creation
mentions perfect numbers, claiming that the world was created in 6 days
and the moon orbits in 28 days because 6 and 28 are perfect. Nicomachus
in his famous text [394] classi�ied integers based on the concept of perfect



numbers. He divided integers into three classes: perfect numbers which
have the property that the sum of their divisors is equal to the number,
abundant	numbers which have the property that the sum of their divisors
is greater than the number (Boethius calls such numbers as super�luous,
around 1934, Erdös and others showed that the density of abundant
numbers is greater than zero), and de�icient	numbers (Boethius calls such
numbers as diminished) which have the property that the sum of their
divisors is less than the number. He also analyzed moral implications of the
three types of numbers. According to him, perfect numbers are remarkable
and rare, “even as fair and excellent things are... while ugly and evil ones
are widespread.” In the twelfth century, the study of perfect numbers was
recommended in a program for the “healing of souls.” If we de�ine

 then n is perfect if  abundant if  and
de�icit if  Clearly,  and 945 (all divisors are

 and their sum is 975)
are abundant, whereas  and 944 (all divisors are

 and their sum is 916) are de�icit. If p is a
prime, then  is de�icient, indeed the sum of the proper divisors of  is

 The smallest odd abundant number 945 is due to Claude
Gaspar Bachet Sieur de Méziriae (1581–1638, France) and it corrects
Nemorarius statement that all abundant numbers are even. Now since all
multiples of 945 are also abundant, and every alternate multiple is odd, it
follows that there are an in�inite number of odd abundant numbers. Origen
of Alexandria (around 185–254, Egypt) and Didymus the Blind (around
313–398, Egypt) added the observation that there are only four perfect
numbers that are less than 10,000. St. Augustine de�ines perfect numbers
in his book City	of	God repeating the claim that God created the world in 6
days because 6 is the smallest perfect number. Early commentators on the
Old Testament argued that the perfection of the Universe is represented by
28, the number of days the moon takes to circle the Earth.

Al-Haytham in his unpublished work, Treatise	on	Analysis	and	Synthesis,
showed that perfect numbers satisfying certain conditions had to be of the
form , where  is prime. ibn Qurra wrote the Treatise	on
Amicable	Numbers in which he examined that the numbers of the form

 where p is prime, can be perfect. Arab mathematician Ismail ibn
Ibrahim ibn Fallus (1194–1239) mentioned the next three (5th, 6th, and
7th) perfect numbers



and listed next three more which are now known to be incorrect. The �ifth
perfect numbers were later written down in a manuscript dated 1461 by
an unknown European mathematician. The same year it is also written by
Johann Regiomontanus (1436–1476, Germany), also known as Johannes
Müller. Charles de Bouvelles (1471–1553, France) published a book on
perfect numbers in 1509. In it he claimed that Euclid’s formula gives a
perfect number for all odd integers  which is obviously wrong. He also
gave a erroneous proof showing that every perfect number is even. In
1588, Cataldi identi�ied the sixth and the seventh perfect numbers and
proved that every perfect number obtained from Euclid’s rule ends with a
6 or an  Nicomachus and later Iamblichus based on known �irst four
perfect numbers during their time concluded that perfect numbers follow
certain patterns: They alternately end in a 6 or an  (not true since �ifth

 as well as sixth  perfect numbers ends with a six);
however, it is true that every even perfect number must end in 6 or 28, and
if it ends in 6, the digit proceeding it must be odd; there is one perfect
number in each interval from 1 to  10 to  100 to ; and  to

 (not true because �ifth perfect number has eight digits rather than
�ive); Euclid’s characterization gives all perfect numbers (not yet known),
and there are in�initely many perfect numbers (not yet known).

One of the most intensively studied questions which remains
unresolved is whether all perfect numbers are even; however, it is known
that if an odd perfect number exists, it must satisfy the following necessary
conditions:
(a). It must leave a remainder of 1 when divided by 12 or a remainder of

9 when divided by  
(b). It must have at least six different prime divisors.  
(c). It must have the form  where p is a prime of

only the form  while the q’s may be any odd primes.  
(d). Also n cannot be perfect if all the a’s are equal to  
(e). If all the exponents of q’s are increased by  the resulting exponent

cannot have as a common divisor  or  



(f). If the exponent  of p is  then none of the a’s may equal 1 or  
(g). If n is divisible by 3, it must have at least 9 different prime divisors,

and if not divisible by 21, it must have at least 11 such divisors. If not
divisible by  it must have at least 14 different prime divisors and
if not divisible by 105, it must have at least 27 such divisors. This
requires n to be greater than 

 

(h). If n has exactly r different prime divisors, then the smallest of them
will be smaller than  Thus, should n (if it exists) have 28
different prime divisors the smallest would not exceed 

 

(i). In 2012, no odd perfect number exists up to  has been checked
by Ochem and Rao [398],  

Thus, if an odd perfect number exists, all the above conditions must be
satis�ied, so that it will be so large that it cannot be found by a guesswork.
One day, perhaps someone will discover the �irst odd perfect number or
will emerge with a proof for its nonexistence. Till then, we need to believe
on the statement of Sylvester, he made in 1888 “Greek’s succeeded in
discovering a class of perfect numbers which in all probability are the only
numbers which are perfect.”

In 1757, Euler proved the following stronger result (posthumously
published in 1862), which shows that every even perfect number must be
of Euclid’s form.

Theorem	4.4 The	numbers  with  prime	are	the	only
even	perfect	numbers.

Proof Let n be any even perfect number. Then,  where m is odd
and  Since  we can let  with  Now,
it follows that

Thus s is a divisor of m and  But  thus s is the sum



of all divisors of m that are less than  i.e., s is the sum of a group of
numbers that includes  This is possible only if the group consists of one
number alone, namely  Therefore, the set of divisors of m smaller than m
contains only one element and that element must be  Since 1 is a divisor
of  it follows that s must be  Hence,  is prime, and

 █

An important feature of Theorem 4.4 is that every Mersenne prime
generates a perfect number, and hence if Mersenne primes are in�inite
so are even perfect numbers. Thus, till March 2022, only 51 even perfect
numbers are known, and the largest known 51st even perfect number is

 which has  digits.
Using Theorem 4.4, we shall show that an even perfect number N ends
in the digit 6 or  that is,  For this, �irst we note
that any positive integer  expressed in decimal notation, takes the
form  where each  is an integer satisfying

 and the coef�icients  are the digits of the
number  Thus,  Now in view of Theorem 4.4, N
must be of the form  where the factor  is a
prime, and hence n must also be a prime. If  then  and the
conclusion holds. If  we need to consider two cases, namely,

 and  If  then

However, since  for any positive integer  it follows
that  Now if  then

which immediately gives 
No power of a prime can be a perfect number, because since

 it follows that
 The product of two odd primes is never a

perfect number, because 
In 1944, the concept of superabundant	numbers was created. A natural
number n is superabundant iff  for all  It is
known that there are in�initely many superabundant numbers. Other



numbers related to perfect, de�icient, and abundant numbers that have
been introduced in recent times are almost	perfect	numbers,	practical
numbers,	quasiperfect	numbers,	semiperfect	numbers, and weird	numbers.
We mentioned these concepts to illustrate how ancient number work
has inspired related modern investigations.
All known perfect numbers except 6 have digital roots of  i.e., the
ultimate sum of their digits equals  For example, for the perfect
numbers 
Even perfect numbers are the sums of the successive powers of  for
example, 
In general, 
Every even perfect number except 6 is also the sum of odd cubes, for
example,

 In
general,  for all 
For any even perfect number , it follows that

 Indeed, since  where  is prime,

Thus,  for some 
For more details of perfect numbers, see Dickson [165] and Shoemaker
[476].

4.6	 Fermat	Numbers
Fermat in 1640 also wrote to Mersenne that the numbers of the form

 without exception are prime. Indeed, he tested

but testing of  although was beyond him, in
1659 he wrote that he had found a proof of the primality of all 
However, in 1732 Euler showed that  and hence he
revealed that Fermat had been wrong. In fact, Euler’s result in terms of
congruences appears as  For this, since

 in view of Theorem 3. 6(6), it follows that
 Next, since



 which is the same as
 from Theorem 3. 6, we �ind

Thus,  Euler further showed that if any Fermat number has a
factor, it must be a prime of the form  Thus, a factor of  if
such existed, would have to be a number of the form  or

 The �irst few primes of this type are  and 
Since Fermat made his conjecture, as of 2022, no other Fermat primes 
with  have been found. Zerah Colburn (1804–1839), the American
lightning-calculating boy, when asked whether the �ifth number of
Fermat’s was prime or not, replied after a short mental calculation that it
was not, as it had the divisor 641. He was unable to explain the process by
which he reached his correct conclusion. As of 2014, it is known that  is
composite for  The largest Fermat number known to be
composite is  and its prime factor  was
discovered in October 2020. Factoring Fermat numbers is extremely
dif�icult as a result of their large size. As of 2022, only  to  have been
completely factored, and the number of respective factors are

 There are no known prime factors for 
and  While heuristics suggest that for all  all Fermat
numbers are composite, a formal proof is awaited. Gauss did not answer
the question whether  is the last prime. If not, and there are more, is
their number �inite or in�inite? Related with Fermat numbers, in 1844,
Eisenstein conjectures that the numbers  are
all prime. While �irst three terms of this sequence have been tested to be
prime, it is not known whether any of the remaining are prime.

Fermat numbers satisfy the difference equation
 Indeed, since  we have



Any two distinct Fermat numbers  and  with  are relatively
prime: Suppose that  is a common divisor of  and  then d
divides  Thus,  or  however, since

 and  both are odd, we must have  Therefore, for ,
the Fermat numbers  and  are relatively prime.
Polya in his book of 1945 How	to	Solve	It gave a neat proof of Euclid’s
theorem that the number of primes is in�inite. In fact, since there are
in�initely many distinct Fermat numbers, each of which is divisible by an
odd prime, and from the above observation, two Fermat numbers are
relatively prime, these odd primes must all be distinct and in�inite.
For every integers  from

, it follows that
 is divisible by at least n different primes.

4.7	 Fermat’s	Little	Theorem
Fermat in the same letter of 1640 to Mersenne also wrote two
propositions: 1. If p is an odd prime, then 2p divides  or p divides

 and with the same hypothesis, 2. The only possible divisors of
 are of the form  Then in a letter written a few months later

to de Bessy, he stated a more general result of which these two
propositions are easy corollaries (whose proof had to wait till 1683 by
Leibniz and then 1736 by Euler), which was fundamental to the progress
of number theory, is now stated as:

Theorem	4.5	(Fermat’s	Little	Theorem) If	p	is	prime	and	a	any	positive
integer,	then	p	divides  (This	result	is	often	written	in	the	form



 or,	adding	the	condition	that	a	and	p	are	relatively	prime,
in	the	form 

Proof There are many proofs of this theorem. One of them uses
mathematical induction on a to prove that if p is prime, then

 For this, we use the binomial theorem (2. 4)

Since

is an integer. If  then p is not a factor of  Since p
is a factor of

it follows that p is a factor of  when  Hence

for some integer  If  we obtain  and this means
 If  we get

 and this
means  Continuing in the same way, we see that, for all

 for some integer  and hence  Now if a
and p are relatively prime, then  implies that  is
divisible by  so  █

As an example, from Theorem 4.5 it follows that  Thus,
from Theorem 3. 6(6), it follows that

 As an another
example for the case , we have

 and on considering the cases
, it is easily seen that one of the

three factors must be a multiple of �ive, no matter what a may be.



If a is a negative integer, there is no dif�iculty. For  where 
so that

Because b is positive, we know already that p divides 
Fermat’s �irst proposition follows by letting  in the above theorem.
As an example,  To show his second proposition,
we assume that q is a prime divisor of  Theorem 4.5, then implies
that p divides  i.e.,  for some integer  Since  is
even, 2 must divide hp and therefore must divide  It follows that

 and hence  As an example,
 and 

The converse of Theorem 4.5 does not hold. For this, we note that
 is composite,  and

However, the contrapositive form of Theorem 4.5 is important: If
 then p is not prime, i.e., composite. For example, we

have  Thus,

The number 341 is indeed composite.
Almost 2500 years back, Chinese either guessed or proved the special
case of Theorem 4.5. However, their conjecture: n is prime iff 
which is true for all integers  (as late as 1680, Leibniz also made
this very statement) fails for the composite  Indeed,

 i.e.,
 This observation of 1819 is due to Pierre Frédéric Sarrus

(1798–1861, France). A composite integer n is called pseudoprime if
 It has been shown that there are in�inite number of

pseudoprimes. The �irst ten pseudoprimes are 341, 561, 645, 1105,
1387, 1729, 1905, 2047, 2465, 2701.
The following assertion follows from Theorem 4.5: If  and p and q
are primes such that  then  or  Theorem
4.5 has been extended and generalized in several ways, by no means
with insigni�icant proofs. In 1760, Euler proved that if 
then n divides  i.e.,  here  is the Euler’s
totient function (the number of positive integers less than n and



relatively prime to n). For example, such positive integers less than 16
are  it follows that  Now let  so
that  then Euler’s result asserts that  is divisible
by  In fact, we have

Further, since  we �ind

4.8	 Futile	Formulas	to	Generate	Primes
A dream of number theorists is to �ind a function  that yields only
prime numbers for  and the sequence of primes so obtained is
in�inite. In 1772, Euler pointed out that the formula 
gives primes when  These primes, respectively, are 41,
43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347,
383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971,1033,
1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601. Clearly,  is
composite. (Euler’s lucky	numbers are positive integers k such that for all
integers n with  the polynomial  produces a prime
number. There are only seven Euler’s lucky numbers exist, namely,

 and  Note that Euler’s lucky numbers have to be prime.)
It is interesting to note that if we take the formula , it
also gives same primes for  and yields the same primes
for  since

 Thus, 
yields primes for 80 consecutive integers 
Alternatively, the function  gives the same primes
generated by the above-mentioned functions  and  for

 The computer MANIAC II has found that for the
primes under 10 million, Euler’s formula  generated primes  of
the time. For values on n below  this formula has  probability of
getting a prime. For values between 1 and  this formula yields 86
primes and only 14 composites (these being for the values

 and 96 of n). Other quadratic



equations, like that of Euler’s are  (known
as Ruby’s polynomial) found in 1988, give 43 distinct primes for

 the absolute value of  (known as
Fung and Ruby’s polynomial), given in 2009, gives 45 distinct primes for

 Ulam and his colleagues in 1963 gave
 Its success rate is , and it generates 760

primes below 10 million that are not generated by Euler’s formula. One
more such formula is  whose success rate is 
It generates 1500 primes not generated by Euler’s  or Ulam’s
formulas 

In 1743, Goldbach observed that a polynomial
 with integer coef�icients

 cannot represent primes only, that is, the integers
 are not all prime. For contrary, let  assume only

primes. Let  and for a �ixed  be a prime number,
also  be an arbitrary integer, then from (2. 4), we have

where  is a polynomial of degree n with integer coef�icients, and
hence  is an integer. Thus, it follows that  but since

 assumes only primes, it is necessary that  for any
arbitrary integer  However, since  is a polynomial of degree n, it
can assume the same value at most n times. In recent years, several
formulas to generate in�inite (perhaps all) primes have been suggested;
however, most of them are only mathematically elegant, e.g., in 1947,
William Harold Mills (1921–1964, USA) proved the existence of the
smallest positive real number A such that  (  is the �loor
function) is a prime number for all natural numbers  However, it does
not generate all prime numbers. The �irst �ive Mills primes are 2, 11, 1361,
2521008887, 16022236204009818131831320183. In 2017, László Tóth
(Hungary) proved that the �loor function in Mills’s formula could be
replaced with the ceiling function, so that there exists a constant B such
that  where 



Mersenne as well as Fermat formulas for generating prime numbers
were based on visualizing the patterns. As another example of similar
nature, consider the sequence whose initial numbers are 31, 331, 3331,
33331, 333331, 3333331, 33333331. All these are primes, so one can
propose that the sequence generated by 
gives prime numbers. However, for  we get

 a composite number. For the sequence
, it follows that  i.e., every 15th term of
 is divisible by 31. In general, it has been proved that all sequences

such as  or  where a
and b are integers are periodically divisible by the number 
The following exact formula of �inding  (the number of primes less
than or equal to x) is due to Legendre: For a given positive integer n let

 be the set of all primes p such that 
Suppose that  has k elements, i.e.,  Then

here, each sum is taken over all products of one or more primes from
 As an example, we consider  so that  Then

the formula gives

The following known formulas for �inding  are also infeasible to
compute in practice: Willans’s formula of 1964, [536]



Gandhi’s formula of 1971, [207]

where  and  is the Möbius function; and Matthew
Frank’s (USA) recurrence relation (around 2002)

for which in 2008, Eric Rowland (USA) proved that the sequence
generated by this recurrence relation contains only ones and (not all)
prime numbers.
In a memoir of 1747 Euler said, “Till now the mathematicians tried in
vain to discover some order in the sequences of the prime numbers and
we have every reason to believe that there is some mystery which the
human mind shall never penetrate .” According to Erdös, it will be
another million years, at last, before we understand the primes.

4.9	 Wilson’s	Theorem
Ever since Euclid proved that the number of primes is in�inite,
mathematicians have been seeking for a test which would determine
whether or not a given number is prime. But no test applicable to all
numbers has been found. In 1770, Waring published a book under the title
Meditationes	Algebraica. One passage from this work reads: “If n is a prime,
then the quantity  is a whole number  This elegant
theoretical property of prime numbers is the discovery of John Wilson.” It
is very likely that this result Waring dedicated to Wilson to pay of a
“political” debt. Waring further wrote “Theorems of this kind will be very
hard to prove, because of the absence of a notation to express prime
numbers.” Commenting on this passage, Gauss remarked “in questions of



this kind it was not nomenclature, but conception that mattered.” Around
1000 AD, the same result was stated by al-Haytham and was known to
Leibniz who never published it. Despite Waring’s pessimistic forecast in
1771, Lagrange proved that n is prime iff n divides  His proof
is based on �inding all integral solutions of the Diophantine equation

 and the solution of numerous problems posed by Fermat on
how certain primes could be represented in particular ways (typical of
these was the result that every prime n of the form  could be
written as  for suitable integers a and b). Waring also
supplied a proof in the third edition of his Meditationes	Algebraica which
was published in 1782. We note that this result, now known as Wilson’s
criterion, can be stated as n is a prime, iff,  or

 As examples, for , this gives 
which is not divisible by 6, so 6 is not prime; for 
divisible by 7, so 7 is prime. However,  the notation which was �irst used
in Indian mathematics becomes gigantic even for small numbers, e.g.,

 (for upper bounds, see Mahmoud et. al. [356]), a direct
veri�ication as to whether  has n for a divisor is as
dif�icult/impossible as testing directly whether n is prime, when n is a
large number. Thus, Wilson/Waring/Lagrange theorem is only of
theoretical interest.

The following proof of Wilson’s Theorem is immediate: The result is
obvious for n is 2 or 3, so let us assume that  If n is composite, then
its positive divisors are among the integers  so

 but then  is impossible.
Alternately, assume that  and n is composite but not the square of a
prime; then it is the product of two distinct integers, both less than 
and therefore divisors of  Next assume that  where q is an
odd prime: then q is less than  and so is  Hence, both q and 2q
enter into  it follows that the latter is divisible by  and,
consequently, by n). Next, if n is prime, then each of the integers

 is relatively prime to  Thus, for each of these
integers a, there is another b such that  It is clear that this
b is unique modulo  and that since n is prime,  iff a is 1 or

 Now if we omit 1 and  then the others can be grouped into
pairs whose product satis�ies  which is the



same as  Multiplying this equality by  we
obtain the required relation 

An integer is called Wilson’s	prime iff it satis�ies Wilson’s criterion. So
far, the only known Wilson primes are 5, 13, and 563; also there are no
others less than 500,000,000. It is conjectured that the number of Wilson
primes is in�inite and that the number of such primes between x and y
should be about  Wilson’s theorem guarantees that

 and  are composite for every prime number
 Thus, there exists an in�initude of composite numbers of the form
 However, it is not known if  is prime for in�initely many

values of  The largest known such prime is  which is
2193027 digits long and discovered in 2022. The largest known factorial
prime of the form  is  which is 1015843 digits long and
discovered in 2016. In conclusion, Wilson’s theorem is more beautiful than
useful.

Wilson’s theorem is equivalent to the relation 
where W is an integer. If , we can take W greater than  We set

 to obtain  Thus, Wilson’s theorem
can be stated as: If n is a prime, the remainder of division of  by n
is  Further, since  it is equivalent to
saying that the remainder of division of  by the prime, n is 

4.10	 Goldbach’s	Conjecture
Goldbach in 1742 wrote a letter to Euler speculating that every integer

 is	the	sum	of	three	primes. Euler replied that this is equivalent to
every	even  is	the	sum	of	two,	not	necessarily	distinct,	primes, which
became known as Goldbach’s conjecture. To show the equivalence, �irst we
shall show that Euler’s statement implies Goldbach’s: for an odd integer

 since  is even, there exist primes  and  such that
 and hence  now to show that Goldbach’s

statement implies Euler’s: for an even integer n since  is even, there
exist primes  and  such that  but then from
the same parity, it follows that one of the  must be  say  which
means  Thus, for example,

 In 1896, Sylvester rephrased
Goldbach’s conjecture as: Every even integer 2n greater than 4 is the sum



of two primes, one larger than  and the other smaller than  Erdös
liked to point out that Goldbach’s conjecture had actually been anticipated
about a hundred years earlier by Descartes. “I feel that the name
Goldbach’s conjecture should remain,” Erdös reasoned, demonstrating his
strong sense of justice. “First of all, Goldbach popularized it by writing to
Euler. And also, Goldbach is so poor and Descartes is so rich, it would be
like taking candy from a baby.” Since every even number can be written as
the sum of two odd numbers in several different ways, and every prime
greater than 2 is odd, apparently the conjecture seems reasonable enough,
and almost obvious (according to Hardy, any idiot could have made this
assumption). However, it remains one of the best-known unsolved
problems in number theory.

In 1930, Schnirelmann proved that every positive integer  can be
written as the sum of not more than k primes, where k is an effectively
computable constant. However, this was an existence theorem, which gives
no indication about the actual magnitude of  Every odd integer  can
be expressed as the sum of three primes is known as weak	Goldbach
conjecture, for example,  It is called weak because if
Goldbach’s conjecture is proven, then this would also be true. The weak
Goldbach conjecture shows that prime numbers play a fundamental role in
the multiplicative representation of an odd number by means of primes. In
1922, Hardy and Littlewood used generalized Riemann hypothesis to show
that weak Goldbach conjecture holds for suf�iciently large odd integers,
and consequently every suf�iciently large even integer could be written as
the sum of four primes. In 1937, Vinogradov used the method of
trigonometric sums to prove the same result. In 1956, Konstantin
Vasil’evich Borozdin (1912–1987, Russia) showed that  (

 digits) is an upper bound for suf�iciently large. In 1995, Olivier
Ramaré (France) proved that every even number is a sum of at most six
primes. In 1996, Chen and Wang [125] showed that this bound can be
replaced by the small bound  In 2013, Harald Andrés Helfgott (born
1977, Peru) proposed the proof (which is broadly accepted, but not
published) of the weak Goldbach conjecture. In 2014, Terence Tao has
proved that every odd number greater than 1 is the sum of at most �ive
primes.

In 1948, Rényi proved that every large enough even number was a
prime plus a product of at most r primes. He was only able to prove that r
was a very large, but nevertheless, �inite number. A signi�icant reduction



was made in 1965 when A.A. Buhstab (Russia) and Vinogradov
independently proved every even number was a prime plus the product of
at most three primes. Finally, in 1966, Jingrun Chen proved that every
suf�iciently large even number can be written as the sum of either two
primes, or a prime and a almost	prime/semiprime (i.e., the product of two
primes). However, in China during sixties, there was a “cultural revolution,”
and so this kind of mathematics was frowned for being far removed from
any conceivable application to industry or agriculture. Because Jingrun
stubbornly stuck to his esoteric research at the risk of neglecting his
teaching, he was discriminated against during the reign of the so-called
gang of four and may have lost his academic position. After the overthrow
of the gang of four, he was rehabilitated and even declared a “hero of the
revolution.”

For small values of  Goldbach’s conjecture (and hence the weak
Goldbach conjecture) can be veri�ied directly. In fact, in 1938, Nils Johan
Pipping (1890–1982, Finland) vigorously veri�ied the conjecture up to

 With the advent of supercomputers, by 1993, Goldbach’s
conjecture was veri�ied up to 400 million. In 1998, Jörg Richstein
(Germany) extended this up to  He also showed that

 In 2013, Tomás
Oliveira e Silva (Portugal) veri�ied Goldbach’s conjecture up to 
(and double-checked up to ). An interesting observation during
the veri�ication he made is that  is the
smallest number that cannot be written as a sum of two primes where one
is smaller than  in fact,

Similar problems to Goldbach’s conjecture exist in which primes are
replaced by other particular sets of numbers, such as Euler conjectured
that any even number greater than 6 that is of the form  is the sum
of two primes of the form  (taking 1 as a prime of this latter type,
where necessary). For instance, because 30 is an even number of the form

 we can write  In 1775, Lagrange asserted that every
odd integer greater than 5 can be written as a sum  where both

 and  are prime. For example,

Hardy and Littlewood in 1922 conjectured that every large integer is a sum
of a prime and two squares, an assertion that was subsequently veri�ied.
For any positive number n, there exists an even integer a, which is



representable as the sum of two odd primes in n different ways. For
example, the integers  and 108 can be written as the sum of two
primes in six, seven, and eight ways, respectively. In fact,

and

Consider the primes arranged in their natural order  It is
conjectured that beginning with  every other prime can be composed of
the addition and subtraction of all smaller primes (and 1), each taken once.
For example,

de Polignac Conjecture: In 1848, Alphonse de Polignac (1826–1863,
France) claimed that “Every odd number can be expressed as the sum of
a power of 2 and a prime.” He claimed that he checked his assertion for
all odd numbers up to 3 million. Since no positive power of 2 can have
an odd number in its prime factorization, had it been true, Polignac’s
assertion would have been a marvelous result. But alas, it is patently
wrong. Polignac said that he veri�ied his claim for many numbers, but
actually missed a simple counterexample, namely  Let us express
127 as a sum of a power of 2 and the remaining number in all possible
ways:



Since  our veri�ication is over; we see that the second
component of 127 is not a prime in each case. So Polignac’s conjecture is
disproved.

4.11	 Twin	Primes	Conjecture
The largest pair of consecutive integers, known as Siamese	twins which are
both prime is  because any other two consecutive numbers will have
an even number, which is not prime. Primes of the form p and  are
called twin primes; the term was coined by Paul Gustav Samuel Stäckel
(1862–1919, Germany). From among the primes between 1 and 100
(which are 25 in number), we have eight pairs of twin primes. They are

 and 
Among the primes between 101 and 200 (which are 21 in number), the
twin primes are

 and
 Since every prime greater than 3 is of the form  or

. The sum of twin primes is 
and hence the sum of twin primes greater than 3 is divisible by 12. If n and

 are prime, then  is divisible by 6. In fact, among three
consecutive numbers, one of them must be divisible by 3, and since n and

 are prime,  must also be even, so it has to be divisible by 6. In
1919, Viggo Brun (1885–1978, Norway) proved a remarkable theorem
showing that the sum of the reciprocals of the twin primes converges, i.e.,
Brun’s	constant

is approximately  While Brun’s result does
not prove the well-known twin primes conjecture there	are	in�initely	many
twin	primes, it con�irms that the twin primes become sparser and sparser
as we move out into the larger integers. In fact, computation shows



Twin conjecture has resisted all attempts at proof for hundreds of
years, and most mathematicians do not feel that a proof will occur any
time soon. The largest known twin prime as of August 2022 discovered in
September 2016 is  with  decimal
digits. In 1966, Jingrun Chen proved a weaker version of the twin primes
conjecture, namely, there exist in�initely many pairs of numbers which
differ by two in which the �irst number of the pair is a prime and the
second is either a prime or a semiprime. The number  is almost
prime, whereas  is not an almost prime. Using computers,
billions of twin primes have been found, e.g., below , there are

 twin primes pairs. Primes of the form p and 
are called cousin	primes, for example, between 1 and 100, there are eight
pairs of cousin primes

 Like
Brun’s constant, in 1996, Marek Wolf (born 1956, Poland) for cousin
primes, leaving the initial term (3,7), showed that

converges approximately to  In 2022, Batalov found the largest-
known pair of cousin primes having 51,934 digits with

 Primes of the form p
and  are called sexy	primes, for example, between 1 and 100, there
are 15 pairs of sexy primes

 whereas between 101
and 200, there are ten pairs of sexy primes

 ,



Between 1 and 200 besides these sexy pairs there is another pair
 In 2022, Batalov also found the largest-known pair of sexy

primes having 51,934 digits with

In 1849, a more general conjecture was made by Polignac that for every
natural number  there are in�initely many primes p such that  is a
prime. Clearly, for  and  respectively, it reduces to twin, cousin,
and sexy primes conjecture. Primes of the form  and  are
called triplet primes. In this case, there is only one prime triplet, namely

 In fact,  is obviously impossible, and for , the only
possibilities are  or  but then

 or  Primes
of the form p and  or  and  are also called prime triplets.
For such type of triplets examples are

 A prime can be a member of up to three prime
triplets—for example, 103 is a member of  ,
and  This also leads to prime quintuplet

 A prime quadruplet  can be
obtained from two overlapping prime triplets,  and

 for example,  give 
and other prime quadruplet are of the form

 Between 1 and 10000, there are
only 12 prime quadruplet

 
  However, the smallest prime

quadruplet of a special type is  Bombieri is known for the
distribution of prime numbers in arithmetic progressions. His work was
based on a new development of the large sieve introduced by Linnik in
1941 and signaled a turning point in analytic number theory. In 2004
(published in 2008 [225]), Ben Joseph Green (born 1977, England) and
Terence Tao proved that there are arbitrarily long arithmetic progressions



of prime numbers. As an example, the following six sequences consist of
primes in arithmetic progression

In September 2019, Rob Gahan (Ireland) found the �irst known case of
27 primes in an arithmetic progression as part of PrimeGrid’s AP27 Search
subproject

Here  is prime, whereas
 is composite with factorization

 There is a
considerable interest in proving if there are in�initely many sets of three
consecutive primes in arithmetic progression. As an example, 22 known
primes n such that  are consecutive primes are
4911251, 5309539, 9113263, 11355797, 11397103, 13940057,
14306203, 14313527, 14585089, 17172521, 21126109, 24419281,
24581803, 24861631, 24922291, 25308799, 26241751, 26722523,
27408193, 28740919, 29675137, 30045811 (see https:// oeis. org/ 
A089234).

In 1949, Paul Arnold Clement (born 1917, USA) proved that n and 
are twin primes iff  This result
is obviously connected to Wilson’s theorem. Obviously,  is not
prime when  so we exclude  i.e., we assume that n and

 are odd primes. We know n is prime iff 
and hence iff  Now  is prime iff

https://oeis.org/A089234


 Next, since 
and , it follows that

 and therefore
 Now

since n and  are relatively prime, it follows that n and  are
twin primes iff 
In 1971 [468], Sergusov showed that n and  are twin primes if and
only if  where  here 
is Euler’s totient function and  is the sum of positive divisors of 
as de�ined earlier.
In 1986, Dorin Andrica (born 1956, Romania) conjectured that the gaps
between prime numbers satisfy the inequality 
If  denotes the nth prime gap, then Andrica’s conjecture
can also be rewritten as  This inequality obviously holds
for twin, cousin, and sexy primes. This conjecture has been veri�ied up to

 It follows that if  then there must be a prime
between  and  Andrica also claimed that

On April 17, 2013, Yitang Zhang (born 1955, China-USA) proved weak
conjecture	of	twin	primes: There exists an even integer  with the
property that there are in�initely many primes of the form 
In fact, there exists an M with  In July 2013, this huge
upper bound was replaced by Terence Tao to merely 4680. In November
2013, this upper bound was further sharpened by James Alexander
Maynard (born 1987, England) to 600. As of April 2014, the Polymath
project 8 (using the methods of Maynard and Terence Tao) lowered the
upper bound to 246.

4.12	 Prime	Number	Theorem
When we trace a sophisticated theorem to its origin, we often �ind its
formulation to have been prompted by certain “circumstantial evidence”
which render such a result plausible. Prime numbers seem to appear
rather haphazardly. In fact, between any two numbers a and  which
numbers are prime? How many of them are there? How far apart do they
appear? Let us consider the following observations: between 1 and 100



(100 numbers), there are 25 primes; there are 5 primes between 101 and
 but none between 114 and  between 1001 and 1100, there are 16

primes; between 8401 and 8500, there are only 8 primes, and these 8 are
crowded in the interval 8418 to  between 10001 and 10100, there
are 11 primes; there are 13 primes between 89501 and  between
9,999,900 and 10,000,000, there are 9 primes; and between 10,000,000
and 10,000,100, there are only 2 primes. Thus, the distribution of primes
seems to be highly irregular. Landau commented that the study of the
distribution of primes should be considered as one of the most important
chapters of mathematical sciences.

In 1797/98, Legendre conjectured that  can be approximated by
the function  where A and B are unspeci�ied constants. His
conjecture was based on the tables prepared earlier by Felkel and Baron
Jurij Bartolomej Vega (1754–1802, Germany). In 1808, Legendre provided
speci�ic values of unspeci�ied constants in his function as  and

 According to his own recollection in 1849, when Gauss
was a boy of 15/16, he also examined a table of prime numbers (divided
the natural numbers into intervals of 1000) smaller than 
complied by Lambert, looking for patterns and counted the number
primes. Around 1800, Gauss conjectured that asymptotically (as x
increases to in�inity) the ratio  equals  equivalently,

 or the density of the primes among the �irst x
integers, is approximated by  (The concept of density is
used to compare the size of sets of numbers, even when these sets are
in�initely large. The even numbers, for example, have a density of one half
since exactly half the numbers are even; multiples of 5 have a density of
one �ifth. Although the number of primes is in�inite the density of primes is
zero! That is, the primes are spread so thinly among the natural numbers
that the probability that a randomly chosen number is prime is vanishingly
small; most numbers are not prime.) In 1823, Abel characterized the prime
number theorem (referring to Legendre) as perhaps the most remarkable
theorem in all mathematics. In 1838, Dirichlet came up with the
approximating function involving logarithmic integral Li
which he communicated to Gauss. Later, Gauss showed that both
Legendre’s and Dirichlet’s formulas imply the same conjectured
asymptotic equivalence of  and  however, Dirichlet’s
approximation provides considerably closer numerical approximations.



In 1852, Chebyshev was the �irst to make any progress toward a proof
of Gauss’s conjecture. His theorem was an extension of his proof of
Bertrand’s assertion. Chebyshev actually proved that for suf�iciently large x

and

however, he was unable to prove Gauss’s conjecture. Chebyshev’s bounds
were improved by several mathematicians including Sylvester in 1892 as

 Riemann in his 1959 memoir
extended Euler’s formula (4.4) from real to complex numbers analytically
and showed that prime numbers are intimately connected with the zeros
of the extended Riemann zeta function (3. 26). His work is considered as an
important contribution to the distribution of prime numbers; in fact, it
made the �ield analytic number theory suf�iciently promising. Gauss
conjecture was not proved until 1896, when Hadamard and Poussin
proved it independently. Since then, the conjecture became famous as the
Prime	Number	Theorem, and it remains one of the supreme achievements
of mathematics. The proof was not elementary and made use of
Hadamard’s theory of integral functions applied to the Riemann zeta
function (3. 26) and a simple trigonometric identity. It is to be remarked
that prime number theorem is equivalent to the statement that the nth
prime number  satis�ies 

After Hadamard and Poussin, several proofs of prime number theorem
were offered, among these the most noticeable are due to Norbert Wiener
(1894–1964, USA), who deduced the result almost as a corollary from his
work on Tauberian theorems of 1927–1932, and its reformation by Landau
in 1932. Then without involving functions of a complex variable, an
“elementary”—though not easy—independent proofs of Selberg and Erdös
(boyhood dream) in 1949 (which also sparked bitter confrontation
between them; in Hungary, the proof is known as the Erdös–Selberg proof,
whereas in Princeton Selberg–Erdös proof), and nonelementary proof of
Donald Joseph Newman (1930–2007, USA) proof in 1980. Later, the
technique of their proofs was implemented by several number theorists to
deal with conjectures previously considered too profound.



Let us observe the following table in which  denotes the number
of prime numbers between 1 and 

We note that the fourth column gives the density of prime numbers. It
indicates that  as  which can be proved analytically.
This shows that almost all of the positive integers are composite. Now
multiply these numbers by  respectively, i.e.,  we get a list
of numbers converging to a number c between  and  Thus,

In fact,  where  is nothing else but the base of
the natural logarithm. Thus,  Further, the �ifth column
indicates that the convergence of  to its limiting value of 1 is slow. For
example,  and  This means that relative
error of 2.3% results when  is estimated by  and 1.8%
when  is estimated by 

Ramanujan, in his �irst letter to Hardy on January 16, 1913, had written:
“I have found a function which exactly represents the number of prime
numbers less than x.” Actually, he was mistaken, he had not found the
correct function. Ramanujan’s formula was for an in�inite series. He gave
three versions of it in his second letter to Hardy on February 8, 1913.
For values up to 1000, Ramanujan’s formula virtually gave exact



agreement. It was known that there were  primes below nine
million. Ramanujan’s formula gave the �igure off by just 53. This was
better than the performance of the prime number theorem. Ramanujan
relied too much on the low values of x for which he had tried his
formula. The error for higher values of x was much larger than he
thought. Hardy still found Ramanujan’s approach very illuminating. He
wrote, “Ramanujan’s theory was what the theory might be if the zeta
function had no complex zeros.”
In 1923, Hardy and Littlewood conjectured (known as the second
Hardy-Littlewood conjecture) that  for all
integers x and y with  This inequality is the same as

 and hence no interval  of
length x can contain as many primes as there are in the interval

 For example, for , we have
 and for  we have

 First signi�icant work on this
conjecture is of Sanford Leonard Segal (1937–2010, USA) in 1962. In
1975, V.S. Udrescu (Romania) showed that for every

 holds whenever  and
 Thus, the conjecture holds for  suf�iciently

large, but no effective bounds on the region of validity could be
determined. In 1998, Daniel Gordon (USA) and Gene Rodemich (USA)
showed that the conjecture is valid for  In 2002,
Pierre Dusart (France) proved that the conjecture holds for

 Computationally, this conjecture has
been veri�ied for  however, general consensus is there
may be some rare exceptions on which conjecture may not be true
because the function  is irregular.

The special case  is known as Landau’s inequality, which
he studied in 1901; he also showed that 
Landau’s inequality was proved for all integers  in 1975 by John
Barkley Rosser (1907–1989, USA) and Lowell Schoenfeld (1920–2002,
USA). In 1971, Chr Karanikolov (Serbia) showed that if  and

 then  Some of these inequalities have been
improved and several new added in 2000 by Laurentiu Panaitopol (1940–
2008, Romania). A related exercise is to show  for all



 Since  inequality does not
hold for  Similarly, it does not hold for  For
suf�iciently large x and  Sylvester bounds show that inequality certainly
holds provided

which on letting  is the same as  This
inequality holds for all  and hence both x and y are greater than

 In conclusion, the inequality  holds for all 
and as long as Sylvester bounds hold. In 2018, Dao Thanh Oai (Vietnam)
checked the validity of the inequality for all 

In 1901, Niels Fabian Helge von Koch (1870–1924, Sweden) showed
that the Riemann hypothesis is equivalent to

for some constant  In 1976, Schoenfeld assumed Riemann hypothesis
to show that

for all  Here  for  and principal
value (PV)  for  Clearly,

In 1891, Lars Edvard Phragmén (1863–1937, Sweden) expressed the
idea by saying “there is no limit beyond which the difference

 does not change sign.” In 1914, Littlewood gave an
existence proof to show that the function  changes sign
in�initely often as x increases to in�inity. In 1933, Stanley Skewes (1899–
1988, South Africa) provided an upper bound, known as First	Skewes
Number  which is the smallest integer x for which

 In 1955, he used the upper bound as Second	Skewes
Number  In 1966, Russell Sherman Lehman (born 1930,
USA) improved the upper bound to  In 1987, Te Riele
improved upper bound to  In 2000, a better upper bound



 was discovered by Carter Bays (USA) and Richard
Howard Hudson (USA). They also showed that at least  consecutive
integers exist somewhere near this value where  After
Bays and Hudson’s work some mild improvements on the upper bound
have been obtained. In the following table, we note that

 and increasing for all calculated values of 

In 1923, Hardy and Littlewood also conjectured that  increases
much like the function

where  is known as twin-prime	constant, and
 is the number of twin primes less than  In the following table,

we note that  changes sign even for low values of x



In 2011, Marek Wolf have shown that for ,
there are 477118 sign changes of this difference.

4.13	 Amicable	Numbers
If each of the numbers  is equal to the sum of the proper divisors of
the other, it is called an “amicable number pair,” and  are “amicable”
or “friendly” numbers. Thus,  is an amicable number pair if

 The smallest amicable numbers are 220 and 
In fact, the proper divisors of 284 are  and their sum is 
and the proper divisors of 220 are  and
their sum is  According to Iamblichus, when a person asked
Pythagoras what a friend was, and he replied, “One who is another I, such
as 220 and 284.” The Pythagoreans regarded this intimate union between
amicable numbers as the very essence of friendship and the innermost
soul of harmony. There is suf�icient evidence that the amicable numbers
were known to the Hindus before the days of Pythagoras. Also, certain
passages of the Bible seem to indicate that the Hebrews attached a good
omen to such numbers. In Muslim mathematical writings, the amicable
numbers occur repeatedly. They play a role in magic and astrology, in the
casting of horoscopes, in sorcery, in talismans, and concocting love potions.
There is an unauthenticated medieval story of a prince whose name was
from the standpoint of gematria equivalent to  He sought a bride
whose name would represent  believing that this would be Heaven’s
guarantee of a happy marriage.



Amicable numbers were one of the hobbies of Abu Zaid Abdel Rahman
ibn Khaldun (1332–1406, Tunisia-Egypt). He wrote that persons who have
concerned themselves with talismans af�irm that the amicable numbers
220 and 284 have an in�luence to establish a union or close friendship
between two individuals. About 850, ibn Qurra derived and proved a
general formula which leads to certain types of amicable pairs: If the three
numbers  and  are
all prime and  then  and  are amicable numbers. This
formula was rediscovered by Descartes and Fermat and in Europe ascribed
to them. For  and 7, this formula gives

The amicable pair  was discovered by al-Marrakushi ibn
Al-Banna (1256–1321, Morocco) and rediscovered by Fermat in 1636.
Similarly, the amicable pair  was discovered by
Muhammad Baqir Yazdi (died in 1637, Iran) and rediscovered by
Descartes in 1638. Other Arab mathematicians who contributed to
amicable numbers are Abu al-Qasim Maslama ibn Ahmad al-Majriti (950–
1007, Spain), Abu Mansur ibn Tahir al-Baghdadi (980–1037, Iraq), and
Kamal al-Din Abu’l Hasan Muhammad al-Farisi (1260–1320, Iran). In
1985, Bartel Leendert van der Waerden (1903–1996, the Netherlands)
provided a modern mathematical proof of Thabit’s formula. It is clear that
Thabit’s result severely restricts the possible values of  For example, for

 we get  which is not a prime number. Thus, it is not known
if Thabit’s formula generates in�initely many amicable pairs, but it is
known that there are some amicable pairs it does not generate, such as the
second smallest pair  which was discovered in 1866 by the
16-year old student B. Nicolo I. Paganini (born in 1850, Italy). This pair
had eluded his more illustrious predecessors.

Before 1747, only above three pairs of amicable were known, but then
within three years Euler found 58 new pairs, so the number reached to 61.
Based on the patterns of amicable numbers, he developed a formula that
would produce amicable pairs; however, it did not generate every amicable
pair. Euler also extended Thabit’s formula to: For integers  if
the numbers



are prime numbers, then  and  are a pair of amicable numbers.
Thabit’s formula corresponds to the case  Euler’s formula
provides two additional amicable pairs for  with
no others being known. For  the pair

 was computed by Legendre in 1830. Extensive
generalizations of Thabit and Euler formulas have been given by Walter
Borho (born 1945, Germany) in a series of papers since 1972.

In recent years, more than  amicable pairs have been
computed with the help of supercomputers. So far, even theoretically, it is
not known if the number of amicable pairs is �inite or in�inite. Of course,
much harder problem is to �ind a general formula to generate all amicable
pairs. It is also not known if there exists an amicable number whose the
pairs have opposite parity, also if there exist pairs of relatively prime
amicable numbers. In 1955, Erdös showed that the density of amicable
numbers, relative to the positive integers, was  In fact, there are
1947667 amicable pairs less than  We list here �irst 20 smallest and
the largest known (due to Paul Jobling in 2005 with each member having
24073 decimal digits) amicable pairs

(220,284), (1184,1210), (2620,2924), (5020,5564), (6232,6368),
(10744,10856), (12285,14595), (17296,18416), (63020,76084),
(66928,66992), (67095,71145), (69615,87633), (79750,88730),
(100485,124155), (122265,139815), (122368, 123152),
(141664,153176), (142310,168730), (171856,176336),
(176272,180848).

For the known largest amicable pair, we de�ine

9999

then  and  are all primes, and  is the
required amicable pair.

In 1981, Carl Bernard Pomerance (born 1944, USA) showed that the
sum of the reciprocals of all amicable numbers,  is a constant. In 2010,
Jonathan Bayless (USA) showed that 



In a recent publication of 2019, Hanh My Nguyen (USA) and Pomerance
have shown that this upper bound can be reduced to just 215.
There are amicable pairs in which the sum of the digits of both the
members is equal. In fact, out of �irst 5000 amicable pairs, there are 427
such pairs. For example, for the amicable pair  we have

 The same property holds
for the pairs  and 
In 1986, Te Riele found 37 pairs of amicable pairs having the same-pair
sum. The �irst such pair is  and  which
has the pair-sum  In 1993, David Moews (USA) and Paul Moews
(USA) found the following four triples of amicable pairs with the same
pair-sum

In 1995, Te Riele found a quadruple. In November 1997, a quintuple
and sextuple were detected. The sextuple is

(1953433861918, 2216492794082), (1968039941816,
2201886714184), (1981957651366, 2187969004634),
(1993501042130, 2176425613870), (2046897812505,
2123028843495), (2068113162038, 2101813493962),

all having pair-sum  It is interesting, the sextuple is
smaller than any known quadruple or quintuple and is perhaps smaller
than any quintuple.
Harshad amicable pair is an amicable pair in which both the numbers
are Harshad numbers. In fact, out of �irst 5000 amicable pairs, there are
192 Harshad amicable pairs, e.g., see the articles of Mayadhar Swain
(born 1956, India) entitled facinating amicable numbers of 2013 and
Murty et. al. [381]. For example, in the amicable pair , the
number 2620 is divisible by  and 2924 is divisible by

 Similarly,



 and 
are Harshad amicable pairs.
If we iterate the process of summing, the squares of the digits of a
number and if the process terminates in 1, then the original number is
called a happy	number. For example, 7 is a happy number because

However, 11 is not a happy number, because  The �irst 30 happy
numbers are 1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91,
94, 97, 100, 103, 109, 129, 130, 133, 139, 167, 176, 188, 190. An
amicable pair is called happy if both members of the pair are happy
numbers. There are 111 happy amicable pairs in �irst 5000 amicable
pairs (see http:// www. shyamsundergupta . com/ aphappy. htm). For
example,  is a happy amicable pair because

 and
 Other examples are

In 1968, Gardner noted that most even amicable pairs known at his time
have sums divisible by  For example, for the pair

 the sum 4353818112 and the sum of its
digits is 36 which is divisible by 9. The smallest known even amicable
pair  whose sum 1362660800 (with the sum of
its digits 32) is nondivisible by 9 was discovered by Paul Poulet (1887–
1946, Belgium), published in 1948 posthumously.

The earliest known odd amicable numbers all were divisible by 3, e.g.,
 and  This led Paul Bratley (Canada) and

John McKay (England-Canada) in 1968 to conjecture that there are no
amicable pairs coprime to 6 (i.e., divisible by either 2 or 3). However,
Stefan Battiato (Germany) and Borho in 1988 found 15 counterexamples
of amicable pairs not divisible by 6, each member of their smallest pair has
36 digits. The smallest known example of this kind is the odd amicable
pair

each member of which has 32 digits with sums 148 and 158 (non-divisible
by 3), respectively.

From the tables of amicable pairs, it can be seen that the smallest pairs
in which both the members have the same last digits are (79750,

http://www.shyamsundergupta.com/aphappy.htm


88730), (1558818261, 1596205611), (106930732, 1142071892),
(664747083, 673747893), (196724, 202444), (12285, 14595), (17296,
18416), (290142314847, 292821792417), (469028, 486178), and
(68606181189, 70516785339).
Let  be k positive integers. An amicable k tuple
denoted as  and de�ined as

 Clearly, an
amicable 2 tuple is an amicable pair. For example,  is
an amicable 3 tuple, because

 is an amicable 4 tuple; and

 is an amicable 5 tuple
found by Yasutoshi Kohmoto (Japan) in 2008.
A cyclic sequence of three or more numbers such that the sum of the
proper divisors of each is equal to the next in the sequence is known as a
sociable	chain of numbers. They are generalizations of the concepts of
amicable numbers and perfect numbers. In 1970, Henri Cohen (born
1947, France) obtained nine social chains of order 4, the smallest one of
these is  In
fact, the sum of the proper divisors of 1264460 is

the sum of the proper divisors of 1547860 is

the sum of the proper divisors of 1727636 is

and the sum of the proper divisors of 1305184 is

Till 1918, only following two sociable chains involving numbers below
 were known of order 5 and 28 due to Poulet:

 and

A sociable chain of order 3 is called a crowd; no crowds have yet been
found.

4.14	 Fibonacci	Numbers/Sequence



The Fibonacci numbers are de�ined as

where each integer after the �irst two is the sum of the two integers
immediately preceding it. It is to be noted that these numbers �irst
appeared under the name matrameru (mountain of cadence) in the
treatise Chandahshastra (The Art of Prosody) written by Pingala. Then,
Virahanka (sixth century, India) showed how the Fibonacci sequence arose
in the analysis of metres with long and short syllables, and Jain
philosopher Hemachandra (around 1088–1172, India) composed a well-
known text on these. Fibonacci numbers were also known to Egyptians
and Greeks. The name Fibonacci numbers to this sequence was given by
Lucas in 1877. Fibonacci’s name is attached with this sequence due to his
popular problem in Liber	Abaci: A certain man had one pair of rabbits
together in a certain enclosed place and one wishes to know how many are
created from the pair in one year when it is the nature of them in a single
month to bear another pair, and in the second month those born to bear
also. If we let  denote the nth Fibonacci number, then it is clear that 
satis�ies the initial value problem (in posthumously published work of
1634 by Girard)

For this, the characreristic equation of the difference equation is
 which gives  Hence, the general solution

of the difference equation is

By using the initial conditions, we �ind  so

(4.8)

Although  is predominant in this formula, all these numbers must be
integers. Formula (4.8) was derived by Jacques Philippe Marie Binet
(1786–1856, France) in 1843, although the result was known to Daniel



Bernoulli, Euler, and De Moivre more than a century earlier. Fibonacci
numbers can be extended to zero and negative integers as follows: from

 we have  and hence

Indeed, by induction, we have

Kepler was the �irst who noticed that Fibonacci numbers occur in
nature in many surprising ways. He claimed that if we count the number of
petals of different �lowers, we often come across Fibonacci numbers to
such an extent which can no longer be regarded as pure coincidence.
Examples include �lowers: Iris and lili have 3 petals; columbine, primrose,
buttercup, dog rose or Alpine rose, larkspur, and aquilegia have 5 petals
each; delphinium has 8 petals, corn marigold has 13 petal, aster, black-
eyed Susan and coffee weed have 21 petals each; daisies have 13, 21, or 34
petals; plantain and chrysanthemum have 34 petals each; and New York
aster have 55 or 89 petals. The number of spiral arms: on sun�lower are
three of 21, 34, and 55 arms; on pine cone are two of 5 and 8 arms; on
pineapple are three of 5, 8, and 13 arms. Fibonacci numbers are also found
in the arrangement of leaves, twigs, and stems. These numbers can also be
found in a varied number of �ields such as music, human body, in coding
(computer algorithms, interconnecting parallel, and distributed systems),
high energy physical science, quantum mechanics, logarithmic spiral,
cryptography, etc. Male honeybees hatch from eggs that have not been
fertilized, so a male bee has only one parent, a female. On the other hand,
female honeybees hatch from fertilized eggs, so a female has two parents,
one male and one female. The number of ancestors in consecutive
generations of bees follows the Fibonacci sequence. Fibonacci numbers are
of compelling interest to mathematicians to have a Journal devoted to the
study of their properties. For leisure reading, see the book of Vorobyov
[525].

The Euclidean algorithm (Theorem 3. 3) gives an impression that to �ind
the greatest common divisor of two positive integers a and b requires
�initely many divisions  In addition, Lamé showed that

 where  (Golden Section, see Sect.
4.16). However, we shall show that if the integers a and b are suitably
chosen, then N can be arbitrarily large, i.e., Lamé’s upper bound loses its



practical importance. For this, we let  and  Then the
Euclidean algorithm for obtaining  leads to the
following system of equations:

Thus, the number of necessary divisions is  From Theorem 3. 4, it also
follows that  and hence the successive
terms of the Fibonacci sequence are relatively prime.
The following identities follow by induction, or the explicit relation (4.8)

We also have sum of odd and even sequences of products of consecutive
Fibonacci numbers

The generating functions for all, even, and odd Fibonacci numbers are



For all  by induction, the following relation between Fibonacci
numbers and the binomial coef�icients (2. 3) follows:

This also shows that Fibonacci sequence is related to Pascal’s triangle in
that the sum of the shallow diagonals of Pascal’s triangle are equal to the
corresponding Fibonacci sequence term.
The only Fibonacci number which are prime (Fibonacci primes) up to

 are  where 
  As of

January 2022, the largest known Fibonacci prime is  which has
30949 digits. In 2018, Henri Lifchitz (born 1948, France) speculated that

 is Fibonacci prime, with  digits, which has not been
con�irmed. It is conjectured that there are in�initely many Fibonacci
primes.
Let a and b be any two numbers. Consider �irst ten terms of the
Fibonacci-like sequence, i.e.,

the sum of these ten terms gives  i.e., the
sum of �irst ten terms is the same as 11 times the seventh term.
In 1972, Edouard Zeckendorf (1901–1983, Belgium) published a result
which he rediscovered in 1939, whose origin appears to be in medieval
India. In the literature, this result is now known as Zeckendorf’s
Theorem: Every positive integer N can be written uniquely as a sum of
distinct, pairwise nonconsecutive Fibonacci numbers. The proof is by
induction. Thus, Fibonacci numbers are building blocks for the natural
numbers through addition. For example,

 Notice that  In



fact, from the above identities, it can be shown that if 
then in the representation of N as the sum of Fibonacci numbers, the
number  has to be one of them.
The following statements follow by induction:  is an even number,

 is a multiple of  is a multiple of  is a multiple of
 is a multiple of  in general for all  is divisible

by  This follows immediately by the relation
 and mathematical induction by letting

 Thus, for any prime  there are in�initely many Fibonacci
numbers that are divisible by p and that lie at equal distances from one
another in the Fibonacci sequence.
We shall show that  iff  For this we shall use
the relation  and the mathematical
induction. If  then there exists an integer j such that 
Clearly,  for  We assume that  then the relation
with  gives  and
hence  Conversely, let  but  Then, we may
write  where  Thus from the relation, we have

 Now since  and
 it follows that  Next since Fibonacci numbers

 and  are relatively prime and  it follows that
 which means  But this contradicts the fact that

Fibonacci sequence is increasing and 
In 1876, Lucas reported that the greatest common divisor of two
Fibonacci numbers is also a Fibonacci number, i.e., 
where  To prove this, we shall use the relation

 and all steps of Theorem 3. 3 with
 and assume that  We have



Here we have used the fact that  and hence any common
divisor of  and  is a common divisor of 
and  Now since  implies that  and  are
relatively prime, it follows that

Repeating this argument leads to

Finally, since , it follows that  As an
example, we have  and

As a corollary of a result of Yuri Vladimirovich Matiyasevich (born 1947,
Russia), it follows that if x and y are positive integers and

 then  iff z is a Fibonacci number. The
one side proof of this is easy. For this, we let  and  and
recall the above relations, to get

4.15	 Lucas	Numbers
Lucas numbers denoted as  form a Fibonacci-like sequence

In fact,  satis�ies the initial value problem

The closed form solution of this problem is
(4.9)



The relation  can be used to obtian  so that
 form the basis of tetraktys, and for all negative indices, it

follows that

The following identities follow by induction

Thus, in particular, we have relations between Fibonacci and Lucas
numbers  and 
The generating function for all Lucas numbers is

The only Lucas number which are prime (Lucas primes) up to  are
 where 

  As of
September 2015, the largest known Lucas prime is  which has
30950 digits. In 2017, Henri Lifchitz and Renaud Lifchitz (born 1982,
France) speculated that  is Lucas prime, with 484177 digits,
which has not been con�irmed. It is conjectured that there are in�initely
many Lucas primes.

4.16	 Golden	Section/Ratio
In Euclid’s Elements (II and VI), we �ind a de�inition of a particular type of
partition of a line segment in two uneven parts. According to Euclid, a line
segment AB can be divided by an interior point  If this is the case, then



the line segment AB is equicontinuously divided if the quotient  is
equal to the quotient  i.e.,

which gives  and  The

symbol  named after the Greek sculptor Phidias (around 480–430 BC),
who incorporated the ratio into many of his sculptures. The earliest known
treatise dealing with this number is Divina	Proportione (divine proportion)
by Pacioli of 1509. In his work, he concluded that the number was a
message from God and a source of secret knowledge about the inner
beauty of things. In 1815, Martin Ohm (1792–1872, Germany) named it as
golden	ratio or golden	section. A classical ruler-and-compass construction
for the golden section of a segment AB is as follows (see Fig. 4.1): Draw a
perpendicular BD with  and draw the hypotenuse AD. Draw
an arc with center at D and radius  This arc intersects the hypotenuse
at the point  Draw an arc with center A and radius  This arc
intersects the line AB at the required point  In fact, from the
Pythagorean theorem, 
and hence

Fig.	4.1 Golden section/ratio
It was Kepler who discovered that the golden ratio  is

connected to Fibonacci numbers (the �irst known calculation of the inverse
golden ratio, i.e.,  as a decimal of about  was written
in 1597 by Michael Maestlin, 1550–1631, Germany, in a letter to Kepler). In
the 1750s, Robert Simson (1687–1768, Scotland) noted that the ratio of
each term in the Fibonacci sequence to the previous term approaches, with
greater accuracy the higher terms a ratio of approximately

 If fact, from (4.8), we have



as  Similarly, from (4.9) it follows that  as 

For the equation   is a root. For this equation,
Newton’s method is

Thus, with  we have

We claim that  For this, we need the
relations  Now the
inductive step is

By mathematical induction, we shall show that for all
 Since  we have

 Let  Now  is  which
is true, and  is  which is also true. Next we assume
that  is true for all  We will show that  is
true, i.e.,  By induction hypothesis, both  and

 are true. Hence,  and  Thus, it
follows that



Therefore,  is true. The demonstration of the other part is
similar. In addition, from (4.8), it follows that  is nearest to 
For example, the tenth Fibonacci number is the integer nearest to

 in other words, 55. Similarly, from (4.9), we �ind that Lucas
number  is nearest to  By induction, it also follows that

A golden rectangle is a rectangle whose sides are in the ratio
 Ancient Greeks (and psychologists) considered  to be the

most aesthetically pleasing to the eye ratio, practically worshiped it, and
used it for the measurement of the facade of the Parthenon (in Athens)
and other Greek temples. It is believed to govern the dimensions of
everything from the Great Pyramid at Gizeh.  keeps on popping up
throughout the nature (shells, spiral galaxies, hurricanes, faces, �ingers,
animal bodies, animal �ight patterns, and DNA molecules), art,
architecture (e.g., united nations building), biology, books, eggs, music,
mythology, painting, philosophy, poetry, religion, science, and
mathematics (geometry, and for the secant method to solve nonlinear
equations the rate of convergence is the golden ratio). For further
importance of the golden ratio, see Livio [349], and Sen and Agarwal
[460, 464].
The equation

results in the golden ratio. This relation can be restated as the chord of
108 degrees is  We also note that

Using decimal	parity, we can break numbers down into single digits. For
example, the decimal parity equivalent of the number 3456 is

 and  So the decimal parity equivalent of
3456 is  In many ancient cultures, India and Egypt decimal parity was
used as a way to understand the truth of numbers. If we apply decimal
parity to the Fibonacci sequence, we �ind that there is a repeating series
of 24 digits: 
The addition of these 24 numbers, i.e.,



is the number 108. For this number besides the properties, we have
discussed in Sect. 2. 9, it is astonishing that the 108 constant growth rate
the nautilus uses to build its spiral shell involves the same pattern which
repeats every 24 numbers of the Fibonacci sequence.

4.17	 Quadratic	Congruence	and	Reciprocity
The congruence of the type

(4.10)

where p is an odd prime and  is called a quadratic
congruence. Since

 the
quadratic congruence (4.10) on multiplying by 4A can be written as

(4.11)

where  and  Since for  the
only solution is  in what follows we shall consider (4.11)
with  We begin with the following result. It is clear that the
congruence (4.10) either has no solutions or two solutions. In fact, If x is a
solution, so is 

Theorem	4.6 Let	p	be	an	odd	prime.	Then,  iff

Proof If  then Theorem 3. 6(6) implies that
 Conversely, if  then  and

hence  But, then by Corollary 4.2,  or
 which means  or  and

therefore  █

As an example for  solutions are
 Note that if q is composite and

 then it does not follow that  For
example,  but 



Now we shall answer the following question: Is the congruence
 solvable, where p is an odd prime. From  it

follows that 
and hence among  congruence has solutions only for
5 and  which are of the form  i.e.,  In the
following result, we shall prove the general result.

Theorem	4.7 Let	p	be	an	odd	prime.	Then,  iff

Proof Since  implies that  in view of Theorem 4.5,
we have

which is true provided  or  In fact, if
 then it gives the impossibility  Conversely, if

 then since  for all 
and

Wilson’s theorem con�irms that  provided
 This means  implies the existence of

 █

Next for the congruence (4.11), we state a general result.

Theorem	4.8	(Euler’s	Criterion) Let	p	be	an	odd	prime	and
 Then,	the	congruence (4.11) has	a	solution	or	does	not	have	a



solution	according	as  or 

As an example consider the congruence  Since  and
 it follows that  and

hence from Theorem 4.8, there is a solution of the given congruence. In
fact, by inspection  and  are the solutions of
this congruence. Similarly, for the congruence , Theorem
4.8 con�irms the existence of a solution, and  and

 are the solutions. However, since for the congruence
 we have

 and hence in
view of Theorem 4.8, it has no solution.

If the congruence (4.11) has a solution (no solution), we say a is a
quadratic	residue (quadratic	nonresidue)  Thus,  is a
quadratic residue  whereas  is a quadratic nonresidue

 For p an odd prime and  a continent notation
known as Legendre	symbol is de�ined as

Thus,  whereas  The following result provides
interesting properties of the Legendre symbol.

Theorem	4.9 Let	p	be	an	odd	prime	and	the	integers	a	and	b	are	such	that
 Then,	the	following	hold:

(i)  
(ii) If  then  
(iii)  
(iv)  
(v)  and  



The following lemma Gauss proved in 1808 and again in 1818.

Lemma	4.4	(Gauss	Lemma) Let	p	be	an	odd	prime	and 
Consider	the	least	positive	residues  of	the	integers

 If	n	denotes	the	least	number	of	positive	residues	that
exceed  then 

As an example, we consider  and  Since  we
need �irst 15 multiples of  namely

  For these numbers,
the least positive residues  are 

 From this list, 6 exceeds  Thus, Lemma
4.4 concludes that 

Corollary	4.4 If	p	is	an	odd	prime,	then

Proof To apply Lemma 4.4, we need the �irst  multiples of 
namely  Since all of these are less than  they are
already least residues  Among these, we need to �ind the least
number of positive residues that exceed  If  i.e.,

 then such numbers are 
whereas if  i.e.,  then such numbers are

 Since in the �irst case these residues are 2k
whereas in the second case  in number, it follows that

 Similarly, if  then we have
 whereas when  then

 Since in these both cases these residues are
 in number, we �ind  To complete the proof,

it suf�ices to note that  for  is  (even), for
 is  (odd), for  is

 (odd), and for  is 
(even).█



Now we shall state a theorem known as The	Law	of	Quadratic	Reciprocity.
It was discovered by Euler, but he did not prove it. Then at the age of 18,
completely unaware of the work of Euler, Gauss rediscovered the law on
his own and proved it next year. Gauss called the law as the gem of
arithmetic, and he remained fascinated by it throughout his life. For this
result till 2019, 246 proofs were known, out of which 8 belongs to Gauss,
one in 1963 by Murray Gerstenhaber (born 1927, USA) one-page proof in
the American	Mathematical	Monthly, jocularly giving it the title “The 152nd
proof of the law of quadratic reciprocity” and in the same Journal in 1990
half-page paper entitled “Another proof of the quadratic reciprocity
theorem?” by Richard Gordon Swan (born 1933, USA).

Theorem	4.10	(The	Law	of	Quadratic	Reciprocity) If	p	and	q	are
distinct	odd	primes,	then

(4.12)

Following are alternative forms of the law of quadratic reciprocity:
If p and q are distinct odd primes, then

(4.13)

If p and q are distinct odd primes, then

(4.14)

Corollary	4.5 If  is	an	odd	prime,	then



Proof If  where  then  for  or
 and  for  or  Hence, for  or  from

(4.14) and Theorem 4.8, we have

and for  or  it follows that

These observations imply the required result. █

From the above results, the following can be computed easily:

In the above table from Theorem 4.9, several entries for larger values of a
can be obtained from the smaller values of  For example,

4.18	 Characterization	of	Primes	of	the	Form
	and	

Clearly, all odd primes have to be of the form  or
 i.e.,  In the following two results, we shall

show that there are in�inite number of primes in each of these categories.

Theorem	4.11 There	are	in�inite	number	of	primes	of	the	form 

Proof First we note by induction that if  then for some
factor  Now as in Theorem 4.2, we assume that 
are the only primes of the form  We let  which
is of the form  and hence in view of Theorem 4.1, N must have a
prime factor q of the form  But then there exists an index j such
that  Thus  as well as  which is possible only when



 But this is impossible. Hence, there are in�inite number of primes of
the form  Dirichlet also noted that the reciprocal of all primes of
the form  diverges, i.e., the series

diverges.█

Theorem	4.12 There	are	in�inite	number	of	primes	of	the	form 

Proof Assume that  and de�ine  Let p be the
smallest prime divisor of  Since N is odd, p has to be an odd prime
(either  or ). We also note that p has to be larger than 
otherwise,  If we can show that p is of the form  then we can
repeat the procedure replacing n with p and continue to produce an
in�inite sequence of primes of the form  Now since  it follows
that  and hence  But in
view of Theorem 4.5, we have  and therefore if p was
of the form  we get  which leads to the
contradiction  As for the case  the reciprocal of all primes of the
form  diverges, i.e., the series

diverges.█

Primes of the form  and  less than  respectively, are

The function  counts the number of primes of the form
 Thus,

, and 
In 1853, Chebyshev remarked that  for all integers 
which is indeed true for small values of  However, in 1914, Littlewood



theoretically proved that the inequality fails in�initely often. It was only
in 1957 when with the help of computer it was shown that  is
the smallest prime for which

 The next such number is

Fermat in his letter of 1640 to Mersenne points out the following two
theorems showing that the primes in these two categories  and

 behave in mutually exclusive ways.

Theorem	4.13 Any	number	of	the	form	(and	hence	any	odd	prime	of	the
form)  cannot	be	expressed	as	a	sum  of	two	perfect	squares.

Proof Let a and b be positive integers. Consider the sum  Clearly,
a and b cannot be both odd or both even because then  would be
even and  is odd. So we can assume that  and  for
some integers s and  but then  which in not
of the form  █

Theorem	4.14	(Fermat’s	Two	Square	Theorem) If	n	is	a	prime	number,
then	it	can	be	expressed	as	a	unique	(except	the	order)	sum	of	two	squares	iff
either:  or  i.e., 



Proof Clearly,  and if  then from Theorem 4.13, n
has to be of the form  Conversely, we shall show that every
prime congruent to  can be written as a sum of two squares.
For this, �irst we shall show that there always exist nonzero a and b such
that  for some  Since  Theorem 4.7
ensures the existence of some a such that  i.e.,

 which is the same as  for some  This
con�irms that  (we can take ) always has a solution for
some  In fact, as in Theorem 4.7, we can take

 however, usually a number much smaller than
 works. Now we de�ine u and v such that

(4.15)

Then, it follows that

which in view of  implies that  or
 for some  Thus, we have

Now from the Diophantus (also known as Brahmagupta-Fibonacci)
identity (which shows that if two numbers are representable as the sum of
two squares, then their product is also representable as the sum of two
squares)

(4.16)

which follow directly by squaring the the right sides, or using the fact

it follows that

(4.17)

Next, from (4.15), we have



Thus, it means (4.17) can be divided by  to obtain

Finally, to complete the proof, we use the method of in�inite descent, i.e.,
show that  and continue. For this, from (4.15), we have

 however, since  it
follows that  i.e.,  and hence  It is clear that

 otherwise 
To prove the uniqueness, we assume that prime

 where  and  Since

it follows that  Thus, from Corollary 4.2, it
follows that  or  First, we consider the case

 Clearly, each of  must be less than  Hence,
 which in turn implies that  Now in view of

(4.16), it follows that  But this is possible only when
 However, since  and , we have  This

contradiction shows that  Now we consider the case
 From the earlier argument, we have 

which is possible only when  Now  because in
contrary  will have a common divisor greater than 1 and less than

 which in view of n being prime is impossible. So Euclid’s Lemma 4.1
ensures that  or  and so  gives  But this gives

 and hence  This means  and
 █

The following results complements Theorem 4.14.

Theorem	4.15 Let	the	positive	integer	n	can	be	written	as 
where	k	is	square	free.	Then	n	can	be	written	as	the	sum	of	two	squares	iff	k
does	not	contain	prime	factors	of	the	form  (If  then  is
permitted,	and	hence	then )



Theorem	4.16	(Fermat-Lagrange) If	n	is	an	odd	prime,	then
 iff  Further,  iff

Theorem	4.17	(Euler-Lagrange) If	n	is	an	odd	prime,	then 
iff  Further,  iff

Diophantus knew Theorem 4.13, whereas Theorem 4.14 was known to
Girard in 1625, several years before Fermat. The �irst proof of Theorem
4.14 was given by Euler in 1749, which was later simpli�ied by several
prominent mathematicians. In 1990, Don Bernard Zagier (born 1951,
Germany-USA) presented a nonconstructive one-sentence proof. The
converse of Theorem 4.13 is not true. In fact, it does not imply that if a
number cannot be expressed as a sum of two perfect squares, it will be
an odd number of the form  It could be that such a number may
be even, or odd of the form  For example,

 cannot be
expressed as a sum of two perfect squares, yet it is even. Similarly,

cannot be expressed as a sum of two perfect squares, but these are odd
of the form  Theorem 4.14 also does not imply that if an integer
can be expressed as the sum of two perfect squares, uniquely, then it will
be a prime of the form  In fact, it may be that such a number is of
the form  but not a prime or an even and non-prime. For
example,

can be expressed as the sum of two perfect squares in only one way,
 and it is of the form  but it is not a prime.

Similarly,  can be
expressed as the sum of two perfect squares uniquely,  but it is
even and non-prime.

Fermat’s Theorem 4.14 is cited in any discussion of mathematical
beauty. Examples of 11 primes of the form  below 100 and their
unique representations as the sum of two perfect squares are

These primes are Pythagorean primes (because in view of Pythagorean



theorem the square roots of these primes represent the length of the
hypotenuse of right triangles). From Theorem 4.12, it is clear that
Pythagorean primes are in�inite. Fermat numbers 
are of the form , and each can be written as a sum of two squares, in
fact, we have  In view of Theorem 4.14, this
representation is unique for prime Fermat numbers. However, for
composite Fermat numbers, �irst we recall Theorem 4.7 to ensure that for
an odd prime  i.e.,  implies that 
Thus, each factor of  is of the form  and hence as a consequence
of Theorem 4.14 can be written as a sum of two squares uniquely. Now
(4.16) provides at least two different representations of each composite

 (depending on the number of factorizations), for example,

It is well known that there are only 31 numbers that cannot be
expressed as the sum of distinct squares:

It is the contra-positive form of Theorem 4.14 which is important. It says if
a number of the form  cannot be expressed uniquely as the sum of
two perfect squares, then that number is not a prime. For example, the
number 65 is of the form . It can be written as the
sum of two perfect squares in two ways, namely, 
Therefore, by the contra-positive of Theorem 4.14, 65 cannot be a prime.
In fact,  Similarly,

 and
 It is interesting to

note that for the numbers of the form 4n, sum of two squares may not
exist, or can exist uniquely or non-uniquely. For example,

 cannot be
written as the the sum of two squares,
20(=19+1=18+2=17+3=16+4=15+5=14+6=13+7=12+8=11+9 =10+10)
can be expressed as the sum of two perfect squares uniquely,  and

 also 
Similarly, for the numbers of the form  sum of two squares may

not exist, or can exist uniquely or non-uniquely. For example,



cannot be written as the the sum of two squares, we have seen 10 can be
written as a sum of two squares uniquely, the number  has
exactly two representations of the sum of two squares, namely, 
and  also  has two representations  and

 As examples of Theorem 4.15, we have

However,   and  cannot be
represented as the sum of two squares. Some examples illustrating
Theorems 4.16 and 4.17 are

and hence  and
hence  From these examples, it is clear that in Theorems
4.76 and 4.77 uniqueness of the representations is not guaranteed.

If an integer m can be written as  then the
identity

ensures that m is composite and provides two factors. From this identity,
uniqueness in Theorem 4.14 is immediate. As an example, we know that

 Thus, for  the
identity gives 
Fermat also showed that every odd prime n can be written as the
difference of two squares in one and only one way. In fact,

(4.18)

For this, if  then  and
 (since  being prime, has no factors except 1 and ) This

gives  and  which are successive integers.
For example,  This simple observation also holds
for the square of every odd prime  e.g.,  In fact,
the relation (4.18) holds for all odd integers  but then uniqueness is
lost, e.g.,  The contra-positive form of (4.18) is
important. It says if an odd number cannot be expressed uniquely as the



difference of two perfect squares, then that number is not a prime. For
example,  If n is of the form  then the
relation

(4.19)

provides the difference of two squares, but not necessarily unique, e.g.,
 It also follows that if n is of the form 

then it cannot be written as the difference of two squares. Indeed, since
for all integers  it suf�ices to note that

 Thus, the number 530 cannot
be written as the difference of two squares. It is interesting to note that

and hence for any , there exists a positive integer that can be
expressed in n distinct ways of the difference of two squares.
Fermat also proved another result which states: A prime of the form

 is only once the hypotenuse of a right triangle; its square is
twice; its cube, three times; and so on. As an example of this result, in
the case of �ive we have

4.19	 Legendre’s	Three-Square	Theorem
Theorem 4.14 af�irms that not every number can be written as the sum of
two squares even if  is permitted. However, with the addition of , every
number which can be represented as the sum of two squares can also be
repressed as the sum of three squares. But the converse is not necessarily
true, e.g., numbers  cannot be written as the sum of two
squares, but

whereas the number 73 and 137 can be written as the sum of two as well



as three squares
 The

following result provides necessary and suf�icient condition when a
number can be written as the sum of three squares.

Theorem	4.18	(Legendre’s	Three-Square	Theorem) An	integer	n	can
be	represented	as	the	sum	of	three	squares	of	integers,	i.e., 
iff	n	is	not	of	the	form  for	nonnegative	integers	h	and 

Proof We are in the position to show only that if n is of the form
 then it cannot be written as the sum of three squares (in

fact, no simple proof of its converse is known). For this, �irst we consider
the case  We assume that there exists a nonnegative integer k such
that  i.e.,  Since for any
integer  we have  or  it follows that

 (we can come as close as 
and ). Now suppose that 
for some  we assume such an h is the smallest. But then the only
possibility is each of the integers  must be even, i.e.,

 Thus, we have
 and hence

 which shows  is also a sum of
three squares of integers. This contradiction completes the proof.█

The necessary part of Theorem 4.18 which we have demonstrated above
�irst appeared as a conjecture made by Diophantus, which was veri�ied
by Descartes in 1618. The complete theorem was stated by Fermat, and
�irst proved by Legendre in 1797/98. Since then, several proofs of this
result have been offered (but none of them is simple), more so, in 1801,
Gauss obtained an extensive generalization of this theorem, which
contains this result as a corollary.
Theorem 4.14 con�irms the representation of numbers in two squares
uniquely, but in Theorem 4.18, the representation of numbers in three
squares is not necessarily unique. For example, the number 126 can be
represented as the sum of three squares in three different ways:

 The number 129
which is the sum of �irst ten prime numbers is the smallest number that



can be expressed as a sum of three squares in four different ways:

4.20	 Lagrange’s	Four-Square	Theorem
From Theorem 4.18, it is clear that every number cannot be represented as
the sum of three squares. For example, none of the numbers

  can be written as the sum of three
squares. In fact, for each of these numbers we need minimum four squares,
e.g.,

The following result supplements Theorem 4.18.

Theorem	4.19	(Lagrange’s	Four-Square	Theorem) Every	positive
integer	N	can	be	written	as	the	sum	of	four	integer	squares.

Proof We divide the proof in the following six parts:
Part 1. Euler in 1748 gave the following Brahmagupta-Diophantus-

Fibonacci (4.16) type four-square identity, whose proof is by direct
expansion of each term

(4.20)

It shows that if two numbers are representable as the sum of four squares,
then their product is representable as the sum of four squares.

Part 2. If 2n is a sum of two squares, then so is  Indeed, if
 then either both a and b are even or odd. Thus, it follows

that

Clearly, both fractions on the right side are integers.
Part 3. If p is an odd prime, then  has a solution

with  and  For this, we consider the
sets



and

The numbers in  (and similarly in ) are distinct  Indeed, if
 then  implies that  but

 is impossible because  (unless
), and hence  Now  and  contain together

 numbers, and there are only p
least resides  thus in view of Dirichlet’s pigeonhole principle, we
must have one of the numbers in  congruent to one of the numbers in

 i.e.,  for some a and b with 
and 

Part 4. For every odd prime  there is an odd integer  such that
 has a solution. In fact, as a consequence of Part 3,

there exist a and b such that  for some integer 
Since  and  we have

and hence  To show m is odd, we assume that
 If m is even, then for , there are only

three possibilities: all are even, two even, and none is even. Thus, we can
organize  into two groups each containing these numbers of the
same parity. But then Part 2, allows us to take  If  is even,
we can repeat the process to represent  as a sum of four squares.
Since  �inally we will �ind an odd integer n such that np can be
written as a sum of four squares.

Part 5. Any prime p can be written as the sum of four squares. The
statement obviously holds for  so we can
assume that p is an odd prime. Then, in view of Part 4, there exists an odd
smallest integer  such that  Thus, in this
representation, we need to show that  If  (at least 3), we can



choose integers  such that
 and

 (In fact,
as an example, w can be chosen as the remainder r or  when a is
divided by n according as  or ) But now we have

 and hence
 which implies the

existence of some nonnegative integer  such that
 However, since

 it follows that  It is not
possible to have  because then  and so as a
consequence, we will have  which implies

 (for some integer q). But this means 
which is impossible, because  Thus, we have  Now
in view of Part 1, we can write

where

Hence, it follows that

This means  can also be represented as a sum of four squares
 and  which are integers. But since  it

contradicts our assumption that n is the smallest such integer. In
conclusion, p can be written as the sum of four squares.

Part 6. If  then clearly  is the sum of four
squares. If  we use (4.1), to express N as a product of primes, i.e.,

 (some or all of these primes may be repeated). From Part



5, each of these primes can be written as a sum of four squares. We use
these sums for  and  in Part 1, to write  as the sum of four
squares. For this sum of  and the sum of  we again use Part 1 to get
the sum of four squares. On continuing this process  times, we will
get the required four square sum for  █

If  where  are nonnegative integers,
then the following immediate inequalities provide bounds on these
numbers

In 1621, Bachet stated four-square theorem as a conjecture and checked
its correctness up to  In 1636, Fermat asserted to have a proof. Part
3, which plays a crucial role in the proof, is also due to Euler; however,
for more than 40 years (off and on), he unsuccessfully struggled to prove
the theorem. Final steps were completed by Lagrange in 1770, which
were simpli�ied by Euler in 1773. In a Ramanujan conference talk, Ralph
William Gosper Jr. (born 1943, USA) conjectured that every sum of four
distinct odd squares is the sum of four distinct even squares. This
conjecture was proved by Michael D. Hirschhorn (Australia) using the
identity

where  and d are positive or negative integers. The following
examples suggest that in Theorem 4.19, the representation of numbers
in four nonzero squares is not necessarily unique

All positive numbers that are not the sum of �ive nonzero squares are
 i.e., every integer  can be

expressed as the sum of �ive nonzero squares, e.g.,

The following numbers cannot be represented using fewer than �ive
distinct squares:

 and  together with all numbers obtained by multiplying these
numbers by a power of 4. This gives all known such numbers less than



 For example,

All numbers  can be expressed as the sum of at most �ive
distinct squares, except  and

 The number 188 can also be
represented using seven distinct squares

Eisenstein in 1847 determined arithmetical representation of an integer
as a sum of six or eight squares. This was followed in 1847 and 1850 by
an arithmetical determination of the number of representations of an
integer without square factors as a sum of �ive or seven squares. In
1844, he established a formula for the number of solutions of

 in integers  where n is given.

4.21	 Carmichael	Numbers
The positive integer  is called a Carmichael number (the term was
coined in 1950 by Nicolaas George Wijnand Henri Beeger, 1884–1965, the
Netherlands) if n is a composite number such that 
equivalently,  for all integers b such that 
Carmichael numbers are also called Fermat	pseudoprimes or absolute
Fermat	pseudoprimes. In what follows we shall provide a characterization
of Carmichael numbers. For this, we need some preparatory results.

Lemma	4.5 If  where ’s	are	distinct	odd	primes	such	that
 for	each  then	n	is	a	Carmichael	number.

Proof If b is an integer such that  then  for all
 which in view of Theorem 4.5 implies that  for all 

Since  for each i there exists some integer  such that
 which in turn implies that

 Thus, from Theorem 3. 10,
it follows that  and hence n is a
Carmichael number.█

Lemma	4.6 Every	Carmichael	number	n	is	square-free.



Proof Assume that a Carmichael number n can be written as 
where p is prime,  and  Clearly, if  then n is
divisible by  Now in view of Theorem 3. 10, the system of congruences

 has a solution a such that
 Again since n is Carmichael, we have 

which in particular is  and hence 
Thus, it follows that  Next using binomial
theorem to expand  and noticing that the �irst two terms of the
expansion are 1 and  and the rest of the terms are divisible
by , to get  But this leads to a contradiction

 █

Lemma	4.7 Every	Carmichael	number	n	is	odd.

Proof Since  we have  which
in view of binomial theorem is the same as  Now
since  and  we have  Thus, 
must be even, and hence n must be odd. █

To prove our next result, we need the following de�inition which is
originally due to Euler: An integer h is a primitive	root	modulo n if for every
integer a coprime to  there is some integer k for which 
For example, 3 is a primitive root modulo 7 because

and hence 3, 2, 6, 4, 5, 1, form a rearrangement of all required nonzero
remainders modulo 7. However, 3 is not a primitive root modulo 11
because

and then the sequence starts repeating. In fact, in view of modulo n
produces a �inite number of values, the sequence  always
repeats after some value of  If h is a primitive root modulo n and n is
prime, then the period of repetition is 

Lemma	4.8 Let	p	be	an	odd	prime	factor	of	n	and  Then	there	exists
an	integer	r	such	that  and	r	is	a	primitive	root	modulo 



Proof Assume that g is a primitive root modulo  such that 
If  then we can choose  Otherwise, we consider the
arithmetic sequence  Since  in
view of Dirichlet’s theorem in this sequence, there are in�initely many j
such that the corresponding  is prime. We choose the least j such that 
is prime and this exceeds all the prime factors of  Then, 
and this  is a primitive root modulo  and so we can let  █

Lemma	4.9 Let	n	be	the	product	of	two	or	more	distinct	primes  If	n	is	a
Carmichael	number,	then  for	each	index 

Proof In view of Lemma 4.8, for each index i, there exists an integer 
such that  and  is a primitive root modulo  Now since n
is a Carmichael number  and hence 
Now note that the order (smallest exponent) of  modulo  is 
thus  █

Lemma	4.10 Every	Carmichael	number	n	has	at	least	three	different
prime	factors.

Proof Assume that  where p and q are primes. From Lemma 4.6,
 We suppose that  From Lemma 4.9, it follows that

 However, since

it follows that  But it is possible only when 
i.e.,  This contradiction shows that n must have at least three
distinct prime factors. █

Lemma	4.11 Each	prime	factor	of	every	Carmichael	number	n	is	less	than

Proof Let p be a prime factor of  Then, we have



This means  and hence  But this inequality
must be strict, because otherwise  which contradicts Lemma 4.6.
Hence,  █

From the above Lemmas, the following result is immediate:

Theorem	4.20	(Korselt	Criterion) A	composite	number	n	is	Carmichael
number	iff	(i)	n	is	square-free	and	(ii)	for	every	prime  also

Alwin Reinhold Korselt (1864–1947, Germany) proved Theorem 4.20 in
1899, but gave no example. This result was rediscovered by Carmichael
in his works of 1910 and 1912. He also found the �irst �ive Carmichael
numbers  However, in addition to these
numbers, next two Carmichael numbers  already
appeared in the work of Václav S� imerka (1819–1887, Bohemia). In
2008, Richard G.E. Pinch (born 1954, England) veri�ied that there are
20,138,200 Carmichael numbers between 1 and  (approximately
one in 50 billion numbers), in fact, as numbers become larger,
Carmichael numbers become very rare. In 1956, Erdös heuristically
argued there should be in�initely many Carmichael numbers. If 
denotes the number of Carmichael numbers not exceeding  then for
suf�iciently large x he also showed that

for some constant  which Pinch found to be 1. In 1994, William
Robert Alford (1937–2003, USA), Andrew James Granville (born 1962,
England), and Pomerance proved the existence of in�initely many
Carmichael numbers. They also proved that for suf�iciently large x the
upper bound  holds. This bound was improved to

 by Glyn Harman (born 1956, England) in 2008.
In 1935, Jack Chernick (1911–1971, USA) proved a theorem which can
be used to construct a subset JC of Carmichael numbers. The number

 is a Carmichael number if its three factors
are all prime. For example,  and  are
not in  whereas  is in  Carmichael numbers



with more than three prime factors are also known, e.g., least from 4 to
10 factors are:  

 In 1996,
Günter Löh (Germany) and Wolgang Niebuhr (Germany) found huge
Carmichael numbers including one with  factors and over 16
million digits. It is not known whether there exist in�initely many
Carmichael numbers with a �ixed number of prime factors.
The second Carmichael number 1105 can be expressed as the sum of
two squares in more ways than any smaller number. In fact,

 It is also the magic number of
a  magic square. The third Carmichael number 1729 is the
Hardy-Ramanujan taxicab number.

4.22	 Ruth-Aaron	Pairs
For several years, the number 714 ranked as the record for home runs of
George Herman “Babe” Ruth (1895–1948, USA). His record was broken
only on April 8, 1974, in Atlanta, Georgia, when Henry Louis Aaron (1934–
2021, USA) hit his 715th home run. This event attracted so much of
excitement that the numbers 714 and 715 were on millions lips. In 1974
itself Carol Nelson (USA), David Penney (USA), and Pomerance discovered
several interesting properties of the 714 and  Consider �irst seven
primes:  The �irst, second, fourth, and seventh primes
are  and  and the remaining primes (the third, �ifth, and sixth)
are  and  If we add the integers  and  we get the same
result as when we add  and  namely,

 It is interesting to note that summing the
primes that correspond to these two sets of integers also give the same
result:  While the sums of these
primes are equal, in view of Theorem 4.1 their products, namely

 and  cannot be equal. However, these products are
surprisingly close since  and  The sum
of these numbers  is the year Columbus discovered



America, and interestingly rearrangements of the digits of this year gives
 and 4219 which are all primes.

Let  denote the product of the �irst k primes. For example,
 and

 Thus, there are pairs of
consecutive numbers whose product is  for some  Nelson, Penney ,
and Pomerance computationally showed that  and  are
the only  which can be expressed as the product of two consecutive
numbers in the range  From this, they concluded that if
there is any other pair of consecutive integers whose product is a  then
these integers exceed  They conjectured that the largest pair of
consecutive integers whose product is also the product of the �irst k
primes for some k is 714 and  Let  denote the sum of the prime
divisors of n with multiplicity. Two consecutive integers  are called
Ruth-Aaron	pairs of integers if  and n is called the Ruth-
Aaron	number. Since  integers 714 and 715 is a
Ruth-Aaron pair. First ten Ruth-Aaron pairs are (5,6), (8,9), (15,16),
(77,78), (125,126), (714,715), (948,949), (1330,1331), (1520,1521),
(1862,1863). If only distinct prime factors are counted, then the �irst ten
Ruth-Aaron pairs are (5,6), (24,25), (49,50), (77,78), (104,105), (153,154),
(369,370), (492,493), (714,715), (1682,1683). In 1978, Erdös and
Pomerance showed that such pairs of integers may appear to be rare, i.e.,
have density  They showed that the number of Ruth-Aaron numbers up
to x is  which they believed can be improved to

 In 2002, Pomerance improved even this bound to
 which established the fact that the sum of the

reciprocals of the Ruth-Aaron numbers is bounded. In fact,

However, it remains to prove that there are in�initely many Ruth-Aaron
pairs.

A few Ruth-Aaron triplets are also known: when counting distinct prime
factors



and

and

When counting distinct prime repeated factors

and

and

We have seen that there is a partition of the set of the �irst seven primes
into two subsets such that the sums of the elements in these two subsets
are equal. However, this partition is not unique, e.g., we also have

 but the sum remains the same. We
have the following general result: When  is odd, prime list

 can be partitioned into two nonoverlapping sublists, in which each
sublist has equal sum total  For example, the sum of �irst 25
primes is 1060, and the sum of one of the possible patricians is

When  is even, prime list  can be partitioned into two
nonoverlapping sublists, one sublist’s sum is (total  the
other’s is (Total ). For example, the sum of �irst 24 primes is
963, and the sum of one of the possible patricians is



and 

4.23	 Special	Prime	Numbers
Several subsets of all prime numbers have been studied with a great
interest. We discuss a few of them.

Bell Primes: A partition of a set is a grouping of its elements into non-
empty subsets, in such a way that every element is included in exactly
one subset. For example, the set  has the �ive partitions

The Bell numbers (after Eric Bell, 1938) denoted as  counts the
number of different ways to partition a set that has exactly n elements.
The �irst systematic study of Bell numbers was made by Ramanujan
about 25–30 years prior to Bell’s work, also the roots of these numbers
go back further to medieval Japan. Starting with  �irst fourteen
Bell numbers are

The Bell numbers satisfy the recurrence relation

Among ’s the numbers which are prime are called Bell primes. Out of
the �irst 14 Bell numbers, only four numbers  are
prime. The next two Bell primes are

The largest known Bell prime  was
discovered in 2002 and con�irmed in 2004 by Ignacio Larrosa Cañestro
(Spain). In 1978, Gardner raised the question of whether in�initely many
Bell numbers are also prime numbers.
Sophie Germain Primes: A prime n is said to be a Sophie Germain prime
if both n and  (known as safe prime) are prime. The �irst ten
Sophie Germain primes are  The largest
known Sophie Germain prime pair  is



 which was track down by James Scott
Brown (USA) in 2016. In 1998, [265] Paul Hoffman (born 1956, USA)
cast doubt if there are in�inite numbers of Sophie Germain primes. In
2022, Marko Jankovic (born 1968, Serbia) has claimed to have proved
Hoffman’s proposition, see https:// hal. science/ hal-02169242v12. A
generalization of Sophie Germain primes was introduced by Allan
Joseph Champneys Cunningham (1842–1928, India-England): A
Cunningham chain of the �irst	kind of length n is a sequence of prime
numbers  recursively de�ined by

 Similarly, a Cunningham chain of
the second	kind of length n is de�ined by

 A Cunningham chain is called
complete if it cannot be further extended. The smallest prime beginning
a complete Cunningham chain of the �irst kind of lengths  are

 The
smallest prime beginning a complete Cunningham chain of the second
kind of lengths  are

 
The longest known Cunningham chains of �irst kind is of length 18
starting with 658189097608811942204322721, and of second kind is
of length 19 starting with 79910197721667870187016101, both were
obtained by Raanan Chermoni (Israel) and Jaroslaw Wroblewski
(Poland) in 2014. It is widely believed that for every n, there are
in�initely many Cunningham chains of length 
Balanced Primes: Primes with equal-sized prime gaps above and below
them, so that they are equal to the arithmetic mean of the nearest
primes above and below, i.e.,  For example,

 The �irst ten balanced
primes are  As of March 2023,
the largest known 15004 digits balanced prime

 is due
to Batalov. It is conjectured that there are in�initely many balanced
primes. A prime is called weaker (stronger) if the arithmetic mean of its
two neighboring primes is smaller (greater). For example,

 so  is a weaker
prime, and  so  is a stronger
prime.

https://hal.science/hal-02169242v12


Eisenstein Real Primes: These are primes of the form  or
 The �irst ten Eisenstein primes are

 As of March 2023, the largest known
real Eisenstein prime is the ninth largest known prime

 of 9383761 digits discovered by Péter Szabolcs
(Hungary). All larger known primes are Mersenne primes. It is clear that
there are in�inite Eisenstein real primes.
Primorial Primes: These primes are of the form  where  is the
primorial (de�ined by Harvey Dubner, 1928–2019, USA) of  i.e., the
product of the �irst n primes. Primes of the form  have been
named as Euclid	primes. The �irst ten n for which  is prime are

 and the �irst ten n for which  is
prime are  (here  because of the
empty product). The �irst ten primorial primes are

 The largest known primorial
prime of the form  is  with 1418398
digits, found in 2021 by the PrimeGrid project. As of March 2023, the
largest known primorial prime of the form  is

 with 169966 digits by Daniel Heuer (USA). It
is not known whether there is an in�inite number of primorial primes;
however, such primes do seem to become scarce among them as n gets
large. Generalized	Fermat	primes de�ined by Ribenboim in 1996 are of
the form  The 5th largest known such prime is

 with 804474 digits, discovered by Heuer.
A Fortunate	number, named after Reo Franklin Fortune (1903–1979,
New Zealand) is the smallest integer  such that, for a given
positive integer  is a prime number. The �irst ten fortunate
numbers for the �irst primorial are 3, 5, 7, 13, 23, 17, 19, 23, 37, 61. It
has been conjectures that the only fortunate numbers that are also
prime are 3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103,
107, 109, 127, 151, 157, 163, 167, 191, 197, 199, 223, 229, 233, 239,
271, 277, 283, 293, 307, 311, 313, 331, 353, 373, 379, 383, 397 (see Guy
[241]).
Among the �irst 30 happy numbers happy	primes are 7, 13, 19, 23, 31,
79, 97, 103, 109, 139, 167. The palindromic prime

 is a happy prime with 150007



digits, discovered by Jobling in 2005. The largest known Mersenne
prime that is also a happy prime is , which has 12837064
digits, discovered by Chris Caldwell (USA).
A good	prime is a prime number whose square is greater than the
product of any two primes at the same number of positions before and
after it in the sequence of primes, i.e.,  for all

 The �irst ten good primes are
 In 2011, Pomerance proved that there

are in�inite number of good primes.
Higgs introduced Higgs	primes as follows:  smallest prime 
such that  divides the product  The �irst ten Higgs
primes are  For example, 19 is a Higgs
prime because  is divisible by

 However, 17 is not a Higgs prime because
 which is not divisible by 16. It is not

known if there are in�initely many Higgs primes, the same uncertainty
holds if in the de�inition power 2 is replaced by any other integer
greater than 2. However, if the power is just 1, then there are only four 2,
3, 7, and 43 such primes.
Ramanujan	Primes: In Sect. 4.2 we have remarked that in 1919
Ramanujan sharpened Bertrand’s postulate. He showed that

 for all  The
converse of his result leads to the de�inition of Ramanujan primes: The
nth Ramanujan prime is the least integer  for which

 for all  Thus, Ramanujan primes are the
least integers  for which there are at least n primes between  and
x for all  The �irst ten Ramanujan primes are

 The smallest such number  must be
prime, since the function  can increase only at a prime.
The case  for all  is Bertrand’s postulate. In
2009 [491], Jonathan Sondow (1943–2020, USA) showed that for all

 and as n tends to in�inity,  is
asymptotic to  i.e., as  For  he also
proved the inequality  and conjectures that  which
was proved in 2010 by Shanta Laishram (India). In 2011, Sondow, John



Nicholson (USA), and Tony Noe (USA) improved this upper bound to
 which is optimal since the equality holds for 

4.24	 What	Is	the	Necessity	to	Find	Next	Larger
Prime	Number?
Throughout the history of prime numbers, strenuous efforts have been put
down to �ind incredible size of giant prime numbers. Here are two main
reasons:
1. For the Glory: The following extraordinary endeavors of the curious

and courageous individuals will always be remembered and admired:
Charles Augustus Lindbergh (1902–1974, USA) made the �irst solo
�light across the Atlantic in 1927, had to solve many problems, such as
the route over the ocean and the �inancing of the trip. Most
importantly, the aircraft design had to be modi�ied to carry enough fuel
for the 3600–mile trip. To keep the load light, Lindbergh �lew without a
copilot, parachute, or radio and carried only �ive sandwiches and a
quart of water on his 33-hour, 32-minute trip. On May 29, 1953,
Edmund Percival Hillary (1919–2008, New Zealand) took the �irst step
onto the summit of Mount Everest (the highest point on Earth, 29,028
ft) and his companion Tenzing Norgay (1914–1986, Nepal-India) also
referred to as Sherpa Tenzing followed him. They spent about 15
minutes at the summit. On July 21 , 1969, Armstrong became the �irst
person to walk on the Moon. Behind their glory, the rationale is the
priority of achieving something sensational which required
appropriate resources, time, monumental efforts, and luck.

In mathematics, Euclid is recognized incessantly for his Elements
because his work set the guidelines how mathematical proofs must be
reported. Specially his monumental Theorem 4.2 ensures the existence
of in�inite number of prime numbers but gives no indication how to
�ind them. Eratosthenes is consistently remembered for developing the
�irst coherent process to separate the primes from the composite
numbers up to 100. As we have noticed his method, Kulik used to �ind
all primes less than  Starting from Mersenne, Fermat, and
Euler several prominent mathematicians tried to �ind formulas or the
recurrence relations to generate, if not all, in�inite number of primes;
however, so far only futile theoretical results are known. Since the
invention of computer technology, mathematicians and computer

 



scientists have diverted their mind to �ind giant prime numbers.
Several records have been made and broken, each time the person who
discovers the next larger prime number gets glory (at least for few
years) and �inds a place in the literature. For example, in 1963, Donald
Bruce Gillies (1928–1975, Canada-USA) showed that

 is prime, which was considered a great discovery,
and used as a postage stamp in USA until  was proved to be
prime. In 2018, Patrick Laroche broke all previous records by showing
that the number  is prime, which will remain the largest till
another giant prime is known. While for Lindbergh, Hillary, and
Armstrong glory is sustaining, for the discoverers of giant primes it is
temporary, more a curiosity, and spirit of man. What is important,
uncovering monster prime numbers demand new and faster
algorithm, and advanced technology, so that multiplication of large
integers is possible, which keeps mathematicians and computer
scientist busy. The Electronic Frontier Foundation has offered
US$100,000 to anyone who can �ind the �irst 100–million–digit prime
number!

2. Real Applications: Hardy is reported to have made the toast: “Here’s to
pure mathematics! May it never have any use.” According to Dickson
“Thank God that number theory is unsullied by applications.” It is true
that in the past number theorists worked in this �ield because of its
intrinsic interest and its distinctive beauty—and they did not care one
way, or the other, whether their elegant theorems would, or would not
have “useful” applications. However, in 1974, Donald Ervin Knuth
(born 1938, USA) “father of the analysis of algorithms” vigorously said
“ virtually every theorem in elementary number theory arises in a
natural, motivated way in connection with the problem of making
computers do high-speed numerical calculations.” In fact, since the
early 1980s, topics in number theory such as congruences and
recurrence relations are considered part of elementary discrete
mathematics courses for computer scientists. In 1972, Stanislaw
Krystyn Zaremba (1903–1990, Poland) collected in his edited book
Applications of Number Theory to Numerical Analysis, Academic
Press, New York, i.e., applications of number theory to the continuous
problems. Prime numbers of 10 to 15 digits are useful in multiple-
modulus residue arithmetic, �loating-point modular arithmetic, �inite
�ield arithmetic, the Chinese remainder theorem for error-free

 



computation. For further methods and applications of error-free
computation, see Gregory and Krishnamurthy [227]. In recent years,
prime numbers have also been used in acoustics, boundary value
problems, Brownian motion, modern coding, and cryptography
(particularly, Sophie Germain primes) communications, computer
security, cryptocurrency, data analysis, error-correcting codes, image
compression, random number generation, digital signal processing,
test of the hardware, and the list continues.
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5.1	 Introduction
In (two-dimensional) Euclidean geometry Pythagorean	theorem, also
known as Pythagoras’s	theorem, states that: If a and b are the lengths of
the two legs of a right triangle, and c is the length of the hypotenuse
(Greek word with meaning: The side opposite to the right angle), then
the sum of the areas of the two squares on the legs equals the area of the
square on the hypotenuse (see Fig. 5.1), i.e.,

(5.1)

Fig.	5.1 Pythagorean theorem

Pythagorean theorem is an inherent union between geometry and
arithmetic, which bene�its use as we learn different ways to improve our

https://doi.org/10.1007/978-3-031-74224-8_5


society and infrastructure (see Agarwal [17]). In fact, it serves as the
cornerstone of the Euclidean distance formula: If  and 
are the Cartesian coordinates (due to Descartes) of two points p and q in
a plane, then the Euclidean distance between these points is the length
of the line segment given by  In
(5.1), if we let  where

, then from  it immediately follows that AM
 GM. In the literature, the fundamental/elegant

relation (equation) (5.1) is often called Pythagorean	relation (equation).
From this relation, it is immediate that in any right triangle, the
hypotenuse is greater than any of the other sides, but less than their
sum. Further, if the length of any two sides is known, the length of the
third side can be calculated. For a given complex number ,
the absolute value (modulus) is given by , and
hence, the numbers  and r satisfy the Pythagorean relation

 Here r is a nonnegative number, representing the distance
from the origin to z in the complex plane, but x and y can be negative
numbers. Pythagorean theorem is familiar (known by heart) to many
people who studied it in high school.

According to Kepler, “Geometry has two great treasures: one is the
theorem of Pythagoras, the other the division of a line into extreme and
mean ratio (golden	section/ratio). The �irst we may compare to a
measure of gold; the second to a precious jewel,” whereas Lewis Carroll
commented in 1895 “It is as dazzlingly beautiful now as it was in the day
when Pythagoras �irst discovered it.” Further appreciating (5.1), Dantzig
in 1955 wrote “No other proposition of geometry has exerted so much
in�luence on so many branches of mathematics as has the simple
quadratic formula known as the Pythagorean theorem. Indeed, much of
the history of classical mathematics, and of modern mathematics, too,
could be written around that proposition,” and Jacob Bronowski (1908–
1974, Poland-England) commented “To this day, theorem of Pythagoras
remains the most important single theorem in the whole of
mathematics.” Michio Kaku (born 1947, USA) has reported “The
Pythagorean theorem, of course, is the foundation of all architecture:
every structure built on this planet is based on it.”



In recent years, Pythagorean theorem has been successfully applied
in various branches of mathematics such as discrete, combinatorial, and
computational geometry, e.g., in combinatorics to prove the famous
Sylvester-Gallai-Erdös theorem (Tibor Gallai, 1912–1992, Hungary)
Pythagorean theorem has been used: “Let n points be given in a plane,
not all on a line. Join every pair of points by a line. At least n distinct
lines are obtained in this way.” Nicaragua issued a series of ten stamps
commemorating mathematical formulas, including the Pythagorean
theorem. In a survey in 2004, in the Journal Physical World, (5.1) ranked
fourth place among the 20 most beautiful equations in science (Euler’s
equation (2. 22) ranked �irst). Undoubtedly, if one has to select a
mathematical theorem that enjoys “perpetual youth” which has a very
long history as well as deep signi�icance unto this day, the Pythagorean
theorem is a robust nominee. It is of vital importance in problems
ranging from carpentry and navigation to astronomy. However,
Pythagorean theorem horribly mangled by the Scarecrow in The	Wizard
of	Oz. One cannot think trigonometry without Pythagorean theorem,
since trigonometric (circular, angle, or goniometric) functions are rather
easily de�ined based on the sides of a right-angled triangle.

From the relation (5.1), the trigonometric identities so called
Pythagorean	identities  and

 are immediate. (The English word sine comes from a
series of mistranslations of the Sanskrit jy -ardha (chord-half).
Aryabhata frequently abbreviated this term to jy  or its synonym J v .
When some of the Hindu works were later translated into Arabic, the
word was simply transcribed phonetically into an otherwise
meaningless Arabic word jiba. However, since Arabic is written without
vowels, later writers interpreted the consonants jb as jaib, which means
bosom or breast. In the twelfth century when an Arabic work of
trigonometry was translated into Latin, the translator used the
equivalent Latin word sinus, which means almost meant bosom, and by
extension, fold (as a toga over a breast), or a bay or gulf. This Latin word
has now become our English sine. The �irst abbreviation of sine to sin is
due to Edmund Gunter (1581–1626, England) in 1624. Similarly, the
Sanskrit word kotijy  in English has become cosine. The tangent,
cotangent, secant, and cosecant functions made their appearance in
Islamic works in the ninth century, perhaps earliest in the works of



Ahmad ibn A� bdall h al-Marwaz  Habas al-H sib (around 770–870) and
Al-Battani, although the tangent function had already been used in China
in the eighth century. An extensive discussion of these functions is
available in the work of al-Biruni.) The pictorial representation, Fig. 5.1,
of the Pythagorean theorem is known under many names, for example,
bride’s chair, Franciscan’s cowl, the goose foot, the peacock’s tail, the
windmill, and the chase of the little married women.

According to one of the fables, “Pythagoras discovered his theorem
while waiting in a palace hall to be received by Polycrates. Being bored,
Pythagoras studied the stone square tiling of the �loor and imagined the
right triangles (half-squares) hidden in the tiling together with the
squares erected over its sides. Having seen that the area of a square over
the hypotenuse is equal to the sum of areas of squares over the legs,
Pythagoras came to think that the same might also be true when the legs
have unequal lengths.” Throughout the history of mathematics, it has
been claimed that Pythagoras (which made him immortal) gave �irst
proof of Pythagorean theorem by deductive method. However, the
earliest known mention of Pythagoras’s name in connection with the
theorem occurred �ive centuries after his death, in the writings of
Marcus Tullius Cicero (106–43 BC, Italy) and Plutarch. It is very likely
that one of the Pythagoreans proved the theorem, and as it was common
in the ancient world, particularly in the Asian culture, out of respect for
their leader, credited the proof to his famous teacher.

This result has been recorded as the Proposition 47 in Book I of
Euclid’s Elements. In Elements, the proposition reads: “In right-angled
triangles the square on the side subtending the right angle is equal to
the sum of the squares on the sides containing the right angle.” Euclid
provides two proofs of this proposition, �irst in Book I and second in
Book VI. Its �irst proof uses knowledge about congruent triangles, and
although it is not too demanding, many readers are puzzled by the
strangeness of the acquired relations. For this proof, philosopher Arthur
Schopenhauer (1788–1860, Germany) wrote “the same uncomfortable
feeling that we experience after a juggling trick.” But the well-known
seventeenth-century English philosopher Thomas Hobbes (1588–1679),
who never studied geometry, admired this proof. At the age of 40,
Hobbes came across this theorem quite by chance on the page of an
opened book while waiting at his friend’s study. He wondered how it



could that be possible. The proof, however, referred to a previous
proposition whose proof in turn referred to more preceding
propositions. After several hours of detailed investigation, he was �inally
convinced of the truth of Proposition 47. Hobbes not only �inished Book
I of Euclid’s Elements, but started his life-long love for geometry. Denis
Henrion (1580–1632, France) in 1615, commented: “Now it is said that
this celebrated and very famous theorem was discovered by Pythagoras,
who was so full of joy at his discovery that, as some say, he showed his
gratitude to the Gods by sacri�icing a Hecatomb of oxen. Others say he
only sacri�iced one ox…” But this is nonsense because being a follower of
Buddha, Pythagoras must have been very scrupulous about shedding the
blood of animals. In fact, Eudoxus writes “Pythagoras was distinguished
by such purity and so avoided killing and killers that he not only
abstained from animal foods, but even kept his distance from cooks and
hunters.”

5.2	 Origin	of	Pythagorean	Theorem
Pythagorean theorem was certainly known much before fourth century
BC. Baudhayana contains one of the earliest references to this theorem
(with a convincing valid proof): a rope that is stretched across the
diagonal of a square produces an area double the size of the original
square. This is a special case of the Pythagorean theorem for a  right
triangle. Egyptian civilizations around 2500 BC used ropes to measure
out distances to form right triangles that were in whole number ratios
(Berlin Papyrus 6619, around 1990–1800 BC, Pyramids, and Cairo
Mathematical Papyrus, unearthed in 1938 and �irst examined in 1962,
dating from the early Ptolemeic dynasties founded in 305 BC). However,
some prominent historians of mathematics: van der Waerden [526],
Dirk Jan Struik (1894–2000, The Netherlands-USA) [500], and Heath
[259] have suggested that Egyptians had no knowledge of Pythagorean
theorem. There is suf�icient evidence that Pythagorean theorem was
known to Mesopotamian (tablet number 7289 in the Babylonian
Collection of Yale University famous as “YBC 7289,” and tablet number
322 in the Babylonian Collection of Columbia University popular as
“Plimpton 322”, written between 1790 and 1750 BC, during the time of
Hammurabi, which was discovered by Edgar James Banks (1866–1945,



USA) shortly after 1900, and sold to George Arthur Plimpton (1855–
1936, USA) in 1922, for $10). Of more mathematical interest is a group
of tablets uncovered by the French at Susa (Iraq) in 1936. These provide
some of the oldest Babylonian examples of the use of the theorem of
Pythagoras. One tablet computes the radius r of a circle that
circumscribes an isosceles triangle of sides,  and 

The Apastamba gives a general statement of Pythagoras’s theorem:
The diagonal of a rectangle produces the sum of what the largest and the
smallest sides produce separately. Apastamba was also familiar with the
result that as a special case of this theorem, the diagonal of a square is
the side of a square with twice the area of the original one. The
Katyayana, written later, gives a more general version of the
Pythagorean theorem: a rope that is stretched along the length of the
diagonal of a rectangle produces an area that the vertical and horizontal
sides make together. In other words, the square of the hypotenuse
equals the sum of the squares of the sides. Chinese mathematician
Tschou-Gun who lived in 1100 BC knew the characteristics of the right
angle. In Chinese literature, the Pythagorean theorem is known as
Gougu theorem (in Chinese gou means base, gu stands for shorter leg,
and hypotenuse is called xian) and Shang Gao theorem (named after the
Duke of Zhou’s astronomer and mathematician). The theorem was also
known to the Caldeans more than a thousand years before Pythagoras.
Before and after Pythagoras, this theorem has been given numerous
logically correct different proofs (almost 500)—possibly the most for
any mathematical theorem (several false, and with little or no variations,
proofs have also been published). These proofs are very diverse,
including both geometric and algebraic proofs, some make use of
vectors, while others are demonstrations based on physical devices.
Some of these proofs are extremely complicated, while others are
astonishingly simple. The English language edition of Euclid’s Elements
by Oliver Byrne (1810–1880, Ireland-England), described by one critic
as “one of the oddest and most beautiful books of the whole
(nineteenth) century,” uses color and shapes to illustrate a proof of the
Pythagorean theorem.

A lifelong project of Elisha Scott Loomis (1852–1940, USA) [350], a
mathematics teacher, was to publish all available demonstrations of
Pythagorean theorem in his book Pythagorean	Proposition in 1927,



which was written in 1907 and revised in 1940, the year of his death.
The revised edition contains 371 proofs, a “Pythagorean Curiosity,” “�ive
Pythagorean magic squares,” and an extensive bibliography. National
Council of Teachers of Mathematics (Washington, D.C.) republished this
book in 1968. According to him, “The Pythagorean theorem is regarded
as the most fascinating Theorem of all of Euclid, so much so, that
thinkers from all classes and nationalities, from the aged philosopher in
his armchair to the young soldier in the trenches next to no-man’s land
have whiled away hours seeking a new proof of its truth.” This book
includes proofs of those of Leonardo da Vinci, a blind girl Miss E.A.
Coolidge in 1888, a 16-year-old high school student Miss Ann Condit in
1938, and by the United States Representative Gar�ield, 5 years before
he became the 20th President of the United States in 1881. In his book,
Loomis remarked that in the Middle Ages (�ifth to �ifteenth century), it
was required that a student taking Master’s degree in mathematics offer
a new and original proof of the Pythagorean theorem; this, he asserts
that, has resulted in several new proofs. In the Foreword, the author
rightly declares that the number of algebraic proofs is limitless as is also
the number of geometric proofs, but that the proposition admits no
trigonometric proof. However, in 2009, Jason Zimba (USA) gave a very
clever trigonometric proof, which is followed by more trigonometric
proofs by David Houston (USA) and Luc Gheysens (USA). Several
websites (e.g., see [549]) deal with Pythagorean theorem and give fairly
decent update of this theorem; however, https:// www. cut-the-knot. org/ 
pythagoras/  found by Alexander Bogomolny (1948–2018, Russia-Israel-
USA) in 1996, is particularly interesting as it provides 118 different
proofs. We also refer to the additional information provided in the
monograph of Agarwal and Sen [14], and papers of Siu [481, 482] and
Veljan [518].

5.3	 Converse	of	Pythagorean	Theorem
Euclid’s Elements (Book I, Proposition 48) reads “If in a triangle the
square on one of the sides equals the sum of the squares on the
remaining two sides of the triangle, then the angle contained by the
remaining two sides of the triangle is right.” Thus, for any three positive
numbers  and c such that , there exists a triangle with

https://www.cut-the-knot.org/pythagoras/


sides  and c, and this triangle has a right angle between the sides of
lengths a and  The proof is by contradiction. Assume that the triangle
has sides  such that . We construct a right triangle
with sides a and b and assume its hypotenuse to be  But then by the
Pythagorean theorem , and this implies 
and hence,  Thus, for both the triangles, all the three sides are
equal, and therefore, these triangles are congruent. Since  is a
right triangle, the triangle  must also be a right triangle.

The aforementioned proof requires Pythagorean theorem; however,
using several known results from geometry, the converse has also been
proved by Stephen Casey [119] in 2008 (also see the work of Macro
[355] in 1973) without employing the Pythagorean theorem. Here we
give such an ingenious proof, which is due to Douglas Mitchell [374] in
2009.

We multiply each side of the triangle ABC by c and use 
to obtain a similar triangle GHI (see Fig. 5.2). Now by SAS (side angle
side) postulate,  is congruent to  scaled by the factor 
thus  Similarly, by SAS postulate  is congruent
to  scaled up by the factor  so  This leads to

 and since HJG is a side of  it follows
that  But, then 

Fig.	5.2 Converse of Pythagorean theorem

As a consequence of the Pythagorean theorem’s converse, we can
determine whether a triangle is acute, right, or obtuse, as follows: Let c
be chosen to be the longest of the three sides  and 
Then, the following Ernest Julius Wilczynski’s (1876–1932, USA)
statements of 1914 hold:



If , then the triangle is acute.
If , then the triangle is right.
If , then the triangle is obtuse.

Dijkstra in [166] combined these statements in the following relation

where  is the angle opposite to side  is the angle opposite to side

 is the angle opposite to side  and 

5.4	 Hippocrates’s	Generalizations	of
Pythagorean	Theorem
A nontrivial generalization of Pythagorean theorem far off the areas of
squares on the three sides (see Fig. 5.1) to similar �igures (�igures which
are of the same shape, but not necessarily of the same size, for example,
two N-sided polygons are similar if the ratios of their corresponding
sides are all equal) was known to Hippocrates, see Figs. 5.3 and 5.4
(multiplying relation (5.1) by  Fig. 5.3 immediately follows). Recall
that the area A of a regular polygon is  where S
is the length of any side, N is the number of sides, and  is the tangent
function calculated in degrees. Further, the length of a side  of a 2n-
sided regular polygon circumscribing a circle of radius 1 in terms of the
length of a side  of an n-sided circumscribing polygon is

. Archimedes used Pythagorean theorem to
obtain this formula and employed it to a series of inscribed and
circumscribing polygons to compute an approximate value of  he
showed that  see Sect. 8. 11. Hippocrates’s result is
included in Euclid’s Elements in Book VI as Proposition VI 31. It reads
“In right-angled triangles the �igure on the side subtending the right
angle is equal to the similar and similarly described �igures on the sides
containing the right angle,” (see Heath [257]). This extension presumes
that the sides of the original triangle are the corresponding sides of the
three similar �igures (so the common ratios of sides between the similar



�igures are  Euclid’s proof applies only to convex polygons;
however, in 2003, John Frank Putz (1921–2022, USA) and Timothy Sipka
(USA) [422] have shown that the result also applies to concave polygons
and even to similar �igures that have curved boundaries. To show this
result for a simple case, we recall that the area of a plane �igure is
proportional to the square of any linear dimension and in particular is
proportional to the square of the length of any side. Now we erect
similar �igures with areas  and C on sides with corresponding
lengths  and 

Fig.	5.3 Hippocrates’s generalization 1 of Pythagorean theorem

Fig.	5.4 Hippocrates generalization 2 of Pythagorean theorem
Then, it follows that  which implies



Conversely, as for the converse of Pythagorean theorem, if the sides
of a triangle are corresponding parts in three similar �igures such that
the area of one is the sum of the areas of the other two, then the triangle
is a right triangle.

Reconstructing Fig. 5.3 as Fig. 5.5, we �ind Hippocrates’s famous
result: The sum of the areas of two lunes (a lune is basically a crescent-
shaped �igure that is attached by the arcs of two circles) is equal to the
area of the triangle, i.e., Area of  Area of  Area of A. Encouraged
with this result, Hippocrates unsuccessfully tried to square the circle.

Fig.	5.5 Areas of two lunes

It is interesting to note that Hippocrates gave the �irst example of
constructing a rectilinear area equal to an area bounded by one or more
curves. It is known that only �ive particular lunes can be squared by
Euclidean tools. Three of these were described by Hippocrates himself,
and two more were discovered in 1771 by Euler, but according to Heath,
all �ive squarable lunes were given in a dissertation by Martin Johan
Wallenius (1731–1773, Finland) in 1766. In 1934, N.G. Tschebatorew
and in 1947, A.W. Dorodnow completed the study of quadrable lunules,
proving that these �ive are in fact the only ones in existence.

5.5	 Historical	Proofs	of	Pythagorean	Theorem
We shall detail �ive different proofs (in modern terminology with
necessary changes) of the Pythagorean theorem, which are fairly easy
and have some historical importance.



Proof 1. Euclid perhaps acknowledging the complications in the proof
given in Book I (Proposition 47), he himself derived (according to
Proclus) a simpler proof in Book VI (Proposition 31). A semi-algebraic
version of Euclid’s proof appeared in Legendre’s textbook Eléments	de
géométrie in 1794 [339]. His book was translated into English in 1858
by Charles Davis (1798–1876, USA), which became very popular in
America. This version of Euclid’s proof is now very popular all over the
world: In Fig. 5.6,  is the right angle. We draw the perpendicular
CD from C on the hypotenuse  so that  and  are
right angles. We also note that  ( ).
Thus,  and  are similar to each other, and both are
similar to  Hence, it follows that  and

 and therefore  and
 Finally, adding these relations, we get

(5.2)

Fig.	5.6 Euclid’s proof of Pythagorean theorem

Einstein, when he was 12-year-old, succeeded in “proving”
Pythagorean theorem (without claiming its originality) by using the
similarity of the triangles. However, unfortunately, he left no such record
of his childhood proof. The general consensus among Einstein’s
biographers is that he probably rediscovered Euclid’s proof or found one
of its variants. However, Walter Seff Isaacson (born 1952, USA), Jeremy
Bernstein (born 1929, USA), and Banesh Hoffman (1906–1986,
England) showed some resistance to this conclusion. Ten years later,
Einstein discovered four-dimensional form of Pythagorean theorem and
used it in his special theory of relativity. After a few years, he expanded
this theorem further and used it in his study of general relativity.



In Fig. 5.6, we also note that 
and hence,  Using this relation in (5.2), we �ind

(5.3)

Eli Maor in his book [361] of 2007 calls the relation (5.3) as the Little
Pythagorean	theorem, but in the literature, it is better known as the
Reciprocal	Pythagorean	theorem.

Proof 2. In the ancient Chinese text Zhou	Bi	Suan	Jing (The
Arithmetical Classic of the Gnomon and the Circular Paths of Heaven) of
Zhou dynasty (1046–256 BC), there is a passage that gives the following
dissection proof of Pythagorean theorem: Rotate the given right-angled
triangle (ABC) about the center of the square on the hypotenuse to form
triangles FCY, GYX, and EXB as in Fig. 5.7. Then, it is easy to see that

 and
 From this, one sees that the area of the

square on the hypotenuse (BC) is the sum of the areas of the squares on
the other two sides (AB and CA) of the right-angled triangle (ABC).

Fig.	5.7 Chinese proof of Pythagorean theorem

During the time of the Three Kingdoms (third century AD) in China,
the Wu mathematician Zhao Shuang provided a similar proof in his
annotation of Zhou Bi Suan Jing (see Fig. 5.8).



Fig.	5.8 Shuang’s proof of Pythagorean theorem
Proclus conjectures that the following variation of the Chinese proof

by dissection is due to Pythagoras (see Fig. 5.9):

Fig.	5.9 Variation of Chinese proof of Pythagorean theorem

From the Fig. 5.9 it follows that

and hence (5.1) holds.
Another similar idea was proposed by Bhaskara II (Fig. 5.10a). It is

amusing to note that, besides the diagram, Bhaskara’s proof consists
only of a single exclamation: “Behold”! This is perhaps the �irst visual
proof (a proof without words of an identity or mathematical statement,
which can be demonstrated as self-evident by a diagram without any



accompanying explanatory text), for more details of such proofs, see
(Nelsen [390]). Coolidge’s proof is similar to Bhaskara’s proof.

Fig.	5.10 Bhaskara’s proof of Pythagorean theorem
Algebraically, from Fig. 5.10a, b it follows that

Proof 3. From Fig. 5.11 and Hippocrates’s Generalization of
Pythagorean theorem (5.1) is immediate. This proof was originally given
by R.P. Lamy in 1685, which was rediscovered by Stanley Jashemski in
1934 at the age of 19, and then after 70 years by Eli Maor, who calls it as
the Folding	Bag in his book of 2007.

Fig.	5.11 Lamy’s proof of Pythagorean theorem

Proof 4. The following direct proof is due to President Gar�ield. It
appeared in 1876 in the New	England	Journal	of	Education. Figure 5.12



shows three triangles forming half of a square with sides of length
 The angles  and D satisfy the relations

Fig.	5.12 Gar�ield’s proof of Pythagorean theorem
Thus,  and hence all the three triangles are right triangles.

The area of the half square is

while the equivalent total area of the three triangles is

Equating these two expressions, we get



Proof 5. Varahamihira gave several trigonometric formulae that
correspond to  and

, which is the same as the Pythagorean theorem
(identity). The following proof is one of the easiest trigonometric proofs
of the Pythagorean theorem, which was deduced by Landau from the
Cosine addition formula

(5.4)

This formula was known to Bhaskara II. Landau’s proof of (5.4) is based
on in�inite series representations of  and  From Fig. 5.13, in
which  we have

Fig.	5.13 Cosine addition formula

In (5.4) we let  to obtain

which is the same as  Thus, Pythagorean Identity is
hidden in (5.4).

Finally, we note that the relation (5.4) immediately follows from the
formula  of Euler. In fact, from this formula, we have



and

Now comparing the real parts of the aforementioned two equations
(5.4) follows.

5.6	 Ptolemy’s	Generalization	of	Pythagorean
Theorem
Ptolemy proved that in any cyclic quadrilateral (vertices all lie on a
single circle) ABCD (see Fig. 5.14)

(5.5)

This result appears in his great work Syntaxis	Mathematica (more
popularly known by its Arabian title as Almagest) of 150 AD.

Fig.	5.14 Ptolemy’s generalization of Pythagorean theorem

In Fig. 5.14, E on AC is such that  On BC the angles
 and on   Thus,  is

similar to  and  is similar to  Hence, it follows
that

which are the same as



An addition of these relations gives

But, since  the above relation is the same as (5.5).
Pythagorean theorem follows as a special case when ABCD is a rectangle.

5.7	 Pappus’s	Generalization	of	Pythagorean
Theorem
Pappus showed that for an arbitrary triangle with arbitrary
parallelograms drawn to its two sides how to construct a parallelogram
on the third side whose area is equal to the sum of the areas of the other
two parallelograms. This extension of Pythagorean theorem has been of
considerable interest, e.g., see Howard Whitley Eves (1911–2004, USA)
in 1958, Eli Maor in 2007, and Claudi Alsina (born 1952, Spain) and
Roger Bain Nelsen (born 1942, USA) in 2010.

Let ABC be any triangle, and let ABDE and ACFG be two
parallelograms built on the sides AB and  respectively (see Fig.
5.15). Extend DE and FG until they intersect at  Draw 
each parallel and equal to AH. This produces the parallelogram 
Pappus’s construction says that

(5.6)

Fig.	5.15 Pappus’s generalization of Pythagorean theorem



To show (5.6) it suf�ices to notice that the parallelograms ABDE and
ABUH have the same base length and height and hence, have the same
area. A similar argument holds for the parallelograms ACFG and

 ABUH and  and ACV H and  This gives

5.8	 ibn	Qurra’s	Generalization	of	Pythagorean
Theorem
Qurra in an arbitrary triangle ABC with  drew two straight
lines AP and AQ so that  (see Fig. 5.16).
Thus, the triangles  and QAC are similar. Hence, it follows
that

which are the same as

An addition of these relations give

(5.7)

If  then the points P and Q are the same, and thus
 Hence, in this case (5.7) reduces to Pythagorean

theorem.

Fig.	5.16 ibn Qurra’s generalization of Pythagorean theorem



5.9	 The	Law	of	Cosines
The law of cosines states that for any triangle  with sides 
(see Fig. 5.17)

(5.8)

The nontrigonometric form of the Law of Cosines is available in Euclid’s
Book II (Propositions 12 and 13): “In any triangle, the sum of squares of
two sides is equal to the square of the third side increased by twice the
product of the �irst side with orthogonal projection of the second to the
�irst side.” If , then the cosines law (5.8) reduces to
Pythagorean relation (5.1).

Fig.	5.17 The law of cosines

In the triangle  we have

and hence

Now in the triangle  Pythagorean theorem and the above
relations give



If in (5.8), , then  which implies 
and if  then , which gives  Hence, the
converse of Pythagorean theorem also follows from the Law of Cosines.

al-Kashi provided the �irst explicit statement of the Law of Cosines in
a form suitable for triangulation. Viéte popularized this law in the
Western world. Finally, at the beginning of the nineteenth century, this
law was written in its current symbolic form.

5.10	 Pythagorean	Theorem	in	Vector	Spaces
We need the following de�initions, see Agarwal and Flaut [15].

A vector	space V over a �ield F denoted as  is a nonempty set of
elements called vectors together with two binary operations, addition of
vectors and multiplication of vectors by scalars so that the following
axioms hold:
B1. Closure	property	of	addition: If  then  
B2. Commutative	property	of	addition: If  then  
B3. Associativity	property	of	addition: If  then  
B4. Additive	identity: There exists a zero vector, denoted by  in V 

such that for all  
B5. Additive	inverse: For each  there exists a vector v in V such

that  Such a vector v is usually written as  
B6. Closure	property	of	multiplication: If  and , then the

product  
B7. If  and , then  
B8. If  and , then  



B9. If  and , then  
B10. Multiplication	of	a	vector	by	a	unit	scalar: If  and ,

then  
The spaces  and  will be called real and complex	vector

spaces, respectively.

The	n-tuple	space Let F be a given �ield. We consider the set V of all
ordered n-tuples  of scalars (known as components)

 If  is in  the addition of u and v is de�ined by
 and the product of a scalar  and

vector  is de�ined by  It is to be remembered
that  if and only if, their corresponding components are equal, i.e.,

 With this de�inition of addition and scalar
multiplication it is easy to verify all the axioms B1–B10, and hence, this

 is a vector space. If  then V is denoted as  which for
 and 3 reduces, respectively, to the two- and three-dimensional

usual vector spaces. Similarly, if , then V is written as 

The	space	of	polynomials Let F be a given �ield. We consider the set
 of all polynomials of degree at	most  i.e.,

If  then the addition of vectors u
and v is de�ined by

and the product of a scalar  and vector  is de�ined by



This  is a vector space. We remark that the set of all polynomials
of degree exactly  is not a vector space. In fact, if we choose

 then  is a polynomial of degree 

The	space	of	functions Let F be a �ield of complex numbers, and
 We consider the set V of all functions from the set X to  The

sum of two functions  is de�ined by , i.e.,
 and the product of a scalar 

and function  is de�ined by  i.e.,  This 
is a vector space. In particular,  where  is the set of all
continuous functions from X to  with the same vector addition and
scalar multiplication is a vector space.

An inner	product on  is a function that assigns to each pair of
vectors  a complex number, denoted as  or simply by

, which satis�ies the following axioms:
C1. Positive	de�inite	property:  if  and  if and

only if  
C2. Conjugate	symmetric	property:  
C3. Linear	property:  for all

 and  
The vector space  with an inner product is called a complex

inner	product	space. From C2 we have  and hence 
must be real. Further, from C2 and C3 it immediately follows that

 The de�inition of a real	inner
product	space  remains the same as above except now for each
pair  is real, and hence in C2 complex conjugates is
omitted. In  the angle between the vectors  is de�ined by the
relation

(5.9)



where  is the real part of  In (5.9), the right-hand side lies
between  and 1 (Cauchy-Schwarz inequality).

Inner	Product	in	 	and	 Let
 The standard inner product

in  is de�ined as

The vector space  with the above inner product is called a unitary
space. Similarly, for  the inner
product in  is de�ined as

The inner product in  is also called dot	product and sometimes
denoted as  The vector space  with the aforementioned inner
product is simply called an inner product, or dot product, or Euclidean
n-space.

Inner	Product	in	 	and	 For the functions
 and  in the vector

space of complex-valued continuous functions  an inner product
is de�ined as

Similarly, for the functions  and  in the
vector space of real-valued continuous functions  an inner
product is de�ined as



A subset S of an inner product space  is said to be orthogonal if
and only if for every pair of vectors  the inner product

 From (5.9) two vectors  are orthogonal if and
only if  i.e.,  Thus, orthogonality naturally
generalizes the geometric concept perpendicular in 

A norm (or length) on a vector space  is a function that assigns
to each vector  a nonnegative real number, denoted as ,
which satis�ies the following axioms:
D1. Positive	de�inite	property:  and  if and only if  
D2. Homogeneity	property:  for each scalar  
D3. Triangle	inequality:  for all  

A vector space  with a norm  is called a normed	linear
space and is denoted as  In what follows we shall use only
the Euclidean norm de�ined as  In the vector space 
for two vectors  the Euclidean
distance is denoted and de�ined as

Similarly, in  for two functions  and
 the Euclidean distance is de�ined as

The subset  is called orthonormal if  is orthogonal and for every

The subset
 of  is



orthogonal. The subset

of  is orthogonal. The set  is

orthonormal on  The set 

is orthonormal on  The set
 is orthonormal on

 The set  where  is
the Legendre polynomial of degree n de�ined in (see Agarwal and
O’Regan [11])

is orthonormal on  In particular, we have

We are now in the position to state the following Generalized
Pythagorean	Theorem: Let  be an orthogonal subset of an
inner product space  Then, the following holds

(5.10)

Indeed, from the de�inition of inner product and orthogonality of
, it follows that



For  Eq. (5.10) immediately extends Pythagorean relation
(5.1) to rectangular solids. Indeed, from Fig. 5.18 and Pythagorean
theorem twice, it follows that

Fig.	5.18 Pythagorean theorem for rectangular solids

and

Thus, it follows that

In particular for the vectors  and
 we have 

As further examples, for the vectors in the sets  and 
respectively, we have



and

Clearly in (5.10) if the set  is orthonormal, then it
becomes

(5.11)

Thus, for the vectors in the sets  and  respectively, we have

and

We note that in (5.10), m can be in�inite provided 
converges (�inite). For this, as an example we note that the set

 is orthogonal on  and we

have

(5.12)

Another generalization of Pythagorean theorem in inner product
spaces is known as Parallelogram	Law: For any pair of vectors  in an
inner product space 



(5.13)

i.e., the sum of the squares of the lengths of the four sides of a
parallelogram equals the sum of the squares of the lengths of the two
diagonals.

In  from Fig. 5.19, the relation (5.13) is the same as

which for a rectangle is the same as (5.1).

Fig.	5.19 Parallelogram law

De	Gua’s	Theorem In the year 1783, Gua de Malves (1713–1785,
France) showed that given three right triangles with leg lengths such
that we can form a tetrahedron, the sum of the squares of the areas of
the three right triangles is equal to the square of the area of the base.
From Fig. 5.20, it means that

(5.14)

Fig.	5.20 De Gua’s theorem

To show the relation (5.14) algebraically, in 2017, Hartzer [251] cleverly
used the formula of Bhaskara I (before 123 BC, India)

 where  and A is the



area of the triangle with sides  and  This formula now known in
the literature as Heron’s formula. Substituting s in the formula of A and
squaring, we �ind

Now let  and 
Then by Pythagorean theorem three times, it follows that

and now these relations give

which is the same as (5.14).
Around the same year 1783, De Gua proved his theorem, a slightly

more general version was published by Charles de Tinseau d’Amondans
(1748–1822, France). This theorem was also known much earlier to
Johann Faulhaber (1580–1635, Germany) and Descartes. We now state a
result that was proved in 1974, which is a far-reaching generalization of
De Gua’s theorem.

Conant	and	Beyer’s	Theorem	[135] Let U be a measurable subset of
an n-dimensional af�ine subset of  For any subset

 with exactly n elements, let  be the orthogonal
projection of U onto the linear span of  where

 and  is the standard basis for  (  is
one in the ith position and zeros everywhere else). Then,

(5.15)

where  is the n-dimensional volume of U and the sum is over all
subsets  with exactly n elements.

Next, we state a theorem of Atzema [43] which he proved in 2000 for
 matrices, where  In the year 2010 Frohman [203] used a

different method to prove Atzema’s result, which is more transparent.



Related results also established by Alvarez [28] in 2018 and Wong [537]
in 2002.

Atzema’s	Theorem For an  matrix A the following
relation holds

(5.16)

where  is the transpose of  represents the cardinality of  
denotes the  matrix made from the rows of A corresponding to the
subset I, and the summation is taken on all possible combinations 

As (5.15) the relation (5.16) geometrically can be interpreted as follows:
the square of the content of the parallelepiped spanned by A is equal to
the sum of the squares of the orthogonal projections of the
parallelepiped into the n-dimensional coordinate hyperplanes.

To illustrate the relation (5.16), we consider the matrix

for which the left-hand side is

and the right side is



Relation	Between	Cross	and	Inner	Products Recall that in , the
cross product between two vectors u and v is a vector w denoted and
de�ined as

(5.17)

here,  is the angle between u and v in the plane P
containing them, and  is a unit vector perpendicular to the plane P in
the direction given by the right-hand rule. It is clear that w is orthogonal
to both u and v, and if u and v are parallel, then the angle  is either 
or 

Now inner product between u and v from (5.9) can be written as

(5.18)

Squaring and adding both sides of (5.17) and (5.18), and using the
Pythagorean Identity  we have the following relation

(5.19)

Inner and cross products were introduced in 1881 by Josiah Willard
Gibbs (1839–1903, USA) and independently by Oliver Heaviside (1850–
1925, England).

5.11	 Pythagorean	Theorem	in	Non-Euclidean
Geometry
To draw parallel lines from a point P not on a line , there are several
possibilities:
1. There is one and only one parallel line through P. This statement is

equivalent to the Parallel Postulate and leads to the Euclidean
geometry.

 

2. There is no parallel line through P. This possibility leads to a non-
Euclidean geometry known as spherical	geometry (which is crucial
in navigation by sea). As an example, we can consider the geometry
of the surface of the earth or the celestial sphere. A line on a sphere
is the shortest distance between two points on the sphere. If a line is

 



extended, it forms a great	circle. A great circle is the end of the lines
path. A great circle revolves around the entire sphere with its radius
as the radius of the sphere. There are in�initely many great circles on
a sphere. The points that are exactly opposite of each other on the
sphere, such as poles, are called antipodal	points. Thus, two great
circles will always cross paths at antipodal points. In spherical
geometry, angles are de�ined between great circles, and a triangle is
formed by three great circles intersecting. It is clear that in spherical
geometry the sum of the interior angles of a triangle always lies
between  and . Further, the size of an angle increases
according as the size of the triangle increases. In antiquity, in India,
several astronomical rules for spherical triangles were discovered
that are scattered all over ancient astronomical texts such as Surya
Siddhanta and its commentaries. For example, on a sphere of radius
R, the spherical law of cosine is given as

(5.20)

where  are the angles of a spherical triangle, of which
the opposite sides are  and  respectively (see Fig. 5.21).

Fig.	5.21 Spherical law of cosine

If  is a right angle, then spherical law of cosine (5.20)
reduces to

(5.21)

which is the same as



Thus, in view of  for small  here, the
symbol O (called “big-O,” which tells how fast a function grows or
declines) is due to Landau, it follows for large R that

which is the same as

Hence, we �ind

(5.22)

Thus, in the limit, we get back the Pythagorean relation (5.1) as
the radius R of the sphere tends to in�inity.

3. In hyperbolic	geometry, there are more than one parallel line
through  This possibility leads to the sum of angles in a triangle
less than 180 degrees. A modern use of this geometry known as is in
the theory of special relativity. Hyperbolic law of cosine was �irst
known to Taurinus in 1826 and then Lobachevsky in 1830. Here for
this law, we shall need the following representation, which Jane
Gilman [213] has presented in 1995.

(5.23)

Here  are the angles of a hyperbolic triangle, of which
the opposite sides are  and  respectively, and  is the
Gaussian	curvature: an intrinsic measure of curvature, depending

 



only on distances that are measured within or along the surface (see
Fig. 5.22).

Fig.	5.22 Hyperbolic law of cosine
If  is a right angle, then hyperbolic law of cosine (5.23)

reduces to

(5.24)

which is the same as

Thus, in view of  for small  it follows for
large K that

(5.25)

Thus, in the limit, we get back the Pythagorean relation (5.1) as
K tends to in�inity.

4. In elliptic	geometry, all lines perpendicular to one side of a given line
intersect at a single point called the absolute	pole of that line. The
perpendiculars on the other side of the given line also intersect at a
point. However, unlike in spherical geometry, the poles on either
side are the same. In elliptic geometry also, the sum of the interior
angles of a triangle is greater than  The Pythagorean theorem
fails in elliptic geometry. For this, on a sphere of radius R consider a
spherical triangle with three right angles  and

 



sides  as in Fig. 5.23. Since the arc length of each side is
 where  is the angle from the origin to each endpoint of

the arc, it follows that
 where

 represents the length of side  If we assume that (5.1) holds,
and as usual let a and b be the sides of the right triangle and c be the
hypotenuse, then we must have ,
which leads to a contradiction.

Fig.	5.23 Pythagorean theorem fails in elliptic geometry

5. Riemannian	geometry is a very broad and abstract generalization of
the differential	geometry of surfaces. It enabled the formulation of
Einstein’s general theory of relativity. In particular, in n-dimensional
space V on an in�initesimal level Pythagorean theorem takes the
following quadratic form (Riemann introduced this in his doctoral
address in 1854, also see Tai Chow [128])

(5.26)

here, ds is the line element (the differential of arc length) in V ,
 is the matrix tensor, and  are the components of

the vector separating the two pints. For the rectangular coordinates,
we have  and

 



so that (5.26) reduces to

Similarly, for the spherical coordinates we have
 and

so that (5.26) becomes

5.12	 Applications	of	Pythagorean	Theorem
We conclude this chapter with the following historical interesting
problems and an example, which require Pythagorean theorem.
1. The following problems are from old Babylonian tablets: (i) A door.

Height: half a Ninda (1 ninda = 12 cubits) and 2 cubits. Width: 2
cubits. What is its diagonal? [It requires the calculation of an
approximate square root of 68.] (ii) Given that the circumference of
a circle is 60 units and the length of a perpendicular from the
center of a chord of the circle to the circumference is 2 units, �ind
the length of the chord. [In solving this problem, take  to get
12.] (iii) Find the area of an isosceles trapezoid whose sides are 30
units long and whose bases are 14 and 50. (768) (iv) A patu
(beam) of length  stands against a wall. The upper end has
slipped down a distance  How far did the lower end move?

 

2. The Berlin Papyrus contains two problems, the �irst stated as “the
area of a square of 100 is equal to that of two smaller squares. The
side of one is  the side of the other.” The interest in the
question may suggest some knowledge of the Pythagorean
theorem, though the papyrus only shows a straightforward
solution to a single second-degree equation in one unknown. In
modern terms, the simultaneous equations  and

 



 reduce to the single equation in
 giving the solution  and 

3. The Cairo Papyrus contains 40 problems of a mathematical nature,
of which 9 deal exclusively with the Pythagorean theorem. One, for
instance, translates as, “A ladder of 10 cubits has its foot 6 cubits
from a wall; to what height will it reach”? [Height 8.] One other
problem is concerned with a rectangle having area 60 square
cubits and diagonal 13. One is required to �ind the lengths of their
sides. Writing, say, the �irst of the problems in modern notation, we
have the system of equations  The scribe’s
method of solution amounts to adding and subtracting 
from the equation  to get

 or equivalently,
 From this it is found that  or

 and as a result 

 

4. A bamboo 36 cubits tall is broken (bent) by the wind so that the
top touches the ground 12 cubits from the stem. Tell the height of
the break. (Babylonia and China) [The height of the break is 16
cubits.]

 

5. In a pond, the �lower of a water lily is 2 cubits (cubit was a linear
measurement from one’s elbow to the tip of the longest (middle)
�inger, usually 17–21 inches) above the water. When it is bent by a
gentle breeze, it touches the water at a distance of 4 cubits. Tell the
depth of the water. (China) [The depth of the water is 3 cubits.]

 

6. A chain suspended from an upright post has a length of 9 cubits
lying on the ground. When stretched out to its full length so as to
just touch the ground, the end is found to be 21 cubits from the
post. What is the length of the chain? (China) [The length of the
chain is 29 cubits.]

 

7. A snake’s hole is at the foot of a pillar which is 24 cubits high with a
peacock perched on its summit. Seeing the snake at a distance of
48 cubits gliding toward its hole, the peacock pounces on it. Say
quickly (perhaps means mentally) now at how many cubits from

 



the snake’s hole they meet, both proceeding an equal distance.
(India) [They meet 18 cubits from the hole.]

8. Two magicians live on a cliff of height 40 cubits. There is a stream
at a distance of 120 cubits from the foot of the cliff. One magician
climbs down and walks to the stream. The other levitates directly
up a short distance and then directly to the stream. If both
magicians travel the same distance, tell how high the second one
�lies. (India) [The magician �lies 24 cubits high.]

 

9. The height of a door (say, x) is 6 chi 8 cun (say, a) greater than its
width (say, y) and that the opposite corners are 1 zhang (say, d)
apart. Find the height and the width of the door. (China) [

]

 

10. Find the area of the following pointed �ield whose sides and one
diagonal are labeled as in Fig. 5.24.

Fig.	5.24 Area of a pointed �ield

Using Pythagorean theorem the area of the lower triangle is
given by   and that of the upper triangle
by  Then the area x of the entire �ield is
given by  It follows that x satis�ies the fourth degree
polynomial equation  If

 and , this equation becomes

(5.27)

 



Chiu-Shao in his book Mathematical	Treatise	in	Nine	Sections
(1247) solved polynomial equations up to tenth degree,
particularly, he found a root of (5.27) as  by using the
method fan	fa which is now known as Horner’s method (William
George Horner, 1786–1837, England, this method was also known
to Viéte in 1600). The other three roots of (5.27) are

, but for this geometric problem only the solution
840 is meaningful.

11. Chinese mathematician Chu Shih-Chieh (1249–1314) in his book
Precious	Mirror	of	the	Four	Elements (1303) considered the
following problem: “Given that the length of the diameter of a circle
inscribed in a right triangle multiplied by the product of the
lengths of the two legs equals 24, and the length of the vertical leg
added to the length of the hypotenuse equals 9, what is the length
of the horizontal leg?” For this, let a stand for the vertical leg, b the
horizontal leg, c the hypotenuse, and d the diameter of the circle
(see Fig. 5.25). The problem can be translated into the two
equations  and  Chu in addition assumed the
two known equations  and  where the
second gives the relationship between the diameter of the
inscribed circle and the lengths of the sides of the triangle. From

 and  we conclude that
 Next, we multiply the equation

 by 9 to get 
Thus, it follows that  and

(5.28)

Fig.	5.25 Circle inscribed in a right triangle

 



Now we multiply  by 9 to get
 or

(5.29)

Multiplying together Eqs. (5.28) and (5.29) gives

Because  Chu had to solve the �ifth degree equation in
b:

However, he did not illustrate his method of solution, Chu
merely wrote that  The other approximate values of b are

 and 

12. (Laws	of	re�lection	and	refraction	of	light). Fermat’s principle in
optics states that light travels from one point to another along a
path that minimizes the travel time. An immediate consequence of
this is that in a homogeneous medium light travel in a straight line,
since a straight line gives the shortest distance between two points.

 

Consider a mirror lying horizontally as shown in Fig. 5.26a. Light
travels from a source at point A to point B after re�lecting from the
mirror at  We shall �ind the point of re�lection P, which requires the
light to travel the shortest possible total distance.



Fig.	5.26 Laws of re�lection and refraction
From Fig. 5.26a it is clear that the total distance D for the light to

travel from A to B is

Thus, we have

Hence, D is minimum when  i.e., 
The ray of light AP that hits the mirror is called the incident ray, the

ray PB is the re�lected ray,  is the angle of incidence, and  the angle of
re�lection. Thus, we have shown that the angle of incidence equals the
angle of re�lection. This well-known law in physics is known as re�lection
law.

Now consider the problem of refraction of light from a source A in
vacuum to point B in medium of refractive index  If light travels with
velocity v is vacuum, then it travels with velocity  in the second
medium. From Fig. 5.26b it is clear that the total time T of light to travel
from A to B is



Thus, we have

Hence, T is minimum when  This is called Snell’s	law;
however, it is now known that this law was �irst discovered by Ibn Sahl
(940–1000, Persia) in 984.
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6.1	 Introduction
A set of three positive integers  and c, which satis�ies Pythagorean relation (5. 1)
is called Pythagorean	triple (or triad) and written as an ordered triple  For
convenience it is always assumed that  A triangle whose sides (line
segments whose lengths are denoted by integers) form a Pythagorean triple is called
a Pythagorean	triangle, it is clearly a right triangle. Pythagorean triangles tell us
which pairs of points with whole-number coordinates on the horizontal and vertical
direction are also whole-number distance apart. Thus, there is a one-to-one
correspondence between Pythagorean triangles and Pythagorean triples. Therefore,
we can use Pythagorean triangle and Pythagorean triple interchangeably. A
Pythagorean triangle  is said to be primitive (sometimes reduced) if 
have no common divisor other than  Thus, each primitive Pythagorean triple has a
unique representation . It is obvious that every primitive Pythagorean
triangle can lead to in�initely many non-primitive triangles, for, if  is a
primitive Pythagorean triangle, then  is a non-primitive Pythagorean
triangle, where  is an integer. Conversely, every non-primitive Pythagorean
triangle gives rise to a primitive Pythagorean triangle. Therefore, it suf�ices to study
only primitive Pythagorean triangles. In this chapter, we have provided necessary
and suf�icient conditions with detailed proofs for the construction of Pythagorean
triples. This is followed by a list of several properties and patterns, extensions, and
some problems. In recent years, primitive Pythagorean triples have been used in
cryptography as random sequences and for the generation of keys, see Kak and
Prabhu [292].

6.2	 Origin	of	Pythagorean	Triples
Pythagorean triples   and

 �irst appeared in Apastamba. These triples were used for the precise
construction of altars. Datta [152] claims that “early Hindus recognized that if

https://doi.org/10.1007/978-3-031-74224-8_6


 is a Pythagorean triple, then  and  are
also Pythagorean triples,” where p is any rational number, integer, or fraction, and n
is any rational number. In 1943, Plimpton 322 was classi�ied as “commercial
account.” However, 2 years later, two prominent historians of mathematics
Neugebauer and Abraham Sachs (1915–1983, USA) made a startling discovery that
the content of Plimpton 322 is a list of Pythagorean triples. Table 6.1 reproduces the
text in modern notation with base  There are four columns, of which the
rightmost, headed by the words “its name” in the original text, merely gives the
sequential number of the lines 1–15. The second column and third column (counting
from the right to left) are headed “solving number of the diagonal” and “solving
number of the width,” respectively; that is, they give the length of the diagonal and of
the short side of a rectangular, or equivalently, the length of the hypotenuse and the
short leg of a right triangle. We will label these columns with letters c and 
respectively. The leftmost column is the most curious of all. Its heading again
mentions the word “diagonal,” but the exact meaning of the remaining text is not
entirely clear. However, when one examines its entries an unexpected fact emerges:
this column gives  that is, the value of  where  is the angle opposite
side of b and  is the cosecant function (see Fig. 5. 1). As an example, in the third
line we read  and

 and hence,
 giving us the triple 

Table	6.1 Numbers in the brackets are wrong

a c 	

(1,)59,00,15 1,59 2,49 1

(1,)56,56,58,14,50,06,15 56,07 (3,12,01)1,20,25 2

(1,)55,07,41,15,33,45 1,16,41 1,50,49 3

(1,)53,10,29,32,52,16 3,31,49 5,09,01 4

(1,)48,54,01,40 1,05 1,37 5

(1,)47,06,41,40 5,19 8,01 6

(1,)43,11,56,28,26,40 38,11 59,01 7

(1,)41,33,59,03,45 13,19 20,49 8

(1,)38,33,36,36 (9,01)8,01 12,49 9

(1,)35,10,02,28,27,24,26,40 1,22,41 2,16,01 10

(1,)33,45 45 1,15 11

(1,)29,21,54,02,15 27,59 48,49 12

(1,)27,00,03,45 (7,12,01)2,41 4,49 13

(1,)25,48,51,35,06,40 29,31 53,49 14

(1,)23,13,46,40 56 (53)1,46 15

Unfortunately, the table contains some obvious errors. In line 2 we have
 and



 and these do not form a Pythagorean
triple (the third number b not being an integer). But if we replace  by

, we get an integer value of
, which leads to the Pythagorean triple

 In line 9 we �ind  and
, and these do not form a Pythagorean triple. But if

we replace the  by  we do indeed get an integer value of
 resulting in the triple  Again

in line 13 we have  and
, and these do not form a Pythagorean triple; but we

may notice that 25921 is the square of 161, and the numbers 161 and 289 do form
the triple  And in row 15 we �ind , whereas the correct entry
should be twice that number, that is,  producing the triple 
This, however, is not a primitive triple, since its members have the common factor 
it can be reduced to the simple triple  Similarly, row 11 is not a primitive
triple  since its members have the common factor  it can be reduced to

 which is the smallest and best known Pythagorean triple.
Table 6.2 produces the text in decimal system. In this table, we �ind that the

values of  continuously decrease from  to  This implies
that the values of  continuously decrease, and this in turn shows that 
increases steadily from approximately  to  The question that baf�les the mind
even today how does the Babylonians �ind these particular triples, including such
enormously large one . There seems to be only the following
plausible explanation: they were not only familiar with the Pythagorean theorem, but
knew an algorithm to compute Pythagorean triples, and had enormous
computational skills, see Siu [482].

Table	6.2 Numbers in the brackets are wrong

b a c 	

1.9834027 120 119 169 1

1.9491585 3456 3367 (11521) 4825 2

1.9188021 4800 4601 6649 3

1.8862478 13500 12709 18541 4

1.8150076 72 65 97 5

1.7851928 360 319 481 6

1.7199836 2700 2291 3541 7

1.6927093 960 799 1249 8

1.6426694 600 (541)481 769 9

1.5861225 6480 4961 8161 10

1.5625000 60 45 75 11



b a c 	

1.4894168 2400 1679 2929 12

1.4500173 240 (25921)161 289 13

1.4302388 2700 1771 3229 14

1.3871604 90 56 (53)106 15

Finding Pythagorean triples is one of the earliest problems in the theory of
numbers, and certainly, Pythagorean triples are one of the oldest known solutions of
the nonlinear Diophantus equation (5. 1). In Apastamba it has been recorded that the
triplets

(6.1)

where m is an odd number, and

(6.2)

when m is an even number, are Pythagorean triples. Liu Hui in his commentary
on the Jiuzhang	Suanshu included Pythagorean triples and mentioned about right
triangles. It is a tradition to assume that Pythagoras himself gave the following
partial solution of the equation (5. 1),

(6.3)

He presumably arrived at (6.3) from the relation

(6.4)

and then searching for those k for which  is a perfect square, i.e.,
 (since  is odd m must be odd). This gives

Thus, the relation (6.4) can be written as

from which it is clear that (5. 1) is satis�ied with

(6.5)

Finally, in (6.5) letting  we obtain (6.3). Notice that in (6.3)
the sum of the long side and hypotenuse is , which is the
square of the small side. We also remark that (6.5) is the same as (6.1).

We can directly verify that (6.3) is a solution of (5. 1). Indeed, we have



Since  it follows that b and c are relatively prime, i.e., positive integer
that divides both of them is  and consequently, Pythagorean triples 
generated from (6.3) must be primitive. Some of the Pythagorean triples that can be
obtained from (6.3) are given in the following table.

It is interesting to note that between the series of larger legs 
 and of hypotenuse , there is a

fascinating pattern (see Boardman [75])

The following table gives Pythagorean triples obtained from (6.3) by letting

The aforementioned table gives an obvious pattern, so that if we know one row,
then we can continue this table inde�initely. From (6.3) it follows that there are
countably in�initely many primitive Pythagorean triples.

Clearly, Pythagoras’s solution has the special feature of producing right triangles
having the characteristic that the hypotenuse exceeds the larger leg by  According
to Proclus, Plato gave a method for �inding Pythagorean triples that combined
algebra and geometry. His solution of equation (5. 1) is



(6.6)

For this, it suf�ices to note that

It is interesting to note that for  (6.2) is the same as (6.6). Some of the
Pythagorean triples that can be obtained from (6.6) are given in the following table.

(For  the Pythagorean triple is written as ) From (6.6) it follows
that the hypotenuse exceeds one of the legs by  Further, for  we have the
Pythagorean triple , which cannot be obtained from Pythagoras’s formula
(6.3). Moreover, for  (6.6) becomes

(6.7)

i.e., for odd  (6.6) does not give primitive triples, and on dividing (6.7) by  we
�ind

But, this is the same as (6.3). Thus, in conclusion, the primitive triples obtained
from (6.6) include those of given by (6.3).

The following interesting table gives Pythagorean triples obtained from (6.6) by
letting 

We note that (6.6) for  becomes
 Thus, if 



where a and b are reduced, will yield a primitive Pythagorean triple with
 As an example, for  we have  Thus,

 and 
We also note that Cairo Papyrus contains three Pythagorean triples

 and 

6.3	 The	Characterization	of	Pythagorean	Triples
Unfortunately, even (6.6) does not provide all Pythagorean triples, and it was not
until Euclid in his Elements (Book X, Lemma I, also see Lemma II after Proposition
28) formalized the following statement (fabricated in geometric language): Let u and
v be any two positive integers, with , then the three numbers

(6.8)

form a Pythagorean triple. This seems to be the �irst regressively proved
complete integer solution of an indeterminate equation. If in (6.8),  we
interchange a and  (If in addition u and v are of opposite parity-one even and the
other odd, and they are coprime, then  is a primitive Pythagorean triple.)

It is easy to verify that the numbers  and c as given by Eq. (6.8) satisfy the
equation 

The integers u and  or simply  in the formula (6.8) are called the
generating numbers or generators of the triple  Neugebauer claims that this
suf�iciency part was known to the Babylonians.

From (6.8) the following relations are immediate

Diophantus in his Arithmetica (de Méziriae made it fully available in Greek and
Latin in 1621) also arrived at the solution (6.8) of (5. 1) by using the following
reasoning. In (5. 1), let  where k is any rational number. Then, it follows
that



Step	1.

Step	2.

Step	3.

which leads to

or

Thus, we have

which gives

Let  with u and v integers (we can assume that ), so that

Now we set  to obtain 
Bhaskara II also gave tentative partial solution of (5. 1), which in number theory is

considered an exciting result.
The converse, i.e., showing that any Pythagorean triple is necessarily of the form

(6.8) is more dif�icult. The earliest record for some special cases of the proof of the
converse can be found in the solutions of Problems 8 and 9 in the book Arithmetica of
Diophantus. Next, the converse was discussed in the works of Arab mathematicians
around the tenth century. The details of Arab’s work were available to the well-
traveled Fibonacci. It seems the �irst explicit, rigorous proof of the converse was
given in 1738, by C.A. Koerbero (Dickson [164], Vol. 2). In 1901, Kronecker gave the
�irst proof that all positive integer solutions of  are given without
duplication by  where  and k are
positive integers such that  and v are not both odd, and u and v are
relatively prime. In what follows we shall discuss a simpli�ied and extended version
of a known proof (see, e.g., Burton [111]) of Euclid’s Proposition and its converse.

If  is a primitive Pythagorean triple, then  For this, if
 then  so that d is a common divisor of  and  and

consequently  is not a primitive Pythagorean triple.
If  is a Pythagorean triple, then  implies 

and  For, if b and c have a common divisor, say  then d is also a
divisor of a and consequently, d is a common divisor of a and b, which is not
possible. Hence,  The proof for  is similar.



Step	4.

Step	5.

If  is a primitive solution of (5. 1), then exactly one of a and b must be even,
and c must be odd. For, if a and b are both even, then c must also be even; and
consequently,  will have a common divisor other than  If a and b are both
odd, say,  then

, which is impossible since no
perfect square can be of the form  Thus, exactly one of a and b must be odd
and the other must be even. Also, then  must be odd, and so c must be odd.
(By virtue of this step, there exists no primitive Pythagorean triple all of whose
numbers  are prime. There are primitive Pythagorean triples in which c and
one of a or b is prime, for example,  It is not known if
there exist in�initely many such triples. There is no primitive Pythagorean triple
whose sum is a prime number.)

If  are integers such that  and , then q and r
must be perfect squares. In fact, writing out the prime factorizations of q and  we
have

Since , therefore no prime can occur in both the decompositions.
Since  and since prime factorization is unique, therefore,

where  are distinct primes. Since  is a perfect
square, it is necessary that  must be all even, and
consequently, q and r must be perfect squares. Similarly, it follows that if 
and , then q and r must be of nth power. We note that Step 4 can also be
proved by induction on  For  and  it is trivially true.

(Professeur Tryphon Tournesol discovered an amusing proof of Step 4 while he
was in jail for having failed the president’s son. The prisoners were put in a long row
of cells. At �irst, all the doors were unlocked, but then the jailor walked by and locked
every second door. He walked again and stopped at every third door, locking it if it
was unlocked, but unlocking if it was locked. On the next round, he stopped at every
fourth door, locking it if it was unlocked, unlocking if it was locked, and so on.
Professor Tournesol soon realized that the qth cell would be unlocked in the end just
in case q had odd number of divisors. Now, if d divides q, then so does , and it
would seem that the divisors of q come in pairs. Unless... what if  thought
the professor, then the divisor d does not pair off with another, and  just in
case q is a square.’)

If  is a primitive solution of (5. 1) and a is odd (similar arguments
hold if a is even), then there must exist positive integers u and v such that 
with  and exactly one of u and v being odd, such that



Step	6.

 Since a is odd, by Step 3, b must be even. Let
 for some  From  we have

(6.9)

Now  and  are both even (for by Step 3, a and c are both odd). Let
us put  i.e.,  Then from (6.9) we have

 Next we shall show that q and r are relatively prime. For, if d is a common
divisor of q and  then d must also be a common divisor of c and  and therefore
also a divisor of  Thus,  will have a common divisor  Since the solution

 is a primitive solution, we must have  i.e., q and r must be relatively
prime. Thus, by Step 4 (from Professor Tournesol’s discovery), q and r must be
perfect squares. Let  for some integers u and v, which are taken to be
positive. Then,  so that  It
is clear that  for if  then d will be a divisor of  and 
Also u and v cannot be both odd or both even, for in either case c will be even, and
this will contradict the result in Step 3.

If  where u and v are positive integers
such that   and exactly one of u and v is odd, then  is a
primitive solution of (5. 1). By actual substitution we �ind that

so that  is a solution. To show that  is a primitive solution, assume
to the contrary that p is an odd prime that divides both a and  This implies 
and  i.e., p divides both  and  Since p is odd, it follows that p divides
both  and  Since p is a prime, it must divide both u and  But 
implies that this is impossible. Thus, the only possible common divisor that a and c
may have must be a power of  However, this is also not possible because a must be
odd. Thus,  and  is a primitive solution.

Summing the aforementioned steps, we �ind that (6.8) generates all primitive
Pythagorean triples.

The following proof (see Beauregard and Suryanarayan [55], and Joyce [290]) of
the converse of Euclid’s statement is short and elementary: If  is a primitive
Pythagorean triple, then by Step 1,  so we can always choose a to be
odd. Now from (5. 1) it follows that

Thus, the two terms on the right are rational and reciprocals of each other. Let
the �irst one be  in lowest terms, then the second is  i.e.,



Solving these equations, we get

(6.10)

Since , both u and v cannot be even. If they both are odd, then
 will have 4 as the minimum possible factor, whereas 2uv will have 2 as the

maximum possible factor, and this will imply that a is even, which contradicts our
assumption that a is odd. Thus, one of u and v must be odd and the other should be
even. Hence,  both must be odd, and obviously  In conclusion, both
the fractions in (6.10) are fully reduced and hence, lead to Euclid’s formula

The Pythagorean triple  in row 4, Table 6.2, can be obtained
by letting  in (6.8). It is interesting to note that the corresponding
u and v for each row in Table 6.2 have no prime factors other than  and 5 (the
prime divisors of the Babylonian scale 60), and  For

 formula (6.8) reduces to (6.3). Indeed, then we have
 For

 formula (6.8) reduces to (6.6). Indeed, then we have
 In general, (6.8) gives in�initely

many primitive Pythagorean triples in which the hypotenuse exceeds one of the
legs by 

Table 6.3 gives primitive Pythagorean triples with  sorted by increasing

Table	6.3 Primitive Pythagorean triples

(3,4,5) (5,12,13) (8,15,17) (7,24,25)

(20,21,29) (12,35,37) (9,40,41) (28,45,53)

(11,60,61) (16,63,65) (33,56,65) (48,55,73)

(13,84,85) (36,77,85) (39,80,89) (65,72,97)

(20,99,101) (60,91,109) (15,112,113) (44,117,125)

(88,105,137) (17,144,145) (24,143,145) (51,140,149)

(85,132,157) (119,120,169) (52,165,173) (19,180,181)

(57, 176,185) (104,153,185) (95,168,193) (28,195,197)

(84,187,205) (133,156,205) (21,220,221) (140,171,221)

(60,221,229) (105,208,233) (120,209,241) (32,255,257)

(23,264,265) (96,247,265) (69,260,269) (115,252,277)

(160,231,281) (161,240,289) (68,285,293) (136,273,305)

(207,224,305) (25,312,313) (75,308,317) (36,323,325)



(3,4,5) (5,12,13) (8,15,17) (7,24,25)

(204,253,325) (175,288,337) (180,299,349) (225,272,353)

(27,364,365) (76,357,365) (252,275,373) (135,352,377)

(152,345,377) (189,340,389) (228,325,397) (40,399,401)

(120,391,409) (29,420,421) (87,416,425) (297,304,425)

(145,408,433) (84,437,445) (203,396,445) (280,351,449)

(168,425,457) (261,380,461) (31,480,481) (319,360,481)

(44,483,485) (93,476,485) (132,475,493) (155,468,493)

(217,456,505) (336,377,505) (220,459,509) (279,440,521)

(92,525,533) (308,435,533) (341,420,541) (33,544,545)

(184,513,545) (165,532,557) (276,493,565) (396,403,565)

(231,520,569) (48,575,577) (368,465,593) (240,551,601)

(35,612,613) (105,608,617) (336,527,625) (100,621,629)

(429,460,629) (200,609,641) (315,572,653) (300,589,661)

(385,552,673) (52,675,677) (37,684,685) (156,667,685)

(111,680,689) (400,561,689) (185,672,697) (455,528,697)

(260,651,701) (259,660,709) (333,644,725) (364,627,725)

(108,725,733) (216,713,745) (407,624,745) (468,595,757)

(39,760,761) (481,600,769) (195,748,773) (56,783,785)

(273,736,785) (168,775,793) (432,665,793) (555,572,797)

(280,759,809) (429,700,821) (540,629,829) (41,840,841)

(116,837,845) (123,836,845) (205,828,853) (232,825,857)

(287,816,865) (504,703,865) (348,805,877) (369,800,881)

(60,899,901) (451,780,901) (464,777,905) (616,663,905)

(43,924,925) (533,756,925) (129,920,929) (215,912,937)

(580,741,941) (301,900,949) (420,851,949) (615,728,953)

(124,957,965) (387,884,965) (248,945,977) (473,864,985)

(696,697,985) (372,925,997)   

6.4	 Properties,	Patterns,	Extensions,	and	Problems
After the publication of Euclid’s Elements (Book X, Proposition 29), hundreds of
professional as well as non-professional mathematicians have tried to �ind
properties/patterns of Pythagorean triples, alternatives to Euclid’s formula (6.8),
different forms of the generators  and Pythagorean triples with speci�ied
properties. This has led to many interesting number-theoretical results, also several
innocent looking problems, which are still waiting for their solutions. Dickson [164],
in his three-volume history of number theory, has given a 25-page account of what
was achieved in the �ield of Pythagorean triangles during more than two millennia
and up to Euler and modern times. The inspiration to this modern development was



provided by Fermat, who in his marginal notes stated without proof many theorems
involving these integers. Later, these theorems were proved and intensi�ied by great
mathematicians such as Euler, Lagrange, Gauss, and Liouville. In the following we
present some elementary results to this introductory branch of number theory.

 
P1. From (6.8) it follows that in a Pythagorean triangle (see Fig. 5. 1)

Further, from the half-angle formula  we have
 We also note that  Thus if we draw a unit

circle in the xy-plane with the origin at  and a straight line from the point
 with slop  then  is the

other point of intersection of the line and the circle, see Fig. 6.1.

Fig.	6.1 Geometric characterization of Pythagorean triples

 

P2. From (6.8) it follows that  i.e., 
is always a perfect square. This is only a necessary condition but not a
suf�icient one, (see Posamentier [417], p. 156). For example, consider the triple

 for which , but it is not a Pythagorean triple. We
also note from this simple observation that  cannot be a Pythagorean
triple.

 

P3. If P is the perimeter of a primitive Pythagorean triangle , then P is even
and  Indeed, we have

 and
 Thus, in particular,

the perimeter P divides  where  is the area of the triangle.
Fermat proved that A can never be a square number (see P37), later it was
shown that it cannot be twice the square number (see Carmichael [117, 118]).

 

P4. In a primitive Pythagorean triple  either a or b is divisible by  For
this, �irst we note that any number m can be written either as  or  



 But, since  is of the
form  no integer  can be written in the form  hence all
integers squared are of the form  or  Thus, if in (6.8) either  or 
happens to be of the form 3k (this is to say, if either  or ), then  or

 in which case  Now assume that both  and  take the form
 to be speci�ic, let  and  Then, we have

 Hence,  In conclusion, in
a primitive Pythagorean triple  exactly one of the integers is divisible by

 As an example, see any triple in Table 6.3.

P5. In a primitive Pythagorean triple  either a or b is divisible by  In
(6.8), u and v are of opposite parity-one even and the other odd, and hence

 In conclusion, in a primitive Pythagorean triple  exactly one of
the integers is divisible by  As an example, see any triple in Table 6.3.

 

P6. In a primitive Pythagorean triple , one side is divisible by  For this,
�irst we note that any number m can be written either as

 or  But,  can be written only as
 or  Thus, if in (6.8) either  or  happens to be of the

form 5k (this is to say, if either  or ), then  or  in which case
 Now assume that both  and  take the form  to be speci�ic, let

 and  Then, we have
 Hence,  Similarly, if

 and , then  Finally, if  and
 then  and this implies that 

In conclusion, in a primitive Pythagorean triple  exactly one of the
integers is divisible by  As an example, see any triple in Table 6.3.

From P4–P6, it follows that in every primitive Pythagorean triple 
the product ab is divisible by  and the product abc is divisible by  The
smallest and best known Pythagorean triple  shows that this
observation is the best possible, (see MacHale and van den Bosch [354]).
Further, out of three divisors  one of the numbers  may have any
two of these divisors, e.g.,  or even all three as
in  It is not known if there are two distinct Pythagorean triples
having the same product. The existence of two such triples corresponds to a
nonzero solution of a Diophantine equation.

 

P7. In a primitive Pythagorean triple , none of the sides can be of the form
 Since u and v are of different parity  is of the form
  is of the form  and  is of the

form 

 



P8. From P3 it follows that  i.e., perimeter of a Pythagorean triangle and its
area are the same if and only if , which is the
same as  Thus, either (i).  or (ii).

 The case (i) gives  and leads to the Pythagorean
triple , whereas case (ii) implies  and gives the
Pythagorean triple  Thus, there is only one primitive Pythagorean
triangle  for which 

 

P9. There exist primitive Pythagorean triangles having the same perimeter
 The �irst two primitive Pythagorean triangles with the same

perimeter 1716 are  and  Next, two primitive
Pythagorean triangles  and  correspond to the
same perimeter  Other perimeters which have more than one primitive
Pythagorean triangles are 3876, 3960, 4290, 5244, 5700, 5720, 6900, 6930,
8004, 8700, 9300, 9690, 10010, 10788, 11088, 12180, 12876, 12920, 13020,
13764, 14280, 15252, 15470, 15540, 15960, 16380, 17220, 17480, 18018,
18060, 18088, 18204, 19092, 19320, 20592, 20868, . The �irst three
primitive Pythagorean triangles with the same perimeter 14280 are

 and  The next perimeter
being 72930 with three primitive Pythagorean triangles 

 and  Four primitive
Pythagorean triangles having a common perimeter also exist. For a perimeter
less than  there exist only seven quads. The smallest value of the perimeter,
for which a quad is possible, is 

 

P10. To �ind Pythagorean triangles with equal areas. Fermat gave a simple method
to �ind pairs of Pythagorean triangles with equal areas. If  is a primitive
Pythagorean triple, then the legs of the Pythagorean triangle having

 as generators will be
 and hypotenuse

 The area of this triangle is  Also, the
area of the Pythagorean triangle having legs  and
hypotenuse  i.e.,  where  is

 Taking  we �ind that the Pythagorean
triangles  and  have the same area, namely,

 Notice that the triple  is not primitive. The smallest two
primitive Pythagorean triples having the same common area 210 are

 and  Some other primitive Pythagorean triples having
the same area are  with common area 

 



 with common area  and
  with common area 

Three Pythagorean triangles having the same area also can be �ind. It is
easy to see that if  are four numbers in arithmetic progression, then
the Pythagorean triangles corresponding to generators (i).  (ii).

 (iii).  will all have the
same area . For example, let us take

. Then, respectively, we have

(A).  
(B).  
(C).  

Three Pythagorean triangles obtained from (A), (B), (C) are 
  They all have a common area  Notice that

none of these triples is primitive. Another construction for three Pythagorean
triangles having the same area was suggested by Beiler [58]: Take three sets of
generators as 

 and 
Then the right triangle generated by each triple  has
common area  In
particular, for  the three Pythagorean triangles are

 and  and the common area is  Three
primitive Pythagorean triples that have the same area are

  with the area
 This was discovered by Shedd [474] in 1945. Sets of four

Pythagorean triangles with equal area are also known, the one having the
smallest area is 

 with area 341880 (see Beiler [58], p. 127 and Guy [241] pp. 188–
190). In general, Fermat proved that for each natural number n, there exist n
Pythagorean triangles with different hypotenuses and the same area.

P11. Pythagorean triangles whose areas consist of a single digit include 
(area of 6) and  (area of , (see Wells [531], p. 89).  

P12. For  we get a Pythagorean triple  the
area of the triangle corresponding to which is  a number using all
the nine digits  Many such triples are known. Another such triple is

 obtained by letting  and  the
corresponding area being 

 



P13. There are Pythagorean triples for which the area of the corresponding triangle
is represented by a number using all the ten digits. One such triple is

 obtained by letting  and  The
corresponding area is  Another such triple is

 obtained by putting  and  the
corresponding area being 

 

P14. In 1643, Fermat wrote a letter to Mersenne in which he posed the problem of
�inding a Pythagorean triangle  whose hypotenuse and sum of the legs
were squares of integers, i.e., �ind integers p and q such that  and

 By using the method of in�inite descent, it is found that the values
 give a desired solution. In fact, we �ind

and

There exist in�initely many such Pythagorean triples, but the
aforementioned values are the smallest possible.

 

P15. Two triples are called siblings if they have a common hypotenuse, e.g., 
 and  in Table 6.3. If we search among

larger hypotenuse, we may �ind larger sets of siblings, e.g., there are four
primitive triples with hypotenuse

 The
hypotenuse 32045 has eight primitive triples: 

, , ,
, , ,
. A twin	Pythagorean	triple is a Pythagorean triple

 for which two values are consecutive integers, e.g., , ,
, , , , , . There

are in�initely many twin Pythagorean triples. In the following table (see http:// 
oeis. org/ A101903) we present the number of twin Pythagorean triples,
denoted as  with hypotenuse less than 

 

http://oeis.org/A101903


P16. Let  and  denote the number of primitive Pythagorean triangles
whose hypotenuses and perimeters do not exceed  respectively. In 1900,
Lehmer proved that

From (6.8), hypotenuse  implies that u and v must lie in
the positive quarter of the circle with radius  Further, since  
must lie below the line  see Fig. 6.1. The area of this segment is 
Ernesto Cesáro (1859–1906, Italy) in 1880 showed that the probability of

 is equal to  Further, the probability of both u and v are not
odd conditioned to coprime is . Thus, we have

Similarly, we can show that  From these
approximations it follows that  and 
From Table 6.3 actual computation gives  and 
In 2002, Benito and Varona [63] proved that the number  of primitive
Pythagorean triangles  such that both the legs a and b do not exceed n
is

On counting we �ind that the exact value of  whereas the
aforementioned formula gives 

 

P17. Since,  it follows from (6.8) that the square of
any complex number  (where  are coprime positive integers with

) yields the legs of a primitive Pythagorean triangle. Thus, for example
 gives  and  and from (5. 1) we have

, i.e.,  is a Pythagorean triple.

 



P18. There are Pythagorean triples (not necessarily primitive) each side of which is
a Pythagorean triangular number  (see Sect. 7. 2), for example,

 It is not known whether in�initively
many such triples exist.

 

P19. Consider any two integers u and v such that . Then, from the four
integers  known as Pythagorean	triangle	generator we can
always calculate a Pythagorean Triangle. For this, we take the product of the
outer two integers, i.e., , which gives one leg, then we
take twice the product of the middle two integers, i.e., 2uv that gives the
another leg, and then take the the sum of squares of the inner two integers, i.e.,

, which gives the hypotenuse of the triangle. For example, for
 we have , and from this we can easily calculate the

primitive Pythagorean triple  If we take , then we have
 and we get the triple , which is not primitive. Now recall

that Fibonacci numbers are generated from the recurrence relation
 We choose two consecutive Fibonacci

numbers  and  and use the recurrence relation to �ind
 and  and hence

 forms a Pythagorean triangle generator. This leads to
the relation (see Dujella [172]).

(6.11)

Now from a well known identity  (see Burton [111]),
(6.11) can be better written as

(6.12)

As an illustration, for  relation (6.11)
gives

which is the same as

It does not give a primitive Pythagorean triple  However, for
 relation (6.11) leads to

which gives a primitive Pythagorean triple 
From relation (6.12) it is clear that the product  of any

four consecutive Fibonacci numbers is equal to the area of a Pythagorean

 



triangle. In conclusion, (6.11), or equivalently (6.12), furnish primitive as well
as non-primitive Pythagorean triples. Further, it does not provide all primitive
Pythagorean triples. In relation (6.11), Fibonacci numbers can be replaced by
Lucas numbers. In fact, for  we get

, which gives primitive Pythagorean triple

P20. To �ind Pythagorean triangles with all the three sides consecutive integers. Let
p be a positive integer. From (6.8), we have either (i).

 or (ii).
. Clearly, (i) implies that

, which is impossible. Next, (ii) implies
that  i.e.,  Also, we have  and hence

 i.e.,  Now since u and v are relatively prime, we must have
 and hence  In

conclusion,  is the only primitive Pythagorean triple with three sides
consecutive integers. This fact can also be seen as follows: If  is
a Pythagorean triple, then , which is the same as

 and hence,  Similarly, it follows that
the only Pythagorean triangles with sides in arithmetic progression are those
with sides 

 

P21. To �ind Pythagorean triangles in which hypotenuse exceeds the larger leg by 1.
We shall show that formula (6.3) generates all such Pythagorean triangles.
Since (6.8) generates all primitive Pythagorean triangles either (i).

 or (ii).  But, (i) leads to ,
which is impossible. Now (ii) is the same as , which implies that

 Letting  then  Putting this u and v in (6.8), we
obtain (6.3). Thus, there are such in�inite Pythagorean triangles.

In Dudley’s book [171], page 127, the following problem is asked: Prove
that if the sum of two consecutive integers is a square, then the smaller is a leg,
and the larger a hypotenuse, of a Pythagorean triangle. His obvious solution is

 implies that  However, the question is
for what integers k and  From P21, we notice that the
only choice is  and 

 

P22. To �ind Pythagorean triangles with consecutive legs, from (6.8) it is necessary
that either (i).  or (ii).  In case (i), it
follows that , which is the same as .
Similarly, case (ii) leads to the equation . Thus, in case (i)
we need to �ind integer solutions of Pell’s equation , whereas in
case (ii) of Pell’s equation . We shall use inductive method to

 



show that all solutions of these equations can be generated by the recurrence
equations

(6.13)

For this, we assume the existence of the minimal solution (known as the
fundamental solution)  of the concerned equation, and assume that

 is also a solution, then it follows that

and this shows that  is also a solution of the equation.
For the equation  the fundamental/minimal solution (by

inspection) is (3,2) and the next three solutions obtained from (6.13) are
(17,12), (99,70) and (577,408). Similarly, for the equation  the
minimal solution of (1,1) and the next three solutions generated from (6.13)
are (7,5), (41,29), and (239,169). In the following table we use these eight
values to record  and the
corresponding Pythagorean triples. From the table it is clear that the numbers
are increasing very rapidly, but still such triples are in�inite.

On scanning data in Table 6.3, we notice that triples satisfying  are
more dense than those satisfying  The fact that there are in�initely
many Pythagorean triples of this type can also be shown rather easily: If

 happens to be a Pythagorean triple, so is
 Indeed, we have

Diophantus set the problem of �inding a number p such that both 
and  are squares. Letting  and  we get the



same equation  for which the minimal solution (which gives the
nonzero solution) is  Solving the equations  and

 we �ind 
P23. Diophantus as a problem asked to �ind a Pythagorean triangle in which the

hypotenuse minus each of the legs is a cube. His answer is , which
leads to the required primitive Pythagorean triple  From (6.8), we
note that we need to �ind the solutions of the equations

 where p and q are some positive integers. But since
 and  from the equation  we

must have  and now from the equation
 it follows that  or 

where k is any positive integer. Thus, the required members of all Pythagorean
triples are 
with  and  For  we get the triples

 and  i.e., we get primitive as well as
non-primitive Pythagorean triples.

 

P24. To �ind primitive Pythagorean triangles, one of whose legs is a perfect square,
we need to solve the equation , which is the same as

 We recall that  and c is always odd, so there
are two possible cases to consider (i). b is even, and (ii). b is odd. In case (i),
equation  holds provided there exist odd integers p and q
such that  and  (see Step 4 above), and hence

We present some desired triples in the following table.

Clearly, there exist in�initely many Pythagorean triples whose odd member
is a perfect square.

In case (ii), we can choose  where t is odd. These
relations give

Using these relation, we compute some Pythagorean triples in the following
table.

 



Clearly, there exist in�initely many Pythagorean triples whose even member
is a perfect square.

P25. To �ind primitive Pythagorean triangles whose hypotenuse is a perfect square,
we need to deal with the equation , which is the same as

 Now since  there exist integers p and q
such that  and  also  Next,
comparing the real and imaginary parts, we �ind

here, modulus sign is taken without loss of generality (we need  and ).
Then, we also have

We present some required triples in the following table.

Note that in the aforementioned table  and  give
the same primitive Pythagorean triple. The same holds for  and

 

P26. To �ind primitive Pythagorean triangles  whose one leg  is given.
There are two cases to consider (i). n is odd, then  or (ii). n is
even, then  The number of integer solutions of the these equations
depends upon the prime factorization of  Let  where

 are distinct primes. If  is odd, and  then n can be

 



factored as a product of two relatively prime factors in  ways.
Corresponding to each such way,  has exactly one solution in
positive integers, and hence, there will be  solutions. If , then n is an
odd multiple of  and the equation  does not have any solution in
integers because 2uv is a multiple of  If  and , then the number of
ways in which n can be factored into a pair of relatively prime factors is

 i.e.,  and therefore, there are  solutions of  with .
Summarizing these arguments, we have the following result: If n is of the form

 then  (see P7). If n is not of this form, then 
where q is the number of distinct primes occurring in the prime factorization
of  As examples, consider the cases  Since .
The number of primes occurring in the factorization is  and so there are

 i.e., 4 primitive Pythagorean triangles having 60 as a leg. From Table 6.3,
these triples are  and 
Since  and so there are  primitive triangles having
65 as leg. These triples are  and  Since

 and so there are  primitive Pythagorean triangles
having 75 as a leg. These triples are  and  Since

, there are no primitive Pythagorean triangles having 86 as a leg.
In a similar way (see Beiler [58]) we can �ind the number of primitive

Pythagorean triangles  having n as a hypotenuse. We factorize n as

where  are of the form  and  are of the form  Then,

As an example, we consider  and  Since
 and  so  From

Table 6.3, these triples are  and  Since
 so  Since

 and  so  From
Table 6.3, these triples are  and  Since

 and  so  From Table 6.3,
this triple is 

Combining the aforementioned results, we can �ind the total number of
ways in which a given n may be either a leg or hypotenuse of a primitive
Pythagorean triangle as  As an example, we consider

 Since  it follows that 



and  and hence  Indeed, the triples are
  and 

If , then  and  To �ind the unique
primitive Pythagorean triangle whose one leg is  from (6.8), it follows that

 or  Thus, from Step 4 and the fact that  we
have  and  Hence, the members of the required triple are

, which for  and  respectively, give
the primitive Pythagorean triples as  and  Now we shall
show that there are exactly  non-primitive triangles whose one
leg is  Clearly, for a non-primitive triple the members are

If , then from the facts that  and u and v are of
different parity  and odd. Thus, it is necessary that

 But, then , which means
 But, it is impossible. Similarly, we can show that
 Thus, the only possibility left is  or

, which implies that there exists some 
However, the cases  and  can be ruled out. Indeed, for 
it gives , but we have  and the fact that uv is even assures that k
cannot be  In conclusion, we have  which
implies that  This leads to the following members of the
non-primitive triples

For  two non-primitive triples are  and for
 three non-primitive triples are 

This corrects a minor error in the work of Zelator [545, 546] and supplements
the conclusion of Problem 5 on page 240 in the book of Burton [111].

P27. In a triangle we can draw a circle touching all three sides, this circle is called in-
circle with radius as in-radius denoted as r and the center as in-center. The in-
radius of a Pythagorean triangle  satis�ies (see Burton [111], page 239)
the relation  (Two formulae for r in terms of the sides

 were known to Liu Hui, see his commentary on the Jiuzhang	Suanshu). In
this relation substituting  (here

 is an integer) we get , which shows that the in-radius of a
Pythagorean triangle is an integer. The number of distinct primitive
Pythagorean triangles having a common in-radius r depends upon the number
of distinct prime divisors of  If the prime factorization of r contains n distinct
odd primes, then there exist  distinct primitive Pythagorean triangles having

 



a common in-radius r (see Robbins [434] and Omland [401]). For example, we
consider  so that  whose prime factors
are , and hence, there exist exactly  distinct primitive
Pythagorean triangles having in-radius . One of such triple is

In addition, the total number  of distinct Pythagorean triangles (not
necessarily primitive) having a given in-radius r can be determined by writing
down the prime factorization of r. It is also known that if 
where  are distinct odd primes, then

For

P28. It is possible to construct Pythagorean triples (not necessarily primitive) by
factoring c into smaller factors, each of which is itself a sum of two squares. For
this, we need Diophantus (Brahmagupta-Fibonacci) identities (4. 16). For
example, we consider the number

for which equalities (4. 16) give

(6.14)

and

(6.15)

Now equalities (6.14) and (6.15), again in view of (4. 16) give

and

This gives the Pythagorean triples  and ,
which are not primitive. In fact, dividing these triples, respectively, by 29 and

 we get the primitive Pythagorean triples  and 
Notice that we also have

and

 



This gives the primitive Pythagorean triples  and 
 (see Table 6.3).

P29. In 1934, Berggren [65] introduced three matrices with the same values in each
position but differing in sign  where

and showed that from a given primitive Pythagorean triple  three
new primitive Pythagorean triples  can be generated by

(6.16)

He also showed that by using these three matrices all primitive
Pythagorean triples can be generated from the triple  A
simple calculation shows that with this triple  (6.16) gives

  which we have agreed to write as  and
 which we have agreed to write as  Now if we take

 then (6.16) generates 
 Thus,  In fact, Hall [244]

and Roberts [435] prove that  is a primitive Pythagorean triple if and
only if  where U is a �inite product of the matrices

 In other words, the triple  is the parent of all primitive
Pythagorean triples.

 

P30. In 2008, Price [419] found three new matrices

and showed that like (6.16)

(6.17)

also produce all primitive Pythagorean triples. However, the three new
triples obtained from (6.17) may not be the same as calculated from (6.16). As
an example, we �ind that from  produces the new
triples  and  Further, with

 gives  and 

 



P31. In 1994, Saunders and Randall [448] establish the following three new
matrices

and showed that from a given generator  of Pythagorean triple three
new generators, which preserve coprimeness and opposite parity can be
obtained by

For this, it suf�ices to show that each

generates Pythagorean triple, i.e.,
 are Pythagorean triples.

In particular, for  we have
, and these respectively

generate Pythagorean triples 

 

P32. Consider the famous tournament problem, which was posed to Fibonacci by a
Master John of Palermo (�l. 1221–1240, Italy), a member of the entourage of
the Holy Roman Emperor Frederick II: Find a number x such that both 
and  are squares of rational numbers, i.e.,

(6.18)

We will see that the solution requires Pythagorean triples. We express 
and b as fractions with a common denominator:

Substituting these values in equation (6.18), and multiplying throughout by
, we get the equations

(6.19)

Subtracting the second equation from the �irst, we obtain

Since the left-hand side is even, both  and  must be even or odd. In
either case,  is an even integer, say  from this it follows
that  Now solving the last two equations, we �ind

 



Substituting these expressions in (6.19), we get

which on addition yields the single condition

Thus, the three numbers  and  form a primitive Pythagorean
triple and hence can be written as

where the positive integers u and v are such that  and v are of
opposite parity, and they are coprime. Now to eliminate  we take the product
of the �irst two of these equations, to obtain

Clearly, we need integers u and v, which will make the right-hand side of
this equation 5 times a perfect square. For this, we set  so that the
condition reduces to

Evidently the right-hand side becomes a square when 

These values for u and v lead to

Putting these pieces together, we get

as a solution to Fibonacci’s tournament problem.
P33. For  primitive relation (5. 3) takes the form

The only positive integer solutions of this equation are given by

 



where u and v are relatively prime positive integers, one of which is even,
and  In particular, for  we have 

P34. Jordanus De Nemore (around 1225–1237, Italy) found integers  and z so
that  i.e., , which can be written as

Since  is even, x and z must be of the same parity. This shows that
 and  are integers, but then this is the same as Pythagorean

triple problem and has in�inite number of integer solutions, namely from (6.8),
 Thus, it follows that

where  and are of different parity. (By expansion it follows that
 are in arithmetic progression). As an example, for  we

have  and hence  We also note
that  and we get the Pythagorean triple

 see Table 6.3. If we begin with the Pythagorean triple
 then  and the

equality  holds. Similarly, for the Pythagorean triple
 we have  and the

relation  holds. In conclusion, there is one-to-one
correspondence between Pythagorean triples and the solutions of

 For the same work, Dickson in [164] refers to A. Guibert’s
(France) problem of 1862.

We can also �ind integer solutions of the equation  where
 Since  we must have

, which gives
, which is better written as

If we let , then  and this gives
 If we take  then 

which on dividing by 8 gives  and we have the identity
 Finally, if we take , then after dividing by 

we obtain  and the equality 

 

P35. The origin of De Nemore’s problem comes from Diophantus’ Problem II-19,
which states: Find three squares such that the difference between the greatest  



and the middle has a given ratio  to the difference between the middle and
the least. If we let nonzero real numbers  such that , then
we need to �ind the solution of the equation

(6.20)

where  It is clear that if  is a solution of (6.20), then
 is also a solution. Thus, it suf�ices to consider only integer

solutions of (6.20). The case  has been discussed in P34, so we will
mainly take up the case when  We rewrite (6.20) as

which leads to the equations

Solving these equations, we get

(6.21)

where r is an arbitrary positive real number, it will be chosen so that 
and z are integers with  Using (6.21) in both sides of (6.20),
we �ind

(6.22)

Thus,  holds provided  If  or  we have
, which is an empty case. If , then we have 

and in such a case we rewrite (6.20) as

(6.23)

If , then once again we have  and hence, (6.20)
holds. If  then we have , which is again an empty case.
Finally, if , then we �ind  and therefore (6.23) holds.

If  and  is a natural number, then from (6.21), we
�ind

which gives Plato’s characterization of the Pythagorean triples (6.6). For
 from (6.21) we get  so

we choose  to obtain  and from (6.20) we have the
equality  For  from (6.21) we get

 and we choose  so that



 and from (6.23) we get the equality
 For  (6.21) reduces to

 Thus, in particular, for 
and  we have  and from (6.20) follows the
equality  For  and

 (6.21) gives  and from (6.23) we have the
equality 

Diophantus gives only one solution for  that is,
 (the common factor  can be removed).

Unfortunately, this solution cannot be obtained from (6.21). Thus, (6.21) does
not generate all solutions of (6.20). Extending Diophantus’ method, we assume
that  and  then the Eq. (6.20) gives

(6.24)

where  so that  It follows that

For  from (6.24) we get  i.e.,
, which is the same as Diophantus’ solution.

Similarly, for  we get 
P36. For each  equation  has an in�inite number of solutions. The

case  has been discussed in Theorem 4.14, also see P28, whereas for
 it is Pythagorean relation (5. 1). For  we begin with an arbitrary c,

which can be written as the sum of two squares, i.e.,

and note that

In particular, we have

 



and

For  the aforementioned relations, respectively, give
 and 

Now we shall show that for each  equation  has an
in�inite number of solutions. We assume that c and b are relatively prime, and
rewrite the equation as  Then, there exist
integers u and v such that  and  Hence, 
and  In particular, if a is odd, we can choose  and 
As a simple example, we consider Pythagorean consecutive triangular numbers

 (see Sect. 7. 2). Since  the
equation  has an in�inite number of solutions. Similarly, we can
show that for each  equation  has an in�inite number of
solutions.

6.5	 Construction	of	Right-Angled	Triangles
For the construction of right-angled triangles whose sides are rational numbers or
rational cyclic quadrilaterals (all vertices lie on a single circle), Brahmagupta gave
the solution (6.8), where u and v are unequal rational numbers. In particular, for a
given rational side  Brahmagupta’s solution is

(6.25)

where n is a rational number different from zero. Bhaskara II and Mahavira gave the
solution

(6.26)

where m is any rational number other than 
The eighth problem in the second book of the Arithmetica of Diophantus is to

express 16 as a sum of two rational squares. For this, in the identity

which follows from (6.26), he used  and  and obtained

According to Datta [152] and Puttaswamy [421], Karavindaswami’s (nothing
seems to be known about him except summary of his mathematical work) solution is

(6.27)



where m is any rational number other than  It is interesting to note that these
solutions can easily be deduced from (6.25). Indeed, for  (6.25) becomes
(6.26), whereas for  it reduces to (6.27).

For the given rational hypotenuse c, Mahavira constructed a rational right-angled
triangle. His solution is

whereas Bhaskara II gives the solution as

which readily follows from Mahavira’s solution by putting . These solutions
were later attributed to the Fibonacci and Viéte, respectively.

6.6	 Heronian	Triangles
A Heronian	triangle  (see Carlson [116]) has integer sides whose area is also
an integer. Since in a Pythagorean triple at least one of the legs  must be even, the
area  is an integer, every Pythagorean triple is a Heronian triple; however,
the converse is not true the Heronian triple  has the area 24, but it is not a
Pythagorean triple. These triangles are named because such triangles are related to
Heron’s (Bhaskara I) formula  where

 Finding a Heronian triangle is therefore equivalent to solving the
Diophantine equation  As for Pythagorean triples, if

 is a Heronian triple, so is  The Heronian triple  is
called primitive provided  are pairwise relatively prime. There are in�initely
many primitive Heronian triples.

Brahmagupta acquired the parametric solution such that every Heronian triangle
has sides proportional to

where  and  The proportionality factor is
generally a rational  where  reduces the generated Heronian
triangle to its primitive and p scales up this primitive to the required size. For
example, taking  and  produces a triangle with  and

 which is similar to the  primitive Heronian triangle with the
proportionality factors  and  It is known that the perimeter of a
Heronian triangle is always an even number, and every primitive Heronian triangle



has exactly one even side. The area of a Heronian triangle is always divisible by 6.
Further, by Heron’s formula, it follows that a triple  with  is
Heronian if  is a nonzero perfect square divisible by

Few primitive Heronian triangles, which are not Pythagorean triples, sorted by
increasing areas are

6.7	 Congruent	Numbers
A congruent number n is a positive integer that is equal to the area of a rational right
triangle, i.e., it is a rational	solution of the equation (5. 1), which in addition satis�ies
the equation  Clearly, every Pythagorean triple (primitive as well
as non-primitive) gives a congruent number, but in view of P3 and P37 (see Sect.
6.8), A and hence n cannot be a perfect square. Thus,  cannot be
congruent numbers. If n is a congruent number, i.e.,  then  is
also a congruent number for any positive integer  indeed it follows from the facts
that

imply  Thus, the main interest is in square-free congruent numbers.
Fermat in 1640 proved that there is no right triangle with rational sides and area 
he also showed that 2 and 3 are not congruent numbers. From an Arab manuscript of
the tenth century, it is known that 5 and 6 are congruent numbers. In fact, we have

and the �irst Pythagorean triple  gives the number  We also have

and, see Conrad [137],



i.e., the same congruent number can have several (may be in�inite) rational right
triangles. The �irst ten congruent numbers are  Zagier
computed the simplest rational right triangle, see Fig. 6.2, for the congruent number
157 (the same has also appeared at several places, e.g., Ann [32], Veljan [518], and
Andrew Wiles [534])

Fig.	6.2 Congruent number 157
where

and

In 1983, Jerrold Bates Tunnell (1950–2022, USA) proved the following result
(known as Tunnell’s Theorem): For a given square-free integer  de�ine the
numbers

Assume that n is a congruent number, if n is odd, then  and if n is even,
then  For example, for  we have 
and  and hence  Also,

 and hence  Since
 the number  is not congruent. Similarly, for

 we have  and
 and hence  Also,
 and hence . Since , the number



 is not congruent. To prove the converse of Tunnell’s Theorem (known as
Tunnell’s conjecture), only some progress has been made.

While in 1986, Kramarz [314] has listed all congruent numbers up to less than
2000, an easier technique to decide if a given positive integer n is congruent remains
an open number-theoretic problem. The relation of this problem to elliptic curves
has been studied extensively, see Koblitz [311]. Also, its beautiful equivalent form: n
is a congruent number, if and only if,

has solutions, further, if  is a solution, then

is only of theoretical interset.

6.8	 Fermat’s	Last	Theorem
In the literature Fermat’s claim (intellectual curiosity) of 1637 found by his son
Samuel, that the equation

(6.28)
has no positive integer solutions for  and c if  is known as Fermat’s Last
Theorem (“last” because it took longer than any other conjecture by Fermat to be
proven, �inally by Andrew Wiles in 1994, published in 1995 in [533]). Thus, a cube
cannot be written as the sum of two smaller cubes, a fourth power cannot be written
as the sum of two fourth powers, and so on. In his personal copy of Diophantus’s
Arithmetica, Fermat just commented that he had discovered a “truly marvelous”
proof of this fact, but the margin of the book was too narrow for him to jot it down! It
is believed that Fermat himself had a proof for  and Euler in 1753 (published
in 1770) succeeded for the more dif�icult case of  (this case can also be settled
by using the method of in�inite descent, e.g., see Carmichael [117, 118]). Gauss
refused to prove Fermat’s Last Theorem, remarking tartly that he himself could state
a great many theorems that nobody could prove or disprove. In 1820s, Sophie
Germain showed that (6.28) has no solution when abc is not divisible by n for n any
odd prime less than 100; however, her method did not help to prove the theorem in
the case when one of  is divisible by  In 1825, Legendre and Dirichlet
independently succeeded in proving the theorem for . In 1832, Dirichlet settled
the theorem for , and in 1839, Lamé resolved the problem for  For each
of these cases, several alternative proofs were developed later by many prominent
mathematicians including Gauss for , but none of these proofs worked for the
general case.

A signi�icant contribution toward a proof of Fermat’s Last Theorem was made
during 1850–1861 by the German mathematician Kummer. Inspired by Gauss’s proof



for the case  using algebraic integers, Kummer invented the concept of ideal
numbers (different from the ideal number 5040 due to Plato), which is destined to
play a key role in the development of modern algebra and number theory. Using this,
Kummer proved that Fermat’s Last Theorem holds when n is a prime number of a
certain type, known as regular primes (see Bernoulli numbers in Sect. 7. 3). The
power of Kummer’s result is indicated by the fact that the smallest prime that is not
regular is 37. Thus, the cases  and 31 (and many
others) are disposed of all at once. In fact, the only primes less than 100 that are not
regular are  and 67. Unfortunately, there are still in�initely many primes that
are not regular.

In 1850, the Paris Academy offered a prize of a gold medal valued at 3000 francs
for a complete solution of Fermat’s last theorem. When no proof was forthcoming,
even on extension of the terminal date, the medal was awarded to Kummer as the
author whose research most merited the prize, even though he had not submitted an
entry in the competition. In 1908, a sensational announcement was made that a prize
of 100,000 German Marks would be awarded for the complete solution of Fermat’s
problem. The funds for this prize, which was the largest ever offered in mathematics,
were bequeathed by a German industrialist and amateur mathematician Paul
Friedrich Wolfskehl (1856–1906) to the “Konigliche Gesellschaft der Wissenschaften
in Göttingen” for this purpose. This announcement drew so much attention that
during a brief span of three years (1908–1911) over a thousand papers containing
supposed solutions reached the committee. But unfortunately, all were wrong. Since
then, the number of papers submitted for this prize became so large that they would
�ill a library. The Committee then very wisely included as one of the conditions that
the article be printed, otherwise the number would have been still larger. When
Hilbert was asked why he never attempted a proof of the Last Theorem, he replied:
“Before beginning I should have to put in three years of intensive study, and I haven’t
that much time to squander on a probable failure.”

In 1983, Gerd Faltings (born 1954, Germany) proved a very decisive result: for
 Eq. (6.28) can have at most a �inite number of integer solutions. March 1988

issue of Time Magazine reported that the Japanese mathematician Yoichi Miyaoka
(born 1949), working at the Max Plank Institute in Bonn, Germany, had discovered
the proof of the theorem. However, his announcement turned out to be premature, as
a few weeks later holes were found in his argument that could not be repaired.
Episodes like this had indeed occurred many times in the three-and-a-half century
history of this famous problem. It is said that the Landau had printed post cards,
which read, “Dear Sir/Madam: Your attempted proof of Fermat’s Theorem has been
received and is herewith returned. The mistake is on page —–, line —–.” Landau
would give them to his students to �ill in the missing numbers. From 1977 to 1992
with the help of computers, Fermat’s Last Theorem was veri�ied up to 

The crowning mathematical achievements of the twentieth century occurred on
June 23, 1993, when Andrew Wiles, a Cambridge trained mathematician working at
Princeton University, announced the proof of the theorem. He worked on the
problem for 8 whole years, often in seclusion and doing nothing else. In developing



his solution scheme, Andrew Wiles employed theories from many branches of
mathematics: crystalline cohomology, Galöis representation, L-functions, modular
forms, deformation theory, Gorenstein rings  and relied on research �indings from
colleagues in France, Germany, Italy, Japan, Australia, Columbia, Brazil, Russia, the
United States  However, soon after Wiles’s Cambridge announcement, gaps in
his 200-page-long proof (it would be 1000 pages if all details are provided) surfaced.
Fortunately this time, with the help from his colleagues, most notably his ex-student
Richard Taylor (born 1962, Rngland-USA), Wiles �inally �illed these gaps after
another years’s hard work. In 1994, Fermat’s Last Theorem is �inally resolved. In
1997, Andrew Wiles was awarded long time unclaimed award whose worth then was
$40,000. However, now the world awaits a simpler proof.

Fermat’s last theorem is a very special case of a central problem in Diophantine
analysis. It is required to devise criteria to decide in a �inite number of non-tentative
steps whether or not a given Diophantine equation is solvable. Fermat’s Last
Theorem may not seem to be a deeply earth-shattering result. Its importance lies in
the fact that it has captured the imagination of some of the most brilliant minds over
350 years and their attempts at solving this conundrum, no matter how incomplete
or futile, have led to the development of some of the most important branches of
modern mathematics. It is to be noted that Brahmagupta and Bhaskara II had
addressed themselves to some of Fermat’s problems long before they were thought
of in the West and had solved them thoroughly. They have not held a proper place in
mathematical history, or received credit for their problems and methods of solution.
André Weil in 1984 [530] wrote “What would have been Fermat’s astonishment, if
some missionary, just back from India, had told him that his problem had been
successfully tackled by native mathematicians almost six centuries earlier.”

Proving Fermat’s Last Theorem for a given exponent  also settles it for any
multiple of  For example, knowing that  is impossible in positive
integers also covers the case  since if we had  then

 would satisfy the �irst equation. Similarly, if we had
, then  will lead to the �irst equation. Thus, to

prove Fermat’s Last Theorem in general, it suf�ices to prove that (6.28) has no
positive integer solutions for  and for any value of n that is an odd prime. The
case  is the only one for which a short proof is known.

For this, �irst we shall use Fermat’s method of in�inite descent to show that there
are no positive integers  and c such that  To obtain a contradiction,
suppose there are such integers. Let us take such a triple with the product ab
minimized. Then  Since  and c are the sides of a primitive
Pythagorean triangle, exactly one of a and b is even. Without loss of generality, let us
assume that a is even. By (6.8), there are positive integers u and  not both odd,
with  such that  and  Since  and b
is odd, v must be even. Since  and  it follows that 2v and u are
squares. Thus  for some positive integer p. Again by (6.8), there are positive
integers s and  not both odd, with  such that  and 



. Since 2v is a square, so is . Thus, there are positive integers x and y
such that  and  The fact that  implies that 
Moreover,  so that  But this
contradicts the minimality of  From this, it immediately follows that 
has no solution in positive integers. Indeed, if  is a solution of ,
then  is a solution of 

Fermat’s method of in�inite descent also applies to show that there are no
positive integers  and c such that  (see Burton [111]). Now since
none of the equations  has a solution, it is
clear that in a Pythagorean triple  at most one of the members can be perfect
square. However, there exist Pythagorean triples (not necessarily primitive) whose
sides if increased by 1 are squares. For example,

. It is not known whether in�initively
many such triples exist. We can also deduce that the equations

 and  do not have solutions in positive
integers.

For further comments on Fermat’s Last Theorem, see Cox [142], Dickson [163],
Edwards [176], and Ribenboim [431].
P37. In P3 we mentioned that the area  of a primitive Pythagorean

triangle  can never be a square number. To show this assume that
, which is the same as  Adding and subtracting this

relation from  gives

Multiplying these relations, we �ind

which is impossible.

 

P38. If n is an integer greater than  and b are the lengths of the legs of a right
triangle, and c is the length of the hypotenuse, then  Indeed, we
have  Since  and  it
follows that  Consequently, 

 

6.9	 Pythagorean	Quadruple
A tuple of four integers  and d such that  is called
Pythagorean quadruple, and  is called primitive if the greatest common
divisor of its numbers is  The set of primitive Pythagorean quadruples for which a
is odd can be generated by (see Carmichael [117, 118] and Spira [493])



where  are non-negative integers with greatest common divisor 1 such that
 is odd. Thus, all primitive Pythagorean quadruples are characterized

by Lebesgue	identity

As an example, for  we have 
and hence  is a primitive Pythagorean quadruple. Indeed we have the
identity  Besides , there are 30 more primitive
Pythagorean quadruples in which all entries are less than 30 (see https:// en. 
wikipedia. org/ wiki/ Pythagorean_ quadruple)

Quadruple  can also be obtained by the simple identities

(6.29)

(6.30)

For example, from (6.29), for  this identity reduces to
 Thus, we get back the quadruple  From (6.30),

for  we get , and hence, we �ind the quadruple

6.10	 Generalized	Identities
Euler-Aida Ammei (1747–1817, Japan) identity

(6.31)

implies that the sum of  squares is the square of the sum of  squares.
Identity (6.31) for  gives (6.8), for

 it reduces to (6.29), and for
 it gives quintuples

(6.32)

For example, for  this identity reduces to
 Thus, dividing this relation by  we get the quintuple

https://en.wikipedia.org/wiki/Pythagorean_quadruple


Clearly, as in P28, equality (4. 20) can be used to �ind new four-square identities.
Around 1818, Carl Ferdinand Degen (1766–1825, Denmark) discovered the

eight-square identity

(6.33)

Clearly, for  equality (6.33) is the same as (6.31) with 
The equality (6.33) was independently rediscovered by John Thomas Graves (1806–
1870, Ireland) in 1843, and Cayley in 1845. In 1898, Adolf Hurwitz (1859–1919,
Germany) proved that there is no similar identity for 16 squares or any other
number of squares except for 1, 2, 4, and 8.

Ramanujan’s identity

(6.34)

parameterizes the sum of 3 cubes into a cube, i.e.,  has in�inite
number of integral solutions  known as Fermat’s cubic. The general
solution of this Diophantus equation was found by Euler and Viéte. Identity (6.34)
for  reduces to Euler’s equality  (this number is
known as Plato’s number, geometrical number, or nuptial number [the number of the
bride]), whereas for  it gives  The sum of 3 cubes
into a cube can also be parameterized as (see Hardy and Wright [250])

(6.35)

or as

(6.36)

For  identities (6.35) and (6.36), respectively, reduce to
 (which is the same as ) and
 (which is the same as given by (6.34)). Fermat’s cubic

 and  were known to Fibonacci. In 1920, Herbert William



Richmond (1963–1948, England) comprised a set of more than 100 Fermat’s cubic;
two of these sets are  and  A simple identity is

which immediately gives Fermat’s cubic  

6.11	 Generalizations	of	Fermat’s	Last	Theorem
In 1769, Euler made the conjecture that

(6.37)

implies  This conjecture makes an effort to generalize Fermat’s Last Theorem,
which in fact is a special case, indeed, if  then  In view of
Fermat’s Last Theorem and Sect. 6.10, Euler’s conjecture holds for  however, it
has been disproved for  and  and for  the answer is unknown. For
the cases  and 5 the known counterexamples are:

The following identities support Euler’s conjecture

Sastry also discovered the following parametric quintic identity

(6.38)



For sixth power summations several more identities are available at https:// 
mathworld. wolfram. com/ DiophantineEquat ion6thPowers. html

Euler gave a parametric solution of the equation

(6.39)

namely,

where a and b are any integers. Equation (6.39) has following 10 solutions with sum
 (see Guy [241])

From Euler’s parametric solution of (6.39) we cannot �ind a and b to obtain the
relation  However, one of Ramanujan’s parametrization

with  does give this relation (Hardy-Ramanujan	number). As we have noted
earlier, Hardy and Wright [250] proved that there are numbers that are expressible
as the sum of two cubes in n ways for any  For example, the numbers
representable in three ways as a sum of two cubes are

In 1773, Euler also proved that there exist in�initely many solutions of the
equation  while its smallest solution is (see Dunham [174])

Euler gave the following two solutions

https://mathworld.wolfram.com/DiophantineEquation6thPowers.html


The following equalities are provided by Guy [241].

The amount of effort necessary to �ind examples/counterexamples for
aforementioned type of equalities—even when the effort came from computers—
was then astonishing. In view of some of these equalities in 1967, LPS made the
following conjecture: If

(6.40)

where  are positive integers for all  and  then
 Clearly, for  (6.40) is the same as relation (6.37), but then

In 1985, Joseph Oesterló (born 1954, France) and David William Masser (born
1948, England) proposed a generalization of Fermat’s Last Theorem, which in the
literature is known as abc conjecture: For any in�initesimal , there exists a
constant  such that for any three relatively prime integers  satisfying

 the inequality

holds, where  indicates that the product is over primes p, which divide the
product abc. There are several equivalent forms of this conjecture, and it has been
called the most important unsolved problem in Diophantine analysis. In 2012, the
Japanese mathematician Shinichi Mochizuki (born 1969) released online a series of
papers in which he claimed to have proved the abc conjecture. Despite the
publication in a peer-reviewed Journal later, his proof has not been accepted as
correct in the mainstream mathematical community.



In 1993, Daniel Andrew Beal (born 1952, USA) formulated the following
conjecture: The equation  has no solutions in positive integers and
pairwise coprime integers  if  Clearly, Beal’s	conjecture is a
generalization of Fermat’s Last Theorem. Since 1997, Beal has offered a monetary
prize for a peer-reviewed proof of this conjecture or a counterexample. The value of
the prize has increased several times and is currently $1 million.

6.12	 Catalan’s	and	Pillai’s	Conjectures
In 1844, Catalan combined the squares of integral numbers  with
the sequences of cubic numbers  to obtain

 and made the conjecture that 8 and 9 are the only
numbers that differ by 1 and are both exact powers . This conjecture
was proved by Preda Mihăilescu (Born 1955) after 158 years, and published 2 years
later in [370]. Thus the only solution in natural numbers of the Diophantine equation

 for  is  In 1931, Pillai
conjectured that for �ixed positive integers  the Diophantine equation

 has only �initely many solutions  with 
Clearly, Pillai’s conjecture is a generalization of Catalan’s conjecture. So far for the
Pillai’s conjecture number of solutions have been calculated only for some particular
cases. In fact, from the seventeeth century, Bachet and several others studied the
particular cases of the Bachet equation  where k is a given nonzero
integer. The origin of this equation goes back to Diophantus’s Arithmetica.

It was only in 1968 that Alan Baker (1939–2018, England) found a completely
general solution, working for any given  At �irst, Baker’s solution was merely an
enormous bound  on the sizes of x and  However, soon after, Baker and other
mathematicians, such as Davenport, transformed Baker’s insights into a practical
method for actually obtaining a solution set for any given  William John Ellison
(1943–2022, England) used Baker’s ideas to show, for the �irst time, that when

 the Bachet equation has only three solutions in positive integers
 Raymond P. Steiner (1941–2014, USA)

used a version of Baker’s result, due to Michel Waldschmidt (born 1946, France) to
show that when  the Bachet equation has only six solutions in positive
integers  In
his monograph Stolarsky [497] had claimed that the equation  could
not be solved by “a thousand wise men.” Alan Baker was wise man a thousand and
one.
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7.1	 Introduction	and	Origin
Pythagoras and his several followers, especially, Hipparchus, Plutarch,
Nicomachus, and Theon, portrayed natural numbers in orderly
geometrical con�iguration of points/dots/pebbles and labeled them as
�igurative	numbers. From these arrangements they deduced some
astonishing number-theoretic results. This was indeed the beginning of
number theory and an attempt to relate geometry with arithmetic.
Nicomachus in his book (see [394]) collected earlier works of
Pythagoreans on natural numbers and presented cubic �igurative
numbers (solid numbers). Thus, �igurate numbers had been studied by
the ancient Greeks for polygonal numbers (the �irst general de�inition of
polygonal numbers was given by Hypsicles and was quoted by
Diophantus), pyramidal numbers, and cubes. The connection between
regular geometric �igures and the corresponding sequences of �igurative
numbers was profoundly signi�icant in Plato’s science, after Plato, for
example, in his work Timaeus. The study of �igurative numbers was
further advanced by Diophantus. His main interest was in �igurate
numbers based on the Platonic solids (tetrahedron, cube, octahedron,
dodecahedron, and icosahedron), which he documented in De	solidorum
elementis. However, this treatise was lost and rediscovered only in 1860.
Dicuilus wrote Astronomical	Treatise in Latin about 814–816, which
contains a chapter on triangular and square numbers, see Ross and
Knott [436].

https://doi.org/10.1007/978-3-031-74224-8_7


After Diophantus’s work several prominent mathematicians took
interest in �igurative numbers, the long list includes: Fibonacci, Stifel,
Cardano, Faulhaber, Bachet, Descartes, Fermat, Pell. In 1665, Pascal
wrote the Traité	du	triangle	arithmétique,	avec	quelques	autres	petits
traitez	sur	la	mesme	matiére (Treaty of arithmetic triangle, with a few
other small treatise on the same subject), which contains some details of
�igurate numbers. Work of Euler and Lagrange on �igurate numbers
opened new avenues in number theory. Octahedral numbers were
extensively examined by Friedrich Wilhelm Marpurg (1718–1795,
Germany) in 1774 and Georg Simon Klügel (1739–1812, Germany) in
1808. The Pythagoreans could not have anticipated that �igurative
numbers would engage after 2000 years leading scholars such as
Legendre, Gauss, Cauchy, Jacobi, and Sierpinski. In 2011, Michel Marie
Deza (1939–2016, Russia–France) and Elena Deza (Russia) in their book
[162] have given an extensive information about �igurative numbers.

In this chapter, we shall systematically discuss most popular
polygonal, centered polygonal, three-dimensional numbers (including
pyramidal numbers), and four-dimensional �igurative numbers. We shall
begin with triangular numbers and end this chapter with pentatope
numbers. For each type of polygonal �igurative numbers, we shall
provide de�inition in terms of a sequence, possible sketch, explicit
formula, possible relations within the class of numbers through simple
recurrence relations, properties of these numbers, generating function,
sum of �irst �inite numbers, sum of all their inverses, and relations with
other type of polygonal �igurative numbers. For each other type of
�igurative numbers mainly we shall furnish de�inition in terms of a
sequence, possible sketch, explicit formula, generating function, sum of
�irst �inite numbers, and sum of all their inverses. The study of �igurative
numbers is interesting in its own sack, and often these numbers occur in
real-world situations. We sincerely hope after reading this chapter it will
be possible to �ind new representations, patterns, and relations with
other types of popular numbers, which are not discussed here,
extensions, and real applications.

7.2	 Triangular	Numbers	
In this arrangement, rows contain  dots (see Fig. 7.1).



Fig.	7.1 Triangular numbers
From Fig. 7.1, it follows that each new triangular number is obtained

from the previous triangular number by adding another row containing
one more dot than the previous row added, and hence,  is the sum of
the �irst n positive integers, i.e.,

(7.1)

i.e., the differences between successive triangular numbers produce the
sequence of natural numbers. To �ind the sum in (7.1), we shall discuss
two methods that are ingenious.

Method 1. Since

An addition of these two arrangements immediately gives

and hence

(7.2)

Thus, it immediately follows that

This method was �irst employed by Gauss. The story is his elementary
school teacher asked the class to add up the numbers from 1 to 100,
expecting to keep them busy for a long time. Young Gauss found the
formula (7.2) instantly and wrote down the correct answer 5050.

Method 2. From Fig. 7.2 Proof	without	words of (7.2) is immediate,
see Alsina and Nelsen [27]. However, a needless explanation is a
“stairstep” con�iguration made up of one block plus two blocks plus
three blocks, etc, replicated it as the shaded section in Fig. 7.2, and �it
them together to form an  rectangular array. Because the



rectangle is made of two identical stairsteps (each representing ) and
the rectangle’s area is the product of base and height—that is, 
—then the stairstep’s area must be half of the rectangle’s, and hence
(7.2) holds.

Fig.	7.2 Proof of (7.2) without words
To prove (7.2), the principle of mathematical induction is routinely

used. The relation (7.1) is a special case of an arithmetic progression of
the �inite sequence  where  or

 i.e.,

(7.3)

For this, following the Method 1, it immediately follows that

(7.4)

Thus, the mean value of the series is , which is
similar as in discrete uniform distribution. For  (7.3) reduces
to (7.1), and (7.4) becomes the same as (7.2). From (7.4), it is also clear
that

(7.5)



Aryabhata besides giving the formula (7.4) also obtained n in terms
of  namely,

(7.6)

He also provided elegant results for the summation of series of squares
and cubes. Instead of adding the aforementioned �inite arithmetic series

, we can multiply its terms, which in terms of Gamma function 
can be written as

(7.7)

provided  is positive.

The following equalities between triangular numbers can be proved
rather easily.

The triangular number  solves the handshake	problem of counting
the number of handshakes if each person in a room with 
people shakes hands once with each person. Similarly a fully
connected network of  computing devices requires 
connections. The triangular number  also provides the number of
games played by  teams in a Round-Robin	Tournament in
which each team plays every other team exactly once and no ties are
allowed. Further, the triangular number  is the number of ordered
pairs  where  For an  sided-polygon, the
number of diagonals is . From
Fig. 7.1, it follows that the number of line segments between closest



pairs of dots in the triangles are  or
recursively,  Thus, for example,

 A problem of Rudolff reads: I am owed 3240 �lorins. The
debtor pays me 1 �lorin the �irst day, 2 the second day, 3 the third day,
and so on. How many days it takes to pay off the debt? (80 days). As
we have noted earlier for the Pythagoreans, the fourth triangular
number  (decade) tetraktys (see Fig. 2. 5 and its connected
form Fig. 7.3) was most signi�icant of all. The 36th triangular number
is 666 and the 666th triangular number, i.e.,  is  On
triangular numbers an interesting article is due to Garge and Shirali
[209].

Fig.	7.3 Connected form of tetraktys
Figure 7.3 is actually a connected pentagram, see Fig. 1. 1. The Lute	of

Pythagoras is a self-similar geometric �igure made from a sequence of
such pentagrams, see Price [419].

No triangular number has as its last digit (unit digit)  or  For
this, let , then  here

 Thus, it follows that
 This relation gives only

choices for k as  and 
We shall show that for an integer  repeats
every k steps if k is odd, and every 2k steps if k is even, i.e., if  is the
smallest positive integer such that for all integers n

(7.8)

then  if k is odd, and  if k is even. For this, note that



and hence if (7.8) holds, then

For  and  the above equation respectively gives

Combining these two relations, we �ind

and hence

(7.9)

Now if k is odd, then in view of  is an integer, we have

This implies that  because  is the smallest integer for which
(7.8) holds. But, then from (7.9) it follows that 

If k is even, then  is odd, and so 
Thus,  but

and so 2k satis�ies (7.8). This implies that  which again from
(7.9) gives 

For example, for  we have

and for 

Triangular numbers and binomial coef�icients are related by the
relation



Thus, triangular numbers are associated with Pascal’s triangle

In 1989, Tzanakis and de Weger [514] showed that the only triangular
numbers that are the product of three consecutive integers are

  
  and

There are 28 palindromic	triangular	numbers less than  namely,
1, 3, 6, 55, 66, 171, 595, 666, 3003, 5995, 8778, 15051, 66066,
617716, 828828, 1269621, 1680861, 3544453, 5073705, 5676765,
6295926, 351335153, 61477416, 178727871, 1264114621,
1634004361, 5289009825, 6172882716. The largest known
palindromic triangular numbers containing only odd digits and even
digits are  and

 It is known, see Trigg [512], that an
in�inity of palindromic triangular numbers exist in several different
bases, for example, three, �ive, and nine; however, no in�inite sequence
of such numbers has been found in base 10.
Let m be a given natural number, then it is nth triangular number, i.e.,

 if and only if  This means if and only
if  is a perfect square.
If n is a triangular number, then  and  are
also triangular numbers. This result of 1775 is due to Euler. Indeed, if



 then  and
 An extension of Euler’s result is the identity

i.e.,

From the identity

it follows that if n is the sum of two triangular numbers, then 
is a sum of two squares.
Differentiating the expansion  twice, we get

(7.10)

and hence,

Hence,  is the generating	function of all triangular
numbers. In 1995, Neil James Alexander Sloane (born 1939, England–
USA) and Simon Plouffe (born 1956, Canada) [483] have shown that

Also note that

This curious observation was made by Jacobi.



To �ind the sum of the �irst n triangular numbers, we need an
expression for  (a general reference for the summation of
series is Davis [155]). For this, we begin with Pascal’s identity

and hence,

which in view of (7.2) gives

(7.11)

Archimedes as proposition 10 in his text On	Spirals stated the
formula

(7.12)

from which (7.11) is immediate. It is believed that he obtained (7.12) by
letting k the successive values  in the relation

and adding the resulting  equations, together with the identity
 to arrive at

(7.13)

Next, letting  in the formula

and adding n equations to get

(7.14)

From (7.13) and (7.14), the formula (7.12) follows.
Another proof of (7.11) is given by Fibonacci. He begins with the

identity



and takes  to get the set of equations

On adding these n equations and canceling the common terms, (7.11)
follows.

Now from (7.2) and (7.11), we have

(7.15)

Relation (7.15) is due to Aryabhata.
For an alternative proof of (7.15), we note that

and hence, in view of (7.11), we have

From (7.15) it follows that

which in particular for  gives  i.e.,
three successive triangular numbers whose sum is a perfect square.
Similarly, we have 

From (7.15), we also have  which means
 divides  if 



The reciprocal of the -th triangular number is related to the
integral

The sum of reciprocals of the �irst n triangular numbers is

(7.16)

and hence

(7.17)

The series  appeared in a 1644 work of Evangelista
Torricelli (1608–1647, Italy). Jacob Bernoulli in 1689 summed
numerous convergent series, the aforementioned is one of the
examples. In the literature, this procedure is now called telescoping,
also see Lesko [342].
In 1575 it was observed that 
i.e., every known even perfect number is also a triangular number. For
example, 
We shall show that for  Fermat number  is never a triangular
number, i.e., there is no integer m that satis�ies

 This means the discriminant of the equation
 is not an integer. Suppose to contrary that

there exists an integer p such that , but then
, which implies that there exist

integers r and s such that  and  Hence, we have
 for which the only solution is  This means,

 or  which is true only for 
A trapezoidal	number is a sum of two ore more consecutive positive
integers, greater than 1, i.e.,



For example,  are trapezoidal
numbers. Any trapezoidal number is a difference of two non-
consecutive triangular numbers, in fact,

A polite	number is a positive integer that can be represented as the
sum of two or more consecutive positive integers. Thus, if such polite
representation starts with 1, we obtain a triangular number,
otherwise one gets a trapezoidal number. The �irst few polite numbers
are  Impolite	numbers, i.e., positive
integers, which are not polite, are exactly the powers of two. The �irst
few impolite numbers are 
Using mathematical induction we shall show that

(7.18)

The initial step, i.e., for  relation (7.18) is obviously true. For the
inductive step, we assume (7.18) is true for n and need to show that it
is also true for  For this, we have

We shall �ind all square	triangular	numbers, i.e., all positive integers n
and the corresponding m so that  This equation can
be written as Pell’s equation (see P22)  where

 and  We note that if  is an
integer solution of , then  de�ined by the
recurrence relations



(7.19)

satisfy

and hence  From this observation we conclude that if
 is an integer solution of  then so is

 Since 
is a solution of  (its fundamental solution is

), it follows that the iterative scheme

(7.20)

gives all solutions of  System (7.20) can be written as

(7.21)

Now in (7.21) using the the substitution  we
get

(7.22)

Clearly, (7.22) generates all (in�inite) solutions  of the equation
 First few of these solutions are

For  explicit solution of the system (7.22) can be computed
(for details see Agarwal [10, 18]) rather easily and appears as

(7.23)



This result is originally due to Euler, which he obtained in 1730. While
compared to the explicit solution (7.23), the computation of 
from the recurrence relations (7.22) is very simple, the following
interesting relation follows from (7.23) by direct substitution

(7.24)

Hence, the difference between two consecutive square triangular
numbers is the square root of another square triangular number. For
example, 

Now we note that the system (7.19) can be written as

and its (integer) solution is

(7.25)

From this and simple calculations, the following relations follow

Thus,  and  are perfect squares.
It is apparent that if  is a solution of  then

 is a solution of 
Now, if n is even, we have

(7.26)

and, when n is odd,

(7.27)



and hence, the right side is a perfect square for 
Therefore, the product of  consecutive triangular numbers is a
perfect square for each  and  In particular, for

 from (7.26) we have

and for  from (7.27), we �ind

Similarly, if n is even, we have

(7.28)

and hence, the right side is a perfect square for  (which is
always even). Therefore, two times the product of 2p consecutive
triangular numbers is a perfect square for each  and  In
particular, for  from (7.28) we have

and for  we �ind

From the equality

it follows that if the triangular number  is square, then  is also
square. Since  is square, it follows that there are in�inite number of
square triangular numbers. This clever observation was reported in
1662, see Pietenpol et. al. [410]. From this, the �irst four square
triangular numbers, we get are  and 



There are in�initely many triangular numbers that are simultaneously
expressible as the sum of two cubes and the difference of two cubes.
For this, Burton [111] begins with the identity

and observed that if k is odd then this equality can be written as

which is the same as

For  and 5 this gives

From Catalan’s conjecture we know that the only solution in natural
numbers of the Diophantine equation  for

 is  Now since
 can be written as  the only

solution of this equation is  i.e.,  is the only
cubic triangular number.
In 2001, Bennett [64] proved that if  and n are positive integers
with  then the equation  possesses at most
one solution in positive integers x and  This result is directly
applicable to show that for the equation  the
only solution is  For this, �irst we note that integers  and

 are coprime. We also recall that if the product of coprime
numbers is a pth power, then both are also of pthe power. Now let n be
even, i.e.,  then the equation  is the same as

 Thus, it follows that  and  and
hence , which has only one solution, namely,

 which gives  and hence  and so  is the
solution of , but we are not interested in this
solution. Now we assume that n is odd, i.e.,  then the



equation  is the same as 
Thus, we must have  and  which gives

 The only solution of this equation is  and
hence, again  and so  is the undesirable solution of

Startling generating	function of all square triangular numbers is
recorded by Plouffe [412] as

(7.29)

7.3	 Square	Numbers	
In this arrangement rows as well as columns contain 
dots, (see Fig. 7.4).

Fig.	7.4 Square numbers

From Fig. 7.4, it is clear that a square made up of  dots on a
side can be divided into a smaller square of side n and an L–shaped
border (a gnomon), which has  dots (called

th	gnomonic	number	and	denoted	as ), and hence

(7.30)

i.e., the differences between successive nested squares produce the
sequence of odd numbers. From (7.30) it follows that

and hence



(7.31)

An alternative proof of (7.31) is as follows

An addition of these two arrangements immediately gives

Figure 7.5 provides proof of (7.31) without words. Here odd integers
—one block, three blocks, �ive blocks, and so on—arranged in a special
way. We begin with a single block in the lower left corner; three shaded
blocks surrounded it to form a  square; �ive unshaded blocks
surround these to form a  square; with the next seven shaded
blocks we have a  square; and so on. The diagram makes clear that
the sum of consecutive odd integers will always yield a (geometric)
square.

Fig.	7.5 Proof of (7.31) without words

Comparing Figs. 7.1 and 7.4 or Figs. 7.2 and 7.5, it is clear that nth
square number is equal to the nth triangular number increased by its
predecessor, i.e.,

(7.32)

Indeed, we have

An addition of these two arrangements in view of (7.31) gives



Of course, directly from (7.1), (7.2), and (7.32), we also have

or simply from (7.1) and (7.2),

From (7.32), we �ind the identities

and

It also follows that

(7.33)

We also have equalities

(7.34)

(7.35)

and

(7.36)

which is the same as

and, in particular, for  reduces to



The following equality is of exceptional merit

(7.37)

which, in particular, for  gives 

Relation (7.30) reveals that every odd integer  is the
difference of two consecutive square numbers  and  Relation
(7.32) shows that every square integer  is a sum of two consecutive
triangular numbers  and , whereas (7.33) displays it is the
difference of 2nth and two times nth triangular numbers.
From the equalities

it follows that there are in�inite triples of consecutive numbers, which
can be written as the sum of two squares.
From (7.10) it follows that

and hence,

(7.38)

Therefore,  is the generating	function of all square
numbers. From (7.38) it also follows that the generating function for
all gnomonic numbers is

The sum of the �irst n square numbers is given in (7.11). For the exact
sum of the reciprocals of the �irst n square numbers, no formula
exists; however, the problem of summing exactly the reciprocals of all
square numbers is given in (5. 12) has a long history and in the
literature, it is known as the	Basel	problem (named after hometown of



Euler). This problem was posed by Pietro Mengoli (1626–1686, Italy)
in 1650. After unsuccessful attempts of Bernoulli family (also from
Basel), and several others from England, France, and Germany, in
1735, Euler considered the function , which has roots
at  Then, he wrote this function in terms of in�inite
product

(7.39)

which on equating the coef�icients of  gives

and hence,

thus (5. 12) holds.
The earlier demonstration of Euler is based on manipulations that

were not justi�ied at the time, and it was not until 1741 that he was able
to produce a truly rigorous proof. Now in the literature for (5. 12) several
different elementary proofs have been given, e.g., by Apostol in 1983,
Josef Ho�bauer (born 1956, Austria) in 2002, Robin Chapman (England)
in 2003, Hirschhorn in 2011, Zurab Silagadze (born 1957, Russia) in
2018, and Murty in 2019, see [383]. Basel problem appears in number
theory, e.g., if two positive integers are selected at random and
independently of each other, then the probability that they are relatively
prime is  The probability that a randomly selected
integer is square free is also  It is interesting to note that

 is also the length of the circumference of a circle whose diameter
equals the ratio of volume of an ellipsoid to the circumscribed cuboid,
also it is the length of the circumference of a circle whose diameter
equals the ratio of surface area of a sphere to the circumscribed cube.

Euler also established the following series



Later, Euler generalized the Basel problem considerably, in fact, for all
positive integers  he established

(7.40)

where  are Bernoulli	Numbers de�ined by

In general,  and  are obtained by the
recurrence relation

In particular, Euler established

Seki Kowa (1642–1708, Japan) also independently discovered the
Bernoulli numbers, and his result was published posthumously in 1712.

A prime p is said to be regular if it divides none of the numerators of
 when these numbers are written in their lowest

terms. Otherwise, p is said to be irregular. The odd regular primes
below 100 are

It is not known if there are an in�inite number of regular primes. Since

and  it follows that 37 is the
smallest irregular prime. Other irregular primes below 100 are 



In 1915, Kaj Løchte Jensen (Denmark) proved that there are in�initely
many irregular primes of the form  In 1954, Leonard Carlitz
(1907–1999, USA) gave a simple proof of the weaker result that there
are in general in�initely many irregular primes.
In 1840, Karl Georg Christian von Staudt (1798–1867, Germany) and
Thomas Clausen (1801–1885, Denmark) independently showed that

where G is an integer and  are all the primes p such that
 is an integer. For example,

 and

From (5. 1), (6. 8), and (7.32) the following relations hold

Further, from (6. 1) and (6. 2), respectively, we have

Similarly, we �ind the relation

which is the same as

In 1875, Lucas challenged the mathematical community to prove that
the only solution of the equation

with  is when  and . In the literature, this has
been termed as the cannonball problem; in fact, it can be visualized as
the problem of taking a square arrangement of cannonballs on the



ground and building a square pyramid out of them. It was only in
1918, George Neville Watson (1886–1965, England) used elliptic
functions to provide correct (�illing gaps in earlier attempts) proof of
Lucas assertion. Simpli�ied proofs of this result are available, e.g., in
Ma [353] and Anglin [31].
In 1942, Dutch mathematics teacher Albert E. Bosman (1891–1961)
used squares to construct the Pythagoras	Tree which is a plane fractal.

7.4	 Rectangular	(Oblong,	Pronic,	Heteromecic)
Numbers	
In this arrangement rows contain , whereas columns contain n
dots, see Fig. 7.6.

Fig.	7.6 Rectangular numbers

From Fig. 7.6 it is clear that the ratio  of the sides of
rectangles depends on  Further, we have

(7.41)
i.e., we add successive even numbers, or two times triangular numbers.
It also follows that rectangular number  is made from  by
adding an L–shaped border (a gnomon), with  dots, i.e.,

(7.42)

i.e., the differences between successive nested rectangular numbers
produce the sequence of even numbers.

Thus, the odd numbers generate a limited number of forms, namely
squares, while the even ones generate a multiplicity of rectangles, which
are not similar. From this the Pythagoreans deduced the following
correspondence:



We also have the relations

(7.43)

(7.44)

From (7.31) and (7.43), it follows that

Relation (7.41) shows that the product of two consecutive positive
integers n and  is the same as two times nth triangular
numbers. According to historians with this relation, Pythagoreans’
enthusiasm was endless. Relation (7.42) reveals that every even
integer 2n is the difference of two consecutive rectangular numbers

 and  Relation (7.43) displays that every positive integer n is
the difference of nth and -th triangular numbers. Relation
(7.44) is due to Plutarch), it says an integer n is a triangular number if
and only if  is a perfect odd square, also if a triangular number
is multiplied by  and 1 is added, then the result is a square number.
Let m be a given natural number, then it is nth rectangular number,
i.e.,  if and only if 
From (7.10) it is clear that  is the generating	function of
all rectangular numbers.
From (7.15)–(7.17) and (7.41) it is clear that

(7.45)

There is no rectangular number that is also a perfect square, in fact,
the equation  has no solutions (the product of two
consecutive integers cannot be a prefect square).



To �ind all rectangular	numbers	which	are	also	triangular	numbers, we
need to �ind integer solutions of the equation

. This equation can be written as Pell’s
equation  (its fundamental solution is )
where  and  For this, corresponding to (7.22)
the system is

(7.46)

This system generates all (in�inite) solutions  of the equation
 First few of these solutions are

For  explicit solution of the system (7.46) can be written as

In 1989, Ming [373] has used (7.44) to show that only Fibonacci
numbers  are also triangular numbers  This
conjecture was made by Verner Emil Hoggatt Jr. (1921–1980, USA) in
1971 (also see his book [266]). Similarly, only Lucas numbers, which
are also triangular are  i.e., 

7.5	 Pentagonal	Numbers	
The pentagonal numbers are de�ined by the sequence

 i.e., beginning with 5 each number is formed
from the previous one in the sequence by adding the next number in the
related sequence  Thus,

and so on (see Figs. 7.7 and 7.8).



Fig.	7.7 Pentagonal numbers

Fig.	7.8 Alternative form of pentagonal numbers
Thus, nth pentagonal number is de�ined as

(7.47)

Comparing (7.47) with (7.3), we have  and hence from (7.4)
it follows that

(7.48)

It is interesting to note that  is the sum of n integers starting from 
i.e.,

(7.49)

whose sum from (7.4) is the same as in (7.48).
Note that from (7.47), we have

From (7.32) and (7.48), we also have



(7.50)

Relation (7.48) shows that pentagonal number  is the one-third of
the -th triangular number, whereas relation (7.50) reveals
that it is the sum of nth triangular number and two times of -
th triangular number, and it is the difference of -th triangular
number and -th triangular number.
Let m be a given natural number, then it is nth pentagonal number, i.e.,

 if and only if 
As in (7.38), we have

and hence  is the generating	function of all
pentagonal numbers.
From (7.2), (7.11) and (7.48), it is easy to �ind the sum of the �irst n
pentagonal numbers

(7.51)

To �ind the sum of the reciprocals of all pentagonal numbers, we begin
with the series

and note that

Now since  we have



and hence

which immediately gives

(7.52)

To �ind all square	pentagonal	numbers, we need to �ind integer
solutions of the equation  This equation can be
written as Pell’s equation  (its fundamental solution is

), where  and  For this,
corresponding to (7.22) the system is

(7.53)

This system generates all (in�inite) solutions  of the equation
 First few of these solutions are

For  explicit solution of the system (7.53) can be written as

To �ind all pentagonal	numbers	which	are	also	triangular	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is )



where  and  For this, corresponding to (7.22)
the system is

(7.54)

This system generates all (in�inite) solutions  of the equation
 First few of these solutions are

For  explicit solution of the system (7.54) can be written as

To �ind all pentagonal	numbers,	which	are	also	rectangular	numbers,
we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is )
where  and  For this, corresponding to (7.22)
the system is

(7.55)

This system generates all (in�inite) solutions  of the equation
 First few of these solutions are

For  explicit solution of the system (7.55) can be written as



7.6	 Hexagonal	Numbers	
The hexagonal numbers are de�ined by the sequence

 i.e., beginning with 6 each number is formed from
the previous one in the sequence by adding the next number in the
related sequence  Thus,

and so on (see Fig. 7.9).

Fig.	7.9 Hexagonal numbers

Thus, nth hexagonal number is de�ined as

(7.56)

Comparing (7.56) with (7.3), we have  and hence from (7.4)
it follows that

(7.57)

From (7.57) it is clear that  i.e., alternating triangular
numbers are hexagonal numbers.
Let m be a given natural number, then it is nth hexagonal number, i.e.,

 if and only if 
As in (7.38), we have



and hence  is the generating	function of all
hexagonal numbers.
From (7.2), (7.11), and (7.57) it is easy to �ind the sum of the �irst n
hexagonal numbers

(7.58)

To �ind the sum of the reciprocals of all hexagonal numbers, as for
pentagonal numbers we begin with the series

 and get

(7.59)

To �ind all square	hexagonal	numbers, we need to �ind integer
solutions of the equation  This equation can be
written as Pell’s equation  (its fundamental solution is

), where  and  For this,
corresponding to (7.22) the system is

(7.60)

This system generates all (in�inite) solutions  of the equation
 First few of these solutions are

For  explicit solution of the system (7.60) appears as

here,  and  are as in (7.25).
To �ind all hexagonal	numbers	which	are	also	rectangular	numbers, we
need to �ind integer solutions of the equation 



This equation can be written as Pell’s equation  (its
fundamental solution is ) where  and

 For this, corresponding to (7.22) the system is

(7.61)

This system generates all (in�inite) solutions  of the equation
 First few of these solutions are

For  explicit solution of the system (7.61) can be written as

To �ind all hexagonal	numbers	which	are	also	pentagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is )
where  and  For this, corresponding to (7.22)
the system is

(7.62)

This system generates all (in�inite) solutions  of the equation
 First few of these solutions are

For  explicit solution of the system (7.62) can be written as



7.7	 Generalized	Pentagonal	Numbers
(Centered	Hexagonal	Numbers,	Hex	Numbers)

The generalized pentagonal numbers are de�ined by the sequence
 i.e., beginning with 7 each number is formed from

the previous one in the sequence by adding the next number in the
related sequence  Thus,

and so on (see Fig. 7.10). These numbers are also called centered
hexagonal numbers as these represent hexagons with a dot in the center
and all other dots surrounding the center dot in a hexagonal lattice.
These numbers have practical applications in materials logistics
management, for example, in packing round items into larger round
containers, such as Vienna sausages into round cans, or combining
individual wire strands into a cable.

Fig.	7.10 Generalized pentagonal numbers (centered hexagonal numbers)

Thus, nth generalized pentagonal number is de�ined as
(7.63)

Hence, from (7.2) it follows that

(7.64)

Incidentally,  occurs in uds (uniform data system) baryon
octet, whereas  makes a part of a Chinese checkers board.



Since  generalized pentagonal
numbers are differences of two consecutive cubes, so that the 
are the gnomon of the cubes.
Clearly, 
Let m be a given natural number, then it is nth generalized pentagonal
number, i.e.,  if and only if 
From (7.10) and (7.64), we have

and hence  is the generating	function of all
generalized pentagonal numbers.
From (7.15) and (7.64) it is easy to �ind the sum of the �irst n
generalized pentagonal numbers

(7.65)

Since from (7.32) and (7.43), we have

from (7.65) it follows that

(7.66)

Thus, the equation  has an in�inite number of integer
solutions. In fact, for each  equations  and

 have in�inite number of solutions (see P36).
To �ind the sum of the reciprocals of all generalized pentagonal
numbers, we need the following well-known result, e.g., see Andrews
et. al. [30], page 536, and Efthimiou [177]

(7.67)



Now from (7.67), we have

and hence,

(7.68)

To �ind all square	generalized	pentagonal	numbers, we need to �ind
integer solutions of the equation  This equation
can be written as Pell’s equation  (its fundamental
solution is ), where  and  For this,
corresponding to (7.22) the system is

(7.69)

This system generates all (in�inite) solutions  of the equation
 First few of these solutions are

For  explicit solution of the system (7.69) appears as



To �ind all generalized	pentagonal	numbers	which	are	also	triangular
numbers, we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is ),
where  and  For this, corresponding to (7.22)
the system is

(7.70)

This system generates all (in�inite) solutions  of the equation
 First few of these solutions are

For  explicit solution of the system (7.70) can be written as

There is no generalized pentagonal number, which is also a
rectangular number, in fact, the equation 
has no solutions. For this, we note that this equation can be written as
Pell’s equation  where  and 
Now reducing this equation to  gives , which
is impossible since all squares  are either 0 or 1 
To �ind all generalized	pentagonal	numbers	which	are	also	pentagonal
numbers, we need to �ind integer solutions of the equation

 This equation can also be written as
Pell’s equation  (its fundamental solution is

), where  and  For this,
corresponding to (7.22) the system is

(7.71)



This system generates all (in�inite) solutions  of the equation
 First few of these solutions are

For  explicit solution of the system (7.71) can be written as

To �ind all generalized	pentagonal	numbers,	which	are	also	hexagonal
numbers, we need to �ind integer solutions of the equation

 This equation can also be written as
Pell’s equation  (its fundamental solution is

), where  and  For this,
corresponding to (7.22) the system is

(7.72)

This system generates all (in�inite) solutions  of the equation
 First few of these solutions are

For  explicit solution of the system (7.72) can be written as

7.8	 Heptagonal	Numbers	(Heptagon	Numbers)



These numbers are de�ined by the sequence  i.e.,
beginning with 7 each number is formed from the previous one in the
sequence by adding the next number in the related sequence

 Thus,

and so on (see Fig. 7.11).

Fig.	7.11 Heptagonal numbers

Thus, nth heptagonal number is de�ined as

(7.73)

Comparing (76) with (7.3), we have  and hence from (7.4)
it follows that

(7.74)

For all integers  it follows that  and  are
odd, whereas  and  are even.
From (7.74) the following equality holds

Let m be a given natural number, then it is nth heptagonal number, i.e.,
 if and only if 

From (7.10) and (7.74), we have



and hence  is the generating	function of all
heptagonal numbers.
In view of (7.15) and (7.74), we have

(7.75)

The sum of reciprocals of all heptagonal numbers is (see https:// en. 
wikipedia. org/ wiki/ Heptagonal_ number)

(7.76)

To �ind all square	heptagonal	numbers, we need to �ind integer
solutions of the equation  This equation can be
written as Pell’s equation  (its fundamental solutions
are  and ), where  and

 For  corresponding to (7.22) the system is

(7.77)

This system generates in�inite number of solutions  of the
equation  First four of these solutions are

For  recurrence relations remain the same as in (7.77) with
 and  This leads to

another set of in�inite number of solutions  of the equation
 First four of these solutions are

https://en.wikipedia.org/wiki/Heptagonal_number


For , also recurrence relations remain the same as in (7.77)
with  and  This leads to
further set of in�inite number of solutions  of the equation

 First four of these solutions are

To �ind all heptagonal	numbers	which	are	also	triangular	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are 
and  where  and  For 
corresponding to (7.22) the system is

(7.78)

This system generates in�inite number of solutions  of the
equation  First four of these solutions
are

For  recurrence relations remain the same as in (7.78) with
 and  This leads to another set

of in�inite number of solutions  of the equation
 First four of these solutions are

To �ind all heptagonal	numbers	which	are	also	rectangular	numbers,
we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is ),
where  and  For this, corresponding to
(7.22) the system is



(7.79)

This system generates in�inite number of solutions  of the
equation  First four of these solutions are

To �ind all heptagonal	numbers,	which	are	also	pentagonal	numbers,
we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is 
), where  and  For this, corresponding to
(7.22) the system is

(7.80)

This system generates in�inite number of solutions  of the
equation  First few of these solutions
are

To �ind all heptagonal	numbers,	which	are	also	hexagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is ),
where  and  For this, corresponding to
(7.22) the system is

(7.81)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are



To �ind all heptagonal	numbers,	which	are	also	generalized	pentagonal
numbers, we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is ),
where  and  For this, corresponding to
(7.22) the system is

(7.82)

This system generates in�inite number of solutions  of the
equation  First few of these solutions
are

7.9	 Octagonal	Numbers	
These numbers are de�ined by the sequence

 i.e., beginning with 8 each number is
formed from the previous one in the sequence by adding the next
number in the related sequence  Thus,

and so on (see Fig. 7.12).

Fig.	7.12 Octagonal numbers

Thus, nth octagonal number is de�ined as



(7.83)

Comparing (7.83) with (7.3), we have , and hence, from
(7.4) it follows that

(7.84)

For all integers , it follows that  are odd, whereas 
are even (in fact divisible by 4).
Let m be a given natural number, then it is nth octagonal number, i.e.,

 if and only if 
From (7.10) and (7.84), we have

and hence  is the generating	function of all
octagonal numbers.
In view of (7.15) and (7.84), we have

(7.85)

To �ind the sum of the reciprocals of all octagonal numbers, following
Downey [169] we begin with the series

and note that

Thus, we have



Now since

it follows that

(7.86)

To �ind all square	octagonal	numbers, we need to �ind integer solutions
of the equation  This equation can be written as
Pell’s equation  (its fundamental solution is

 where  and  For this,
corresponding to (7.22) the system is

(7.87)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

To �ind all octagonal	numbers,	which	are	also	triangular	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are 



and ), where  and  For 
corresponding to (7.22) the system is

(7.88)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

For  recurrence relations remain the same as in (7.88) with
 and  This leads to another set of

in�inite number of solutions  of the equation
 First few of these solutions are

There is no octagonal number which is also a rectangular number, in
fact, the equation  has no solutions. For this,
we note that this equation can be written as Pell’s equation

 (its fundamental solution is ), where
 and  For this, Pell’s equation all solutions

can be generated by the system (corresponding to (7.21))

(7.89)

Now an explicit solution of the second equation of (7.89) can be
written as

Next, if  then  and
hence it follows that  We note that  and

 Thus, from the second equation of (7.89)
mathematical induction immediately gives  and

 for all  In conclusion  or



 Finally, reducing the relation  to 
gives  Hence, in view of  we conclude that

 for all integers  and therefore, the equation
 has no solution.

To �ind all octagonal	numbers	which	are	also	pentagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are 
and  where  and  For 
corresponding to (7.22) the system is

(7.90)

This system generates in�inite number of solutions  of the
equation  First four of these solutions are

For , recurrence relations remain the same as in (7.90) with
 and  This leads to another

set of in�inite number of solutions  of the equation
 First four of these solutions are

To �ind all octagonal	numbers	which	are	also	hexagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are 
and  where  and  For 
corresponding to (7.22) the system is

(7.91)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are



With , the system corresponding to (7.21) is

(7.92)

Now note that  and  Thus, from the
�irst equation of (7.92) mathematical induction immediately gives

 for all  Next
reducing the relation  to  gives 
Hence, in view of  we conclude that  for all integers k,
and therefore, the equation  has no solution.
To �ind all octagonal	numbers,	which	are	also	generalized	pentagonal
numbers, we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  where  and  For
the equation  the only meaningful integer solution is

 and it gives 
To �ind all octagonal	numbers,	which	are	also	heptagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is

), where  and  For this,
corresponding to (7.22) the system is

(7.93)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

7.10	 Nonagonal	Numbers	



These numbers are de�ined by the sequence
 i.e., beginning with 9 each number is

formed from the previous one in the sequence by adding the next
number in the related sequence  Thus,

and so on (see Fig. 7.13).

Fig.	7.13 Nonagonal numbers

Thus, nth nonagonal number is de�ined as

(7.94)

Comparing (7.94) with (7.3), we have , and hence, from
(7.4) it follows that

(7.95)

For all integers , it follows that  are odd, whereas
 are even.

Let m be a given natural number, then it is nth nonagonal number, i.e.,
 if and only if 

From (7.10) and (7.95), we have



and hence,  is the generating	function of all
nonagonal numbers.
In view of (7.15) and (7.95), we have

(7.96)

The sum of reciprocals of all nonagonal numbers is

(7.97)

here,  is the digamma	function de�ined as the logarithmic
derivative of the gamma	function  i.e.,  and

 is the Euler-Mascheroni	constant, after Lorenzo
Mascheroni (1750–1800, Italy), who in 1790 calculated  to 32 (19
correct) decimal places. For several other well-known mathematics
constants, see Finch [189].
To �ind all square	nonagonal	numbers, we need to �ind integer
solutions of the equation  This equation can be
written as Pell’s equation  (its fundamental solution
are  and  where  and  For

 corresponding to (7.22) the system is

(7.98)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

For  recurrence relations remain the same as in (7.98) with
 and  This leads to another set of

in�inite number of solutions  of the equation
 First few of these solutions are



To �ind all nonagonal	numbers,	which	are	also	triangular	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are

 and  where  and
 For  corresponding to (7.22) the system is

(7.99)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

For  and  there are no integer solutions.
There is no nonagonal number that is also a rectangular number, in
fact, the equation  has no solutions.
To �ind all nonagonal	numbers,	which	are	also	pentagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are

 and  where  and
 For  corresponding to (7.22) the system is

(7.100)

This system generates in�inite number of solutions  of the
equation  First four of these solutions
are

For  recurrence relations remain the same as in (7.100)
with  and  This leads to



another set of in�inite number of solutions  of the equation
 First four of these solutions are

To �ind all nonagonal	numbers,	which	are	also	hexagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are

 and  where  and
 For  corresponding to (7.20) the system is

This system gives �irst four integer solutions  of the equation
 rather easily, which appear as

, . Now the following
system generates in�inite number of solutions 

(7.101)

Similarly, the following system generates in�inite number of solutions

(7.102)

The �irst eight solutions  are

With  and , there are no integer solutions of the
required equation.
To �ind all nonagonal	numbers,	which	are	also	generalized	pentagonal
numbers, we need to �ind integer solutions of the equation



 This equation can be written as Pell’s
equation  (its fundamental solutions are 
and  where  and  For 
corresponding to (7.22) the system is

(7.103)

This system generates in�inite number of solutions  of the
equation  First few of these solutions
are

For  recurrence relations remain the same as in (7.103)
with  and  This leads to
another set of in�inite number of solutions  of the equation

 First four of these solutions are

To �ind all nonagonal	numbers,	which	are	also	heptagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is 
), where  and  For this, corresponding to
(7.22) the system is

(7.104)

This system generates in�inite number of solutions  of the
equation  First few of these solutions
are



To �ind all nonagonal	numbers,	which	are	also	octagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is ),
where  and  For this, corresponding to
(7.22) the system is

(7.105)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

7.11	 Decagonal	Numbers	
These numbers are de�ined by the sequence

 i.e., beginning with 10 each number is
formed from the previous one in the sequence by adding the next
number in the related sequence  Thus,

and so on (see Fig. 7.14).

Fig.	7.14 Decagonal numbers

Hence, nth decagonal number is de�ined as



(7.106)

Comparing (7.106) with (7.3), we have , and hence, from
(7.4) it follows that

(7.107)

For all integers , it follows that  are odd, whereas  are
even.
Let m be a given natural number, then it is nth decagonal number, i.e.,

 if and only if 
From (7.10) and (7.107), we have

and hence,  is the generating	function of all
decagonal numbers.
In view of (7.15) and (7.107), we have

(7.108)

To �ind the sum of the reciprocals of all decagonal numbers, as in
(7.86) we begin with the series

and following the same steps Downey [169] obtained

(7.109)

To �ind all square	decagonal	numbers, we need to �ind integer
solutions of the equation  This equation can be
written as Pell’s equation  where  and



 For the equation  the only meaningful integer
solution is  and it gives 
To �ind all decagonal	numbers	which	are	also	triangular	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are 
and )), where  and  For 
corresponding to (7.22) the system is

(7.110)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

For  recurrence relations remain the same as in (7.110) with
 and  This leads to another set of

in�inite number of solutions  of the equation
 First few of these solutions are

There is no decagonal number that is also a rectangular number, in
fact, the equation  has no solutions.
To �ind all decagonal	numbers,	which	are	also	pentagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is 
where  and  For  corresponding to
(7.22) the system is

(7.111)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are



To �ind all decagonal	numbers,	which	are	also	hexagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is 
where  and  For this, corresponding to (7.22)
the system is

(7.112)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

To �ind all decagonal	numbers,	which	are	also	generalized	pentagonal
numbers, we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is 
where  and  For this, corresponding to (7.22)
the system is

(7.113)

This system generates in�inite number of solutions  of the
equation  First few of these solutions
are

To �ind all decagonal	numbers,	which	are	also	heptagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is

), where  and  For
this, corresponding to (7.22) the system is



(7.114)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

To �ind all decagonal	numbers,	which	are	also	octagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is ),
where  and  For this, corresponding to
(7.22) the system is

(7.115)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

To �ind all decagonal	numbers,	which	are	also	nonagonal	numbers, we
need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solution is ),
where  and  For this, corresponding to
(7.22) the system is

(7.116)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are



7.12	 Tetrakaidecagonal	Numbers	
These numbers are de�ined by the sequence   i.e.,
beginning with 14 each number is formed from the previous one in the
sequence by adding the next number in the related sequence

 Thus,

and so on (see Fig. 7.15).

Fig.	7.15 Tetrakaidecagonal numbers

Hence, nth tetrakaidecagonal number is de�ined as

(7.117)

Comparing (7.117) with (7.3), we have  and hence, from
(7.4) it follows that

(7.118)

For all integers , it follows that  are odd, whereas
 are even.

Let m be a given natural number, then it is nth tetrakaidecagonal
number, i.e.,  if and only if 



From (7.10) and (7.118), we have

and hence  is the generating	function of all
tetrakaidecagonal numbers.
In view of (7.15) and (7.118), we have

(7.119)

To �ind the sum of the reciprocals of all tetrakaidecagonal numbers, as
in (7.86) we begin with the series

and following the same steps Downey [169] obtained

(7.120)

To �ind all square	tetrakaidecagonal	numbers, we need to �ind integer
solutions of the equation  This equation can be
written as Pell’s equation  (its fundamental solution are

 and  where  and  For (2,7)
corresponding to (7.22) the system is

(7.121)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

For  recurrence relations remain the same as in (7.121)
with  and  This leads to



another set of in�inite number of solutions  of the equation
 First few of these solutions are

To �ind all tetrakaidecagonal	numbers	which	are	also	triangular
numbers, we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are 
and  where  and  For 
corresponding to (7.22) the system is

(7.122)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

For  recurrence relations remain the same as in (7.122) with
 and  This leads to another

set of in�inite number of solutions  of the equation
 First few of these solutions are

There is no tetrakaidecagonal number that is also a rectangular
number, in fact, the equation  has no solutions.
To �ind all tetrakaidecagonal	numbers,	which	are	also	pentagonal
numbers, we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  where  and  For the
equation  the only meaningful integer solution is

 and it gives 



To �ind all tetrakaidecagonal	numbers,	which	are	also	hexagonal
numbers, we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are 
and  where  and  For 
corresponding to (7.22) the system is

(7.123)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

With  there are no integer solutions of the required
equation.
To �ind all tetrakaidecagonal	numbers,	which	are	also	generalized
pentagonal	numbers, we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are 
and  where  and  For 
corresponding to (7.22) the system is

(7.124)

This system generates in�inite number of solutions  of the
equation  First few of these solutions
are

For  recurrence relations remain the same as in (7.124)
with  and  This leads



to another set of in�inite number of solutions  of the equation
 First four of these solutions are

To �ind all tetrakaidecagonal	numbers,	which	are	also	heptagonal
numbers, we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are

 and  where  and 
For (7,35), corresponding to (7.22) the system is

(7.125)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

With  there are no integer solutions of the required
equation.
To �ind all tetrakaidecagonal	numbers,	which	are	also	octagonal
numbers, we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are 
and  where  and  For (4,7),
corresponding to (7.22) the system is

(7.126)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are



With  there are no integer solutions of the required
equation.
To �ind all tetrakaidecagonal	numbers	which	are	also	nonagonal
numbers, we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are

 and  where  and
 For (9,49), corresponding to (7.22) the system is

(7.127)

This system generates in�inite number of solutions  of the
equation  First four of these solutions are

With  and  there are no integer solutions of the
required equation.
To �ind all tetrakaidecagonal	numbers,	which	are	also	decagonal
numbers, we need to �ind integer solutions of the equation

 This equation can be written as Pell’s
equation  (its fundamental solutions are 
and  where  and  For (5,14),
corresponding to (7.22) the system is

(7.128)

This system generates in�inite number of solutions  of the
equation  First few of these solutions are

With  there are no integer solutions of the required
equation.



7.13	 Centered	Triangular	Numbers	
These numbers are de�ined by the sequence 

 i.e., beginning with 4 each number is formed from
the previous one in the sequence by adding the next number in the
related sequence  Thus,

 and
so on (see Fig. 7.16).

Fig.	7.16 Centered triangular numbers

Hence, nth centered triangular number is de�ined as

(7.129)

Thus, from (7.2) it follows that

(7.130)

Let m be a given natural number, then it is nth centered triangular
number, i.e.,  if and only if 
From (7.10) and (7.130), we have

and hence,  is the generating	function of all
centered triangular numbers.
In view of (7.15) and (7.130), we have



(7.131)

To �ind the sum of the reciprocals of all centered triangular numbers,
we follow as in (7.68), to obtain

(7.132)

7.14	 Centered	Square	Numbers	
These numbers are de�ined by the sequence 

 i.e., beginning with 5 each number is formed from the
previous one in the sequence by adding the next number in the related
sequence  Thus,

and so on (see Fig. 7.17).

Fig.	7.17 Centered square numbers

Hence, nth centered square number is de�ined as

(7.133)

Thus, from (7.2) it follows that

(7.134)

Let m be a given natural number, then it is nth centered square
number, i.e.,  if and only if 



From (7.10) and (7.134), we have

and hence  is the generating	function of all
centered square numbers.
In view of (7.15) and (7.134), we have

(7.135)

To �ind the sum of the reciprocals of all centered triangular numbers,
we follow as in (7.68), to obtain

(7.136)

7.15	 Centered	Pentagonal	Numbers	
These numbers are de�ined by the sequence 

 i.e., beginning with 6 each number is formed
from the previous one in the sequence by adding the next number in the
related sequence  Thus,

and so on (see Fig. 7.18).

Fig.	7.18 Centered pentagonal numbers

Hence, nth centered pentagonal number is de�ined as



(7.137)

Thus, from (7.2) it follows that

(7.138)

Let m be a given natural number, then it is nth centered pentagonal
number, i.e.,  if and only if

From (7.10) and (7.138), we have

and hence  is the generating	function of all
centered pentagonal numbers.
In view of (7.15) and (7.138), we have

(7.139)

To �ind the sum of the reciprocals of all centered pentagonal numbers
we follow as in (7.68), to obtain

(7.140)

7.16	 Centered	Heptagonal	Numbers	
These numbers are de�ined by the sequence 

 i.e., beginning with 8 each number is formed
from the previous one in the sequence by adding the next number in the
related sequence  Thus,

and so on (see Fig. 7.19).



Fig.	7.19 Centered heptagonal numbers
Hence, nth centered heptagonal number is de�ined as

(7.141)

Thus, from (7.2) it follows that

(7.142)

Let m be a given natural number, then it is nth centered heptagonal
number, i.e.,  if and only if

From (7.10) and (7.142), we have

and hence  is the generating	function of all
centered heptagonal numbers.
In view of (7.15) and (7.142), we have

(7.143)

To �ind the sum of the reciprocals of all centered heptagonal numbers,
we follow as in (7.68), to obtain

(7.144)



7.17	 Centered	Octagonal	Numbers	
These numbers are de�ined by the sequence 

 i.e., beginning with 9 each number is
formed from the previous one in the sequence by adding the next
number in the related sequence  Thus,

and so on (see Fig. 7.20).

Fig.	7.20 Centered octagonal numbers

Hence, nth centered octagonal number is de�ined as

(7.145)

Thus, from (7.2) it follows that

(7.146)

Hence, the centered octagonal numbers are the same as the odd square
numbers.

Let m be a given natural number, then it is nth centered octagonal
number, i.e.,  if and only if 
From (7.10) and (7.146), we have



and hence  is the generating	function of all
centered octagonal numbers.
In view of (7.15) and (7.146), we have

(7.147)

To �ind the sum of the reciprocals of all centered octagonal numbers
we use (5. 12), to obtain

(7.148)

7.18	 Centered	Nonagonal	Numbers	
These numbers are de�ined by the sequence 

 i.e., beginning with 10 each number is
formed from the previous one in the sequence by adding the next
number in the related sequence  Thus,

and so on (see Fig. 7.21).

Fig.	7.21 Centered nonagonal numbers

Hence, nth centered nonagonal number is de�ined as

(7.149)

Thus, from (7.2) it follows that



(7.150)

In 1850, Frederick Pollock (1783–1870, England) conjectured that
every natural number is the sum of at most 11 centered nonagonal
numbers, which has not been proved.
Let m be a given natural number, then it is nth centered nonagonal
number, i.e.,  if and only if

From (7.10) and (7.150), we have

and hence  is the generating	function of all
centered nonagonal numbers.
In view of (7.15) and (7.150), we have

(7.151)

To �ind the sum of the reciprocals of all centered heptagonal numbers,
we follow as in (7.68), to obtain

(7.152)

7.19	 Centered	Decagonal	Numbers	
These numbers are de�ined by the sequence 

 i.e., beginning with 11 each number is
formed from the previous one in the sequence by adding the next
number in the related sequence  Thus,

and so on (see Fig. 7.22).



Fig.	7.22 Centered decagonal numbers
Hence, nth centered decagonal number is de�ined as

(7.153)

Thus, from (7.2) it follows that

(7.154)

For each  the last digit is 
Let m be a given natural number, then it is nth centered decagonal
number, i.e.,  if and only if

From (7.10) and (7.154), we have

and hence  is the generating	function of all
centered decagonal numbers.
In view of (7.15) and (7.154), we have

(7.155)

To �ind the sum of the reciprocals of all centered heptagonal numbers,
we follow as in (7.68), to obtain



(7.156)

7.20	 Star	Numbers	
These numbers are de�ined by the sequence

 i.e., beginning with 13 each number
is formed from the previous one in the sequence by adding the next
number in the related sequence  Thus,

and so on (see Fig. 7.23).

Fig.	7.23 Star number 

Hence, nth star number is de�ined as

(7.157)

Thus, from (7.2) it follows that

(7.158)

All star numbers are odd. The star number  is unique,
since its prime factors  73 are also consecutive star numbers.



There are in�inite number of star numbers, which are also triangular
numbers, also square numbers.
Let m be a given natural number, then it is nth star number, i.e.,

 if and only if 
From (7.10) and (7.158), we have

and hence  is the generating	function of all
star numbers.
In view of (7.15) and (7.158), we have

(7.159)

To �ind the sum of the reciprocals of all-star numbers, we follow as in
(7.68), to obtain

(7.160)

7.21	 Centered	Tetrakaidecagonal	Numbers

These numbers are de�ined by the sequence  i.e.,
beginning with 15 each number is formed from the previous one in the
sequence by adding the next number in the related sequence

 Thus,

and so on (see Fig. 7.24).



Fig.	7.24 Centered tetrakaidecagonal numbers
Hence, nth centered tetrakaidecagonal number is de�ined as

(7.161)

Thus, from (7.2) it follows that

(7.162)

Each  is odd.
Let m be a given natural number, then it is nth centered
tetrakaidecagonal number, i.e.,  if and only if

From (7.10) and (7.162), we have

and hence  is the generating	function of all
centered tetrakaidecagonal numbers.
In view of (7.15) and (7.162), we have

(7.163)

To �ind the sum of the reciprocals of all centered tetrakaidecagonal
numbers we follow as in (7.68), to obtain



(7.164)

7.22	 Cubic	Numbers	
A cubic number can be written as a product of three equal factors of
natural numbers. Thus,  are �irst few cubic numbers
(see Fig. 7.25).

Fig.	7.25 Cubic numbers

Last digit of a number is the same as the last digit of its cube, except
that 2 becomes 8 (and 8 becomes 2) and 3 becomes 7 (and 7 becomes
3).
Nicomachus considered the following in�inite triangle of odd
numbers. It is clear that the sum of the numbers in the nth row is 



In the literature often the aforementioned representation is referred
to as Pascal’s triangle. Now noting that numbers in each row are
consecutive odd, so the general term in view of (7.31) can be written
as

Taking successively  in the aforementioned relation,
adding these n equations, and observing that

 we �ind

i.e., the number of terms in the left side are  Now again
from (7.31) we �ind that the left-hand side is the same as

, and hence, it follows that

(7.165)

i.e., a perfect square number. This identity is sometimes called
Nicomachus’s theorem.
From (7.66), the relation (7.165) follows immediately. In fact, we have



The generating	function for all cubic numbers is

From the relations  and
, it follows that all odd and multiple of 4

integers can be expressed as the difference of two squares. However,
 cannot be expressed as the difference of two squares. Indeed,

if  then letting
 gives  which

implies that both x and y must be of the same parity. If both x and y
are odd (even), then xy is odd (multiple of 4), hence in either case, we
have a contradiction. Now since cube of any odd (even) integer is odd
(multiple of 4), we can conclude that every cube is a difference of two
squares. In fact, we have

(7.166)

Thus for n odd, squares are the difference of consecutive integers,
whereas for n even, squares are the difference of consecutive odd
integers. From (7.165) we also have

(7.167)

Thus, squares are the difference of the integer  From (7.165), we
also have

(7.168)



Thus squares are the difference of the integer  A simple
computation from (7.166), (7.167), and (7.168), respectively gives

Clearly, in the conclusion (7.166) appropriately cube can be replaced
by any power greater than  For example,  and

There are in�inite number of square	cubic	numbers, in fact,

Related with cubic numbers there are centered	cubic	numbers
 Thus,  is the

count of number of points in a body-centered cubic pattern within a
cube that has  points along each of its edges. First few centered
cubic numbers are  Clearly, no centered cubic
number is prime. Further, the only centered cube number that is also
a square number is  The generating	function for all centered cube
numbers is

From (7.165) it follows that

(7.169)

Further, from (5. 12) and (7.67), we �ind



(7.170)

7.23	 Tetrahedral	Numbers	(Triangular
Pyramidal	Numbers)	
These numbers count the number of dots in pyramids built up of
triangular numbers. If the base is the triangle of side n, then the pyramid
is formed by placing similarly situated triangles upon it, each of which
has one less in its sides than that which precedes it (see Fig. 7.26).

Fig.	7.26 Tetrahedral numbers

In general, the nth tetrahedral number  is given in terms of the
sum of the �irst n triangular numbers, i.e.,

which in view of (7.15) is the same as

(7.171)

Thus, �irst few tetrahedral numbers are 

In 1850, Pollock conjectured that every natural number is the sum of
at most �ive tetrahedral numbers, which has not been proved.
Tetrahedral numbers are even, except for 
which are odd, see Conway and Guy [138]. The only numbers that are



simultaneously square and tetrahedral are  and
 see Meyl [366].

The generating	function for all tetrahedral numbers is

From (7.2), (7.11), and (7.165) it follows that

(7.172)

To �ind the sum of the reciprocals of all tetrahedral numbers we
follow as in (7.16) and (7.17), to obtain

(7.173)

As in (7.173), we �ind

(7.174)

The numbers  are called
truncated	tetrahedral	numbers and denoted as  These numbers
are assembled by removing the th tetrahedral number from
each of the four corners from the th tetrahedral number. First
few of these numbers are  The generating
function for all truncated tetrahedral numbers is



The tetrahedral numbers and triangular numbers can be connected to
produce the magic	numbers 2, 8, 20, 28, 50, 82, 126. The magic
numbers 2, 8, and 20 are twice the tetrahedral numbers 1, 4, and 10,
respectively, while the magic numbers 28, 50, 82, 126 are twice the
difference (tetrahedralnumber-triangularnumber), i.e.,

 respectively. In
physics, magic numbers occur in the shell models of both atomic and
nuclear structure. The magic numbers for atoms are 2, 10, 18, 36, 54,
and 86, corresponding to the total number of electrons in �illed
electron shells. The nucleus of an atom that has even numbers of
protons and neutrons is found more stable than one with odd
numbers of protons and neutrons. If a nucleus has the neutron
number  the proton number  one of the magic numbers such as 2,
8, 20, 28, 50, 82, or 126, then it (the nucleus) is speci�ically found to
be stable. This proton number or, equivalently, the neutron number is
called the double magic number.

7.24	 Square	Pyramidal	Numbers	
These numbers count the number of dots in pyramids built up of square
numbers. First few square pyramidal numbers are

 In general, the nth square pyramidal number
 is given in terms of the sum of the �irst n square numbers, i.e.,

which in view of (7.11) and (7.171) is the same as

(7.175)

In 1918, Watson proved that besides  there is only one other
number that is both a square and a pyramid number,  (as
conjectured by Lucas in 1875), the 70th square number and the 24th
square pyramidal number, i.e., 
The generating	function for all square pyramidal numbers is



From (7.2), (7.11), and (7.165) it follows that

(7.176)

To �ind the sum of the reciprocals of all square pyramidal numbers,
we note that

Now since

it follows that

(7.177)

In 2006, Fearnehough [185] used Nilakanthan’s series

(7.178)



known in the literature after James Gregory and Leibniz in the
aforementioned partial fractions, to obtain

The sum of two consecutive square pyramidal numbers, i.e.,
 are called octahedral

numbers, and denoted as  The �irst few octahedral numbers
are   These numbers represent the
number of spheres in an octahedral formed from close-packed
spheres. Descartes initiated the study of octahedral numbers around
1630. In 1850, Pollock conjectured that every positive integer is the
sum of at most seven octahedral numbers, which for �initely many
numbers have been proved by Brady [101]. The difference between
two consecutive octahedral numbers is a centered square number, i.e.,

 The generating
function for all octahedral numbers is

From (7.2) and (7.165) it follows that

(7.179)

Further, as in (7.97), we have

(7.180)



The sum of two consecutive octahedral numbers, i.e.,
 is called centered

octahedral	number or Haüy	octahedral	numbers (named after René
Just Haüy, 1743–1822, France) and denoted as  The �irst few
centered octahedral numbers are  The
generating	function for all centered octahedral numbers is

As earlier, we have

(7.181)

From the de�initions of  and , it follows that
 These numbers are

called Haüy	rhombic	dodecahedral	numbers. First few of these
numbers are  These numbers are constructed
as a centered cube with a square pyramid appended to each face. The
generating	function for all Haüy rhombic dodecahedral numbers is

Haüy also gave construction of another set of numbers involving
cubes and odd square numbers, namely,

First few of these numbers are  These numbers
are called Haüy	rhombic	dodecahedron	numbers. The generating
function for all of these numbers is



From the de�initions of  and , it follows that
 These numbers

are called truncated	octahedral	numbers. First few of these numbers
are   These numbers are obtained by
truncating all six vertices of octahedron. The generating	function for
all truncated octahedral numbers is

7.25	 Pentagonal	Pyramidal	Numbers	
These numbers count the number of dots in pyramids built up of
pentagonal numbers. First few pentagonal pyramidal numbers are

 In general, the nth pentagonal pyramidal
number  is given in terms of the sum of the �irst n pentagonal
numbers, i.e.,

which in view of (7.51) is the same as

(7.182)

The generating	function for all pentagonal pyramidal numbers is

From (7.11) and (7.165) it follows that

(7.183)

To �ind the sum of the reciprocals of all pentagonal pyramidal
numbers, from (7.16), (7.17), and (5. 12), we have



(7.184)

Similar to (7.174) it follows that

(7.185)

7.26	 Hexagonal	Pyramidal	Numbers	
These numbers count the number of dots in pyramids built up of
hexagonal numbers. First few pentagonal pyramidal numbers are

 In general, the nth hexagonal pyramidal
number  is given in terms of the sum of the �irst n hexagonal
numbers, i.e.,

which in view of (7.58) is the same as

(7.186)

The generating	function for all hexagonal pyramidal numbers is

From (7.11) and (7.165) it follows that

(7.187)

To �ind the sum of the reciprocals of all hexagonal pyramidal numbers,
we follow as in (7.177) and (7.184), to obtain



(7.188)

Similarly, we have

(7.189)

In (7.189), the function  is the Dirichlet beta function de�ined by the
sum

7.27	 Generalized	Pentagonal	Pyramidal
Numbers	
These numbers count the number of dots in pyramids built up of
generalized pentagonal numbers. First few generalized pentagonal
pyramidal numbers are  In general, the nth
generalized pentagonal pyramidal number  is given in terms of
the sum of the �irst n generalized pentagonal numbers, i.e.,

which in view of (7.65) is the same as

(7.190)

Thus, generalized pentagonal pyramidal numbers are the same as cubic
numbers.



7.28	 Heptagonal	Pyramidal	Numbers

These numbers count the number of dots in pyramids built up of
heptagonal numbers. First few heptagonal pyramidal numbers are

  In general, the nth heptagonal pyramidal
number  is given in terms of the sum of the �irst n heptagonal
numbers, i.e.,

which in view of (7.75) is the same as

(7.191)

The generating	function for all heptagonal pyramidal numbers is

From (7.2), (7.11), and (7.165), it follows that

(7.192)

The sum of reciprocals of all heptagonal pyramidal numbers appears
as

(7.193)

Similarly, as in (7.189), we have

(7.194)



7.29	 Octagonal	Pyramidal	Numbers	
These numbers count the number of dots in pyramids built up of
octagonal numbers. First few octagonal pyramidal numbers are

 In general, the nth octagonal pyramidal
number  is given in terms of the sum of the �irst n octagonal
numbers, i.e.,

which in view of (7.85) is the same as

(7.195)

The generating	function for all octagonal pyramidal numbers is

From (7.2), (7.11), and (7.165) it follows that

(7.196)

The sum of reciprocals of all heptagonal pyramidal numbers appears
as

(7.197)

Similarly, we �ind

(7.198)

7.30	 Nonagonal	Pyramidal	Numbers	



These numbers count the number of dots in pyramids built up of
nonagonal numbers. First few nonagonal pyramidal numbers are

 In general, the nth nonagonal pyramidal
number  is given in terms of the sum of the �irst n nonagonal
numbers, i.e.,

which in view of (7.96) is the same as

(7.199)

The generating	function for all nonagonal pyramidal numbers is

From (7.2), (7.11), and (7.165), it follows that

(7.200)

The sum of reciprocals of all heptagonal pyramidal numbers appears
as

(7.201)

Similarly, we �ind

(7.202)

7.31	 Decagonal	Pyramidal	Numbers	
These numbers count the number of dots in pyramids built up of
decagonal numbers. First few decagonal pyramidal numbers are

 In general, the nth decagonal pyramidal



number  is given in terms of the sum of the �irst n decagonal
numbers, i.e.,

which in view of (7.108) is the same as

(7.203)

The generating	function for all decagonal pyramidal numbers is

From (7.2), (7.11), and (7.165) it follows that

(7.204)

The sum of reciprocals of all decagonal pyramidal numbers appears
as

(7.205)

Similarly, we �ind

(7.206)

7.32	 Tetrakaidecagonal	Pyramidal	Numbers

These numbers count the number of dots in pyramids built up of
tetrakaidecagonal numbers. First few tetrakaidecagonal pyramidal
numbers are , . In general, the nth
tetrakaidecagonal pyramidal number  is given in terms of the
sum of the �irst n tetrakaidecagonal numbers, i.e.,



which in view of (7.119) is the same as

(7.207)

The generating	function for all tetrakaidecagonal pyramidal numbers
is

From (7.2), (7.11), and (7.165), it follows that

(7.208)

The sum of reciprocals of all tetrakaidecagonal pyramidal numbers
appears as

(7.209)

Similarly, we �ind

(7.210)

7.33	 Stella	Octangula	Numbers	
The word octangula for eight-pointed star was given by Kepler in 1609.
Stella octangula numbers count the number of dots in pyramids built up
of star numbers. These numbers also arise in a parametric family of
instances to the crossed ladders problem in which the lengths and
heights of the ladders and the height of their crossing point are all
integers. The ratio between the heights of the two ladders is a stella
octangula number. First few stella octangula numbers are

 In general, the nth stella



octangula number  is given in terms of the sum of the �irst n star
numbers, i.e.,

which in view of (7.159) is the same as

(7.211)

The only known square stella octangula numbers are 1 and
 see Conway and Guy [138].

The generating	function for all stella octangula numbers is

From (7.2) and (7.165) it follows that

(7.212)

The sum of reciprocals of all stella octangula numbers appears as

(7.213)

Similarly, we �ind

(7.214)

7.34	 Biquadratic	Numbers	
A biquadratic number can be written as a product of four equal factors
of natural numbers. Thus,  are �irst
few biquadratic numbers.

Last digit of a biquadratic number can only be 0 (in fact 0000), 1, 5 (in
fact 0625), or 



The nth biquadratic number is the sum of the �irst n Haüy rhombic
dodecahedral numbers. Indeed, from (7.2), (7.11), and (7.165) it
follows that

The generating	function for all biquadratic numbers is

From (7.2), (7.11), (7.165), and the identity

it follows that

and hence

(7.215)

The following identity due to Abu-Ali al-Hassan ibn al-Hasan ibn al-
Haitham (965–1039, Iraq) combines the sum of numbers raised to the
power of four with different sums of numbers raised to the power of
three

(7.216)

From (7.11), (7.15), (7.165), and (7.215) it follows that

(7.217)



To �ind the sum of reciprocals of all biquadratic numbers, we shall use
the derivation of (5. 12). First in the two expansions of  we
compare the coef�icients of  to get

(7.218)

Now squaring (5. 12), to obtain

which in view of (7.218) gives

(7.219)

From (7.219) it immediately follows that

(7.220)

7.35	 Pentatope	Numbers	
The �ifth cell of any row of Pascal’s triangle starting with the 5-term row

 either from left to right or from right to left are de�ined as
pentatope numbers. First few these numbers are

 Thus, the nth pentatope number is
de�ined as

(7.221)

These numbers can be represented as regular discrete geometric
patterns, see Deza [162]. In biochemistry, the pentatope numbers



represent the number of possible arrangements of n different
polypeptide subunits in a tetrameric (tetrahedral) protein.

Two of every three pentatope numbers are also pentagonal numbers.
In fact, the following relations hold

(7.222)

The generating	function for all pentatope numbers is

From (7.2), (7.11), (7.165), and (7.215) it follows that

(7.223)

As in (7.17), we have

(7.224)

We also have

(7.225)

7.36	 Sums	of	Powers	with	Positive	Integer
Exponents
We shall discuss the sum of the following series

(7.226)

here  is an integer. The cases  and 4 have already
appeared, respectively, in (7.2), (7.11), (7.165), and (7.215). The
problem (7.226) has been of interest since antiquity. Among the great
scholars who considered particular cases of this problem includes



Aryabhata, Babylonians, Pythagoras, Archimedes, Abu Bakr al-Karaji
(953–1029, Iran), al-Haytham, Jyesthadeva (around 1500–1600, India),
Harriot, Faulhaber, Fermat, Pascal, and Jacob Bernoulli. In 1631,
Faulhaber gave sums for  up to  but he did not give a
general formula. In a work entitled Summae	Potestatum of Jacob
Bernoulli, which was published posthumously in 1713,  for

 have been evaluated and appear as

These sums are explicit and could be generalized easily for any 

(7.227)



where  are Bernoulli numbers de�ined in Sect. 7.3. In the literature
(7.227) has been called Bernoulli’s formula, whereas some authors have
named it as Faulhaber’s formula.

As an alternative we begin with the binomial theorem (2. 4)

which gives

But, since

it follows that

(7.228)

From this we can compute  for any p recursively.
Ada Augusta King, Countess of Lovelace (1815–1852, England),

began from a description of the Bernoulli numbers as the coef�icients 
in the expansion

By a bit of algebraic manipulation using the power series expansion for
, Augusta rewrote this equation in the form



a form from which the various  can be calculated recursively.
If p is not an integer, then for  only bounds are available, for

example,

These inequalities have been discussed in Agarwal [10], Guo and Feng Qi
[231], and Kuang [319].

7.37	 Partitions	by	Polygonal	Numbers
Recall that general	polygonal	number can be written as

 where  is the nth r-gonal number. For
example, for  it gives triangular number, and for  gives a
square number. Fermat in 1638 claimed that every positive integer is
expressible as at most  k-gonal numbers (Fermat’s Polygonal Number
Theorem). Fermat claimed to have a proof of this result; however, his
proof has never been found. In 1750, Euler conjectured that every odd
integer can be written as a sum of four squares in such a way that

 and  In 1770. Lagrange proved
that every positive integer can be represented as a sum of four squares,
known as four-square	theorem (see Theorem 4.19). For example, the
number  has several
different partitions, whereas for the number

 this is the only partition. In 1797–8,
Legendre extended the theorem with his three-square	theorem, by
proving that a positive integer can be expressed as the sum of three
squares if and only if it is not of the form  for integers k and
m (see Theorem 4.18). Later, in 1834, Jacobi gave a formula for the



number of ways that a given positive integer n can be represented as the
sum of four squares.

In 1796, Gauss proved the dif�icult triangular case (every positive
integer is the sum of three or fewer triangular numbers, which was
conjectured by Pascal in his treatise of 1665, it was later shown that
Gauss result is equivalent to the statement that every number of the
form  is a sum of three odd squares, see Theorem 4.18 and for
details Duke [173]), commemorating the occasion by writing in his diary
the line E PHKA! num  and published a proof in his
book Disquisitiones	Arithmeticae of 1798. For this reason, Gauss’s result
is sometimes known as the Eureka theorem. For example,

 In
fact, in view of Theorem 4.18 and the fact  each such
number can be written only as the sum of three odd squares. Thus, it
follows that

and hence

The full polygonal number theorem was resolved �inally in 1813 by
Cauchy. In 1872, Lebesgue proved that every positive integer is the sum
of a square number (possibly ) and two triangular numbers, and every
positive integer is the sum of two square numbers and a triangular
number. For further details, see Grosswald [229], Ewell [182, 183], and
Guy [242]. The results of this chapter are based on out work in [21].

7.38	 Conclusions
Triangular numbers that are believed to have been introduced by
Pythagoras himself play dominant role in all types of �igurative numbers
we have addressed in this chapter. In fact, Eq. (7.1) says natural number
n is the difference of  and  whereas Gauss’s Eureka theorem
stipulates that n can be written as the sum of three triangular numbers.
Equation (7.32) shows that square number  is the sum of  and

 Equation (7.41) shows that square number  is 2 times of 



Relation (7.48) says pentagonal number  is  whereas
(7.50) gives  Equation (7.57) informs
that hexagonal number  is the same as  Relation (7.64) says
generalized pentagonal number  is the same as

 Equation (7.74) informs that
heptagonal number  is the same as  Relation (7.84)
declares that octagonal number  is equal to  Equation
(7.95) implies that nonagonal number  is equal to 
Relation (7.107) says decagonal number  is the same as 
Equation (7.118) informs that tetrakaidecagonal number  is the
same as  Relation (7.130) shows that centered triangular
number  is the same as  whereas relation (7.134)
con�irms that centered square number  is equal to

 Equation (7.138) says centered pentagonal number
 is equal to  whereas Eq. (7.142) tells centered

heptagonal number  is the same as 
Continuing, relation (7.146) informs centered octagonal number

 is the same as  whereas (7.150) shows
centered nonagonal number  is the same as 
and relation (7.154) tells centered decagonal number  is the same
as  Equations (7.158) shows that star number 
is the same as , whereas Eq. (7.162) shows that
centered tetrakaidecagonal number  is the same as

 Relation (7.165) shows that the sum of the �irst n
cubic numbers is the same as  Equation (7.171) shows that
tetrahedral number  is the same as  Relation (7.175)
says square pyramidal number  is the same as 
From the de�inition of octahedral numbers and (7.175), it follows that

 From the relation (7.182) it
follows that pentagonal pyramidal number  is the same as 
Equation (7.186) says hexagonal pyramidal number  is the same
as  From Eq. (7.191) it follows that heptagonal
pyramidal number  is the same as  Equation
(7.195) suggests that octagonal pyramidal number  is the same



as  Relation (7.199) tells nonagonal pyramidal number
 is the same as  Equation (7.203) informs that

decagonal pyramidal number  is the same as ,
whereas relation (7.207) indicates that tetrakaidecagonal pyramidal
number  is the same as  Thus, in conclusion
almost all �igurative numbers we have studied are directly related with
triangular numbers.
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8.1	 Introduction	and	Origin
Numbers that cannot be expressed as ratios of two integers are called
incommensurable or irrational (not logical or reasonable). The earliest
known use of irrational	numbers is in the Indian Sulbasutras. For ritual
sacri�ices, there was a requirement to construct a square �ire altar twice
the area of a given square altar, which led to �ind the value of  (in the
literature, it has been named as Pythagoras number). Ancient Vedic
Ascetics also needed the value of  They were successful in �inding
reasonable rational approximations of these numbers, keeping in mind
the success of ritual sacri�ices depending on very precise mathematical
accuracy. In Sect. 8.3, we shall see that in Sulbasutras, there is a discussion
that these numbers cannot be computed exactly. Thus, the concept of
irrationality was implicitly accepted by Indian Brahmins. In fact, it is
suggested that the concept of irrationality was unquestioningly accepted
by Manava, who believed that the square roots of numbers such as 2 and
61 could not be exactly determined. In 1875, George Frederick William
Thibaut (1848–1914, Germany) translated a large portion of the
Sulbasutras, which showed that the Indian priests possessed signi�icant
mathematical knowledge. Thibaut was a Sanskrit scholar, and his
principal objective was to make the mathematical knowledge of the Vedic
Indians available to the learned world. After commenting that a good deal
of Indian knowledge could be traced back to requirements of ritual,
Thibaut adds that these facts have a double interest: In the �irst place,
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they are valuable for the history of the human mind in general. In the
second place, they are important for the mental history of India and for
answering the question relative to the originality of Indian science. He
�irmly believed that Hindus had knowledge of irrationality, in particular,
of . In fact, in Apastamba, there is a discussion of the irrationality of 
.

According to Datta [152] and several other Sanskrit scholars such as
Leopold von Schröder in 1884 [452] and 1887, Bürk Richard Garbe
(1857–1927, Germany) in 1899, Edward Washburn Hopkins (1857–1932,
USA) in 1895, and Arthur Anthony Macdonell (1854–1930, born in
British-India) in 1900 have claimed that irrationality of  was �irst
discovered by ancient Hindus. We also �ind approximations of  in
Babylonians tablets using sexagesimal fractions (see Sect. 8.5). In Greek
geometry, two magnitudes a and b of the same kind were called
commensurable if there is another magnitude c of the same kind such that
both are multiples of c, that is, there are numbers p and q such that

 and  If the two magnitudes are not commensurable, then
they are called incommensurable. Pythagoreans essentially believed that
all tangible things could be measured and accounted for with rational
numbers. However, the hypotenuse of a most obvious right-angled
triangle with the same legs led to the number , which Pythagoreans
could not write as a rational number, i.e.,  is incommensurable.
According to legend, Hippasus made this discovery at sea, which caused
tremendous crisis/confusion/devastation/surprise/shattering effect
among the Pythagoreans, for it challenged the adequacy of their basic
philosophy that number was the essence of everything. In fact, in the
numerical sense, the universe was seen to be irrational. This logical
calamity enforced them to maintain the pledge of strict secrecy. To
incommensurable numbers, they named as “the unutterable,” (Greeks
used the term logos, meaning word or speech, for the ratio of two
integers, when incommensurable lengths were described as alogos, the
term carried a double meaning: not a ratio and not to be spoken) as it was
a dangerous secret to possess. Since Hippasus uttered the unutterable to
an outsider, he was murdered-thrown off a ship to drown at sea by fanatic
Pythagoreans, apparently a divine punishment for divulging this impiety,
(some historians wrongly claimed that Hippasus had �irst proof of the
existence of irrational numbers, whereas others say he lost his fortune



and tried to recoup his losses by teaching the doctrine of irrational
numbers, while some have speculated that Hippasus revealed the
properties of the dodecahedron and so he was promptly expelled from the
community).

In 2007, Borzacchini [99] asserted that Pythagorean music theory is
the origin of incommensurability. Anyway, it is hard to keep a secret in
science. This revelation/achievement of Pythagoreans, that not all
numbers are rational marked, is considered one of the most fundamental
discoveries in the entire history of science (it evolved the number concept
by �illing the gaps that were there between rationales). Plato, realizing the
importance of the discovery, thundered: “One who is not aware that the
side and the diagonal of a square are incommensurable does not deserve
to be called a man.” Historians have also argued that this major discovery
also helped in the development of deductive reasoning. Iamblichus tells
that after the death of the Master (Pythagoras), there was a split among
the disciples of Pythagoras. The “acusmatics” held to the “pure doctrine”
and swore by the word of the Master. The “mathematicians,” who, like
Hippasus, were convinced of the existence of incommensurable segments,
bent their efforts toward making further progress in mathematics. It is
understandable that they were interested in exhibiting further pairs of
incommensurable segments, and they soon discovered that the diagonal
and side of a square have no common measure. Eudoxus placed the
doctrine of incommensurables upon a thoroughly sound basis. The
irrationality of the square root of two Eudoxus phrased as “a diagonal and
a side of a square have no common measure.” He realized that an
irrational is known by the rational numbers less than it, and the rational
numbers greater than it. This task was done so well that Greek
mathematicians made tremendous progress in geometry, and it survived
as Book V of Euclid’s Elements. It still continues, fresh as ever, after the
great arithmetical reconstructions of Dedekind and Weierstrass during
the nineteenth century.

Democritus of Abdera (around 460–362 BC, Greece) traveled to Egypt,
Persia, Babylon, India, Ethiopia, and throughout Greece. He wrote almost
70 books, in mathematics, he wrote on numbers, geometry, tangencies,
mappings, and irrationals. Next, Apollonius wrote a work on the
cylindrical helix and another on irrational numbers, which is mentioned
by Proclus. Decimal fraction approximations of  and  appeared
during 200–875 AD, in the Jain School of Mathematics. In terms of



decimal expansions unlike a rational number, an irrational number never
repeats or terminates. In fact, it is only the decimal expansion that
immediately shows the difference between rational and irrational
numbers. Irrational numbers have also been de�ined in several other
ways, e.g., an irrational number has nonterminating continued fraction
(see Sect. 8.16) whereas a rational number has a periodic or repeating
expansion, and sequential de�inition of irrationality based on limiting
points of convergent series proposed by Weierstrass, which was extended
to classes of equivalent sequences by Heinrich Edward Heine (1821–
1881, Germany) in 1872.

From the ninth century, Mediterranean and Arabic mathematicians
started treating irrational numbers as algebraic objects and initiated the
idea of merging the concepts of number (algebra) and magnitude
(geometry) into a more general idea of real numbers. Abu Abd Allah
Muhammad ibn Isa al-Mahani (around 820–880, Iran-Iraq) examined and
classi�ied quadratic irrationals and cubic irrationals and provided
de�initions for rational and irrational magnitudes and dealt with them
freely but only in geometric terms. Ab  K mil, Shuj  ibn Aslam ibn
Muammad ibn Shuj  (850–930, Egypt) was probably the �irst
mathematician who used irrational numbers as coef�icients of an
algebraic equation and also accepted irrational numbers as solutions of
the equation in his Book	of	Algebra, which contains a total of 69 problems.
Abu Ja’far al-Khazin (900–971, Iran) provided a meaningful de�inition of
rational and irrational magnitudes. Al-Hashimi (tenth century, Iraq)
provided general proofs (rather than geometric demonstrations) for
irrational numbers, as he considered multiplication, division, and other
arithmetical functions. He also gave a method to prove the existence of
irrational numbers.

Al-Baghdadi in his in�luential book Treatise	on	Commensurable	and
Incommensurable	Magnitudes related the concepts of number and
magnitude by establishing a correspondence between numbers and line
segments, which continues today. Given a unit magnitude  each whole
number N corresponds to an appropriate multiple Na of the unit
magnitude. Parts of this magnitude, such as  then correspond to
parts of a numbers . Al-Baghdadi considered any magnitude
expressible this way as a rational magnitude. He showed that these
magnitudes relate to one another as numbers to numbers. Magnitudes
that are not parts he considered as irrational numbers. He also attempted



to imbed the rational numbers into a number line. Al-Baghdadi also
proved a result on the density of irrational magnitudes, namely that
between any two rational magnitudes there exist in�initely many
irrational magnitudes. In the late nineteenth century, it was proved that
between any two real numbers there are in�initely many rational and
irrational numbers, further irrational numbers are in�initely more
numerous than rational numbers.

To see Al-Baghdadi’s geometric interpretation of rational numbers, on
a horizontal straight line mark two distinct points O and  where A is
right of O. Now choose the segment OA as a unit of length, and let O and A
represent the numbers 0 and 1, respectively. Then the positive and
negative integers can be represented by a set of points on the line spaced
at unit intervals apart, the positive integers being represented to the right
of O and the negative integers to the left of O. The fraction with
denominator q may then be represented by the points that divide each of
the unit intervals into q equal parts. Thus, each rational number can be
represented by a point on the line. In Fig. 8.1, the point P corresponds to
the irrational number , which is between two rational numbers.

Fig.	8.1 Geometric representation of rational numbers

In 1858, Dedekind, while teaching calculus for the �irst time at the
Polytechnic, came up with the technique now called a Dedekind	cut, whose
history dates back to Eudoxus. He published this in Stetigkeit	und
Irrationale	Zahlen (Continuity and Irrational Numbers) in 1872. The
central idea of a Dedekind cut is that an irrational number divides the
rational numbers into two sets, with all the members of one set (upper)
being strictly greater than all the members of the other (lower) set. For
example,  puts all the negative numbers and the numbers whose
squares are less than 2 into the lower set and the positive numbers whose
squares are greater than 2 into the upper set. Every point on the real line
is either a rational or an irrational number. Therefore, on the real line
there are no empty locations, gaps, or discontinuities. Dedekind is
considered one of the the most responsible for the current de�inition and
understanding of irrational numbers. In current literature, Dedekind cut



(also known as Dedekind Property) is stated as follows: Let A and B be
two nonempty subsets of  such that  and  and

 implies  Then, either A has the greatest member, or B has
the least member.

In what follows, we will correct the speculations that
incommensurability of  was proved by Pythagoras himself (and for all
nonsquare integers by Theodorus), by revealing that the �irst (fully
geometric) proof appeared in the Meno (Socratic dialog by Plato). Here we
will see an in�inite process arise in an attempt to understand irrationals.
Since then over the period of 2400 years, many different proofs of the
irrationality of  have been given, we will demonstrate a few of these
and furnish several algorithms to �ind its rational approximations. The
proof of the irrationality of  had to wait almost two millennia, it was
proved only in 1768 by Lambert. In 1683, the number e was introduced
by Jacob Bernoulli, whose irrationality was proved by Euler in 1748. Thus,
the numbers  and  have in�inite number of decimal places.
Since the invention of computer technology, these numbers have been
approximated to trillions of decimal places, we shall report these
accomplishments. It is to be noted that such extensive calculations
besides human desire to break records have been used to test
supercomputers and high-precision multiplication algorithms, the
occurrence of the next digit seems to be random, and the statistical
distribution expected to be uniform. We list here �irst 100 decimal digits
of these numbers, which are more than suf�icient (in fact, not even �irst
twenty) for each and every real-world problem.

The set of all irrational numbers (positive and negative) we shall denote
as . The union of the sets of all rational and irrational numbers make



up the set of real numbers . Thus, this large set contains all decimal
representations of numbers terminating, repeating, nonterminating, and
nonrepeating. The mysterious objects, irrational numbers achieved
respectability and a secure position only in the nineteenth century.

8.2	 Properties	of	Irrational	Numbers
A set of numbers is said to be closed under an operation if and only if the
operation on two elements of the set produces another element of the set;
however, if an element outside the set is obtained, then the set of numbers
under that operation is not closed. For example, the set  is closed under
the operations addition and multiplication ( ), but not
closed under the operations subtraction and division ( ),
the set  is closed under the operations addition, subtraction, and
multiplication, but not under division. The set  is closed under all four
operations. The following examples suggest that the set of irrational
numbers is not closed under for any of the four operations. For this, �irst
we note that the addition as well as subtraction of an irrational number x
and a rational number y is irrational. Indeed, if  is rational, then
in  left side is irrational, whereas the right side is rational. From
this it immediately follows that the golden ratio  is irrational. Now for
the addition it suf�ices to take  for subtraction

 for multiplication  and for
division  The  of any two irrational numbers may or
may not exist. For example,  however,

 does not exist. For this, a simple argument (but not the
proof) is that there is no number c such that  and  are integers,
otherwise their quotient,  will be a rational.

Hardy essentially showed that if we take any irrational number, say,
 or e and write these to large decimal places, say, a

billion or trillion decimal places, then the number of digits 
are uniformly randomly distributed, i.e., the frequency with which the
digits (0 to 9) appear in the result will tend to the same limit  as
the number of decimal places increases beyond all bounds. In recent
years, these digits are being used in applied problems as a random
sequence. For details, see Agarwal et. al. [13].



8.3	 Approximations	of	 	and	 	in	Sulbasutras
Sulbasutras (without any proofs) provide remarkable approximations of

 and  (the symbol was �irst used by Welshman William Jones, 1675–
1749, England, in his book [287] of 1706, for the Greek word perimetros
[periphery] of a circle with unit diameter), and it became popular after
the works of Euler in 1737 and Goldbach in 1742. In three Sulbasutras:
Baudhayana, Apastamba, and Katyayana for the approximation of  the
recipe is “increase the measure by its third and this third by its own
fourth less the thirty-fourth part of that fourth. This is the value with a
special quantity in excess.” If we take 1 unit as the dimension of the side of
a square, then this in modern terms can be written as

(8.1)

and, similarly, if we take the radius of the circle as 1 unit, then the
approximation formula for  is

(8.2)

These approximations were used for the construction of altars,
particularly,  in an attempt to construct a square altar twice the area
of a given square altar. Datta in his most trusted treatise [152] on Sulbas
on page 27 writes “The reference to the sacri�icial altars and their
construction is found as early as the Rigveda (before 3000 BC). …It seems
that the problem of the squaring of the circle and the theorem of the
square of the hypotenuse are as old in India as the time of Rigveda. They
might be older still.” Approximation (8.1) gives , which
is correct to �ive decimal places. Perhaps the approximation (8.1) was
used in  to obtain  George
Joseph in his book [289] mentions about his correspondence with Takao
Hayashi (born 1949, Japan) who pointed out that the approximation of

 could also be used for constructing a right-angled triangle and a
square. To show (8.1), Datta on pages 193,194, and subsequently by
several others, e.g., George Joseph on pages 235,236, have provided the
following reasoning which is in line with Sulbasutra’s geometry.



Consider two squares, ABCD and  each of 1 unit as the side of
a square (see Fig. 8.2). Divide PQRS into three equal rectangular strips, of
which the �irst two are marked as 1 and  The third strip is subdivided
into three squares, of which the �irst is marked as 3. The remaining two
squares are each divided into four equal strips marked as 4 to 11. These
11 areas are added to the square ABCD as shown in Fig. 8.2, to obtain a
larger square less a small square at the corner  The side of the
augmented square AEFG is

The area of the shaded square is  so that the area of the
augmented square AEFG is greater than the sum of the areas of the
original squares, ABCD and  by 

Fig.	8.2 Sulbasutras method for 

Now to make the area of the square AEFG approximately equal to the
sum of the areas of the original squares ABCD and  imagine
cutting off two very narrow strips, of width  from the square 
one from the left side and one from the bottom. Then

(8.3)

Simplifying the aforementioned expression and ignoring  an
insigni�icantly small quantity, gives



The diagonal of each of the original squares is , which can be
approximated by the side of the new square as just calculated, i.e., (8.1).

A commentator on the Sulbasutras, Rama (perhaps Rama Chandra)
Vajapeyi, who lived in the middle of the �ifteenth century AD in India, gave
an improved approximation to (8.1) by adding two further terms to the
equation, i.e.,

(8.4)

which gives  a value correct to seven decimal places.
In Sulbasutras we also �ind approximation of , which can be

written as

(8.5)

Approximation (8.5) gives , which is correct to �ive
decimal places. In [Datta, pages 194,195], a geometric construction
similar to that of (8.1) for (8.5) is also given. A simple algebraic method to
get (8.5) is to take  as an approximation of  and put

 where x is unknown. Now square both sides of this
expression, neglect  and solve the resulting linear equation for  to
get  thus the new approximation of  is  Repeating
this procedure once more, we �ind  and the new
approximation of  as 

For (8.1), several other descriptions have been proposed, e.g., Radha
Charan Gupta (born 1935, India), in [232] uses linear interpolation to
obtain the �irst two terms of (8.1), he then corrects the two terms to
obtain the third term, then correcting the three terms obtaining the fourth
term.

In Manava, the following approximate identities have been used to
calculate approximate values of 



(8.6)

The �irst indentity gives  whereas the second gives

Chuquet in his work Triparty	en	la	science	des	nombres showed that
 and  Zhu Zaiyu (1536–1611, China) in 1604

wrote a New	Explanation	of	the	Theory	of	Calculation in which he
derived values of the roots of 2. He was so attracted to  that he used
nine abacuses to compute it to 25—digit accuracy! Friedrich Engel
(1861–1941, Germany) proved the following important in�inite product
formula

where  For  and  this
formula reduces to

and

Another familiar example is the series

Its convergence is so slow that to compute  with accuracy of 
we would need to take about  terms, which is dif�icult even with
high-speed machines. For an excellent detailed discussion of  up to
2006, see the book of Flannery [191]. Jerry Bonnell (USA) and Robert
Nemiroff (USA) on the website https:// apod. nasa. gov/ htmltest/ gifcity/ 
sqrt2. 1mil have posted 1 million digits of  and in 2009, 5 million

https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil


digits, see Bonnell and Nemirof [78]. Other records are by Yasumasa
Kanada (1949–2020, Japan, life-long “pi digit-hunter,” set the record 11
of the past 21 times) in 1997 to 137,438,953,444 decimal places;
Shigeru Kondo (born 1959, Japan) in 2010 to 1 trillion decimal places;
Alexander Yee (born 1988, China-USA) in 2012 to 2 trillion; Ron
Watkins in April, 2016 to 5 trillion, and in June 2016 to 10 trillion.

In Sulbasutras, the priests gave the following procedure for �inding a
circle whose area was equal to a given square. In the square ABCD, let M
be the intersection of the diagonals (see Fig. 8.3). Draw the circle with M
as center and MA as radius, let ME be the radius of the circle
perpendicular to the side AD and cutting AD in  Let . Then
MN is the radius of the desired circle. If  and , then
from the Pythagoras theorem it follows that

and hence

This gives

which leads to

which is the same as (8.2).



Fig.	8.3 Area of a circle equal to a square
For the converse problem, that of squaring the circle, we are given the

following rule: If you wish to turn a circle into a square, divide the
diameter into 8 parts, and again one of these 8 parts into 29 parts; of
these 29 parts remove 28, and moreover, the sixth part (of the one left)
less the eighth part (of the sixth part). The meaning is: side of the
required square is

times the diameter of given circle. It gives the value of 
All the Sulbasutras contain a method to square the circle. It is an

approximate method based on constructing a square of side  times
the diameter of the given circle as in the Fig. 8.4. This corresponds to
taking the value of  as

Fig.	8.4 Approximation of 



It is worth noting that many different values of  appear in the
Sulbasutras, even several different ones in the same text. This is not
surprising that whenever an approximate construction is given some
value of  is implied. The authors thought in terms of approximate
constructions, not in terms of exact constructions with  but only having
an approximate value for it. For example, in Baudhayana Sulbasutra, the
different values of  are given as  and  In
other Sulbasutras the values

 and  can
all be found. Particularly, in the Mayana Sulbasutra, see Gupta [237], the
value of  also see interesting work of Kak [293] and
Kulkarni [320].

8.4	 Aryabhata’s	Method	for	Extracting	Square
and	Cube	Roots
Following the traditions of his period, Aryabhata does not provide details
to �ind square and cube roots; however, it has been concluded that his
method is based on decimal place-value system, and the equalities

 and
 An important

feature of his method is that it �inds each digit of the root successively,
from left to right. His method is still taught in schools. We shall
summarize his method in simpli�ied terms through the following
examples.

To �ind the square root of 625, we group it in two’s from right to left as
 Now search largest possible integer a such that , which is

obviously . This will be the �irst digit of the required square root.
The next step is to �ind  and with this adjoin  i.e.,

 Now �ind largest possible integer b such that
, which is obviously . This will be

the next digit of the required square root. Since  it
follows that 

To �ind the square root of 474721, we group it in two’s from right to
left as  Search largest possible integer a such that 
which is  Now, we �ind  and with this adjoin



 i.e., 1147 and �ind largest possible integer b such that
 which is  Next, we �ind

 Finally, with this we adjoin  i.e.,
12321 and �ind largest possible integer c such that

 i.e.,  which is  and the
equality holds. Thus, 

Viéte noted that if one needs to calculate the square root of 2 to a high
degree of accuracy, one should add as many zeros as necessary, and
calculate the square root of, for example,

. That root he shows to
be , and thus, the square root of 2 is
approximately

We note that Aryabhata’s Method explained above for 625 and 
combined with Viéte’s observation easily computes the same
approximation of  except instead of the last digit  we get 4;
however, if we compute one more digit (which is 8) and then round it,
then it is indeed 

To �ind the cube root of 1728, we group it in three’s from right to left
as . We search largest possible integer a such that , which is

 This will be the �irst digit of the required cube root. Since 
for the next digit we consider 728 and �ind largest possible integer b such
that  which is  and the equality holds.
Thus, 

To �ind the cube root of 12977875, we group it in three’s from right to
left as  We search largest possible integer a such that 
which is 2. This will be the �irst digit of the required cube root. Now, we
�ind  and with this adjoin  i.e., 4977 and �ind
largest possible integer b such that ,
which is  This will be the second digit of the required cube root. Next,
we calculate  and
with this we adjoin  i.e.,  Finally, we �ind largest possible



integer c such that , which is  and
the equality holds. Thus, 

To �ind the cube root of 961504803, we group it in three’s from right
to left as  We search largest possible integer a such that

, which is  This will be the �irst digit of the required cube root.
Now, we �ind  and with this adjoin  i.e.,
232504 and �ind largest possible integer b such that

 which is  This will be the second
digit of the required cube root. Next, we calculate

 and
with this we adjoin  i.e.,  Finally, we �ind largest possible
integer c such that , which is 
and the equality holds. Thus, 

As for the square root, we can add as many zeros as necessary, and
calculate the cube root with desired accuracy.

8.5	 Babylonians	Tablet	YBC	7289
There are numerous examples suggesting that Babylonians assembled
large number of tables consisting of squares and square roots and cubes
and cubic roots. It has been suggested by several historians of
mathematics, e.g., Katz in his book [301] that “when square roots are
needed in solving problems, the problems are arranged so that the square
root is one that is listed in a table and is a rational number. However,
where an irrational square root is needed, in particular, for  the result
is generally written as .” On a fascinating tablet from Yale
Babylonian Collection (YBC) number 7289 (around 1800–1600 BC), there
is a scatter diagram of a square with side indicated as 30 and two
numbers, see Fig. 8.5,

(8.7)

and



Fig.	8.5 Babylonians tablet YBC 7289
The product of 30 by  is exactly  Therefore, it is

justi�iable to presume that the number  represents the length of
the diagonal and the number  is  This con�irms that
Babylonians had enormous computational skills. The mathematical
signi�icance of this tablet was �irst recognized by the historians
Neugebauer and Sachs. This tablet provides the correct value of  to six
decimal digits. For further details, see Fowler and Robson [193]. The same
Babylonian approximation of  was used later by Ptolemy in his
Almagest, but he did not mention from where this approximation came,
perhaps it was well known by his time. Boyer in his book [100] writes

, which actually corresponds to 
As in Sulbasutras, there is no record how Babylonians obtained the

approximations  or  of ; however, de�initely they
must have realized that the exact value of  cannot be achieved. Thus,
the methods that have been suggested by the historians are merely
speculative. For example, Katz [301] believes that Babylonians used the
algebraic identity , which they might have
perceived geometrically. Mathematically, the problem is for a given square
of area N, we need to �ind its side  For this, as a �irst step we select a
regular	number (evenly dividable of powers of 60) a close to, but less
than,  (a good guess). Letting  the next step is to �ind c
so that  is as close as possible to  see Fig. 8.6. If  is “close
enough” to  then  will be small in relation to  so c can be chosen
equal to  that is,

(8.8)

A similar argument shows that if a is greater than  then



(8.9)

Fig.	8.6 Approximation of 

For  we begin with  (see (8.1)), to obtain
 and

 Thus, from (8.8) it follows that
 

(see (8.1)). Similarly, if we choose  then (8.9) also gives
 Now we choose  and apply (8.9), to get

which is same as (8.1). Thus, we get all steps for  given in (8.1). Next,
since  we again use (8.9), to obtain

(8.10)

which is correct to 11 decimal places. Jinabhadra Gani used (8.8) to obtain

Now since  (equality holds only
when ), it follows that  Thus, when we
choose  after applying (8.8), for further improvement we have



to proceed to (8.9). Having this in mind, and looking (8.8) and (8.9), we
can write the following algorithm to compute  also see Boyer [100],
and Ernst Sondheimer and Alan Rogerson [490]:

(8.11)

where  is any number (greater than or smaller than ), known
as the initial	approximation. Today, algorithm (8.11) is derived by using
Newton’s method: With appropriate  the iterative scheme

(8.12)

converges quadratically to a root of the general equation  In our
case the equation is  For , this is perhaps one
of the oldest known algorithms. Historians Neugebauer and Sachs
believed that the Babylonians obtained this algorithm for  based on
the following principle: Suppose a is a guess, which is too small (large),
then  will be a guess, which is too large (small). Hence, their average

 is a better approximation. This assumption that “divide and
average” seems to be a general procedure of Babylonians for
approximating square roots.

In the literature, the algorithm (8.11) is also known as Heron’s
method, who gave the �irst explicit description of the method in his
treatise Metrica, which was discovered as recently as 1896 in
Constantinople in a manuscript form dating from the eleventh or twelfth
century. Heron used the formula (8.9), i.e.,

 to calculate the square roots: “Since
720 has not a rational root, we shall make a close approximation to the
root in this manner. Since the square nearest to  is 
having a root  divide 27 into 720, i.e.,  the result is

 add  the result is  Take half of this,
i.e.,  the result is 
Therefore, the square root of 720 will be very nearly  For 
multiplied by itself gives  so that the difference is  if we wish
to make the difference less than  instead of 729 we shall take the



number now found  and by the same method we shall �ind an
approximation differing by much less than  Heron also found
approximate square root of  The algorithm (8.11) generates a
sequence  for which the concept of convergence was not existing
even during the time of Heron. For the convergence of the sequence 
the following result is well-known, for example, see Agarwal and Hans
Agarwal [19]: For the sequence  the following hold

(8.13)

and the fact that  The convergence
(quadratic) of this sequence to  immediately follows from (8.13).
From (8.13), we also note that  for all  It also follows
directly from the arithmetic-geometric mean inequality, in fact, for all

 we have

with equality if and only if  Hence, the sequence  is
bounded below by  Further, since

the sequence  is decreasing. Thus, the sequence  in fact,
converges monotonically.

Jöran Friberg (born 1934, Sweden) in his book [198] mentions that
Babylonian tablets (such as MS 3051) contain computations of areas of
hexagons and heptagons, which involve the approximation of more
complicated algebraic numbers. The answer given there leads to the
simple approximation  This does not mean they could not
have calculated better approximations.

In Table 8.1, we use (8.11) to compute �irst three iterates for  and

Table	8.1 Monotone convergence



n

0 2

1

2

3

From this table, it is clear that the algorithm (8.11) gives both
Sulbasutras approximations (8.1) and (8.5) of  and  It also gives
Babylonian approximation  Unfortunately, from (8.11) we
cannot get the Babylonians approximation (8.7) of . In fact, reversing
a step in (8.11) leads to the equation

which has only complex roots. Another simple explanation is
 whereas  We also note that Boyer

in his book [100] has made a false assertion that  with  for 
gives (8.7). In conclusion, Babylonians obtained (8.7) by some other
unknown technique rather than (8.11), as has been claimed. A probable
explanation for (8.7) is that Babylonians from their tables of  and

 noticed that

Algorithm (8.11) at n-th iteration requires division by  to avoid this
we consider the equation  and apply Newton’s
method (8.12), to get

which converges to . We multiply this by N and let 
to obtain



which converges quadratically to  For  with , the
aforementioned scheme gives . These
approximations of  are different from the corresponding entries in
Table 8.1.

Problem xviii from the combined Babylonian tablet fragments BM
96957 and VAT 6598 gives two methods for calculating the diagonal d of a
rectangle with sides of length  and  units. The �irst leads (in
speci�ic numbers) to the approximation

(8.14)

and the second method to the approximation is

(8.15)

From Pythagorean theorem 
Formulas (8.8), (8.9), (8.14), and (8.15), respectively, give the
approximations

A problem similar to one considered in Sect. 5. 12(3), also from Cairo
Papyrus, which is particularly interesting, in modern terms requires the
solution of the system of equations

Again, the scribe’s method of solution amounts to adding and
subtracting  from the equation  to get

or equivalently,



And, now employing (8.8), to obtain the approximations

and

In an old Babylonian tablet (around 2000 BC) found in 1936 in Susa,
for the irrational number , the following expression appears

which yields . Babylonians were also satis�ied with

Bakhshali manuscript to �ind an approximate root of a non-square
number says “In case of a non-square (number), subtract the nearest
square number; divide the remainder by twice (the root of that
number). Half the square of that (that is, the fraction just obtained) is
divided by the sum of the root and the fraction and subtract; (this will
be the approximate value of the root) less the square (of the last term).”
Thus, if  then

(8.16)

In fact, to obtain (8.16) both (8.8) and (8.9) are used. Let a be the
largest integer such that  is less than  and  Then, (8.8)
gives

Thus, we can use (8.9), to get



Since  from (8.16) it follows that

(8.17)

Now let a be the smallest integer such that  is greater than  and
 Then, (8.9) gives

Thus, we can use (8.9) again, to get

(8.18)

Since  from (8.1838) it follows that

(8.19)

Relations (8.17) and (8.19) lead to the algorithm

(8.20)

Clearly, in (8.20) we can take a any convenient real number so that 
is close to  Further, from our considerations it is clear that the iterative
scheme (8.20) converges quartically. In Table 8.2, we give a few iterates
for  and  considered in Bakhshali Manuscript.

Table	8.2 Quartic convergence

n

0

1

2

0

1



n

2

In this table

An immediate extension of (8.12) and (8.20) for any nonlinear
equation  is

For this algorithm and its higher-order extensions and their scope in
real-word computation, see Sen et. al. [465].

8.6	 Great	Pyramid	at	Gizeh	and	Rhind
Mathematical	Papyrus
As we have noted earlier from the dimensions of the Great Pyramid at
Gizeh, it is possible to derive the golden ratio . Interestingly, it is also
possible to drive the number  In Rhind mathematical papyrus problem
number 50 states that a circular �ield with a diameter of 9 units in area is
the same as a square with sides of 8 units, i.e.,  and hence,

 For details of Egyptian contribution to
quadrature of circle, see the work of Hermann in [260].

8.7	 Proofs	of	the	Irrationality	of	
Among the many known proofs of the irrationality of  here we shall
give a few that are of historical importance. The following �irst fully
geometric proof appeared in the Meno (Socratic dialog by Plato).



Following the Website http://mitp-content-
server.mit.edu:18180/books/content/sectbyfn?
collid=books_press_0&id=1043&fn=9780262661829_schh_0001.pdf, in
the square ABCD we use a compass to cut off  along the
diagonal  At F draw the perpendicular EF (see Fig. 8.7). Then the
ratio of CE to CF (hypotenuse to side) will be the same as the ratio of AC to
AD, since the triangles CDA and EFC are similar. Suppose that DC and CA
were commensurable. Then there would be a segment  such that both
DC and CA were integral multiples of . Since  then

 is also a multiple of  Note also that 
because the sides of triangle EFC correspond to the equal sides of triangle

 Further,  because (connecting A and E) triangles EDA
and EFA are congruent. Thus,  is a multiple of  Then

 is also a multiple of  Therefore, both the side CF and
hypotenuse CE are multiples of , which therefore is a common measure
for the diagonal and side of the square of side  The process can now
be repeated as follows: on EC cut off  and construct GH
perpendicular to  The ratio of hypotenuse to side will still be the
same as it was before and hence, the side of the square on CG and its
diagonal also share  as a common measure. Because we can keep
repeating this process, we will eventually reach a square whose side is
less than  contradicting our initial assumption. Therefore, there is no
such common measure  The demonstration given here involves the
method of in�inite descent.

Fig.	8.7 Incommensurability of  in Meno

The following inquisitive geometric proof of Tom Mike Apostol (1923–
2016, USA) [34] (also for similar proofs see earlier books by Kiselev



[307], and Conway and Guy [138]) is in line with the aforementioned
proof. A circular arc with center at the uppermost vertex and radius
equal to the vertical leg of the triangle intersects the hypotenuse at a
point, from which a perpendicular to the hypotenuse is drawn to the
horizontal leg (see Fig. 8.8). Each line segment in the diagram has
integer length, and the three segments with double tick marks have
equal lengths. (Two of them are tangents to the circle from the same
point.) Therefore, the smaller isosceles right triangle with hypotenuse
on the horizontal base also has integer sides.

Fig.	8.8 Incommensurability of  by Apostol

The �irst semi-geometric proof of the irrationality of  is due to
Aristotle, which appeared in his Analytica	Priora. He concludes that if
the side and the diagonal are assumed commensurable, then odd
numbers are equal to even numbers. For this, he used the method of
contradiction: Suppose that the side EH and the diagonal  see Fig.
8.9, are commensurable, i.e., each can be expressed by the number of
times it is measured by their common measure. Now it can be assumed
that at least one of these numbers is odd, if not there would be a longer
common measure. Then the squares HEFG and ABCD on the side and
diagonal, respectively, represent square numbers. From the Fig. 8.9, it is
clear that the area of the latter square is clearly double the former, thus
it represents an even square number. Consequently, its side 
is also an even number, and thus, the square ABCD is a multiple of four.
Finally, since HEFG is half of  it must be a multiple of two, i.e, it
is also an even square. Therefore, its side EH must also be even.
However, this contradicts the original assumption that one of

 is odd. In conclusion, the two lines EH and HF are
incommensurable. Thus, Aristotle in number theory succeeded in
proving the existence of irrationals.



Fig.	8.9 Incommensurability of  in Analytica Priora

From Fig. 8.9, it is clear that the area of ABCD is the same as two times
the area of  This construction is due to Socrates in the Meno. In
Plato’s Republic, Socrates jokes that young people “are as irrational as
lines” and hence not yet suited to “rule in the city and be the sovereigns of
the greatest things.” His joke points to a widely held sense that
irrationality in mathematics was a troubling sign of confusion and
disorder in the world.

Euclid’s semi-geometrical demonstration by the method of
contradiction of the irrationality of  is given in Book X, Proposition
27. Though it is less perspicuous than the strictly arithmetical proof
now, it is more suggestive historically, and more precise than Aristotle’s
proof. The argument goes as follows: If the diagonal AC and side AB of
the square ABCD (see Fig. 8.9) have a common measure, say  then
there exist  satisfying  The ratio of these
segments is

(8.21)

In what follows, we can assume that common factors of p and q have
been canceled, i.e.,  Thus, at least one of them is odd.
Squaring the identity (8.21), we have

(8.22)

Now in view of Pythagorean theorem in the triangle  we �ind
 so that (8.22) is the same as



(8.23)

Now since  is an even integer,  must also be even. But, then p is
also even, i.e.,  Substituting this in the equation  gives

 But then  and hence q is also an even number. In
conclusion, both p and q are even, which contradicts our initial
assumption that they have no common factor or one of them is odd.
In the aforementioned proof we can ignore all geometric arguments,
and directly proceed to algebraic equation (8.23), where p and q are in
its lowest term, and hence are of different parity. Then, showing that

 is irrational is equivalent to proving that (8.23) is impossible. For
this, the Website http:// www. cut-the-knot. org/ proofs/ sq_ root. shtml
contains 29 proofs. Here we shall discuss a few of them.
Since  from Corollary 3.3 there exist integers x and y such
that  Thus, from (8.23) it follows that

which leads to a contradiction that  is an integer.
Lagrange in his Lectures	on	Elementary	Mathematics of 1898 argues
that if p and q are in its lowest terms, then  and  are also in its
lowest terms. Since fraction  is built from the fraction , it
cannot be a whole number  A similar reasoning appeared in 1831 in
the work of De Morgan.
Whittaker and Watson in their book [532] of 1920, and later Gardner
[208], and Miklós Laczkovich (born 1948, Hungary) [325] in their
books assumed that in  the integer q is the smallest possible
such number. Their main argument is essentially to use the equality

 which is true if and only if (8.23) holds. Thus, it
follows that

but  implies that  This contradicts the
minimality of 

It is interesting to note that

http://www.cut-the-knot.org/proofs/sq_root.shtml


Rademacher and Toeplitz in their book of 1957 [425, Chapter 4] assert
that (8.23) implies p is even, so q must be odd. However, the square of
an even number is divisible by 4, which leads to conclude that q must
be even. Thus, we have Aristotle-type contradiction.
There is a general consensus that Euclid recognized that irrational
numbers simply did not belong in a work based on arithmetic, some
authors claim that Euclid in Book X, Proposition 117 uses fundamental
theorem of arithmetic (Theorem 4.1) to almost show the impossibility
of (8.23), but most of the English translations of Elements have only 115
propositions. Von Fritz [202] indicates that the early Greek
mathematicians did not explicitly use Theorem 4.1 to prove the
irrationality of  In fact, on the Website http:// people. math. harvard. 
edu/ ~mazur/ preprints/ Eva. Nov. 20. pdf, posted in 2005, Mazur claims
that the explicit use of Theorem 4.1 is post Gauss. Anyway, in view of
Theorem 4.1, p and q can be factored uniquely into their prime factors,
so let  and  Putting this back in Eq.
(8.23), we get

or

(8.24)

Now among the primes  and  the prime 2 may occur (it will
occur if either p or q is even). If it does occur, it must appear an even
number of times on the left side of equation (8.24) (since each prime
there appears twice), and an odd number of times on the right side
(because 2 already appears there once). But, then we have a
contradiction: since the factorization into primes is unique, the prime 2
cannot appear an even number of times on one side of the equation and
an odd number on the other. Thus, Eq. (8.23) is impossible.
From the uniqueness of the factorization, one can argue directly that 
has even number of prime factors, whereas  has odd number of
prime factors, which is absurd.
Some of the aforementioned illustrations can be extended to prove the
result: If , then  is a rational number if and only if  is

http://people.math.harvard.edu/~mazur/preprints/Eva.Nov.20.pdf


an integer. For this, �irst we model its proof due to Gardner [208].
Clearly, if  is an integer, then  is rational. Conversely, we
assume that  is rational, i.e., it can be written as 
where  and q is the smallest possible such integer. Let

 Then, it follows that  and therefore
 Now note that the equality 

is true if and only if  holds. Thus,

but this contradicts the fact that q is the smallest.
Now we will apply Theorem 4.1. Again if  is an integer, then

 is rational. Conversely, we assume that  is rational, i.e., it can
be written as  where  and  Since

 is not an integer,  Again, we have  By Theorem
4.1, q has a prime factor  Thus,  and so , but then 
Hence,  and , which contradicts our assumption that

Dedekind in his proof assumed that if N is not a square of an integer,
then there exists a positive integer  such that 
Again, if N is rational, then there exist  such that

 where q is the least possible integer possessing the
property that its square multiplied by N is the square of  Since

 it follows that the integers  and
 are positive, and we have

, which contradicts the
assumption on 
On the website https:// www. quora. com/ If-p-is-a-natural-number-but-
not-a-perfect-nth-power-how-does-one-prove-that-the-nth-root-of-p-
is-not-rational, Thomas Schürger (2019) has provided a very simple
proof of the following general result: The kth,  root of a
nonnegative integer  is rational if and only if N is a perfect kth
power. One direction of this statement is clearly true: the kth root of a
kth power is rational. Let us prove the other direction via proof by
contradiction. Let us assume that N is not a perfect kth power, and

https://www.quora.com/If-p-is-a-natural-number-but-not-a-perfect-nth-power-how-does-one-prove-that-the-nth-root-of-p-is-not-rational


 is rational, i.e.,  for some  in  such that  is
in lowest terms. Since

and  is in lowest terms  is also in lowest terms, and 
is clearly in lowest terms. It follows that  and , which is a
contradiction since we assumed that N is not a perfect kth power.
Hence,  must be an irrational number.
Some of the aforementioned arguments need slight modi�ication to
prove: If r and s are distinct primes, then  and  are irrational.
For example, to show  is irrational, we assume contrary, i.e.,

 where  We can assume that 
Then  and so  Therefore,  Since  it
follows that  and so , which is a contradiction.

8.8	 Spiral	of	Theodorus
From the dialogues of Plato, we know that Theodorus demonstrated
geometrically that the sides of squares represented by

, , and 
are incommensurable with a unit length. That is, he showed the
irrationality of the square roots of nonsquare integers from 3 to  “at
which point,” says Plato, “for some reason he stopped,” see Fig. 8.10.



Fig.	8.10 Spiral of Theodorus
It has been speculated that Theodorus constructed his spiral based on

right triangles with a common vertex, where in each triangle the side
opposite the common vertex has length 1. The hypotenuse of the nth
triangle then has length  follows immediately by Pythagorean
theorem. His spiral also suggest possible reason Theodorus stopped at

: On summing of the vertex angles for the �irst n triangles, we have

For  (which gives ) this sum is  while for 
the sum is  Thus, for , his spiral started to overlap itself
(i.e., cuts the initial axis for the �irst time) and the drawing became
“messy”. Theaetetus, who was a pupil of Theodorus and a member of
Plato’s school in Athens, extended the result, demonstrating that the
square root of any nonsquare integer is irrational, and the cube root of
any number that is not a perfect cube is irrational. Of course, today, by
induction one can draw  for any  Also, if n is an odd integer, then

 can be represented by the leg of a right triangle whose hypotenuse is
 and whose leg is  i.e.,

 Further, if n is an even integer, then
 can be represented by half of the leg of a right triangle whose

hypotenuse is  and whose other leg is  i.e.,



 Plato himself also showed that a rational
number could be the sum of two irrationals. In Fig. 8.11, we provide the
construction of  and  geometrically.

Fig.	8.11 Square roots of 5 and 6

8.9	 Chinese	Method	for	Square	Root
Liu Hui in his commentary on the Jiuzhang	Suanshu provided
approximation of  as  and in Chap. 4 Shao	guang (Short width)
suggested algorithms to �ind square and cube roots of numbers. For
square roots the method is a combination of completing squares
iteratively, and geometry, i.e., something like Fig. 8.12 always in mind, see
Burgos and Beltrán-Pellicer [108], Katz [301], and Yong [543]. We explain
the method by considering the problem 12, where square root of 55225 is
calculated. We begin with �inding the integers  so that the answer
can be written as . We calculate the largest integer a so
that . Clearly,  is the right choice. The difference
between the large (given) square  and the square with side

 i.e.  in Fig. 8.12 is the large gnomon with area
 Now if we ignore the outer thin gnomon, then b

must satisfy , which gives the largest
integer  To verify that the choice  is correct, i.e., when the
square on 10b included, the area of the large gnomon is still less than

 it is necessary to check that
 Since this is true, we can

continue to �ind  For this, we need



 or  An easy
check shows that the largest integer which satis�ies this is  Finally,
since  the exact square
root of 55225 is 

Fig.	8.12 Chinese method for square root
Similar to square roots, having cubes in mind there are examples in

Jiuzhang	suanshu to �ind cube roots of numbers. For example, it is shown
that the cube root of 1860867 is the exact number  In case, answer is
not an exact number, the procedure continues using decimal fractions.
Later, Chinese extended their procedure to �ind roots of polynomial
equations up to degree 10. For more details, see Li and Du [345].

8.10	 	Before	Archimedes
In what follows, chronologically, we shall list the growth and the value of

, which was used for a variety of practical problems before Archimedes.
To �ind an approximate value of , Aryabhata gives the following
prescription: Add 4 to 100, multiply by 8 and add to 62,000. This is
“approximately” the circumference of a circle whose diameter is
20,000. This means . It is important to
note that Aryabhata used the word asanna (approaching), to mean that
not only is this an approximation of  but that the value is irrational.
For more details, see [285, 286].
The earliest Chinese Mathematicians, from the time of Chou-Kong
(around 1200 BC) used the approximation  Some of those who
used this approximation were mathematicians of considerable
attainments in other respects. According to the Chinese mythology, 3 is
used because it is the number of the Heavens and the circle.



In the Old	Testament, about 950 BC, (I Kings vii.23, and 2 Chronicles
iv.2), we �ind the following verse: “Also, he made a molten sea of ten
cubits from brim to brim, round in compass, and �ive cubits the height
thereof; and a line of thirty cubits did compass it round about.” This
description of the priests’ bathing pool in Solomon’s Temple seems to
indicate that the ancient Jews held that  is  This value is
5% short of the actual. The Jewish Talmud, which is essentially a
commentary on the Old Testament, was published about 500 AD. This
shows that the Jews did not pay much attention to geometry. However,
debates have raged on for centuries about this verse. According to
some, it was just a simple approximation, while others say that “... the
diameter perhaps was measured from outside, while the circumference
was measured from inside.” For other perspective, see Parker [406].
Shatapatha	Brahmana means Priest	manual	of	100	paths (around 900
BC) is one of the prose texts describing the Vedic ritual. It survives in
two recensions, Madhyandina and Kanva, with the former having the
eponymous 100 brahmanas in 14 books, and the latter 104 brahmanas
in 17 books. In these books,  is approximated by

Hippocrates established the formula  for the area of a circle in terms
of its radius. It means that a certain number  exists, and is the same
for all circles, although his method does not give the actual numerical
value of  In trying to square the circle (unsuccessfully), we have seen
in Sect. 5. 4, he quadrated two moon-shaped �igures.
Anaxagoras, around 440 BC, while in prison wrote a treatise on the
quadrature of the circle.
Antiphon attempted to �ind the area of a circle by considering it as the
limit of an inscribed regular polygon with an in�inite number of sides.
Thus, he provided preliminary concept of in�initesimal calculus.
Bryson of Heraclea (born around 450 BC, Greece) considered the circle
squaring problem by comparing the circle to polygons inscribed within
it. He wrongly assumed that the area of a circle was the arithmetical
mean between circumscribed and inscribed polygons.
Hippias perhaps realized his quadratrix could also be used to square
the circle, but failed to prove it.
Aristophanes (446–386 BC, Greece) in his play The	Birds makes fun of
circle squarer’s.



Plato supposedly obtained for his day a fairly accurate value for

Dinostratus used Hippias quadratrix to square the circle. For this, he
proved Dinostratus’	theorem. Hippias quadratrix later became known as
the Dinostratus	quadratrix also. However, his demonstration was not
accepted by the Greeks as it violated the foundational principles of their
mathematics, namely Euclidean tools.

8.11	 Archimedes	Approximations	of	
Archimedes developed a general method	of	exhaustion to approximate the
value of  His method is based on the following arguments: the
circumference of a circle lies between the perimeters of the inscribed and
circumscribed regular polygons of n sides, and as n increases, the
deviation of the circumference from the two perimeters becomes smaller.
If  and  denote the perimeters of the inscribed and circumscribed
regular polygons of n sides, and C the circumference of the circle, then it is
clear that  is an increasing sequence bounded above by  and

 is a decreasing sequence bounded below by  Both of these
sequences converge to the same limit  For simplicity, we choose a circle
with the diameter  then from Fig. 8.13 it immediately follows that

Fig.	8.13 Archimedes approximation of 

(8.25)

It is clear that  Further,  is the
harmonic mean of  and  and  is the geometric mean of  and

 i.e.,



(8.26)

From (8.25) for the hexagon, i.e.,  it follows that
 Then, Archimedes successively took polygons of sides

 and  used the recursive relations (8.26), and the inequality

(8.27)

to obtain the bounds

(8.28)

The approximation  is often called the Archimedean	value of 
and it is good for most purposes. If we take the average of the bounds
given in (8.28), we obtain . Archimedes’ method of
computing  by using regular inscribed and circumscribed polygons is
known as the classical	method of computing  It follows that an inscribed
regular polygon of  sides takes up more than  of the area of a
circle.

Archimedes also showed that a curve discovered by Conon of Samos
(around 280–220 BC, Greece) could, like Hippias’ quadratrix, be used to
square the circle. The curve is today called the Archimedean	Spiral.

8.12	 Archimedes	Inequality
One of the most frequently debated questions in the history of
mathematics is the “puzzling” approximation of  appeared in his
treatise Measurement	of	a	Circle, namely, the inequality (8.27), which
Archimedes presented without a justi�ication. In fact, it is of paramount
interest because the bounds  and  are the best rational
approximations up to the respective denominators. On the website
https:// mathpages. com/ home/ kmath038/ kmath038. htm for the
inequality (8.27) several reviews which appeared in the popular history
of mathematics books have been summarized, for example: Rouse Ball in
1908 “it would seem...that [Archimedes] had some (at present unknown)
method of extracting the square root of numbers approximately,” Heath in

https://mathpages.com/home/kmath038/kmath038.htm


1921 “the successive solutions in integers of the equations 
and  may have been found...in a similar way to...the
Pythagoreans,” Bell in 1937, “...he also gave methods for approximating to
square roots which show that he anticipated the invention by the Hindus
of what amount to periodic continued fractions,” Boyer in 1968, “his
method for computing square roots was similar to that used by the
Babylonians,” Morris Kline in 1972, without any explanation claimed that
if  where  is the rational square nearest to  larger or
smaller, and b is the remainder, then the following inequalities can be
used to obtain (8.27)

(8.29)

As we have seen the right side bounds of the inequality (8.29) lead to
the algorithm (8.11), which indeed gives the upper bound of (8.27) (see
Table 8.1,  the left side bounds of (8.29) give us two
new iterative schemes

(8.30)

and

(8.31)

For (8.30), by induction, we shall show that 
implies that  For this, it suf�ices to show
that

or

which in view of  is obvious. From (8.30), we also
have  Thus, the sequence  generated by (8.30) is
monotonically increasing, and bounded above, and hence converges to



For the sequence  generated by the iterative scheme (8.31)
numerical evidence suggests that the convergence is oscillatory. Further,
from (8.30) as well as (8.31), we could not get the lower bound of (8.27),
see Table 8.3

Table	8.3 Monotone and oscillatory convergence

	 	 	

n

0

1

2

3

Again on the website https:// mathpages. com/ home/ kmath038/ 
kmath038. htm, a clever observation is that if a is a bound (upper or
lower) of  then  is a closure bound on the
opposite side (lower or upper). This suggests the iterative scheme

(8.32)

Since

the error is negated and reduced by a factor of nearly 52 in each
iteration. Iterative scheme (8.32) gives

Thus,  and  respectively, give the lower and upper Archimedes
bounds of 

An immediate extension of the algorithm (8.32) for an arbitrary
integer N can be written as

https://mathpages.com/home/kmath038/kmath038.htm


(8.33)

where p is the smallest (largest) integer so that 
i.e.,  ). Now, since

(8.34)

if  then in view of  the
sequence  generated by (8.33) converges to  and the
convergence is decreasing provided  further from (8.34)

whereas if  the convergence is increasing and

For  and  so that  �irst few iterates are
listed below.

Now we consider the case when  i.e.,  In
this case (8.34) is better written as

(8.35)

We shall show that  For this, since
 it suf�ices to show that , which

is the same as  Now since p is the largest
integer such that  certainly,  which also



give  Thus, it is adequate to show that
 but it is the same as

 In conclusion, the sequence 
generated by (8.35) converges, the convergence is clearly oscillatory,
and

For  we have  and (8.33) reduces to
(8.32). We have already employed (8.32) to obtain �irst few iterates
with  Now we compute �irst few iterates with

On the same website and on the website https:// www. mathpages. com/ 
home/ kmath190/ kmath190. htm following Babylonians’ the basic
ladder	rule for generating a sequence of integers to yield the square
root of a number N the following recurrence relation has been
discussed

(8.36)

where a is the largest integer such that  is less than  Letting
 or  it follows that

and hence  satis�ies (8.36). Now
since  and  from (8.36) it immediately
follows that  However, since exactly q is unknown,
we can begin with arbitrary (initial) integer values of  and
generate the sequence of the ratios , which must converge to
the solutions of (8.36), namely,  Thus, 
converges to  We also note that  converges
to  and hence

 converges to  Now we shall show that
for both the sequences  and

https://www.mathpages.com/home/kmath190/kmath190.htm


 convergence is oscillatory. For the �irst
sequence it suf�ices to show that if , which is the
same as , then  For
this, from (8.36) we have

Similarly, for the second sequence it suf�ices to show that if
, which is the same as

 then  But
this is the same as proving  Now from (8.36) it
follows that

For  and , we need to take  so that the recurrence
relation (8.36), respectively, reduces to  and

 We shall consider these recurrence relations
with  and  i.e.,

(8.37)

and

(8.38)

Although solutions of (8.37) and (8.38) can be written explicitly as

for the computation they are of little help. In Table 8.4, we directly use
(8.37) and (8.38) to list successive approximations obtained for  and

 It is clear that Table 8.4 contains most of the data of Table 8.1, also it
includes Archimedes’ lower and upper bounds for  in fact, it is
probable that Archimedes used iterative scheme (8.36) to establish the
inequality (8.27).



Table	8.4 Babylonian ladder rule

	

n

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Davies in his preprint [154] combined a simple proposition:

and an argument similar to that of bisection	method to compute
Archimedes lower and upper bounds in (8.27). For this, he assumed a



pair of two approximations  and  of  such that
 Now calculate  and replace  by 

if  i.e.,  and replace  by  if 
i.e.,  This gives an improved pair of
approximations. The procedure continues until the desired accuracy is
achieved. With  and  his �irst 16 pairs of approximations
are

While the aforementioned list of pairs of approximations of 
contain lower and upper bounds of Archimedes, an extended algorithm
for the computation of  for an arbitrary integer N has no merit.

For the lower bound on the website https:// math. stackexchange. com/ 
questions/ 894862/ archimedes-approximation-of-square-roots, posted
in 2015, the secant method has been suggested. Recall from the
standard numerical analysis text books, the secant method for �inding a
simple root  of the equation  is

(8.39)

where  are two initial approximations, one is less than  and
the other is greater than  For the root  the secant method is
superlinear, i.e., the rate of convergence is the Golden Number . We
note that for the equation  the secant method
(8.39) simply reduces to

(8.40)

It is interesting to note that if in (8.40), we take  then it is
the same as (8.11). Applying (8.40) with  (which is
less than ), and  (which is greater than ), see Table

https://math.stackexchange.com/questions/894862/archimedes-approximation-of-square-roots


8.1, we immediately get , which is the lower bound in
(8.27). From (8.40), we also compute

, which is a better lower bound than
in (8.27).
For the lower bound in (8.27) on the website https:// hsm. 
stackexchange. com/ questions/ 771/ what-is-so-mysterious-about-
archimedes-approximation-of-sqrt-3 posted in 2015, following
Babylonian tables are constructed for  and , and it was
noticed that 
Upper bound in the inequality (8.27) is the same as obtained in
Sulbasutras, see (8.5). Unfortunately, historians never found place to
write this fact.
For two positive numbers  recall that

Based on the above inequalities, we have the following three
algorithms HMA, GMA, and AMA

(8.41)

where  are positive (initial approximation) numbers. The GMA
and AMA �irst appeared in the works of Lagrange; for their applications
to approximate  see the recent monograph of Chan [122]. It is clear
that  From this, it immediately follows that

and

thus the sequence  is decreasing, the sequence  is
increasing, the sequence  is also increasing and 
Thus,  In
conclusion all the three sequences  converge to the

https://hsm.stackexchange.com/questions/771/what-is-so-mysterious-about-archimedes-approximation-of-sqrt-3


same limit. The convergence of  also follows from the relation
 Now to �ind  we let  for all

 Then HMA, GMA, and AMA, respectively, reduce to

Here  is some positive rational number. Clearly, AMA is the same
as (8.11). We note that the equation  gives

 and  holds for  Thus, if we
employ AMA for  with  (which is a reasonable choice,
see (8.5)) then  is the same as the upper bound of the inequality
(8.27). We further note that the equation ,
which is the same as  has no rational roots, and
hence, lower bound of (8.27) cannot be obtained from HMA for 
A proof of (8.27) based on very simple inequalities is as follows:

and

8.13	 	After	Archimedes
The American philosopher and psychologist William James (1842–1910)
wrote in 1909 “the thousandth decimal of Pi sleeps there though no one
may ever try to compute it.” Thanks to twentieth and twenty-�irst century,
mathematicians and computer scientists, it sleeps no more. In 1889,
Hermann Cäsar Hannibal Schubert (1848–1911, Germany) said “there is
no practical or scienti�ic value in knowing more than the 17 decimal
places used in the foregoing, already somewhat arti�icial, application,” and
according to Arndt and Haenel [40], just 39 decimal places would be
enough to compute the circumference of a circle surrounding the known
universe to within the radius of a hydrogen atom. Further, an expansion of

 to only 47 decimal places would be suf�iciently precise to inscribe a
circle around the visible universe that doesn’t deviate from perfect



circularity by more than the distance across a single proton. The question
has been repeatedly asked why so many digits? Perhaps the primary
motivation for these computations is the human desire to break records,
the extensive calculations involved have been used to test
supercomputers and high-precision multiplication algorithms (a stress
test for a computer-a kind of “digital cardiogram”), the statistical
distribution of the digits, which is expected to be uniform, that is, the
frequency with which the digits (0 to 9) appear in the result will tend to
the same limit  as the number of decimal places increases beyond
all bounds, and in recent years, these digits are being used in applied
problems as a random sequence. It appears experts in the �ield of  are
looking for surprises in the digits of  In this section, we shall provide an
update account of the computation of  and realize that Archimedes
polygonal method remained unsurpassed until 18 centuries.

Varahamihira in his work approximated  as 
Marcus Vitruvius Pollio (around 75-15 BC, Italy) commonly known as
Vitruvius, in his multi-volume work De	Architectura (On Architecture)
described the use of  progression or ad quadratum technique,
which uses geometry to double a square in which the diagonal of the
original square is equal to the side of the resulting square. He obtained
and used the value , which is the same as
Babylonians had used 2,000 years earlier. He was the �irst to describe
direct measurement of distances by the revolution of a wheel.
Brahmagupta used a geometric construction for squaring the circle,
which amounts to 
Liu Xin (Liu Hsin) (around 50 BC–23 AD, China), in about 10 BC gave a
more accurate calculation of  as  the exact method he used to
reach this �igure is unknown. This was �irst mentioned in the Sui	shu
(387–388, China). He also found the approximations 
and  Liu Xin in 5 AD gave a more accurate calculation of  as

 The method he used to reach this �igure is also unknown (see
Bai [47]).
Heron in his Metrica refers to an Archimedes work, where he gives the
bounds



Clearly, in the aforementioned right inequality there is a mistake as
it is worse than the upper bound  found by Archimedes earlier.
Heron adds “Since these numbers are inconvenient for measurements,
they are reduced to the ratio of the smaller numbers, namely, 
Zhang Heng (78–139 AD, China), in 125 proposed  (about 3.1623)
for  He also compared the celestial circle to the width (i.e., diameter)
of the earth in the proportion of 736 to  which gives  as 
Ptolemy, in his Almagest used chords of a circle and an inscribed 360-
gon, to �ind approximate value of  in sexagesimal notation, as ,
which is the same as  Eutocius of Ascalon
(480–540, Israel) refers to a book Quick	Delivery by Apollonius, in
which he obtained an approximation for , which was better than
known to Archimedes, perhaps the same as 
Wang Fan (228–266, China), in 250, found the rational approximation

 for  yielding 
Liu Hui, in 263, in his Nine	Chapters	on	the	Mathematical	Art used a
variation of the Archimedean inscribed regular polygon with 192 sides
to approximate  as  and later calculated  as 3.14159 by
using 3072-sided polygon. He also suggested  as a
practical approximation.
Pappus, in 330, in his Mathematical	Collection for squaring the circle
used Dinostratus quadratrix.
He Chengtian (370–447, China), in 400, gave the approximate value of

 as 
Tsu Ch’ung-chih (Zu Chongzhi) (429–500, China), in 475, with his son
used a variation of Archimedes method to �ind

 He also obtained a remarkable rational
approximation  which yields  correct to six decimal digits. In
Chinese this fraction is known as Milü. To compute this accuracy for 
he must have taken an inscribed regular -gon and performed
lengthy calculations. For details see Zha [547]. Note that 
can be obtained from the values of Ptolemy and Archimedes:



He declared that  is an inaccurate value, whereas  is
the accurate value of  We also note that  can be obtained
from the values of Liu Hui and Archimedes. In fact, by using the method
of averaging, we have

An integral proof of  is available in [352].
Bhaskara II gave several approximations for  According to him

 is an accurate value,  is an inaccurate value, and  is
for ordinary work. The �irst value may have been taken from Aryabhata.
This approximation has also been credited to Liu Hui and Zu Chongzhi.
He also gave the value , which is of uncertain origin;
however, it is the same as that by Ptolemy.
Boethius, in 510, declared that circle had been squared in the period
since Aristotle’s time, but noted that the proof was too long.
The Suishu (History of the Sui Dynasty, China), which was presented to
the throne in 656, includes a paragraph on the history of 
Al-Khwarizmi, in 800, used  in algebra,  in geometry,
and  in astronomy.
Mahavira, in 850, used the approximate value of  as  He also
mentions that the approximate volume of a sphere with diameter d is

 i.e.,  and exact volume is  i.e.,

Franco von Lüttich (around 1015–1083, Belgiam), in about 1040, wrote
a treatise on Squaring the Circle, a work of six books, but only
preserved in fragments.
Fibonacci, in 1220, in his treatise Practica	geometriae used a 96-sided
polygon, to obtain the approximate value of  as

Johannes Campanus (around 1220–1296, Italy), in 1260, wrote a Latin
edition of Euclid’s Elements in 15 books. He used the value of  as

Zhao Youqin (1271–1335, China), in about 1300, used a regular
polygon of  sides to derive 



Albert of Saxony, in about 1360, wrote a long treatise De	quadratura
circuli (Question on the Squaring of the Circle) consisting mostly
philosophy. He said “following the statement of many philosophers, the
ratio of circumference to diameter is exactly  of this, there is proof,
but a very dif�icult one.”
Madhava, around 1400, gave many methods for calculating the
circumference of a circle. The value of  correct to 13 decimal places is
attributed to Madhava. However, the text Sadratnamala, usually
considered as prior to Madhava, while some researchers have claimed
that it was compiled by Madhava, gives the astonishingly accurate value
of  correct to 17 decimal places.
al-Kashi, in 1424 [25], calculated  to 14 decimal places, and later in
1429 to 16 decimal places. For this he used classical polygon method of

 sides.
George Pürbach (1423–1461, Austria), in 1460, approximated  by the
rational , which is exactly the same as given by Aryabhata.
Nicholas of Cusa, in 1464, gave the approximations of  as

 and  He thought this to be
the exact value.
Johann Regiomontanus, in 1464, criticized Nicholas of Cusa’s
approximations and methods to approximate the value of  and gave
the approximation 
Nilakanthan, about 1500, gave a proof of the arctangent in�inite series
expansions of Madhava (2. 18), and in Sanskrit poetry the series (7. 178)
which follows from Madhava’s series (2. 18) when  He also gave
sophisticated explanations of the irrationality of  Since (7. 178) is an
alternating series, the error committed by stopping at the nth term
does not exceed  in absolute value. Thus, to compute  to
eight decimals from (7. 178) would require  terms. Hence,
although it is only of theoretical interest, the expressions on the right
are arithmetical, while  arises from geometry. We also note that the
series (7. 178) can be written as

The following expansion of  is also due to Nilakanthan



This series converges faster than (7. 178), which is the same as
obtained by Fearnehough by manipulating (7. 178) in 2006 (see Chap.
7).
Leonardo da Vinci, before 1510, brie�ly worked on squaring the circle,
or approximating 
Stifel, in 1525, expressed that the quadrature of  is impossible.
According to him, “the quadrature of the circle is obtained when the
diagonal of the square contains 10 parts of which the diameter of the
circle contains 8.” Thus, 
Albrecht Dürer, in 1525, in his book Underweysung	der	Messung	mit
dem	Zirckel	und	Richtscheyt provides measurement of lines, areas, and
solids by means of Euclidean tools, particularly there is a discussion of
squaring the circle.
Oronce Fińe (1494–1555, France), in 1544, approximated  as

 Later, he gave  and, in
1556, 
Johannes Buteo (1492–1572, France), in 1559, published a book De
quadratura	circuli, which seems to be the �irst book that accounts the
history of  and related problems.
Valentin Otho (around 1550–1603, Germany), in 1573, came to
Wittenberg and proposed to Johannes Praetorius (1537–1616,
Germany) the Tsu Ch’ung-chih approximate value of  as 
Tycho Brahe, in 1550, approximated  as 
Sankar Variyar (1500–1560, India), in his book Kriyakramakari of 1560
has written, “Multiply 104348 with the diameter of the circle and divide
the product by 33215, you will get the value of circumference.” From
this we can get, 
Simon Duchesne, in 1583, found 
Zhu Zaiyu, in 1584, gave the approximate value of  as

 Around the same time Xing Yunlu (China)
adopted  as  and  while Chen Jinmo (China) and
Fang Yizhi (China), respectively, took as  and 
Simon van der Eycke (The Netherland), in 1584, published an incorrect
proof of the quadrature of the circle. He approximated  as



 In 1585, he gave the value 
Adriaen Anthoniszoon (1529–1609, The Netherlands), in 1585,
rediscovered the Tsu Ch’ung-chih approximation  to . This
was apparently lucky incident, since all he showed was that

. He then averaged the numerators and the
denominators to obtain the “exact” value of 
Viéte, in his 1593, book Supplementum	geometriae showed that

 i.e., gave the value of  correct to
nine places. For this, he used the classical polygon of 
sides. He also represented  as an in�inite product

(8.42)

For this, we note that

and hence

which as  and then  gives

Finally, we have



The aforementioned formula (8.42) is one of the milestones in the
history of . The convergence of Vieta’s formula was proved by
Ferdinand Rudio (1856–1929, Germany-Switzerland) in 1891. It is
clear that Vieta’s formula cannot be used for the numerical
computation of  In fact, the square roots are much too cumbersome,
and the convergence is rather slow. It is clear that if we de�ine

 and  then (8.42) is the same as

Adrianus van Roomen (1561–1615, Belgium-Germany), in 1593, used
the classical method with  sides, to approximate  to 15 correct
decimal places.
Joseph Justus Scaliger (1540–1609, France-The Netherlands), in 1594,
in his work Cyclometrica	elementa	duo claimed that  is equal to 
Ludolph van Ceulen (1539–1610, Germany-The Netherlands), in 1596,
wrote a book Van	den	Circkel (On The Circle) in which he published his
geometric �indings, and the approximate value of  correct to 20
decimal places. For this, he reports that he used classical method with

 i.e.,  sides. This book ends with “Whoever
wants to, can come closer.” In 1610, in his work De	Arithmetische	en
Geometrische	fondamenten, which was published posthumously by his
wife in 1615, computed  correct to 35 decimal places by using
classical method with  sides. This computational feat was considered
so extraordinary that his widow had all 35 digits of die	Ludolphsche
Zahl (the Ludolphine number) was engraved on his tombstone in St.
Peter’s churchyard in Leiden. The tombstone was later lost but was
restored in 2000 (see Huylebrouck [274]). This was one of the last
major attempts to evaluate  by the classical method; thereafter, the
techniques of calculus were employed.
Oliver de Serres (1539–1619, France), around 1600, believed that by
weighing a circle and a triangle equal to the equilateral triangle
inscribed he had found that the circle was exactly double of the triangle,
not being aware that this double is exactly the hexagon inscribed in the
same circle. Thus, according to him, 
Willebrord Snell, in 1621, cleverly combined Archimedean method with
trigonometry and showed that for each pair of bounds on  given by
the classical method, considerably closer bounds can be obtained. By
his method, he was able to approximate  to seven places by using just



96 sides, and to van Ceulen’s 35 decimal places by using polygons
having only  sides. The classical method with such polygons yields
only two and 15 decimal places.
Yoshida Mitsuyoshi (1598–1672, Japan), in 1627, used  for 
Christoph (Christophorus) Grienberger (1561–1636, Austria), in 1630,
used Snell’s re�inement to compute  to 39 decimal places. This was
the last major attempt to compute  by the Archimedes method.
Celiang	quanyi (Complete Explanation of Methods of Planimetry and
Stereometry), published in 1635, gives without proof the following
bounds

i.e.,  correct to 19 digits.
William Oughtred (1575–1660, England), in 1647, designated the ratio
of the circumference of a circle to its diameter by 
Saint-Vincent, in 1647, in his book Opus	geometricum	quadraturae
circuli	et	sectionum	coni proposed at least four methods of squaring the
circle, but none of them were implemented. The fallacy in his
quadrature was pointed out by Huygens. He also formulated the
logarithmic series

(8.43)

In 1668, Nicolaus Mercator (Kauffmann) (1620–1687, Germany-
France) wrote a treatise entitled Logarithmo-technica, and rediscovered
the same series.
Descartes, in 1650, after his death a novel geometric approach to
approximate  was found in his papers. His method consisted of
doubling the number of sides of regular polygons while keeping the
perimeter constant. In modern terms, Descartes’ method can be
summarized as

If we let  then in view of
 satis�ies the relation

and hence



The sequence  generated by the aforementioned recurrence
relation converges to 
Huygens, in 1654 [273], for the computation of  gave the correct
proof of Snell’s re�inement, and using an inscribed polygon of only 60
sides obtained the bounds  for the
same accuracy the classical method requires almost 400,000 sides.
Wallis, in 1655, published his most famous work Arithmetica
in�initorum in which he established the formula

(8.44)

This formula is a great milestone in the history of  Like Viéte’s
formula (8.42), Wallis had found  in the form of an in�inite product,
but he was the �irst in history whose in�inite sequence involved only
rational operations. (Hobbes called Arithmetica	in�initorum “a scab of
symbols,” and claimed to have squared the circle). To derive (8.44), we
note that  satis�ies the recurrence relation

(8.45)

Thus, in view of  and  we have

and

From these relations, a termwise division leads to

Now, it suf�ices to show that



(8.46)

We know that for all  the inequalities
 hold. Thus, an integration from 0 to

 gives  and hence,

(8.47)

Further, from (8.45) we have

thus, it follows that

(8.48)

Finally, a combination of (8.47) and (8.48) immediately gives (8.46).
If we de�ine  then (8.44) is equivalent to

 We also note that

It is interesting to note that (7. 39) with  immediately gives
Wallis’ formula (8.44).
Muramatsu Shigekiyo (1608–1695, Japan), in 1663, published Sanso
(Stack of Mathematics), in which he used classical polygon method of

 sides to obtain 
Newton, in 1665, used 22 terms of the following series to obtain 16
decimal places of 

(8.49)

Later, he wrote “I am ashamed to tell you to how many �igures I
carried these computations, having no other business at the time.” His



result was not published until 1737 (posthumously). However, most of
the history books say that to compute  Newton used the series

which for  gives

Using analysis and geometry, the series (8.49) can be obtained as
follows: From Fig. 8.14, the equation of the upper half circle is

 Thus, binomial expansion gives

Fig.	8.14 Newton approximation of 

Thus, the area of the sector ABD is (integrating the aforementioned
series from 0 to )

(8.50)

Also, from geometry the area of the sector ABD is

(8.51)

Equating (8.50) and (8.51), we immediately get (8.49).
Hobbes, in 1666, approximated  by , which was refuted by
Huygens and Wallis. In 1678, he also gave the approximation 



James Gregory, in 1667, in his book Vera	circuli	et	hyperbolae
quadratura showed that the area of a circle can be obtained in the form
of an in�inite convergent series only, and hence, inferred that the
quadrature of the circle was impossible, i.e.,  is a transcendental
number. However, his attempt, though very interesting, was not regress.
Huygens made detailed and rather biased criticisms of it.
Thomas Shadwell (1642–1692, England), in the mid-1670s, in the
popular play “The Virtuoso” satirised the Royal Society, scof�ing at its
attempts to “square the circle” as futile and impossible.
Mengoli, in 1672, published on the problem of squaring the circle and
provided a proof that Wallis’ product (8.44) for  is correct.
Leibniz, in 1674, for calculating  developed a method without any
reference to a circle. He also rediscovered Nilakanthan’s series (7. 178),
whose beauty he described by saying that Lord loves odd numbers.
Isomura Yoshinori (1640–1710, Japan), in 1684, employed a -sided
inscribed polygon to obtain  for  but for some reason he
wrote only 
Father Adam Adamad Kochansky (1631–1700, Poland), in 1685 [312],
used a new approximate geometric construction for  to obtain

His method was later quoted in several geometrical textbooks.
Takebe Katahiro (1664–1739, Japan) also known as Takebe Kenko, in
1690, used polygon (just 1024 sides) approximation and a numerical
method, which is essentially equivalent to the Romberg algorithm
(rediscovered by Werner Romberg, 1909–2003, Germany, in 1955) to
compute  to 41 digits. In 1722, Takebe obtained power series
expansion of  15 years earlier than Euler. Around 1729,
essentially the same series was rediscovered by Oyama Shokei (Japan),
who used it to �ind the expansion



The aforementioned expansion of  was also given by Yamaji
Nushizumi (1704–1772, Japan) around 1765.
Abraham Sharp (1653–1742, England), in 1699, in the supervision of
Edmund Halley (1656–1742, England) realized that by putting  in
(2. 18) (see (7. 178)) we loose the bene�it of the powers ,
which tend to increase the rapidity of convergence for smaller values of

 He substituted  in (2. 18), to obtain

(8.52)

Sharp used (8.52) to calculated  to 72 decimal places out of which
71 digits are correct. In (8.52) the 10th term is  which
is less than , and hence, we have at least four places correct
after just 9 terms. It is believed that Madhava used the same series to
compute the value of  correct to 11 decimal places.
Seki Takakazu (1642–1708, Japan) also known as Seki Kowa, in 1700,
used polygon of  sides and Richardson extrapolation (rediscovered
by Alexander Craig Aitken, 1895–1967, New Zealand-England) to
compute  to 10 digits. Some authors believe that he also used the
formula

Pirre Jartoux (1669–1720, France) also known with the Chinese name
Du Demei, about 1705, claimed that for a circle of diameter d the length
of the circumference  is

John Machin (1680–1752, England), in 1706, computed the value of 
to 100 decimal places by using the formula

(8.53)

which in view of (2. 18) is the same as



(8.54)

To establish (8.53), we let  so that

Thus, it follows that

and hence

The proof of (8.53) also follows by comparing the angles in the
identity (the idea originally goes back to Wessel)

i.e.,

The series (8.54) certainly converges signi�icantly faster than (7. 
178) and (8.52). In fact, taking six terms of the �irst series and two
terms of the second and paying attention to the remainders and round–
off errors, we get the inequalities 
Thus, the value of  correct to seven decimals is 

Several other Machin–type formulas are known, e.g.,



For a long list of such type of formulas with a discussion of their
relative merits in computational work see Lehmer [341] and Hwang
[275].
Mei Gucheng (1680–1763, China) and He Guozong (1687–1766, China),
in 1713, in Chapter 15 of Shu	li	jing	yun (Collected Basic Principles of
Mathematics) gave , which is correct to eight decimal
places.
Thomas Fantet de Lagny (1660–1734, France), in 1719 [327], used the
series (8.52) to determine the value of  up to 127 decimal places;
however, only 112 are correct.
The Emperor Kangxi (1654–1722) in 1713 commissioned by imperial
order to compile an encyclopedia, which covers all mathematical
knowledge, Chinese and Western, available in China. For this more than
100 promising young scholars and a large number of instruments
maker were hired. This monumental work The	Shuli	Jingyun (Collected
Essential Principles of Mathematics) was completed in 1723. In this
compilation the computations begin with the square and the hexagon
and are extended to polygons with  and  sides,
respectively. As a result, a value of  composed of 40 digits is derived,
but unfortunately only 16 of them are correct.
Alexander Pope (1688–1744, England), in 1728, in his Dunciad
mentioned that “The mad Mathesis, now, running round the circle, �inds
it square.” This explains the wild and fruitless attempts of squaring the
circle.
Sieur Malthulon (France), in 1728, offered solutions to squaring the
circle and to perpetual motion. He offered 1000 crowns reward in legal
form to anyone proving him wrong. Nicoli, who proved him wrong,
collected the reward and abandoned it to the Hotel Dieu of Lyons. Later,
the courts gave the money to the poor.
Toshikiyo Kamata (1678–1747, Japan), in 1730, used both the
circumscribed and inscribed polygons and gave the bounds

,
.

De Moivre, in 1730, in his publication Miscellanea	Analytica gave the
formula for very large 



which is known today as Stirling’s	formula after James Stirling
(1692–1770, Scotland).
Puthumana Somyaji (1660–1740, India), in his book Karanapaddhati of
1733, has written “Multiply 10000000000 with the circumference of
the circle and divide the product by 31415926536, you will get the
diameter of the circle. Half of this is radius.” From this, the value of  is
found to be 
Euler, in 1737, in the paper De	variis	modis	circuli	quadraturam	numeris
proxime	exprimendi derived the formulas

(8.55)

and

which lead to any number of relations for  for example, if
 and the odd numbers are substituted for  we

obtain

The proof of (8.55) immediately follows by comparing the angles in
the identity

Matsunaga Yoshisuke (1690–1744, Japan), in 1739, in modern terms
used the hypergeometric series

for  and  i.e., the series



to compute  correct to 50 digits. He also gave the following series

Alexis Claude Clairaut (1713–1765, France), in 1741, used a new
approach to show that the area of a circle is equal to the product of the
circumference and half the radius. He also used the fact that a circle is a
polygon with in�initely many sides. He showed that the area of any
regular polygon inscribed in a circle is equal to the perimeter
multiplied by half the apothem (a line from the center of a regular
polygon at right angles to any of its sides) and then noted that if there
are an in�inite number of sides, the area, perimeter, and apothem of the
polygon become equal to the area, circumference, and radius,
respectively of the circle.
Euler, in 1748, gave the following expansion of 

where the signs are determined by following the rule: If the
denominator is 2 or a prime of the form  the sign is positive; if
the denominator is a prime of the form  the sign is negative; for
composite numbers, the sign is equal to the product of signs of its
factors. The following curious in�inite product was also given by Euler

where the numerators are the odd primes and each denominator is
the multiple of four nearest to the numerator.
Henry Sullamar (England), a real Bedlamite, in 1750, squared the circle
by the number of the Beast 666 with seven heads and ten horns. He
published periodically every 2 or 3 years some pamphlet in which he
endeavored to prop his discovery.
M. de Causans of the Guards (France), in 1753, cut a circular piece of
turf, squared it, and from the result deduced original sin and the Trinity.



He found that the circle was equal to the square in which it is inscribed,
i.e.,  He offered a reward for the detection of any error, and
actually deposited 10,000 francs as earnest of 300,000. But the courts
did not allow any one to recover.
Jean E� tienne Montucla (1725–1799, France), in 1754, published an
anonymous treatise entitled Histoire	des	récherches	sur	la	quadrature
du	cercle (History research on the quadrature of the circle).
Euler, in 1755, in his treatise De	relatione	inter	ternas	pluresve
quantitates	instituenda (To establish the relationship between three or
more quantities), which was published 10 years later, wrote “It appears
to be fairly certain that the periphery of a circle constitutes such a
peculiar kind of transcendental quantities that it can in no way be
compared with other quantities, either roots or other transcendentals.”
This conjecture haunted mathematicians for 107 years. The following
expansion is due to Euler

(8.56)

where  It converges rapidly.
Comte of Buffon, in 1760, supposed a number of parallel lines, distance
a apart, are ruled on a horizontal plane, and suppose a homogeneous
uniform rod of length  is dropped at random onto the plane.
Buffon showed that the probability that the rod will fall across one of
the lines in the plane is given by  In the literature this
problem is known as Buffon’s needle problem. This was the earliest
problem in geometric probability to be solved. By actually performing
this experiment, a large number of times and noting the number of
successful cases, we can compute an approximation for 
Arima Yoriyuki (1714–1783, Japan), in 1766, found the following
rational approximation of , which is correct to 29 digits

In 1775, the French Academy of Sciences passed a resolution
henceforth not to examine any more solutions of the problem of
squaring the circle. In fact, it became necessary to protect its of�icials
against the waste of time and energy involved in examining the efforts
of circle squarers. A few years later, the Royal Society in London also



banned consideration of any further proofs of squaring the circle. This
decision of the Royal Society was described by De Morgan about 100
years later as the of�icial blow to circle-squarers.
Charles Hutton (1737–1823, England), in 1776, suggested Machin’s
stratagem in the form

(8.57)

however, he didn’t carry computations far enough. Euler also
developed the formula (8.57).
Euler, in 1779, used his expansion (8.56) to evaluate right terms of
(8.57), to calculate  to 20 decimal places in one hour!
Franz Xaver Freiherr von Zach (1754–1832, Hungary-France), in 1785,
discovered a manuscript by an unknown author in the Radcliffe Library,
Oxford, which gives the correct value of  to 152 decimal places.
Baron Vega, in 1789, used a new series for the arctangent discovered by
Euler in 1755, calculated 140 decimal places (126 correct). Vega’s
result showed that de Lagny’s string of digits had a 7 instead of an 8 in
the 113th decimal place. His article was published 6 years later, in 1794
[517] (136 correct). Vega retained his record for 52 years until 1841.
Ajima Naonobu (1732–1798, Japan) also known as Ajima Chokuyen, in
1795, developed a series which in simpli�ied form appears as

It is interesting to note that the aforementioned series follows from
(7. 178) by using an acceleration technique known in the literature as
Euler’s transform. It can also be derived from the Wallis product
formula (8.44).
Jean-Charles Callet (1744–1799, France), in 1795, gave 154 (152
correct) decimal digits of 
Gauss, in 1800, suggested to his teacher Johann Friedrich Pfaff (1765–
1825, Germany) to study the sequences  and  generated by
the recurrence relations (see Cox [141])



(8.58)

In his reply Pfaff showed that for any positive numbers  and 
these sequences converge monotonically to a common limit given by

(8.59)

Pfaff’s letter was unpublished. In 1881, Carl Wilhelm Borchardt
(1817–1880, Germany) work was published in which he rediscovered
this result which now bears his name. For this, it suf�ices to note that:
1.  and  converge monotonically to the same limit.  
2. The ratio  satis�ies  
3. If  let  Then,  and

 are independent of  
4.  

If  we let  and follow similarly.
Now we let  then (8.58) and (8.59) take the

form

(8.60)

and

(8.61)

Clearly, the recurrence relations (8.26) as well as (8.41) are different
from (8.60). In fact, (8.26) minimize the count of arithmetic operations. In



particular, if we let  then (8.60) in view of (8.61)
converges to 

In what follows we let the constant , then
we can uncouple (8.58) and (8.60), respectively, to obtain

(8.62)

and

(8.63)

From (8.62) and (8.63) several known and new recurrence relations
can be obtained.

Gauss also developed Machin-type formula

(8.64)

He also estimated the value of  by using lattice theory and
considering a lattice inside a large circle, but he did not pursue it further.

Sakabe Kohan (1759–1824, Japan), in 1810, developed the series

Wada Yenzo Nei (1787–1840, Japan) also known as Wada Yasushi, in
1818, developed over one hundred in�inite series expressing directly or
indirectly  One of his series can be written as

Sankar Varman (1774–1839, India), in his book Sadratnamala of 1819,
has written “if the diameter of a big circle becomes
100000000000000000, then its circumference will be
314159265358979324.” From this, the value of  will be

Malacarne (Italy), in 1825, published a geometric construction in
Géométrique (Paris), which leads to the value of  less than 



C.G. Specht (Germany), in 1828, published a geometric construction in
Crelle’s Journal, Volume 3, page 83, which leads to

Karl Heinrich Schellbach (1809–1990, Germany), in 1832, began with
the relation

which was given by Giulio Carlo Fagnano dei Toschi (1682–1766,
Italy) in 1750, and used the logarithm expansion (8.43), to obtain

which immediately gives Nilakanthan series (7. 178). He also
considered the relation

and used the expansion (8.43), to obtain, compare to (7. 178), a fast
converging expansion

William Baddeley (England), in 1833, in his work Mechanical
quadrature	of	the	circle,	London	Mechanics’	Magazine,	August,	1833
writes “From a piece of carefully rolled sheet brass was cut out a circle

 inches in diameter, and a square  inches in diameter. On
weighing them they were found to be exactly the same weight, which
proves that, as each are of the same thickness, the surfaces must also be
precisely similar. The rule, therefore, is that the square is to the circle as



17 to 19.” We believe for the square it must be the side (not the
diameter). Then, it follows that 
Joseph LaComme (France), in 1836, at a time when he could neither
read nor write—being desirous to ascertain what quantity of stones
would be required to prove a circular reservoir he had constructed,
consulted a mathematics professor. He was told that it was impossible
to determine the full amount, as no one had yet found the exact relation
between the circumference of a circle and its diameter. The well-sinker
thereupon, full of self-con�idence in his powers, applied himself to the
celebrated problem and discovered the solution which led to 
by mechanical process. He then taught himself to read and write, and
managed to acquire some knowledge of arithmetic by which he veri�ied
his mechanical solution. Joseph was honored for his profound discovery
with several medals of the �irst class, bestowed by Parisian societies.
William Rutherford (1798–1871, England), in 1841 [441], calculated 
to 208 places of which 152 were later found to be correct. For this, he
employed Euler’s formula

and Madhava’s series expansion (2. 18).
Johann Martin Zacharias Dase (1824–1861, Germany) was a calculating
prodigy. At the age of 15, he gave exhibitions in Germany, Austria and
England. His extraordinary calculating powers were timed by
renowned mathematicians including Gauss. He multiplied

 in 54 seconds; two 20-digit numbers in 6
minutes; two 40-digit numbers in 40 minutes; and two 100-digit
numbers in 8 hours 45 minutes. In 1840, he made acquaintance with
Viennese mathematician L.K. Schulz von Strasznicky (1803–1852), who
suggested him to apply his powers to scienti�ic purposes. In 1844, when
he was 20, Strasznicky taught him the use of the formula

and asked him to calculate . In two months, he carried the
approximation to 205 places of decimals, of which 200 are correct. He
next calculated a 7-digit logarithm table of the �irst  numbers;



he did this in his off-time from 1844 to 1847, when occupied by the
Prussian survey. His next contribution of 2 years was the compilation of
hyperbolic table in his spare time which was published by the Austrian
Government in 1857. Next he offered to make a table of integer factors
of all numbers from 7,000,000 to 10,000,000; for this, on the
recommendation of Gauss, the Hamburg Academy of Sciences agreed to
assist him �inancially, but Dase died shortly thereafter in Hamburg. He
also had an uncanny sense of quantity. That is, he could just tell,
without counting, how many sheep were in a �ield, or words in a
sentence, and so forth, up to about 30.
Hiromu Hasegawa (1810–1887, Japan) and his father Hiroshi Hasegawa
(1782–1838, Japan), in 1844, published many Wasan books. Hiromu
developed the series

This series can be written as

Clausen, in 1847, used the formula

to calculate  to 250 decimal places, but only 248 are correct.
Jacob de Gelder (1765–1848, The Netherlands), in 1849, proposed a
geometric construction, which gives  correct to six decimal places. His
method is based on the fact that 
Lehmann, in 1853, correctly calculated 261 decimal places of  For
this, he used Euler’s formula

(8.65)

Rutherford, in 1853, found 440 correct decimal places of 
William Shanks (1812–1882, England), in 1853 [472], used Machin’s
formula (8.53) to calculate  to 607 decimal places. He was assisted by
Rutherford in checking �irst 440 digits.



Richter, in 1853, published 333 digits (330 correct), and in 1855 (after
his death in 1854) 500 decimal places of 
Gustav Conrad Bauer (1820–1906, Germany), in 1859, obtained the
series

(8.66)

James Smith, in 1860, published the value of  as  and argued
that it is exact and correct. He attempted to bring it before the British
Association for the Advancement of Science. Interestingly, even De
Morgan and Rowan Hamilton could not convince him for his mistake.
Philip H. Vanderweyde, in 1861, published an essay discussing the
subject  He also used several constructions, resulting

Lawrence Sluter Benson, published about 20 pamphlets on the area of
the circle. In 1862, he demonstrated that the area of the circle is equal
to  or the arithmetical square between the inscribed and
circumscribed squares. According to him  is the
ratio between the diameter of a circle and the perimeter of its
equivalent square. The ratio between the diameter and circumference,
he believed, is not a function of the area of the circle. He accepted the
value of 
S.M. Drach, in 1863, proved that the circumference of a circle can be
obtained as follows: From three diameters, deduct  and

 of a diameter, and add 5 percent to the result, i.e.,

which gives 
Cyrus Pitt Grosvenor (1792–1879, USA), in 1868, described his method
in a pamphlet titled The	circle	squared, New York: Square the diameter
of the circle; multiply the square by 2; extract the square root of the
product; from the root subtract the diameter of the circle; square the
remainder; multiply this square by four �ifths; subtract the square from
the diameter of the circle, i.e.,



which gives 
Benjamin Peirce, in 1870, obtained the formula containing  and i,
namely,  After proving it in one of his classes on analysis, he
said to his students, “Gentlemen, this is surely true, it is absolutely
paradoxical, we can’t understand it, and we haven’t the slightest idea
what the equation means, but we may be sure that it means something
very important.”
De Morgan, in his book A	Budget	of	Paradoxes of 512 pages, which was
edited and published by his wife in 1872, is an entertaining text. This
book contains the names of 75 writers on  In this work De Morgan
reviewed the works of 42 of these writers, bringing the subject down to
1870. He once remarked that it is easier to square the circle then to get
round a mathematician. He was the �irst to point out that in the decimal
expansion of  one should expect each of the 10 digits appear
uniformly, i.e., roughly one out of ten digits should be a 4 etc.
Asaph Hall (1829–1907, USA), in 1872 [245], published the results of
an experiment in random sampling that Hall had convinced his friend,
Captain O.C. Fox, to perform when Fox was recovering from a wound
received at the Second Battle of Bull Run. The experiment was based on
Buffon’s needle problem. After throwing his needles eleven hundred
times, Fox was able to derive  This work is considered as a
very early documentation use of random sampling, which Nicholas
Constantine Metropolis (1915–1999, USA) named as the Monte Carlo
method during the Manhattan Project of World War II).
William Shanks, in 1873–1874 [473], again used Machin’s formula
(8.53) to calculate  to 707 decimal places (published in the
Proceedings of the Royal Society, London), but only 527 decimal places
are correct. For this he used mechanical desk calculator and worked for
almost �ifteen years. For a long time, this remained the most fabulous
piece of calculation ever performed. In the Palais de la Découverte (a
science museum in Paris) there is a circular room known as the “pi
room.” On its wall are inscribed these 707 digits of  The digits are
large wooden characters attached to the dome-like ceiling.
Tseng Chi-Hung (died in 1877, China), in 1874, found 100 digits of  in
a month. For this he used the formula (8.65).



John A. Parker (USA), in 1874, in his book The	Quadrature	of	the	Circle.
Containing	Demonstrations	of	the	Errors	of	Geometers	in	Finding
Approximations	in	Use claimed that  exactly. He
exclaims, “all the serial and algebraic formula in the world, or even
geometrical demonstration, if it be subjected to any error whatever,
cannot overthrow the ratio of circumference to diameter which I have
established”! He praises Metius (lived in the sixteenth century) for
using the ratio  His book also contains practical questions on
the quadrature applied to the astronomical circles.
Alick Carrick (England), in 1876, proposed in his book The	Secret	of	the
Circle,	its	Area	Ascertained, the value of  as 
Pliny Earle Chase (1820–1886, USA), in 1879, in his pamphlet
Approximate	Quadrature	of	the	Circle, used a geometric construction to
obtain 
Sylvester Clark Gould (1840–1909, USA), in 1888 [221], compiled the
bibliography entitled What	is	the	Value	of	Pi. It contains 100 titles and
gives the result of 63 authors. In this work the diagram 16 claims that

 exactly.
In 1892, a writer announced in the New	York	Tribune the rediscovery of
a long-lost secret that gives  as the exact value of  This
announcement caused considerable discussion, and even near the
beginning of the twentieth century  had its advocates as against the
value 
Fredrik Carl Mülertz Störmer (1874–1957, Norway), in 1896 [498],
gave the following Machin-like formulas for calculating 

(8.67)

and

(8.68)

In 1897, in the State of Indiana, the House of Representatives
unanimously passed the Bill No. 246 (known as the “  bill”)
introducing a new mathematical truth “Be it enacted by the General
Assembly of the State of Indiana: It has been found that a circular area
is to the square on a line equal to the quadrant of the circumference, as



the area of an equilateral rectangle is to the square on one side…” (
). The author of the bill was a physician, Edwin J. Goodman

(1825–1902), M.D., of Solitude, Posey County, Indiana, and it was
introduced in the Indiana House on January 18, 1897, by Mr. Taylor I.
Record, Representative from Posey County. Edwin offered this
contribution as a free gift for the sole use of the State of Indiana (the
others would evidently have to pay royalties). Copies of the bill are
preserved in the Archives Division of the Indiana State Library. The bill
was sent to the Senate for approval. Fortunately, during the House’s
debate on the bill, Purdue University Mathematics Professor Clarence
Abiathar Waldo (1852–1926) was present. When Professor Waldo
informed the Indiana Senate of the “merits” of the bill, the Senate, after
some ridicule at the expense of their colleagues, inde�initely postponed
voting on the bill and let it die.
Uhler, in 1900 [515], used Machin’s formula (8.53) to compute  to 282
decimal places.
Mario Lazzarini (Italy), in 1901 [338], performed Buffon’s needle
experiment. Tossing a needle 3408 times, he obtained the well-known
estimate  for  Although it is an impressive observation, but
suspiciously good (see Badger [46]). In fact, statisticians Maurice
George Kendall (1907–1983, England) and Patrick Alfred Pierce Moran
(1917–1988, Australia) have commented that one can do better to cut
out a large circle and use a tape to measure to �ind its circumference
and diameter. On the same theme of phoney experiments, Norman T.
Gridgeman (England), in 1960 [228], pours scorn on Lazzerini and
others, created some amusement by using a needle of carefully chosen
length  throwing it twice, and hitting a line once. His
estimate for  was thus given by  from which he
got the highly creditable value of  Of course, he was not
being serious!
Duarte, in 1902, used Machin’s formula (8.53) to compute  to 200
decimal places.
Various mnemonic devices have been given for remembering the
decimal digits of . The most common type of mnemonic is the word-
length mnemonic in which the number of letters in each word
corresponds to a digit, for example, How	I	wish	I	could	calculate	pi (by C.
Heckman, in 2005), May	I	have	a	large	container	of	coffee (by Gardner,
in 1959,1966), and How	I	want	a	drink,	alcoholic	of	course,	after	the



heavy	lectures	involving	quantum	mechanics (by James Jeans),
respectively, give  to seven, eight, and �ifteen decimal places. Adam C.
Orr in Literary	Digest, vol. 32 (1906), p. 84 published the following
poem which gives  to 30 decimal places

Now I, even I, would celebrate
In rhymes inapt, the great
Immortal Syracusan, rivaled nevermore
Who in his wondrous lore,
Passed on before
Left men his guidance,
How to circles mensurate.
Several other such poems not only in English, but almost in every

language including Albanian, Bulgarian, Czech, Dutch, French, German,
Italian, Latin, Polish, Portuguese, Romanian, Sanskrit, Spanish, and
Swedish are known. However, there is a problem with this type of
mnemonic, namely, how to represent the digit zero. Fortunately, a zero
does not occur in  until the thirty-second place. Several people have
come up with ingenious methods of overcoming this, most commonly
using a 10-letter word to represent zero. In other cases, a certain piece
of punctuation is used to indicate a naught. Michael Keith (born 1955,
USA) with such similar understanding, in his work Circle	digits:	a	self-
referential	story,	Mathematical	Intelligencer, vol.8 (1986), 56–57, wrote
an interesting story, which gives �irst 402 decimals of 
Ernest William Hobson (1856–1933, England), in his 1913 book [264]
used a geometrical construction to obtain 
Ramanujan, in his 1914 paper on “Modulus functions and
approximation to ” gave several new innovative empirical formulas
and geometrical constructions for approximating  One of the
remarkable formulas for its elegance and inherent mathematical depth
is

(8.69)

It has been used to compute  to a level of accuracy, never attained
earlier. Each additional term of the series adds roughly 8 digits. He also
developed the series



The �irst series has the property that it can be used to compute the
second block of k (binary) digits in the decimal expansion of  without
calculating the �irst k digits. The second series is the same as (8.66),
which Ramanujan included in his �irst letter on January 31st, 1913 to
Hardy. The following mysterious approximation which approximates 
to 18 correct decimal places is also due to Ramanujan

T.M.P. Hughes (England), in his 1914 work A	triangle	that	gives	the	area
and	circumference	of	any	circle,	and	the	diameter	of	a	circle	equal	in	area
to	any	given	square,	Nature 93, 110, doi:10.1038/093110a0 uses a
geometric construction to obtain 
In March 1928, the University of Minnesota was noti�ied that Gottfried
Lenzer (a native of Germany who lived in St. Paul for many years) had
bequeathed to the university a series of 60 drawings from 1911 to 1927
and explanatory notes concerning the three classical problems of
antiquity. He used a geometrical construction for squaring the circle to
obtain 
Helen Abbot Merrill (1864–1949), in her 1934 book Mathematical
Excursions:	Side	Trips	Along	Paths	not	Generally	Traveled	in	Elementary
Courses	in	Mathematics,	Bruce	Humphries,	Inc.,	Boston gave a geometric
construction (perhaps by an earlier author) which leads to

Landau, in 1934, in his work de�ined  as the value of x between 1
and 2 for which  vanishes. One cannot believe this de�inition was
used, at least as an excuse, for a racial attack on Landau. This unleashed
an academic dispute which was to end in Landau’s dismissal from his
chair at Göttingen.
Carl Theodore Heisel (1852–1937, USA), in 1934, published a book
Mathematical	and	Geometrical	Demonstrations in which he announced
the grand discovery that  was exactly equal to  a value that the
Egyptians had used some 4,000 years ago. Substituting this value for
calculations of areas and circumferences of circles with diameters

 up to  he obtained numbers which showed consistency of



circumference and area, “thereby furnishing incontrovertible proof of
the exact truth” of his ratio. He also rejected decimal fractions as
inexact (whereas ratios of integers as exact and scienti�ic), and
extracted roots of negative numbers thus:

, He published this book on his own
expense and distributed to colleges and public libraries throughout the
United States without charge.
Miff Butler (USA), in 1934, claimed discovery of a new relationship
between  and  He stated his work to be the �irst basic mathematical
principle ever developed in the USA. He convinced his congressman to
read it into the Congressional Record on June 5, 1940.
Uhler, in 1940, used Machin’s formula (8.53) to compute  to 333
decimal places.
D.F. Ferguson (England), during 1945–47 [186, 187], used the formula

to �ind that his value disagreed with that of William Shanks in the
528th place. In 1946, he approximated  to 620 decimal places, and in
January 1947 to 710 decimal places. In the same month William Shanks
used Machin’s formula (8.53) to compute 808-place value of  but
Ferguson soon found an error in the 723rd place. For all the
calculations, he used desk calculator.
Ferguson and John William Wrench, Jr. (1911–2009, USA), in 1949,
used a desk calculator to compute 1120 decimal digits of  This record
was broken only by the electronic computers.
Wrench and L.B. Smith (also attributed to George Reitwiesner et al.), in
September 1949 (see [538]), were the �irst to use an electronic
computer ENIAC (Electronic Numerical Integrator and Computer) at
the Army Ballistic Research Laboratories in Aberdeen, Maryland, to
calculate  to 2037 decimal places. For this they programmed Machin’s
formula (8.53). It took 70 hours, a pitifully long time by today’s
standards. In this project von Neumann also took part. In 1965, The
ENIAC became obsolete, and it was dismembered and moved to the
Smithsonian Institution as a museum piece.
Konrad Knopp (1882–1957, Germany), in 1951 [309], gave the
following two expansions of 



S.C. Nicholson and J. Jeenel (USA), in 1954 [393], programmed NORC
(Naval Ordnance Research Calculator) at Dahlgren, Virginia to compute

 to 3092 decimals. For this they used Machin’s formula (8.53). The
run took only 13 minutes.
John Gurland (1917–1997, USA), in 1956 [240], established that for all
positive integers 

(8.70)

George Eric Felton (1921–2019, England), in 1957, used the Ferranti
Pegasus computer to �ind 10,021 decimal places of  in 33 hours. The
program was based on the formula of Samuel Klingenstierna (1698–
1765, Sweden)

(8.71)

However, a subsequent check revealed that a machine error had
occurred, so that “only” 7480 decimal places were correct. The run was
therefore repeated in May 1958, but the correction was not published.
Francois Genuys (France), in January 1958 [210], programmed an IBM
704 at the Paris Data Processing Center. He used Machin’s type formula
(8.53). It yielded 10,000 decimal places of  in 1 hour and 40 minutes.
Genuys, in July 1959, programmed an IBM 704 at the Commissariat á
l’Energie Atomique in Paris to compute  to  decimal places. He
used Machin’s type formula (8.53). It took 4 hours and 30 minutes.
Daniel Shanks (1917–1996, USA) and William Shanks, in July 1961,
used Störmer’s formula (8.68) on an IBM 7090 (at the IBM Data
Processing Center, New York) to compute  to  digits, of which
the �irst  digits were published by photographically reproducing
the print-out with  digits per page. The time required for this
computation was 8 hours and 43 minutes. They also checked the



calculations by using Gauss’ formula (8.64), which required 4 hours and
22 minutes.
In 1961, Machin’s formula (8.53) was also the basis of a program run on
an IBM 7090 at the London Data Center in July 1961, which resulted in
20,000 decimal places and required only 39 minutes running time.
Jean Guilloud and J. Filliatre, in February 1966, used an IBM 7030 at the
Commissariat á l’Energie Atomique in Paris to obtain an approximation
of  extending to 250,000 decimal places on a STRETCH computer. For
this they used Störmer’s and Gauss’ formulas (8.68) and (8.64). It took
almost 28 hours.
Guilloud and M. Dichampt, in February 1967, used CDC (Control Data
Corporation) 6600 in Paris to approximate  to 500,000 decimal
places. For this they used Störmer’s and Gauss’ formulas (8.68) and
(8.64). The computer that churned out half a million digits needed only
26 hours and 40 minutes (plus 1 hour and 30 minutes to convert that
�inal result from binary to decimal notation).
In 1968, in Putnam Competition the �irst problem was

This integral was known to Kurt Mahler (1903–1988, Germany–
Australia) in the mid-1960s and has later appeared in several exams. It
is also discussed by Borwein, David Harold Bailey (born 1948, USA),
and Girgensohn in their book [97] on page 3.
Guilloud, in 1973, wrote a 400-page book that listed  to the 1 million
decimal place.
Gosper, in 1974 [218], used a re�inement of Euler transform on (7. 178)
to obtain the series

Guilloud and Martine Bouyer (France), in 1974 [230], used formulas
(8.68) and (8.64) on a CDC 7600 to compute  to  digits. The
run time required for this computation was 23 hours and 18 minutes,
of which 1 hour 7 minutes was used to convert the �inal result from
binary to decimal. Results of statistical tests, which generally support



the conjecture that  is simply	normal (In 1909, Borel de�ined: A real
number a is simply normal in base b if in its representation in base b all
digits occur, in an asymptotic sense, equally often.) were also
performed.
Louis Comtet (1933–2012, France), in 1974, developed the following
Euler’s type expansion of 

Richard Peirce Brent (born 1946, Australia) and Eugene Salamin (USA),
in 1976 [102, 103, 444], independently discovered an algorithm that is
based on an arithmetic-geometric mean and modi�ies slightly Gauss–
Legendre algorithm. Set  and  For

 compute

(8.72)

Then,  converges quadratically to  i.e., each iteration doubles
the number of accurate digits. In fact, successive iterations must
produce  and 697 correct digits of . Twenty-
�ifth iteration must produce 45 million correct decimal digits of 
Kazunori Miyoshi (Japan) and Kanada, in 1981, calculated  to

 signi�icant �igures in  hours on a FACOM M-200
computer. They used Klingenstierna’s formula (8.71) and checked their
result with Machin’s formula (8.53).
Guilloud, in 1981, computed  decimal digits of 
Rajan Srinivasan Mahadevan (born 1957, India), in 1981, recited from
memory the �irst  digits of . This secured him a place in the
1984 Guinness Book of World Records, and he has been featured on
Larry King Live and Reader’s Digest.



Kikuo Takano (1927–2006, Japan), in 1982, developed the following
Machin-like formula for calculating 

(8.73)

Yoshiaki Tamura (Japan), in 1982, on MELCOM 900II computed
 decimal places of  For this he used Brent-Salamin

algorithm (8.72).
Tamura and Kanada in 1982 [505], on HITAC M-280H computed

 decimal places of  For this they used Brent-Salamin
algorithm (8.72).
Tamura and Kanada, in 1982, on HITAC M-280H computed 
decimal places of  For this they used Brent-Salamin algorithm (8.72).
Kanada, Sayaka Yoshino (Japan) and Yasunori Ushiro (Japan), in 1983,
on HITAC M-280H computed  decimal places of  For this
they used Brent-Salamin algorithm (8.72).
Kanada, Tamura, Yoshino, and Ushiro, in October 1983 [294], on HITAC
S-810/20 computed  decimal places of  For this they used
Brent-Salamin algorithm (8.72). In this work to gather evidence that 
is simply normal they also performed statistical analysis. It showed
expected behavior. In the �irst 10 million digits, the frequencies for each
10 digits are 999,440; 999,333; 1,000,306; 999,964; 1,001,093;
1,000,466; 999,337; 1,000,207; 999,814; and 1,000,040. Further, the
rate at which the relative frequencies approach  agrees with
theory. As an example, for the digit 7 relative frequencies in the �irst

 digits are
 which seem to be

approaching  at rate predicted by the probability theory for
random digits, i.e., a speed approximately proportional to  But
this is far from a formal proof of simple normalcy-perhaps for a proof
the current mathematics is not suf�iciently developed. In spite of the
fact that the digits of  pass statistical tests for randomness,  contains
some sequences of digits that, to some, may appear non-random, such
as Feynman point, which is a sequence of six consecutive 9s that begins
at the 762nd decimal place. A number is said to be normal if all blocks
of digits of the same length occur with equal frequency. Mathematicians



expect  to be normal, so that every pattern possible eventually will
occur in the digits of 
Jonathan Michael Borwein (1951–2016, Scotland–Canada) and Peter
Benjamin Borwein (1953–2020, Scotland–Canada), in 1984 [82], gave
the following algorithm. Set  and 
Iterate

(8.74)

Then  converges to  quartically. The algorithm is not self-
correcting; each iteration must be performed with the desired number
of correct digits of 
Morris Newman (USA) and Daniel Shanks, in 1984 [392], proved the
following: Set

then

Gosper, in 1985, used Symbolics 3670 and Ramanujan’s formula (8.69)
to compute  to  decimal digits.
Borwein brothers, in 1985, gave the following algorithm. Set

 and  Iterate



(8.75)

Then,  converges quartically to  i.e., each iteration
approximately quadruples the number of correct digits.
Berggren and Borwein brothers in their book [67] of 1985 claimed that
the following is not an identity but is correct to over 42 billion digits

Carl Sagan (1934–1996, USA), in his novel Contact of 1986 [442], deals
with the theme of contact between humanity and a more
technologically advanced, extraterrestrial life form. He suggests that the
creator of the universe buried a message deep within the digits of 
Bailey, in January 1986 (published in 1988 [49]), used Borwein
brothers algorithms (8.74) and (8.75) on CRAY-2 to compute

 decimal places of 
Kanada and Tamura, in September 1986, on HITAC S-810/20 computed

 decimal places of  For this they used algorithms (8.72)
and (8.75).
Kanada and Tamura, in October 1986, on HITAC S-810/20 computed

 decimal places of  For this they used algorithm (8.72).
Kanada, Tamura, Yoshinobu Kubo (Japan) and others, in January 1987,
on NEC SX-2 computed  decimal places of  For this they
used algorithms (8.72) and (8.75).
Borwein brothers, in 1987, gave the following algorithm. Set

 and  Iterate



Then,  decreases monotonically to  and  for

Hideaki Tomoyori (born 1932, Japan), in 1987, recited  from memory
to  places—taking 17 hours 21 minutes, including breaks
totaling 4 hours 15 minutes, at Tsukuba University Club House.
Kanada, in January 1988 [295], on HITAC S-820/80 computed

 decimal places of  For this he used algorithms (8.72) and
(8.75).
Borwein brothers, in 1988 [91], developed the series

where

Each additional term of the series adds roughly 31 digits.
Dario Castellanos (Venezuela), in 1988 [120, 121], gave the following
approximation

David Volfovich Chudnovsky (born 1947, Ukrainian-USA) and Gregory
Volfovich Chudnovsky (born 1952, Ukrainian-USA), in May 1989, on
CRAY-2 and IBM 3090/VF computed  decimal places of 
Chudnovsky brothers, in June 1989, on IBM 3090 computed

 decimal places of 
Kanada and Tamura, in July 1989, on HITAC S-820/80 computed

 decimal places of  For this they used algorithm (8.72).
Chudnovsky brothers, in August 1989 [130], developed the following
rapidly convergent generalized hypergeometric series

(8.76)



Each additional term of the series adds roughly 15 digits. This series
is an improved version to that of Ramanujan’s (8.69). It was used by
them to calculate more than one billion (to be exact )
digits on IBM 3090.
Kanada and Tamura, in November 1989, on HITAC S-820/80 computed

 decimal places of  For this they used algorithms (8.72)
and (8.75).
Chudnovsky brothers, in August 1991, used a homemade parallel
computer (they called it m zero, where m stands for machine, and zero
for the success) to obtain  decimal places of  For this
they used series (8.76).
David Boll (USA), in 1991 [77], discovered an occurrence of  in the
Mandelbrot set fractal.
Borwein brothers, in 1991, improved on the Brent-Salamin algorithm
(8.72). Set  and  Iterate

Then  converges cubically to  i.e., each iteration
approximately triples the number of correct digits.

Among the several other known iterative schemes, we list the
following two, which are easy to implement on a computer: Set 
and  Iterate



Then  converges quintically to  i.e., each iteration
approximately quintuples the number of correct digits, and

Set  and  Iterate

Then  converges nonically to  i.e., each iteration approximately
multiplies the number of correct digits by nine.

Borwein brothers, in 1993, developed the series

where

and



Each additional term of the series adds approximately 50 digits.
However, computation of this series on a computer does not seem to be
easy.
Chudnovsky brothers, in May 1994, used a homemade parallel
computer m zero to obtain  decimal places of  For this
they used series (8.76).
Kanada and Daisuke Takahashi (Japan), in June 1995, on HITAC S-
3800/480 (dual CPU) computed  decimal places of  For
this they used algorithms (8.72) and (8.75).
Kanada and Takahashi, in August 1995, on HITAC S-3800/480 (dual
CPU) computed  decimal places of  For this they used
algorithms (8.72) and (8.75).
Kanada and Takahashi, in October 1995, on HITAC S-3800/480 (dual
CPU) computed  decimal places of  For this they used
algorithms (8.72) and (8.75).
Bailey, Peter Borwein and Simon Plouffe, in 1995 (published in 1997
[51]), developed the following formula (known as BBP formula) to
compute the nth hexadecimal digit (base 16) of  without having the
previous  digits

(8.77)

To show the validity of (8.77), for any  we have

therefore

(8.78)

Substituting  in the equation (8.78), we obtain



The discovery of this formula came as a surprise. For centuries it
had been assumed that there was no way to compute the nth digit of 
without calculating all the preceding  digits. Since this discovery,
many such formulas for other irrational numbers have been discovered.
Such formulas have been called as spigot	algorithms (see Rabinowitz
and Wagon [424]) because, like water dripping from a spigot, they
produce digits that are not reused after they are calculated.
Plouffe, in 1996, discovered an algorithm for the computation of  in
any base. Later, he expressed regrets for having shared credit for his
discovery of this formula with Bailey and Borwein.
Chudnovsky brothers, in 1996, used a homemade parallel computer m
zero to obtain  decimal places of  For this they used
series (8.76). They said “we are looking for the appearance of some
rules that will distinguish the digits of  from other numbers, i.e., if
someone were to give you a million digits from somewhere in  could
you tell it was from  The digits of  form the most nearly perfect
random sequence of digits that has ever been discovered. However,
each digit appears to be orderly. If a single digit in  were to be
changed anywhere between here and in�inity, the resulting number
would no longer be  it would be garbage. Around the three-hundred-
millionth decimal place of  the digits go 88888888-eight eights pop
up in a row. Does this mean anything? It appears to be random noise.
Later, 10 sixes erupt: 6666666666. What does this mean? Apparently,
nothing, only more noise. Somewhere past the half-million mark
appears the string 123456789. It is an accident, as it were. We do not
have a good, clear, crystallized idea of randomness. It cannot be that 
is truly random. Actually, a truly random sequence of numbers has not
yet been discovered.”
Gosper, in 1996 [220], posted the following fascinating formula

For several other formulas involving  see Gosper [219].
Kanada and Takahashi, in April 1997, on HITACHI SR2201 (1024 CPU)
computed  decimal places of  For this they used



algorithms (8.72) and (8.75).
Kanada and Takahashi, in July 1997, on HITACHI SR2201 (1024 CPU)
computed  decimal places of  The computation tool
just over 29 hours, at an average rate of nearly  digits per
second. For this they used algorithms (8.72) and (8.75).
Fabrice Bellard (born 1972, France), in 1997 [62], developed the
following formula

which can used to compute the nth digit of  in base  It is about
43% faster then (8.77). The following exotic formula is also due to him

where

Takahashi and Kanada, in 1998 [504] computed  billion decimal
digits of  on distributed memory and parallel processors.
Kanada and Takahashi, in April 1999, on HITACHI SR8000 (64 of 128
nodes) computed  decimal places of  For this they
used algorithms (8.72) and (8.75).
Kanada and Takahashi, in September 1999, on HITACHI SR8000/MPP
(128 nodes) computed  i.e., 206 billion decimal places
of  For this they used algorithms (8.72) and (8.75).
J. Munkhammar (Sweden), in 2000, gave the following formula which is
on line with that of Viéte’s (8.42)



This as a recurrence relation can be written as 
where  and

To show this, in Fig. 8.15, we consider a portion of a circle with center
O and radius  The line segment AB of length a is a side of a regular
inscribed n-gon. We bisect AB at D and draw a radius through D out to the
circle at  we generate segment  a side of a regular inscribed 2n-
gon. Let b be the length of  We will �ind b in terms of  For this, in

 Pythagorean theorem gives

Fig.	8.15 Munkhammar approximation of 

and hence

Now applying Pythagorean theorem in the triangle  to get



Thus, it follows that  Hence, if we denote 

as the side of the -gon, then  Next, since,

square has 4 sides and length of each side is  its perimeter is
 further since  has  sides, its perimeter is  Finally, since
perimeter/diameter, it follows that  From the geometry

it is clear that the sequence  is increasing and convergence to 
Another closely related formula is

Robert Palais (USA), in 2001 [403], believed that the notation  is
wrongly used right from the beginning. According to him, some suitable
symbol (now popular as tau ) must have been used for  He justi�ies
his claim by giving several formulas where  appears naturally rather
than just  For some people June 28 is Tau’s	Day and they celebrate.
Bruce Carl Berndt (born 1938, USA) and Chan in 2001, obtained
equivalent form of Ramanujan–Borweins–Chudnovskys series, and
found an improved series for , which yields about 73 or 74 digits of

 per term.
Kanada, in November 2002, used Machin-like formulas (8.67) and
(8.73) to compute the value of  to  decimal places.
The calculation took more than 600 hours on 64 nodes of a HITACHI
SR8000/MPP supercomputer. The work was done at the Department of
Information Science at the University of Tokyo.
Daniel Tammet (born 1979, England), in 2004, recited  decimal
places of  scoring the European record. For an audience at the
Museum of the History of Science in Oxford, he said these numbers
aloud for 5 hours and 9 minutes. Unfortunately, he made his �irst
mistake at position  and did not correct this error immediately
and without outside help, but only after he was told that there was a
mistake.
Stephen K. Lucas (Australia-USA), in 2005 [352], found that



Several other integral formulas of this type are known, here we give
the following

which gives  If we substitute  in the
denominator of aforementioned integral and note that

then it follows that 
Chao Lu, a chemistry student, at age 23, in November 2005, broke
Guiness record by reciting  from memory to 67,890 places. For this he
practiced for 4 years. The attempt lasted 24 hrs 4 min and was
recorded on 26 video tapes. The attempt was witnessed by 8 of�icials,
Math’s professors, and 20 students.
Kate Bush (born 1958, England), in 2005, in the song  (in her album
Aerial) sings the number to its 137th decimal place (though she omits
the 79th to 100th decimal places).
Akira Haraguchi (born 1946, Japan), in October 2006, recited  from
memory to 54000 digits in September 2004, 68000 digits in December
2004, 83431 digits in July 2005, and 100000 digits in October 2006. He
accomplished the last recitation in –hour in Tokyo. He says –
memorization of the digits of  is “the religion of the universe.”
Plouffe, in 2006 [413], found the following curious formula

In 2008, In Midnight (10th episode of the fourth series of British
science �iction television series Doctor Who) the character, the
businesswoman, Sky Silvestry mimics the speech of The Doctor by
repeating the square root of  to 30 decimal places

.
Sen and Agarwal, in 2008 (see [459]), suggested four Matlab based
procedures, viz., (i) Exhaustive search, (ii) Principal convergents of
continued fraction based procedure, (iii) Best rounding procedure for
decimal (rational) approximation, and (iv) Continued fraction based



algorithm with intermediate convergents. While the �irst procedure is
exponential–time, the remaining three are polynomial-time. Roughly
speaking, they have demonstrated that the absolute best k–digit
rational approximation of  will be as good as 2k–digit decimal
approximation of  The absolute best k–digit rational approximation
is most desired for error-free computation involving /any other
irrational number.
Sen, Agarwal, and Shaykhian, in 2008 (see [461]), have demonstrated
through numerical experiment using Matlab that  has always scored
over  (golden ratio), as a source of uniformly distributed random
numbers, statistically in one dimensional Monte Carlo integration.
Whether  fares better than  for double, triple, and higher-
dimensional Monte Carlo integration or not deserves exploration.
Sen, Agarwal, and Shaykhian, in 2009 (see [463]), compared the four
procedures they proposed in (2008) for computing best k–digit rational
approximations of irrational numbers in terms of quality (error) and
cost (complexity). They have stressed on the fact that ultrahigh-speed
computing along with abundance of unused computing power allows
employing an exponential–time algorithm for most real–world
problems. This obviates the need for acquiring and employing the
mathematical knowledge involving principal and intermediate
convergents computed using a polynomial-time algorithm for practical
problems. Since  is the most used irrational number in the physical
world, the simple concise Matlab program would do the job wherever

/any other irrational number is involved.
Sen, Agarwal, and Pavani, in 2009 (see [462]), provided, using Matlab,
the best possible rational bounds bracketing /any irrational number
with absolute error and the time complexity involved. Any better
bounds are impossible. In these rational bounds, either the lower
bound or the upper bound will always be the absolute best rational
approximation. The absolute error computed provides the overall error
bounds in an error-free computational environment involving /any
other irrational number. The following rational bounds for  where
either the lower bound or the upper bound is the best k-digit rational
approximation were obtained



Tue N. Vu, in 2009, gave Machin-Type Formula (http:// seriesmathstudy. 
com/ sms/ machintypetv): For each positive integer 

Cetin Hakimoglu-Brown, in 2009 [105], developed the following
expansion

which can be written as

where  is the pochhammer
notation. He also gave the expansion

Takahashi et. al., in 2009, used a massive parallel computer called the
T2K Tsukuba System to compute  to  decimal places
in 73 hours 36 minutes. For this they used algorithms (8.72) and (8.75).
Bellard, in December 2009, used Chudnovsky brothers series (8.76) to
compute  i.e.,  trillion decimal places of  in 131
days. For this, he used a single desktop PC, costing less than $3,000.
Kondo, in August 2010, used y-cruncher by Alexander Yee, Chudnovsky
brothers series (8.76) to compute  i.e., 5 trillion

http://seriesmathstudy.com/sms/machintypetv


decimal places of  in 90 days. For this, they used a server-class
machine running dual Intel Xeons, equipped with 96GB of RAM.
Michael Keith, in 2010 [303], used  digits of  to establish a new
form of constrained writing, where the word-lengths are required to
represent the digits of . His book contains a collection of poetry, short
stories, a play, a movie script, crossword puzzles, and other surprises.
Sen and Agarwal, in 2011 (see [464]), in their monograph
systematically organized their work of 2008 and 2009 on  and other
irrational numbers. They also included several examples to illustrate
the importance of their �indings.
In 2011, during the auction for Nortel’s portfolio of valuable technology
patents, Google made a series of strange bids based on mathematical
and scienti�ic constants, including 
Kondo, in October 2011, used y-cruncher by Alexander Yee,
Chudnovsky brothers series (8.76) to compute  i.e.,
10 trillion decimal places of  in 371 days.
Cristinel Mortici (Romania), in 2011 [378], improved Gurland’s bounds
(8.70) to  where

and

It follows that

Long Lin, in 2013 [346], improved Mortici’s bounds to
 where



and

It follows that

He has also obtained the higher-order bounds 
where

and

It follows that

Kondo, in December 2013, used y-cruncher by Alexander Yee and
Chudnovsky brothers series (8.76) to compute  i.e.,
12 trillion decimal places of  in 94 days.
Sandon Nash Van Ness (1985–2015, USA), in October 2014, used y-
cruncher by Alexander Yee and Chudnovsky brothers series (8.76)

 i.e.,  trillion decimal places of  in 208 days.
Peter Trueb (Switzerland-Germany), in November 2016, used y-
cruncher by Alexander Yee and Chudnovsky brothers series (8.76) to
compute  i.e.,  trillion decimal places of  in
94 days.
Emma Haruka Iwao (born 1986, Japan) a Google cloud developer, in
March 2019, used the same software as her successor Peter Trueb to
compute  i.e.,  trillion decimal places of  in 121
days.
Timothy Mullican (USA), in January 2020, broke all previous records by
calculating  to  i.e., 50 trillion decimal places of 



in 303 days.
In August 2021, Team DAViS of the University of Applied Sciences of the
Grisons, Switzerland, calculated  i.e.,  trillion
decimal places of  in 108 days.
Emma Haruka Iwao, in March 2022, established a new world record of
computing  i.e., 100 trillion decimal places of  in
158 days.
In June, 2022, Google cloud announced the largest palindromic prime
appearing in the known decimal expansion of  is
9609457639843489367549069.
In connection of discovering more and more correct digits of 
Canadian-American astronomer Simon Newcomb (1835–1909) said:
“Ten decimals are suf�icient to give the circumference of the earth to the
fraction of an inch, and thirty decimals would give the circumference of
the whole visible universe to a quantity imperceptible to the most
powerful microscope.”
For further results on  see Adamchik and Wagon [3, 4], Adrian [7],
Ahmad [22], Akira [24], Almkvist [26], Anderson [29], Anonymous [33],
Arndt [39], Assmus [42], Backhouse [45], Bailey [48], Bailey et. al. [50],
Beck and Trott [56], Beukers [69], Blatner [73], Bokhari [76], Borwein
et. al [81, 83–90, 92–98], Breuer and Zwas [104], Bruins [106], Chan
[123], Choong et. al. [126], Chudnovsky Brothers [129], Cohen and
Shannon [131], Colzani [133], Dahse [146], Dalzell [147, 148], Datta
[151], Delahaye [160], Dixon [167], Engels [179], Eymard and Lafon
[184], Fox and Hayes [194], Frisby [200], Fuller [205], Goggins [214],
Goldsmith [215], Goodrich [216], Gourdon and Sebah [222], Greenblatt
[226], Gupta [233–236, 238, 239], Hata [252, 253], Hayashi et. al. [254,
255], Jami [282], Jesseph [284], Jörg and Haenel [288], Lay-Yong and
Tian-Se [337], Mao [359], Eli Maor [360], Matar and Rajagopal [363],
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8.14	 Theon’s	Ladder	Method	for	Square	Root
Theon constructed two sequences  and  of natural numbers
(he called  as the side	number and  as the diagonal	number), which
satisfy the recurrence relations (7. 19). Since

 if  is a solution of 
then  is a solution of  Thus, it follows that

and since  we can make 
arbitrarily small. Hence,  In conclusion, if  is
an integer solution of  then (7. 19) converges to  and
the convergence is oscillatory. From these observations names for  as
the side number and for  as the diagonal number become clear. For
more details, see Filep [188], and http:// numbers. computation. free. fr/ 
Constants/ Sqrt2/ sqrt2. html.

Now since for the equation  the minimal solution is
 whereas for the equation  it is  from

(7. 19) with  and  it immediately follows
that

(8.79)

and

(8.80)

We recall that in the construction of Table 8.4 for  we executed
the recurrence relation (8.37) to obtain  It can easily be veri�ied that

 and  obtained from (8.80) are connected with  by the relations
 and hence  leads to

the second column of Table 8.4. Similarly,  and  obtained from (8.79)
are connected with  by the relations

http://numbers.computation.free.fr/Constants/Sqrt2/sqrt2.html


 and hence  leads to
the third column of Table 8.4.

Next, from (7. 19) �irst we �ind the system (7. 20), and then with
 and  respectively, (as (7. 21)), we �ind

(8.81)

and

(8.82)

Again, looking at Table 8.4, we �ind that  and  obtained from
(8.82) are connected with the same  by the relations

 and hence,  leads
to the second column of Table 8.4 with  and monotonically decreasing.
Similarly,  and  obtained from (8.81) are connected with  by the
relations  and hence 
leads to the third column of Table 8.4 with  and monotonically
increasing.

A generalization of (7. 19) for any integer  is straightforward. In
fact, for the recurrence relations

(8.83)

we have

which gives

Thus, it follows that

(8.84)

Now since  is a strictly increasing sequence, and
 the right side of (8.84) tends to

zero. This means the sequence  converges to  and the
convergence is oscillatory. From (8.83) it also follows that



In particular, for  if we choose fundamental solution of
, which is  then (8.83) leads to the algorithm

(8.85)

The sequence  generated from (8.85) gives the fourth column
of Table 8.4.

We note that system (8.85) can be written as

(8.86)

and its solution is

(8.87)

Again, for  if we choose fundamental solution of 
which is  then (8.83) leads to the algorithm

(8.88)

The sequence  generated from (8.88) gives the �ifth column of
Table 8.4.

Next, we consider the nonlinear recurrence relations

(8.89)

and note that

Thus, if  is the fundamental solution (in fact, any integer
solution) of  then the sequence  generated by



(8.89) decreases monotonically to  From (8.89), we also have

In Table 8.5, we provide �irst three iterates to approximate
 and 7 with the corresponding fundamental solutions of

 as  and 

Table	8.5 Nonlinear iterates

	

n

0

1

2

3

For  and 3 all entries in Table 8.5 are the same as in Table 8.4.
Table 8.5 also indicates superiority of the nonlinear algorithm (8.89)
compared to all linear algorithms we have discussed above. However,
algorithm (8.20) appears to have advantage.

Now we will consider the recurrence relations

(8.90)

where  and  are positive integers. For (8.90) it follows that

which is the same as

Since  implies  we �ind



Thus the sequence  generated by (8.90) converges to 
furher if  the convergence is
monotonically decreasing (increasing). For  we list �irst few
terms of 

8.15	 Approximations	of	e
As we have noted earlier, Euler in 1748, used the expansion (3. 6) to
obtain a numerical value of e to 23 decimal places. Other records are by
William Shanks in 1853 to 137 digits and in 1871 to 205 digits; von
Neumann to 2010 in 1949; Shanks and Wrench to 100265 in 1961;
Bonnell and Nemiroff to 10 million in 1994; Patrick Demichel (USA) to 18
million in 1997; Birger Seifert (Germany) to twenty million in 1997;
Demichel to 50 million in 1997; Sebastian Wedeniwski (born 1971,
Germany-Japan) to 200 million in 1999, and more than 800 million later
same year; Xavier Gourdon (France) to one and quatre billion in 1999;
Gourdon and Kondo to 2 billion in 2000 and 12 billion eight hundred later
same year; and Kondo and Alexander Yee to one trillion in 2010. The
following rational bounds for e where either the lower bound or the
upper bound is the best k-digit rational approximation are obtained in
Sen et. al. [462]

We also remark that employing several different algorithms, massive
details about the approximations of e have been given in Sen and Agarwal
[464].



8.16	 Continued	Fractions
A �inite equation of the type

(8.91)

where  are positive integers (functions) except possibly  is called
the k-th convergent  of a continued fraction (also known as k-story
number). Here we allow k to tend to in�inity to have an in�inite continued
fraction. A simple manipulation of Euclid’s Algorithm (Theorem 3.3),
which is mainly used to �ind gcd of the ratio of two geometric magnitudes
leads to a �inite (in�inite) continued fraction provided the ratio is rational
(irrational). There is suf�icient evidence that Aryabhata used continued
fraction to solve a linear indeterminate equation. In Greek and Arab
mathematical literature, there are fragments of continued fractions.
Fibonacci introduced a type of continued fraction. We meet with several
algorithms for  and  similar to current forms of continued
fractions in the works of Bombelli and Cataldi, respectively. Wallis in his
treatise Arithmetica	in�initorum after presenting (8.44) writes that
Brouncker expanded  in an in�inite continued fraction

(8.92)

and pointed out how the partial fractions are successively larger and
smaller than  and the process converges to  While Brouncker was
not kind enough to provide details of his expansion, he undertook some
calculations to verify formula (8.44), and showed that

 which is very
satisfactory. Neither of the expressions (8.44), and (8.92); however, later
has served for an extensive calculation of 



Wallis in his book Opera	Mathematica of 1695 detailed basic facts and
properties of continued fractions (this term is also coined by him). Later
Huygens, Euler, Lambert, Lagrange, and Perron enriched the theory and
applications of continued fractions to the extent that it became a subject
in its own right. Especially, Euler showed that every rational number can
be expressed as a (unique) terminating continued fraction, and
consequently, every other in�inite continued fraction is irrational.
Continued fractions play dominate role in �inding best rational
approximations of irrational numbers. For (8.91), Alfred Pringsheim
(1850–1941, Germany) in short wrote as

(8.93)

and when all  Gauss wrote as

(8.94)

where  are integers (functions) determined from a given irrational
number (function). The representation (8.94) is called a simple continued
fraction.

It is well known, for example, see Agarwal [10], and Sen and Agarwal
[464] that  can be written as  where the numerator  and
the denominator  satisfy the recurrence relations

(8.95)

A remarkable known property is that if the irrational number
 has convergents  then

(8.96)

Now we shall use the algorithm (8.95) to �ind rational approximations of a
given positive number  For this, again we assume that a to be an
initial guess of  so that  Since

 it follows that



and the process continues.
In particular, for  and  we have  and

 Thus, (8.95) reduces to

(8.97)

which is the same as (8.79) with  and (8.80) with
 for all 

Similarly, for  and  we have  and

Thus (8.95) reduces to

which is the same as (8.86) with 
For the golden ratio  the continued fraction is

It immediately follows from  In
terms of Fibonacci numbers the k-th convergent of the golden ratio is

 Indeed, it suf�ices to show that
 Now

assuming  then since

For the number  the following continued fractions are known:
From (8.92) it follows that

Lambert around 1770 gave the following simple continued fraction,



however, it does not show any obvious pattern. Some convergents of
this continued fraction are

From (7. 178) it follows that

In 1971, Choong, Daykin and Rathbone [127] used  digits of
Daniel Shanks and William Shanks of 1961 to generate the �irst 
partial quotients of the continued fraction expansion of 
In 1999, Lange [336] developed the following continued fraction of 

For the number e the following continued fractions are known:
In 1737, Euler gave the simple continued fraction representation of 

(8.98)

i.e., the pattern repeats inde�initely with a period of 3 except that 2 is
added to one of the terms in each cycle. Some convergents of this
continued fraction are

Hubert Stanley Wall (1902–1971, USA) in his book Analytic	Theory	of
Continued	Fractions of 1948, gave the following beautiful
representation

For  the simple continued fraction representation is



The simple continued fraction for Euler–Mascheroni constant  is

The �irst few convergents of this continued fraction are are
,

. Weisstein in 2011
computed 970258158 terms of the continued fraction of gamma, and in
2013, 4851382841 terms. On May 13, 2023, Jordan Ranous and Kevin
O’Brien have computed  to 700 billion decimal places. It is not known
whether  is rational or irrational. The question about its being
transcendental also is an open problem.
The simple continued fraction expansion of  is

The simple continued fraction expansion of  is

8.17	 Irrationality	of	e	and	
Euler, in 1737, showed that both e and  are irrational and gave several
continued fractions for  His proof of irrationality for e is based on the
in�inite continued fractional representation (8.98). He indicated that the
irrationality of e is of different	kind, which led to transcendental numbers.
Here we provide a most admired elementary proof of 1815 due to Fourier,
also see Agarwal et. al. [16]. From (3. 6), we have

Now supposed to contrary that  where p and q are integers and
 Thus, we have , which is the same as



Now, we observe that

But,  is a positive integer. Thus, e is irrational.
The aforementioned method to prove the irrationality of  does not

work. In 1998, Aigner and Ziegler in their book [23] provided details
about the irrationality of  for any nonzero rational  Their approach is
based on the work of Hermite. For a �ixed  they begin with the
function  It follows that (i)

 where  are integers; (ii) for
 (iii) for

 are integers,
and  for  Now it suf�ices to show that for a
positive integer  is irrational, in fact, if  is rational, then

 will also be rational. Suppose that  where the
integers  and choose n suf�iciently large so that  We
de�ine

which in view of (iii) is the same as

For the polynomial  it follows that 
and hence,

Thus, we have

which in view of (iii) is an integer. Now from (ii), we have



and hence N cannot be an integer. Thus, our assumption that  is rational
is false.

Lambert generalized Euler’s method to show that continued fractions
of  and  are irrational if x is a nonzero rational. His following
continued fractions of  and  of 1761 [331] are of great historical
importance

and

(8.99)

8.18	 Irrationality	of	 	and	
To prove the irrationality of  in 1768, Lambert substituted  in
(8.99), so that the left side of (8.99) is simply one. Then he assumed that
there exist integers p and q such that  i.e.,  is rational and
then showed that the right side of (8.99) is irrational. The complete
Lambert’s proof is available on the website https:// math. stackexchange. 
com/ questions/ 895611/ lamberts-original-proof-that-pi-is-irrational.
After Lambert’s proof, several prominent mathematicians gave alternative
proofs to prove the irrationality of  for example, Legendre, in his
Elements	de	Géometrie (1794) used a slightly modi�ied version of
Lambert’s argument to prove the irrationality of  more rigorously, and
also gave a proof that  is irrational. He writes: “It is probable that the
number  is not even contained among the algebraic irrationalities, i.e.,
that it cannot be the root of an algebraic equation with a �inite number of
terms, whose coef�icients are rational. But, it seems to be very dif�icult to
prove this strictly.” In 1873, Hermite proved by contradiction that  is
irrational, from which the irrationality of  follows immediately. In 1945,
Dame Mary Lucy Cartwright (1900–1998, England) set as an example in
an exam at the Cambridge University a new proof of the irrationality of 

https://math.stackexchange.com/questions/895611/lamberts-original-proof-that-pi-is-irrational


(the origin of the proof is not yet known). In 1947, Niven [395] gave half
page proof (also see his book [396]). Bourbaki in spirit followed Niven’s
proof in 1949, and Laczkovich in 1997 [324]. For details, see the website
https:// en. wikipedia. org/ wiki/ Proof_ that_ pi_ is_ irrational. Here we shall
provide proof from Bourbaki.

For each natural number q and each nonnegative integer  let

Since  is the integral of a function that is de�ined on  takes the
value 0 at the lower and upper limits and positive in 
Further, since  we have

and hence  for suf�iciently large  On the other hand, recursive
integration by parts leads to the fact that, if p and q are natural numbers
such that  and f is the polynomial function from  to 
de�ined by  then

Since f is a polynomial of degree  the last term is  Now since each
function  as well as  and  take integer values
at 0 and  this shows that  is an integer. Since it is greater than  it
must be a positive integer. But we have seen that  if n is
suf�iciently large. This contradiction shows that  is impossible.

To prove  is irrational, we again follow the book of Aigner and
Ziegler [23] and the proof of the irrationality  in Sect. 8.17. Suppose that

 where the integers  We consider the polynomial

https://en.wikipedia.org/wiki/Proof_that_pi_is_irrational


which satis�ies  From (iii) it is clear
that  and  are integers. Now we have

Thus, we obtain

which is an integer. From the de�inition of N it is clear that it is positive.
Now we choose n so large that , then from (ii) it follows that

which is a contradiction.
An excellent survey about the irrationality of e and  has been

documented in Nagell [385]. In [382], Ram Murty and Kumar Murty gave
a general result for the irrationality of numbers, and as a consequence
concluded that  is irrational, (hence so also is );  is irrational for
every rational ;  are
irrational for every nonzero rational 

8.19	 Irrationality	of	 	and	
From the irrationality of  it is immediate that  is irrational. In 1979,
Roger Apéry (1916–1994, France) published an unexpected proof of the
irrationality of  His success was based on the highly non-obvious
rapidly converging series representation

(8.100)

In the literature  is known as Apéry constant. In July 2020, Seungmin
Kim (Korea) has computed the value of  to 1 trillion 200 billion and
100 decimal places. Besides (8.100), several other representations of 
are known, e.g., in 1772, Euler showed that



Ramanujan developed

in 1979, Frits Beukers (born 1953, Turkey-The Netherlands) gave

in 2018, Silagadze obtained

8.20	 Transcendental	Numbers
A number that is not a solution of any polynomial equation with integer
coef�icients is called transcendental	number (in particular, this means that
it cannot be expressed as a �inite number of addition, subtraction,
multiplication, division, and extraction of root of integers). The
irrationality of e and , which is equivalent to the fact these numbers are
not roots of any linear equation of the form  whose
coef�icients are integers, had been proved by Euler and Lambert. In 1844,
Liouville showed that e is not a root of any quadratic equation with
integral coef�icients. This led him to conjecture that e does not satisfy any
polynomial equation  with integral
coef�icients, i.e., e is transcendental. In 1851, Liouville showed, by using
continued fractions, that there are an in�inite number of transcendental
numbers, a result which had previously been suspected by Euler in 1737
and Legendre in 1794, but had not been proved. He produced the �irst
examples of real numbers that are provably transcendent. One of these is



(U1).

(U2).

(U3).

His methods led to extensive further research.
In 1874, Cantor in his seminal paper, Über	eine	Eigenschaft	des

Inbegriffes	aller	reellen	algebraischen	Zahlen (On a Characteristic Property
of All Real Algebraic Numbers) gave an existential proof to show that
there are as many transcendental numbers (although subset of
irrationals) as there are real numbers, which are uncountable. Cantor’s
work established the ubiquity of transcendental numbers. In fact, the
discovery of transcendentals, the establishment of the fact that they are
far richer in extent and variety than the irrationals of algebra, that they
comprise some of the most fundamental magnitudes of modern
mathematics—all this showed de�initely that the powerful machinery of
algebra had failed just where the elementary tools of rational arithmetic
had failed 2000 years earlier. Both failures were due to the same source:
algebra, like rational arithmetic, dealt with �inite processes only.

Recall that two sets A and B are equivalent, or have the same cardinal
number, provided there is a one-to-one onto mapping  The
equivalence of these sets is written as  The following properties of
uncountable sets are fundamental.

If  where B is an arbitrary in�inite set and C is at most
countable (�inite or countable), then 

If A is an uncountable in�inite set and B is its �inite or countable
subset then 

If  and A is uncountable, then B is uncountable, i.e.,
uncountable remains the same, even when the uncountable is taken out
of it.

To prove the set of all real numbers contained in the interval  is
uncountable, Cantor used the method of contradiction and the
diagonalization	argument. He assumed to contrary that there is a one-
to-one onto mapping f from  onto the interval  Thus these
numbers can be written as  Now each number  has
an in�inite decimal expansion, so these numbers can be written as



where each  Here some numbers such as
 have more than one representation,

but this will not create any problem. Now construct a number
 where

This number y is obviously in the interval  But, y is not one of the
numbers  because it differs from  at the nth decimal place.
(Since none of the digits in y are 0 or  it is also not one of the numbers
with two representations.) This contradiction con�irms that numbers in
the interval  are uncountable.

From the aforementioned demonstration and (U3) it is clear that
the set of all real numbers contained in the interval  is
uncountable. Now from the transformation  which
maps the interval  to  it follows that any interval  is
uncountable. Next from (U2) it is immediate that half-open as well as
open intervals are uncountable. Now from (U3), or from the
equivalence  it follows that  is uncountable.
Finally, from (U2) it is clear that the set of transcendental numbers in
any interval is uncountable. Thus, if we randomly pick a real number, it
is almost certain to be an irrational number.

A set A is said to have the power	of	continuum (cardinality), denoted
as earlier in Sect. 2. 8 by  if it is equivalent to the set of real numbers
contained in the interval  It is clear that any interval closed, open,
half–open, �inite or in�inite has the power  Also, the power of the set
of transcendental numbers in any interval is 
A �inite or countable union of disjoint sets each of power  is itself of
power  For this, let  where the union of disjoint sets is
�inite or countable, and each of the sets  has the power  For each n
we consider the interval  Since every interval has the power



of the continuum, it follows that  Therefore,
 and hence  or  according as

the union is �inite or countable. Thus, in either case A is equivalent to an
interval, and hence its power is 
Let the elements of a set A be speci�ied by a �inite number of
parameters each of which can independently take on any value
belonging to a set of power  Then, the set A is also of power  If in
this result, we identify the coordinates x and y of the xy–plane as
parameters, then it immediately follows that the set of all points in the
square  as well as the set of all points in the xy–plane is of
power  This means that it is possible to set up a one-to-one onto
mapping between the points of the square  and the
interval 
If  where x runs through a set of power  and each of the
sets  is of power  then the set A is of power 

Now to compare the sizes of in�inite sets we note that for any two
given sets A and B with cardinal numbers a and  (which are just
symbols), only three possibilities can arise:
1. A is equivalent to some subset of  and B is equivalent to some

subset of  In this case  (Felix Bernstein’s Theorem), and
we have 

 

2. A is equivalent to some subset of  but B is not equivalent to any
subset of  In this case  

3. B is equivalent to some subset of  but A is not equivalent to any
subset of  In this case  
This ordering of the cardinal numbers immediately allows us to

conclude that  The question whether there exist uncountable
sets of cardinality less than  is the continuum	hypothesis discussed in
Sect. 2. 8. The following properties of the cardinal numbers  can be
proved: (a).  (b).  (c).  (d). 
(e).  The cardinality of the set of all continuous functions

 is  This follows from the fact that rationals are dense,
i.e., any open set will contain some rational, so they are everywhere in



the real line, and curves are continuous. This is equal to the cardinality
of the set of all geometric points, not greater than it.

Now we shall show that there are uncountable sets of cardinality
greater than  For this, �irst we shall show that for any set 
cardinality of  cardinality of the power set  The function

 de�ined by  is clearly one-to-one, so
cardinality of  cardinality of  To show that cardinality of

 cardinality of  we shall show that no function
 can be onto. Clearly, for each  is a subset of

 Now for  either  or  Let
 Since,  it follows that  If g

were onto, then  for some  Now either  or
 But, we shall show that both possibilities lead to contradictions.

If , then  by the de�inition of  But,  so
 On the other hand, if  then , which implies that
 From this observation it follows that cardinality of 

cardinality of  cardinality of 
Thus, we have an in�inite sequence of trans�inite cardinals each larger
than the one preceding.
Let  Remove the open middle third segment  and
let  be the set that remains, i.e.,  Then,
remove the open middle third segment from each of the two parts of 
and call the remaining set  Thus,

 Continue in this
manner, i.e., given  remove the open middle third segment from
each of the closed segments whose union is  and call the remaining
set  Clearly,  and that for each 
is the union of  closed intervals each of length  The set

 was discovered in 1874 by Henry John Stephen Smith
(1826–1883, Ireland), introduced by Cantor in 1883, and in the
literature it is called the Cantor	set. The cardinality of Cantor’s set is the
continuum, i.e., 

8.21	 Transcendence	of	e



Hermite in 1873 proved the conjecture of Liouville and af�irmed that e is
indeed a transcendental number. Here we shall follow an elegant
demonstration of Richard Schwartz (born 1966, USA) to prove the
transcendence of  For contrary, assume that e is algebraic, i.e., satis�ies
the polynomial equation with integer coef�icients

Here the degree of the polynomial may be less than  Consider the
functions

Here the integer  will be chosen later. Clearly, f is a Hermite
polynomial, and so for F the sum is �inite. We need the following three
steps:
(a). We write f as  where

Since  and otherwise  from the formula
 it follows that

Hence, in view of  it follows that

 

(b). Now we write f as  where

Since  and  otherwise, we have

 



(c). Let  so that

Here we have used the fact that for F the sum is �inite. Thus, we
have  for  Now in view of the mean value
theorem, it follows that for all 

The last inequality follows for  suf�iciently large.

 

Next since from (a) and (b), respectively, we have 
and for each  it follows that

 and therefore is a nonzero integer. The
required contradiction now follows from the following successive
equalities and inequalities, and (c),



8.22	 Transcendence	of	
Using a slight extension of Hermite’s method of proving the
transcendence of  in 1882 [347], Carl Louis Ferdinand von Lindemann
(1852–1939, Germany) succeeded in proving the transcendence of  For
this, �irst he proved that  is transcendental if a is a non-zero algebraic
number (possibly complex). This result in the literature is known as Weak
Hermite-Lindemann-Weierstrass Theorem (WHLWT). Now suppose that

 is algebraic, i.e.,  is a root of a polynomial with rational coef�icients,
say,  Then,  is also a polynomial with rational
coef�icients and  i.e.,  is also algebraic. But then WHLWT
implies that  is transcendental; however, it contradicts Euler’s identity

 and hence  is transcendental. His proof was 13 pages long.
Lindemann also developed a method of solving equations of any degree
using transcendental functions. Most astonishingly, he supervised the
doctoral theses of Hilbert, Minkowski, and Arnold Johannes Wilhelm
Sommerfeld (1868–1951, Germany). They laid the future foundation of
mathematics. In 1885, Weierstrass simpli�ied the proof of Lindemann’s
theorem, and it was further simpli�ied in later years by renowned
mathematicians Stieltjes, Hurwitz, Hilbert, and others. In a lecture given
in 1886, Kronecker complimented Lindemann on a beautiful proof but, he
claimed, one that proved nothing since transcendental numbers do not
exist. The proof of the transcendence of  de�initely settled the age-old
problem of squaring the circle by a ruler-and-compass construction is
impossible. Nonetheless, there are still some amateur mathematicians
who do not understand the signi�icance of this result, and futilely look for
techniques to square the circle.  An important property of a
transcendental number, say, s is that  for any nonzero rational t is also
transcendental. Indeed, if  is algebraic  then  but this
implies that s is a solution of an algebraic equation  and
hence algebraic, a contradiction. In particular, from (7. 40) it follows that
each  is transcendental. The irrationality of

 is expected but not yet established. In this direction an
advanced result was obtained by Wadim Zudilin (Russia-The Netherlands)
in 2001, which con�irms that at least one of  is
irrational.  A real number x is called a Liouville number if for every
positive integer  there exist integers p and q with  and such that



A Liouville number can thus be approximated “quite closely” by a
sequence of rational numbers. In 1844, Liouville showed that all Liouville
numbers are transcendental, whereas in 1953, Mahler showed that  is
not a Liouville number, and Baker in [52] reported that e is also not a
Liouville number.

8.23	 More	About	Transcendental	Numbers
While the existence of transcendental numbers has been proved to be
uncountable, only for very few numbers their transcendence (one by one)
has been established. As it stands, even to prove irrationality of a number
no general method exists, proving transcendence (or otherwise) of a
number is considered as life’s great achievement. In 1900, Hilbert posed a
question about transcendental numbers, Hilbert’s seventh problem: If a is
an algebraic number that is not zero or one, and b is an irrational
algebraic number, is  necessarily transcendental? The af�irmative
answer was provided in 1934 by Alexander Osipovich Gelfond (1906–
1968, Russia) and followed by Theodor Schneider (1911–1988, German).
This result in the literature is known as Gelfond-Schneider theorem. Their
result was extended by Alan Baker in the 1960s in his work on lower
bounds for linear forms in any number of logarithms (of algebraic
numbers). The transcendental number  (�irst proved in 1930 by
Rodion Kuzmin, 1891–1949, Russia) is known as the Gelfond–Schneider
constant (or Hilbert number), and the transcendental number

 is known as Gelfond’s constant. The numbers
 and  are also transcendental.  (base 10) can be

shown to be transcendental using the Gelfond–Schneider theorem.
However, their theorem does not help to determine whether numbers
such as , , or  are transcendental, since both the bases and
exponents are transcendental numbers. The trigonometric functions

 and their hyperbolic
counterparts, for any nonzero algebraic number  expressed in radians
are transcendental. It is also not yet known if the numbers

 are rational, algebraic, irrational, or transcendental.
However, it is certain that both  and  cannot be rational (or



algebraic). In fact, if both are rational then  is rational. But
this gives  and so  is algebraic. But then adding and
subtracting  with  we �ind that both  and e are algebraic,
which contradicts the fact that both are transcendental. For more details
of transcendental numbers, see Baker [52] and Siegel [477].
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Cañestro, I.L. 338
Cantor, G.F.L.P. 75, 82, 83, 85–88, 138, 233, 238, 609610, 612
Cantor, M.B. 105
Cardano, G. 47, 117, 127, 425
Carlitz, L. 444
Carlson, B.C. 257
Carlson, J.R. 410
Carmichael, R.D. 226, 333, 335, 390, 413, 416
Carrick, A. 575
Cartan, H. 128
Cartwright, D.M.L. 606
Casey, S. 348
Castellanos, D. 584
Catalan, E.C. 280, 281, 422
Cataldi, P.A. 278, 283, 600
Cauchy, A.L. 87, 117, 128, 162, 205, 214, 426, 512
Cavalieri, B.F. 51
Cayley, A. 206, 214, 216, 245, 418
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Schuré, E� . 10
Schur, I. 32
Schwartz, R. 612
Schwarz, K.H.A. 256
Scott, J.F. 150, 167
Sebah, P. 595
Sebokht, S. 55, 57
Segal, S.L. 303
Segner, J.A. 280
Segre, B. 230
Seife, C. 54, 77
Seifert, B. 600
Selberg, A. 219, 225, 259, 270, 301
Selfridge, J.L. 419
Senior, J.K. 215
Sen, S.K. 33, 50, 53, 57, 90, 91, 132, 150175, 205, 210, 317, 347, 534,
591–593, 600601
Sen, S.N. 257
Sergusov, I.S.A. 299
Serres, O. 558
Severi, F. 216
Shadwell, T. 562
Shakespeare, W. 81, 97, 140
Shamir, A. 277
Shankara, Adi 220
Shankaracharya 56
Shankaranarayana 56
Shanks, D. 130, 579, 582, 595, 603
Shanks, W. 573, 574, 578, 579, 599, 603



Shannon, A.G. 595
Shao, C. 47, 56, 373
Sharp, A. 49
Shaykhian, G.A. 5, 591, 592
Shedd, C.L. 392
Shen, K. 47
Shigekiyo, M. 561
Shih-Chieh, C. 373
Shijie, Z. 56
Shirali, S.A. 429
Shoemaker, R. 286
Shokei, O. 563
Shrikhande, S.S. 222
Shripati 56
Shuang, Z. 352
Shuja 517
Siculus, D. 40
Siddhanta, G. 55
Siddhartha, G. 55
Siegel, C.L. 225, 617
Sierpinski, W. 59, 130, 426
Silagadze, Z. 443, 608
Silva, C.P.D. 81
Silva, T.O. 295
S� imerka, V. 335
Simson, R. 316
Singmaster, D. 595
Sipka, T.A. 350
Sirotta, M. 61
Siu, M.K. 347, 380
Skewes, S. 304
Skolem, A.T. 86
Sloane, N.J.A. 432
Smale, S. 226
Smith, D.E. 53, 595
Smith, J. 59
Smith, L.B. 64



Smith, S. 219
Snapper, E. 257
Snell, W. 251, 558, 559
Socrates 13, 167, 233, 537
Solomon, B.S. 92
Solon 4
Solovay, R.M. 243
Sommerfeld, A.J.W. 616
Sondheimer, E. 529
Sondow, J. 340
Specht, C.G. 56
Spencer, D.D. 89, 130
Spengler, O.A.G. 30
Spira, R. 416
Sporus 249
Srinivas, M.D. 219, 257
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Wroński, J.M.H. 214

X
Xenophanes 90
Xenophilus 35
Xerxes the Great 105
Xin, L. 553

Y
Yang, X. 54
Yates, R.C. 250
Yazdi, M.B. 306
Yee, A. 523, 593, 594, 600
Yehuda, R. 102, 257
Yeo, A. 595
Yong, L.L. 27
Yoriyuki, A. 568
Yoshino, S. 581



Yoshinori, I 562
Youqin, Z. 555
Yue, X. 62

Z
Zach, F.X.F. 568
Zadeh, L.A. 140
Zagier, D.B. 325, 412
Zaiyu, Z. 522, 556
Zaremba, S.K. 342
Zebrowski, E. 595
Zeckendorf, E. 313
Zeilberger, D. 217
Zelator, K. 401
Zeller, J.C.J. 193
Zeno 76, 233, 234
Zermelo, E.F.F. 134, 158
Zhang, G. 217
Zhang, Y. 300
Zhmud, L. 6, 7
Ziegler, G.M. 246, 605, 607
Zimba, J. 347
Zuckerberg, M.E. 64
Zudilin, W. 616
Zwas, G. 81

Subject	Index
A
Algorithms

Agarwal-Kayal-Saxena 206, 277
Bolzano 199
Borwein brothers 583
Brent-Salamin 581, 584
Eratosthenes 260
Euclidean Division 187



Gauss–Legendre 580
Hasse 229
Romberg 562
spigot 587

Axioms
Archimedes 158
Aristotle 155, 165, 166
choice 159, 240
completeness 158
continuity 158
Dedekind-Cantor 159
empty set 158
Euclid 156, 160, 169
extension 158
�ield 157
foundation 159
in�inity 158
order 157
pair-set 158
Peano 156
playfair 160
power set 158
replacement 159
separation 158
union 158
well-ordering 158, 186
Zermelo-Fraenkel 158

C
Conjectures

abc 422
balanced primes 339
Beal 422
Bieberbach 226, 227
Carmichael (Totient Function) 226
Catalan 239, 422–423
Collatz 229



de Polignac 296
Dorin Andrica 299
Eisenstein 287
Erdös-Straus 230, 231
Euler (Generalized Fermat’s Last Theorem) 419–422
Euler (Graeco-Latin square) 222
Fermat 286, 287, 413
Fibonacci Primes 313
Fortune 340
four color 206, 207
Gauss (x) (Prime-Counting Function) 300, 301
Goldbach 294–296
Hardy-Littlewood 295, 303, 304
Hoggatt Jr. 447
Jacobi 229
Kaprekar 271
Kepler 221
Lander-Parkin-Selfridge 419
Legendre 300
Lucas Primes 315
Mertens 206, 225–226
Palindrome Number 231–232
Pillai 422–423
Poincaré 149, 226
Pollock 486, 494, 497
Ramanujan (Partition Function) 227
Ramanujan (Tau Function) 218, 228
Riemann 224
Tunnell 412
twin primes 296–300
waring 223
weak conjecture of twin primes 300
Weil 218
Wilson 293

Constants
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300, 301, 392, 407408, 425, 426, 431, 439, 447, 449, 452455, 459,
463, 467, 472, 476, 481–487, 489490, 494, 506, 513, 539, 595, 606,
607
negative 47–51, 117, 129, 150, 343, 518, 578
nonagonal 467–471, 475, 479, 503, 513
nonagonal pyramidal 503–504, 513
normal 581
Nuptial 61, 418
oblong 9, 445–448
octagonal 462–466, 471, 474, 479, 502, 513
octagonal pyramidal 502–503, 513
octahedral 425, 497, 498, 513
ordinal 83, 231
palindromic 114, 232
pentagonal 180, 448–451, 453, 457, 461, 465, 469, 473478, 499,
508, 513
pentagonal pyramidal 500, 513
pentatope 426, 508–509
perfect 95, 100, 155, 246, 259, 281–286, 309, 434
polite 434
polygonal 425, 511–512



prime 94, 104, 105, 107, 155, 209, 225, 246251, 259–342, 385, 413
pronic 445–447
pyramidal 425, 426
Ramsey 207, 208
random 342, 591
rational 44, 46–47, 52, 79, 83, 84, 230, 378384, 403, 409, 516–519,
527, 539, 541, 552601, 616
real 32, 74, 83–85, 87, 118–120, 129, 153, 157158, 161, 182, 198,
201–203, 205, 215, 240291, 361, 406, 407, 517–519, 534, 580,
609610, 616
rectangular 446, 447, 451, 453, 457, 460, 464, 469473, 477
Roman 57, 110
Ruth-Aaron 336
Second Skewes 304
solid 155, 425
square 65, 83, 104, 107, 112, 114, 155, 390416, 425, 439–445, 447,
485, 488, 491, 493495–497, 512, 513, 536
square cubic 493
square decagonal 472
square generalized pentagonal 456
square heptagonal 459
square hexagonal 452
square nonagonal 468
square octagonal 464
square pentagonal 450
square pyramidal 495–499, 513
square tetrakaidecagonal 476
square triangular 435, 437–439
star 104, 488–489, 505, 506, 513
stella octangula 505–506
superabundant 285
super�luous 134, 283
taxicab 69, 335
tetrahedral 115, 493–495, 513
tetrakaidecagonal 475–480, 505, 513
tetrakaidecagonal pyramidal 505, 513
transcendental 85, 562, 604, 609–612, 614, 616, 617



trans�inite 75
trapezoidal 434
triangular 8, 65, 85, 113, 394, 408, 426–440, 442446, 447, 449, 450,
452, 456, 460, 464468, 473, 477, 488, 493, 495, 512, 513
triangular pyramidal 493–495
truncated octahedral 499
truncated tetrahedral 495
uncountable 85, 611, 615, 617
zero 43, 44, 49–61, 84, 150

P
Paradoxes

antinomies 241
Bald Man 233
Banach-Tarski 240
Barber 239
Berry 240, 241
Bertrand 233, 236–238, 240, 243
Birthday 241
dialetheia 241
falsidical 241
Galileo 81
Gamow 85
Liar 233
Poincaré 240
Russell 239, 240
small heap 233, 241
St. Petersburg 235, 236
Thomson Lamp 241
Tristram Shandy 240
veridical 241
Zeno 77, 132, 234, 241

Prime numbers
almost prime/semiprime 295
balanced 339
Bell 338
coprime 189, 277, 309, 333, 383, 394, 404, 422439



cousin 297, 298
Eisenstein 339
Euclid 339
Fermat 286
Fermat pseudo 333
Fibonacci 313
Gaussian 191
Generalized Fermat 339
good 340
happy 340
Higgs 340
irregular 300, 444
Lucas 315
Mersenne 277–281, 285, 340
pairwise relatively 193, 260, 410
palindromic 271, 272, 340, 595
primorial 339
pseudoprimes 289
pythagorean 191, 326
Quadruplet 298
Ramanujan 340
regular 413, 444
relatively 155, 189, 190, 193, 226, 243, 260, 262264, 265, 267, 269,
287–289, 293, 299, 307312, 314, 381, 385, 386, 395, 399, 405408,
410, 422, 443
sexy 299
Sophie Germain 338
triplet 298
Twin 296–300, 305
Wilson 104, 293

Problems
Archimedes’s Cattle 64
Basel 442, 443
Buffon needle 567, 574, 576
Busemann-Petty 217
Cannonball 445
De Nemore 406



Diophantus 49, 385, 397, 406
Fermat 414, 415
Fibonacci Tournament 405
Handshake 428
Hilbert 224, 244
Isoperimetric 256
Kissing Number 95
Königsberg Bridge 256
Landau 271, 414
Nielsen Realization 215
Party 207
three classical problems 132, 577
Tower of Hanoi 67, 68, 278
Travelling Salesman 208
Waring 223, 224

Proofs
beautiful 208, 616
computer-based 131, 205–209
conditional 225
constructive 198
contradiction 88, 160, 202, 204, 220, 540
contrapositive 201, 204
direct 186, 353
elimination 200
empirical 175
false 80
formal 143, 171, 221, 287
geometric 48, 95, 174, 347, 373, 518, 535, 536568
heuristic 175, 177, 179, 287
induction 191, 230, 313
logical 170, 200
nonconstructive 204, 205
rigorous 170, 173, 256, 385, 443
statistical 205
ugly 208
valid 171, 208, 346
without words 353, 427, 440



T
Theorems

Abel-Ruf�ini 218
Atzema 366
Bernstein 611
Bertrand-Chebyshev 270
binomial 177, 184, 288, 333, 510
Branges 227
Chinese Remainder 196, 246, 342
Conant and Beyer 366
De Gua 365, 366
Dinostratus 543
Dirichlet 269, 270, 334, 413
Erdös-Kac 267
Euclid 287
Euler-Lagrange 325
Fermat-Lagrange 325
Fermat Last 413–416, 419–422
Fermat Little 246, 287–289
Fermat Polygonal Number 512
Fermat Two Square 323
four color 207
Fundamental Theorem of Algebra 119, 205, 256
fundamental theorem of arithmetic 231, 246, 265, 266, 538
Gallai-Erdös 344
Gauss Eureka 512, 513
Gelfond-Schneider 617
Generalizations of Fermat Last 419–422
Generalized Pythagorean 362
Gougu 347
Grunwald-Wang 215
Hardy-Ramanujan 267
Hippocrates 349–350
ibn Qurra 357
incompleteness 170
in�initude of primes 259, 268, 270
Jordan Curve 256



Kepler 221
Kronecker-Weber 214
Lagrange Four-Square 246, 329–332
Lasker-Noether 218
Legendre Three-Square 328–329
Lindemann 616
Linnik 270
Little Pythagorean 352
Nicomachus 491
Pappus 356–357
Plancherel 218
Prime Number 300–305
Ptolemy 355–356
Pythagoras 343, 346
Ramsey 207
Reciprocal Pythagorean 352
Thales 174
Weak Hermite-Lindemann-Weierstrass 616
Wilson 292–293, 319
Zeckendorf 313
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