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The concept of summability theory has been dealt with several forms in recent years. In this paper, we 
present a perspective in generalizing Ramanujan summation method by considering Geometric and 
Arithmetic-Geometric Progressions.Geometric verifications are also included. The applications of 
geometric and arithmetic – geometric series on Pascal’s triangle and other applications in science are also 
described here. 
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INTRODUCTION 
 
The concept of  summability theory has been prevailing for several years as of now and has been a much studied 
topic. This idea has paved way for developing new branch of mathematical analysis called “Summability Theory”. 
The purpose of this paper is to present an approach to Ramanujan summation methods for geometric and arithmetic 
geometric series. 
 
Definition 
The Ramanujan  summation is defined as  ܴ.ܵ(∑ ܽ௡∞

௡ୀଵ ) =  ∫ ௡ݏ
଴
ିଵ ݀݊         (1) 

where  ݊  is a positive integer and  ݏ௡  is sum upto first ݊ terms of the divergent series ∑ ܽ∞
௡ୀଵ ௡of real numbers. 
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Theorem 1 
The Ramanujan  summation of the geometric series  ܽ + ݎܽ + ଶݎܽ +⋯+ ௡ିଵݎܽ + ⋯ 
is  given by 

ܴ. ܵ ൭෍ܽ௡

∞

௡ୀଵ

൱ =  

⎩
⎪⎪
⎨

⎪⎪
⎧

ܽ
ݎ − 1൬

1
ݎ݃݋݈ −

1
ݎ݃݋݈ݎ − 1൰ ݎ         ݂݅  > 1

ܽ
1 − ݎ ൬1 −

1
ݎ݃݋݈ +

1
൰ݎ݃݋݈ݎ ݂݅  0 < ݎ  < 1

−
1
2 ݎ           ݂݅                                    ܽ  = 1

�                                                            (2) 

where ܽ is the initial term and    ݎ is the common ratio between the terms. 
 
Proof: 
For the geometric series , the sum to ݊ terms is given by 

       (3) 
For the caseݎ > 1 
Substituting (3) in (1) we get, 

ܴ. ܵ ൭෍ܽ௡

∞

௡ୀଵ

൱ =  න
௡ݎ)ܽ − 1)
ݎ − 1

଴

ିଵ

݀݊ =
ܽ

ݎ − 1ቆ
௡ݎ

ݎ݃݋݈ − ݊ቇ
ିଵ

଴

=  
ܽ

ݎ − 1൬
1

ݎ݃݋݈ −
1

ݎ݃݋݈ݎ − 1൰ 

For the case  0 < ݎ < 1 
Substituting (3) in (1) we get, 

ܴ. ܵ൭෍ ܽ௡

∞

௡ୀଵ

൱ =  න
ܽ(1 − (௡ݎ

1 − ݎ

଴

ିଵ

 ݀݊ =
ܽ

1 − ݎ ቆ݊ −
௡ݎ

ቇݎ݃݋݈
ିଵ

଴

=  
ܽ

1 − ݎ ൬1 −
1

ݎ݃݋݈ +
1

 ൰ݎ݃݋݈ݎ

For the case ݎ = 1, 
Substituting (3) in (1) we get, 

 
Geometric Meaning 
This can be verified geometrically  by taking  ܽ = 1 and scaling ݎ  for few values  as follows 
We observe that from the shaded portion of Figure 1(a) to Figure 1(b) is that the region representing the area of 
ܵ௡between x- axis and the interval [-1,0] lies below the x- axis and it decreases as the value of common ratio increases.  
 
From the figure for 1 = ݎ,  length equals to 1 and breadth equals to 1 and the area is − ଵ

ଶ
 

 

Corollary 1 
The Ramanujan summation of the series 2଴ + 2ଵ + 2ଶ +⋯+ 2௡ + ⋯  is  
 ܴ. ܵ(∑ ܽ௡∞

௡ୀଵ ) = ଵ
ଶ ୪୬ଶ

− 1 =  −0.27865(4) 
 

Proof: 
2଴ + 2ଵ + 2ଶ +⋯+ 2௡ +⋯  is a geometric series with ܽ = 1 and ݎ = 2 
Substituting ܽ = 1 and ݎ = 2 in  (3) 
ܵ௡ =  ଶ

೙ିଵ
ଶିଵ

=  2௡ −  1  (5) 
Substituting (5) in (1) 
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Geometric meaning 
This can be verified geometrically  as follows 
We observe that from the shaded portion of Figure 2 is that the region representing the area of ܵ௡between x- axis and 
the interval [-1,0]  lies below the X- axis found to be -0.278652 which  equals to  ଵ

ଶ ୪୬ଶ
− 1 

 
Theorem 2 
The Ramanujan  summation of the arithmetic -geometric series 
ܽ + (ܽ + ݎ(݀ + (ܽ + ଶݎ(2݀ + (ܽ + ଷݎ(3݀ +⋯+ (ܽ + (݊ − ௡ିଵݎ(݀(1 +⋯      (6) 
is given by 

ܴ. ܵ(∑ ܽ∞
௡ୀଵ ௡) = ቐ

௔(ଵି௥)ାௗ௥
(ଵି௥)మ  + (௔ିௗ)

௥ ୪୬௥
 − ௗ

௥(୪୬௥)మ ݎ ݂݅                  > ݎ ݀݊ܽ 0 ≠ 1                 

− ௔
ଶ

+ ହௗ
ଵଶ

ݎ ݂݅                                                         = 1                                      
�    (7) 

where  ܽ is the initial  term ,ݎ is the common ratio and ݀ is the common difference between the terms. 
 

Proof: 

The sum to n terms of the arithmetic - geometric series is given by 

௡ݏ = ܽ + (ܽ + ݎ(݀ + (ܽ + ଶݎ(2݀ + (ܽ + ଷݎ(3݀ +⋯+ (ܽ + (݊ −  ௡ିଵ      (8)ݎ(݀(1

= ܽ(1 + ݎ + ଶݎ +⋯+ (௡ିଵݎ + 1)ݎ݀ + ݎ2 + ଶݎ3 +⋯+ (݊ −  (௡ିଶݎ(1
ݎ ݂݅ > ݎ ݀݊ܽ 0 ≠ 1 ,then  
௡ݏ =  ܽ ቀଵି௥

೙

ଵି௥
ቁ + 1)ݎ݀ + ݎ2 + ଶݎ3 + ⋯+ (݊ −  ௡ିଶ)        (9)ݎ(1

Also1 + ݎ2 + ଶݎ3 +⋯+ (݊ − ௡ିଶݎ(1 =  ௗ
ௗ௥

ݎ) + ଶݎ + ⋯+ (௡ିଵݎ = 

                                                                        = ௗ
ௗ௥
൬ݎ ቀଵି௥

೙షభ

ଵି௥
ቁ൰ =  (௡ିଵ)௥೙ି௡௥೙షభ  ାଵ

(ଵି௥)మ
      (10) 

Substituting (10) in (9) we get, 

௡ݏ =  ܽ ቆ
1 − ௡ݎ

1 − ݎ ቇ+ ቆݎ݀
(݊ − ௡ݎ(1 − +  ௡ିଵݎ݊ 1

(1 − ଶ(ݎ ቇ 

            =  ௔(ଵି௥)ାௗ௥
(ଵି௥)మ

− ௔௥೙

ଵି௥
+ ௗ௥

(ଵି௥)మ ቀݎ
௡ିଵ൫(݊ − ݎ(1 − ݊൯ቁ       (11) 

Substituting (11) in (1) we get, 

ܴ. ܵ ൭෍ܽ௡

∞

௡ୀଵ

൱ = න ௡݀݊ݏ = න ൭
ܽ(1 − (ݎ + ݎ݀

(1− ଶ(ݎ −
௡ݎܽ

1 − ݎ +
ݎ݀

(1 − ଶ(ݎ ቀݎ
௡ିଵ൫(݊ − ݎ(1 − ݊൯ቁ൱

଴

ିଵ
 ݀݊

଴

ିଵ
 

= ൥ቆ
ܽ(1 − (ݎ + ݎ݀

(1 − ଶ(ݎ ቇ݊ −
ܽ

1 − ݎ ቆ
௡ݎ

ln ቇݎ +
ݎ)݀ − 1)
(1− ଶ(ݎ ൭݊

௡ݎ

ln ݎ − 1ቆ
௡ݎ

(ln −ଶቇ൱(ݎ
ݎ݀

(1 − ଶ(ݎ
௡ݎ

ln ൩ݎ
ିଵ

଴

 

= ௔(ଵି௥)ାௗ௥
(ଵି௥)మ + ௔

௥ ୪୬௥
+ ௗ

௥ିଵ
ቀ ଵ
௥ ୪୬௥

− ଵ
(୪୬௥)మ + ଵ

௥(௟௢௚௥)మቁ- ௗ
(௥ିଵ) ୪୬௥

 

=  ௔(ଵି௥)ାௗ௥
(ଵି௥)మ + ௔

௥ ୪୬௥
− ௗ

௥ ୪୬௥
− ௗ

௥(୪୬௥)మ          (12) 
ݎ ݂ܫ = 1, (6) becomes 
௡ݏ = ܽ + (ܽ + ݀) + (ܽ + 2݀) + (ܽ + 3݀) + ⋯+ (ܽ + (݊ − 1)݀)      (13) 
Substituting (13) in (1) we get, 
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ܴ. ܵ(∑ ܽ௡∞
௡ୀଵ ) = ∫ ௡݀݊ݏ = ∫ ൬௡

ଶ
(2ܽ + (݊ − 1)݀)൰଴

ିଵ  ݀݊଴
ିଵ  

=  ቂܽ ௡మ

ଶ
+ ௗ

ଶ
ቀ௡

య

ଷ
− ௡మ

ଶ
ቁቃ
ିଵ

଴
= − ௔

ଶ
+ହௗ
ଵଶ
∎ 

 
Geometric meaning 
This can be verified geometrically by taking ܽ = 1 and ݀ = 1 scaling   ݎ for few values as follows. 
We observe that from the shaded portion of Figure 3(a) to Figure 3(d) is that the region representing the  
area of ܵ௡between x- axis and the interval [-1,0] lies below the x- axis. 
 
Corallary 1:  
 If ݎ = ݁, the Ramanujan  summation  of the arithmetic -geometric series becomes 

ܴ. ܵ ൭෍ܽ௡

∞

௡ୀଵ

൱ =
1

݁(݁ − 1)ଶ ൫(ܽ − 2݀) + ݁(݀(4 − ݁) − ܽ)൯ 

Also if ܽ = 1, ݀ = 1 then,ܴ. ܵ(∑ ܽ௡∞
௡ୀଵ ) = −0.0291approximately 

 
Proof 
Substituting ݎ = ݁ in (7)  

 
=

1
݁(݁ − 1)ଶ (ܽ − 2݀ − ݀݁ଶ − ܽ݁ + 4݁݀) 

=
1

݁(݁ − 1)ଶ ൫(ܽ − 2݀) + ݁(݀(4 − ݁) − ܽ)൯ 

If ܽ = 1, ݀ = 1 then 
 ܴ. ܵ(∑ ܽ௡∞

௡ୀଵ ) = ଵ
௘(௘ିଵ)మ

(−݁ଶ + 3݁ − 1) = − ଴.ଶଷସଶଵ
଼.଴ଶହ଺଼

= −0.0291 approximately                  ∎ 
 
Applications  in the Pascals’ triangle 
We could see Ramanujan like summation can be applied for diagonal elements of Pascal’s triangle. which  is a 
triangular array of the binomial coefficients that has wide applications in various mathematical fields like probability 
theory, combinatorics and algebra. 
The first eight rows of the Pascal’s triangle is as follows 

 
Theorem 3 
The Ramanujan  summation of the sum of the diagonal elements along the first  slant diagonal of  Pascals’  
triangle is  ܴ. ܵ(∑ ܽ௡∞

௡ୀଵ ) = − ଵ
ଶ
         (14) 

 
Proof: 
The sum of the diagonal elements along the first diagonal is given by  1 + 1 + 1 + ⋯+ ݊ +⋯ 
which  is a geometric progression series 
Substituting ܽ = 1 and ݎ = 1 in (5) we get ܵ௡ = ݊        (15) 
Substituting (15) in (1) we get 

ܴ. ܵ ൭෍ܽ௡

∞

௡ୀଵ

൱ =  න݊
଴

ିଵ

݀݊ = −
1
2 

∎ 

Geometric meaning 
This can be verified geometrically  as follows 
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We observe that from the shaded portion of Figure 5 is that the region representing the area of ܵ௡betweenx- axis and 
the interval [-1,0] lies below the x- axis found to be -0.5 which  equals to  − ଵ

ଶ
 

 
Theorem 4 
The Ramanujan summation of the sum of the diagonal elements along the second slant diagonal of Pascal’s triangle is 
ܴ. ܵ(∑ ܽ௡∞

௡ୀଵ ) = − ଵ
ଵଶ

(16) 
 
Proof: 
The sum of the diagonal elements along the second diagonal is given by 
1 + 2 + 3 + 4 + ⋯ + ݊ + ⋯which is an arithmetic -  series where ܽ = 1 and ݀ = 1 
The sum to n terms is given by ݏ௡ = ௡

ଶ
(2ܽ + (݊ − 1)݀) = ௡

ଶ
൫2 + (݊ − 1)൯ = ௡

ଶ
(݊ + 1)(17)Substituting (17) in (1) we get 

ܴ. ܵ ൭෍ ܽ௡

∞

௡ୀଵ

൱ =   න(
଴

ିଵ

݊
2

(݊ + 1)݀݊ =  −
1

12 

Geometric meaning 
This can be verified geometrically  as follows 
We observe that from the shaded portion of Figure 6is that the region representing the area of ܵ௡between x-axis and 
the interval [-1,0] lies below the x axis found to be −0.0833333333333.which is approximately equals to  − ଵ

ଵଶ
 

This result is  similar to  Ramanujan  work on 1 + 2 + 3 +⋯ =  − ଵ
ଵଶ

 
Theorem 5 
The Ramanujan  summation ofthe sum of the diagonal elements along the third slant diagonal of  
Pascal’triangle is ܴ. ܵ(∑ ܽ௡∞

௡ୀଵ ) = − ଵ
ଶସ

        (18) 
Proof: 
The sum of the diagonal elements along the third  diagonal of Pascal’s triangle is given by 
1 + 3 + 6 +⋯݊ + ⋯ 
The sum to ݊ terms of the series is given byܵ௡ =  ൫௡ାଶଷ ൯ = ௡యାଷ௡మାଶ௡

଺
       (19) 

Substituting (19) in (1) we get 

ܴ. ܵ ൭෍ ܽ௡

∞

௡ୀଵ

൱ =  න(
଴

ିଵ

�݊
ଷ + 3݊ଶ + 2݊

6 ቇ݀݊ =  −
1

24                                                                                             ∎ 

Geometric meaning 
This can be verified geometrically as follows. 
We observe that from the shaded portion of (Figure  7) is that the region representing the area of ܵ௡between x- axis 
and the interval [-1,0]  lies below the x- axis found to be −0.0416666666667 which is approximately equals to  − ଵ

ଶସ
 

 
Other Applications in Science 
Here are some additional applications of geometric and arithmetic geometric series in various scientific fields. 
Scientists across various disciplines can leverage geometric and arithmetic geometric series whenever exponential 
growth, decay, or repeated processes with a constant factor come into play. For instances in physics, in diffraction 
gratings and in geometric optics, in Chemistry, Chemical Kinetics and serial dilutions, in biology, Signal 
Transduction, population Genetics and in other sciences, earthquake magnitudes, ecology etc 
 

CONCLUSION 
 
We have discussed the Ramanujan  summation for geometic and arithmetic-geometric series and we have applied 
this to Pascal’s triangle and we got nice results. We have used Desmos graphing software tool to create graphs 
presented in the figures. Further we can construct Ramanujan summation for various other series also using the 
techniques presented in this paper.  
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Figure 1(a) 

Graph for ∫ (૚ି࢔࢘)ࢇ
࢘ି૚

૙
ି૚  ࢔ࢊ

showing area of ࢔ࡿbetween x- axis and the interval [-
1,0]  for  ࢘ = ૞ 

Figure 1(b) 
Graph for ∫ (૚ି࢔࢘)ࢇ

࢘ି૚
૙
ି૚  ࢔ࢊ

showing area of ࢔ࡿbetween x- axis and the interval [-1,0]  
for  ࢘ = ૚૙ 

 
 

Figure 1(c) 
Graph for ∫ (࢔૚ି࢘)ࢇ

૚ି࢘
૙
ି૚  ࢔ࢊ 

showing area of ࢔ࡿbetween x- axis and the interval [-
1,0]  for  ࢘ = ૙.૛ 

Figure 1(d) 
Graph for ∫ (࢔૚ି࢘)ࢇ

૚ି࢘
૙
ି૚  ࢔ࢊ 

showing area of ࢔ࡿbetween x- axis and the interval [-1,0]  
for  ࢘ = ૙.૞ 

  
Figure 1(e) 

Graph for ∫ (࢔૚ି࢘)ࢇ
૚ି࢘

૙
ି૚  ࢔ࢊ 

showing area of ࢔ࡿbetween x- axis and the interval [-
1,0]   for  ࢘ = ૙. ૡ 

Figure 1(f) 
Graph for ∫ ૙ ࢔ࢊ(ࢇ࢔)

ି૚  
showing area of ࢔ࡿbetween x- axis and the 

interval [-1,0]for  ࢘ = ૚ 
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Figure 2 

Graph for∫ (૙
ି૚ ૛ܖ − ૚)ܖ܌ 

showing area of ܖ܁between x- axis and the interval [-1,0] 
 

Figure 3(a) 

Graph for 

න ൭܉൬
૚− ܖܚ

૚− ܚ ൰+ ܚ܌ ቆ
−ܖ) ૚)ܖܚ − ૚ିܖܚܖ + ૚

(૚− ૛(ܚ ቇ൱ܖ܌
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Figure 4 Pascal's Triangle 
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Figure 5 
Graph for∫ ૙ܖ

ି૚  ܖ܌
showing area of ܖ܁between x- axis and the interval [-1,0] 

Figure 6 
Graph of∫ (૙

ି૚
ܖ
૛

ܖ) + ૚)ܖ܌ 
showing area of ࢔ࡿbetween x- axis and the interval [-1,0] 

 
Figure 7 

Graph of   ∫ (૙
ି૚

ܖ૛ା૛ܖ૜ା૜ܖ�
૟

ቁܖ܌ 
showing area of ࢔ࡿbetween x- axis and the interval [-1,0] 
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