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Abstract

Being currently on the 8 place of the most-used programming languages, Swift has been
gaining its impact during the last few years and is used more and more often in software projects.
As larger projects come with a higher effort of building and maintaining, an appropriate software
architecture can reduce necessary resources by multiples thereof. Such an architecture where
features including highly optimizing compilation, cross-language interoperability or monitoring
and debugging tools are available is GraalVM. However, Swift code cannot be run on this

architecture directly, as there exists no language implementation within GraalVM for Swift.

The approach described in this thesis is to run Swift on GraalVM by taking an intermediate
step in between: First, the Swift compiler is used for LLVM IR generation from Swift code.
Then, based on this LLVM code, Sulong (the LLVM runtime of GraalVM) can be extended
and adjusted. By that, it is shown how Swift code can not only be run on GraalVM, but also
interact with code of other GraalVM-supported languages. Furthermore, this thesis shows a
proof of concept how to approach full Swift support, since it is still limited by parts of the Swift
standard library.



Kurzfassung

Swift, derzeit auf Platz 8 der meistverwendeten Programmiersprachen, hat in den letzten
Jahren an Einfluss gewonnen und wird immer héufiger in Softwareprojekten eingesetzt. Da
bei groflen Projekten sowohl die Erstellung als auch die Wartung viel Aufwand bedeutet,
kann eine geeignete Software-Architektur die erforderlichen Ressourcen um ein Vielfaches re-
duzieren. Eine solche Architektur, in der Funktionen wie u.a. hochoptimiertes Kompilieren,
sprachiibergreifende Interoperabilitdt und Monitoring- und Debugging-Werkzeuge verfiighar
sind, ist GraalVM. Nachdem es allerdings derzeit keine existierende Sprachimplementierung
innerhalb von GraalVM fiir Swift gibt, kann Swift-Code nicht direkt auf dieser Architektur

ausgefithrt werden.

Der in dieser Arbeit beschriebene Ansatz ist es, tiber einen Zwischenschritt Swift auf GraalVM
laufen zu lassen: Der Swift-Compiler wird zunéachst fiir das Generieren von LLVM-Code aus
Swift-Code verwendet. Anschliefend koénnen wir Sulong, die LLVM-Umgebung in GraalVM,
basierend auf diesem LLVM-Code anpassen und erweitern. Dadurch wird gezeigt, wie Swift-
Code auf GraalVM /Sulong ausgefithrt werden und mit Code anderer von GraalVM unter-
stitzten Sprachen interagieren kann. Auflerdem beschreibt diese Arbeit, wie man volle Swift-
Kompatibilitat erreichen kann, da diese aktuell noch durch Teile der Swift-Standardbibliothek

begrenzt ist.
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Chapter 1

Introduction

The amount of software running in the world is increasing steadily. As software development
also changes over time and is also dependent on the contexts of the tasks, different program-
ming languages exist to write those projects. From the huge variety of available programming
languages, only few achieve world-wide popularity and wide usage. The decision in which lan-
guage to write a software project is a very important one and cannot be changed at a later
point in time without enormous effort. Thus, languages that achieve high popularity are bound
to have a very big impact in programming in the long run: Even if they are not considered for
new software projects, the already existing amount of code will run and has to be maintained
for a couple of years at least, reaching up to decades. Therefore, supporting an important and
widely popular language is a huge benefit for a software system and comes with a big variety

of interactions with existing and reusable code.

Recently, the programming language Swift [1] has become one of the fastest growing lan-
guages [2] and reached the top 10 of mostly-used programming languages worldwide [3, 4].
This leads to a very high propagation on the one hand of Swift code and the language itself.
On the other hand, software systems that support Swift can make use of already existing code.
Especially, recent products for Apple platforms (e.g. applications on iOS smart phones) are
written in Swift. As a consequence, the importance of Swift is currently increasing, and the
Swift programming language is going to have an impact on software development as long as
the recently written applications and software products are going to stay in use. Therefore,

having a system which can handle and execute Swift code will stay important within the next
decade(s).
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Looking at software systems and architectures, GraalVM [5] shows another important aspect
of software development: Besides efficient compilation and interpretation by aggressively opti-
mizing compilers and interpreters, it is also designed to easily provide interoperability across
different programming languages. This cross-language interoperability (or polyglot program-
ming, as it is also called) avoids rewriting/translation of code from one language into another,

and thus becomes a powerful tool for combining and maintaining existing software systems.

The goal of this thesis is to integrate Swift into GraalVM, i.e. to enable that features and tools
provided by GraalVM can also be used for Swift code.

1.1 Technological background and related work

To motivate the work of this thesis, the technological background of important components is

shortly explained in the following.

1.1.1 Swift and LLVM

As mentioned above, Swift is a programming language, which means there exist tools to compile
Swift source code [1]. Independent of the compilation output, Swift code is always compiled to
LLVM as an intermediate representation. Thus, the Swift compiler can also explicitly produce
LLVM from Swift code. In general (not only for Swift-compiled code), LLVM code is not

human-written, but the (intermediate) result of compilation of certain languages [6].

To access existing functions from Swift code in languages other than Swift, cross-language
interoperability is necessary. Currently, Swift only offers an interoperability mode with the
language Objective-C, Swift’s predecessor, and a C variant. Although this interoperability
mode increases code re-usage, it is only possible to connect Swift code with C code or variants
thereof. Code written in languages other than C variants (e.g. Java, JavaScript, or Python) do

not have an existing interoperability mode with Swift yet.
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1.1.2 GraalVM architecture

The GraalVM architecture consists of several components. Based on a Java Virtual Machine,
it consists of a heavily optimizing compiler, and the ability to handle different programming

languages via the Truffle framework [7].

The Truffle framework [8] is a language implementation framework which enables developers
to implement AST! interpreters for programming languages [7]. Languages, for which a Truffle
framework implementation exists, can also be easily used to perform cross-language interoper-

ability between each other when they are executed within GraalVM.

Sulong is one language runtime in the GraalVM architecture and uses the Truffle framework
for LLVM code execution [9]. Since LLVM is an intermediate representation, Sulong can be
used to run code from languages that can be compiled to LLVM, e.g. C or C++. In contrast to
a “direct” execution of a compiled, binary file of e.g. C/C++ code, execution via Sulong offers

features of GraalVM, such as cross-language interoperability.

1.2 Approach

The approach to overcome the previously mentioned issue of Swift compatibility (only compat-
ible with C/C++) is to combine the Swift language with the concept of GraalVM, i.e. to find
a way how to execute Swift code within this GraalVM ecosystem. Running Swift code on top
of GraalVM has the advantages of being able to use components and features including the

highly-optimizing Graal compiler, or GraalVM'’s cross-language interoperability concept.

To avoid having to implement a completely new language runtime on GraalVM for Swift,
LLVM can be used as an intermediate step: The Swift compiler produces LLVM bitcode as
intermediate representation. This representation can be interpreted by Sulong on GraalVM.

However, directly interpreting Swift-emitted LLVM code via Sulong is not trivial:

» Language runtime: As most modern languages, Swift also comes with a standard library

where important functionality, which is not part of the language core, is specified and

Labstract syntax tree
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written. While executing/processing Swift-compiled LLVM code by an LLVM interpreter
or a further compiler, Swift functionality might be used from such a library (which is
not part of the original source code in Swift). During execution in GraalVM, those Swift

dependencies have to be provided for correct execution of code.

» Interoperability: From a user perspective, the goal is to achieve cross-language interop-
erability between Swift and a foreign language. However, from a GraalVM point-of-view,
only interoperability between LLVM and a foreign language is possible. Therefore, some
“translation” work between Swift and LLVM has to be implemented in order to support

cross-language interoperability between a foreign language and Swift on GraalVM.

1.3 Thesis structure

This thesis is structured as follows:

In the next two sections (sections 2 and 3), the focus is laid on features and concepts of LLVM
and the Swift language, respectively. After that, section 4 gives an introduction to GraalVM,
Sulong and Truffle and their interaction. The following section (section 5) describes how to
execute Swift-compiled LLVM IR code on Sulong, including current dependencies and limits
thereof. Then, the next section (section 6) addresses necessary extensions to Sulong to make
the Truffle interoperability concept work for Swift-compiled LLVM code. Finally, in section 7,
an overall view is shown by providing a case study. The last section (section 8) concludes this

thesis and discusses future work.
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Chapter 2

LLVM

This section addresses LLVM with a focus on the compilation process(es), the different repre-
sentation formats, and examples how LLVM supports higher-level language concepts by only

using its lower-level representations.
In general, LLVM is a cross-platform compilation framework, i.e. a set of compilers and

toolchains. It is built around its own intermediate representation (=IR) [6], which is described

in more detail below.

2.1 LLVM representations

2.1.1 LLVM IR

LLVM’s intermediate representation (IR) is the core of the LLVM framework and an assembly-
like and target-independent language. It is defined by its instruction set. A short sample
snippet of LLVM IR can be seen in Listing 2.2, which has been compiled from the C code in
listing 2.1.

Basic features and principles of LLVM IR (cf. Listing 2.2) include:

« strong and static typing
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« organized as a control flow graph (CFG), i.e. basic blocks (line ranges 9-12, 15-19, 22)

with conditional and unconditional jumps only at the end of a block (lines 12, 19, 22)

« single static assignment (SSA — cf. lines 11, 15 or 16)

e (due to SSA) local variable names are dropped (and only kept in the debug information,
cf. section 2.1.3)

 based on primitive types (il, i32, ...), structured types (line 6) and pointers (lines 9, 10,

)

struct Point {
int x;
int y;
N

void mirror_point(struct Point «p) {
if (!p) {return;}
p—>y = - p—>y;

Listing 2.1: C code (point mirror example)

%struct.Point = type { i32, i32 }

Function Attrs: nofree norecurse nounwind uwtable willreturn
define dso_local void @mirror_point(%struct.Point« %0) local_unnamed_addr #0 !dbg !9 {
call void @llvm.dbg.value (metadata %struct.Point+ %0, metadata !20, metadata !DIExpression()), !dbg !21
%2 = icmp eq %struct.Point+ %0, null, !dbg !22
br i1 %2, label %7, label %3, !dbg !24

3: ; preds = %1
%A = getelementptr inbounds %struct.Point, %struct.Point+« %0, i64 0, i32 1, !dbg 25
%5 = load i32, i32+ %4, align 4, !dbg !25, !tbaa !26
%6 = sub nsw i32 0, %5, !dbg !31
store i32 %6, i32+« %4, align 4, !dbg !32, !tbaa !26
br label %7, !dbg !33

7: ; preds = %3, %l
ret void, !dbg !33

Listing 2.2: LLVM IR (point mirror example), compiled from C code in listing 2.1
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llvm-dis

LLVM bitcode (*.bc) fm———— LLVM IR (*.11)

llvm-as

Figure 2.1: conversion between LLVM IR and LLVM bitcode

2.1.2 LLVM bitcode

LLVM bitcode is the “machine code” version of LLVM IR, thus it is more compact than the
assembly-like IR and not human-readable. Since LLVM IR and LLVM bitcode only differ in the
file format (human-readable vs. machine-readable) but not in the content, either of these two

file formats can be converted into the other one by using the commands 11vm-as and 11vm-dis
(cf. figure 2.1) [10].

Because of this “content equality”, both formats will not always be clearly distinguished in this
work — LLVM IR is shown (readability reasons) in examples in the written thesis, while for

execution in Sulong, the bitcode format is used.

2.1.3 LLVM debug information

LLVM debug information is optional and additional information which can be included into
LLVM IR.

As an intermediate representation, general LLVM IR does not contain variable names, type
names or information about the position of corresponding code in the source file, since these
data are not needed for code execution. However, for debugging the original source-level code
(e.g. written in C, like in listing 2.1), exactly this type of information is needed. Thus, as an
optional part of an LLVM IR file, these data can be attached to the LLVM IR as so-called
LLVM debug information, such that the debugger can display e.g. debug values, types, and

variables by name and location [11].

An incomplete excerpt of LLVM debug information (corresponding to the code example of

listings 2.1 and 2.2) can be seen in listing 2.3.

To include debug information into the emitted LLVM IR/bitcode, the clang (C — LLVM)
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10 = distinct !DICompileUnit(language: DW_LANG C99, file: !1, producer: "clang_version_12.0.1_(GraalVM.org
_llvmorg-12.0.1 -3-g6e0a5672bc-bgf11ed69a5a _6e0a5672bc058d882dce3d56f90b72b64a6870d7) ", isOptimized:
true, runtimeVersion: 0, emissionKind: FullDebug, enums: !2, splitDebuglnlining: false, nameTableKind
. None)

11 = IDIFile(filename: "/home/christoph/master-thesis/code/llvm/irExample.c", directory: "/home/christoph/
sulong-dev/graal/sulong", checksumkind: CSK MD5, checksum: "6bff4ed39be1564cbb7bfd1065ef083a")

12 = I{}

13 = I{i32 7, !"Dwarf_Version", i32 5}

113 = IDIDerivedType(tag: DW_TAG_pointer_type, baseType: !14, size: 64)

114 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "Point", file: 110, line: 1, size: 64,
elements: 115)

115 = [{!16, !18}

116 = !DIDerivedType(tag: DW_TAG member, name: "x", scope: !14, file: 110, line: 2, baseType: !17, size:
32)

117 = |DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)

122 = IDILocation(line: 7, column: 6, scope: !23)

123 = distinct !DlLexicalBlock(scope: !9, file: 10, line: 7, column: 5)

Listing 2.3: LLVM IR debug information (belonging to listings 2.1 and 2.2)

compiler provides the -g flag, which can be set for compilation.

2.2 Compilation process

front-end -5 back-end
Source ron-en LLVM IR aceen .'>I machine code

7

optimizations

Figure 2.2: simple LLVM compilation process

A simple abstract LLVM compilation process [6] can be seen in Figure 2.2 and is described in

the following:

o front-end compilation: Initial starting point is source language code of a supported
language (e.g. C/C++). This source language code is then compiled down to LLVM IR
with the corresponding compiler (clang/clang++ for C/C++ respectively).

« optimizations: As LLVM IR is a low-level representation, static optimizations can be
performed, such as elimination of common sub expressions and dead code. These opti-

mizations are not limited to LLVM IR, but are usually also applied during front-end and
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back-end compilation.

» back-end compilation: At the end of the compilation process, the resulting LLVM IR
code is given to a back-end compiler, which then generates (binary) machine code. The
compiler and the exact binary format depend on the architecture of the target device.
Instead of back-end compilation to a binary format, there also exist other output formats

and execution modes, such as symbolic execution [12].

2.3 Breaking down source-language concepts to the
LLVM instruction set

As mentioned above in section 2.2, LLVM front-end compilers map source code of higher-
level languages (e.g. C, C++, Swift) to lower-level LLVM IR. Since there are operations and
language concepts in the source languages which are not directly a part of the LLVM instruction
set, those compilers have to break down specific operations. Most of these language concept
changes, such as name mangling or receiver methods, will be discussed in the sections about
interoperability (cf. sections 4.3.1 and 6) directly. However, since the basic principle of dynamic

binding requires further knowledge, it will be explained in the following.

2.3.1 Static and dynamic binding

If a method, for which multiple implementations (with the same signature) exist, is invoked,
then the execution semantics of the language define which of these implementations is executed.

There are two common strategies, called static and dynamic binding.

In the following, it is assumed that a Child class inherits from a Parent class, and both classes
implement the method foo. Then, given that obj is assignable to a Parent variable, obj.foo()
requires a strategy to select the appropriate implementation. For cases like these, Table 2.1
shows which implementation is called, depending on the binding on the one hand, and based

on the assignment of variable obj on the other hand.
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variable assignment static binding (C++) | dynamic binding (C++, Swift)
Parent obj < Parent() | Parent::foo Parent::foo
Child obj ¢ Child() Child: :foo Child: :foo
Parent obj < Child() | Parent::foo Child::foo

Table 2.1: Method resolving strategies: Static and dynamic binding (calling obj.foo())

It can be seen that static binding follows the static type of the receiver, i.e. the container variable
type where the object is currently stored. Since the method to be invoked is already known at
compile time (by a simple lookup on the static receiver type), static binding is a cheap (easy
and fast) way of resolving. Dynamic binding, however, always invokes the implementation
of the current dynamic type of the receiver object (also cf. table 2.1). As a consequence,
the implementation lookup can only happen at runtime, which makes dynamic binding more

expensive in terms of time and complexity.

As a low-level IR, LLVM only supports static binding. This leads to a problem if higher-level
languages with the semantics of dynamic binding are compiled down to LLVM. Thus, in order
to keep execution semantics of these higher-level languages correct, their (implicit) dynamic
binding lookups have to be converted to explicit LLVM instructions. In the following, this
conversion is shown with a case study of C++/LLVM code.

2.3.2 Case study for resolution of dynamic binding: C++/LLVM

As an example, two types A and B are considered, where B inherits from A. Moreover, A im-
plements three methods — foo, bar and baz. B also implements foo and bar (with its own
implementations) and inherits A’s implementation of baz. In this example, calls of foo are

statically bound, whereas bar and baz are resolved dynamically.

The left-hand side of Figure 2.3 shows the C++ view of the described example. By default,
C++ methods are statically resolved — unless they are declared virtual in at least the base
class, then dynamic binding is applied. As bar and baz are declared virtual in Figure 2.3,

foo is statically resolved, while bar and baz are resolved dynamically.

As mentioned above, static binding can be applied at compile time and is supported in LLVM.

Therefore, invocations of foo stay unchanged and can be hard-coded into LLVM already.
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. . _ new A();

A* obj = ... A* obj = new B();
obj->foo() /istatic binding obj->foo() Hahvays A::foo
obj->bar() Adynamic binding *(obj->vptr[e])()
obj->baz() Advnamic binding *(obj->vptr[1]) ()

A objA = A() I_) vptr$A
void foo() 8: vptr | Aiigar()
virtual void bar() 8: fieldl 1| A::baz()
virtual void baz()
fieldl

A

objB = B()
—> vptr$B
B 6: vptr P
s B @| B::bar()
void foo() 8: e 1 1| A::baz()
virtual void bar() 16: field2
field2

Figure 2.3: Method resolving: C++ view (left) and LLVM view (right)

For dynamic binding, the concrete implementation has to be selected depending on the dynamic
type of the receiver. To apply this correctly, the following actions are taken by the LLVM front-

end compiler:

» vtable: For every class, a so-called vtable (virtual method table) is created, which stores
an index and a function pointer per entry. Every dynamically bound method where the
current class type can be the receiver gets an index assigned, and is entered into this
virtual method table. It is important that overridden methods (=methods with the same
signature, but different implementations due to different classes) get the same index.

As an example (cf. Figure 2.3), bar and baz are inserted into A’s vtable. As B inherits
from A, these two methods are also added to B’s vtable with the same indices as their
corresponding entries in A’s vtable. If implementations exist for the same type (e.g.
B: :bar for B), they are inserted directly. Otherwise (e.g. for baz), the implementation of

an appropriate superclass method (i.e. A: :baz) is taken.

o vptr: Instead of treating dynamically bound methods as methods of their type, the
compiler adds a field for the vptr value. This vptr field is the first field of every type
(=always located at index 0) and can store a pointer to a vtable. Usually, this pointer is
implicitly set in the constructor. Thus, vptr always points to the vtable of the dynamic

type of the current object.
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o call: Every call of a dynamically bound method is replaced by a different structure using
its virtual method index (cf. Figure 2.3). Instead of calling the function directly, the vptr
is dereferenced to get the vtable of the current dynamic type. With the corresponding
method offset (which is known at compile time), the function pointer of the method to
be invoked can be found.

Since this technique uses actual field data instead of static type information, selecting
the method is independent of static type information, which is the necessity for dynamic

binding.

By translating every dynamically bound method call to the procedure mentioned above and
shown in Figure 2.3, dynamic binding can be also applied /simulated in a language with static

binding only, as it is the case for LLVM.
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Chapter 3

The Swift programming language

In this section, the language Swift is introduced together with its

features and its compilation process.

Swift is a multi-paradigm and general-purpose programming lan- &

guage whose first version was released in 2014. It is developed by

Figure 3.1: Swift

Apple Inc.! and the open source community. Since the predecessor
logo [13]

of Swift is Objective-C, a C++-like and thus unsafe language, the
main aim of the Swift designers has been to create a fast and safe

language which is compatible to Objective-C [1].

Although Swift has been originally designed for Apple platforms only, the current major ver-
sion (Swift 5) is also available for Linux (Ubuntu, CentOS, Amazon Linux) and Windows

systems [1].

3.1 Features and concepts

As the focus of this thesis is not to list all concepts and features of the Swift programming
language itself, only a small selection will be provided below. A short part of a Swift program
(to take a glimpse how the language looks like) can be seen in Listing 3.1, which shows a sample

implementation for a struct data type for complex numbers:

thttps:/ /www.apple.com/
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struct Complex {
var re: Double //struct members/fields
var im: Double
func abs() -> Double {
let a = self.rexself.re + self.im«self.im
return a.squareRoot()

}

func conjugate () —> Complex {
return Complex(re: self.re, im: —-self.im) //default constructor

}

func getAsTuple() -> (Double, Double) { //tuple types as return types
return (self.re, self.im)

}

func addComplex(c: Complex) -> Complex { //named parameters
return Complex(re: self.re+c.re, im: self.im+c.im)

}

Listing 3.1: Example of a Swift type representing complex numbers

o Fields/struct members: denoted by the var keyword, fields are listed with their corre-

sponding (static) type.

o Methods: In Swift, methods are also supported for structs as the receiver type (not class
types only) and are denoted by the keyword func. Listing 3.1 contains the methods (abs,
conjugate, getAsTuple, addComplex).

o Tuple types/multiple return values: Tuple types (supported in Swift) can be used to

return multiple values from a function (e.g. getAsTuple in Listing 3.1).

o Named parameters: Swift has named parameters, i.e. the names of the formal parameters
also have to be provided by the programmer for the actual parameters (can be seen in

Listing 3.1 when the default constructor of Complex is called).

The following features are also supported by Swift (only a selection), but will not be further

shown in detail [1]:

o Object orientation principles: classes, (single) inheritance, dynamic binding (also for

member fields), information hiding

 Error handling (including exception control flow)
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Generics

Fast and concise iteration over collections and ranges

Functional programming patterns, e.g. map and filter

Closures unified with function pointers (also known as lambdas in other languages)

As mentioned before, Swift has been designed to be a safe Objective-C successor. Thus, the

following safety mechanisms are present in Swift [1]:

o Automatic memory management: Memory for e.g. objects on the heap does not have to
be requested manually. However, in contrast to many other languages with automatic
memory management, Swift does not make use of a garbage collector. Instead, automated

reference counting is used to find objects which are not referenced any more.

o Variable initialization checks: Every read access to a variable x requires that x has to be

initialized beforehand.

o Over-/Underflow checks: Values are checked at runtime if they are within a valid value
range. In Swift, these checks are performed for array indices (like in Java), but also for

arithmetic operations.

o Static and strict typing: Type checks are performed at compile time already by type
inference. Except for a special kind of data types (UnsafePointer and its sub-types,
which are necessary for Objective-C interoperability, cf. section 3.4), pointers are not

allowed.

« Non-nullable types as standard: variables of any type cannot be set to nil (=Swift’s null
reference/empty value). Instead, every type T has its corresponding optional type T?,

which accepts every value of T, but also nil.
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3.2 Swift compiler

3.2.1 Basic compilation process

The compilation process from a Swift file to machine code is sketched in Figure 3.2 and is

described in more detail below [14].

AST SIL | LLVM IR ——] machine code

Figure 3.2: Swift compilation process

Assuming the Swift code has been written into one or more .swift files, the Swift

frontend (swiftc) performs recursive decent parsing and creates an

o abstract syntax tree (AST). This graph is then used for type and semantic checks. Having
a checked AST, the Swift frontend starts to generate code in the form of the so-called

o Swift intermediate language (SIL). This Swift-specific and high-level representation is

used for dataflow diagnostics and further, high-level optimizations. After that,

« LLVM bitcode is generated, which is a more low-level intermediate representation.
Here, the task of the Swift compiler, which serves here as an LLVM front-end, has ended,
since further (low-level) optimizations and the transformation to machine code is then

the task of an LLVM back-end.

3.2.2 Compiling multiple Swift files

Compiled single Swift files can be used as both, an executable directly and as a library. For

multiple Swift files, the output (executable or library) depends on the content [15]:

« Executable file: If an executable file shall be created, then there has to be exactly one
file called main.swift containing a “main method”, i.e. code at the top/global declaration

level. Specifying a module name is optional.
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o Library: For creating a library, a main method must not be present in any of the files.
Instead, during compilation, a module name has to be specified (which is the name where

the containing functions can be found by the linker afterwards).

3.2.3 Swift compiler output: binary and LLVM

0100110011
1010110018
eelllileele
1110001118
eegllleell

= 1lvm-objcopy
. > add section

1lvm-objcopy
IR ump section

01001100:
18181100:
001111005

1110001118
0001110011

binary executable
+ LLVM section

Figure 3.3: Swift compiler options for LLVM bitcode

As the standard Swift compiler is also a fork of the LLVM project, it usually creates a binary
executable object file from the produced LLVM IR. By setting a flag as sketched in Figure
3.3, however, the standard compiler can also include the LLVM bitcode as a section into the
executable object file (~embed-bitcode), or emit the LLVM bitcode into an extra output file
(-emit-bc) [15].

Although the output format of the compilation process can be specified in advance, LLVM
bitcode can be included and extracted also after compiling via the 11lvm-objcopy tool. The
necessary commands for including and extracting (also shown in Figure 3.3) are add-section

and dump-section, respectively.

Dealing with LLVM sections will be further discussed in sections 5 and 7 below.
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3.3 Swift standard library

A standard library is a collection of code which is shipped with the runtime environment of a
certain language. In contrast to the “computational core” of a language, a standard library usu-
ally contains code of architecture- or system-dependent behavior (e.g. standard input/output).

Most of the popular programming languages make use of such a standard library.

Swift has its own standard library, which is open source [15], and included in official compiler
and integrated development environment distributions [16, 17]. The Swift standard library con-

sists of at least two major parts: the core standard library and the runtime implementation.

o As the name suggests, the Swift core library contains the core of the standard library,
including type definitions of functions, data types and protocols. It is written in Swift
(and Swift-GYB, cf. below) itself.

e The runtime implementation is written in C++ and Objective-C and deals with dynamic

operations, e.g. memory management (reference counting) or casting operations.

 Further optional parts are platform-dependent components (e.g. an SDK overlay for Apple

platforms).

As mentioned above, not all of the core library is written in Swift itself. Some parts are written
in Swift GYB, which is a Swift generation language [15]. The GYB compiler takes GYB code
and then automatically generates Swift code (GYB = generate your boilerplate). GYB code
is e.g. used for defining the different Swift integer types: Written once, Swift code can be

generated for each integer type width automatically.

3.4 Interoperability between Swift and
C/Objective-C/CH++

As Swift is a successor of the C variant Objective-C, Swift supports interoperability with

Objective-C code [18]. The key principle of Swift’s existing Objective-C interoperability is
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cfile.c

cfile.h

=eh

*,.swift

#include "cfile.h”
int foo(int x) {

}

e

int foo(int x);

/

#include "cfile.h™
#include ..

let a = foo(3)

cfile2.h

cfile2.c

bridging header

Figure 3.4: Principle and concept of Swift-C/C++ interoperability

the so-called bridging header — a file containing all Objective-C functions that should be reach-

able from Swift. As every C header is also an Objective-C header, interoperability between

Swift and C code can be achieved by applying the same principle (i.e. treating C code as

Objective-C code).

Figure 3.4 shows an example:

+ (Objective-)C code and its signatures is written normally into code (*.c) and header

(*.h) files (left-hand side of Figure 3.4).

o For the bridging header (red part in Figure 3.4), an extra file is created. By including

every (Objective-)C header file which contains a function that should be reachable from

Swift, it is ensured that the bridging header contains all necessary function signatures.

 In the Swift code (right-hand side of Figure 3.4), the corresponding (Objective-)C func-

tions are visible as-is. For every data type in (Objective-)C, there exists its corresponding

Swift data type [19].

o To compile the Swift files, the bridging header argument of the Swift compiler

(-import-objc-header) has to be set to the path of the bridging header file.

By following that principle, (Objective-)C and Swift code can interact easily.
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Since C++ is also a variant of C, interoperability with C++ code is a further concept to
investigate. Recently (March 2022), Swift announced the formation of an official workgroup for
advancing interoperability between Swift and C++ [20, 21]. The current development seems
that C++ code cannot be imported as it can be done for C — instead, all C+4 code has to be

exported as an extra Swift module [22].
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Chapter 4

Sulong and the GraalVM architecture

In this section, the basic GraalVM architecture and its major components are described. They

are shown in figure 4.1 and are then described in the following.

Graal VM on the JVM Architecture

nede @ C
‘Rub}' @ Js # python

:-g—; Java ' Scala

Java HotSpot VM

ORACLE Copyright © FIIA, Oracte andfor s afisates. Al rights reserved. | ]

Figure 4.1: GraalVM Architecture [23]
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4.1 GraalVM

GraalVM [7, 5], proposed in 2013 and first released in 2019, is a Java virtual machine with the

following key features:

« Based on Java Hotspot VM /OpenJDK, developed by Oracle Inc.

o High-performance VM: via the JVM compiler interface (JVMCI), the Graal compiler can
connect to the Hotspot VM. This compiler uses several dynamic compilation principles
(e.g. speculation, partial escape analysis, partial evaluation, etc.) to heavily optimize the
code. Besides just-in-time (JIT), also ahead-of-time (AOT) compilation can be applied

to get native binaries with a fast start-up.

o Polyglot programming, which is described in more detail in section 4.2. The concrete
operations still have to be covered by the corresponding language runtime implementa-
tions, but Truffle provides a message API to connect end-user code of different (Truffle)

languages.

o Advanced tools: Written code and resource consumption can be easily analyzed. Code
cannot only be optimized across different languages, there is also a debugger available.
Another tool is the profiler, which allows the monitoring of code and execution behavior

in different ways.

As GraalVM is based on a JVM, programming languages that can be compiled down to Java
Bytecode (like Java or Scala) can be directly used with the Graal compiler. For implementing

other programming languages, the Truffle framework serves as a basis (cf. figure 4.1) [23].

4.2 Truflle

Truffle [24, 8] is a language implementation framework which enables developers to implement
interpreters for programming languages [7], where usually an AST (abstract syntax tree) or
bytecode is used as a source. It is based on the Graal compiler, thus the data structures pro-

duced by Truffle (and the corresponding language implementation) can be compiled directly by
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the Graal compiler (see Figure 4.1). Languages, for which Truffle implementations exist( Truffle

languages) are for example Ruby, Javascript or Python.

The most important properties and tools of the Truffle framework are:

Optimization: In the Graal compiler, dynamic optimization techniques are used for
efficient compilation: The Truffle interpreter for a certain language is converted to a
compiler using the principle of so-called first Futamura projection [25]. By that, source
code data structures such as an AST or bytecode can be directly compiled to machine

code in a very efficient way.

Tools: Being an AST interpreter framework, Truffle also contains a framework for im-
plementing widely-used code developing tools, such as debugging or monitoring software.

As mentioned in the next paragraph, this is especially interesting for new languages.

Rapid prototyping of new languages: Before new languages can be adopted, many
things have to be manually implemented, including an optimizing compiler, debuggers,
etc. When implementing a new language with the Truffle framework, preexisting tools

and the optimizing Graal compiler can be leveraged with little additional effort.

Tool extensions: If new developer tools (debug support, monitoring, ...) arise, they
only have to be implemented once in Truffle and can then be used by all Truffle languages

easily.

Polyglot programming: Different Truffle languages can interact with each other with-
out performance disadvantages. This cross-language concept is explained in more detail

in the next section, 4.2.1.

4.2.1 Cross-language interoperability

As mentioned before, Truffle also supports cross-language interoperability between different

languages. This includes accessing array elements of foreign arrays, calling methods of foreign

objects, passing foreign objects as parameters, writing member fields of foreign objects etc.

7, 8].
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An example of such an interoperability call is shown in the following. The first listing (4.1)
shows a simple JavaScript function in a file “InteropExample.js”. The second listing (4.2) shows
how this JavaScript code can be called from Python.

function square(x) {
return x=x;

}
Listing 4.1: JavaScript code file “InteropExample.js”

import polyglot

# get file reference

IlvmFile = polyglot.eval(language = "js", path = "InteropExample.js");
# call foreign function

res = llvmFile.square(3); # res==

Listing 4.2: Python code, calling foreign function of Listing 4.1

From the Truffle perspective, this concept is implemented via interop message passing: Corre-
sponding classes in the Truffle framework and its language implementations can send and accept
pre-defined  messages, such as readMember(name), writeMember(name, value),
invokeMember (name, args([]), readArrayElement (index), etc. Results of cross-language

function/method calls can then again be inspected via these messages.

In the Graal compiler, the interoperability access node of the created multilingual Trufle AST
can then be optimized away, such that the cross-language operation does not cause any addi-

tional performance drawbacks.

4.3 Sulong

Sulong! is the implementation of the LLVM bitcode “language” on top of the Truffle framework,
and thus serves as the LLVM runtime in the GraalVM architecture [26, 27]. By being based on
Truffle, Sulong also supports features like high-performance compilation, debugging support,
monitoring, and cross-language interoperability (cf. section 4.3.1). Running on a JVM, Sulong
also offers safe execution for unsafe languages such as C or C++ [27, 9]. Thus, errors can be
observed more easily and automatically (as additional safety checks do not have to be inserted

by certain tools or even manually).

LChinese term for “fast dragon”, cf. the LLVM logo
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As mentioned in section 2.2, LLVM is not a classical programming language, but more an
intermediate representation. Since Sulong is an LLVM runtime, it is used to (indirectly) execute
languages that can be compiled to LLVM bitcode (e.g. C, C++, Rust, cf. figure 4.1). Language
runtimes other than Sulong, like GraalJS for JavaScript or GraalPython for Python, act on the
source code (written by the user) directly. Sulong, however, does not act on user-written code,

but on a compiled version (LLVM) of it, as it can be seen in Figure 4.2.

language view:
user

c void foo() {
5, -

Example.|

language view: pr———

Truffle

}

Figure 4.2: For JavaScript, user-written code is compiled/interpreted directly. For languages
that can be compiled to LLVM, the user-written source language differs from the
corresponding Truffle language.

This extra language step becomes relevant for Truffle features (e.g. (source-level) debugging [28]
or cross-language interoperability) which usually work on both, the user perspective and the
corresponding Truffle language code. In these cases, the language runtime implementation
(e.g. Sulong for LLVM) has to internally support access to the source language code for a given

Truffle language code input.
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4.3.1 Truffle’s existing interoperability concept in Sulong

As mentioned above in section 4.2.1, the interoperability concept is based on message passing
and its API — Truffle forwards corresponding messages between different Truffle language im-
plementations. Since Sulong is the LLVM implementation, other Truffle languages can interact
with LLVM code.

However, the intention of polyglot programming via the interoperability concept is to write and
call code in/from different source languages. In the case of Sulong, polyglot code written by
programmers refers to the C language rather than to the “automatically” supported language
LLVM [29]. Thus, polyglot API messages in Sulong refer to concepts from C code (e.g. struct
members), while Sulong itself has to work with those C messages on the corresponding concepts
in compiled LLVM code (e.g. byte offsets). So, while polyglot programming with other Truffle
language implementations like JavaScript or Python works relatively straight-forward, Sulong
has to provide additional mappings between the “C front-end” and the “LLVM back-end”.

These mappings will be shown in the following for different language concepts in C.

Function names and parameter order

foreign language, e.g. Python (source)

sq = llvmFile.square(3)

C (source)

int square(int x) { return x=x; }

LLVM (from C)

define internal i32 @square(i32 %0) #0 !dbg '10 {
call void @Illvm.dbg.value (metadata i32 %0, metadata !15, metadata !DIExpression()), !dbg !16
%2 = mul nsw i32 %0, %0, 'dbg !17
ret i32 %2, !dbg !18

}

Figure 4.3: C/LLVM function is called from python via the polyglot message
invokeMember ("square", 3)

Referring to the example case in Figure 4.3: Calling the square function from python works
by writing python names and arguments the same way as they have been declared in the
corresponding C source file. Function names, parameter order and basic types are preserved

during compilation from C to LLVM, thus no additional effort is needed in this case.
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foreign language, e.g. Python (source)

point = IlvmFile.allocNativePoint();
point.x = 5;

C (source)
#include<graalvm/Illvm/polyglot.h>
struct Point {

double x;

double y;
b

POLYGLOT_DECLARE _STRUCT( Point)

double getYofPoint(struct Point «p) { return p->y;}

void +allocNativePoint () {

struct Point «ret = malloc(sizeof(+ret));

return polyglot_from_Point(ret);

}

// further methods for point deallocation,

LLVM (from C)

%struct.Point = type { double, double }

; Function Attrs: norecurse nounwind readonly uwtable willreturn

define dso_local double @getYofPoint(%struct.Points nocapture readonly %0) #0
call void @Illvm.dbg.value (metadata %struct.Point» %0, metadata !34, metadata
%2 = getelementptr inbounds %struct.Point, %struct.Point+ %0, i64 0, i32 1,

load double, doublex %2, align 8, !dbg !36,

%3
ret double %3, !dbg !42
}

Itbaa

137

ldbg 129 {
IDIExpression()),
ldbg 136

ldbg 135

Figure 4.4: Cross-language example with python, C and the C-compiled LLVM code

Struct access

While function names and parameter order do not change during compilation from C to LLVM,

accessing structs works differently, as it can be seen in Figure 4.4 in the corresponding func-

tions getYofPoint: In C, struct members are resolved by their name (p-sy), whereas LLVM

uses offsets (%2-getelementptr. . . %struct.Points %0. . . i32 1, load double. . . %2). Sulong therefore maps mem-

ber names to offsets and vice versa by accessing the corresponding part of the debug information

(cf. section 2.1.3) [29].
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Chapter 5

Executing Swift-compiled LLVM IR code on
Sulong

In this section, the necessary prerequisites and adaptions are described to execute Swift-
compiled LLVM IR on Sulong. First, a look is taken at the LLVM IR emitted by the Swift
compiler, and its necessary changes to make it compatible with Sulong. Then, the focus is
put on the basic compilation and execution steps. Finally, it is investigated how to make the

standard library of Swift accessible to Sulong.

5.1 Analyzing LLVM bitcode produced by Swift

compiler

In the following, the implemented changes on Sulong are described, which were necessary to

run specific LLVM operations emitted by the Swift compiler.

5.1.1 LLVM section names

As mentioned in section 3.2.3 and Figure 3.3, the Swift compiler can emit binary executables

only, LLVM bitcode only, or also binary executables which contain the LLVM bitcode as a
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section of the file. Also, LLVM sections can be extracted and included after compilation by the
1lvm-objcopy tool.

The embedded LLVM section in an executable binary file is wusually denoted by
__LLVM,__Bitcode for MachO files, and by .11lvmbc for other formats [10], such as ELF (exe-
cutable linking format). If Sulong looks for LLVM bitcode, it looks for the corresponding section
name, depending on the file type. For ELF files, the name to look for has been .1lvmbc.

However, the Swift compiler always puts LLVM bitcode into the ~_LLVM, Bitcode section,
even if the emitted file is an ELF file. Therefore, LLVM sections in Swift-compiled ELF files
could not be found by Sulong first. The working and straight-forward solution for Sulong is to
also look for __LLVM, Bitcode in ELF files if LLVM sections need to be found.

5.1.2 Swift’s getElementPointer aliases

Struct member accesses are often encoded by a fixed (member-dependent) offset, encoded as
a getelementptr instruction. For example, a field of a C struct in Figure can be accessed by
a fixed offset, e.g. a[getelementptr base, offset] instruction, given base holds the base
address of the structure. As long as the offset is known at compile time (e.g. field accesses in C
or C++), C/C++-compiled LLVM IR usually contains hard-coded getelementptr instructions
in the compiled LLVM IR.

For Swift, however, the offsets are not always known at compile time, but rather at linking time.
Therefore, read /write access of a struct member cannot be performed via direct encoding, but
has to happen via a dynamic lookup (similar to dynamic binding). To overcome this problem,

Swift-compiled LLVM IR makes use of getelementptr alias symbols.

A getelementptr alias is a symbol for a named getelementptr expression. As a simplified
example, there is a Point struct as in Figure 5.1. Since not all offsets are used at compile time,
the compiler can simply put the name of the corresponding getelementptr expression yInP
into the code. As soon as offsets are known, the getelementptr instructions are then filled
with concrete offsets (yInP = hidden alias ...getElementPointer (Point, 4)). Later,
i.e. during linking time, all offsets can be obtained by resolving the appropriate getelementptr

symbol. Note that the example in 5.1 is simplified, as Swift type members are dynamically
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class Point { P X
x: Int
y: Int > 7 y
- 7 @yInP = hidden alias fieldDescriptor,
P.y = 75 getElementPtr (Point, 4)

Figure 5.1: (Simplified) getelementptr alias for a member field of Swift struct

Swift

class Point {
var x: Int
var y: Int

I on
o

}
LLVM (from Swift)

@"$s14elemPtrExample5PointC1ySivgTq" = hidden alias %swift.method_descriptor, getelementptr inbounds (<...
> @"$s14elemPtrExample5PointCMn", i32 0, i32 16)

@"$s14elemPtrExample5PointC1ySivsTq" = hidden alias %swift.method_descriptor, getelementptr inbounds (<...
> @"$s14elemPtrExample5PointCMn", i32 0, i32 17)

Figure 5.2: getElementPtr expression for field member Point: :y
bound in general.

A real example of such a getelementptr alias is shown in Figure 5.2, where the same Point
data structure is used. The LLVM code lines show the getter and setter symbol function of
the y field of the class, which are both a getelementptr alias, having a resolution rule of a
getelementptr instruction with base s14elemPtrExample5PointCMn and offset indices 0, and

16 or 17, respectively.
To support getelementptr alias symbols in Sulong, which are needed e.g. for field accesses or

dynamic binding in Swift-compiled LLVM IR code, implementing the corresponding steps of

parsing and efficient symbol resolution was necessary.

5.1.3 Half-precision floating-point type

Besides the more common floating-point types that use 32 (“single precision”/float) or 64

bit (“double precision”/double), Swift-compiled LLVM can also contain a 16-bit precision
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exponent fraction
sign (5 bit) (10 bit)
| | |
O O O
15 10 0

Figure 5.3: IEEE half-precision: bit semantics [30]

floating-point type (“half precision”/half), which can be used for certain high-performance
computations on appropriate architectures [31]. The bit semantics of the half-precision type
are shown in Figure 5.3 and are specified in the IEEE 754 standard [32].

However, since Sulong does not support half-precision floating-point numbers yet, the current
solution is to convert the 16-bit numbers into numbers of the existing 32-bit floating-point type
instead. Being aware that processing floating-point numbers with a different precision might
lead to numerical errors, the current solution is considered as temporary, and can be changed

as soon as the 16-bit floating-precision type is fully implemented in Sulong.

5.1.4 Struct return attribute

A possible function parameter attribute in LLVM is the SRET (structure return) attribute,
which is used if LLVM tuple types are returned by-value. An example of such a usage is
shown in Figure 5.4 (C-like pseudo code). The method foo returns a struct by-value, which
is not possible in LLVM IR in general (depending on the struct members). To overcome this
problem, the compiler changes the function signature: the return type (struct A) is added as
pointer type parameter (ret_ptr in Figure 5.4). Now, the caller has to provide a pointer for

the returned struct, such that the callee (foo) can still return a struct type by-value.

In Sulong, the SRET attribute has not been processed correctly, which caused a crash during

parsing. Thus, the SRET parsing was implemented as specified in the language reference [33].
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source level: code returning struct by value

struct A a = foo (...)
struct A foo(arg0, ...) {
éi}uct A a;
r.éiurn a,
}
LLVM level: code returning tuple, using sret attribute

struct A a;
foo(&a, ...);

void foo(/«sret<struct A>«/ struct A« ret_ptr, arg0, ...) {
struct A a;
*pa = a;
return;

}

Figure 5.4: Function which returns a tuple on source-level (above) and LLVM level (below),
both in pseudo code

5.2 Compiling and executing Swift projects

5.2.1 Single file

To execute a single Swift file on Sulong (without further dependencies), the Swift code has to
be converted to LLVM bitcode first. Then, it can be run on Sulong.

For a single file, there are two options:

 bitcode only: The file passed to GraalVM for execution on Sulong only contains the LLVM
bitcode. For emitting bitcode, the —emit-bc flag can be set when the Swift compiler is

invoked, as shown in section 3.2.3.

« embedded bitcode: The file passed to GraalVM for execution on Sulong is basically a
binary object file (which could also be run by the operating system directly), containing
the necessary LLVM bitcode as a section in the object file. The bitcode can be embedded

automatically by setting the flag ~embed-bitcode (again, as shown in section 3.2.3).

In both of the cases above, to be accepted by both the Swift compiler and Sulong, the Swift
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file can be named arbitrarily.

5.2.2 Multiple files

As mentioned in section 3.2.2, it is possible to compile multiple Swift files down to one binary
file, given that there is exactly one file called main.swift which contains the main method of

the program.

For LLVM IR, however, applying the same principle is not possible:

e —emit-bc: simply emitting bitcode does not work directly for multiple output files. In-

stead, the user has to specify a module name.

o Using the -embed-bitcode flag, the Swift compiler produces one binary file, including
an LLVM section which contains the compiled LLVM IR of all input files. However, the
LLVM IR blocks are inserted one after each other, without explicitly being linked. Thus,
parsing this LLVM IR section of the generated file leads to errors.

A possible workaround is shown in Figure 5.5 and described below:

1. The binary file can be compiled as described in section 3.2.2 (orange in Figure 5.5).

2. The single source files have to be compiled to LLVM bitcode. By specifying a module
name (and setting the flag to emit bitcode), the Swift compiler automatically creates one
bitcode file per source code (instead of producing one large LLVM bitcode file which is
not linked).

3. The single LLVM bitcode files then can be linked together by the 11vm-1ink tool.

4. (optional, green in Figure 5.5) The (linked) bitcode can be added as a section into the
binary file of step 1, to get a binary file with an LLVM bitcode section.
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A swift B.swift C.swift main. swift

N\ \ \ \

‘ swiftc -emit-bc -module-name MODULE A B C main

AV VI B L\

swiftc A B C main ‘

R R

>
=3
A
w|!
S

C.bc main.bc

llvm-objcopy
add-section

Ll | =
‘ 1lvm-1link }—) _—/

linked.bc

Figure 5.5: Compiling multiple Swift source files to LLVM IR /binary with embedded LLVM IR

5.3 Swift standard library

As described in section 3.3, the Swift standard library consists of different parts, written in
C, C++, Swift and Swift-GYB, and is available both — as file in binary format, and as source
code. If Swift-compiled LLVM IR which makes use of standard library functions is executed
on Sulong, this leads to a problem, as shown in Figure 5.6: Standard library code is still only
available in binary form, and cannot be executed on Sulong directly. Therefore, it is necessary
to also compile the code of the Swift standard library from source and provide the compiled
version (including LLVM IR) to Sulong. In the following, it is shown how this can be applied
for the different parts of the standard library.
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¢
:
l

* . swift LLVM IR

X == Sulong
& —) = 4

standard LLVM IR
library

——> =depends

Figure 5.6: Execution of Swift-compiled LLVM code that has standard library dependencies

5.3.1 Compiling Swift and Swift-GYB files

Parts of the Swift standard library other than the runtime module are written in Swift, or the
generating language Swift-GYB. These code parts must be compiled in a certain order (due to
internal dependencies), which results in non-trivial compilation steps. To compile the standard
library from source, however, the official Swift repository also contains a script which does the
necessary compilation steps automatically, including generating Swift code from Swift-GYB,
and taking care of dependencies [34]. By running this script, the corresponding standard library

parts are created automatically as binary object files.

By providing extra arguments to the Swift compiler via the mentioned build script, such as
-embed-bitcode, the resulting output files contain the necessary Swift code elements as LLVM
bitcode.

5.3.2 Compiling C/C++ files

To compile Swift files, providing certain arguments to an existing build script file is enough,
as shown above. However, this does not work for C/C++ code, which is used by the runtime

module of the Swift library:
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If the default compiler for LLVM code generation from C/C++ code (clang/clang++) is used,
the resulting LLVM IR cannot be executed in Sulong. Therefore, there exists the LLVM
toolchain, which can be seen as a clang wrapper to set certain flags and options accordingly.
However, replacing the clang/clang++ operations in the build script with the corresponding
LLVM toolchain operation does not lead to the correct result: Due to dependencies and inter-
mediate representations of the workflow specified in the build script, it is not easily possible to

create or embed LLVM IR automatically as it has been for Swift code.

Instead, the current solution is to compile the necessary C/C++ files of the Swift standard
library manually. Similar to the files written in Swift, manual compilation requires knowledge
about the dependencies between the files and only works in correct order. However, it has only
been shown that a manual compilation is possible with some of the files. Getting the full Swift
standard library runtime module in LLVM does not lead to a further scientific contribution,
but goes beyond the time scope of this thesis. Therefore, only provide a proof of concept is

provided here.

As a consequence, not all standard library functions are supported if Swift code is executed on
Sulong. One such example is any function or method which interacts with the console/standard
input and output. Taking print functions to the standard output as a specific example, Swift’s
interoperability with C (mentioned in section 3.4) can be a possible workaround here. Such an

example is shown in section 7.

5.3.3 Linking library files and execution

After applying the strategies mentioned above to compile the Swift standard library to LLVM

IR, the output consists of several files, which together form the code of the standard library.

C/C++-compiled LLVM IR files can be linked easily with the standard 1lvm-link tool. In
contrast to that, linking C/C++-compiled and Swift-compiled files together with the standard

llvm-link tool leads to an error, as Swift-LLVM is not fully compatible with the corresponding
(official) LLVM distribution.

However, the 11vm-1ink tool of Swift can be used [15], which takes care of differences between
the official LLVM distribution and its Swift fork. If Swift’s 11vm-1ink tool is not available, then
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this does not lead to a problem. Sulong accepts more than one library file per execution call,

which allows executing code by providing the various LLVM library files as multiple libraries.

5.3.4 Missing parts and future work

For an easy-to-use Swift standard library, several aspects still can be improved, which would
result in full compatibility and a better user-friendliness. However, due to limited scientific
information gain on the one hand, and due to time and scope limits on the other hand, those

aspects which are shortly explained in the following have not further been improved yet:

o Full compatibility of Swift’s standard library: As mentioned, currently only parts of
the Sulong runtime module are supported. Having the full code range of the standard
library available as LLVM IR would considerably increase the amount of executable Swift

operations.

o User-friendliness: If Swift files are currently executed, the standard library files have to
be provided by hand. On the one hand, reducing the number of different library files
would ease execution of Swift code for the user. On the other hand, an automatically
provided Swift standard library in Sulong (as it is already the case for C/C++ and their
respective standard libraries) would lead to a further simplification for Sulong/GraalVM

users.

Although no automated tool has been created to solve the remaining aspects mentioned above,
a proof of concept was shown by providing a manual/partial solution. Creating a full and

automated solution is thus no fundamental problem as such.
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Chapter 6

Extending Truffle’s Interoperability in
Sulong

Previously, interoperability on Sulong only worked for LLVM IR compiled from C. However,
Swift and C++ (both are languages beyond C that can also be compiled to LLVM IR) support
language concepts which are not present in LLVM. Thus, those concept differences lead to a
major difference between source (Swift/C++) and LLVM code for each of them, which caused

incorrect (or even not working) solutions in Sulong’s previous implementation.

Therefore, in the following section, the most important changes are described which were/are
necessary to correctly process polyglot method calling in Sulong with Swift and C++. The nec-
essary technological background and a description of the (previously) existing interoperability

concept have been addressed in section 4.3.1.

6.1 Invoking Swift /C+-+4-compiled LLVM functions from

a foreign language

A possible scenario for calling a Swift/C++-compiled LLVM function from a foreign language
is shown in Figure 6.1. In the following subsections, it is shown why certain Swift and C++
language concepts led to incorrect executions of examples like Figure 6.1, and what had to be

changed in Sulong to resolve these problems.
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foreign language, e.g. Python

sq = livmFile .square(3.5)
Swift

func square(x: Double)—> Double { return x=x }

Figure 6.1: Calling a Swift/C++-compiled LLVM function from a foreign language

Swift signature

class A {
func foo(x: Int) -> Int {
return 0

}
}

LLVM (from Swift) signature
define hidden swiftcc 164 @"$s9objMeth_S1AC3foo1xS2i_tF" (i64 %0, %T9objMeth_S1AC+ swiftself %1) #0 {

C++ signature

class A {
public:
int foo(int x);

IS
LLVM (from C++) signature

define i32 @_ZN1A3fooEi(%class.A« nocapture nonnull readnone dereferenceable (1) %0, i32 %1) #0 align 2 !
dbg 11 {

Figure 6.2: Signature differences between source and LLVM for object /receiver methods

6.1.1 Signature differences

Swift and C++ both use the concept of class methods, i.e. functions that belong and have access
to the so-called “receiver” (also called “self”/“this”), an object of a specified type. As LLVM
does not support methods belonging to a type, every method call/every method declaration in

the source language is replaced by an LLVM-compatible pattern.

Therefore, also signatures of Swift/C++ methods and their corresponding LLVM code signa-

tures differ.

As an example, in Figure 6.2, the signature of two methods is shown, both in source
(Swift/C++) as well as of the compiled LLVM function. Calling this foo method via poly-
glot programming could e.g. look like aobjectfoo(17). In Sulong, the pointer representing aObject

would now receive the interoperability message invokeMember (member="foo", args = {17}),
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which could not have been resolved correctly in Sulong’s previously existing interoperability
handling. Instead, execute("_ZN1A3fooEi", args = {albj, 17} would be necessary for a

correct invocation.

To get a correct mapping between the source code signature and the corresponding LLVM
function signature, two changes are needed: treating the receiver object on the one hand, and
taking care of mangled names on the other hand, which will be described in the following

subsections 6.1.1.1 and 6.1.1.2, respectively.

The overall procedure for cross-language member/method invocation resolving is shown after-

wards in section 6.1.2.

6.1.1.1 Receiver object as parameter

Methods that are non-static need to have access to their receiving object and its members
(often denoted as "self"/"this" in the source code). Since LLVM does not support receiver
objects in functions, the receiving object is therefore added as a parameter. While C++ adds
the receiver as the first object, Swift appends it to the end of the parameter list. The basic

translation principle is shown in table 6.1 below, an example can be seen in Figure 6.2 above.

source language | source code LLVM IR
C—l——|— R A:foo(arg0, ..., argN); R <fooMangled>(A« receiver, arg0, ..., argN)
Swift A:foo(arg0, ..., argN)->R; | R <fooMangled>(argO0, ..., argN, A+ receiver)

Table 6.1: Translation of method foo in class A returning an object of type R

By adding the receiver object at the right place in the parameter list, the parameter information
of the function signatures from source (Swift/C++) and LLVM can be mapped easily. Besides
parameter restructuring, also the function symbol names themselves are different, which is due

to name mangling.

6.1.1.2 Name mangling

Names of C code symbols are unique. Therefore, if C code is compiled down to LLVM, symbol

names in C code are transferred as is into LLVM. As a consequence, Sulong’s previously existing
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foreign language, e.g. Python

sq = llvmFile.square(3.5)

Swift

func square(x: Int, y: Int) -> Int {
return x = X +y * y;

}

func square(x: Double) -> Double {
return x * X;

}

LLVM (from Swift) function signatures

define hidden swiftcc 164 @"$s6fnNameb6squareix1yS2i_SitF" (i64 %0, i64 %1) #0 !dbg !36 {
define hidden swiftcc double @"$s6fnName6square1xS2d_tF" (double %0) #0 !dbg !58 {

LLVM debug information section

136 = distinct !DISubprogram(name: "square", linkageName: "$s6fnName6squareix1yS2i_SitF", scope: !5, file:
11, line: 1, type: 137, scopeLine: 1, spFlags: DISPFlagDefinition, unit: !0, retainedNodes: !2)
158 = distinct !DISubprogram(name: "square", linkageName: "$s6fnName6squareixS2d_tF", scope: !5, file: !1,

line: 5, type: 159, scopelLine: 5, spFlags: DISPFlagDefinition, unit: !0, retainedNodes: !2)

Figure 6.3: Different mangled names for the same source-language name

Truffle interoperability system assumed names to be fixed — objects declared with a certain
name in the C source code can be found by exactly the same name in the resulting LLVM
IR. However, languages like Swift and C++ support method overloading, which violates the
symbol uniqueness property (i.e. two different methods with e.g. different signatures can exist

in the same scope with the same name, as in the Swift part of Figure 6.3).

To remove this name ambiguity in lower-level code (such as LLVM), compilers intentionally
change symbol names and usually include information of the declaring scope or parameters.
This step of changing symbol names is called name mangling and, as metioned, produces unique
symbol names throughout the compilation unit and beyond. As a consequence, names are not
preserved during the compilation process, i.e. the mangled symbol names in LLVM IR language

names differ from their source language names (specified in Swift/C++).

An example of name mangling can be found in Figure 6.3, where the two square functions in
Swift are mangled to $s6fnName6squarelx1yS2i_SitF and $s6fnNamebsquarelxS2d_tF. The
information which mangled (e.g. $s6fnName6square1xS2d_tF) and demangled (e.g. square)
names belong together is stored in the debug information section (cf. lower part of Figure 6.3)
of the LLVM file.

When Sulong receives an invoke message with the source language function name (i.e. square),
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foreign code LLVM file

————————————————————————————————— _—}
ERROR: "square" NOT FOUND <} -~

define hidden swiftcc double
> @"$s6fnNamebsquarelxS2d_tF"(double %8) #8 {

I
1lvmFile.square(3.5)

map (part of Scope of LLVM file) y

square Ss6fnName6square1xS2d_tF

Figure 6.4: Name mangling resolution via a cross-language interoperability call

a direct look-up in the LLVM Scope/bitcode file does not lead to the correct function, as shown
by the red and dotted arrows in Figure 6.4. Instead, a map is needed where every function
is registered with its mangled name. This map can then be used to find the corresponding
mangled name to the source language name, if an invoke message is received. To continue
with the previously mentioned example, in Figure 6.4, a polyglot call of square leads to the
mangled name $s6fnNameb6squarelxS2d_tF via the look-up table. Now, the mangled symbol
name can be found in the LLVM file scope, which leads to the corresponding square function
implemented in LLVM.

The remaining task is now to create this necessary mapping table between source language
names and their mangled versions. As mentioned above, the necessary information for that is

stored in the debug information section, which has to be parsed to obtain the mappings.

However, parsing is done lazily: Sulong reads the function signature, and resolves the rest of the
function information (including debug information) only when needed. For getting the (correct)
mangled name of a function (needed for interoperability message processing), Sulong needs to
parse the debug information section. Therefore, an additional parsing step was added, which
only parses the necessary debug information, while everything else is skipped. The mapping is

then stored in the corresponding scope in Sulong.

6.1.2 Method resolving

Getting the correct method/function signature, as discussed in the previous section, is a nec-

essary step for cross-language interoperability method calls. However, it does not guarantee
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invokeMember("m", args)

receiver is struct receiver is class

send invokeMember("m", args) newArgs = args U receiver
(as is) to receiver struct

Function pointer of C++

. receiver is Swift class
struct has been invoked

receiver is C++ class

look for method of static type Look for getElemPtrSymbol with
(using the receiver type information) method name
method has no method has
virtual inde irtual index
fn_descriptor = fn_pointer =

lookup(method.mangledName) izl i = il b resolve(receiver, getElemPtrSymbol)

| | |

send execute(newArgs) to send execute(newArgs) to send execute(newArgs) to
fn_descriptor fn_pointer fn_pointer
statically bound method of dynamically bound method of (dynamically bound) method of
C++ class has been invoked C++ class has been invoked Swift class has been invoked

'SECTION 6.1.2.1. 'SECTION 6.1.22. SECTION 6.1.2.3

Figure 6.5: Processing of invokeMember messages in Sulong

a correct execution according to the semantics of the source language. The other important

concept, which has to be taken into account, is method resolving.

Methods can be resolved statically or dynamically, which has already been explained in section
2.3.1. The approaches and extensions made in Sulong to enable a correct method resolution
will be described below. Since the static/dynamic binding concept of C++ and Swift methods
follow different approaches in LLVM IR, there are separate subsections, depending on the source

language and resolution kind.

Figure 6.5 shows a general overview how invokeMember messages are processed in Sulong, i.e.
the process of determining which strategy to apply. The detailed procedure can be found in
the following corresponding subsections. As invoking a function pointer of a C++ struct has
already been working in Sulong’s previous implementation (cf. top left in Figure 6.5), no further

explanation is provided for that.
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6.1.2.1 C++4/LLVM: Static binding

Static method resolving is relatively easy to achieve, as LLVM and C++ are both statically
typed languages. Therefore, pointer objects in Sulong (LLVMPointer) (can) have their static
type attached.

The first extension in Sulong for static binding is to extend Sulong’s interoperability symbol
table by a class type. This type is an extension of the existing struct type, which can also
store the corresponding class methods as functions. During parsing of the debug information
section, class and method information are automatically read in and stored correctly for later
accesses. As soon as class and method information is available from the corresponding object
in the symbol table, calling a statically bound method becomes straight-forward, which will be

described in the following.

If a C++4 method is called from a foreign language, the LLVM pointer representing the receiver

object receives an invokeMember (methodName, args) message:

1. The static class type C of the receiver (attached to the LLVMPointer object from debug

information) is extracted.

2. Due to the signature change mentioned in section 6.1.1, the receiver object is added to
the arguments as the first one:

args = [arg0O, ..., argN] — argsNew := [receiver, argO, ..., argN].

3. Sulong iterates over the available methods which have been declared in C and selects the
method that fits:

o The demangled method name has to equal the methodName of the invokeMember

message.

e The parameter count has to fit, in case the called method has overloaded implemen-
tations (which is the case in the name mangling example in Figure 6.3).
Note: Sulong does not perform a type check whether the foreign actual parameters

match the formal parameters, as the foreign language is not necessarily typed.
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o If there is a method fulfilling these requirements, the (unique) mangled name is
available in the corresponding method object. Lookups by this mangled name lead
to its function descriptor object. If no method with the correct signature is found,

an error is thrown.

4. An interoperability execute message is sent to the function descriptor found in step 3

with argsNew as argument list, which leads to the desired method/function call.

6.1.2.2 C++/LLVM: Dynamic binding

The basic principle how a dynamic method call in C++ is done in LLVM has been shown
in section 2.3.1. By following that principle, every invoke message for a dynamically bound

method has to be translated to a table lookup.

For resolving, a vtable-like structure for Sulong’s interoperability type handling had to be
implemented, where every class object has access to its vtable information. Every virtual
method is added to the corresponding class together with its method index during parsing.
Since not every class type has its own implementation for every virtual method, classes also
have access to their superclass types. Therefore, if a virtual method m is implemented in a

parent class only, the vtable of the child class does not have an entry for m.

If a virtual C4++ method is called from a foreign language, the LLVMPointer representing the
receiver gets an invokeMember message. In fact, at this point in time, it is not known whether
the method to be called is statically or dynamically resolved. Thus, the first three steps of a
polyglot method invocation are the same as described for statically bound methods in section
6.1.2.1: Extracting the static class type, adding the receiver object, and finding a method
that fits. If the found method is statically bound (i.e. there is no virtual index information),
resolving is done fully as described above (steps 1 to 4). If there is virtual index information
available for the found method, it is dynamically bound, thus resolving proceeds as follows (i.e.

procedure as shown in Figure 2.3/6.6):

4. Given that a C++ class has virtual methods (which is automatically true when dynamic
binding has to be applied), the first element stored in the type is always the pointer to
the vtable (vptr, cf. Figure 6.6). Thus, vptr can be obtained by a read operation at
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A* obj < . SR
2
obj->foo() /static binding obj->foo() /Jahvavs A::foo
obj->bar() /dynamic binding *(obj->vptr[e]) ()
obj->baz() /dvnamic binding *(obj->vptr[1])()

A objA = A() > vptr$A
void foo() @: vptr 0| ﬂ«iibar()
virtual void bar() 8: fieldl 1| A:ibaz()
virtual void baz()
fieldl

A

objB = B
, J 0 H > vptr$B
8: vpt ,

B L :p ;d : 0| B::bar()
void foo() L_Ei;___lf___‘{_______a: 1| A::baz()
virtual void bar() 16: field2
field2

Figure 6.6: [identical with Figure 2.3] Method resolving: C++ (left) and LLVM (right)

index 0.

5. After having found the address of the beginning of the vtable (vptr), the function pointer
can be computed as follows: Starting from the vtable address (vptr), the corresponding
method offset (i.e. the virtual method index) is added to get the address of the needed
function pointer. Afterwards, the actual function pointer value can be easily obtained by
a read message to this address.

In C semantics, the described computation can be written as fn_ptr = *(vptr[idx]).

6. In contrast to static binding (where an interoperability execute message is sent to the
function descriptor) the execute message is now sent to the previously computed function

pointer instead.

In this scenario, the C++ class A can serve as an interface, while B contains the actual im-
plementation. As typical for object-oriented programming, B’s implementation can even be

invisible from the JavaScript code, while JavaScript code can still invoke it (indirectly).
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Swift code — the function process is calling A: : foo

class A {

func foo(x: Int) —> Int {...}
}
func process(a: A) —> Int {

return a.foo(x: 4)

}

LLVM (from Swift): Function descriptor of A: : foo as a getelementptr expression alias

@"$s8methCall1AC3foo1xS2i_tFTq" = hidden alias %swift.method_descriptor, getelementptr inbounds (<{ i32,
i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, %swift.method_descriptor, %
swift.method_descriptor }>, <{ i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, 32, i32, %
swift.method_descriptor , %swift.method_descriptor }>» @"$s8methCalliACMn", i32 0, i32 13)

LLVM (from Swift): LLVM IR call of A: : foo

%2 = getelementptr inbounds %T8methCall1AC, %TI8methCallltAC+ %0, i32 0, i32 0, i32 0
%5 = getelementptr inbounds i64 (i64, %I8methCalllAC+)+, i64 (i64, %T8methCalll1AC+) «+ %4, i64 13
%7 = call swiftcc 164 %6(i64 4, %I8methCalliAC+ swiftself %0)

Figure 6.7: Caller structure of a Swift method in Swift and LLVM

6.1.2.3 Swift/LLVM

A simple scenario where a Swift method is invoked can be seen in Figure 6.7. The method
A::foo is called from the process function. The function descriptor for A::foo, also shown
in Figure 6.7, is a getElementPointer symbol with the class descriptor of A as a base, and the
offsets 0 and 13. In embedded Swift code (bottom part of Figure 6.7), the offsets are then
encoded directly.

Similar to C++, also Swift uses offsets/indices for dynamically bound method resolution. How-
ever, in contrast to C++/LLVM, these offsets are not stored in the debug information section.
Instead, the method offset is encoded in a getElementPointer expression, which itself is con-

nected to the corresponding LLVM function descriptor.

Given that, interoperability invokeMember messages on Swift receiver instances are processed

as follows:

1. As there is no direct information available that could reveal the receiver type of the
method to be invoked, a method with foo as its demangled name is looked up in the
current scope. If such a method is found, the (unique) mangled name can be obtained

easily.
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2. Given the mangled name ("<mangled>" for simplicity), the function descriptor object can
be found in the scope by appending the suffix Tq to the mangled name (i.e.
"<mangled>Tq"), as it is specified in the Swift name mangling documentation [35]. The
returned function descriptor object is structured as a getElementPointer alias symbol,

which has been explained in section 5.1.2.

3. As mentioned above, the getElementPointer symbol contains the necessary method offset
information, similar to the C++ vtables. Like for dynamically bound C++4-compiled
methods, the method offset (together with the base object) can be used to get the function

pointer.

4. As explained in section 6.1.1, the receiver object has to be appended to the end of the
argument list (similar to C++, where the receiver has been added as the first instead of

the last argument).

5. Finally, an interoperability execute message is sent to the previously determined function

pointer (with the modified argument list).

6.2 Invoking a foreign language implementation from
LLVM

6.2.1 C++-compiled LLVM

To call methods of a foreign object from C++-compiled LLVM via Truffle’s cross-language

interoperability, there are two possibilities:

» Using Sulong’s existing polyglot API function polyglot_invoke_member(...). This call
automatically forwards the arguments to the foreign object in the form of a corresponding
invokeMember message. The drawback with this workaround is that
polyglot_invoke_member(...) is a helper function where C++ code has to be modified
for polyglot programming.



Extending Truffle’s Interoperability in Sulong 55

A A _._y| artifical r artifical function pointer
virtual void foo() e: vptr _. ytable execute(receiver, args..) {
virtual void bar() 8: field1 e | [ invokeMember(receiver, "foo”, args.);
void baz() 1 | :
s L artifical function pointer

execute(receiver, args.) {3
invokeMember(receiver, "bar”, args..);

b

A* 3 = ... A* a = . %
a->bar()

vptr = a[@]
Foreignlanguage

fnPtr = wptr[1] class A {
bar() {..}

® &

fnPtr()

(w

a->baz() A::ba:lz(a)

!

Static binding
- C++implementation is called!

C++ | LLVM

Figure 6.8: Calling a foreign method object from LLVM

o The other possibility is to declare the corresponding method as virtual. If the underlying
receiver of the virtual method is a foreign object, then (by definition of dynamic binding),

also the foreign implementation has to be invoked.

As an example, how a virtual foreign object/method can be called from LLVM, is shown with
the a->bar call in the accept method in the C++ code in Figure 6.8. If the Ax a object
provided to the accept method is foreign, then its own (foreign) implementation should be

called, since bar is declared as virtual.

Thus, the compiler replaces every call of that method by a dynamic method lookup as explained
above, and as it can be seen in Figure 6.8 in the LLVM code block. If now the receiver object
(in this case A* a) is foreign, then this foreign object receives a readMember message on index

0, as Sulong would expect the vtable pointer here.

To enable foreign interoperability calls from LLVM, Sulong was extended in the following way:

1. For every readMember message on a foreign object, it is checked whether the read index
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is equal to 0. If so, a look at the static type of the receiver object is taken (the static type

information is available in Sulong, even if the foreign language typing is not known).

2. If the static type (in this example: A) of the receiver object has virtual methods, readMember [0]
would return the vtable pointer vptr of the object. Thus, an artificially created Truffle
object @ is returned, which will be called artificial vtable in the following. It is designed
as a Truffle object and thus also supports interoperability messages. Instead of being
structured like a vtable (array of function pointers), this artificial vtable contains an ar-
ray of artifical Truffle objects themselves, each representing a virtual method of the class

A. In the following, these objects are called artificial function pointers.

3. As soon as the vtable Truffle object (representing the vtable of A) receives an interoper-
ability read message with a certain index, LLVM would return the function pointer of
the corresponding function in LLVM code. In this case, the corresponding Truffle object
representing the function pointer @ is returned. Since the ordering of these methods be-
longs to their vtable indices specified in the debug information section (cf. section 6.1.2.2),
a read operation with index i also leads to the artifical function pointer representing the

method with the same virtual index i.

4. The artificial function pointers have been designed as Truffle objects, where their behavior
for receiving certain interoperability messages has been set. When such an artificial
function pointer receives an execute message (which happens in case of a method call),
it is implemented in a way that the execute message is forwarded as an invoke message
to the foreign object. In this example, when the artificial pointer belonging to A: :bar
receives an execute(receiver, args...) message, the message invokeMember ("bar",

args...) is sent to the (foreign) receiver object @

6.2.2 Swift-compiled LLVM

The basic procedure how to invoke a foreign method implementation from LLVM has the
same concept for C+-+-compiled LLVM as for Swift-compiled LLVM, but is different in the
implementation. Due to the scope of this thesis, this concept was only implemented for C++
in Sulong. For Swift, the steps to be applied are then similar: For a certain read access

on the vtable pointer (also at index 0 in Swift), artificial Truffle objects are returned, which
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simulate the corresponding Swift method data structures up to the direct function invocation.
Following this principle, no fundamental problems during implementing this feature also for

Swift-compiled LLVM in Sulong are expected.
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Chapter 7

Case study

In this section, a short case study for running Swift-compiled LLVM IR code on Sulong is
provided. First, the general structure (section 7.1), and how the code is compiled and executed
(section 7.2) is shown. Afterwards, results will be presented and discussed (sections 7.3 and 7.4,
respectively). The source code used for this case study is attached at the end of this chapter
(section 7.5).

7.1 Overview

As a computation example, digits of 7 in its hexadecimal representation will be computed.
This is done according to the BBP (Bailey-Borwein-Plouffe) formula [36], which allows a digit-

independent computation of 7 in hexadecimal base.

The general code structure can be seen in Figure 7.1 and is as follows:

o computeNthHexDigit computes the n'” hexadecimal digit of 7.
« computeHexDigits calls the computeNthHexDigit function n times to compute the first
n (in this case 10000) hexadecimal digits of 7. One call of computeHexDigits corresponds

to one iteration.

o The main function calls computeHexDigits several (in this case 100) times, where the
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naln o computeHexDigits(n) @ computeNthHexDigit (i)
= 10000 1* jteration — ¥ digit o
Loop until stable: ‘(— fori=1ton: o [hg B computes the i-th d!glt of min
start = Time() 3 computeNthHexDigit(i) n'™ digit base-16 representation
computeHexDigits(n)
end = Time()
Figure 7.1: Basic structure
scenario | main function | computeHexDigits | computeNthHexDigit
“Swift” | JavaScript Swift /LLVM Swift/LLVM
“mixed” | JavaScript JavaScript Swift /LLVM
“JS” JavaScript JavaScript JavaScript

Table 7.1: Computation languages in different scenarios

time between call and return is measured (each call computes the same 10000 digits of
7). For evaluation, the first (in this case 30) iterations are ignored due to optimizations

during the warm-up phase. Thus, the last 70 iterations are taken for evaluation.

Concerning different language levels, three scenarios were evaluated to compare performance,
which are listed in Table 7.1:

o Swift: In this scenario, most of the code is used from Swift source. After starting time
measurement in JavaScript, the Swift implementation of the computeHexDigits function
is called once via interoperability. This measurement serves as an evaluation for Swift-
compiled LLVM code on GraalVM.

o mixed: The mixed scenario serves as an overhead measurement for cross-language inter-
operability use. In contrast to the previous scenario, computeHexDigits is taken from
JavaScript code. Thus, for every single of the 10000 digits, the Swift/LLVM function is

called via interoperability.

« JS: For this scenario, only JavaScript code is run, which serves as a reference comparing

Swift-compiled LLVM to another Truffle language.
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7.2 Compilation flow and execution settings

To run the example described in this section, two steps are necessary:

1. Compiling the Swift code to LLVM IR: This has been done with the command swiftc

Note:

-0 -embed-bitcode -g pHD_swift.swift:

The -0 flag forces the Swift compiler to optimize at a higher level that usual.
-embed-bitcode is set to embed the LLVM bitcode into the object file, as described in
section 3.

-g, the flag for emitting debug information, has to be set in order to include name
mangling information into the output file.

The resulting file is named pHD_swift by the Swift compiler.

. Running code, i.e. starting the main function: Since the main function is written in

JS, GraalJS is the primary language runtime. The main file with its dependencies can
be run with the command

js ——polyglot --experimental-options --1llvm.C++Interop=true <file>.js:

js calls the GraalJS implementation.

--polyglot is necessary to enable polyglot programming.

-—experimental-options --1llvm.C++Interop=true triggers the additional parsing

step which is necessary for name mangling (as shortly discussed in section 6.1.1.2).

For checking whether the iterations are already stable (i.e. no further dynamic com-
pilation by the Graal compiler), the flags --engine.TraceCompilationDetails and
--engine.TracePerformanceWarnings=all can be set to print ongoing operations on

the interpreted/executed code.

7.3 Results

For the following results, each of the three scenarios described in Table 7.1 has been run. As

mentioned, the first 30 iterations of each scenario are ignored, since the Graal compiler performs

dynamic optimization during these executions. Thus, the remaining 70 iterations are considered

for evaluation.
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’ metric H Swift ‘ mixed ‘ JS ‘
min (0%) 84.95 | 84.53 | 91.97
Q1 (25%) 84.99 | 84.91 | 92.01
mean (50%) 85.02 | 85.08 | 92.07
Q3 (75%) 85.10 | 85.19 | 92.22
max (100%) 85.67 | 85.95 | 93.64
arithmetic avg. || 85.10 | 85.08 | 92.21

Table 7.2: Results (time in seconds)

Execution times Execution times
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(a) All three scenarios (b) Swift and mixed scenario

Figure 7.2: Results
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The results for all three scenarios can be seen in Table 7.2 and in Figure 7.2a. The JavaScript
scenario took the longest in the performed run, whereas the Swift and mixed version are in
the same order of magnitude. Figure 7.2b shows the results of the Swift and mixed scenario in

more detail.

All run examples were computed correctly, i.e. the results of each of the three scenarios were

mutually equal.

7.4 Discussion

As the task of this thesis has been mainly to make Swift-compiled LLVM IR code run on Sulong
(which did not work before), the focus has not been laid at time performance. However, the
results show that running Swift code on GraalVM can be done without having the case of
significantly longer execution times. In this case, Swift-compiled LLVM code on Sulong was
faster than JavaScript code on GraalJS, which can be expected, since Swift is a statically typed
language, while JS is dynamic. As the Swift and mixed scenario both achieve similar results
(cf. Table 7.2 and Figure 7.2), it can be concluded that cross-language interoperability calls do

not have a significant impact on performance and are optimized away.

7.5 Code

Swift code (scenarios Swift and mized)

public class PidigitGenerator {
public func computeHexDigits(_ length: Int) —> Int {
for i in 0...(length-1) {
let d = requestNthHexDigit (i)
if (d<0 || d>15) {
return 0
1
}

return 1

}

//returns the n-th hexadecimal digit of pi
public func requestNthHexDigit(_ n: Int) -> Int {
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let sum = 4ssubsum(n: n, j: 1) — 2+«subsum(n: n, j: 4) — subsum(n: n, j: 5) - subsum(n: n,
j: 6)

let fractional = fract(x: sum)

let digit: Int = Int(fractional « 16)

return digit

//only keeps the fractional part of the number
func fract(x: Double) —> Double {

let f = x — Double(Int(x))

let g f+1

return g - Double(Int(g))

func subsum(n: Int, j: Int)
var sum: Double = 0

for k in 0...n {
sum += Double (modPow(base: 16, exp: n-k, mod: 8+k+j)) / Double(8+«k+j)

—> Double {

}

return sum

//returns (base”exp)%mod
func modPow(base: Int, exp: Int, mod: Int) -> Int {
if (exp==0) {
return 1
} else if(exp%2 == 0) {
let m = modPow(base: base, exp: exp/2, mod: mod)
return (m+m)%mod
} else {
return (modPow(base: base, exp: exp-1, mod: mod)+«base) % mod

public class ObjectCreator {
public static func requestGenerator() —> PidigitGenerator {
return PidigitGenerator ()

Listing 7.1: Swift code for scenarios Swift and mized

JS code of Swift scenario

length = 10000;
IlvmFile = Polyglot.evalFile ("llvm", "pHD_swift");
swiftGen = llvmFile.ObjectCreator.requestGenerator () ;

durations = []

for(it=0;it <100;it++) {
//print ("iteration "+it)
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startdS = Date.now() ;
result = swiftGen.computeHexDigits(length);
duration = Date.now() - startdS;

if(result!=1) {

print ("WRONG RESULT!") ;

}

durations[it] = duration
print(it+" "+duration)

}

print (durations)

JS code of mixed

Listing 7.2: JavaScript code for scenario Swift

scenario

function computeHexDigits (generator, length) {

pi_array = [];

for(i=0;i<length;i++) {
pi_array[i] = generator.requestNthHexDigit(i)

}

return pi_array

length 10000;
llvmFile = Polyglot.evalFil

e("HHvm", "pHD_swift");

swiftGen = llvmFile.ObjectCreator.requestGenerator () ;

durations = []

for(it=0;it <100;it++) {
// print ("iteration

"+it)

startdS = Date.now() ;

jsArray = computeH

exDigits (swiftGen, length);

jsDuration = Date.now() - startdS;
durations[it] = jsDuration

print(jsDuration)

}

print (durations)

Listing 7.3: JavaScript code for scenario mized

JS code of JS scenario

function requestNthHexDigit(n) {

sum = 4ssubsum(n, 1) - 2ssubsum(n, 4) - subsum(n,

fractional = fract (sum)
digit = Math.floor(fractional = 16)

return digit

//only keeps the fractional

part of the number

5) - subsum(n,

6)
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function fract(x) {
f = x - Math. floor (x)
g = f+1
return g — Math.floor(g)

function subsum(n, j) {
sum = 0
for (k=0;k<=n;k++) {
sum += modPow(16, n-k, 8sk+j) / (8+k+j)
}

return sum

// returns (base”exp)%mod
function modPow(base, exp, mod) {
if (exp==0) {
return 1
} else if (exp%2 == 0) {
m = modPow(base, exp/2, mod)
return (m=m)%mod
} else {
return (modPow(base, exp-1, mod)+«base) % mod

function computeHexDigits (length) {
pi_array = [];
for(i=0;i<length;i++) {
pi_array[i] = requestNthHexDigit (i)
}

return pi_array

length = 10000;
durations = []

for(it=0;it <100;it++) {
// print ("iteration "+it)
startdS = Date.now() ;
jsArray = computeHexDigits(length);
jsDuration = Date.now() - startdS;
durations[it] = jsDuration

}

print (durations)

Listing 7.4: JavaScript code for scenario JS
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Chapter 8

Conclusion and Future Work

In this thesis, it was investigated how to execute Swift code on GraalVM, which works via
the approach of running Swift-compiled LLVM IR on Sulong, a component which serves as the
LLVM runtime of GraalVM and which is used to run C-/C++-compiled LLVM IR. Although
LLVM IR can be emitted by the Swift compiler and run by Sulong, running Swift-compiled
LLVM IR on Sulong was not possible without further modification.

Thus, Sulong was extended and adapted such that the Swift-compiled LLVM IR is now found
by Sulong in the correct section of the object file. Also, the handling of LLVM instructions
that have not been needed by Sulong before then was complemented. To be able to run Swift
code which makes use of dependencies (e.g. from the standard library), a proof of concept was
shown how make the standard library functionality accessible for Sulong. Concerning Truffle’s
cross-language interoperability, it was explained how different concepts of higher languages
(e.g. dynamic binding) are mapped to lower-level LLVM instructions. Based on the findings,
Truffle’s existing cross-language interoperability concept has been extended for a selection of
C++/Swift features. These include e.g. making sure that names are mangled and demangled
correctly, or that static/dynamic binding is applied according to the corresponding language
semantics. Finally, it was proven that an existing Swift program can be run on Sulong, including

a possible application of the cross-language interoperability concept.

However, full compatibility for the Swift language in general, as well as for cross-language
interoperability, has not been achieved yet. The following issues have not been solved yet

completely:
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o Availability of all Swift standard library functions: In section 5, only a part of the Swift
standard library is made available to Sulong when Swift-compiled LLVM IR is run. For
further integration, more standard library files have to be compiled from source, with the

need of considering existing inter-file dependencies.

o Calling a foreign method from Swift via Truffle’s interoperability concept: If a method
on a foreign object is invoked in Sulong (from Swift-compiled LLVM IR), then the callee
is not chosen correctly. To make this way of method resolution work, read operations to
the corresponding method resolving table have to be caught and forwarded to the foreign
language correctly. After implementing foreign method calling for C++-compiled LLVM
and investigating Swift-compiled LLVM IR, it can be concluded that the solution process
is similar for Swift-compiled LLVM IR.

« Field access of a struct/class via Truffle’s interoperability concept: If Swift-compiled
LLVM IR accesses a type member (e.g. a class field or struct member) of a foreign object
or vice versa, the instructions are not performed correctly. Similar to the issue above,
this task has been implemented for C4++-compiled LLVM IR. For Swift, however, fields
are dynamically bound and thus accessed via implicit getter and setter methods. The
first step to implement a correct solution for field accesses is therefore a correct method
invocation handling via Truffle’s interop messages (previous bullet point). Given that,
reads and writes to fields have to be converted to the corresponding getter and setter

calls, and vice versa.

o Storing structs: In Sulong’s native execution mode, managed objects cannot be stored in
memory. However, Swift-compiled LLVM IR very likely contains such store operations,
depending on the code complexity and structure. Unfortunately, Swift code which tries

to save managed objects does not work with Sulong’s native mode.

Nevertheless, a proof of concept was given how to fix each but the last of these mentioned issues

without having to face further fundamental problems.
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