
The SIAM 100-Digit Challenge

A Study in High-Accuracy Numerical Computing

Folkmar Bornemann, Dirk Laurie, Stan Wagon, and Jörg Waldvogel

with Foreword by David Bailey

ii

Foreword

Everyone loves a contest. I still recall in January 2002, when I first read of the SIAM
100-Digit Challenge in SIAM News. Nick Trefethen’s short article1 introduced the
ten problems, then closed with the comment: “Hint: They’re hard! If anyone gets 50
digits in total, I will be impressed.” To an incorrigible computational mathematician
like me, that was one giant red flag, an irresistible temptation. As it turned out I
did submit an entry, in partnership with two other colleagues, but we failed to get
the correct answer on at least one of the ten problems and thus did not receive any
award. But it was still a very engaging and enjoyable exercise.

This book shows in detail how each of these problems can be solved, as de-
scribed by four authors who, unlike myself, belonged to winning teams who success-
fully solved all ten problems. Even better, the book presents multiple approaches
of solution for each problem, including schemes that can be scaled to provide thou-
sands of digits accuracy if required, and can solve even larger related problems. In
the process, the authors visit just about every major technique of modern numeri-
cal analysis: matrix computation, numerical quadrature, limit extrapolation, error
control, interval arithmetic, contour integration, iterative linear methods, global op-
timization, high-precision arithmetic, evolutionary algorithms, eigenvalue methods,
and many more (the list goes on and on).

The resulting work is destined to be a classic of modern computational science
— a gourmet feast in ten courses. More generally, this book provides a compelling
answer to the question, “What is numerical analysis?” In this book we see that
numerical analysis is much more than a collection of Victorian maxims on why we
need to be careful about numerical roundoff error. We instead see first-hand how
the field encompasses a large and growing body of clever algorithms and mathemat-
ical machinery devoted to efficient computation. As Nick Trefethen once observed
[Tre98]: “If rounding errors vanished, 95% of numerical analysis would remain.”

As noted above, the authors of this book describe techniques that in many
cases can be extended to compute numerical answers to the ten problems to an
accuracy of thousands of digits. Some may question why anyone would care about
such prodigious precision, when in the “real” physical world, hardly any quantities
are known to an accuracy beyond about 12 decimal digits. For instance, a value of
π correct to 20 decimal digits would suffice to calculate the circumference of a circle
around the sun at the orbit of the earth to within the width of an atom. So why

1See p. 1 for the full text.

iii

iv Foreword

should anyone care about finding any answers to 10 000 digit accuracy?
In fact, recent work in experimental mathematics has provided an important

venue where numerical results are needed to very high numerical precision, in some
cases to thousands of decimal digit accuracy. In particular, precision of this scale is
often required when applying integer relation algorithms2 to discover new mathe-
matical identities. An integer relation algorithm is an algorithm that, given n real
numbers (xi, 1 � i � n), in the form of high-precision floating-point numerical
values, produces n integers, not all zero, such that a1x1 + a2x2 + · · · + anxn = 0.

The best known example of this sort is the discovery in 1995 of a new formula
for π:

π =
∞∑

k=0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

This formula was found by a computer program implementing the PSLQ integer
relation algorithm, using (in this case) a numerical precision of approximately 200
digits. This computation also required, as an input real vector, more than 25 math-
ematical constants, each computed to 200-digit accuracy. The mathematical signifi-
cance of this particular formula is that it permits one to directly calculate binary or
hexadecimal digits of π beginning at any arbitrary position, using an algorithm that
is very simple, requires almost no memory, and does not require multiple-precision
arithmetic [BBP97, AW97, BB04, BBG04]. Since 1996, numerous additional formu-
las of this type have been found, including several formulas that arise in quantum
field theory [Bai00].

It’s worth emphasizing that a wide range of algorithms from numerical anal-
ysis come into play in experimental mathematics, including more than a few of the
algorithms described in this book. Numerical quadrature (i.e., numerical evalua-
tion of definite integrals), series evaluation, and limit evaluation, each performed to
very high precision, are particularly important. These algorithms require multiple-
precision arithmetic, of course, but often also involve significant symbolic manipu-
lation and considerable mathematical cleverness as well.

In short, most if not all of the techniques described in this book have appli-
cations far beyond the classical disciplines of applied mathematics that have long
been the mainstay of numerical analysis. They are well worth learning, and, in many
cases, rather fun to work with. Savor every bite of this ten-course feast.

David. H. Bailey
Chief Technologist

Computational Research Department
Lawrence Berkeley National Laboratory, USA

2Such algorithms were ranked among The Top 10 — assembled by Jack Dongarra and Francis
Sullivan [DS00] — of algorithms “with the greatest influence on the development and practice of
science and engineering in the 20th century.”

Contents

Foreword iii

Preface vii

The Story 1

1 A Twisted Tail 17

What is lim
ε→0

∫ 1

ε

x−1 cos(x−1 log x) dx ?

2 Reliability amid Chaos 33

A photon moving at speed 1 in the x-y plane starts at time t = 0 at
(x, y) = (1/2, 1/10) heading due east. Around every integer lattice point
(i, j) in the plane, a circular mirror of radius 1/3 has been erected. How
far from (0, 0) is the photon at t = 10?

3 How Far Away Is Infinity? 47

The infinite matrix A with entries a11 = 1, a12 = 1/2, a21 = 1/3, a13 =
1/4, a22 = 1/5, a31 = 1/6, and so on, is a bounded operator on �2. What
is ‖A‖?

4 Think Globally, Act Locally 77

What is the global minimum of the function

esin(50x) + sin(60ey) + sin(70 sinx) + sin(sin(80y))

− sin(10(x+ y)) + (x2 + y2)/4 ?

5 A Complex Optimization 103

Let f(z) = 1/Γ(z), where Γ(z) is the gamma function, and let p(z) be
the cubic polynomial that best approximates f(z) on the unit disk in
the supremum norm ‖ · ‖∞. What is ‖f − p‖∞?

v

vi Contents

6 Biasing for a Fair Return 123

A flea starts at (0, 0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4+ ε, and west with probability
1/4 − ε. The probability that the flea returns to (0, 0) sometime during
its wanderings is 1/2. What is ε?

7 Too Large to Be Easy, Too Small to Be Hard 149

Let A be the 20 000 × 20 000 matrix whose entries are zero everywhere
except for the primes 2, 3, 5, 7, . . . , 224737 along the main diagonal and
the number 1 in all the positions aij with |i − j| = 1, 2, 4, 8, . . . , 16384.
What is the (1, 1) entry of A−1?

8 In the Moment of Heat 171

A square plate [−1, 1] × [−1, 1] is at temperature u = 0. At time t = 0
the temperature is increased to u = 5 along one of the four sides while
being held at u = 0 along the other three sides, and heat then flows
into the plate according to ut = ∆u. When does the temperature reach
u = 1 at the center of the plate?

9 Gradus ad Parnassum 183

The integral I(α) =
∫ 2

0

(
2 + sin(10α)

)
xα sin

(
α/(2 − x)

)
dx depends on

the parameter α. What is the value α ∈ [0, 5] for which I(α) achieves
its maximum?

10 Hitting the Ends 201

A particle at the center of a 10×1 rectangle undergoes Brownian motion
(i.e., two-dimensional random walk with infinitesimal step lengths) till
it hits the boundary. What is the probability that it hits at one of the
ends rather than at one of the sides?

A Convergence Acceleration 227

B Extreme Digit-Hunting 263

C Code 267

D More Problems 287

Bibliography 293

Index 305

Preface

This book will take you on a thrilling tour of some of the most important
and powerful areas of contemporary numerical mathematics. A first unusual fea-
ture is that the tour is organized along problems, not methods: it is extremely
valuable to realize that numerical problems often yield to a wide variety of meth-
ods. For example, we solve a random-walk problem (Chapter 6) by several different
techniques, such as large-scale linear algebra, a three-term recursion obtained by
symbolic computations, elliptic integrals and the arithmetic-geometric mean, and
Fourier analysis. We do so in IEEE arithmetic to full accuracy and, at the extreme,
in high-precision arithmetic to get 10 000 digits.

A second unusual feature is that we very carefully try to justify the validity of
every single digit of a numerical answer, using methods ranging from carefully de-
signed computer experiments and a posteriori error estimates to computer-assisted
proofs based on interval arithmetic. In the real world, the first two methods are
usually adequate and give the desired confidence in the answer. Interval methods,
while nicely rigorous, would most often not provide any additional benefit. Yet it
sometimes happens that one of the best approaches to a problem is one that pro-
vides proof along the way (this occurs in Chapter 4), a point that has considerable
mathematical interest.

A main theme of the book is that there are usually two options for solving a
numerical problem: either use a brute-force method running overnight and unsuper-
vised on a high-performance workstation with lots of memory, or spend your days
thinking harder, with the help of mathematical theory and a good library, in the
hope of coming up with a clever method that will solve the problem in less than a
second on common hardware. Of course, in practice these two options of attacking
a problem will scale differently with problem size and difficulty, and your choice will
depend on such resources as your time, interest and knowledge, and the computer
power at your disposal. One noteworthy case where a detour guided by theory leads
to an approach that is ultimately much more efficient than the direct path is given
on the cover of this book. That diagram (taken from Chapter 1) illustrates that
many problems about real numbers can be made much, much easier by stepping
outside the real axis and taking a route through the complex plane.

The waypoints of our tour are the ten problems published in the January/Feb-
ruary 2002 issue of SIAM News by Nick Trefethen of Oxford University as an
intriguing computing challenge to the mathematical public. The answer to each
problem is a real number; entrants had to compute several digits of the answer.

vii

viii Preface

Scoring was simple: one point per digit, up to a maximum of ten per problem. Thus
a perfect score would be 100. When the dust settled several months later, entries
had been received from 94 teams in 25 countries. Twenty of those teams achieved
a perfect score of 100 and five others got 99 points. The whole fascinating story,
including the names of the winners, is told in The Story chapter.

The contest, now known as the SIAM 100-Digit Challenge, was noteworthy
for several reasons. The problems were quite diverse, so an expert in a particular
field might have little trouble with one or two of them, but he or she would have
to invest a lot of time to learn enough about the other problems to solve them.
Only digits were required, not proofs of existence and uniqueness of the solution,
convergence of the method, nor correctness of the result; nevertheless, a serious
team would want to put in some effort into theoretical investigations. The impact
of modern software on these sorts of problems is immense, and it is very useful to
try all the major software tools on these problems so as to learn their strengths,
and their limitations.

The book is written at a level suitable for beginning graduate students and
could serve as a text for a seminar or as a source for projects. Indeed, these problems
were originally assigned in a first-year graduate course at Oxford University, where
they were used to challenge students to think beyond the basic numerical techniques.
We have tried to show the diversity of mathematical and algorithmic tools that
might come into play when faced with these, and similar, numerical challenges,
such as:

• large-scale linear algebra

• computational complex analysis

• special functions and the arithmetic-
geometric mean

• Fourier analysis

• asymptotic expansions

• convergence acceleration

• discretizations that converge expo-
nentially fast

• symbolic computing

• global optimization

• Monte Carlo and evolutionary algo-
rithms

• chaos and shadowing

• stability and accuracy

• a priori and a posteriori error analysis

• high-precision, significance, and inter-
val arithmetic

We hope to encourage the reader to take a broad view of mathematics, since one
moral of this contest is that overspecialization will be too narrow a view for one
with a serious interest in computation.

The chapters on the ten problems may be read independently. Because con-
vergence acceleration plays an important role in many of the problems, we have
included a discussion of the basic methods in Appendix A. In Appendix B we
summarize our efforts in calculating the solutions to extremely high accuracies.
Appendix C contains code that solves the ten problems in a variety of computing
environments. We have also included in Appendix D a sampling of additional prob-
lems that will serve as interesting challenges for readers who have mastered some
of the techniques in the book.

Preface ix

All code in the book as well as some additional material related to this project
can be found at an accompanying web page:

www.siam.org/books/100digitchallenge.

We four authors, from four countries and three continents, did not know each
other prior to the contest and came together via e-mail to propose and write this
book. It took thousands of e-mail messages and exchanges of files, code, and data.
This collaboration has been an unexpected benefit of our participation in the SIAM
100-Digit Challenge.

Acknowledgments. First, we owe a special debt of thanks to John Boersma,
who looked over all the chapters with an expert eye and brought to our attention
many places where the exposition or the mathematics could be improved.

We are grateful to Nick Trefethen for his encouragement and advice, and to
many mathematicians and members of other teams who shared their solutions and
insights with us. In particular, we thank: Paul Abbott, Claude Brezinski, Brett
Champion, George Corliss, Jean-Guillaume Dumas, Peter Gaffney, Yifan Hu, Rob
Knapp, Andreas Knauf, Danny Lichtblau, Weldon Lodwick, Oleg Marichev, Fred
Simons, Rolf Strebel, John Sullivan, Serge Tabachnikov, and Michael Trott.

As long as a method of solution has been used by several contestants, or can
be found in the existing literature, we will refrain from giving credit to individuals.
We do not suggest that any specific idea is originally from us, even though there
are many such ideas to be found in the book. Although each chapter bears the
name of the author who actually wrote it, in every case there has been a substantial
contribution from the other authors.

Folkmar Bornemann, Technische Universität München, Germany

Dirk Laurie, University of Stellenbosch, South Africa

Stan Wagon, Macalester College, St. Paul, USA

Jörg Waldvogel, ETH Zürich, Switzerland

Notation and Terminology. When two real numbers are said to agree to d
digits, one must be clear on what is meant. In this book we ignore rounding and
consider it a problem of strings: the two strings one gets by truncating to the first
d significant digits have to be identical. We use the symbol .= to denote this type
of agreement to all digits shown, as in π .= 3.1415.

When intervals of nearby numbers occur in the book, we use the notation
1.234589

67 to denote [1.234567, 1.234589].

x Preface

The Story

Problems worthy of attack
prove their worth by hitting back.

— Piet Hein

The 100-Digit Challenge began in 2001 when Lloyd N. Trefethen of Oxford Uni-
versity approached SIAM with the idea of publishing ten challenging problems in
numerical computing. SIAM liked the idea and the contest was officially launched in
the January/February 2002 issue of SIAM News. Here is the full text of Trefethen’s
challenge:

Each October, a few new graduate students arrive in Oxford to begin research
for a doctorate in numerical analysis. In their first term, working in pairs, they
take an informal course called the “Problem Solving Squad”. Each week for
six weeks, I give them a problem, stated in a sentence or two, whose answer
is a single real number. Their mission is to compute that number to as many
digits of precision as they can. Ten of these problems appear below. I would
like to offer them as a challenge to the SIAM community. Can you solve them?
I will give $100 to the individual or team that delivers to me the most accurate
set of numerical answers to these problems before May 20, 2002. With your
solutions, send in a few sentences or programs or plots so I can tell how you
got them. Scoring will be simple: You get a point for each correct digit, up to
ten for each problem, so the maximum score is 100 points. Fine print? You
are free to get ideas and advice from friends and literature far and wide, but
any team that enters the contest should have no more than half a dozen core
members. Contestants must assure me that they have received no help from
students at Oxford or anyone else who has already seen these problems. Hint:
They’re hard! If anyone gets 50 digits in total, I will be impressed. The ten
magic numbers will be published in the July/August issue of SIAM News,
together with the names of winners and strong runners-up.

— Nick Trefethen, Oxford University

At the deadline, entries had been submitted by 94 teams from 25 countries.
The contestants came from throughout the world of pure and applied mathematics,
from researchers at famous universities to high school teachers and college students.
The work was certainly easy to grade, and the results were announced shortly after
the deadline: there were 20 teams with perfect scores of 100, and 5 more teams with
scores of 99.

1

2 The Story

Trefethen published a detailed report [Tre02] of the event in the July/August
issue of SIAM News, and his report nicely conveys the joy that the particpants had
while working on these problems. During the few months after the contest many of
the teams posted their solutions on the web; URLs for these pages can be found at
the web page for this book.

Joseph Keller of Stanford University published an interesting letter in the
December 2002 issue of SIAM News, where he raised the following point:

I found it surprising that no proof of the correctness of the answers was given.
Omitting such proofs is the accepted procedure in scientific computing. How-
ever, in a contest for calculating precise digits, one might have hoped for more.

This is indeed an important issue, one that has guided much of our work in this book.
We have addressed it by providing proof for most of the problems, and describing
the large amount of evidence for the others, evidence that really removes any doubt
(but is, admittedly, short of proof). Several responses to Keller’s letter appeared in
the January/February 2003 issue of SIAM News.

The Winners
Twenty teams scored 100 points, and were deemed First Prize Winners.

– Paul Abbott, University of Western Australia, and Brett Champion, Yufing Hu,
Danny Lichtblau, and Michael Trott, Wolfram Research, Inc., Champaign, Illinois,
USA

– Bernard Beard, Christian Brothers University in Memphis, Tennessee, USA and
Marijke van Gans, Isle of Bute, and Brian Medley, Wigan, United Kingdom (“The
CompuServe SCIMATH Forum Team”)

– John Boersma, Jos K. M. Jansen, Fred H. Simons, and Fred W. Steutel, Eindhoven
University of Technology, Netherlands

– Folkmar Bornemann, Technical University of Munich, Germany

– Carl DeVore, Toby Driscoll, Eli Faulkner, Jon Leighton, Sven Reichard, and Lou
Rossi, University of Delaware, USA

– Eric Dussaud, Chris Husband, Hoang Nguyen, Daniel Reynolds, and Christian Stolk,
Rice University, Houston, Texas, USA

– Martin Gander, Felix Kwok, Sebastien Loisel, Nilima Nigam, and Paul Tupper,
McGill University, Montreal, Canada

– Gaston Gonnet, ETH Zurich, Switzerland, and Robert Israel, University of British
Columbia, Vancouver, Canada

– Thomas Grund, Technical University of Chemnitz, Germany

– Jingfang Huang, Michael Minion, and Michael Taylor, University of North Carolina,
USA

– Glenn Ierley, Stefan L. Smith, and Robert Parker, University of California, San
Diego, USA

– Danny Kaplan and Stan Wagon, Macalester College, St. Paul, Minnesota, USA

– Gerhard Kirchner, Alexander Ostermann, Mechthild Thalhammer, and Peter Wag-
ner, University of Innsbruck, Austria

The Winners 3

The SIAM 100-dollar, 100-digit challenge

This is to certify that

Eric Dussaud, Chris Husband, Hoang Nguyen,
Daniel Reynolds and Christiaan Stolk

were

First Prize 100−digit Winners
in this competition entered by hundreds

of contestants around the world.

Lloyd N. Trefethen
Oxford University

May 2002

0.32336743170.99526291941.274224153−3.3068686470.21433523460.061913954470.72507834630.42401138700.78593367440.00000038375879790.32336743170.9952629194

1.274224153−
3.3068686470.21433523460.061913954470.72507834630.42401138700.78593367440.00000038375879790.323367431795

26
29

19
41

.2
74

22
41

53
−

3.
30

68
68

64
70

.2
14

33
52

34
60

.0
61

91
39

54
47

0.
72

50
78

34
63

0.
42

40
11

38
70

0.
78

59
33

67
44

0.
00

00
00

38
37

58
79

79

0.99526291941.274224153−3.3068686470.21433523460.061913954470.72507834630.42401138700.78593367440.00000038375879790.32336743170.99526291941.274224153

Figure 1. Each winning team received $100 and an attractive certificate.

– Gerd Kunert and Ulf Kähler, Technical University of Chemnitz, Germany

– Dirk Laurie, University of Stellenbosch, South Africa

– Kim McInturff, Raytheon Corp., and Peter S. Simon, Space Systems/Loral, Califor-
nia, USA

– Peter Robinson, Quintessa Ltd., United Kingdom

– Rolf Strebel and Oscar Chinellato, ETH Zurich, Switzerland

– Ruud van Damme, Bernard Geurts, and Bert Jagers, University of Twente, Nether-
lands

– Eddy van de Wetering, Princeton, New Jersey, USA

Five teams scored 99 points and were counted as Second Prize Winners.

– Niclas Carlsson, Åbo Akademi University, Finland

– Katherine Hegewisch and Dirk Robinson, Washington State University, Pullman,
USA

– Michel Kern, INRIA Rocquencourt, France

– David Smith, Loyola Marymount University, Los Angeles, USA

– Craig Wiegert, University of Chicago, USA

4 The Story

Interview with Trefethen
Many aspects of the story had been known only by Trefethen himself. We are
grateful that he agreed to share his views about the contest and on general issues
related to numerical computing in the following interview.

Lloyd Nicholas Trefethen is Professor of Numerical Anal-
ysis at Oxford University, a fellow of Balliol College, and
head of the Numerical Analysis Group at Oxford. He was
born in the United States and studied at Harvard and
Stanford. He then held positions at the Courant Insti-
tute, MIT, and Cornell before taking the chair at Oxford
in 1997. In 1985 he was awarded the first Fox Prize in
Numerical Analysis.

Trefethen’s writings on numerical analysis and ap-
plied mathematics have been influential and include five
books and over 100 papers. This work spans the field
of theoretical and practical numerical analysis. Of more
general interest are his essays, such as “The definition of
numerical analysis” [TB97, App.], “Maxims about numer-
ical mathematics, computers, science, and life” [Tre98], and “Predictions for scientific
computing 50 years from now”[Tre00].

You received entries from 94 teams in 25 countries, from Chile to Canada and South
Africa to Finland. How many people took part?

There were teams of every size up to the maximum permitted of six — all together,
about 180 contestants. Most of these scored 40 points or more. Of course, those
are just the ones I know about! There were certainly others who tried some of the
problems and didn’t tell me. I would hear rumors that so-and-so had been staying
up late nights. Hadn’t he sent me any numbers?

Were there countries that you expected entries from, but got none?

No, I wouldn’t say so. I got entries from six English-speaking countries, and I did
not expect to hear much from the non-English world, where SIAM News is less
widely distributed. So it was a nice surprise to receive entries from countries all
over the world, including China, Russia, Spain, Slovenia, Greece, Argentina, Mex-
ico, and Israel.

What kind of background and training did the contestants have? Was there a sig-
nificant difference between those who succeeded and those who did not?

We had contestants of every sort, from amateurs and students to world-leading
mathematicians. But it has to be admitted that overall, most teams were based at
universities, and the higher scoring ones usually included an expert in numerical
computation with a PhD. A crucial ingredient of success was collaboration. More

Interview with Trefethen 5

than half of our teams consisted of a single person, but only five of those singletons
ended up among the winners.

Wolfram Research (Mathematica) had a winning team and Gaston Gonnet (one
of the founders of Maple) was part of a winning team. Were there teams from other
mathematical software companies?

Cleve Moler, the creator of MATLAB and Senior Scientist at MathWorks, was
teaching the undergraduate course CS 138 at Stanford at the time of the Challenge,
and he put problem 1 on the students’ take-home final exam in March 2002. I don’t
know how the students did, but I can assure you that Cleve got all the digits right.

Mathematica, Maple, and MATLAB were used by many teams. What other soft-
ware was used, and were there any unexpected choices?

Yes, the three M’s were very popular indeed. We also had plenty of C and C++
and Fortran and many other systems including Java, Visual Basic, Turbo-Pascal,
GMP, GSL, Octave, and Pari/GP. One contestant attacked the problems in Excel,
but he was not among the high scorers.

Did you know all the answers at the time you posed the questions?

I knew eight of them to the full 10 digits. My lacunae were the complex gamma
function (Problem 5) and the photon bouncing between mirrors (Problem 2).

I’m afraid that my head was so swimming with digits in those last few weeks
that I did something foolish. Shortly before the contest deadline I sent a reminder to
NA Digest on the web to which I added a P.S. that I thought would amuse people:

Hint. The correct digits are 56403899311367472691912742241578531

42257191239544746342078343703837583797932367495263306868621433534.

(Not in this order.)

As I said, at that time I didn’t even know all 100 digits! To make my little joke I
took the 90 or so digits I knew and padded them out at random. It never crossed
my mind that people would take this clue seriously and try to check their answers
with it. They did, and several of the eventual winners found that they seemed to
have too many 4s and 7s, too few 2s and 5s. I am embarrassed to have made such
a mistake and worried them.

Do you have an opinion on whether “digits” in a contest such as this should mean
rounded or truncated?

What a mess of an issue — so empty of deep content and yet such a headache in
practice! (Nick Higham treats these matters very well in his big book “Accuracy
and Stability of Numerical Algorithms” [Hig96].) No, I have no opinion on what
“digits” should mean, but I very much wish I had specified a precise rule when
presenting the Challenge.

Why did the list of 100-point winners grow from 18 to 20 within a few days af-

6 The Story

ter you posted the results?

Mainly for reasons related to just this business of rounding vs. truncation. Would
you believe that there were seven teams that scored 99 points out of 100? After
I circulated a list with 18 winners, two of those seven persuaded me that I had
misjudged one of their answers. Two more teams failed to persuade me.

For the teams that missed a perfect score by one or two digits, can you tell us
which problems were missed? Did this coincide with your estimate of the difficulty
ranking? Which problems did you think were most difficult?

The troublemakers were those same two I mentioned before: the complex gamma
function and the photon bouncing between mirrors. The latter is a bit surprising,
since it’s not hard once you realize you need extended precision arithmetic.

Are there any other facts from the results that help in the evaluation of the rel-
ative difficulty of the problems?

As I accumulated people’s responses I quickly saw which problems gave the most
trouble. Along with the gamma function, another tough one was the heating of a
plate (Problem 8). It was also interesting to see for which problems some people
were reporting lots of extra digits, like 50 or 500. A hard problem by this measure
was the infinite matrix norm (Problem 3). When the contest ended I only knew
about 18 digits of the answer, as compared with 50 digits or more for most of the
other problems.

What experience (either before or after the contest) makes you believe that the prob-
lems were truly hard?

The problems originated in a problem-solving course that our incoming DPhil stu-
dents in numerical analysis at Oxford take in their first term. (I got the idea from
Don Knuth, and he told me once that he got it from Bob Floyd, who got it from
George Forsythe, who got it from George Pólya.) Each week I give them a prob-
lem with no hints, and, working in pairs, they have to figure out as many digits of
the answer as they can. In creating the problems I did my best to tune them to
be challenging for this group of highly talented but not so experienced young people.

In your SIAM News report you indicated that perhaps some of the problems should
have been harder. For example, you might have changed the target time in Problem
2 from 10 seconds to 100 seconds. Are there any other such variations to the other
problems that might have made them more difficult? Or was it in fact a good thing
that so many teams got all 100 digits?

I think five winning teams would have been better than twenty. As you suggest,
some of the problems had a parameter I tuned to try to make them hard but not
too hard. Changing a few numbers in the functions of Problems 1, 4, and 9, for
example, could have made them even more devilish. On the whole I underestimated
the difference between a pair of new graduate students with a week’s deadline and

Interview with Trefethen 7

a team of experienced mathematicians with months to play with.

What was your motivation in making the Challenge public? What did you expect
to get out of it? Did you in fact get out of it what you wanted?

I love this kind of hands-on computing and I wanted others to have fun too. Too
often numerical analysts get lost in theory and forget how satisfying it is to compute
actual numbers.

What was SIAM’s reaction when you first proposed the contest?

They liked the idea from the start. Gail Corbett, the SIAM News editor, is won-
derfully encouraging of off-beat ideas.

You excluded people who might have seen these problems as members of the problem-
solving squad at Oxford. Were all the problems taken from your course, and therefore
already tested on students? Did you modify any for the Challenge or were they iden-
tical to the ones you give your students?

Yes, all the problems were taken from the course, and I changed nothing but a few
words here and there. I didn’t dare introduce untested problems and risk making
an error.

What type of problem (whether from the Challenge or not) gives your students the
most difficulty?

Students these days, alas, have often not had much exposure to complex analysis,
so problems in the complex plane always prove hard. Personally, I don’t see how
one can go far in the mathematical sciences without complex variables, but there
you are.

How many digits do they usually come up with?

On a typical meeting of our course there might be four teams presenting results at
the whiteboard and they might get 4, 6, 8 and 10 digits. You’d be surprised how
often the results appear in just that order, increasing monotonically! I guess the
students who suspect their answers aren’t so accurate volunteer fast, to get their
presentations over with, and those who’ve done well are happy to wait to the end.
One year we had an outstanding student who got nearly exact solutions two weeks
running — we called him “Hundred Digit Hendrik”.

How do you usually decide about the correctness of the digits? How did you de-
cide at the contest?

At home at Oxford, I have almost always computed more digits in advance than the
students manage to get. For the Challenge, however, scoring was much easier. In the
weeks leading up to the deadline I accumulated a big file of the teams’ numerical
answers to the ten problems. I’d record all the digits they claimed were correct, one
after another. Here’s an extract from Problem 8 with the names changed:

8 The Story

Argonne 0.4235

Berlin 0.4240113870 3

Blanc 0.2602370772 04

Blogg 0.4240113870

Cambridge 0.4240114

Cornell 0.4240113870 3368836379743366859326

CSIRO 0.3368831975

IBM 0.4240113870 336883

Jones 0.282674

Lausanne 0.42403

Newton 0.42401139

Philips 0.4240113870

Schmidt 0.4240074597 42

Schneider 0.4240113870 336883637974336685932564512478

Smith 0.4240113870 3369

Taylor 0.4240113870

In the face of 80 lines of data like this, based on different algorithms run in different
languages on different computers in different countries, who could doubt that the
correct first ten digits must be 0.4240113870?

What is your opinion about Joe Keller’s letter in SIAM News regarding the lack
of proof of correctness, and the responses it got by some of the contestants?

Joe Keller has been one of my heroes ever since I took a course from him as a
graduate student. Now as I’m sure Joe knows, it would have killed the Challenge to
demand that contestants supply proofs. But this doesn’t mean I couldn’t have said
something in the writeup afterwards about the prospects for proofs and guaranteed
accuracy in numerical computation. I wish I’d done that, for certainty is an ideal
we must never lose sight of in any corner of mathematics. Those responses to Joe’s
letter “defended” me more vigorously than I would have defended myself.

Do you think the offer of money played any role in the interest generated? Is it
correct that you originally only had a $100 budget in total?

Of course it did! Any whiff of money (or sex) makes us sit up and take notice. My
“budget” consisted of the Trefethen family checkbook. But do you know something
funny? After I’d sent certificates to the winners, I found that some of them seemed
to care quite a bit about the money for its own sake, not just as a token, even if at
best they could only hope to pocket a fifth or a sixth of $100. I guess there’s a spe-
cial feeling in winning cash that just can’t be matched by certificates and publicity.

You decided to award three $100 prizes, but then an anonymous donor stepped for-
ward and made it possible to give each team $100. Is the donor a mathematician?
Do you know him or her personally? What especially impressed the donor about the
contest?

What a thrill it was one day to receive his offer out of the blue! Now that the
contest is well past, the donor does not object to having his name revealed. He is
William Browning, founder and President of Applied Mathematics, Inc. in Gales
Ferry, Connecticut. I haven’t yet met Dr. Browning, but I know from our email
exchanges that he was happy to support our field in this way. In one message he

Interview with Trefethen 9

wrote:

I agree with you regarding the satisfaction — and the importance — of actu-
ally computing some numbers. I can’t tell you how often I see time and money
wasted because someone didn’t bother to “run the numbers”.

Were you surprised by the response and if so, why?

I was surprised by people’s tenacity, their determination to get all 100 digits. I had
imagined that a typical contestant would spend a dozen hours on the Challenge and
solve three or four problems. Well, maybe some of them started out with that plan.
But then they got hooked.

How much email traffic did the contest generate?

Megabytes! Those 94 entries corresponded to about 500 email messages. People
would send results in the form of 30-page documents, then send updates and im-
provements, ask me questions, and so on. For some weeks before the deadline I
seemed to be spending all my time on this. I didn’t plan for that, but it was great
fun.

Were there any WWW groups formed that openly discussed the problems? Did you
scan the net for those and ask them to keep quiet?

I didn’t scan the net systematically, but I heard about a group in Germany that
was circulating ideas on the web. I asked them to go private, which they did.

How important was the Internet for the contest? Did people find ideas, software,
etc. there?

It was crucial in spreading word of the event, and in the case of the SCIMATH team
of three, the participants found each other through the Internet and so far as I know
have still never met face-to-face. I think the Internet helped many contestants in
technical ways too. For young people these days it is simply a part of life. At Oxford
we have one of the world’s best numerical analysis libraries, but you don’t often see
the DPhil students in it.

Where, other than SIAM News and NA-Net, was the contest publicized?

There were half a dozen places. The two I was most aware of were Wolfram Re-
search’s MathWorld web site and a notice published in Science by Barry Cipra with
the heading “Decimal Decathlon”.

What was the biggest surprise for you on the human side of the story?

How addicted people got to these problems! I received numerous messages of thanks
for the pleasure I had given people, and quite a few asked if I would be making this
a regular event. (No, I won’t.)

10 The Story

What was the biggest disappointment?

I wish there had been more entries from my adopted country of Britain.

What was the biggest surprise as to the solutions that were put forward?

One day I got a message telling me that Jean-Guillaume Dumas of the LinBox team
had solved Problem 7 exactly with the help of 182 processors running for four days.
He showed that the answer is a quotient of two 97389-digit integers. Wow!

Did you learn any new mathematics in reviewing the solutions?

On every problem there were surprises and new ideas, for as this book shows, these
problems have many links to other topics. But if I’m honest I must tell you that
with a thousand pages of mathematics to evaluate in a matter of days, I didn’t have
time to learn many new things properly.

Some people might say that a computation to more than 6 significant digits is a
waste of time as far as real-world applications go. What do you think?

I am very much interested in this question, and I have distilled some of my views
into the notion of a Ten Digit Algorithm: “Ten digits, five seconds, and just one
page”. Some writings on ten digit algorithms are in the pipeline, so if you’ll forgive
me, I won’t elaborate here.

You said that round-off error plays a small role compared to algorithm design, and
that feeling is reflected in your choice of problems, since only one required high pre-
cision. Can you expand on this point?

In my 1992 SIAM News essay “The definition of numerical analysis” [TB97, App.]
I argue that controlling rounding errors is just a small part of numerical analysis,
maybe 5% or 10%. The main business of this field is the development of algorithms
that converge fast, and the ideas behind these algorithms would be just as necessary
even if computers could work in exact arithmetic. So yes, it seems fitting that only
one of the ten problems, the photon bouncing off mirrors, is one where you have to
think carefully about rounding errors.

In your report in SIAM News you asked, perhaps tongue-in-cheek, whether these
problems could be solved to 10,000 digits. Do you think that such work has value
beyond mere digit-hunting?

Humans have always progressed by tackling challenges, whether real or artificial.

Contests like yours where a mathematician announces: “Look, here is a hard prob-
lem that I know how to solve. I wonder whether you are able to do it too.” were quite
common at the time of Fermat, the Bernoullis, and Euler. But we do not see many
such challenges today, certainly not in numerical computing. Should there be more
of them? Should a numerical analysis journal consider starting a problem section

Comments by the Contestants 11

where problems in the style of the Challenge are posed?

That’s a very interesting question, for you’re right, there was a different style in
the old days, when science was an activity of a small elite and had not been profes-
sionalized. Yes, I think it would be good to have more challenges nowadays, though
journals might not be the right medium since they are so slow.

Are there any important morals to draw from the challenge?

Huckleberry Finn begins with some remarks on this subject.

What has been the impact of the Challenge?

As Mao Tse-Tung or Zhou En-Lai is supposed to have said when asked about the
impact of the French Revolution: “It’s too early to tell!”

What kind of activity developed after the contest? Do you know of any web pages,
papers written, talks given?

Yes, there were at least a dozen talks and tech reports, for the contestants were
wrapped up in these problems and wanted to share their good ideas. Of course this
book of yours is the most extraordinary result of the Challenge.

What was your reaction when you heard that a book was being planned?

I was amazed and delighted.

You have told us that the Challenge has shown us a world that seems as distant
from von Neumann as from Gauss. What makes you say that?

I imagined that the Challenge would unearth 10-digit solutions that would be a
kind of culmination of 50 years of progress in algorithms and software. What in
fact happened seems more of a transcendence than a culmination. I think the Chal-
lenge and its amazing aftermath — the 10,000-digit mix of fast algorithms, symbolic
computation, interval arithmetic, and global collaboration displayed in this book —
show that we have entered a world that would be unrecognizable even to the giants
of the recent past such as Turing, von Neumann, or Wilkinson. It is a world that
seems hardly less distant from von Neumann, who knew about computers and jet
aircraft, than from Gauss, who lived in the time of Napoleon.

Would you do it again?

Absolutely.

Comments by the Contestants
We solicited some comments from the prize-winning teams and include a summary
here. The diversity of approaches is noteworthy. Several contestants programmed
everything from scratch “for sport”, but most teams used software packages at

12 The Story

some point. It is clear from the responses that the primary motivation for the
sometimes great effort required was simply the satisfaction one gets by solving a
difficult problem. But the recognition was nice too, and so all participants, like us,
are grateful to Trefethen for setting the challenge and publicizing the results.

Another general point that comes through is that problems that offered little
in the way of analytical challenge were considered the least favorite. Yet all the
problems can teach us something about numerical computation, and we hope that
point comes through in this book.

Why do it?

– I thought it would be a good way to promote numerical analysis within the
department. (Driscoll)

– I have done a lot of competitions before, and like doing them. (Loisel)

– Once I read the problems over I was hooked and used my spare time until I
cracked them all. (van de Wetering)

– The general nature of the challenge, and, for some problems, the desire to
test out some new functionality in Mathematica that was under development.
(Lichtblau)

– I was taking a numerical differential equations class taught by Dr. Rossi (who
solved the random walk problem). We were studying quadratures when the
challenge was issued and Dr. Rossi offered an A to any student who could solve
the quadrature problem to 10 digits. I couldn’t. However, I did get interested
in the challenge and began attending our weekly meetings. (Faulkner)

– My main motivation was that I have always been interested in problem solv-
ing. In this connection, I still regret that the Problem Section of SIAM Re-
view was ended at the end of 1997, just at the moment when I went into an
early retirement! The Problem Section played an important role as a forum
where scientists could bring their mathematical problems to the attention of
a readership of widely varying expertise. I believe the editors of the journal
underestimated the section’s role as such a forum when they decided to drop
it. All four members of our team are retired mathematicians from Eindhoven
University of Technology. At the university we share a big office where we
can meet regularly. After a month or so we had solved six problems and were
considering to submit our solutions (recalling Trefethen’s comment that he
would be impressed ‘if anyone gets 50 digits in total’). Fortunately we did not
do that but continued till we had solved all 10 problems. (Boersma)

Was the contest worth it?

– Yes, because of the perfect score and because the undergraduate on the team
is now contemplating graduate study in numerical analysis. (Driscoll)

– For the satisfaction of solving the problems. (van de Wetering)

Comments by the Contestants 13

– It was fun and I learned quite a few things on the way. (Kern)

– We were able to demonstrate advantages in Mathematica’s arithmetic and also
to show the utility of some of the sparse linear algebra under development at
the time. (Lichtblau)

– The challenge completely redefined the way I viewed computational mathe-
matics. At that time I had taken a course in numerical linear algebra, and was
taking a course in numerical DEs. I learned that just because you knew how
to compute a QR decomposition, didn’t mean that you knew anything about
numerical linear algebra. (Faulkner)

– Yes, definitely. It was great fun. The problems of the Challenge formed a nice
mixture, to be solved by both analytical and numerical methods. As for me
I preferred the analytically oriented problems like Problems 1, 5, 6, 8, 9, and
10. Also the use of a computer algebra package (Mathematica in our case)
greatly contributed to the successful outcome. (Boersma)

What insight did you find to be most satisfying?

– I enjoyed making headway with nonnumerical (i.e., analytical) methods. It
was great fun to find useful tricks and do convergence acceleration and error
estimation. Also there is something very satisfying about using independent
methods and getting digits that match. (van de Wetering)

– The whole thing. Going from: “How can one do that?” when I first looked at
the problems, to “Yes, it can be done” at the end. (Kern)

– An integration by parts trick to speed the convergence for Problem 1. It turned
out not to be the most elegant solution, but it blew the problem open for us.
(Driscoll)

– I liked the infinite matrix norm problem. I wrote a routine that was able to
compute Ax for any vector x without instantiating the matrix. This allowed
me to use a 50000×50000 matrix in a shifted power method and still terminate
in seconds. I also used a kind of hierarchical technique. I used the eigenvector
for the 25000 × 25000 case as the initial vector in the 50000 × 50000 case, so
very few iterations were needed. (Loisel)

– That I could come up with a nice solution for Problem 3, as opposed to doing
it by a brute force extrapolation. In short, some thinking about this problem
paid off. (Strebel)

– I really liked watching my professors struggle on these problems, just as we
undergraduates struggle on the problems they give us. (Faulkner)

– I learned most from the solutions of Problems 6, 10, and 5. At first I was
scared of Problems 6 and 10, because my knowledge of probability theory is
rather superficial. I felt at ease again after I had found the right analytical
expressions to manipulate. Steutel and I were able to generalize Problem 6 to

14 The Story

that of a general biased two-dimensional random walk, and we even consid-
ered writing a paper on this generalized problem. However, in January 2003,
Folkmar Bornemann brought to our attention that the generalized problem
had been treated in papers by Henze [Hen61] and Barnett [Bar63]; so that
was the end of our paper to appear! All this has now been incorporated, in a
most satisfactory manner, in Chapter 6 of the book. (Boersma)

Which problem was the hardest?

– Problem 5. Basically I brute-forced it and was sweating over the last digit or
two. (Driscoll)

– Problem 5 was the one question where I had to do some research, having never
tackled this type of problem. It was the last question that I tackled, so feeling
I had 9 out of 10 provided enough motivation to sort this one out. (Robinson)

– Problems 3 and 5, the latter only because we failed to see the “correct” ap-
proach. (Lichtblau)

– Problem 5 was by far the hardest; it took Jos Jansen and me over a month to
crack it. Our calculations led to maxima of |f(z)−p(z)| which were decreasing,
thus showing that we had not yet found the best polynomial. Finally we found
in the literature a necessary and sufficient criterion for the polynomial p(z) to
be the polynomial of best approximation for f(z) on |z| = 1. This criterion
could be implemented into an algorithm that produced the best polynomial
p∗(z) and the associated max |f(z) − p∗(z)| extremely rapidly. (Boersma)

Were any problems extremely easy for you?

– Problem 10. I’m pretty good with conformal mapping and knew right away
that it was a Maple three-liner. (Driscoll)

Did you have a favorite problem? A nonfavorite?

– I’d say Problem 1. It’s really not obvious that the limit exists. (Kern)

– In a strange way Problem 10 is my favorite, which is at its core not a numerical
problem at all. Of course it’s a physics problem. It also reminded me of the
origins of Fourier theory. A fun fact is that the resulting answer is a very
quickly converging series (you need only one term to get to the answer). (van
de Wetering)

– Problems 4 and 9 provided little satisfaction. (Robinson)

– I liked Problem 6. It leads pretty quickly to some interesting numerics and
some difficult theoretical questions. There are also effective means for solv-
ing it all along a full spectrum from pretty simple to sophisticated — direct
simulation is about the only guaranteed failure. (Driscoll)

– My least favorite was Problem 2, as there is no clever way to solve it. (Strebel)

Comments by the Contestants 15

Were you confident in your digits?

– I had more than one method for most problems. But you’re never 100% con-
fident. There is always the chance of dropping a digit or misinterpreting a
problem. (van de Wetering)

– I had either two methods to solve the problems, or an independent check of
the result, so I was reasonably confident. (Strebel)

– Problem 10 was frustrating. I felt that there must be a neat way of doing
this, but could only come up with slowly converging double infinite series. In
the end, I stuck with a brute force approach but this was the question that I
would have been least surprised to have got wrong. (Robinson)

Have you any comments on digits you missed?

– I missed the last digit for Problem 2. I must admit it took me a while to
realize it was so hard. I started using the geometric modelling part of a mesh
generator written by a colleague, but as it used single precision, I knew I had
to go to Maple. I programmed the whole thing in Maple, and explored the
way the results depended on Digits. So I found out I needed a lot of digits,
and I used Digits := 40. Except, for some reason, I set Digits := 20 in
the calculation I copied in my report, and there you are, last digit is wrong.
(Kern)

Many of the teams were partially or entirely nonmathematicians. If you are not
primarily a mathematician, do you feel that this sort of exercise is valuable to the
applied math or scientific computation community?

– I think it is a valuable exercise for all applied sciences. It drives home the
point that convergence doesn’t always come easy and that when a black box
spits an answer at you, you really need to look under the hood and get a clue
if it was good/bad/completely wrong (which is very true in my line of work:
finance). Furthermore, it is valuable to realize that solvable problems often
allow for a wide variety of methods. (van de Wetering)

Did you find any unusual sources?

– Only for Problem 5 did I do some serious literature research. In this case,
knowing that Lloyd N. Trefethen had worked in this area proved to be a
disadvantage: the methods in his papers really can’t produce anything close
to ten digits. I wasted some hours barking up this tree. (Driscoll)

Have you any additional comments?

– It was a pleasure having the opportunity in my spare time to work on these
challenging problems. The charm of these problems is that they cover a lot of
ground, are mostly nontrivial but are expertly crafted to require little over-
head: no specialized knowledge, software or hardware is needed to crack them
as posed. (van de Wetering)

16 The Story

– We had a gung-ho MATLABber (me) and a gung-ho Mapleist (DeVore). Our
approaches to problems were, almost without exception, entirely unrelated.
Though ultimately all the problems save Problem 2 were eminently doable in
standard MATLAB, I picked up some extra respect for Maple. With regard
to numbers 1 and 9 in particular, I would say that Maple can be devilishly
difficult to coax into numerical integrals, but MATLAB’s packaged offerings
in this area aren’t even on the map. (Driscoll)

– Overall I really enjoyed the experience, and feel that I got to contribute a lot
to the team. The University of Delaware Mathematics Department is a great
place for undergrads, but I know that not all schools allow undergrads to be
so involved. I am not a straight A student, but I could handle some of these
problems, so if I have any advice to share, it is that professors should let their
students get involved in learning the challenges of mathematics. You never
know where the great ideas will come from. (Faulkner)

Relative Difficulty of the Problems
One way of evaluating the relative difficulty is to look at the statistics of how the
teams performed on the problems. Table 1 shows that Problem 4 was clearly the
easiest and Problem 5 the hardest. Looking at the number of teams that missed a
perfect score of 10 by just one digit shows that Problems 1, 3, and 7 were difficult,
while the mean values of the points obtained show that Problems 6 and 8 were tough.
And Problem 10 was tried by the smallest number of teams, probably because of
the technical difficulty of dealing with Brownian motion.

However, the general spread of results through the table is further evidence
that the contest was well designed.

Table 1. Number of teams getting k digits on problem j and the mean value
of the points obtained for that problem.

Correct Digits: 0 1 2 3 4 5 6 7 8 9 10 mean value

Problem 1 (87 teams) 5 2 1 4 4 – 3 2 – 11 55 8.2

Problem 2 (80 teams) 2 – 3 – 4 3 6 2 1 1 58 8.6

Problem 3 (78 teams) 1 1 6 1 – – 1 – 2 15 51 8.8

Problem 4 (84 teams) – 3 – – – – – – 1 – 80 9.7

Problem 5 (69 teams) 5 7 5 6 5 1 1 1 1 15 22 6.3

Problem 6 (76 teams) 11 2 3 – 1 3 1 – 3 1 51 7.6

Problem 7 (78 teams) – 1 4 1 5 – – – 1 14 52 8.8

Problem 8 (69 teams) 6 – 3 1 7 1 1 2 – – 48 7.9

Problem 9 (80 teams) 3 2 3 1 2 1 1 4 6 4 53 8.4

Problem 10 (62 teams) – 2 1 1 3 1 2 1 – – 51 8.9

Chapter 1

A Twisted Tail
Dirk Laurie

The shortest and best way between two truths of the
real domain often passes through the imaginary one.
— Jacques Hadamard [Had45, p. 123]

“Mine is a long and a sad tale!” said the Mouse,
turning to Alice and sighing.
“It is a long tail certainly,” said Alice, looking down
with wonder at the Mouse’s tail; “but why do you
call it sad?” — Lewis Carroll: Alice in Wonderland

Problem 1

What is lim
ε→0

∫ 1

ε

x−1 cos(x−1 log x) dx ?

1.1 A First Look
This one really seems to hit us with everything nasty. The graph of the integrand is
appalling (see Figure 1.1; the bit near 0 has been suppressed to make the graph fit
onto the page). It is difficult to believe that the required limit exists, but of course
we trust Professor Trefethen not to ask the impossible. In the course of this chapter
we shall be able to prove that the required limit does exist (see p. 28).

If we think of it as

S =
∫ 1

0

x−1 cos(x−1 log x) dx, (1.1)

then there are two features, each of which by itself would be enough to make nu-
merical integration difficult:

• The integrand is unbounded in a neighborhood of the left endpoint.

• The integrand oscillates infinitely often inside the interval of integration.

17

18 Chapter 1. A Twisted Tail

0 0.2 0.4 0.6 0.8 1
�100

�50

0

50

100

Figure 1.1. Integrand with twisted tail.

For the rest of this chapter, integrals such as that in (1.1) are to be thought of
as improper Riemann integrals, since the corresponding Lebesgue integral does not
exist.

1.2 Oscillatory Integrals in General

Let us first look in general at integrals of the form
∫ b

a
g(x) dx, where g has infinitely

many extrema in the interval (a, b). Such integrals defeat the usual formulas (Gauss-
ian quadrature, etc.) that assume polynomial-like behavior of g, and are also quite
hard for automatic integrators based on iterative subdivision.

To simplify matters, let us assume that a is the only accumulation point of the
extrema of g. The basic strategy for infinitely oscillatory integrals (due to Longman
[Lon56], see also [Eva93, Chap. 4]) is usually formulated (see [PdDKÜK83, p. 80])
over an infinite range, but a finite interval can be treated similarly.

1. Choose a sequence ak → a with b = a0 > a1 > a2 > a3 > · · · . This sequence
partitions (a, b] as a union of subintervals (ak, ak−1], k = 1, 2, 3,

2. Integrate g over each of these subintervals. The idea is that the subdivision
is fine enough to ensure that g does not show any unpleasant behavior when
restricted to any particular subinterval; then any reasonable numerical method
will work. Let

sk =
∫ ak−1

ak

g(x) dx.

3. Sum the infinite series
∑∞

k=1 sk. The answer is the desired integral.

Note that a singularity at a (as exists in this case) does not make the problem any
harder: the subdivisions cluster at a, which is always a good way of coping with a
singularity. (A singularity at b, on the other hand, would have added to the difficulty
of the problem.)

1.3. This Particular Oscillatory Integral 19

For this strategy to work, the terms sk must either converge to zero very fast
(which seldom happens), or have sufficiently regular behavior so that an algorithm
for the extrapolation of a sequence is applicable. Some possible choices for the
subdivision points ak are:

• The zeros of g. This was Longman’s original choice.

• The extrema of g.

• If g(x) = f(x)w(x), where w is monotonic, it is usually easier, and just as
effective, to use the extrema of f instead of those of g.

In the case of a function on [a,∞) such that the distance between successive
zeros approaches a constant value h, Lyness [Lyn85] has pointed out that it is not
necessary to find those zeros: if the subdivision points are equally spaced at the
distance h, the method still works. Lyness does not actually mention using extrema
rather than zeros, but comes close to doing so, by suggesting as subdivision points
the points halfway between successive zeros of the integrand.

We need to say a bit more on the delicacy of using the zeros of g as subdivision
points. The difficulty arises because (unlike the set of extrema) the set of zeros is
not invariant when the graph of g is shifted up or down. There is just one correct
position that leads to regularly spaced zeros; all others give a limping pattern in
which too-short steps alternate with too-long steps. So we should really not be using
the zeros of g, but the solutions of the equation g(ak) = c for the correct c. In many
cases the choice of c is obvious: if the value of g at its extrema is always ±1, then
clearly c = 0 is sensible; if limx→a g(x) = g0, then choosing c = g0 is the only way
to obtain an infinite sequence sk.

In general, using the extrema is a better option. It is more robust, and the
terms in the series are smaller. It is true that one cannot guarantee, as when using
the zeros, that the series will alternate, but nevertheless in practice it usually does.

1.3 This Particular Oscillatory Integral
Coming back to the present case, it is obvious that we can simply use the zeros of g.
Therefore the subdivision points satisfy

a−1
k log ak = −

(
k − 1

2

)
π, k = 1, 2, 3,

In the case of the extrema, replace k− 1/2 by k. We shall have more to say on how
to solve this nonlinear equation in the next section.

For k = 1, 2, 3, . . . , 17, compute the zeros of the integrand and evaluate

sk =
∫ ak−1

ak

x−1 cos(x−1 log x) dx.

Then do the same, using the extrema of the cosine factor of the integrand instead.
The integrand is very well-behaved when restricted to a single subinterval

and almost any numerical method works: let us take Romberg integration (see Ap-
pendix A, p. 238), which has been a staple ingredient of almost all all introductory

20 Chapter 1. A Twisted Tail

Table 1.1. The first 17 terms of the series obtained by integration between
zeros or extrema. Also shown are the terms obtained from series acceleration by
iteratively applying Aitken’s ∆2-method.

sk between zeros sk between extrema accel. (betw. zeros) accel. (betw. extr.)

0.5494499236517820 0.3550838448097824 0.5494499236517820 0.3550838448097824

-0.3400724368128824 -0.0431531965722963 -0.2100596710635879 -0.0384770911855535

0.1905558793876738 0.0172798308777912 -0.0078881065973032 0.0076628418755175

-0.1343938122973787 -0.0093857627537754 0.0328626109424927 -0.0009933325213392

0.1043876588340859 0.0059212509664411 -0.0408139994356358 0.0001062999924531

-0.0855855139972820 -0.0040870847239680 -0.0002275288448133 -0.0000160316464409

0.0726523873218591 0.0029962119905360 0.0000467825881499 0.0000010666342681

-0.0631902437669350 -0.0022935621330502 -0.0000029629978848 -0.0000001739751838

0.0559562976074883 0.0018138408858293 0.0000004098092536 0.0000000090009066

-0.0502402983462061 -0.0014714332449361 -0.0000000298386656 -0.0000000013911841

0.0456061367869889 0.0012183087499507 0.0000000036996310 0.0000000000923884

-0.0417708676657172 -0.0010257939520507 -0.0000000002614832 -0.0000000000089596

0.0385427179214103 0.0008758961712063 0.0000000000282100 0.0000000000011693

-0.0357870041817758 -0.0007568532956294 -0.0000000000024653 -0.0000000000000529

0.0334063038418840 0.0006607085396203 0.0000000000001224 0.0000000000000079

-0.0313283690781963 -0.0005819206203306 -0.0000000000000221 -0.0000000000000007

0.0294984671675406 0.0005165328013114 -0.0000000000000018 -0.0000000000000000

numerical analysis texts since Henrici’s 1964 book [Hen64]. Romberg integration
gives the first 17 terms of the two series at a total cost of 2961 and 3601 function
evaluations, respectively. The result (calculated on a machine which has IEEE dou-
ble precision, slightly less than 16 significant digits) are shown in the left part of
Table 1.1.

Both series converge very slowly: the first like O(k−1), the second like O(k−2).
But both series are alternating, which is theoretically significant, since one can base
a convergence proof on it — see §1.8. It is also practically significant, since almost
any good extrapolation algorithm will work. For example, simply iterating Aitken’s
∆2-method (see Appendix A, p. 246) gives the terms of accelerated series shown in
the right part of Table 1.1.

In both cases, the terms certainly seem to be tending to zero rapidly, and their
sum is probably quite a bit more accurate than the required ten digits. The two sums
are 0.3233674316777786 and 0.3233674316777784, respectively. Distrusting the last
digit, we obtain

S
.= 0.323367431677778,

which happens to be correct to all digits shown.

1.4. Complex Integration 21

10.80.2 0.4 0.6

�30

�15

0

15

30

Re�z�

Im�z�

0

0.15

Figure 1.2. Integrand of Problem 1 in the complex plane. The red line
shows the original formulation with the integration path along the real axis, and the
yellow line the contour used for the complex integration method.

1.4 Complex Integration
Knowledge of an analytic continuation of a real function off the real axis into the
complex domain is a treasure beyond price. It allows numerical methods of great
power and versatility.

Using Euler’s identity eix = cosx+ i sinx, we find that

S =
∫ 1

0

Re
(
e(i log x)/x

x

)
dx =

∫ 1

0

Re
(
e((i/x)−1) log x

)
dx =

∫ 1

0

Re
(
xi/x−1

)
dx.

By Cauchy’s theorem, the line integral between two points in the complex plane
does not depend on the path taken, as long as both paths lie in a region inside which
the function is analytic. So we can replace the real variable x above by a complex
variable z, taking care to select the integration path appropriately.

In this case, the integrand is very well-behaved as soon as one moves into the
positive quadrant away from the real axis, as the perspective view in Figure 1.2
shows. A good contour, as shown in the figure, gets away from the real axis imme-
diately and later turns back to the point (1, 0). If the contour is parametrized by
z = z(t), t ∈ [a, b], where z(a) = 0 and z(b) = 1, we have

S = Re
∫ b

a

z(t)i/z(t)−1z′(t) dt. (1.2)

This integral is an improper Riemann integral along the line z(t) = t, which is the
original path of the problem statement, but it becomes a proper integral along a
contour like the one shown if we define the integrand at 0 by continuity.

For example, take a simple parabola:

z(t) = t+ it(1 − t), z′(t) = 1 + i− 2it, t ∈ [0, 1]. (1.3)

Figure 1.3 shows a plot of the real part of the integrand in (1.2). The oscillation

22 Chapter 1. A Twisted Tail

0 0.2 0.4 0.6 0.8 1
�0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.3. Integrand along the contour z(t) = t+ it(1 − t).

can still be seen under a microscope, but its amplitude vanishes rapidly as t → 0.
This function responds readily to integration by canned software.

An Octave Session.

>> function y=func(t);
>> z=t+i*t.*(1-t); y=real(z.^(i./z-1).*(1+i*(1-2*t)));
>> endfunction
>> quad(’func’,0,1)

ans = 0.323367431677773

It is encouraging that the first 14 digits agree with what we had before. Let’s try
for more digits. Here is a PARI/GP session. We need to code the special case t = 0
this time because PARI/GP, unlike Octave, uses a closed quadrature formula (i.e.
one that evaluates the integrand at the endpoints).

A PARI/GP Session.

? func(t) = if(t==0,return(0),\
z = t+I*t*(1-t); real(z^(I/z-1)*(1+I*(1-2*t))))

? intnum(t=0,1,func(t))

0.3233674316777787613993700868

And in fact (as we can confirm by computing in higher precision) we have

S
.= 0.32336 74316 77778 76139 93700 8.

1.5. Lambert’s W Function 23

1.5 Lambert’s W Function
To find the partition of (0, 1] needed for the subdivision method, we need to solve
for ak many equations of the form

a−1
k log ak = −bk.

This is not a very hard task, since the left-hand side is monotonic and one could
always use bisection, but it turns out that the solution can be written explicitly in
terms of a special function that, if not well-known, deserves to be. Let z = bk and
w = − log ak; then

wew = z. (1.4)

This equation has a unique real solution w = W (z) for z ∈ [0,∞).
The function −W (−z) was already known to Euler, who obtained it as the

confluent case of a function of two variables studied by Lambert. Although the
history of the function W can be traced back to 1758, it does not appear in the
Handbook of Mathematical Functions [AS84]. The name Lambert’s W function by
which it is now known, was given to it in the early 1990s by the developers of
Maple.1 A delightful survey of the history, properties and applications of Lambert’s
W function can be found in Corless et al. [CGH+96], which is our source for most
of the following facts.2

Euler knew the Maclaurin series of W :

W (z) = z − 21

2!
z2 +

32

3!
z3 − 43

4!
z4 + · · · . (1.5)

For z0 �= 0, the Taylor series of W (z) in powers of z − z0 is easy to find, since the
derivatives of W are given by

dn

dzn
W (z) =

pn(W (z))
eW (z) n(1 +W (z))2n−1

, n = 1, 2, 3, . . . , (1.6)

where the polynomials pn satisfy p1(w) = 1 and

pn+1(w) = (1 − 3n− nw)pn(w) + (1 + w)p′n(w), n = 1, 2, 3,

Note that pn is a polynomial of degree n−1. The temptation to “simplify” (1.6) by
substituting eW (z) = z/W (z) should be resisted, since the formula then has a quite
unnecessary removable singularity at z = 0.

Some computing environments supply an implementation of the Lambert W
function, but if not, it is an easy task to write one’s own subroutine. In [CGH+96]
it is suggested to solve the nonlinear equation (1.4) by an iterative method, but it
is even easier to combine iteration with the Taylor series

W (z) = W (zk) +
1
1!

(z − zk)W ′(zk) +
1
2!

(z − zk)2W ′′(zk) + · · · .

1The developers of Mathematica chose to name the command for this function ProductLog.
2An excellent starting point when surfing for Lambert’s W function is the web page

http://www.apmaths.uwo.ca/~rcorless/frames/PAPERS/LambertW/.

24 Chapter 1. A Twisted Tail

0 0.5 1 1.5 2 2.5 3 3.5 4

�1

�0.5

0

0.5

1

Figure 1.4. Integrand after the transformation t = − log x.

Given an approximation wk, we compute zk = wke
wk , so that wk = W (zk). Then

keep adding terms from the Taylor series until no further improvement is possible, or
until taking into account another term would not be worth the effort of computing
it. The precise point at which to stop will depend on details of implementation, in
particular on the relative expense of calculating ez as compared to multiplication
and division.

Note that the factor eW (zk) in (1.6) has already been computed in the process
of finding zk. If the denominator qn(W) = eW (z)n(1 + W (z))2n−1 is stored, each
extra derivative can be computed by n + 1 multiplications and one division. Of
course, the coefficients of the polynomials pn should be precomputed up to the
highest degree that will be needed.

As noted in [CGH+96], only the last iteration needs to be done to the full
precision required. In our PARI/GP implementation, to evaluate W to d digits, we
used eight terms of the Taylor series with an initial value accurate to d/7.5 digits,
obtained by a recursive call. At the lowest level, the initial value w0 = log(1 + z)
was used. This is perfectly adequate when evaluating W as a real-valued function
for z � 0. The resulting routine, at very high precision, requires less time than
two evaluations of ez. For the subtleties involved in evaluating W as a multivalued
complex function, see [CGH+96].

1.6 Transformation to a Semi-Infinite Interval
As a general rule of thumb, it is easier to integrate a bounded function over an
infinite interval than it is to integrate an unbounded function over a finite interval.
The simplest transformation is u = 1/x, which leads to an integral that can be solved
by contour integration. Another very obvious is transformation is t = − log x, so
that the integral becomes

S =
∫ ∞

0

cos(tet) dt. (1.7)

1.6. Transformation to a Semi-Infinite Interval 25

At first sight, the transformation seems to have gained nothing, since inte-
grating between the zeros or between the extrema of the transformed integrand
will produce exactly the same infinite series that we obtained before. The integrand
looks only marginally less ugly than before (see Figure 1.4).

However, the transformed integrand has a simpler form and is therefore more
amenable to analytic manipulation. In particular, one can use integration by parts
to obtain equivalent expressions in which the amplitude of the integrand decays
rapidly as t increases. For the first few terms, this can be done directly on (1.7), but
if one wants the general formula, it is easier to think of the integral

∫∞
0

cos(xex) dx
as Re

∫∞
0
eiW−1(x) dx. This allows us to take advantage of a nifty trick for repeatedly

integrating by parts.
Let I0 be an integral of the form I0 =

∫
ecg(x) dx, where f = g−1, i.e. f(g(x)) =

x for all x in the region of interest. Using the identity g′(x)f ′(g(x)) = 1, we obtain

I0 =
∫
f ′(g(x))g′(x)ecg(x) dx = c−1f ′(g(x))ecg(x) − c−1I1,

I1 =
∫

d

dx
(f ′(g(x)))ecg(x) dx =

∫
f ′′(g(x))g′(x)ecg(x) dx =

c−1f ′′(g(x))ecg(x) − c−1I2,

I2 =
∫

d

dx
(f ′′(g(x)))ecg(x) dx =

∫
f ′′′(g(x))g′(x)ecg(x) dx,

and in general∫
ecg(x) dx = −ecg(x)

(
− c−1f ′(g(x)) + (−c)−2f ′′(g(x)) + (−c)−3f ′′′(g(x))+

· · · + (−c)−kf (k)(g(x))
)

+ (−c)−k

∫
f (k+1)(g(x))g′(x)ecg(x) dx.

In this case, taking c = i, f(y) = W (y), g(x) = xex, all derivatives of f vanish
at infinity. Substituting the derivatives of W at 0 that can be read off from the
Maclaurin series (1.5), we are left with∫ ∞

0

eixex

dx = i 10 − i221 + i332 − · · · + ik(−k)k−1

+ ik
∫ ∞

0

W (k+1)(xex)ex(1 + x)eixex

dx.

Stopping at k = 3 and taking the real part, we find, with the aid of (1.6), that

S = 2 −
∫ ∞

0

(
6

(1 + t)3
+

18
(1 + t)4

+
25

(1 + t)5
+

15
(1 + t)6

)
e−3t sin(tet) dt.

The transformed integrand has an unpleasantly large slope at the origin and a nasty-
looking peak, but decays quite fast (see Figure 1.5). For 16 digits, it is adequate to

26 Chapter 1. A Twisted Tail

0 2 4 6 8 10 12

0

1

2

3

4

Figure 1.5. Integrand of the remainder term after three applications of
integration by parts.

consider only the range 0 � t � 12. Romberg integration is still adequate, but this
integrand is not so easy, and 131073 function evaluations are needed to confirm the
result from the previous method.

1.7 Representation as a Divergent Series
If one continues the process of integration by parts indefinitely, ignoring the remain-
der term, an infinite series is obtained, the first few terms of which are

21 − 43 + 65 − 87 + · · · . (1.8)

This is a series of stunning simplicity, but also a violently divergent one. Divergent
series like this, in which the terms have a simple analytic representation, can be
formally manipulated to yield other expressions which usually are equivalent to the
original quantity being sought. Such a technique, of course, provides only a heuristic
motivation of an identity that still needs to be verified by other means.

General-purpose convergence acceleration methods (see Appendix A) make
little impression on this series. However, as in the case of the contour integral
method described before, the fact that we have an analytic expression for the terms
allows a better method. In the case of a convergent alternating series, the identity

∞∑
k=1

(−1)k−1ak =
i

2

∫
C
f(z) csc(πz) dz

holds (see Theorem 3.6), provided that:

1. the integration contour C separates the complex plane into open regions ΩR

containing the points 1, 2, 3, . . . , and ΩL containing the other integers, such
that C runs counterclockwise around ΩR;

1.7. Representation as a Divergent Series 27

�3 �2.5 �2 �1.5 �1 �0.5 0 0.5
�3

�2

�1

0

1

2

3

Figure 1.6. Contour for integration of (1.9), showing points equally spaced
with respect to the parametrization.

2. ak = f(k), where f is analytic in ΩR and decays suitably as z → ∞.

The form of the divergent series (1.8) suggests that we examine the contour integral

i

2

∫
C
(2z)2z−1 csc(πz) dz, (1.9)

A suitable parametrized contour along which the integral converges rapidly is given
by (see Figure 1.6)

(x, y) = (1 − 1
2 cosh t,−t), −∞ < t <∞.

For 16 decimal digits, it suffices to consider only the range |t| � 2.8. When the
contour integral is evaluated by the trapezoidal rule3 with step size h in the variable
t, the results shown in Table 1.2 are obtained. It is encouraging to find that the
result agrees with those obtained previously.

Table 1.2. Approximations of contour integral (1.9) by trapezoidal sums
with step size h. Also shown is the number of evaluations of the integrand.

h−1 no. of evals approximation to S

2 11 0.334486489324265
4 23 0.323398015778690
8 45 0.323367431981211
16 91 0.323367431677779
32 181 0.323367431677779

3See §3.6.1 for an explanation why trapezoidal sums are exceptionally good for contour integrals
of analytic functions: the convergence is exponentially fast.

28 Chapter 1. A Twisted Tail

Π�2 3Π�2 5Π�2 7Π�2 9Π�2 11Π�2

0

0.2

0.4

0.6

0.8

1

Figure 1.7. Integrand transformed by Lambert’s W function.

Although the agreement to 14 digits is highly suggestive, we do not have a
proof of the validity of this method. In general, there are infinitely many analytic
functions that interpolate given values at the positive integers, and only in the case
of a convergent series can it be guaranteed that (1.9) is independent of the choice
of interpolant. As a curiosity and a challenge, we therefore offer the conjecture: The
improper Riemann integral (1.1) and the contour integral (1.9) are equal.

1.8 Transformation to a Fourier Integral
The best studied infinite oscillatory integrals are Fourier integrals. In §9.5 we discuss
these integrals in more detail; here we show that the present problem can also be
handled that way.

The essential feature of a Fourier integral is that a factor of the form sin(at+b)
is present in the integrand. Here we have a factor cos(tet), so the transformation
that we need is u = tet, which is to say t = W (u). This gives us the formula4

S =
∫ ∞

0

W ′(u) cosu du. (1.10)

W ′ is easy to compute using (1.6). As far as oscillatory integrands on the infinite
interval go, this integrand is quite well-behaved, as the graph in Figure 1.7 shows.

At this stage it becomes possible to prove easily that the original integral
converges. Since the zeros are now equidistant, it is sufficient to show that the
multiplier of cosu monotonically decreases to 0 for sufficiently large u, since in that

4Mathematica’s numerical integrator NIntegrate handles such Fourier integrals by an option
that basically applies Longman’s method of §1.2. Problem 1 is then solved to 13 correct digits by
the following short code:

NIntegrate ProductLog' u Cos u , u, 0, , Method Oscillatory

0.3233674316777859

1.9. Going for 10 000 Digits 29

Table 1.3. Approximations to S by applying the Ooura–Mori method to
the integral (1.10). Also shown is the number of evaluations of the integrand.

M no. of evals approximation to S

2 6 0.333683545675313
4 13 0.323277481884531
8 26 0.323367418739372
16 53 0.323367431677750
32 111 0.323367431677779

case, integrating between the zeros gives an alternating series with monotonically
decreasing terms. But W ′(u) = e−W (u)/(1 +W (u)) is a product of two decreasing
functions and therefore decreasing.

The Ooura–Mori method [OM99] (see §9.5 for a detailed description) with the
strategy of iteratively doubling the parameter M, performs as shown in Table 1.3.
As can be seen from that table, both the number of function evaluations and the
number of correct digits are roughly proportional to M. In view of this property,
we trust all the digits except the last (which might be contaminated by roundoff
error) and assert that

S
.= 0.32336743167777.

1.9 Going for 10 000 Digits
Computation to very high precision is a specialized art best left to experts. Fortu-
nately, those experts have produced proprietary software such as Maple and Math-
ematica, and open-source software such as GNU MP, CLN, GiNaC, PARI/GP, and
doubtless many others. As far as basic arithmetic and the elementary functions are
concerned, we can be confident that the experts have done their best, and while
one expert may have done better than another expert, an ordinary user of those
packages cannot hope to compete.

Here is an example of timings on my own workstation for a few common tasks.
Starting with x =

√
3, Table 1.4 gives the run time in clock ticks (one clock tick

is the smallest measurable unit of time, about 0.002 seconds) reported by ginsh
(a simple interactive desk calculator interface to GiNaC) at three precision levels.
Two obvious properties of that table hold true in general, for all implementations
of multiple-precision arithmetic:

• The cost of a d-digit arithmetic operation increases faster than d increases.

• Transcendental functions are much, much more expensive to evaluate than
arithmetic functions.

The classic book of Knuth ([Knu81], §4.3.3) gives an exhaustive discussion on mul-
tiprecision arithmetic.

30 Chapter 1. A Twisted Tail

Table 1.4. Run time of various high-precision calculations.

no. of digits: 10000 20000 40000

x× x 1 3 12
√
x 3 11 49

1/x 6 24 70
cosx 249 1038 3749
ex 204 694 2168

The usual way of assessing the complexity of a d-digit calculation is to find
an exponent p such that the time t(d) as d is increased scales as O(dp). In the
case of multiplication, the best-known fast method is that of Karatsuba, which has
d = log2 3 .= 1.6 — this is the method used by GiNaC.

Knuth describes several algorithms that can multiply two numbers in time
O(dp) with p = 1 + ε for arbitrarily small ε, which is asymptotically optimal. For
relatively small values of d, a value of p distinctly larger than 1 models the observed
behavior of the optimal methods better. The crossover point where an optimal
method is better in practice than the Karatsuba method usually is near d = 10000.

It is also known [Bre76] that the most common transcendental functions can
be evaluated in time O(M(d) log d), where M(d) is the d-digit multiplication time.

The prevalence of the formula O(dp) does not imply that the actual formula
for t(d) is as simple as that — the big O sweeps under the carpet such multipliers
as log d, log log d etc., as well as some possibly rather large constants. But the
simplified formula gives us a rule of thumb: if d forms a geometric progression,
then, approximately, so should t(d). One can use this reasoning without actually
calculating p : for example, having seen that in the case of ex, we have t(10000) =
204 and t(20000) = 694, we expect that t(40000) should be near 6942/204 .= 2361 —
as indeed is the case. Also, since terms of the form log d are in effect being modelled
by some power of d, this procedure tends to give an overestimate of the required
time, which is not a bad thing.

Let us now assess the behavior of the more promising algorithms in terms of
how fast the running time will increase as d increases.

Integration over subintervals and extrapolation. Assume that we can find at
no cost a quadrature formula that can evaluate the integral over a subinterval to d
digits using O(d) points (this is optimistic, but I am going to argue that this method
even so is not competitive), and that we can get away with O(d) subintervals. That
gives O(d2) evaluations of the integrand.

Complex integration. When calculating to 10 000 digits we cannot afford the lux-
ury of an automatic quadrature routine — we need to use a routine tailored to the
task at hand. The basic technique is:

1. Select the integration contour carefully.

1.9. Going for 10 000 Digits 31

2. Parametrize the contour in such a way that the trapezoidal rule on the para-
metric axis is asymptotically an optimal quadrature formula, that is, a formula
in which the number of correct digits is nearly proportional to the number of
function evaluations (see §3.6.1).

Details on how to do these two steps are out of the scope of this chapter, but a full
discussion on a similar technique applied to other problems can be found in §§3.6
and 9.4.

After some experimentation, we recommend the following parametrized con-
tour for the evaluation of (1.2) to d digits:

z =
πet

πet + 2 − 2t
+

2i
cosh t

, log(cd) < t < 1 + log d,

where c ≈ 1.53; the trapezoidal rule with step length 2/(d+ 1) is then adequate.

Infinite series. We cannot use this method as our main tool, but if its result
happens to agree with our other well-founded methods, it is useful as confidence
booster.

Contour integration on the infinite interval typically requires step size inversely
proportional to the number of digits. The double exponential decay of the integrand
in (1.9) as a function of t (once from the parametrization, once from the exponen-
tiation in the integrand) guarantees that the number of points required increases
only slightly faster than the inverse of the step size, so that the number of points
N actually used is modelled by N = O(d1+ε), where ε is small. (A more accurate
model is d ≈ cN/ logN, which when c is known, can be solved for N in terms of a
branch of Lambert’s W function not given by (1.5) — but that is another story.)

At each of those points we need to evaluate a hyperbolic function, a complex
cosecant, and a complex power. We can expect the totality of these to be more
expensive than a real-argument evaluation of cos(xex), but not by so much that it
outweighs the advantage of O(d1+ε) versus O(d2) function evaluations.

Ooura–Mori method. Like the previous two methods, this is another double ex-
ponential integration method, with much the same arguments being applicable as in
the case of the contour integration method. It has the advantage that the argument
values to the transcendental functions are real, so we expect it to be a little faster
than the others.

As we have seen, the evaluation of the Lambert W function should cost no
more than as two evaluations of ex.

Experimentally, one finds that M = 1.5d is adequate when working to d digits.

32 Chapter 1. A Twisted Tail

Chapter 2

Reliability amid Chaos

Stan Wagon

If I venture to displace ... the microscopical speck of dust ... on
the point of my finger, ... I have done a deed which shakes the
Moon in her path, which causes the Sun to be no longer the Sun,
and which alters forever the destiny of multitudinous myriads of
stars. — Edgar Allen Poe (Eureka, 1848)

But every jet of chaos which threatens to exterminate us is con-
vertible by intellect into wholesome force.

— Ralph Waldo Emerson (Fate, The Conduct of Life, 1860)

Problem 2

A photon moving at speed 1 in the x-y plane starts at time t = 0 at
(x, y) = (1/2, 1/10) heading due east. Around every integer lattice point
(i, j) in the plane, a circular mirror of radius 1/3 has been erected. How
far from (0, 0) is the photon at t = 10?

2.1 A First Look
To see even the approximate behavior of the photon, one must write a program
to follow the bounces. This can be done in several ways, and we shall present
an especially elegant method due to Fred Simons in §2.2. But blindly following
the reflections is not at all sufficient, as one would be led astray. Using typical
machine precision—16 significant digits—for the intermediate computations is not
good enough to get 10 digits of the answer. We can discover this numerical instability
without using high precision as follows. We can vary the initial position around a
circle of radius 10−d centered at (1/2, 1/10) and see what sort of variation we get
in the result (the distance from the final point to the origin). More precisely, we
use 10 points around the circle and look at the maximum absolute difference in the
answer—the distance of the photon from the origin—among the 90 pairs. The results
are shown in Figure 2.1. This computation, carried out using machine precision only,

33

34 Chapter 2. Reliability amid Chaos

shows that a change of about 10−17 in the initial conditions can cause the final result
to vary by about 10−5. This is a classic example of sensitive dependence, popularly
known as the butterfly effect.

10�2 10�5 10�8 10�11 10�14 10�17

 Initial
 variation

1

10�1

10�2

10�3

10�4

10�5

Final
variation

Figure 2.1. The vertical axis represents the maximum variation in the
result when the initial position varies around a circle of radius 10−d centered at
(1/2, 1/10). This computation indicates that a computation using 16 significant dig-
its will give only about 5 digits of the result.

Since we know that roundoff error due to machine precision will enter the
computation quite quickly—it comes in right at the start because 1/10 is not finitely
representable in binary—we learn here that standard machine precision is simply
inadequate to get more than about five digits of the answer.1 Further, the eventual
linearity of the data in Figure 2.1 leads to a prediction that about 21 digits of
precision are needed to obtain 10 digits of the answer. We shall see in § 2.2 that
this estimate is correct.

It is interesting to note that the computations underlying Figure 2.1 are in-
correct, in the sense that the computed numbers used to get the variation that is
plotted are, in some cases, correct to only about 5 digits. Nevertheless, explosion in
the uncertainty is a solid indicator that something is wrong. In short, machine pre-
cision can be a reliable diagnostic tool, even if it cannot provide the cure. Redoing
the computation with much higher precision (50 digits, say) yields a figure that is
indistinguishable from Figure 2.1. An important consequence of these observations
is that software that works only in machine precision, such as Matlab or C, will
not be able to solve the problem to ten digits (unless one uses add-ons that provide
higher precision). The other nine problems in the SIAM challenge can be solved in
a machine-precision environment. This is consistent with Nick Trefethen’s Maxim
16 [Tre98]: “If rounding errors vanished, 95% of numerical analysis would remain.”

1 It seems that many of the participants in the contest did not recognize this problem. Of the
82 teams that submitted solutions 58 got 10 digits, 10 got between 6 and 9 digits, and 14 got 5 or
fewer digits.

2.2. Chasing the Photon 35

2.2 Chasing the Photon
Consider a ray emanating from a point P in the direction of the unit vector v. If we
divide the plane into unit squares centered on the lattice points, then these squares
divide the ray into segments (Figure 2.2). For any point on the ray, it is easy to
discover which square it is in by just rounding its coordinates. More important, if
the ray hits the circle inside a given square, then the ray’s segment inside the square
has length at least

√
2 − 2/3. We could use this number in the work that follows,

but it is simpler to replace it by a rational lower bound, and 2/3 is adequate. To
repeat: if the segment inside a square has length less than 2/3, then there is no
intersection with the circle inside the square.

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

P

1�3

����
2
�������������

2
�

1
�����
3

����
2 �

2
�����
3

Figure 2.2. Using lattice squares is an elegant and efficient way to organize
the search for the next mirror the photon hits. The figure at right explains why: if
a ray strikes a circle, its intersection with the ambient square has length at least√

2 − 2/3.

This observation means that if the path from P fails to hit the circle corre-
sponding to P , then the next possible circle it can hit is the one corresponding to
P + 2v/3. Thus we can find the intersection by considering, as long as necessary,
P , P + 2v/3, P + 2 · 2v/3, P + 3 · 2v/3, and so on. As soon as we find a hit, we
replace P by the point of intersection with the mirror, and v by the new direction,
and carry on.

To get the new point (or determine that the circle is not hit), let m be the
center of the circle corresponding to P , and choose the smallest positive root t
of the quadratic equation (P + tv − m).(P + tv − m) = 1/9 to get the correct
intersection point Q. With Q in hand, it is a simple matter to determine the new
direction. Assume for a moment that the center of the circle is the origin and
Q = (a, b). Then the transformation taking a direction to its reflected direction is
a linear transformation, A, that sends (−a,−b) to (a, b) and fixes (−b, a). Since we

36 Chapter 2. Reliability amid Chaos

are trying to find A so that

A ·
(
−a −b
−b a

)
=
(
a b
−b a

)
,

we need only a single inversion. Here is how to do it in Mathematica.

A Mathematica session.

�a �b
b a

�.Inverse���a �b
�b a

��//Simplify//MatrixForm

��������
�

�a2 � b2

a2 � b2
�

2 a b

a2 � b2

�
2 a b

a2 � b2
a2 � b2

a2 � b2

��������
�

Because a2 + b2 = 1/9, the new direction is simply

9
(
b2 − a2 −2ab
−2ab a2 − b2

)
v,

where we now translate and let (a, b) = Q−m.

Algorithm 2.1. Chasing the Reflecting Photon.

Assumptions: The photon has unit speed; the mirrors have radius 1/3.

Input: An initial position P , a direction vector v, and a maximum time tmax.

Output: The path of the particle from time 0 to tmax as the set path of points of
reflection, together with the positions at times 0 and tmax.

Notation: trem is the amount of time remaining, m is the center of the circle in
the square containing the photon, and s is the time the photon strikes the circle,
measured from the time of the preceding reflection. For a point Q = (a, b), HQ

represents the matrix

HQ = 9
(
b2 − a2 −2ab
−2ab a2 − b2

)
.

Step 1: Initialize: trem = tmax, path = {P}.
Step 2: While trem > 0 :

Let m = round(P + 2v/3);
Let s = smallest positive root of (P + tv −m).(P + tv −m) = 1/9;

(s = ∞ if there is no positive root);
If s < trem: P = P + sv; v = Hp−m · v;

else: s = min(trem, 2/3); P = P + sv; end if.
Step 3: Update time and path: Let trem = trem − s; Append P to path.
Step 4: Return path.

2.2. Chasing the Photon 37

Here is complete code that implements this algorithm and solves Problem 2.
We start with 36 digits of the initial conditions.

A Mathematica session.

H��a ,b �� �� 9�b2 � a2 �2 a b
�2 a b a2 � b2

��

p � N��1/2,1/10�,36��v � �1,0��tRem � 10�

While�tRem > 0,m � Round�p � 2v/3��

s � Min�Cases�t/.Solve��p � t v 	 m
.�p � t v 	 m
 �� 1/9,t�, ?Positive���

If�s < tRem,p� � s v�v � H�p 	 m�.v,s � Min�tRem,2/3��p� � s v��

tRem 	 � s��

answer � Norm�p�
0.9952629194

Precision�answer�

10.2678536429468

Using 36 digits forces Mathematica to use its software arithmetic (high-precision
arithmetic), which is based on the technique of significance arithmetic; this is not
as pessimistic in its error estimates as interval arithmetic, but instead uses calculus-
based heuristics to estimate the worst-case behavior after each computation. The
result is claimed to have 10 digits of precision, and 10 digits are indeed correct.

So now we use the preceding code but with 50-digit values of the initial con-
ditions (including the direction). The result, printed below with Mathematica’s tag
indicating the precision, shows that the result is believed to have 32.005 correct
digits.

0.995262919443354160890311809426722615911420883574‘32.005

We repeat with starting precision of 100 and get the following result, with predicted
error near 10−82; we infer from this that the preceding result is, in fact, good to 32
digits.

0.995262919443354160890311809426721621029466922734154349

803208858072986179622830632228394435818154‘82.005

We learn from this that the error estimates of significance arithmetic seem to be
adequate. So we can easily get 100 digits. We use 120 digits of precision to start
and we get 102 digits of the answer (we will see in § 2.3 how to verify these digits).

0.995262919443354160890311809426721621029466922734154349

8032088580729861796228306320991749818976188760314664389

396105‘102.005

38 Chapter 2. Reliability amid Chaos

Computations such as these allow us to display and compare trajectories.
Figure 2.3 compares the results of two computations to time 20: one uses machine
precision, the other starts with 40 digits of precision on the initial conditions, which
is adequate to guarantee ten digits of all points on the trajectory.

Figure 2.3. At time 20, the machine precision trajectory (solid) is at a very
different point than one following a path (dashed) computed with enough precision
to guarantee correctness.

Mathematica’s approach to high-precision arithmetic is not typical of numer-
ical computing software. Many environments allow the user to use fixed-precision
for numerical computation. Such an approach will allow us to better understand
the error propagation, and the results of a fixed-precision computation are shown
in Table 2.1. The data in the table were obtained by simulating fixed precision in
Mathematica; this computation would be easier in Maple, where one would use

> Digits := d:

to work with d digits of precision. In any case, it seems safe to infer from the
data that the first 12 digits of the correct distance at t = 10 are 0.995262919443.
And we note that, as predicted in §2.1, it takes a working precision of 21 digits
to get 10 digits of the answer; indeed, using precision d seems to get about d − 11
correct digits. Because the stated problem involves 17 reflections, we can say that
the precision loss is about two-thirds of a digit per reflection.

2.2. Chasing the Photon 39

Table 2.1. Results of a fixed-precision approach using precision 5 through 30

Precision Result Number of Correct Digits

5 3.592 0

6 0.8657 0

7 2.387 0

8 0.7816 0

9 1.747 0

10 0.5843 0

11 0.8272 0

12 1.011 0

13 0.993717 2

14 0.99522129 4

15 0.99525663 4

16 0.9952625911 6

17 0.995263117 5

18 0.99526292566 7

19 0.995262917995 8

20 0.9952629195254 9

21 0.99526291946157 10

22 0.995262919441600 11

23 0.9952629194435253 12

24 0.99526291944336979 13

25 0.995262919443353262 14

26 0.9952629194433543858 15

27 0.99526291944335415781 16

28 0.99526291944335416080500 19

29 0.9952629194433541607818 18

30 0.99526291944335416087109 19

2.2.1 Working Backwards

Because the motion of the photon in the direction of negative time follows exactly
the same rules as in the positive direction, it is natural to investigate backwards
trajectories to learn something about the number of correct digits in a numerical
solution of the problem. Suppose, as in §2.1, that we are working only with machine
precision. Then a natural idea is to take the computed point after 10 seconds (call
it Q) and also the direction of the final segment and run the algorithm backwards
to see how close the result (call it P∗) is to the starting postion P .

The result of such work is P∗ = (0.5000000001419679, 0.09999035188217774),
a point at distance 9.6 · 10−6 from (1/2, 1/10). In short, 10 digits were lost in
the forwards-and-back computation. But what exactly can one conclude from this?
Because the propagation of error inherent in the problem (independent of the algo-
rithm) is a multiplicative process, it is tempting to think that 5 digits were lost in

40 Chapter 2. Reliability amid Chaos

the forward computation, and then 5 more when traveling in reverse; if true, this
would imply that the original computation gave the desired 10 correct digits. But
this reasoning is fallacious; the true state of affairs is that 10 digits were lost in the
computation of Q, and there is no further deterioration of the result when one goes
backwards: still 10 digits are lost in the computation of P∗.

Before going more deeply into the subtleties of this, let us describe an experi-
ment, still using only machine precsion, that will show that the 5-and-5 conclusion
is false. Suppose Q were in error by only about 10−10. Perturb Q by 10−13 and
run the algorithm backwards to get P∗∗. If the 5-and-5 hypothesis held, one would
expect the P∗∗ to be within 10−5 of P . But the result, using Q+

(
10−13, 10−13

)
as

the starting point, is (0.500351, 0.115195), at distance 0.015 from P . So 15 digits
were lost. This is consistent with the interpretation that there is already a 10-digit
loss to get Q.

A backwards error analysis can shed some light on the loss of precision as
the trajectory is computed. Let x denote the initial conditions (a triple: position
and angle). Let F (x) denote the function that takes the initial condition to its true
state after 10 seconds. Let G denote the computed approximation to F using fixed
precision p. Let Fb and Gb be the backwards versions of these functions, where we
start at a state at time 10 and work backwards to time 0; then Fb(F (x)) = x for
any x. We need to make one assumption about the algorithm, that it is numerically
stable [Hig96, §1.5]. By this we mean that the computed value is near a true time-10
value of a starting point near x; that is, G(x)∼pF (x∗) where x∗∼px. Here, a ∼ mb
means that, roughly, a and b agree to m digits.

For Problem 2 numerical stability follows from Bowen’s shadowing lemma
[GH83, Prop. 5.3.3] for hyperbolic dynamics, which in principle governs dispersing
billiards [Tab95, Chap. 5]. A rigorous proof would have to address subtle uniformity
estimates, however.

Now, when we do a computation forwards to get y = G(x) and then reverse it
to get Gb(y), we can see how far the result is from x (using the maximum error in the
three entries in x). In the machine-precision case (p = 16), this difference is about
10−4.5, and now we want to see what we can conclude from that. So assume that
the algorithm loses d digits as time runs from 0 to 10: G(x)∼p−dF (x); this should
be the same when we go backwards, from 10 to 0. So Gb(G(x)) ∼ p−dFb(G(x)).
But the numerical stability assumption tells us that G(x)∼pF (x∗) for some x∗∼px.
Therefore Fb(G(x)) ∼ p−dFb(F (x∗)) = x∗∼px, whence Gb(G(x)) ∼ p−dx.

Despite the danger of misinterpreting backwards information, if used from the
worst-case point of view it can provide useful information to give one confidence
in the result. Suppose we do the entire computation forwards using fixed precision,
and then backwards. We keep increasing the precision until the backwards result is
within 10−11 of the answer. Then, we can conclude that this is also the error of the
forward result at worst. This idea is generally useful in time-symmetric dynamical
systems, such as ordinary differential equations.

2.3. Reliable Reflections 41

2.3 Reliable Reflections
The answer obtained in §2.2 seems correct, but the methods are heuristic only. Inter-
val analysis can be used to design an algorithm that yields a computer-assisted proof
of correctness. The fundamentals of interval arithmetic are discussed in Chapter 4.
The approach of this section is sometimes called a naive interval computation, since
we will simply transform the basic numerical algorithm by replacing each operation
with an interval version (as opposed to the more sophisticated interval algorithms
described in Chapter 4). Recall that interval arithmetic is either built-in or in a
package for Mathematica, Maple, Matlab, and C. But one must be careful. A first
difficulty is that, for example, the Mathematica implementation does not include
an interval version of min, and so one must define that oneself. More precisely,
for any symbol e, Min[e[{a,b}],e[{c,d}]] in Mathematica returns min(a, b, c, d).
But when e is Interval, one needs an interval version of min, for which the result
is the interval [min(a, c),min(b, d)]. This is merely a technicality and easily fixed;
more subtle are some of the details of the actual algorithm. And a more serious
complication that makes C or Matlab/Intlab less suitable for this task is that very
high precision is needed in the interval computations to get a final interval that
determines 10 digits.

The basic idea is to use as input a small 2-dimensional interval about each
of the initial conditions (1/2, 1/10) and (1, 0) and use interval methods to get an
interval enclosure of the particle’s position at time 10. If this final interval is not
small enough, just restart using a smaller interval (reduce by a factor of 10) around
the initial conditions. But there are subtleties:

• One must use a working precision that is large enough to handle the precision
of the intervals. Using s+2 digits of working precision when the initial condi-
tions have radius 10−s appears to be adequate. And this is related to another
subtle point: one must be sure that the precision of the intermediate results
is at least as large as the ultimate precision goal. That is, one must be sure
that the precision loss when solving the quadratic equation has not built up
too much. In Mathematica, this can be done by checking that the precision of
the various computed quantities are adequate.

• When solving the quadratic equation in interval form to find the time the pho-
ton hits the current circle, one must check that the solution has no expression
of the form

√
[negative value, positive value]. For if such an expression arose

then the mirror would not be uniquely determined by the starting interval. If
this happens, we just pull the emergency brake and go back to the start of
the loop, with a reduction by a factor of 10 in the size of the initial intervals.

• When checking whether the mirror-strike occurs before time runs out, one
must check that the travel time along the current ray is less than the time
remaining (as opposed to overlapping with the interval representing the time
remaining).

• The times are intervals throughout, so one might end up with the position
not at time 10, but at time 10± δ. However, the unit speed hypothesis allows

42 Chapter 2. Reliability amid Chaos

us to turn this time uncertainty into a space uncertainty, and so we can still
get an interval trapping the answer.

Note that this approach can be viewed as verification of the results obtained in §2.2;
yet it is also a complete algorithm by itself.

Algorithm 2.2. Using Intervals to Chase a Reflecting Photon.

Assumptions: Photon has unit speed; mirrors have radius 1/3; interval arithmetic
works for round(·).

Input: An initial position p, a direction vector v, a maximum time tmax, an absolute
error bound ε on the final position.

Output: The path of the particle from time 0 to tmax as the set path of points at
the reflections, together with points at time 0 and tmax; the last point is guaranteed
to have absolute error less than ε.

Notation: Lower-case letters are used for numeric quantities, upper-case for inter-
vals, script for sets of intervals; H is as in Algorithm 2.2. For an interval X, min(X)
(resp. max(X)) denotes the smallest (resp. largest) number in X, diam(X) =
max(X) − min(X), and mid(X) is (min(X) + max(X))/2. For a set of intervals
X = {Xi}, min(X) is [mini(min(Xi)),mini(max(X))]; diam(X) is maxi diam(Xi).
For a vector w, wx and wy are its x- and y-components; same for an interval vector.
The intervals P , V , M , Trem, Tmax represent the position, direction, mirror-center,
time remaining, and time of reflection, respectively.

Step 1: Initialize: Trem = [tmax, tmax], path = {p}, s = 	− log10 ε
, error = ∞,
δ = 10−s, wp = s+ 2, u = 0.

Step 2: While error > ε:
Set the working precision to wp digits;
While min(Trem) > 0:

Let P = ([px − δ, px + δ], [py − δ, py + δ]);
Let V = ([vx − δ, vx + δ], [vy − δ, vy + δ]);
Let M = round(P + 2V/3);
Use interval arithmetic to determine S, the set of interval solutions

to the quadratic equation (P + tV −M).(P + tV −M) = 1/9;

If S contains an expression of the form
√

[a, b] with a < 0 < b,
exit the inner while loop;

Let T be those solutions in S of the form [a, b] with a � 0;
Let T be min(T) (= [∞,∞] if T is empty);
Test values of T and Trem and apply the appropriate case:

case T � Trem: P = P + TV ; V = HP−M · V ; Trem = Trem − T ;
case T > Trem and Trem � 2/3: Trem = Trem − 2/3; P = P + 2/3V ;
case T > Trem and Trem < 2/3: P = P + TremV ; Trem = 0;
otherwise (incomparable intervals): exit the inner while loop.

2.3. Reliable Reflections 43

10000 20000 30000

2

4

6

8

10

CPU time �sec�

Digits

Figure 2.4. Time needed by the interval algorithm to get d digits of the
answer, for d up to 30000.

Append mid(P) to path;
If the precision of any of T , P , V , Trem is less than − log10 ε,

exit the inner while loop;
End while.
Let error = diam({Px + [−max(|Trem|),max(|Trem|)],
Py + [−max(|Trem|),max(|Trem|)]});

Let s = s+ 1; δ = 10−s; wp = s+ 2;
End while.

Step 3: Return path.

Appendix C.5.2 contains code for ReliableTrajectory, an implementation
of Algorithm 2.2. When running the algorithm for the first time, one has no idea
what the initial interval size should be, and the program slowly decreases the size
until a satisfactory initial tolerance is found. It turns out to be 10−40 for a 10−12

accuracy goal.

A Mathematica session.

Norm�Last@ReliableTrajectory��1
2
,

1
10
�,�1,0�,10,AccuracyGoal � 12��//

IntervalForm

Initial condition interval radius is 10−40.

0.99526291944366900390

From this and further work one learns that, for this Mathematica implementation,
an interval radius of 10−(d+28) for the initial conditions seems to be enough to get d
digits of the answer; one can use this to set the starting interval sizes, thus speeding
up further computations by eliminating the trial-and-error part. Such an approach
allows one to get 100 digits in a fraction of a second.

44 Chapter 2. Reliability amid Chaos

0 20 40 60

0

20

40

Figure 2.5. The true trajectory of the photon up to time 2000, obtained by
interval arithmetic with initial intervals having diameter of 10−5460.

Norm�Last@ReliableTrajectory��1
2
,

1
10
�,�1,0�,10,AccuracyGoal � 100,

StartIntervalPrecision � 127��//IntervalForm

Initial condition interval radius is 10−128.

0.9952629194433541608903118094267216210294669227341543498032088580

7298617962283063209917498189761887606190599926

Indeed, this method works quite well even for 10000 digits (see Appendix B).
Figure 2.4 shows timing experiments up to 30000 digits (on a 1-GHz Macintosh G4).
While this might not be the fastest way of getting a large number of digits (the fixed-
precision approach discussed earlier might be faster), the extra time needed by the
interval method seems a small price to pay for an algorithm that eliminates the
uncertainty of heuristic error estimates.

The sensitivity present in this problem is characteristic of chaotic systems,
and is especially well studied in certain differential equations. The problem becomes
more difficult as the travel time becomes longer, but in a predictable fashion. Thus
even for time 100, the interval approach has no difficulty: a starting radius of 10−265

turns out to be enough to get 13 digits of the answer at t = 100; indeed, 10−5460

is good enough to get the position at time t = 2000 (this true trajectory is shown
in Figure 2.5). Of course, the possibility of knowing a photon’s initial position to
such tolerances is absurd, as is the possibility of a perfectly circular mirror. But
the interval algorithm presented here shows that these are problems of physics, not
mathematics.

The true trajectory leads to some observations about the photon’s path. One

2.3. Reliable Reflections 45

1
������
3

3�����
2 �

2
������
3

�����
5 �

2
������
3

�������
10 �

2
������
3

4
0

0.25

0.5

0.75

1

Probability
�������

14
�������������������

3

�������
41
�������������������

3

Length

Figure 2.6. The probability distribution of segment lengths in a verified
trajectory up to time 2000. The data came from an interval computation using
more than 5400 digits of precision.

might think that the path would resemble a random walk, but in fact there are
occasionally very long steps in the horizontal and vertical directions. These arise
from the constraints caused by the mirrors: one can never get a very long step in a
direction that is not close to vertical or horizontal.

Billiard trajectories such as those that arise in Problem 2 are quite well un-
derstood, thanks to the work of Y. Sinai in 1970, and later researchers such as
L. Bunimovich and N. Chernov. Indeed, if we view the action as taking place on a
flat torus, with just a single reflecting circle, then this is exactly the first example of
a dispersing system of billiards studied by Sinai [Sin70a]. It is now known that this
system is ergodic (see [Tab95, Thm. 5.2.3]), and a consequence is that, for almost
all initial conditions, the set of directions of the segments and the set of reflecting
points on the mirror are uniformly distributed in [0, 2π]. For more on this theory,
the books [Tab95] and [CM01] are a good place to start.

The graph in Figure 2.6 shows the probability distribution of the 2086 segment
lengths of the true path to time 2000, which range from 0.33347 to 14.833. Using
a machine-precision trajectory instead yields a similar distribution. The cusps and
gaps in the distribution are interesting, and arise out of the geometry of the reflec-
tions. Each segment can be classified according to the distance between the centers of
the two mirrors it connects. Thus segments of type 1 will be most common, followed
by type

√
2,

√
5 (knight’s moves), and so on, though not all square roots of sums of

two squares are represented because some mirrors are blocked by other mirrors. For
the first type, any length in [1/3,

√
5/3] can arise. For type

√
2, the possible lengths

are [
√

2−2/3,
√

14/3]. This explains the distribution’s sudden rise at
√

2−2/3. Note
that the small interval from

√
5/3 = 0.7453 . . . to

√
2 − 2/3 = 0.7475 . . . contains

no lengths. The lengths of type
√

5 come from the interval [
√

5 − 2/3,
√

41/3] (the
upper bound is the length of the common tangent that goes from a point on the
northwest side of the circle at (0,0) to the southeast side of the circle at (2,1)).

46 Chapter 2. Reliability amid Chaos

And this explains the gap between
√

14/3 and
√

5 − 2/3. Further observations are
possible if one uses the facts about uniform distribution from billiard theory alluded
to above. Then it is an exercise in geometry to obtain an integral that yields the
probability of a type-1 segment to be about 0.448. This would mean that 935 is the
expected number of such segments among the 2086 segments in the time-2000 tra-
jectory; in fact, there are 925 such segments, nicely consistent with the prediction.
We leave more investigations along these lines—perhaps including variation in the
mirror radius—to the reader.

Chapter 3

How Far Away Is Infinity?

Jörg Waldvogel

O God! I could be bounded in a nut-shell,
and count myself a king of infinite space,
were it not that I have bad dreams.

— William Shakespeare
(Hamlet, Act 2, Scene 2, Verses 254–256)

Problem 3

The infinite matrix A with entries a11 = 1, a12 = 1/2, a21 = 1/3, a13 =
1/4, a22 = 1/5, a31 = 1/6, and so on, is a bounded operator on �2. What
is ‖A‖?

In §3.1 we reduce the infinite-dimensional problem to the task of calculating a limit
of finite-dimensional matrix norms. A simple estimate will be given that determines
two digits. In §3.2 we calculate the matrix norms without the need of much back-
ground knowledge by using Matlab’s built-in norm command and approach the limit
by extrapolation. This will bring us 12 digits, but without satisfactory evidence of
correctness. A similar but somewhat more efficient algorithm based on the power
method will help us produce 21 digits in §3.3. In §3.4 we use second-order pertur-
bation theory to obtain a precise understanding of the error of approximation.

Striving for higher accuracy turns out to be particularly difficult for Problem 3.
In fact, Trefethen’s first publication of the results on his web page in May 2002
reported only 15 digits, as opposed to 40 digits on the other problems. In a later
version, thanks to a method of Rolf Strebel, the missing 25 digits were added.
Strebel’s method, which is the subject of §3.5, is based on the Euler–Maclaurin sum
formula and is the most efficient method to get the full accuracy of 16 digits in
IEEE double-precision arithmetic. Though the method performs with remarkable
success, the convergence rate slows down for very high accuracies beyond, say, 100
digits. We will overcome this difficulty in §3.6 by capturing infinity via complex
analysis and contour integration.

47

48 Chapter 3. How Far Away Is Infinity?

3.1 A First Look
A rigorous foundation of the problem makes it necessary to recall some elementary
Hilbert space theory [Rud87, Chap. 4].1 The sequence space �2 is the set of all
square-summable real-valued sequences x = (x1, x2, . . .) and is endowed with an
inner product, that for x, y ∈ �2, by generalizing the Euclidean inner product on
Rn, is defined by

〈x, y〉 =
∞∑

k=1

xkyk.

This induces the norm
‖x‖ =

√
〈x, x〉,

which makes �2 a complete space. Complete inner-product spaces are called Hilbert
spaces; and �2 is not only an example of such a space, but is in fact isomorphic to
any separable one [Rud87, §4.19]. It is possible to generalize most of the algebraic,
geometric and analytic properties of Rn to Hilbert spaces, and to �2 in particular.
A linear operator A : �2 → �2 is bounded, and therefore continuous, if the operator
norm

‖A‖ = sup
x�=0

‖Ax‖
‖x‖ (3.1)

is a (finite) real number. This operator norm generalizes the spectral norm of a
matrix in Rn×n [Hig96, §6.2], that is, the matrix norm induced by the Euclidean
vector norm.

Now, calculating the norm of the particular operator at hand looks like an
infinite-dimensional optimization problem. However, as the following lemma shows,
one can approximate the infinite-dimensional operator A by its n-dimensional prin-
cipal submatrices An,

A =




An

...

. . .
. . .


 , An ∈ Rn×n.

Lemma 3.1. If 1 � n � m, then

‖An‖ � ‖Am‖ � lim
k→∞

‖Ak‖ = ‖A‖ � π√
6
.

Proof. Let Pn : �2 → span{e1, . . . , en} ⊂ �2 be the orthogonal projection from
�2 onto the n-dimensional subspace that is spanned by the first n basis sequences

1Rumor has it that Hilbert himself once asked Weyl after a talk [You81, p. 312]: “Weyl, you
must just tell me one thing, whatever is a Hilbert space? That I could not understand.” A reader
who feels like this can skip to the end of Lemma 3.1.

3.1. A First Look 49

(ej)k = δjk. This subspace can be identified with Rn and we obtain An = PnAPn.
For n � m we have Pn = PnPm = PmPn and therefore An = PnAmPn. Submulti-
plicativity of the operator norm, and the fact that an orthogonal projection satisfies
‖Pn‖ � 1, yields

‖An‖ � ‖Pn‖2 ‖Am‖ � ‖Am‖ = ‖PmAPm‖ � ‖Pm‖2‖A‖ � ‖A‖. (3.2)

Thus, the sequence ‖An‖ is monotonically increasing. We do not yet know that it
is bounded, because we have not given an argument that ‖A‖ <∞.

However, such a bound follows from the fact that the spectral norm ‖An‖ is
known to be bounded by the Frobenius norm ‖An‖F (see [Hig96, Table 6.2]) and
therefore

‖An‖ � ‖An‖F =


 n∑

j,k=1

a2
jk


1/2

�
(∞∑

k=1

k−2

)1/2

=
π√
6
. (3.3)

Thus, the limit limn→∞ ‖An‖ = supn ‖An‖ � π/
√

6 of the increasing sequence ex-
ists. Because of the completeness of the basis sequences we know that limn→∞ Pnx =
x for all x ∈ �2 and, hence,

‖Ax‖ = lim
n→∞ ‖PnAPnx‖ � lim

n→∞ ‖An‖ ‖x‖, that is ‖A‖ � lim
n→∞ ‖An‖.

Combined with (3.2), this finishes the proof.

Summarizing, Problem 3 in fact asks for

lim
n→∞ ‖An‖,

the limit of the spectral norms of the finite-dimensional principal submatrices An.
We can safely stop talking about infinite-dimensional operators from now on: this
limit will be the starting point for our computational enterprise. The precise order
of convergence ‖An‖ → ‖A‖ will be the subject of §3.4.

Besides setting up the problem in a suitable form, Lemma 3.1 allows us to
give, with proof, the first two digits of the answer:

1.233 .= ‖A3‖ � ‖A‖ � π√
6
.= 1.282, that is ‖A‖ .= 1.2.

In finite dimensions, the spectral norm of a matrix An satisfies [GL96, Thm. 2.3.1]

‖An‖ = σmax(An) =
√
λmax(Gn), Gn = AT

nAn. (3.4)

Here σmax(An) denotes the largest singular value2 of An and λmax(Gn) the largest
eigenvalue of Gn.

2Generally, the singular values of a matrix A are the square roots of the eigenvalues of the
positive semi-definite matrix G = AT A.

50 Chapter 3. How Far Away Is Infinity?

Matrix Generation. The matrix Ã = (1/ajk) of the reciprocal elements of A is
given by the northeast to southwest arrangement of the natural numbers,

Ã =




1 2 4 7 . . .
3 5 8 12 . . .
6 9 13 18 . . .
10 14 19 25 . . .

.
. . .


 .

We take advantage of the representation of Ã as the difference of a Hankel matrix
and a matrix with constant columns,

Ã =




2 4 7 11 . . .
4 7 11 16 . . .
7 11 16 22 . . .
11 16 22 29 . . .

.
. . .


−




1 2 3 4 . . .
1 2 3 4 . . .
1 2 3 4 . . .
1 2 3 4 . . .

.
. . .


 .

Thus, the entries of A are given as

ajk =
1

bj+k − k
, j, k = 1, 2, . . . , (3.5)

where bl = 1+(l−1)l/2. The expression (3.5) is a useful tool for efficiently generating
the principal submatrices An as well as for coding the mapping x �→ Ax without
explicitly storing A.

A Matlab session.

>> n = 1024;
>> N = 2*n-1; k = 1:N; b = 1 + cumsum(k);
>> A = 1./(hankel(b(1:n),b(n:N))-ones(n,1)*k(1:n));

This is more elegant3 than the generation of An by means of the explicit formula

ajk =
1

(j + k − 1)(j + k)/2 − (k − 1)
, j, k = 1, 2, . . . , n, (3.6)

which is just (3.5) written out in full. Note that the decay is ajk = O((j+ k)−2) for
large j and k; this is faster than the decay rate of, say, the famous Hilbert matrix
H = (hjk) with hjk = 1/(j + k − 1).

The entries ajk enjoy a specific feature that will become important in §3.6:
they are given by a rational function a evaluated at integer arguments, ajk = a(j, k),

3Generating the matrix by the hankel command used to be, in Matlab prior to the introduction
of the JIT compilation technology in Release 13, substantially faster than by the explicit formula.
Now the run time of the two variants is roughly the same.

3.2. Extrapolation 51

j, k ∈ N. That function extends naturally as a meromorphic function to the complex
u- and v-planes,

a(u, v) =
1

b(u+ v) − v
, b(z) = 1 + (z − 1)z/2, (3.7)

with no poles at the grid points (u, v) ∈ N2.

3.2 Extrapolation
In this section we present the simple method that was used by many contestants
to obtain 10 to 12 digits of ‖A‖ with some level of confidence, but without going
deeper into the mysteries of the matrix A.

The method takes advantage of many packages’ capability to directly compute
the spectral norm ‖An‖ of the principal submatrices at hand. For instance, if the
matrix is named A in code, Matlab calculates the norm by invoking the command
norm(A). Internally this is done by a singular-value decomposition of An (see [GL96,
§8.6]). The run time of using norm(A) scales as O(n3).

Alternatively, Matlab offers the command normest(A,tol) that iteratively
calculates an approximation of ‖A‖ up to a relative error tol. It is based on the
power method, which we will discuss in §3.3, and takes O(n2) time for a fixed
accuracy tol.

The second column of Table 3.1 shows ‖An‖ for dimensions a power of 2:
n = 1, 2, 4, . . . , 4096. The values nicely reflect the monotonicity stated in Lemma 3.1.
A close look on the digits that keep agreeing from one row to the next suggests that
doubling n gives a little less than one additional correct digit. From this we would
infer about 10 correct digits for n = 2048. To be on the safe side, we go for n = 4096
and get

‖A‖ .= 1.2742 24152.

The memory needed to store the matrix A4096 amounts for 120 MB; calculating
‖A4096‖ by the command norm(A) takes 12 minutes and by normest(A,5e-16)
12 seconds.4 Both results agree to 15 digits.

A much more efficient way of getting up to 12 digits in less than a second is
based on using the values for small n and extrapolation to the limit n→ ∞.

A Matlab session. (cont. of session on p. 50)
First, let us generate and store the values of the norms for n = 1, 2, 4, . . . , 2L−1. We
have chosen L = 11, corresponding to the maximum dimension n = 1024.

>> L = 11;
>> vals = [];
>> for nu = 1:L,
>> n=2^(nu-1); An=A(1:n,1:n); vals=[vals;normest(An,5e-16)];
>> end;

4In this chapter all timings are for a 1.6 GHz PC.

52 Chapter 3. How Far Away Is Infinity?

Table 3.1. Values of ‖An‖ and extrapolation by Wynn’s epsilon algorithm.

n vals = ‖An‖ Wynn for L = 10 Wynn for L = 11

1 1.00000000000000 1.00000000000000 1.00000000000000
2 1.18335017655166 1.29446756234379 1.29446756234379
4 1.25253739751680 1.27409858051212 1.27409858051212
8 1.27004630585408 1.27422415478429 1.27422415478429

16 1.27352521545013 1.27422416116628 1.27422416116628

32 1.27411814436915 1.27422415278695 1.27422415282204
64 1.27420913129766 1.27422415285119 1.27422415282075

128 1.27422212003778 1.27422415271828 1.27422415282239

256 1.27422388594855 1.27422415371348 1.27422415281540
512 1.27422411845808 1.27422411845808 1.27422415289127

1024 1.27422414844970 — 1.27422414844970

2048 1.27422415226917 — —
4096 1.27422415275182 — —

Next, we use Wynn’s epsilon algorithm (see Appendix A, p. 247) for approximating,
by extrapolation, the limit of the data that are stored in vals.

>> L2 = 2*L-1; vv = zeros(L2,1); vv(1:2:L2) = vals;
>> for j=2:L
>> k=j:2:L2+1-j; vv(k)=vv(k)+1./(vv(k+1)-vv(k-1));
>> end;
>> result = vv(1:2:L2);

The output, which is stored in the column vector result, contains, from top to
bottom, the values of the right boundary of Wynn’s triangular array. The best ap-
proximations for ‖A‖ are generally located just below the central element. Table 3.1
gives the results of the session just run with L = 11, and of another run with L = 10.
The run time was less than half a second. In the less expensive case L = 10 of the
extrapolation, the entries for n = 32, 64, and 128 agree to 10 digits. In the case
L = 11 these entries agree to 12 digits; therefore, at this point we can confidently
report

‖A‖ .= 1.2742 24152 82. (3.8)

Thus, extrapolation yields two more digits in a factor of about 40 less run time
than the simple approximation by ‖A4096‖. Similar results are obtained with other
extrapolation techniques. In Appendix A, pp. 250 and 256, the reader will find, as
yet another example, applications of Levin’s U and the rho algorithm to Problem 3.

This looks like a quick exit from Problem 3. However, to get more evidence for
the calculated digits, we need higher accuracy, which this approach cannot easily
provide.

3.3. The Power Method 53

3.3 The Power Method
One of the bottlenecks of the method in §3.2 is the enormous amount of memory
needed to store the matrix An for larger n: 120 MB are needed for n = 4096. This
leads us to ask for an iterative method of calculating the norm ‖An‖ that addresses
An only by the matrix-vector products x �→ Ax and x �→ ATx. Such a method is
readily obtained if we recall (3.4), that is

‖An‖2 = λmax(Gn), Gn = AT
nAn.

The largest eigenvalue of the symmetric positive semi-definite matrix Gn can effi-
ciently be calculated by the power method [GL96, §8.2.1], a basic method that can
be found in virtually any textbook on elementary numerical analysis.

Algorithm 3.1. Power method for calculating λmax(Gn).

take an initial vector x(0) of norm one

for ν = 1 to νmax do

y(ν) = Gnx
(ν−1);

λ(ν−1) =
(
x(ν−1)

)T
y(ν);

if λ(ν−1) is sufficiently accurate then exit;

x(ν) = y(ν)/‖y(ν)‖;
end for

Convergence Theory. This simple method has a correspondingly simple conver-
gence theory.

Theorem 3.2 ([GL96, Thm. 8.2.1]). If the largest eigenvalue λ1 = λmax(Gn)
of a symmetric, positive semi-definite n × n matrix Gn is simple, that is, if the n
eigenvalues of Gn can be ordered as λ1 > λ2 � λ3 � . . . � λn � 0, and if the initial
vector x(0) is in general position, that is, not orthogonal to the eigenvector belonging
to λ1, there is a constant c > 0 such that

|λ(ν) − λmax(Gn)| � cρν , ν = 1, 2, . . . ,

with the contraction rate ρ = (λ2/λ1)2.

There are two slick ways of showing that the matrix at hand, Gn = AT
nAn, does in

fact have a largest eigenvalue that is simple. The second method has the advantage
of giving a quantitative bound for the contraction rate ρ.

Method 1. We observe that all entries of Gn are strictly positive. Therefore,
the Perron–Frobenius theory of nonnegative matrices [HJ85, §8.2] is applicable. In

54 Chapter 3. How Far Away Is Infinity?

particular, there is a general theorem [HJ85, Thm. 8.2.5] of Perron stating that for
positive matrices the eigenvalue of largest modulus, that is, the dominant eigenvalue,
is always simple.

Method 2. We recall the bound (3.3) on ‖An‖F , which — given the repre-
sentation [GL96, form. (2.5.7)] of the Frobenius norm as the sum of the squares of
the singular values — can be expressed as

‖An‖2
F = λ1 + λ2 + . . .+ λn � π2

6
.

Because of λ1 = ‖An‖2 � ‖A3‖2 .= 1.52 we obtain for n � 3,

λ2 � π2

6
− λ1 � 0.125, ρ =

(
λ2

λ1

)2

� 6.8 · 10−3.

In fact, a numerical calculation shows that for large n the second largest eigenvalue
of Gn is λ2

.= 0.020302, which yields — with (3.8), that is, λ1 = ‖An‖2 .= 1.6236 —
the contraction rate

ρ
.= 1.5635 · 10−4. (3.9)

This corresponds to a gain of − log10 ρ
.= 3.8 digits per iteration step, which actually

has been observed in our numerical experiments.

Application to Problem 3. We use (3.5) to efficiently implement the matrix-vector
multiplication step in Algorithm 3.1, that is

y(ν) = Gnx
(ν−1), Gn = AT

nAn.

There is no need to explicitly set up the matrix Gn. Instead we factor the matrix-
vector product into two separate steps, x̃(ν) = Anx

(ν−1) and y(ν) = AT
n x̃

(ν), which
are given by

x̃
(ν)
j =

n∑
k=1

ajkx
(ν−1)
k =

n∑
k=1

x
(ν−1)
k

bj+k − k
, j = 1, . . . , n,

y
(ν)
k =

n∑
j=1

ajkx̃
(ν)
j =

n∑
j=1

x̃
(ν)
j

bj+k − k
, k = 1, . . . , n.

(3.10)

To minimize the influence of roundoff errors it is advisable [Hig96, p. 90] to accu-
mulate all sums5 from small to large terms, that is, from j = n to j = 1 and from
k = n to k = 1. The price paid for not storing the matrix An is minimal: instead of
one scalar multiplication in the inner loop of each matrix-vector product two index
additions and one division need to be carried out. Since by (3.9) the contraction
rate ρ is essentially independent of the dimension n, the run time of approximating
‖An‖ to a fixed accuracy scales as O(n2).

5The sums involve only nonnegative terms if the initial vector x(0) was chosen to be nonnegative.

3.3. The Power Method 55

Table 3.2. Values of ‖An‖ and extrapolation by Wynn’s epsilon algorithm.

n vals = ‖An‖ Wynn for L = 16

. .

64 1.274209131297662 1.274224152821228343690360386

128 1.274222120037776 1.274224152821228188076956823

256 1.274223885948554 1.274224152821228188213398344

512 1.274224118458080 1.274224152821228188212253584

1024 1.274224148449695 1.274224152821228188213171143

2048 1.274224152269170 1.274224152821228188205973369

4096 1.274224152751815 1.274224152821228188299867942

8192 1.274224152812522 1.274224152821228185212556813

16384 1.274224152820138 1.274224152821228335619616358

32768 1.274224152821091 1.274224152821091776178588977

The reader will find an implementation OperatorNorm(x,tol) of these ideas
coded in PARI/GP in Appendix C.2.1 and coded in Matlab in Appendix C.3.1. It
takes as input an initial vector x and an absolute tolerance tol for ‖An‖ and outputs
the approximation to ‖An‖ as well as the final vector x(k) of the power method.
This final vector allows for a hierarchical version of the iterative procedure: since
the eigenvector of Gn belonging to the dominant eigenvalue is an approximation
of a fixed vector in the sequence space �2, we can profitably use this final vector
of dimension n, padded by zeros, to start the power method for dimension 2n.
Compared to a fixed initial vector, such as the first basis vector, this reduces the
run time by about a factor of two.

We now extend Table 3.1 up to the dimension n = 32768. To increase the
confidence in the correctness of the solution we go to extended precision, using
PARI/GP’s default precision of 28 decimal digits.

A PARI/GP session. (compare with Matlab session on p. 51)

? dec=28; default(realprecision,dec); tol=10^(2.0-dec);
? L=16; vals=vector(L); res=[1.0,1.0]; vals[1]=res[1];
? for(nu=2,L, x0=concat(res[2],0*res[2]); res=OperatorNorm(x0,tol);\

vals[nu]=res[1]);
? L2=2*L-1; vv=vector(L2,j, if(j%2==1, vals[(j+1)/2], 0));
? for(j=2,L, forstep(k=j, L2+1-j, 2,\

vv[k]=vv[k]+1/(vv[k+1]-vv[k-1])));
? result=vector(L,j, vv[2*j-1])

The entries of the vectors vals and result are shown in the second and third
columns of Table 3.2.6 The run time was less than 8 hours.

6It is comforting to observe that Table 3.2 and Table 3.1 agree to all the digits given.

56 Chapter 3. How Far Away Is Infinity?

The entries for n = 256, 512, and 1024 agree to 21 digits. Therefore we can
confidently report

‖A‖ .= 1.2742 24152 82122 81882 1.

This is about as far as we can get by the straightforward technique of handling the
principal submatrices An and extrapolating to the limit as n → ∞ by a general-
purpose method. In §3.5 we will start using conclusive information about the se-
quence of submatrices, or equivalently, about the infinite matrix A.

A Dead End: Calculating a Closed Form for AT A. We conclude this section with a
digression to study a rather surprising closed form for the elements

gjl =

∞∑
k=1

akjakl

of the infinite matrix G = ATA. Such a closed form suggests using the principal subma-
trices Ĝn of G instead of the matrices Gn = AT

nAn to run the power method. However,
as we shall see, this does not seem to be of any use in the actual calculation of ‖A‖. A
reader with no further interest in higher transcendental functions and symbolic computa-
tion might wish to skip the rest of this section and go to §3.4.

By representing the coefficient ajk as in (3.6) we obtain gjl =
∑∞

k=1Rjl(k), where

Rjl(k) =
4(

k2 + (2j − 1)k + (j − 1)(j − 2)
)(
k2 + (2l − 1)k + (l − 1)(l − 2)

) ,
a rational function with denominator of degree 4 in k. An elegant technique for evaluating
sums of rational functions over equally spaced points is described in [AS84, §6.8]:7 the
expansion of Rjl in partial fractions directly yields the value of the sum in terms of the
psi (or digamma) function, ψ(z) = Γ′(z)/Γ(z), and its derivatives, called polygamma
functions.

The partial-fraction expansion of Rjl is determined by its poles, located at

k1,2 =
1

2

(
1 − 2j ±

√
8j − 7

)
, k3,4 =

1

2

(
1 − 2l ±√

8l − 7
)
.

Now, the term gjl will be a linear combination of the values ψ(1− kν), ψ′(1− kν), ψ′′(1−
kν),. . . ,ψ(µν−1)(1−kν), where µν is the multiplicity of the pole kν . Some computer algebra
systems, such as Mathematica and Maple, offer implementations of this algorithm.

A Maple session.

> j:=1: l:=1:

> j1:=2*j-1: j2:=(j-1)*(j-2): l1:=2*l-1: l2:=(l-1)*(l-2):

> gjl:=sum(4/(k^2+j1*k+j2)/(k^2+l1*k+l2),k=1..infinity);

g11 =
4

3
π2 − 12

7According to [Nie06, §24] the technique dates back to a short note of Appell from 1878.

3.3. The Power Method 57

A few more results are, after some beautification:

g12 =
2

9
π2 − 43

27
, g22 =

4

27
π2 − 31

27
, g24 =

137

1350
, g17 =

26281

396900
,

g13 = 4 γ − 2 +

(
2 +

8√
17

)
ψ

(
7 −√

17

2

)
+

(
2 − 8√

17

)
ψ

(
7 +

√
17

2

)
,

where γ is Euler’s constant,

g35 = − 2

17

(
ψ

(
7 −√

17

2

)
+ ψ

(
7 +

√
17

2

))

+
2

17

((
1 +

4√
33

)
ψ

(
11 −√

33

2

)
+

(
1 − 4√

33

)
ψ

(
11 +

√
33

2

))
.

From the point of view of closed forms the case g33 is of particular interest. Maple yields

g33 =
4

17

(
ψ′
(

7 −√
17

2

)
+ ψ′

(
7 +

√
17

2

))

+
8
√

17

289

(
ψ

(
7 −√

17

2

)
− ψ

(
7 +

√
17

2

))
,

whereas Mathematica gives:

A Mathematica session.

g j_, l_ :

k 1

4

k2 2 j 1 k j 1 j 2 k2 2 l 1 k l 1 l 2

FullSimplify

g 3, 3

9
4

4
289

Sec
17
2

2

17 17 Sin 17

John Boersma communicated to us a proof that the two expressions have the same value
indeed. Moreover, he proved the remarkable fact that gjj is generally expressible in terms
of elementary functions:8

gjj =
4π2

3(2q + 1)2
− 4

(2q + 1)2

(
j−q−1∑
m=1

1

m2
+

j+q∑
m=1

1

m2

)
− 8

(2q + 1)3

j+q∑
m=j−q

1

m
,

if j = (q2 + q + 2)/2 for some q = 0, 1, 2, . . ., and otherwise

gjj = −4

j−1∑
m=0

1

(m2 +m+ 2 − 2j)2
+

+
4π

(8j − 7)2
sec2(

√
8j − 7π/2)

(
(8j − 7)π −

√
8j − 7 sin(

√
8j − 7π)

)
.

8Courtesy of J. Boersma, his proof can be found at the web page for this book.

58 Chapter 3. How Far Away Is Infinity?

The partial-fraction algorithm shows that any entry gjl of the infinite matrix G can
be computed as a closed-form expression in terms of the functions ψ and ψ′. As elegant
as this might be, this approach turns out to be a dead end:

• In contrast to the entries ajl of the matrix A the entries gjl of G take much more
effort to calculate for given indices j and l. This is, however, not compensated by a
faster rate of decay.

• Recall from Table 3.1 that

‖A‖ − ‖A128‖ .
= 2.0328 · 10−6.

Consider, on the other hand, the principal submatrix Ĝ128 ofG of dimension n = 128,
whose generation involves substantial symbolic and numerical effort. Its dominant
eigenvalue, as computed by Matlab is found to be

λmax(Ĝ128)
.
= 1.6236447743.

Therefore,

‖A‖ −
√
λmax(Ĝ128)

.
= 0.9485 · 10−6,

a rather modest gain of accuracy.

3.4 Second-Order Perturbation Theory
A closer look at Table 3.2 suggests that the norms of the principal submatrices An

of dimension n approximate the norm of the operator A up to an error of order
O(n−3). We will use second-order perturbation theory to explain this behavior. As
a by-product we obtain a correction term that can be used to solve Problem 3 to
12 correct digits in IEEE double precision.

The following result is a special case of a second-order perturbation expansion
that Stewart originally established for the smallest singular value of a matrix. It
holds true, in fact, for the largest singular value with exactly the same proof.

Theorem 3.3 ([Ste84]). Let

Ã =
(
A B
C D

)
=
(
A 0
0 0

)
+ E

be a block matrix of dimension m ×m. Let u and v be the left and right singular
vectors belonging to the largest singular value of the n× n principal submatrix A,9

n � m. For ‖E‖ → 0, there holds the asymptotic expansion

‖Ã‖2 = ‖A‖2 + ‖uTB‖2 + ‖Cv‖2 +O(‖E‖3).

For the problem at hand we apply this perturbation theorem to the block
partitioning

Am =
(
An Bn,m

Cn,m Dn,m

)
=
(
An 0
0 0

)
+ En,m, n � m.

9That is, u and v are vectors of norm one that satisfy AAT u = σ2
max(A)u and AT Av =

σ2
max(A)v. Algorithm 3.1 actually allows us to calculate them: x(ν) and Ax(ν), normalized to have

norm one, approximate u and v up to an error of order O(ρν).

3.4. Second-Order Perturbation Theory 59

Using once again the bound of the spectral norm by the Frobenius norm, we get

‖En,m‖2 � ‖En,m‖2
F = ‖Am‖2

F − ‖An‖2
F �

∑
k>n2/2

k−2 = O(n−2).

In the same way we obtain ‖Bn,m‖ = O(n−1) and ‖Cn,m‖ = O(n−1). Thus, if we
denote by un and vn the left and right singular vectors of An that belong to the
largest singular value, Theorem 3.3 results in the error estimate

‖An‖2 � ‖Am‖2 = ‖An‖2 + ‖uT
nBn,m‖2 + ‖Cn,mvn‖2 +O(n−3)

� ‖An‖2 + ‖Bn,m‖2 + ‖Cn,m‖2 +O(n−3) = ‖An‖2 +O(n−2). (3.11)

Thus, the argument so far proves an error estimate of order O(n−2) only — instead
of the numerically observed order O(n−3). We must have given away too much in
using the submultiplicativity bounds

‖uT
nBn,m‖ � ‖Bn,m‖ = O(n−1), ‖Cn,mvn‖ � ‖Cn,m‖ = O(n−1).

In fact, a closer look at the singular vectors un and vn reveals, experimentally, that
their kth component decays of order O(k−2) as k → ∞.10 Assuming this to be true,
we obtain after some calculations the refined estimates

‖uT
nBn,m‖ = O(n−3/2), ‖Cn,mvn‖ = O(n−3/2);

hence ‖Am‖2 = ‖An‖2 +O(n−3). Since all these estimates are uniform in m we can
pass to the limit and obtain the desired error estimate

‖A‖ = ‖An‖ +O(n−3).

We conjecture that the actual decay rate of the components of the singular vectors
improves the error term O(n−3) in (3.11) in the same way to O(n−4), that is

‖Am‖2 = ‖An‖2 + ‖uT
nBn,m‖2 + ‖Cn,mvn‖2 +O(n−4).

If we combine with ‖A‖2 = ‖Am‖2 +O(m−3) and take

mn = �n4/3�,
we finally get an improved approximation of the conjectured order O(n−4):

‖A‖ =
(
‖An‖2 + ‖uT

nBn,mn
‖2 + ‖Cn,mn

vn‖2
)1/2

+O(n−4). (3.12)

The improved order of convergence, as compared to ‖An‖, is paid for with a moder-
ate increase in the computational cost from O(n2) to O(mn · n) = O(n7/3). There-
fore, the run time needed to achieve a given error ε of approximation improves from
O(ε−2/3) to O(ε−7/12).

Table 3.3 shows some numerical results11 obtained with Matlab, which are
consistent with the conjectured order O(n−4). The run time was about 10 seconds;
12 digits are correct for n = 2048. Because of roundoff errors in the last two digits
Wynn’s epsilon algorithm cannot improve upon these 12 digits.

10This reflects most probably the proper decay rate of the corresponding left and right singular
vectors of the infinite matrix A.

11The code can be found at the web page for this book.

60 Chapter 3. How Far Away Is Infinity?

Table 3.3. Values of ‖An‖ and the improved approximation (3.12).

n ‖An‖
(
‖An‖2 + ‖uT

nBn,mn
‖2 + ‖Cn,mn

vn‖2
)1/2

128 1.27422212003778 1.27422413149024

256 1.27422388594855 1.27422415144773

512 1.27422411845808 1.27422415273407

1024 1.27422414844970 1.27422415281574

2048 1.27422415226917 1.27422415282070

3.5 Summation Formulas: Real Analysis
As an alternative to the acceleration of convergence of the sequence ‖An‖, we now
pursue the idea of passing to the limit n→ ∞ earlier, at each iteration step of the
power method (Algorithm 3.1). Equivalently, this means to apply the power method
to the infinite matrix A. In doing so we have to evaluate infinite-dimensional matrix-
vector products such as Ax and ATx, that is, series such as

∞∑
k=1

ajkxk and
∞∑

k=1

akjxk. (3.13)

A simple truncation of the sum at index n would lead us back to the evaluation
of ‖An‖. Thus, we need a more sophisticated method to approximate these sums.
Essentially, such methods can be justified on the ground of the actual rate of decay
of the terms of the sum.

In the course of the power method, the vectors x at hand are approximations
of the left and right singular vectors belonging to the largest singular value of A.
From the discussion of §3.4 we have good reasons to assume that xk = O(k−2)
as k → ∞. The explicit formula (3.6) implies that, for j fixed, the matrix entries
ajk and akj decay as O(k−2), too. Further, we observe that all terms of the sum
will be nonnegative, if the initial vector for the power method was chosen to be
nonnegative. Hence, a good model of the sums (3.13) is

ζ(4) =
∞∑

k=1

k−4 =
π4

90
, (3.14)

for which we will test our ideas later on. For sums of this type, we will derive some
summation formulas

∞∑
k=1

f(k) ≈
n∑

k=1

wk · f(ck), (3.15)

where — in analogy to quadrature formulas — the nonnegative quantities wk are
called weights and the ck are the sampling points. We will take the freedom to view
f(k) as a function of k that naturally extends to non-integer arguments ck �∈ N.
This point of view is natural indeed for the coefficients ajk = a(j, k) at hand, with

3.5. Summation Formulas: Real Analysis 61

a(j, k) the rational function given in (3.7). Now, if we approximate the matrix-vector
products that arise in the power method by the summation formula (3.15), the
components xk will inherit this property. This way, the main step y(ν) = ATAx(ν−1)

of the power method (see (3.10)) transforms to

x̃(ν)(cj) =
n∑

k=1

wk · a(cj , ck) · x(ν−1)(ck), j = 1, . . . , n,

y(ν)(ck) =
n∑

j=1

wj · a(cj , ck) · x̃(ν)(cj), j = 1, . . . , n.

(3.16)

Upon introducing the diagonal matrix Wn = diag(w1, . . . , wn) and the matrix Tn =
(a(cj , ck))jk, we observe that the transformed power iteration (3.16) calculates, in
fact, the dominant eigenvalue of the matrix

G̃n = TT
n WnTnWn. (3.17)

By means of the similarity transformation B �→ W
1/2
n BW

−1/2
n we conclude that

this eigenvalue is, also, the dominant eigenvalue of the matrix

W 1/2
n G̃nW

−1/2
n = (W 1/2

n TnW
1/2
n)T (W 1/2

n TnW
1/2
n) = ÃT

n Ãn.

Hence, we may actually calculate the norm ‖Ãn‖ of the transformed matrix

Ãn = W 1/2
n TnW

1/2
n =

(√
wjwk

(cj + ck − 1)(cj + ck)/2 − (ck − 1)

)
j,k=1,...,n

. (3.18)

We conjecture, and the results of §3.4 as well as our numerical experiments confirm
it, that

lim
n→∞ ‖Ãn‖ = ‖A‖,

with the same order of approximation as the underlying summation formula (3.15).
A proof of this fact is an open problem that we leave as a challenge to the reader.

Strebel’s Summation Formula. To get a working algorithm we need a summation
formula that is of higher order than simple truncation at n, which, for the problem
at hand, is of order O(n−3). We will follow the ideas that were communicated to us
by Rolf Strebel and construct a method that is, at least for the evaluation of ζ(4),
provably of order O(n−7).

A summation formula of the type (3.15) should shorten the range of indices
from 1, . . . ,∞ to 1, . . . , n without introducing too much error. In the case of an
integral, a substitution by means of a one-to-one mapping φ : [1, n) → [1,∞) would
do the job exactly, ∫ ∞

1

f(x) dx =
∫ n

1

φ′(ξ) f(φ(ξ)) dξ.

If we view the sum as a kind of “approximation” to the integral, we might try
∞∑

k=1

f(k) ≈
n−1∑
k=1

φ′(k) f(φ(k)).

62 Chapter 3. How Far Away Is Infinity?

Now, the precise relation between equally spaced sums and integrals is described
by the following theorem. For the convenience of presentation we have shifted the
lower index of summation to k = 0.

Theorem 3.4 (Euler–Maclaurin sum formula [Hen77, §11.11]). Let n,m be
positive integers and f a function that is 2m times continuously differentiable on
the interval [0, n]. Then

n∑
k=0

f(k) =
1
2
(
f(0)+f(n)

)
+
∫ n

0

f(x) dx+
m∑

k=1

B2k

(2k)!
(
f (2k−1)(n)−f (2k−1)(0)

)
+R2m

with the remainder bounded by

|R2m| � |B2m|
(2m)!

∫ n

0

|f (2m)(x)| dx.

Here, the quantities B2k denote the Bernoulli numbers.

The terms in this formula that appear in addition to the sum
∑n

k=0 f(k)
and the desired integral

∫ n

0
f(x) dx will restrict the possible choices of a suitable

mapping φ. One such possibility is given in the next lemma.

Lemma 3.5 (R. Strebel). Let n be a positive integer and fn(x) = (x + n)−α,
α > 1. The function

φn(ξ) =
n1+β(n− ξ)−β

β
− n

β
− (1 + β)ξ2

2n
, β =

6
α− 1

,

is strictly increasing and maps [0, n) onto [0,∞). Then

∞∑
k=0

fn(k) =
n−1∑
k=0

φ′n(k) · fn(φn(k)) +O(n−3−α).

Proof. We write f̃n(ξ) = φ′n(ξ) · fn(φn(ξ)) for short. The mapping φn was chosen
such that, as ξ → 0,

φn(ξ) = ξ +O(ξ3).

Therefore
f̃n(0) = fn(0), f̃ ′n(0) = f ′n(0).

A short calculation shows that

f̃ ′′′n (0) = c1,α n
−3−α, f ′′′n (0) = c2,α n

−3−α,

with some constants c1,α and c2,α that depend on α only. Moreover, φn was also
chosen such that, as ξ → n,

f̃n(ξ) = c3,α(n− ξ)5 + o((n− ξ)5),

3.5. Summation Formulas: Real Analysis 63

with a constant c3,α. Hence

f̃n(n) = f̃ ′n(n) = f̃ ′′n (n) = f̃ ′′′n (n) = f̃ (4)
n (n) = 0.

Finally, we observe that∫ ∞

0

|f (4)
n (x)| dx = O

(∫ ∞

0

(x+ n)−4−α dx

)
= O(n−3−α)

and ∫ n

0

|f̃ (4)
n (ξ)| dξ � n · max

ξ∈[0,n]
|f̃ (4)

n (ξ)| = n ·O(n−4−α) = O(n−3−α).

If we apply the Euler–Maclaurin sum formula twice, we thus obtain

∞∑
k=0

fn(k) =
1
2
fn(0) +

∫ ∞

0

fn(x) dx− B2

2!
f ′n(0) +O(n−3−α)

=
1
2
f̃n(0) +

∫ n

0

f̃n(ξ) dξ − B2

2!
f̃ ′n(0) +O(n−3−α) =

n−1∑
k=0

f̃n(k) +O(n−3−α),

which is the assertion.

We arrive at Strebel’s summation formula for f(x) = x−α, α > 1, which is of the
desired form

∞∑
k=1

f(k) =
n∑

k=1

wk · f(ck) +O(n−3−α), (3.19)

by splitting, with m = �n/2�,
∑∞

k=1 f(k) =
∑m−1

k=1 f(k)+
∑∞

k=0 fm(k) and applying
Lemma 3.5 to the second term. Then, the weights are

wk =

{
1, 1 � k � m− 1,

φ′m(k −m), m � k � 2m− 1,
(3.19-1)

and the sampling points are

ck =

{
k, 1 � k � m− 1,

m+ φm(k −m), m � k � 2m− 1.
(3.19-2)

If n = 2m, we additionally define wn = 0. In Appendix C.3.2 the reader will find
an implementation as a Matlab procedure that is called by

[w,c] = SummationFormula(n,alpha).

64 Chapter 3. How Far Away Is Infinity?

Table 3.4. Values of ‖Ãn‖ for two different summation formulas.

n ‖Ãn‖ with (3.19) ‖Ãn‖ with (3.20)

4 1.284206027130483 1.219615351739390

8 1.274196943864618 1.263116205917547

16 1.274223642340573 1.274207431536352

32 1.274224147506024 1.274224152001268

64 1.274224152770219 1.274224152821228

128 1.274224152820767 1.274224152821228

256 1.274224152821224 1.274224152821228

512 1.274224152821228 1.274224152821228

1024 1.274224152821228 1.274224152821228

We test it on the evaluation of ζ(4), using n = 2, 20, and 200:

A Matlab session.

>> zeta4 = pi^4/90;
>> alpha = 4; f = inline(’1./x.^alpha’,’x’,’alpha’);
>> error = [];
>> for n = [2,20,200]
>> [w,c] = SummationFormula(n,alpha);
>> error = [error; abs(zeta4 - w*f(c,alpha)’)];
>> end
>> error

error = 8.232323371113792e-002
1.767847579436932e-008
1.554312234475219e-015

The result nicely reflects that the error is, for α = 4, of order O(n−7).

Application to Problem 3. Now that we have a good summation formula in hand,
we take the transformed matrix Ãn, as defined in (3.18), and calculate its norm for
various n using the power method of §3.3, applied here to ÃT

n Ãn instead of AT
nAn.

The results of a run12 in Matlab up to dimension n = 1024 are shown in the
second column of Table 3.4; the run time was less than a second. The data are
consistent with the conjectured O(n−7) order of approximation. The reduction of
the dimension is remarkable: whereas ‖A32768‖ gives 13 correct digits only, ‖Ã512‖
is correct to 16 digits — even if evaluated in the realm of IEEE double-precision
arithmetic.

12The code can be found at the web page for this book.

3.6. Summation Formulas: Complex Analysis 65

An exponential summation formula. For much higher accuracy, the O(n−7) or-
der of approximation is yet not good enough. Following the ideas of the proof of
Lemma 3.5 one might try to eliminate all terms B2kf

(2k−1)(0)/(2k)! in the Euler–
Maclaurin sum formula for

∑∞
k=0 f(k) by using a transformation

f̃n(ξ) = (1 + n−1φ′exp(ξ/n)) f(ξ + φexp(ξ/n)),

where φexp(ξ) is a function that vanishes with all its derivatives at ξ = 0 and which
grows fast to infinity for ξ → 1. In fact, we can then show that

∞∑
k=0

f(k) =
n−1∑
k=0

(1 + n−1φ′exp(k/n)) f(k + φexp(k/n)) +R2m − R̃2m, (3.20)

where R2m and R̃2m denote the remainder terms of the Euler–Maclaurin formulas
for the two sums. The point is, that the summation formula (3.20) holds for all m.
An analysis of the error term R2m − R̃2m would try to find a particular index mn,
depending on n, that minimizes the error. However, such an analysis turns out to
be very involved, even for the simple function f(x) = (x+ 1)−α, α > 1. Strebel did
some numerical experiments and obtained very promising results for the particular
choice

φexp(u) = exp
(

2
(1 − u)2

− 1
2u2

)
. (3.20-1)

In Appendix C.3.2 the reader will find an implementation as a Matlab procedure
that is called by

[w,c] = SummationFormula(n,’exp’).

Indeed, for Problem 3 this formula is a further improvement, even in IEEE double-
precision arithmetic. The results of a run13 in Matlab up to dimension n = 1024
are shown in the third column of Table 3.4; the run time was once more less than
one second. To get 16 correct digits, we need go only to dimension n = 64, which
takes under 0.1 second.

We have implemented the summation formula in PARI/GP and applied it
to Problem 3 using high-precision arithmetic.13 Table 3.5 shows the number of
correct digits for various n; “correctness” was assessed by comparing with the result
obtained for n = 1200. Though the formula performs with remarkable success —
we get 25 digits in less than 2 seconds as compared to 8 hours for 21 digits in §3.3
— the convergence rate slows down for larger n. In the next section we will turn to
summation formulas derived from complex analysis that enjoy reliable exponential
convergence rates.

3.6 Summation Formulas: Complex Analysis
In this section we describe a general technique for evaluating sums as contour in-
tegrals. Because there are excellent methods known for numerical quadrature, this

13The code can be found at the web page for this book.

66 Chapter 3. How Far Away Is Infinity?

Table 3.5. Number of correct digits of ‖Ãn‖ with summation for-
mula (3.20); dec is the mantissa length of the high-precision arithmetic.

n dec no. of correct digits run time

100 30 25 1.9 sec

200 50 40 13 sec

400 75 55 92 sec

600 75 66 3.5 min

800 100 75 10 min

1000 100 82 27 min

will result in a very efficient algorithm to deal with the infinite sums (3.13) that
have emerged in the application of the power method to the infinite matrix A.

The technique is a consequence of the residue theorem of complex analysis and
is therefore restricted to sums of terms that depend analytically on the index. The
process is better known in the opposite direction: the evaluation of a contour integral
by a sum of residues. Summation by contour integration has earlier been used by
Milovanović [Mil94], among others. A particularly useful result of this approach to
summation, general enough to serve our purposes, is given by the following theorem.

Theorem 3.6. Let f(z) be a function that is analytic in a domain of the complex
plane. Further, suppose that for some α > 1, f(z) = O(z−α) as z → ∞. Let C be a
contour in the domain of analyticity of f that is symmetric with respect to the real
axis, passes from infinity in the first quadrant into the fourth quadrant, and has, on
its left (with respect to its orientation), all the positive integers, no other integers,
and no boundary points of the domain of analyticity of f . Then

∞∑
k=1

f(k) =
1

2πi

∫
C
f(z) · π cot(πz) dz, (3.21)

∞∑
k=1

(−1)kf(k) =
1

2πi

∫
C
f(z) · π csc(πz) dz. (3.22)

Proof. 14 Consider the 1-periodic meromorphic function π cot(πz), whose poles are
all simple and located at the integers z = n, n ∈ Z. From the Laurent series at
z = 0, namely

π cot(πz) =
1
z
− π2

3
z +O(z3),

we conclude that the residues are all 1.
14We restrict ourselves to (3.21). The formula (3.22) for an alternating series can be proved in

analogy, if one notes that at the pole z = n, n ∈ Z, the residue of the function π csc(πz) is (−1)n.

3.6. Summation Formulas: Complex Analysis 67

�1 0 1 2 3 4 5

�2�

��

0

�

2�

3�

�
poles of f

r

�1

�

�2: circular arc

of radius r��

P

P
��

Figure 3.1. Contours in the proof of Theorem 3.6 (n = 3).

Let C1 be the arc of the contour C between a point P and its complex conjugate
P̄ ; let C2 be the circular arc of radius r joining P̄ and P counterclockwise (see
Figure 3.1). If we restrict ourselves to the radii rn = n + 1/2, n ∈ N, the function
π cot(πz) remains uniformly bounded when |z| = rn, z ∈ C, and n→ ∞. Now, the
residue theorem [Hen74, Thm. 4.7a] gives

n∑
k=1

f(k) =
1

2πi

∫
C1

f(z) · π cot(πz) dz +
1

2πi

∫
C2

f(z) · π cot(πz) dz.

Passing to the limit n→ ∞ yields the conclusion, because∣∣∣∣
∫
C2

f(z) · π cot(πz) dz
∣∣∣∣ = length(C2) ·O(r−α

n) = O(r1−α
n) → 0.

Here we have used the asymptotic decay f(z) = O(z−α), α > −1.

Theorem 3.6 enables us to transform infinite sums into integrals. We first
choose an appropriate contour C, parametrized by the real variable t through the
complex-valued function Z(t). Since we are working with tools of complex analysis,
it is best to use contours C that are analytic curves, that is, the function Z must itself
be an analytic function of the real variable t. For the ease of numerical evaluation
we prefer curves that can be expressed in terms of elementary functions. Using the
parametrization, the integral in (3.21) transforms to

∞∑
k=1

f(k) =
∫ ∞

−∞
F (t) dt, F (t) =

1
2 i
f(Z(t)) · cot(πZ(t)) · Z ′(t). (3.23)

Example. Let us transform the sum (3.14), which defines ζ(4), into an integral.
We choose the contour C parametrized through the function Z(t) = (1−it)/2, apply
Theorem 3.6 to the function f(z) = z−4, and obtain

ζ(4) =
1

2πi

∫
C

π cot(πz)
z4

dz = 16
∫ ∞

−∞

t(1 − t2) tanh(πt/2)
(1 + t2)4

dt. (3.24)

68 Chapter 3. How Far Away Is Infinity?

Any numerical quadrature method used to approximate the integral (3.23)
will result in a summation formula for f of the form (3.15). However, because of
the intermediate function Z, the weights and sampling points will now be complex.

Note that once the contour C has been chosen, the parametrization of C can
still be modified by using a new parameter τ that is related to t by an analytic
transformation t = Φ(τ) with Φ′(τ) > 0. This additional flexibility is the main
advantage of the summation by contour integration over the real-analysis method
of §3.5. A proper choice of the parametrization will help us reduce the number of
terms in the resulting summation formula considerably.

3.6.1 Approximation of Contour Integrals by Trapezoidal Sums

We approximate the integral S =
∫∞
−∞ F (t) dt in (3.23) by its trapezoidal sum T (h)

of step size h > 0,

T (h) = h

∞∑
j=−∞

F (j · h).

In many texts on numerical analysis the trapezoidal rule is treated as the “ugly
duckling” among algorithms for approximating definite integrals. It turns out, how-
ever, that the trapezoidal rule, simple as it is, is among the most powerful algorithms
for the numerical quadrature of analytic functions. Among the first who pointed out
that exceptional behavior of the trapezoidal rule for infinite intervals were Milne
(in an unpublished 1953 note, see [DR84, p. 212]) and Bauer, Rutishauser, and
Stiefel [BRS63, pp. 213–214]. Later Schwartz [Sch69] and Stenger [Ste73] applied
the trapezoidal rule to more general analytic integrals; see also the book by Davis
and Rabinowitz [DR84, §3.4]. We also mention the Japanese school starting with the
work of Iri, Moriguti, and Takasawa [IMT70], which is also based on the trapezoidal
rule and is now known as the IMT method. Their ideas were further developed
into the double-exponential formulas by Takahasi and Mori [TM74] and by Mori
[Mor78]. Full generality for handling analytic integrals is achieved by combining
the trapezoidal rule (applied to integrals over R) with analytic transformations of
the integration parameter (see [Sch89, Chap. 8]). Applications to multidimensional
integrals over Cartesian-product domains (rectangles, strips, quadrants, slabs, etc.)
are discussed in [Wal88].

Truncation of trapezoidal sums. The infinite sums T (h) are inherently difficult
to compute if the integrand decays too slowly, such as O(|t|−α) as t → ±∞. An
obvious problem is the large number of terms that would have to be included in the
sum; more serious, however, is the estimation of the remainder of a truncated sum.

Typically such a sum is truncated by disregarding all terms that are considered
“too small”. Let us formalize this idea by specifying a threshold or truncation
tolerance ε > 0 and define the truncated trapezoidal sum

Tε(h) = h
∑

j∈Z:|F (j·h)|�ε

F (j · h). (3.25)

3.6. Summation Formulas: Complex Analysis 69

Then an approximation of or a useful bound on the remainder Rε(h) = T (h)−Tε(h)
is needed. To get a rough idea of the principal problems involved, we consider, as a
model, the truncation of the integral∫ ∞

1

t−α dt, α > 1,

at the threshold ε, that is, at the point of integration tε = ε−1/α. The remainder is

Rε =
∫ ∞

tε

t−α dt =
ε(α−1)/α

α− 1
,

which can be much larger than the truncation tolerance ε. For instance, we obtain
Rε =

√
ε for α = 2. Therefore, in the case of slowly decaying integrands the trunca-

tion by a threshold does not lead to accurate results. Instead, we propose to enhance
the decay of the integrand by introducing a new integration variable. For integrals
along the real axis the transformation

t = sinh(τ), dt = cosh(τ) dτ, (3.26)

proves to be appropriate. The integral becomes

S =
∫ ∞

−∞
G(τ) dτ, G(τ) = F (sinh(τ)) cosh(τ).

If F (t) decays as a power of t, G(τ) decays exponentially. Consider, again as a
model, the truncation by a threshold ε of a typical integral with an exponentially
decaying integrand, ∫ ∞

0

ae−ατ dτ, α > 0, a > 0.

The point of truncation is tε = log(a/ε)/α, and the remainder is

Rε =
∫ ∞

tε

ae−ατ dτ = ε/α.

Thus, we see that a truncation tolerance ε = α · tol suffices to accumulate the
trapezoidal sum of an exponentially decaying integrand to the accuracy tol.

The reader will find a Matlab implementation of these ideas as the routine

TrapezoidalSum(f, h, tol, level, even)

in Appendix C.3.2. The routine assumes that the integrand f decays monotonically
in the tail where the threshold tol applies. The nonnegative integer level tells
the routine how often the sinh transformation (3.26) has to be applied recursively.
We will call the method used with level = 1 a single-exponential formula, with
level = 2 a double-exponential formula. If the switch even is set to ’yes’, only
half of the sum is accumulated for symmetry reasons. For numerical accuracy, the
sum is accumulated from the smaller to the larger values (assuming monotonicity).
Therefore the terms have to be stored until the smallest one has been computed.

70 Chapter 3. How Far Away Is Infinity?

Discretization Error. The error theory of the trapezoidal rule is ultimately con-
nected to the Fourier transform of F :

F̂ (ω) =
∫ ∞

−∞
F (t)e−iωt dt.

In fact, the Poisson summation formula [Hen77, Thm. 10.6e] expresses T (h) as a
corresponding trapezoidal sum, with step size 2π/h, of the Fourier transform F̂ :

T (h) = h
∞∑

j=−∞
F (j · h) =

∞∑
k=−∞

F̂

(
k · 2π

h

)
.

Note that the sum over k has to be interpreted as a principal value, that is, as the
limit of the sum from −N to N as N → ∞. This, however, becomes relevant only
if F̂ decays slowly. Now, we observe that the term k = 0 of the trapezoidal sum of
the Fourier transform is the integral at hand

F̂ (0) =
∫ ∞

−∞
F (t) dt = S.

Therefore, the Poisson summation formula yields the error formula

E(h) = T (h) − S = F̂ (2π/h) + F̂ (−2π/h) + F̂ (4π/h) + F̂ (−4π/h) + (3.27)

Hence, the decay rate of E(h) for h→ 0 is determined by the asymptotic behavior
of the Fourier transform F̂ (ω) as ω → ±∞. In many specific cases this asymptotics
can be found by the saddle point method (method of steepest descents), see, e.g.,
[Erd56] or [Olv74] for the theory, or [GW01, pp. 495ff] for a worked example.

The error formula (3.27) yields an especially nice and simple result if we
assume that F is analytic in the strip |Im(t)| < γ∗, γ∗ > 0, and that F (x + iy) is
integrable with respect to x, uniformly in |y| � γ for any γ < γ∗. Then the modulus
of the Fourier transform is known to decay exponentially [RS75, Thm. IX.14]:15

|F̂ (ω)| = O
(
e−γ|ω|

)
as ω → ±∞,

where 0 < γ < γ∗ can be chosen arbitrarily. If we plug this into (3.27) we obtain
the error estimate16

E(h) = O
(
e−2πγ/h

)
as h→ 0, (3.28)

that is, we get exponential convergence: halving the step size results in doubling the
number of correct digits. Note that exponential convergence is much better than
the higher-order convergence O(h2m) achieved in Romberg integration with m− 1
steps of Richardson extrapolation applied to the trapezoidal rule (see Appendix A,
p. 238).

15The more difficult L2-version of this result is one of the classic Paley–Wiener theorems [PW34,
§3, Thm. IV], stated in their seminal monograph on Fourier transforms in the complex domain.

16For a different proof see [DR84, p. 211].

3.6. Summation Formulas: Complex Analysis 71

1 2 3 4 5 6 7 8 9
10

−15

10
−10

10
−5

10
0

h−1

E
rr

or

20 40 60 80 100 120
10

−15

10
−10

10
−5

10
0

Number of terms

E
rr

or
Figure 3.2. Error of trapezoidal sum vs. 1/h (left), and vs. the number

of terms (right). Results are shown for a single-exponential (dashed line) and a
double-exponential (solid line) formula.

Example. Let us illustrate the use of the truncated trapezoidal sum (3.25) and the
sinh transformation (3.26) for the integral (3.24), which resulted from the applica-
tion of the method of contour integration to the sum defining ζ(4). Since the inte-
grand decays slowly as O(|t|−5) as t→ ±∞, we have to apply the sinh transforma-
tion (3.26) at least once. We start with the single-exponential formula (level = 1),
using the step sizes h = 0.3 and h = 0.15.

A Matlab session.

>> f = inline(’z^(-4)’,’z’);
>> Z = inline(’1/2-i*t/2’,’t’);
>> dZ = inline(’-i/2’,’t’);
>> F_Summation = inline(’real(f(Z(t))*cot(pi*Z(t))*dZ(t)/2/i)’,...
>> ’t’,’f’,’Z’,’dZ’);
>> tol = 1e-16; level = 1; even = ’yes’; s = [];
>> for h = [0.3 0.15]
>> s = [s;
>> TrapezoidalSum(F_Summation,h,tol,level,even,f,Z,dZ)];
>> end
>> s

s = 1.082320736262448e+000
1.082323233711138e+000

For h = 0.3, using 73 terms of the trapezoidal sum, 6 digits of the result are correct;
whereas all 16 digits are correct for h = 0.15 using 143 terms of the trapezoidal sum.
The errors of several runs with h in the range from 1 to 1/6 are shown (dashed line)
in the left part of Figure 3.2; they nicely reflect the exponential convergence. The
corresponding number of terms used in the truncated trapezoidal sums are shown
in the right part of Figure 3.2.

72 Chapter 3. How Far Away Is Infinity?

−4 −2 0 2 4

0

−3π/2

−π/2

3π/2

π/2

Re(τ)

Im
(τ

)

Figure 3.3. Proliferation of singularities in the parameter plane for a
single-exponential (left) and a double-exponential (right) formula. There are many
more singularities outside the rectangles shown.

A look at the right integral in (3.24) shows that the singularities of the in-
tegrand are, before the sinh transformation, located at (2k + 1)i, k ∈ Z. After the
transformation the singularities τs of the integrand satisfy

sinh(τs) = (2k + 1)i, which implies Im(τs) =
(2m+ 1)π i

2

for some m ∈ Z; see the left part of Figure 3.3. Hence, the transformed integrand is
analytic in the strip |Im(τ)| < γ∗ with γ∗ = π/2 and the error estimate (3.28) spe-
cializes to E(h) = O(e−β/h), for all β < π2. Thus, an increase of 1/h by, say, 1 yields,
in the asymptotic regime, a gain in accuracy of approximately π2/ log(10) .= 4 dig-
its. Indeed, the dashed line in the left part of Figure 3.2 has a slope of approximately
−4 in its linear asymptotic regime.

It is tempting to enhance the decay of the integrand by a double-exponential
parametrization, that is, by applying the sinh transformation (3.26) once more.17

This would simplify the computation of the trapezoidal sums by making the number
of terms in the truncated sum Tε(h) essentially independent of the threshold ε. Such
a repeated application of the sinh transformation has to be used with care, however.

The right part of Figure 3.3 shows the singularities of the integrand of the
example at hand after such a second sinh transformation. We observe that the
integrand is no longer analytic in a strip containing the real axis. In contrast, the
domain of analyticity has now the shape of a “funnel” of exponentially decaying
width. Although the formula (3.28) for the discretization error is not applicable,
integrands with such funnel domains of analyticity can still be useful: for the integral

17To do so, one puts level = 2 in the Matlab session of p. 71.

3.6. Summation Formulas: Complex Analysis 73

at hand, the solid line in the left part of Figure 3.2 shows that the convergence is
apparently still exponential, even if the decay has slowed down. Therefore, smaller
step sizes have to be used to get the same accuracy as with the singly transformed
integrand. This potential increase of the computational effort is compensated by
the much faster decay of the integrand, which allows much earlier truncation of the
trapezoidal sum. So let us compare the two methods with respect to the number of
terms that were actually used: the right part of Figure 3.2 shows that, at the same
level of accuracy, the double application of the sinh transformation requires fewer
terms by a factor of 2.5. Thus the computational cost of the sinh transformations is
about the same for both the single-exponential and the double-exponential formula.
However, the double-exponential formula saves the factor of 2.5 in the evaluations
of the original integrand. This will become a major advantage in the final solution of
Problem 3, for which the transformations (and the transcendentals of the summation
formula) are applied only once, but a large number of integrals has to be calculated
during the power iteration.

Summary. For the convenience of the reader we finally write down the summation
formula of the type (3.15) that is obtained by applying the trapezoidal rule to
the contour integral (3.23). If we choose a contour parametrized through Z(t), a
reparametrization Φ(τ), a step size h, and a truncation point T we get

∞∑
k=1

f(k) ≈
m∑

k=−m

wkf(ck), m = 	T/h
,

with the (complex-valued) sampling points and weights

ck = Z(Φ(kh)), wk =
h

2i
cot(πck) · Z ′(Φ(kh)) · Φ′(kh).

The discussion so far has shown that for certain f there are suitable choices that
make the error exponentially small in the number of terms, that is n = 2m+ 1.

3.6.2 Application to Problem 3

As in §3.5, having a good summation formula in hand, we can use the power iter-
ation in the form (3.16) to approximate ‖A‖2. That is, we calculate the dominant
eigenvalue of the transformed matrix G̃n, which we defined in (3.17).18 To make the
method work we need only choose a contour, a reparametrization, and a truncation
point. Then we apply the procedure for various step sizes.

Choosing the contour. The sample points enter the transformed power iteration
(3.16) via the expression a(cj , ck) in a twofold operational sense: as a means to

18As in §3.5 we can argue that this value is also the dominant eigenvalue of the matrix ÃT
n Ãn,

where the transformed matrix Ãn is defined in (3.18). However, because now Ãn has complex
entries, it is not the case that this eigenvalue is equivalently given by ‖Ãn‖2 — a value that in the
complex case is equal to the dominant eigenvalue of ÃH

n Ãn instead.

74 Chapter 3. How Far Away Is Infinity?

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

Re(z)

Im
(z

)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

Re(z)

Im
(z

)
Figure 3.4. Loci of poles (dashed lines) for the contour (3.29) (solid line)

with a good choice of the parameter σ = 1/
√

2 (left) and a bad choice σ = 1/4
(right). The dotted lines on the left show the boundaries of the image z = Z(t)
(with σ = 1/

√
2) of the strip |Im(t)| � 0.25 in the parameter plane.

efficient summation as well as a new index for the resulting vectors. Therefore the
poles of the underlying analytic functions depend on the contour itself. In fact, these
poles lie on the loci given by the zeros v(t) and u(t) of the denominator b(u+v)−v
of a(u, v), as given by (3.7), while one of the variables is running through Z(t):

b(u(t) + Z(t)) − Z(t) = 0, b(Z(t) + v(t)) − v(t) = 0.

These are quadratic equations and we obtain four connected branches for the loci
of the poles (see Figure 3.4).

Because of the dependence of the poles on the chosen contour, the simplest
such choice, which was good for our model ζ(4) =

∑∞
k=1 k

−4, namely Z(t) = σ− it
with 0 < σ < 1, does not satisfy the conditions of Theorem 3.6. Instead we use
the right branch of a rectangular hyperbola Re(z2) = σ2, suitably parametrized to
yield exponentially decaying integrands for the trapezoidal rule:

Z(t) = σ(cosh(t) − i sinh(t)), Z ′(t) = −i · Z(t). (3.29)

The particular choice σ = 1/
√

2 yields the equivalent representation Z(t) = cosh(t−
iπ/4); the loci of poles are shown on the left part of Figure 3.4 and satisfy the
conditions of Theorem 3.6. As shown on the right part of Figure 3.4, the choice of
the parameter σ = 1/4 leads to intersections of the loci of poles with the contour.
Such a choice is not admissible.

Choosing the parametrization. With σ = 1/
√

2, and without further reparametri-
zation, the domain of analyticity extends to the strip |Im(t)| < γ∗, where γ∗ ≈ 0.25
as can be read off from the dotted lines on the left of Figure 3.4. Therefore, we
expect errors that are exponentially small in the reciprocal step size h−1. Although
practical for low accuracies, such as calculations in IEEE double precision, this

3.6. Summation Formulas: Complex Analysis 75

Table 3.6. Values of λ1/2
max(G̃n), truncation tolerance ε = 10−16.

h n σ = 1/
√

2 σ = 1/4

0.64 11 1.165410725532445 9.202438226420232 · 10−17

0.32 21 1.252235875316941 5.344162844425345 · 10−17

0.16 41 1.273805685815999 2.445781134567926

0.08 83 1.274224137562002 1.722079300161066

0.04 167 1.274224152821228 4.210984571814455

parametrization turns out to be rather slow for higher accuracies. Some experimen-
tation led us to the particular choice

t = Φ(τ) = τ +
τ3

3
. (3.30)

Choosing the truncation point. From §3.5 we know that the decay rate of the
terms of the sums in the power iteration is the same as for ζ(4) =

∑∞
k=1 k

−4.
Thus, with the parametrization (3.30) a good point of truncation for the truncation
tolerance ε is at

T = log1/3 ε−1. (3.31)

Results in IEEE double-precision arithmetic. The results of a Matlab run19 with
the choices (3.29) for the contour, (3.30) for the reparametrization, and (3.31) for
the truncation point are shown in Table 3.6. The run with the suitable contour
parameter σ = 1/

√
2, shown in the third column, nicely exhibits the exponential

convergence: the number of correct digits doubles if we double the dimension n; 16
correct digits were obtained in less than a second. The run with the bad contour
parameter σ = 1/4, shown in the fourth column, proves that it is important to
satisfy the conditions of Theorem 3.6: all the digits are garbage. Thus a careful
theoretical study turns out to be indispensable for the method at hand.

Results in high-precision arithmetic. For experiments with higher accuracies we
have implemented this approach in PARI/GP with the above choices (3.29), (3.30),
(3.31), and σ = 1/

√
2. Because the contour is symmetric with respect to the real

axis, the sums (3.16) of the transformed power method also enjoy a symmetry with
respect to complex conjugation. Taking advantage of this symmetry allowed us to
cut in half the computational effort.19

Table 3.7 shows the number of correct digits for various runs; “correctness” was
assessed by comparing with a result that was obtained in a month-long computation
with a predicted accuracy of 273 digits. Such a prediction can be obtained as follows.

At the end of §3.6.1 we considered reparametrizations that enforce a stronger
decay of the integrand and observed that they certainly yield shorter trapezoidal

19The code can be found at the web page for this book.

76 Chapter 3. How Far Away Is Infinity?

Table 3.7. Number of correct digits of λ1/2
max(G̃n) with ε = 102−dec; dec is

the mantissa length of the high-precision arithmetic.

1/h n dec no. of correct digits run time

40 321 28 25 9.8 sec

65 577 38 36 43 sec

90 863 48 47 2.3 min

110 1119 57 56 5.0 min

160 1797 86 76 32 min

240 2991 105 98 2.0 h

384 5315 144 131 13 h

640 9597 183 180 71 h

sums, but at the expense of a slower convergence rate caused by the prolifera-
tion of singularities. Experiments show that for Problem 3 too, these two effects
tend to balance each other in the sense that different parametrizations differ only
by a constant factor in the overall computational effort. Now, for the case of no
reparametrization the computational effort to obtain d correct digits is easily esti-
mated: the exponential convergence yields the reciprocal step size h−1 = O(d), the
exponential decay results in the truncation point T = O(d), and the power iteration
needs O(d) iterations. Thus, we get the dimension n = O(T/h) = O(d2) and20

no. of d-digit operations = O
(
no. of power iterations · n2

)
= O

(
d5
)
.

On the other hand, for the parametrization (3.30) we have the truncation point
given in (3.31), namely T = O(d1/3). If we assume the same asymptotic operation
count O(d5) as above, we get the reciprocal step size h−1 = O(d5/3). In fact, the
data of Table 3.7 are consistent with this asymptotic behavior; a simple fit yields

d ≈ 51.4 sinh
(

3
5

arcsinh
(
h−1

47.7

))
. (3.32)

This empirical law allows us to predict the accuracy for a given step size h.
As efficient as this reliably exponentially convergent method is, the complexity

of the problem is still too large to allow us to calculate 10 000 digits, as we have done
for each of the other nine problems: the dimension of the approximating problem
would be n ≈ 3 · 107. Calculating the dominant eigenvalue of a full matrix of that
dimension to 10 000 digits is beyond imagination: infinity is too far away.

20Since these operations are basically multiplications, the run time scales, using Karatsuba
multiplication, as O(d6.58...) and, with an FFT-based fast multiplication, as O(d6+κ), where κ > 0
is arbitrary.

Chapter 4

Think Globally, Act
Locally

Stan Wagon

In order to find all common points, which are the so-
lutions of our nonlinear equations, we will (in general)
have to do neither more nor less than map out the full
zero contours of both functions. Note further that the
zero contours will (in general) consist of an unknown
number of disjoint closed curves. How can we ever hope
to know when we have found all such disjoint pieces?
— W. H. Press et al. in “Numerical Recipes” [PTVF92]

Problem 4

What is the global minimum of the function

esin(50x) + sin(60ey) + sin(70 sinx) + sin(sin(80y))

− sin(10(x+ y)) + (x2 + y2)/4 ?

4.1 A First Look
Let f(x, y) denote the given function. On a global scale, f is dominated by the
quadratic term

(
x2 + y2

)/
4, since the values of the other five summands lie in the

intervals [1/e, e], [−1, 1], [−1, 1], [− sin 1, sin 1], and [−1, 1], respectively. Thus the
overall graph of f resembles a familiar paraboloid (Figure 4.1). This indicates that
the minimum is near (0, 0). But a closer look shows the complexity introduced by
the trigonometric and exponential functions. Indeed, as we shall see later, there are
2720 critical points inside the square [−1, 1] × [−1, 1]. From this first look, we see
that a solution to the problem breaks into three steps:

1. Find a bounded region that contains the minimum.

2. Identify the rough location of the lowest point in that region.

77

78 Chapter 4. Think Globally, Act Locally

�20

0

20x
�20

0

20

y
0

100

200

300

�20

0

20x

�0.3

0

0.3
x

�0.3

0

0.3

y

�3

0

3

6

�0.3

0

0.3
x

Figure 4.1. Two views of the graph of f(x, y). The scale of the left-hand
view masks the complexity introduced by trigonometric and exponential terms. It is
this complexity that makes finding the global minimum a challenge.

3. Zoom in closer to pinpoint the minimum to high precision.

Step 1 is easy. A quick computation using a grid of modest size yields the
information that the function can be as small as −3.24. For example, one can look
at the 2601 values obtained by letting x and y range from −0.25 to 0.25 in steps of
0.01.

A Mathematica session. For convenience later we define f so that it accepts as
inputs either the two numeric arguments or a single list of length two.

f�x ,y � �� �Sin�50 x� � Sin�60 �y� � Sin�70 Sin�x�� � Sin�Sin�80 y���

Sin�10�x � y	� � �x2 � y2�/4

f��x ,y �� �� f�x,y�

Min�Table�f�x,y�, �x,�0.25,0.25,0.01�, �y,�0.25,0.25,0.01���

�3.246455170851875

This upper bound on the minimum tells us that the global minimum must
lie inside the circle of radius 1 centered at the origin, since outside that circle the
quadratic and exponential terms are at least 1/e+1/4 and the four sines are at least
−3−sin 1, for a total above −3.23. And step 3 is easy once one is near the minimum:
standard optimization algorithms, or root-finding algorithms on the gradient of f ,
can be used to locate the minimum very precisely. Once we are close, there is no
problem getting several hundred digits. The main problem is in step 2: How can be
pinpoint a region that contains the correct critical point, and is small enough that

4.2. Speedy Evolution 79

�1 �0.5 0 0.5 1

�1

�0.5

0

0.5

1

Figure 4.2. A density plot of f(x, y) with increasing values going from
black to white. The local minima are shown as black dots (693), the local maxima
as white dots (667), and the saddles (1360) as gray dots. There are 2720 critical
points in this square, computed by the method of §4.4.

it contains no other? Figure 4.2, a contour plot of f(x, y) with the contour lines
suppressed, shows what we are up against.

In fact, a slightly finer grid search will succeed in locating the proper mini-
mum; several teams used such a search together with estimates based on the partial
derivatives of f to show that the search was fine enough to guarantee capture of
the answer. But we will not discuss such methods here, focussing instead on general
algorithms that do not require an analysis of the objective function.

4.2 Speedy Evolution
While a grid search can be effective for this particular problem (because the critical
points do have a rough lattice structure), it is easy to design a more general search
procedure that uses randomness to achieve good coverage of the domain. An effective
way to organize the search is to use ideas related to evolutionary algorithms. For
each point in the current generation, n random points are introduced, and the n best
results of each generation (and its parents) are used to form the new generation. The
scale that governs the generation of new points shrinks as the algorithm proceeds.

Algorithm 4.1. Evolutionary Search to Minimize a Function.

Inputs: f(x, y), the objective function;
R, the search rectangle;
n, the number of children for each parent, and the number of points in the

80 Chapter 4. Think Globally, Act Locally

new generation;
ε, a bound on the absolute error in the location of the minimum of f in R;
s, a scaling factor for shrinking the search domain.

Output: An upper bound to the minimum of f in R, and an approximation to its
location.

Notation: parents = current generation of sample points, fvals = f -values for
current generation.

Step 1: Initialize: Let z be the center of R; parents = {z}; fvals = {f(z)};
{h1, h2} = side-lengths of R.

Step 2: The main loop:
While min(h1, h2) > ε,

For each p ∈ parents, let its children consist of n random points in
a rectangle around p; get these points by using uniform random
x and y chosen from [−h1, h1] and [−h2, h2], respectively;

Let newfvals be the f -values on the set of all children;
Form fvals ∪ newfvals, and use the n lowest values to determine

the points from the children and the previous parents that will
survive;

Let parents be this set of n points; let fvals be the set
of corresponding f -values;

Let hi = s · hi for i = 1, 2.
Step 3: Return the smallest value in fvals, and the corresponding parent.

This algorithm is nicely simple and can be programmed in just a few lines in
a traditional numerical computing environment. It generalizes with no problem to
functions from Rn to R. The tolerance is set to 10−6 in the Mathematica code that
follows because the typical quadratic behavior at the minimum means that should
give about 12 digits of precision of the function value. Note that it is possible
for some children to live outside the given rectangle, and therefore the final answer
might be outside the rectangle. If that is an issue, then one can add a line to restrict
the children to be inside the initial rectangle.

A Mathematica session. Some experimentation will be needed to find an appro-
priate value of n. We use n = 50 here, though this algorithm will generally get the
correct digits even with n as low as 30.

h � 1
gen � �f�#�,#�&/@��0,0��

While�h > 10�6,

new � Flatten�Table�#�2� � Table�h�2 Random�� � 1	,�2��,�50��&/@gen,
1�
gen � Take�Sort�Join�gen,�f�#�,#�&/@new��,50�

h � h/2�

4.2. Speedy Evolution 81

gen�1�
	�3.30686864747396, 	�0.02440308163632728, 0.2106124431628402

Figures 4.3 and 4.4 use a logarithmic scale to show the steady convergence of
the points in each generation to the answer. Figure 4.4 shows how the points swarm
into the correct one from all directions.

5 10 15 20 251
Generation

10�1

10�6

10�11

10�16

Error

Figure 4.3. The base-10 logarithm of the f-value error for each point in
each generation of a genetic search, in a run with n = 50 and tolerance of 10−8 in
the x-y coordinates. The convergence to the correct result is nicely steady.

For more confidence one would compute a sequence of values as n increases.
When n = 70, the algorithm solves the problem with high probability (992 successes
in 1000 runs). This approach has the virtue of being easy to program and very fast,
and so long as the resolution is fine enough to find the correct local minimum, it
will converge to the answer even if one requests many digits (and uses appropriate
working precision). Of course, it comes with no guarantee, and repeated trials will
usually be necessary to gain confidence in the correctness of the result (the next
section will present an algorithm that eliminates the uncertainty inherent in a ran-
dom search). Searches such as this have limitations — a move to higher dimensions
puts stress on the number of search points; a microscopic downward spike would be
impossible to find — but such issues are problematic for just about any optimization
method. Given the speed and minimal programming effort, this genetic approach is
a fine tool for an initial investigation into an optimization problem.

An obvious way to speed things up is to switch at some point to a method
that is designed to quickly converge to the nearest local minimum. It can be hard
to decide, in an automated fashion, when one is close enough to the right mini-
mum. However, for the problem at hand, switching to either a minimization routine
(Brent’s method is popular) or, better, a root-finder that finds the zero of the gra-
dient speeds things up a lot if one wants a large number of digits. Once we have a
seed that we believe in, whether from a random search or a more reliable interval
algorithm as in §4.3, using Newton’s method on the gradient is very fast and yields
10 000 digits in under a minute (see Appendix B).

82 Chapter 4. Think Globally, Act Locally

Figure 4.4. Survival of the fittest: the results of a genetic algorithm with a
high working precision, and accuracy goal of 10−13; the computation runs through 45
generations with 50 members of each. The scale is logarithmic, with each gray ring
representing another power of 10 away from the true minimum location (center).
Points of the same hue correspond to the same generation, so the innermost red
points are the last generation (28th). They are within 10−6 of the true best; the
point with the lowest f-value (which is not the point closest to the answer!) is the
one atop a black disc. The outermost points — the first generation — have f-values
between −1.3 and 4.2. But by the 9th generation all points are in the vicinity of
the correct critical point. The yellow discs mark the location of the 20 lowest local
minima; the clustering near those points at the early generations is visible.

If one wants to use a random search, there are some canned algorithms that can
be used. For example, the NMinimize function in Mathematica can solve a variety
of optimization problems, including problems with constraints and in any number
of variables. But there are several methods available for it, and several options for
each, so, as with all complicated software, it can be tricky finding a combination
that works. Simulated annealing and the Nelder–Mead method are available, but
they do not seem very good on this sort of continuous problem (they tend to end up
at a nonglobal minimum). An evolutionary algorithm called differential evolution
does work well (for more on this method see §5.2), and will reliably (85 successes
in 100 random trials) solve the problem at hand when called in the following form.

4.3. Interval Arithmetic 83

A Mathematica session.

NMinimize��f�x,y�,x2 � y2 � 1�,�x,y�,

Method � �"DifferentialEvolution","SearchPoints" � 250��

�	3.3.3068686474752402,

�x � 	0.024403079743737212,y � 0.21061242727591697��

This gives 14 digits of the answer, and cause the objective function to be evaluated
only about 6,000 times (the simpler evolutionary algorithm presented earlier can
get 15 digits with about 120,000 function evaluations).

Another approach is to use a more comprehensive global optimization package.
One such, based on random search and statistically based reasoning, is MathOpti-
mizer, a commercial package for Mathematica developed by Janos Pintér.1

4.3 Interval Arithmetic
Let R be the square [−1, 1] × [−1, 1], which we know must contain the answer.
Random search methods can end up at a local but nonglobal minimum; the best
algorithm will be one that is guaranteed to find the global minimum. Such an
algorithm arises from a subdivision process. Repeatedly subdivide R into smaller
rectangles, retaining only those rectangles that have a chance of containing the
global minimum. The identification of these subrectangles can be done by estimating
the size of the function and its derivatives on the rectangle. This point of view
is really one of interval arithmetic. In interval arithmetic, the basic objects are
closed intervals [a, b] on the real line; extended arithmetic is generally used, so that
endpoints can be ±∞. One can design algorithms so that elementary functions
can be applied to such intervals (or, in our case, pairs of intervals), and the result
is an interval that contains the image of the function on the domain in question.
However, the resulting interval is not simply the interval from the minimum to the
maximum of the function. Rather it is an enclosing interval, defined so as to make
its computation easy and fast; it well generally be larger than the smallest interval
containing all the f -values.

For example, it is easy to determine an enclosing interval for sin([a, b]): just
check whether [a, b] contains a real number of the form π

2 + 2nπ (n ∈ Z). If so,
the upper end of the enclosing interval is 1; if not, it is simply max(sin a, sin b).
Finding the lower end is similar. The exponential function is monotonic, so one
need look only at the endpoints. For sums, one follows a worst-case methodology
and adds the left ends and then the right ends. So if g(x) = sinx+ cosx, then this
approach will not yield a very tight result, as [−2, 2] is only a loose bound on the
actual range of g, [−

√
2,
√

2]. This phenomenon is known as dependence, since the
two summands are treated as being independent, when they are not. Nevertheless,
as the intervals get smaller and the various pieces become monotonic, the interval
computations yield tighter results. Products are similar to sums, but with several
cases. There are several technicalities that make the implementation of an interval

1http://is.dal.ca/~jdpinter/

84 Chapter 4. Think Globally, Act Locally

arithmetic system tedious and difficult to get perfectly correct: one critical point
is that one must always round outwards. But Mathematica has interval arithmetic
built-in, and there are packages available for other languages, such as IntpakX2 for
Maple, Intlab3 for Matlab, and the public-domain smath library4 for C. Thus one
can use a variety of environments to design algorithms that, assuming the interval
arithmetic and the ordinary arithmetic are implemented properly, will give digits
that are verified to be correct. For the algorithms we present here, we will assume
that a comprehensive interval package is available.

One simple application of these ideas is to the estimation exercise used in §4.1
to ascertain that the square R contains the global minimum. The interval output
of f applied to the half-plane −∞ < x � −1 is [−3.223,∞], and the same is true if
the input region — the half-plane — is rotated 90◦, 180◦, or 270◦ around the origin.
This means that in these four regions — the complement of R — the function is
greater than −3.23, and so the regions can be ignored. Here is how to do this in
Mathematica, which has interval arithmetic implemented for elementary functions.

A Mathematica session.

f�Interval���
,�1.��,Interval���
,
���

Interval���3.223591543636455,���

Now we can design an algorithm to solve Problem 4 as follows (this approach
is based on the solution of the Wolfram Research team, the only team to use interval
methods on this problem, and is one of the basic algorithms of interval arithmetic;
see [Han92, Chap. 9] and [Kea96, §5.1]). We start with R and the knowledge that
the minimum is less than −3.24. We then repeatedly subdivide R, retaining only
those subrectangles T that have a chance of containing the global minimum. That
is determined by checking the following three conditions. Throughout the interval
discussion we use the notation h[T] to refer to an enclosing interval for {h(t) : t ∈ T}.

(a) f [T] is an interval whose left end is less than or equal to the current upper
bound on the absolute minimum.

(b) fx[T] is an interval whose left end is negative and right end is positive.

(c) fy[T] is an interval whose left end is negative and right end is positive.

For (a), we have to keep track of the current upper bound. It is natural to
try condition (a) by itself; such a simple approach will get one quickly into the
region of the lowest minimum, but the number of intervals then blows up because
the flat nature of the function near the minimum makes it hard to get sufficiently
tight enclosing intervals for the f -values to discard them. The other two conditions
arise from the fact that the minimum occurs at a critical point, and leads to an
algorithm that is more aggressive in discarding intervals. Conditions (b) and (c)
are easy to implement (the partial derivatives are similar to f in complexity) and

2http://www.mapleapps.com/powertools/interval/Interval.shtml
3http://www.ti3.tu-harburg.de/~rump/intlab/
4http://interval.sourceforge.net/interval/C/smathlib/README.html

4.3. Interval Arithmetic 85

the subdivision process then converges quickly to the answer for the problem at
hand. While a finer subdivision might sometimes be appropriate, simply dividing
each rectangles into four congruent subrectangles is adequate.

In the implementation we must be careful, as it is important to always improve
the current upper bound as soon as that is possible. In the algorithm that follows,
this improvement is done for the entire round of same-sized rectangles when a1

is updated. The algorithm is given here for the plane, but nothing new is needed
to apply it to n-space; later in this section we will present a more sophisticated
algorithm for use in all dimensions.

Algorithm 4.2. Using Intervals to Minimize a Function in a Rectangle.

Assumptions: An interval arithmetic implementation that works for f , fx, and fy

is available.

Inputs: R, the starting rectangle;
f(x, y), a continuously differentiable function on R;
ε, a bound on the absolute error for the final approximation to the lowest

f -value on R;
b, an upper bound on the lowest f -value on R, obtained perhaps by a pre-

liminary search;
imax, a bound on the number of subdivisions.

Output: Interval approximations to the location of the minimum and the f -value
there, the latter being an interval of size less than ε (or a warning that the maximum
number of subdivisions has been reached). If the global minimum occurs more than
once, then more than one solution will be returned.

Notation: R is a set of rectangles that might contain the global minimum; a0 and
a1 are lower and upper bounds, respectively, on the f -value sought, and an interior
rectangle is one that lies in the interior of R.

Step 1: Initialize: Let R = {R}, i = 0; a0 = −∞, a1 = b.
Step 2: The main loop:

While a1 − a0 > ε and i < imax:
Let i = i+ 1;
Let R = the set of all rectangles that arise by uniformly dividing each

rectangle in R into 4 rectangles;
Let a1 = min(a1,minT∈R(f [T]));
Check size: Delete from R any rectangle T for which the left end of

f [T] is not less than a1;
Check the gradient: Delete from R any interior rectangle T for which

fx[T] does not contain 0 or fy[T] does not contain 0;
Let a0 = minT∈R(f [T]).

Step 3: Return the centers of the rectangles in R and of the f -interval for the
rectangles in R.

86 Chapter 4. Think Globally, Act Locally

Appendix C.5.3 contains a bare-bones implementation in Mathematica, in the
simplest form necessary to determine 10 digits of the minimum (both the checking
of the number of subdivisions and the distinction involving interior squares are
suppressed). Appendix C.4.3 also has code that does the same thing using the Intlab
package for Matlab. Moreover, there are self-contained packages available that are
devoted to the use of interval algorithms in global optimization; two prominent
ones are COCONUT5 and GlobSol6, both of which solve this problem with no
difficulty. The Mathematica version of the algorithm takes under two seconds to
solve Problem 4 completely as follows.

A Mathematica session.

LowestCriticalPoint�f�x,y�,�x,�1,1�,�y,�1,1�,�3.24,10�9�

		�3.306868647912808, �3.3068686470376663
,

		�0.024403079696639973, 0.21061242715950385

A more comprehensive routine, with many bells and whistles, is available
at the web page for this book. That program includes an option for monitoring
the progress of the algorithm (including the generation of graphics showing the
candidate rectangles) and for getting high accuracy. A run with the tolerance ε set
to 10−12 takes only a few seconds (all timings in this chapter are on a Macintosh G4
laptop with a one GHz CPU) and uses 47 subdivision rounds (iterations of the main
While loop). The total number of rectangles examined is 1372; the total number of
interval function evaluations is 2210, and the numbers of candidate rectangles after
each subdivision step are:

4, 16, 64, 240, 440, 232, 136, 48, 24, 12, 12, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4

Thus we see that at the third and later subdivisions, some subrectangles were dis-
carded, and after 11 rounds only a single rectangle remained: it was then subdi-
vided 35 times to obtain more accuracy. The interval returned by this computation
is −3.3068749

56, which determines 12 digits of the answer (its midpoint is correct to
16 digits). Figure 4.5 shows the candidate rectangles at the end of each of the first
12 subdivision steps.

As with the random search of Algorithm 4.1, an obvious way to improve
this basic algorithm is to switch to a rootfinder on the gradient once one has the
minimum narrowed down to a small region. But there are many other ways to
improve and extend this basic interval subdivision process and we shall discuss
those later in §4.5 and §4.6.

4.4 Calculus
A natural idea for this problem is to use the most elementary ideas of calculus and
try to find all the critical points — the roots of fx = fy = 0 — in the rectangle R;

5http://www.mat.univie.ac.at/~neum/glopt/coconut/branch.html
6http://www.mscs.mu.edu/~globsol/

4.4. Calculus 87

Bound � �3.24 Bound � �3.24 Bound � �3.24 Bound � �3.2757

Bound � �3.24 Bound � �3.24 Bound � �3.24 Bound � �3.24

Bound � �3.24 Bound � �3.24 Bound � �3.24 Bound � �3.24

Figure 4.5. The first 12 iterations of the interval subdivision algorithm.
After 47 rounds, 12 digits of the answer are known.

then the smallest f -value among them is the global minimum. While this is not the
most efficient way to attack an optimization problem — most of the critical points
are irrelevant, and the interval method of Algorithm 4.2 is more efficient at focusing
on a region of interest — we present it here because it works, and it is a good general
method for finding the zeros of a pair of functions in a rectangle. Moreover, if the
objective function were one for which an interval implementation was not easily
available, then the method of this section would be a useful alternative.

The partial derivatives are simple enough, but finding all the zeros of two
nonlinear functions in a rectangle is a nontrivial matter (see the quote starting this
chapter). Yet it can be done for the problem at hand by a very simple method
(§4.6 will address the issue of verifying correctness of the list of critical points). The
main idea, if one is seeking the roots of f = g = 0, is to generate a plot of the
zero-set of f and use the data in the plot to help find the zero [SW97]. If a good
contour-generating program is available, one can use it to approximate the zero-set
of f and then one can design an algorithm to find all zeros in a rectangle as follows.

Algorithm 4.3. Using Contours to Approximate the Roots of f = g = 0.

Assumptions: The availability of a contour-drawing program that allows access to
the points of the curves.

88 Chapter 4. Think Globally, Act Locally

Inputs: f and g, continuous functions from R2 to R;
R, the rectangular domain of interest;
r, the grid-resolution of the contour plot that will be used in step 1.

Output: Numerical approximations to each pair (x, y) that is a root of f = g = 0
and lies in R.

Notation: s will contain points that serve as seeds to a root-finder.

Step 1: Generate the curves corresponding to f = 0. This is most easily done by
a contour plot, set to compute just the zero-level curves, and using
r for the resolution in each dimension.

Step 2: For each contour curve, evaluate g on the points that approximate the
curve; whenever there is a sign change, put the point just scanned
into s.

Step 3: For each point in s, use Newton’s method (or a secant method in the
case of nondifferentiable functions) to determine a root. Discard
the root if it lies outside R.

Step 4: If the number of roots differs from the number of seeds, restart the
algorithm with a finer resolution.

Step 5: Return the roots.

The use of a contour routine was given in step 1 because that is quite simple
and is adequate to the task at hand. However, there are more geometric (and faster)
methods to compute an approximation to a contour curve that could be used. Such
path-following algorithms have seen use in the study of bifurcation of differential
equations. See [DKK91] and references therein to the AUTO program.

Implementing Algorithm 4.3 is quite simple provided one can get access to the
data approximating the curves f(x, y) = 0. One might leave step 4 for a manual
check, as opposed to making it part of the program. Figure 4.6, which includes the
zero-sets for both functions, shows the result for fx and fy on a small section of
the plane, where a resolution of 450 was used (this refers to the grid size used by
the contour algorithm); five seconds were required to compute all 290 roots. The
close-up on the right shows that the resolution was good enough to catch all the
intersections.

To solve the problem over all of the square R = [−1, 1]2 it makes sense to
work on subsquares to avoid the memory consumption of a very finely resolved
contour plot. Therefore we break R into 64 subsquares, compute all the critical
points in each, and keep track of the one that gives the smallest value of f . Doing
this takes under a minute and yields 2720 critical points. The one of interest is near
(−0.02, 0.21), where the f -value is near −3.3, the answer to the question. Newton’s
method can then be used to quickly obtain the function value at this critical point
to more digits.

Manual examination of the contour plots on the subsquares to confirm that the
resolution setting is adequate is not an efficient method for checking the results. A

4.4. Calculus 89

�0.2 0 0.2 0.4

0

0.2

0.4

0.12 0.16 0.2

0.02

0.04

0.06

0.08

Figure 4.6. A view of 290 solutions to fx = 0 (vertical curves) and fy = 0
(horizontal), where f(x, y) is the objective function of Problem 4. The black point
is the location of the global minimum. The close-up shows that the resolution was
adequate for these curves.

better way to gain confidence in the answer is to run the search multiple times, with
increasing resolution, checking for stability; results of such work are in Table 4.1.
While even the lowest resolution was enough to find the global minimum, quite
high resolution is needed to catch all 2720 critical points in S. Note how, in some
cases, 2720 seeds were found but they did not lead to the intended roots, and only
2719 roots were found. The high resolution needed to get 2720 roots (160× 160 on
each of 64 small squares) justifies the use of the subsquare approach. It is also a
simple matter to use the second-derivative test to classify the critical points: 667
are maxima, 693 are minima, and 1360 are saddle points.

Note that the number of extrema (693 + 667) coincides with the number of
saddles (1360). In some sense this is a coincidence, as it fails for, say, a rectangle that
contains but a single critical point; it fails also for the rectangle [−0.999, 0.999]2,
which has 692 + 667 extrema and 1357 saddles. Yet this phenomenon is related to
the interesting subject known as Morse theory, which provides formulas for

number of maxima + number of minima − number of saddles

on a closed surface, such as a sphere or torus. These formulas are related to the
Euler characteristic, and, on a torus, this number equals 0 [Mil63]. So let’s make
our function toroidal by taking f on R = [−1, 1]2 and reflecting the function in each
of the four sides, and continuing this reflection process throughout the plane. This
gives us a function — call it g — that is doubly periodic on the whole plane, with a
fundamental region that is [−1, 3]2; thus g can be viewed as a function on a torus.
Each critical point of f in R generates four copies of itself for g. But we have the
complication that we have introduced new critical points on the boundary.

90 Chapter 4. Think Globally, Act Locally

Table 4.1. A resolution of 160× 160 on each of 64 subsquares is needed to
find all 2720 critical points in [−1, 1]2.

Resolution Number of Seeds Number of Roots

20 2642 2286

40 2700 2699

60 2716 2712

80 2714 2711

100 2718 2716

120 2720 2719

140 2720 2719

160 2720 2720

180 2720 2720

200 2720 2719

220 2720 2720

240 2720 2720

260 2720 2719

280 2720 2720

300 2720 2720

320 2720 2720

340 2720 2720

360 2720 2720

380 2720 2720

400 2720 2720

To understand the boundary, consider marching along the four edges of R
and looking at each one-dimensional extremum: there will be the same number of
maxima as minima (we assume none occurs at a corner, and no inflection points
occur). Moreover, because of the symmetry of the reflection, each such maximum
will be either a saddle or a maximum for g, and each minimum will be either a
minimum or a saddle for g. If we can enumerate all these occurrences, then we can
use the toroidal formula for g to deduce the situation for f in R. But a couple
of surprising things happen because of the nature of f(x, y). First, fx is positive
on the left and right edges of R and fy is positive on the top and negative on the
bottom. This means that all the maxima on the left edge become saddles and all the
minima stay minima, with similar results holding for the other edges. We also need
to know the numbers of extrema on the border. These are easily computed and turn
out to be: top, 24 maxima, 24 minima; bottom, same; left, 29 maxima, 30 minima;
right: same. These facts about f combine to show that the toroidal fomula applies
verbatim to f restricted to R, thus explaining the coincidence. More important, this
analysis relies only on a one-dimensional computation and so provides supporting

4.4. Calculus 91

evidence that the counts obtained by the contour method (693, 667, and 1360) are
correct.

Figure 4.7 shows another example that arose from a system of differential
equations [Col95]. Finding the equilibrium points of the autonomous system

x′ = 2y cos
(
y2
)
cos(2x) − cos y, y′ = 2 sin(y2) sin(2x) − sinx,

is the same as finding all zeros of the right-hand sides. A contour resolution of 60
is sufficient, and the computation of all 73 zeros takes under a second.

�Π 0 Π

�4

�2

0

2

Figure 4.7. This complicated example of simultaneous equations has 73
solutions in the rectangle shown.

The total amount of programming needed to implement algorithm 3 is mod-
est, provided one has a good way of accessing the data in the contour plot. In
Mathematica, Cases[ContourPlot[***], Line,∞] does the job.

A Mathematica session. The following is complete code for generating the zeros
for the example in Figure 4.7. For a complete routine there are, as always, other
issues to deal with: one should eliminate duplicates in the final result, since it is
possible that different seeds will converge to the same zero.

g1�x ,y � �� 2 y Cos�y2� Cos�2 x� � Cos�y�

g2�x ,y � �� 2 Sin�y2�Sin�2x� � Sin�x�

�a,b,c,d� � ��3.45, 3.45, �4,3�

92 Chapter 4. Think Globally, Act Locally

contourdata � Map�First,Cases�Graphics�

ContourPlot�g1�x,y�,�x,a,b�,�y,c,d�,Contours � �0�,PlotPoints � 60��,

Line,
��

seeds �

Flatten�

Map�

#�1 � Flatten�Position�Rest�ss � Sign�Apply�g2,#,2��� � Rest�RotateRight�ss��,

�1���&,contourdata�,1�

roots �

Select�Map��x,y�/.FindRoot��g1�x,y� �� 0,g2�x,y� �� 0�,�x,#�1��,�y,#�2���&,

seeds�,a < #�1� < b � c < #�2� < d&�

Length�roots�
73

This technique also applies to finding all zeros of a complex function f(z) in a
rectangle by just applying the method to the system Ref = Imf = 0. The contour
technique can fail badly if the zero-curves for f and g are tangent to each other
(multiple zeros), since the approximations to the contours probably fail to have
the necessary crossings. The technique is also limited to the plane. In §4.6 we will
discuss a slower but more reliable method that addresses both of these problems.

4.5 Newton’s Method for Intervals
The interval algorithm of §4.3 solves the problem nicely, but we can improve Al-
gorithm 4.2 in several ways. Extensions of the algorithm so that it is faster and
applies to functions in higher dimensions is an active area of research. Here we will
only outline two ideas, one easy, one subtle, that can be used to improve it. The
first, which might be called opportunistic evaluation, is quite simple: right after the
subdivision, evaluate the objective function at the rectangle centers. This pointwise
functional evaluation might pick up a value that can be used to improve the current
best. Then the new current best is used in the size-checking step. This might not
lead to great improvement in cases where we start with a good approximation to
the answer (such as the −3.24 we had found), but if such an approximation is not
available, these extra evaluations will help.

The second improvement relies on a root-finding algorithm called the interval
Newton method, a beautiful and important idea originated by R. E. Moore in
1966 [Moo66]. We will use the term boxes for intervals in Rn. The starting point
is the Newton operator on boxes, defined as follows. Suppose F : Rn → Rn is
continuously differentiable; then for a box X in n-space, N(X) is defined to be
m−J−1 ·F (m), where m is the center of X and J is the interval Jacobian F ′[X] =
(∂Fi/∂xj [X])ij . Here J−1 is obtained by the standard arithmetic interval operations
that arise in the computation of a matrix inverse. If n = 1, then N(X) is simply
m − F (m)/F ′[X], where m is the midpoint of X; note that N(X) = [−∞,∞] if
0 ∈ F ′[X]. This definition leads to several important properties that can be used
to design an algorithm to find roots. Here are the main points in the case of one

4.5. Newton’s Method for Intervals 93

dimension, which is much simpler than the general case.

Theorem 4.1. Suppose F : R → R is a continuously differentiable function, and
X = [a, b] is a finite interval. Then:

(a) If r is a zero of F in X, then r lies in N(X).

(b) If N(X) ⊆ X then F has a zero in N(X).

(c) If N(X) ⊆ X then F has at most one zero in X.

Proof. (a) If F ′(r) = 0, then N(X) = [−∞,∞]; otherwise, the mean-value theorem
yields c ∈ X so that F (r) − F (m) = F ′(c)(r − m), and this implies that r =
m− F (m)/F ′(c) ∈ N(X).

(b) The hypothesis implies that F ′(x) �= 0 onX. Then the mean-value theorem
yields values ci in X so that m − F (m)/F ′(c1) − a = −F (a)/F ′(c1) and b − (m −
F (m)/F ′(c2)) = F (b)/F ′(c2); because N(X) ⊆ [a, b], the product of the left sides
is positive. But F ′(c1) and F ′(c2) have the same sign, and so the product F (a)F (b)
must be negative and F therefore has a zero in [a, b].

(c) If there were two zeros, then the derivative would vanish between them,
causing N(X) to become infinite.

This theorem is very powerful since one can use it to design a simple subdi-
vision algorithm to find zeros. Just subdivide the given interval into subintervals
and check, for each subinterval, whether the Newton condition — N(X) ⊆ X —
holds. If it does, then we know from (c) that there is one and only one zero in X.
If it fails in the form N(X) ∩ X = ∅, that is also good, for (a) tells us that there
are no zeros in X. If neither situation applies, subdivide and try again. When the
Newton condition does hold, we can just iterate the N operator. If we are close
enough to the zero, the algorithm converges (see [Kea96, Thm. 1.14]), and in fact
will converge quadratically, as does the traditional Newton root-finding method.
But some bad things that can happen: we might not be close enough for conver-
gence (the exact condition for this depends on, among other things, the tightness
of the interval approximation J to the inverse of F ′); or there are zeros for which
the Newton condition will never hold. Think of the process as a queue: intervals
are removed from the queue while, sometimes, their subdivisions are added to the
queue, or the interval is added to a list of answers. If the queue becomes empty, we
are done. If a max-iteration counter is exceeded and the queue is not empty, then
there are some unresolved intervals. This will happen with multiple roots, such as
occurs with x2 = 0; for in such cases N(X) = [−∞,∞].

For an application of the interval Newton method to a one-dimensional root-
finding problem that arises in Problem 8 of the SIAM 100-Digit Challenge, see
§8.3.2.

In higher dimensions, parts (a) and (c) remain true, but one must use a varia-
tion of the Newton operator to get (b), which is important to guarantee that a zero
exists. One approach is by a preconditioning matrix (see [Neu90, Thm. 5.1.7]). An-
other approach, which we shall follow here, uses the Krawczyk operator. For more

94 Chapter 4. Think Globally, Act Locally

information on this important variation to Newton’s method, see [Kea96, Neu90].
Let F , m, and J be as defined for the Newton operator. Consider P (x) = x−Y F (x),
where Y is some type of approximation to J−1, the interval matrix that is F ′[X]−1.
Two natural choices for Y are: F ′(m)−1, or the inverse of the matrix of midpoints
of the intervals in the matrix J . The latter is faster, since J has to be computed
anyway, and that is what we shall use. Then the Krawczyk operator is defined to be
K(X) = m−Y F (m) + (I −Y J)(X −m), where I is the n×n identity matrix (the
numeric part of this computation should be done in an interval environment, with
m replaced by a small interval around m). To understand the rationale behind the
K operator, first recall the mean-value theorem. For a continuously differentiable
F : Rn → Rn, the mean-value theorem takes the following form: Given x and y in a
box X, there are points c1, c2, . . . , cn ∈ X so that F (y) − F (x) = (∇Fi(ci))(y − x),
where (∇Fi(ci)) denotes an n× n matrix with i indexing the rows.

Now K(X) can be viewed as a “mean value extension” of P in the following
sense: if P ′[X] is an interval enclosure of P ′ on X, the mean-value theorem implies
that the box Q = P (m) + P ′[X](X −m) contains P (X), which here denotes the
exact image, {P (x) : x ∈ X}. But because P ′(x) = I−Y F ′(x), we may take I−Y J
to be the enclosure. Then Q becomes precisely K(X) and we have proved that
K(X) contains P (X). This smooths out the n-dimensional theory nicely as follows.

Theorem 4.2. Suppose F : Rn → Rn is a continuously differentiable function, X
is a finite box in Rn, J = F ′[X] is a componentwise interval enclosure, and Y is
the inverse of the matrix of midpoints of the intervals in J ; Y is assumed to be
nonsingular. Let K be the corresponding Krawczyk operator. Then:

(a) If r is a root of F = 0 in X, then r lies in K(X).

(b) If K(X) ⊆ X then F has a zero in K(X).

(c) If K(X) ⊂ X then F has at most one zero in X.

Proof. (a) K(X) contains P (X), and so P (r) ∈ K(X). But P (r) = r−Y F (r) = r.
(b) Since P (X) ⊆ K(X) ⊆ X, P is a contraction mapping, and so the Brouwer

fixed-point theorem for continuous functions implies that P has a fixed point in X,
which means that F has a zero in X.

(c). This one is subtle. Suppose x and y are distinct roots of F = 0 in X.
Then the mean-value theorem tells us that F (x)−F (y) = (∇Fi(ci))(x−y) for some
points ci ∈ X. It follows that the matrix is singular, and therefore J contains a
singular matrix. However, it is not immediately obvious that this contradicts the
Krawczyk condition. Yet it does. For a complete proof, see [Neu90, Thm 5.1.8], and
note the hypothesis of strict containment here.

This theorem immediately gives a local root-finding algorithm, one that will
come into play in §4.6. If the Krawczyk condition — K(X) ⊂ X — holds, then we
know there is one and only one root in X, and that that root lies in K(X). Simply
iterate K. When we have a small enough interval, we know the root to the desired
accuracy.

4.5. Newton’s Method for Intervals 95

Here is how root-finding can help in optimization. Once we have the problem
reduced to a single box, as happens after 11 subdivisions in the problem at hand,
we can check the Krawczyk condition. If it holds, we can use the Newton–Krawczyk
iteration to zoom into the unique critical point in the box, and that will give us
the answer more quickly than repeated subdivisions (analogous to the advantage
Newton’s method provides over bisection in one dimension). For the problem at
hand and a tolerance of 10−6 for the location of the minimum, using this idea (but
not opportunistic evaluation) gives a speedup of about 10%.

To be precise, add the following step to the interval method of Algorithm 4.2,
right after the gradient check:

If R contains only one rectangle X, compute K(X).

If K(X) ∩ X = ∅, then there is no critical point, and the minimum is
on the border; do nothing.

If K(X) ⊂ X, then iterate the K operator starting with K(X) until the
desired tolerance is reached.

Use the last rectangle to set a0 and a1(the loop will then terminate).

A Mathematica session. An implementation of this extension is available at the
web page for this book. Here is how that code would be used to get 100 digits of
the answer, using interval arithmetic throughout. The switch to root-finding occurs
after the 12th round, and then convergence is very fast. The output shown is the
center of an interval of length less than 10−102.

IntervalMinimize�f�x,y�,�x,�1,1�,�y,�1,1�,�3.24,

AccuracyGoal � 102,WorkingPrecision � 110�
�3.30686864747523728007611377089851565716648236147628821750129308550

309199837888295035825488075283499186193

The use of interval methods in global optimization is a well-developed area,
with techniques that go well beyond the brief introduction given here (see [Han92,
Kea96]; Hansen reports success on a wide variety of problems, including a 10-
dimensional one). Nevertheless, the fact that the very simplest ideas give a verified
answer to Problem 4 in a few seconds and with only a few lines of code shows how
powerful these ideas are. And it is noteworthy that interval analysis has played an
important role in diverse areas of modern mathematics. For example, W. Tucker won
the Moore prize for his recent work using interval analysis to prove that the Lorenz
equations really do have a strange attractor; this solved one of Steven Smale’s Prob-
lems for the 21st Century (see [Tuc02]); Hales and Ferguson [FH98] used interval
methods in their resolution of the Kepler conjecture on sphere-packing, and Lanford
[Lan82] used intervals to prove the existence of a universal limit — the Feigenbaum
constant — in certain sequences of bifurcations.

The most important points of the interval approach to Problem 4 are:

• The algorithm is very general and will find the lowest critical point in the
rectangle (provided interval arithmetic is available in a form that applies to
the objective function and its partial derivatives).

96 Chapter 4. Think Globally, Act Locally

• The results are verifiably correct if one uses intervals throughout.

• Getting the results to very high precision is not a problem.

• Having an interval root-finding method can lead to improvements in the op-
timization algorithm.

• And most important: The interval algorithm is a reasonable way to solve the
problem whether or not one wants proved results. In short, interval thinking
yields both a good algorithm and proved results.

• The basic ideas apply to functions of more variables, but life becomes more
difficult in higher dimensions. See [Han92, Kea96] for discussions of various
enhancements that can be used to improve the basic algorithm (one example:
using the Hessian to eliminate n-dimensional intervals on which the function
is not concave up).

4.6 A Validation Method for Roots
The pessimistic quote at the start of this chapter leads to the question: How can
we be certain that the collection of 2720 critical points found in §4.4 is correct and
complete? There are several ways to do this. One can use intervals to design a root-
finding algorithm and check that it finds the same set of critical points. That can
be done by a simple subdivision process where we keep only rectangles that have a
chance of containing a zero, and constantly check and use the Krawczyk condition,
K(X) ⊂ X. Here is a formal description.

Algorithm 4.4. Using Intervals to Find the Zeros of F : Rn → Rn in a Box.

Assumptions: Interval arithmetic is available for F .

Inputs: F , a continuously differentiable function from Rn to Rn;
R, the box in which we want all zeros of F ;
ε, an upper bound on the absolute error of the zero in terms of Euclidean

distance;
mtol, a tolerance for combining boxes;
imax, a bound on the number of subdivision steps.

Output: A set of intervals with each one trapping a zero, and a set of intervals that
are unresolved (these might contain none or one or more zeros).

Notation: For an n-dimensional box X, let m be the center of X and let M be a
small box containing m. Then K(X) = M −Y F [M]+ (I−Y J)(X−M) where J is
the Jacobian interval matrix F ′[X], and Y is the inverse of the matrix obtained from
J by replacing each box by its center. “Subdividing a box” here means dividing it
into 2n pieces by bisecting each side. “Combining” a set of boxes means replacing
any two that have nonempty intersection with the smallest box that contains them

4.6. A Validation Method for Roots 97

both, and repeating the process until no intersections remain. The Krawczyk con-
dition for a box X is K(X) ⊂ X.

Step 1: Initialize: Let R =
{
R
}
, i = 0, a = ∅.

Step 2: The main loop:
While R �= ∅ and i < imax:

Let i = i+ 1;
Let R be the set of all boxes that arise by uniformly dividing each

box in R into 2nboxes;
If all boxes in R have their maximum side-dimension less than mtol,

let R be the result of combining boxes in R until no further
combining is possible;

For each X ∈ R compute K(X), the Krawczyk image of X:
if K(X) ∩X = ∅, delete X from R;
if K(X) ⊂ X,

iterate K starting from K(X) until the tolerance (the size
of the box, or the size of its F -image) is as desired;

add the resulting box to a and delete X from R.
Step 3: Return a and R, the latter being the unresolved boxes.

The combining step using mtol in the main loop requires some explanation.
If a zero is near the edge of a box, then it can happen that the subdivision and
Krawczyk contraction process will never succeed in isolating it. This can happen
even in one dimension if the initial interval is [−1, 1] and the zero is at 0, for
then the subdivision process will produce two intervals with a very small overlap,
thus placing the zero very near the edge. The combining step checks whether all
remaining boxes are so small that we ought to have isolated the zeros (the merging
tolerance is provided by the user); the fact that we have not done so (R is not
empty) means that it would be wise to combine small boxes into larger ones. This
will likely place the zero nearer the center of a box (but not at the exact center!),
and the iterative process then succeeds. Of course, there is the chance of an infinite
loop here. Thus it would be reasonable to run this algorithm first with mtol = 0 so
that no combining takes place. If it fails to validate, it can be tried with a setting
of, say, mtol = 10−6.

For zeros x of F at which F ′(x) is singular, the Krawczyk condition is never
satisfied, and the algorithm does not find those zeros. However, they are not lost,
as they will be trapped within the unresolved intervals that are returned, and the
user could investigate those further to try to determine if a zero lives in them.

Algorithm 4.4 succeeds in obtaining all 2720 zeros (in 8 minutes). It is an
important technique, especially in higher dimensions, where we might not have
another way to get at the roots (see [Kea96]). But in cases where we think we
already have the zeros, we should use an interval algorithm for validation; this is a
central theme in the field of interval analysis: it is often more appropriate to use
traditional numerical algorithms and heuristics to get results that are believed to
be complete, and then use interval analysis to validate the results.

98 Chapter 4. Think Globally, Act Locally

Here is a second approach, where we use interval analysis as a validation tool.
It is a two-step approach based on the theorem about the Krawczyk operator in
§4.5, and it works well for the problem at hand. Suppose the set of approximate
zeros is r and has size m. First we check that each zero in r is roughly correct: for
each zero, let X be a small box centered at the zero and check that the Krawczyk
condition K(X) ⊂ X holds; this technique is called ε-inflation (originally due to
Rump; see [Rum98] and references therein). Once this is done, we know that r
contains approximations to a set of m true zeros. Then move to verify completeness
by carrying out a subdivision process on the given domain, doing two things only
with each box that shows up: if interval arithmetic or the Krawczyk operator shows
that the enclosure for the F -values on the box does not contain the zero vector, it
is discarded; and if the Krawczyk containment holds, so that the box does contain
a zero, then it is again discarded, but a running count is incremented by one. Boxes
that remain are subdivided. When no boxes remain, we know that the count equals
the number of zeros. If this count equals m, we know the set r was indeed a complete
set of approximations to the zeros. Here is a formal description.

Algorithm 4.5. Using Intervals to Validate a Set of Zeros.

Assumptions: Interval arithmetic is available for F and its partial derivatives.

Inputs: F , a continuously differentiable function from Rn to Rn;
R, the box that is the validation domain;
r, a list, believed to be complete and correct, of the set of zeros of F in R;
ε, an upper bound of the absolute error on the zero in terms of Euclidean

distance;
mtol, a tolerance for combining boxes.

Output: True, if the true zeros in R coincide with the points in r, with the absolute
error in each case less than ε; False otherwise

Notation: As in Algorithm 4.4.

Step 1: ε-inflation:
For each point in r,

let X be the surrounding box of side-length 2ε
/√

n;
check that the Krawczyk condition holds for each X.
If there is any failure, stop and return False.

Step 2: Initialize the subdivision process. Let R = {R}; c = 0.
Step 3: The main loop:

While R �= ∅:
Let R be the set of boxes obtained by subdividing each box in R;
Delete from R any box for which the F -interval does not straddle 0;

4.6. A Validation Method for Roots 99

Delete from R any box X for which the Krawczyk condition holds,
increase c by 1 for every such box;

Delete from R any box X for which K(X) ∩X = ∅;
If all boxes in R have their maximum side-dimension less than mtol,

let R be the result of combining boxes in R
until no further combining is possible.

Step 4: If c = the number of points in r, return True, otherwise False.

For the gradient of the function f of Problem 4, the contour method locates
the 2720 zeros in 30 seconds. The validation method then takes 30 seconds to check
that the zeros are correct, and another 5.5 minutes to verify that the set is complete.
While the speedup over the method of using intervals from the beginning to find
all the zeros is modest, the validation method is a more elegant algorithm and
illustrates the important idea that, when possible, one should put off the interval
work to the last stage of a computational project.

Algorithms 4.4 and 4.5 can be combined into a single algorithm that finds
and validates the zeros. The key observation is that there is no need to iterate the
Krawczyk operator when one can just use the traditional Newton method.

Algorithm 4.6. Using Intervals to Find and Validate a Set of Zeros.

Assumptions: Interval arithmetic is available for F and its partial derivatives.

Inputs: F , a continuously differentiable function from Rn to Rn;
R, the box that is the validation domain;
ε, an upper bound on the absolute error of the zeros in terms of Euclidean

distance;
mtol, a tolerance for combining boxes.

Output: Validated approximations to the zeros, with the absolute error in each case
less than ε.

Notation: As before, with s being a set of rough approximations to the zeros, and
r the set of final approximations.

Step 1: Let s = ∅; follow steps 1 and 2 of Algorithm 4.4, except that
when K(X) ⊂ Xadd the center of X to s.

Step 2: Apply Newton’s method to each point in s, putting the result in r.
Step 3: Use ε-inflation as in step 1 of Algorithm 4.5 to verify that r is a complete

set of zeros to the desired tolerance.
Step 4: Return r.

Algorithm 4.6 finds and validates all the critical points to the challenge prob-
lem in 5.5 minutes, a 9% time savings over the combination of Algorithms 4.3 and
4.5. The material at the web page for this book includes the Mathematica programs

100 Chapter 4. Think Globally, Act Locally

ValidateRoots and FindAndValidateRoots.

4.7 Harder Problems
What sort of problem could have been asked instead of Problem 4 that would have
been a little, or a lot, harder? There certainly would have been additional difficulties
if there were more dimensions or if the objective function did not have interval
arithmetic easily available. Indeed, the optimization needed to solve Problem 5 is
exactly of this sort (4 dimensions, complicated objective), and that is quite a difficult
problem for general-purpose minimization algorithms. Yet another sort of problem
would arise if the objective function had not a single minimum, but a continuous
set, such as a line or a plane (see [Han92]; there are some examples there). But
let us look only at the dimension issue for a moment. Here is a slight variation of
Problem 4, but in three dimensions: What is the global minimum of

g(x, y, z) = esin(50x) + sin(60ey) sin(60z) + sin(70 sinx) cos(10z)+

sin sin(80y) − sin(10(x+ z)) + (x2 + y2 + z2)/4 ?

The methods of this chapter work well on this problem, except the techniques that
tried to find all the critical points in a box: there are probably over 100,000 such
points. An approach that combines various methods to advantage would proceed as
follows:

1. Use the genetic minimization routine with 200 points per generation and a
scale factor of 0.9 to discover that g gets as small as −3.327. Differential
evolution works too.

2. Use traditional root-finding (Newton) on the gradient to get the more accurate
value of −3.32834 (or hundreds of digits if desired).

3. Use interval arithmetic as in §4.3 to then prove that the global minimum is
inside the cube [−0.77, 0.77]3.

4. Use the basic interval algorithm of §4.3, with upper bound −3.328 and Krawczyk
iteration taking over after 11 rounds, to prove that the minimum is −3.32834,
and occurs near (−0.15, 0.29,−0.28). This takes almost a minute, and the
total number of boxes examined is 9408.

A Mathematica session.

g�x , y ,z � �� �Sin�50 x� � Sin�60 �y� Sin�60 z� � Sin�70 Sin�x�� Cos�10 z��

Sin�Sin�80 y�� � Sin�10 �x � z	� �
1
4
�x2 � y2 � z2	

IntervalMinimize�g�x,y,z�,�x,�0.77,0.77�,�y,�0.77,0.77�,

�z,�0.77,0.77�,�3.328�

4.8. Summary 101

�Interval���3.328338345663281,�3.328338345663262��,

��x � Interval���0.1580368204689058,�0.1580368204689057��,

y � Interval��0.2910230486091526,0.2910230486091528��,

z � Interval���0.2892977987325703,�0.2892977987325701�����

So for at least one complicated example, the algorithm works well in three
dimensions. If the dimension is increased in such a way that the number of local
minima grows with the the space (that is, exponentially), one would expect a slow-
down in the algorithm, though it will be sensitive to the location of the minima and
still might work well.

As a final example, we mention that the Krawczyk validation method given at
the end of §4.6 can solve the related problem of finding the critical points of g(x, y, z).
Because there are many critical points we work in a small box only ([0, 0.1] ×
[0, 0.05] × [0, 0.1]) and show some of them, together with the three surfaces gx = 0,
gy = 0, gz = 0, in Figure 4.8. There are six zeros in this box.

Figure 4.8. A very small portion — within [0, 0.1] × [0, 0.05] × [0, 0.1] —
of the three surfaces gx = 0, gy = 0, gz = 0 whose intersections form the critical
points of g, with the roots obtained by the interval method shown as small cubes.

4.8 Summary
Interval arithmetic is powerful and can obtain certifiably correct answers to opti-
mization and root-finding problems. The technique is useful not only as a validation
tool, but also as a complete algorithm. For many problems it makes sense to use
other techniques first, and then use interval arithmetic to validate the results, if
that is desired. Random search methods, especially evolutionary algorithms, can
be very efficient at getting approximate results. The contour approach is somewhat
specialized, but it too is very efficient at solving this, and other, two-dimensional
problems.

102 Chapter 4. Think Globally, Act Locally

Chapter 5

A Complex Optimization

Dirk Laurie

Die Lekkerland se pad is ’n lang, lang pad wat in die rondte loop. Hy slinger
deur die bosse en hy kronkel om die rante tot daar waar sy end moet wees.
En dáár begin hy weer!
Hy dwaal deur die vleie en hy boggel oor die bulte en op een plek raak hy weg.
Maar onder die braambos begin hy weer en hy drentel al om en om en om die
diep kuil vol soet water wat nooit opdroog nie.
O, dit is ’n lang, lang pad! 1 — W. O. Kühne [Küh82]

If ζ is a real function of a real variable z, then the relation between ζ
and z, which may be written ζ = f(z), can be visualized by a curve in the
plane, namely the locus of a point whose coordinates referred to rectangular
axes in the plane are (z, ζ). No such simple and convenient geometrical method
can be found for visualizing an equation ζ = f(z), considered as defining the
dependence of one complex number ζ = ξ + iη on another complex number
z = x+ iy. — E. T. Whittaker and G. N. Watson [WW96, p. 41]

Problem 5

Let f(z) = 1/Γ(z), where Γ(z) is the gamma function, and let p(z) be
the cubic polynomial that best approximates f(z) on the unit disk in the
supremum norm ‖ · ‖∞. What is ‖f − p‖∞?

5.1 A First Look
We change Trefethen’s notation so that p is a generic cubic polynomial

p(z) = az3 + bz2 + cz + d,

1The Lekkerland road is a long, long road that runs in a circle. It winds through the bushes and
it coils round the ridges to there where its end should be.// And there it starts again!// It wanders
through the wetlands and it hunches over the hillocks and in one place it dwindles away.// But
under the brambles it starts again and it saunters all round and round and round the deep pool
of sweet water that never dries up.// Oh, it is a long, long road! —W. O. Kühne, translated by
Dirk Laurie

103

104 Chapter 5. A Complex Optimization

and the optimal polynomial2 is

popt(z) = aoptz
3 + boptz

2 + coptz + dopt.

We need to compute
εopt = ‖f − popt‖∞.

Since f − p is an entire function, by the maximum principle the maximum of
|f − p| over the unit disk occurs on the unit circle. So we can revise the definition
of the supremum norm in this case to read

‖f − p‖∞ = max
θ∈[0,2π]

|f(eiθ) − p(eiθ)|.

Minimax problems are notoriously hard for general-purpose optimization algorithms,
so we will try to get as far as we can before invoking such an algorithm — see §5.2.

Any p trivially gives us an upper bound

εopt � ‖f − p‖∞.

One candidate for p that is easy to find comes from the first few terms of the
Maclaurin series [AS84, form. (6.1.34)] of f , which gives, to four decimals,

p0(z) = −0.6559z3 + 0.5772z2 + z.

The usual objections to a Maclaurin polynomial, when seen as a way of approximat-
ing a real function on a finite interval, do not apply in the case of approximation
on the unit circle. On the contrary, the Maclaurin polynomial is optimal in the L2

norm, defined by

‖g‖2 =
(

1
2π

∫ 2π

0

|g(eiθ)|2 dθ

)1/2

.

The reason for this optimality is that by setting z = eiθ the Maclaurin series of g(z)
passes into the Fourier series of g(eiθ) on the interval 0 < θ � 2π.

Another easy way of getting a first approximation would be to discretize the
unit circle using n equidistant points θj and then to solve the discrete least squares
problem, that is, to minimize

E(p, n) =
1
n

n∑
j=1

|f(eiθj) − p(eiθj)|2

over all cubic polynomials p. Clearly, E(p, n) is merely a discretization of ‖f − p‖2
2,

and the polynomial thus found therefore tends rapidly to the Maclaurin polynomial
as n increases. By calculating E(p0, n) for increasing values of n, we find that
‖f − p0‖2

.= 0.177.
To get a visual impression of what we are trying to do, see Figure 5.1, which

is a graph of f(eiθ) and of p0(eiθ) when θ = 0◦, 1◦, 2◦, . . . , 360◦, superimposed on
the unit circle. Corresponding points have been connected to make it clear that the

5.1. A First Look 105

f �z� p0 �z�

0 1

Figure 5.1. The plots of z, f(z) and p0(z) in the complex plane when |z| = 1.

quantity f(z)−p0(z) keeps changing its angle all the time, and that p0(z) is almost
never the closest point to f(z) on the graph of p0.

When θ is restricted to this set of points, we find that max |f(θ) − p0(θ)| .=
0.235, so, allowing for a small discretization error, we assert that

0.17 < εopt < 0.24

since
‖f − p0‖2 � ‖f − popt‖2 � ‖f − popt‖∞ � ‖f − p0‖∞.

In a sense, we have one digit: both bounds round to 0.2.
The coefficients of p0 are real. Can we assume that the coefficients of popt are

also real? The cubic polynomial

p̂(z) = 1
2 (popt(z) + popt(z))

has real coefficients, and for all z, by the symmetry f(z) = f(z) [AS84, form. (6.1.23)],

|f(z) − p̂(z)| � 1
2 (|f(z) − popt(z)| + |f(z) − popt(z)|)

= 1
2 (|f(z) − popt(z)| + |f(z) − popt(z)|)

= 1
2 (|f(z) − popt(z)| + |f(z) − popt(z)|) � 1

2 (εopt + εopt).

Thus, p̂ is at least as good as popt, therefore: It is sufficient to search only among
polynomials with real coefficients.

2Existence and uniqueness of the optimal polynomial follows from general results on complex
Chebyshev approximation; for references see §5.8.

106 Chapter 5. A Complex Optimization

5.2 Optimization by General-Purpose Methods
General-purpose optimization software does not fare too well on Problem 5. Typ-
ically it will halt well before reaching the answer. Yet there is a relatively new
technique that does remarkably well here and with a variety of other optimization
problems in Rn; it can get a dozen digits in only 40 seconds (Mathematica on a
1.25 GHz Macintosh). The method is a type of evolutionary algorithm called dif-
ferential evolution, and it succeeds on many problems where traditional random
search methods such as simple evolutionary methods or simulated annealing fail.
For an example of success with a simple evolutionary algorithm see §4.2. While no
search method can match the analytic methods presented elsewhere in this chapter,
the fact that they work at all on this problem is noteworthy, and indicates that
differential evolution would be a good method to try in situations where there is no
known analytic approach.

The idea underlying the algorithm is similar to basic evolutionary methods,
with the important twist that the children at each generation are formed by taking
a linear combination of parents (as opposed to being simply mutations of a single
parent). Each member of the next generation (the new child) has the form p1+r(p2−
p3), where the pi are members of the current generation and r is an amplification
factor. The formula for children relies heavily on the difference between two of
the parents, and this is where the method’s name comes from. Here is a formal
description.

Algorithm 5.1. Minimization by Differential Evolution.

Input: F , a continuously differentiable function from Rd to R;
R, a box that serves as the starting seed for the first generation;
N , the population size (number of d-vectors in each generation);
nmax, a bound on the number of generations;
r, the amplification factor.

Output: An approximation to the global minimum of F .

Step 1: Initialize the first generation to be a list of N d-vectors by choosing
randomly within R. Set up a vector to consist of the F -values
at these vectors.

Step 2: The main loop:
For n from 1 to nmax − 1, form the (n+ 1)th generation as follows:

For each parent pi in the nth generation,
construct a child ci
by randomly choosing indices j, k, and m and letting
ci = pj + r(pk − pm).
If F (ci) < F (pi)

let ci be the new ith member of the (n+ 1)st generation;
else pi becomes this member.

After all the members of the next generation are determined,
update the value array to contain their F -values.

Step 3: Return the vector in the final generation having the smallest F -value.

5.2. Optimization by General-Purpose Methods 107

50 100 150 200
Generation

10�1

10�6

10�11

10�16

Error

Figure 5.2. The lower data set shows the convergence to the true answer
for a run of 200 generations; the convergence is remarkably steady at about one new
digit every 13 generations. The upper data set is the distance from the best cubic at
each generation to the truly best cubic (in the Euclidean norm in 4-space).

Note that a generation is not updated until the entire generation is formed.
That is, if a child is to count, it is placed in temporary storage. After the loop is
complete, the current generation is replaced by the new generation. Algorithm 5.1
is the barest-possible outline of differential evolution, but it is good enough to solve
the problem at hand. One usually selects the indices j, k and m in such a way that
they are distinct from each other and also from i, but ignoring this point speeds up
the random integer generation and has no serious consequences. It is also customary
to add a crossover step, where some of the entries in the child ci are replaced by
the corresponding entries in the parent pi, using a probabilistic rule of some sort.
But the problem at hand runs faster and more efficiently with no crossover. An
amplification factor of 0.4 seems to work.

We need an objective function, of course. Given a cubic az3 + bz2 + cz + d,
where z = eiθ, we can, by symmetry, focus on the domain θ ∈ [0, π] and use a
standard optimization technique starting from a number of seeds, such as is used
by Mathematica’s FindMaximum function, for example. Experiments show that it is
sufficient to take seeds near 1.40 and 2.26, and also to throw in the local extremum
that always arises (by symmetry) at θ = π; that is simply |a−b+c−d|. The largest
of the three values returned is taken as the value of the objective function.

A Mathematica session.

maxerror a_, b_, c_, d_ : Max Abs a b c d ,

FindMaximum t ; Abs a t3 b t2 c t d 1 Gamma t ,

, # 0.03, # 0.03 , PrecisionGoal 12 1 & 1.40, 2.26 ;

Differential evolution is used by Mathematica’s NMinimize function, but we
obtained greater control and understanding by writing our own code. Now, to solve

108 Chapter 5. A Complex Optimization

Problem 5 one can let the population size be 60, the amplification factor be 0.4, and
the iteration bound be 300. It makes sense to check for convergence, but comparing
the best values at successive generations will lead to premature stoppage, since
the best might well not change over just one generation. Checking for agreement
every 10 generations is more reasonable. When we do that we see convergence to
within 10−12 in about 180 generations, and therefore about 10 000 evaluations of
the objective function. Here is a bare-bones Mathematica implementation.3 One
enhancement would be to gradually increase the precision in the objective function
as the generations evolve.

A Mathematica session.

DifferentialEvolution n_, seeds_ :

Module best, current, children, vals, childval ,

current Table Random Real, # & seeds, n ;

vals maxerror current;

oldbest Min vals ;

Do children Table 1, 0.4, 0.4 .

current Table Random Integer, 1, n , 3 , n ;

Do If childval maxerror children j vals j ,

current j , vals j children j , childval , j, n ;

If Mod i, 10 0, best Min vals ;

If Abs best oldbest 10 14, Break , oldbest best , i, 300 ;

First Sort Transpose vals, current ;

And here is a typical run:

SeedRandom 1 ;

DifferentialEvolution 60, 2, 2 , 2, 2 , 2, 2 , 2, 2

0.2143352345904104, 0.6033432200279722,
0.6252119165808774, 1.019761853131395, 0.005541951112956156

The numbers in the bottom line are respectively εopt, aopt, bopt, copt and dopt.
Because of randomness not every run with these parameters will converge to

the right answer, but with N = 60 it generally does (353 successes in 400 trials).
Figure 5.2 shows the convergence. A comparison of the results of several random
runs gives evidence that 12 digits are correct:

εopt
.= 0.21433 52345 90.

For a more comprehensive treatment of the method and further applications, see
[CDG99].

3Matlab code can be found at the web page for this book.

5.3. Improving the Lower Bound 109

5.3 Improving the Lower Bound
Having seen what high-powered software can achieve when skilfully used, we return
to the basics. Consider the related problems where we minimize the absolute value
not of f − p, but of its real and imaginary parts separately, i.e. we find

εR = min
p
εR(p), εR(p) = max

0�θ�2π
|Re(f(eiθ) − p(eiθ))|;

εI = min
p
εI(p), εI(p) = max

0�θ�2π
|Im(f(eiθ) − p(eiθ))|;

where in both cases p runs over all cubic polynomials with real coefficients. Clearly
εR and εI are lower bounds for εopt. These problems involve the Chebyshev approx-
imation of a real-valued function, and are therefore easier to solve than the original
problem. Let us see what they bring us.

A standard theorem on real Chebyshev approximation (a proof in the case of
approximation by polynomials is given in [Rut90], Theorems 7.4 and 7.5) says:

Theorem 5.1 (Alternation Theorem). Let the continuous functions f1, f2, . . . , fn

be such that the interpolation problem

yj =
n∑

k=1

akfk(xj), j = 1, 2, . . . , n

always has a unique solution a1, a2, . . . , an when the xj are distinct points in an
interval [a, b]. Then the function

q(x) =
n∑

k=1

ckfk(x)

is the best approximation on [a, b] in the supremum norm to a given continuous
function y(x) if and only if n + 1 points a � x1 < x2 < · · · < xn+1 � b can
be found where |y(x) − q(x)| assumes its maximum value, such that the signs of
y(xj) − q(xj), j = 1, 2, . . . , n+ 1, alternate.

The theorem immediately suggests an iterative method, known as the multiple
exchange algorithm or the second Remes4 algorithm [Rem34b, Rem34a].

Algorithm R.

0. Find a starting value of q good enough so that Step 1, below, is possible. Set
εold to some impossibly large value.

1. Find n + 1 points x1 < x2 < · · · < xn+1 where y − q has a local extremum,
such that the signs of y(xj) − q(xj) alternate.

4This name is sometimes transliterated as “Remez”, based on the current standard for translit-
eration from Russian into English. However, the papers for which the author is best known were
published in French, and presumably he knew how to spell his own name.

110 Chapter 5. A Complex Optimization

2. Solve the linear equations

y(xj) =
n∑

k=1

ckfk(xj) + sgn(y(xj) − q(xj))ε, j = 1, 2, . . . , n+ 1;

for the unknowns c1, c2, . . . , cn, ε.

3. If |ε| � εold, exit. Otherwise replace q by
∑n

k=1 ckfk, εold by |ε|, and return to
step 1.

The algorithm becomes slightly more complicated when there are several ways to
choose the alternating extrema of y − q; fortunately that is not the case here. We
can trivially guarantee that the algorithm terminates in a finite number of steps
since, on a computer, there are only finitely many values that ε can take, and we
stop as soon as no progress is made. Of course, if the initial values are bad, we may
stop at a point which is not close to a solution to the problem.

If the functions fk are smooth enough, then the multiple exchange algorithm
can be expected to be quadratically convergent, i.e. each iteration approximately
doubles the number of correct digits. Moreover, as is more fully explained in Chapter
9, when we consider ε as a function of c1, c2, . . . , cn around the optimum, then the
value of ε will be correct to twice as many digits as the coefficients are.

Let us try this on the real part of f. The approximating functions are Re(eikθ) =
cos kθ, k = 0, 1, 2, 3. These functions satisfy the unique interpolation condition (also
called the Haar condition) over [0, π]. Our initial approximation is the real part of
p0, namely

q0(θ) = −0.6559 cos 3θ + 0.5772 cos 2θ + cos θ.

The five extrema occur at approximately 37◦, 73◦, 108◦, 142◦, 180◦. Algorithm R
gives

q1(θ) = −0.589085 cos 3θ + 0.657586 cos 2θ + 1.067908 cos θ + 0.032616

with εR(q1)
.= 0.211379. We now have

0.211 < εopt < 0.236;

the polynomial p1 corresponding to q1 does not improve on the upper bound ob-
tained from p0.

In the case of the imaginary part, the approximating functions are Im(eikθ) =
sin kθ, k = 1, 2, 3, which satisfy the Haar condition over [0, π]. There are only three
parameters, and the optimum is at

q2(θ) = −0.596767 sin 3θ + 0.636408 sin 2θ + 1.028102 sin θ,

with εI(q2)
.= 0.212559. Somewhat surprisingly, this trigonometric polynomial not

only gives a better lower bound than q1 did (which had one more parameter avail-
able) but it turns out that the corresponding polynomial

p2(z) = −0.596767z3 + 0.636408z2 + 1.028102z,

5.3. Improving the Lower Bound 111

Π
������
2

Π 3 Π
�����������
2

2 Π

0

0.1

0.25

�0.1

�0.25

Figure 5.3. The error in p2. The solid line gives |f−p2| and −|f−p2|; the
heavy and light dashed lines give the real and imaginary parts of f−p2, respectively.

does surprisingly well on the real part, so much so that the least-squares upper
bound is also improved, and we have

0.2125 < εopt < ‖f − p2‖∞ .= 0.2319.

(Figure 5.3 shows a graph of the error in p2.) In retrospect this is perhaps not so
surprising, since in principle if we know either the real part or the imaginary part of
an analytic function, the other can be found up to an additive constant by applying
the Cauchy–Riemann equations.

This picture suggests an easy way to improve the approximation: the constant
term does not affect the imaginary part, but it does affect the real part. Note that
max Re(f − p2) > max Re(p2 − f). Therefore, for small values of d > 0, we should
find that p2(z) + d is a better approximation to f than p2.

The optimal d satisfies

‖f − p2 − d‖∞ = |f(−1) − p2(−1) − d| = p2(−1) + d,

which can be solved by fixed-point iteration from the equivalent equation

d = 1
2 (|f − p2 − d|∞ − p2(−1) + d).

This gives us the improved approximation

p3(z) = p2(z) + d = −0.596767z3 + 0.636408z2 + 1.028102z + 0.014142.

The upper bound is reduced quite a bit by doing this, giving

0.2125 < εopt < ‖f − p3‖∞ < 0.2193.

We now have two digits: εopt
.= 0.21.

The graph of |f−p3| in Figure 5.4 shows five peaks, one more than the number
of parameters, but the two inner peaks are slightly lower than the central and outer
peaks. We suspect that the optimal error curve will look like this one, but with all
five peaks at the same height.

112 Chapter 5. A Complex Optimization

Π
������
2

Π 3 Π
�����������
2

2 Π

0

0.1

0.25

�0.1

�0.25

Figure 5.4. The error in p3. The solid line gives |f−p3| and −|f−p3|; the
heavy and light dashed lines give the real and imaginary parts of f−p3, respectively.

5.4 Discrete Complex Approximation
There is another way of finding lower bounds: suppose that we somehow are able
to solve the minimax problem on a subset S of the unit circle, i.e. we can find pS

such that εS(pS) is a minimum, where εS(q) = maxz∈S |f(z) − q(z)|. Then εS(pS)
is a lower bound for εopt. This is because

εS(pS) � εS(popt) � max
|z|=1

|f(z) − popt(z)| = εopt.

Now suppose that S consists only of points where |f(z) − pS(z)| = ‖f(z) −
pS(z)‖∞; that is to say, there is no point z outside of S where |f(z) − pS(z)| is
greater than its maximum on S. Then εS(pS) is also an upper bound for εopt, which
means that εS(pS) = εopt. Since we expect the equation |f(z) − pS(z)| = εS(pS) to
hold for only a finite number of values of z, the case of particular interest occurs
when S is finite.

We are thus led to the following analogue of Algorithm R for minimizing
‖f − p‖∞ when f is a given complex-valued function and p comes from some n-
dimensional linear space P :

Algorithm C.

0. Find a starting value of p good enough so that Step 1, below, is possible. Set
εold to some impossibly large value.

1. Find the set S = {z1, z2, . . . , zm} of points where |f−p| has a local maximum.

2. Solve the restricted problem of finding p that minimizes ε = maxj |f(zj) −
p(zj)|.

3. If ε � εold, exit. Otherwise replace εold by ε, and return to step 1.

5.4. Discrete Complex Approximation 113

If this algorithm converges, the answer is the solution we want: of course, it is
possible that it might diverge.

The crunch is in Step 2. Let p(z) =
∑n

k=1 xkfk(z), where the functions
f1, f2, . . . , fn form a basis for the space P. Then Step 2 is the special case where
aj,k = fk(zj), and bj = f(zj) of the discrete linear complex Chebyshev approxima-
tion problem:

Given an m× n matrix A and an m-vector b with complex entries, find
a complex n-vector x such that ‖Ax− b‖∞ is a minimum.

Although we happen to know that the xk are real, there is no theoretical
advantage in making that assumption. Watson [Wat88] gives the following charac-
terization theorem:

Theorem 5.2. x minimizes ‖r‖∞, where r = b − Ax, if and only if there exists a
set I containing d indices, where d � 2n+ 1, and a real m-vector w, such that:

(a) |rj | = ‖r‖∞ , j ∈ I;

(b) wj > 0 if j ∈ I, and wj = 0 for j /∈ I;

(c) A∗Wr = 0 with W = diag(wj), where A∗ is the Hermitian transpose of A.

The set I is called an active set and the vector w a dual solution. In addition,
if all n × n submatrices of A are non-singular (the discrete Haar condition), the
Chebyshev solution x (but not necessarily the active set I or the dual solution w)
is unique. In that case, d � n+ 1.

The practical implications of this theorem are that, once the set I is fixed,
one obtains d real equations of the form |rj | = ε, j ∈ I from (a) and n complex
equations from (c) for the d+ 1 real unknowns ε, w1, w2, . . . , wd and the n complex
unknowns xk. However, the system of equations is not underdetermined, since it is
homogeneous in the wj ; we could pick any of the wj , set it to 1, and solve for the
others. If any wj is then non-positive, we would know that I is wrong.

It is in general a combinatorial problem, not at all easy when m is large, to
find the active set I (see for example [LV94]). In the present case we are lucky: the
error graph for p3, currently our best available approximation, gives reason to think
that S contains only five points, so m = 5 = n + 1; and since the Haar condition
holds in the space of cubic polynomials, all five points are active.

By symmetry, we can write S in terms of two unknowns as

S = {eiθ1 , eiθ2 ,−1, e−iθ2 , e−iθ1},

where θ1 is near 65◦ and θ2 near 113◦. The characterization equations then reduce

114 Chapter 5. A Complex Optimization

to

|f(zj) − (az3
j + bz2

j + czj + d)|2 = ε2, j = 1, 2, 3, 4, 5;
5∑

j=1

zj
kwj(f(zj) − (az3

j + bz2
j + czj + d)) = 0, k = 0, 1, 2, 3.

We have squared the first set of equations in order to obtain expressions that are
analytic in terms of the coefficients. Now let w3 = 1; note that, by symmetry, we
can discard the equations with j = 4, 5, and also take w5 = w1, w4 = w2; then
we are left with seven equations in seven unknowns a, b, c, d, w1, w2, ε, since for the
inner iteration the zj values are fixed. So Algorithm C involves the solution of a
system of nonlinear equations at every iteration. Also, the question of initial values
for the wj arises.

Surely one can simplify things a little more? Indeed one can, and there are
two ways. One of these does away with the outer iteration by differentiating the
square of the residual (treated in §5.5), so that the inner iteration converges to the
correct answer; the other does away with the inner iteration by explicitly solving
the nonlinear system (treated in §5.6). These two sections are independent of each
other.

5.5 A Necessary Condition for Optimality
Consider the second set of equations in Theorem 5.2:

5∑
j=1

zj
kwjrj = 0, k = 0, 1, 2, 3.

If we knew the rj ’s, these equations (taking w3 = 1) would form a system of four
equations in four unknowns w1, w2, w4, w5. By symmetry, r5 = r1, r4 = r2, w5 =
w1, w4 = w2; moreover, we make the assumption that r3 < 0, leading to r3 = −ε.
This assumption is based on what we know of p3, which is already a very good
approximant. What is left of the characterization constraints? Well, nothing so far
forces the wj values to be real; this yields the two equations Imw1(z1, z2) = 0 and
Imw2(z1, z2) = 0, where the functions w1 and w2 are implicitly defined by the
system of linear equations. Analytical expressions for r1w1 and r2w2 are easy to
obtain using Cramer’s rule and Vandermonde determinants: let

V (a, b, c, d) =

∣∣∣∣∣∣∣∣
1 1 1 1
a b c d
a2 b2 c2 d2

a3 b3 c3 d3

∣∣∣∣∣∣∣∣ = (a− b)(a− c)(a− d)(b− c)(b− d)(c− d),

then

r1w1 =
V (−1, z2, z2, z1)
V (z1, z2, z2, z1)

ε, r2w2 =
V (z1,−1, z2, z1)
V (z1, z2, z2, z1)

ε. (5.1)

5.5. A Necessary Condition for Optimality 115

Some further simplifications are possible, e.g. the denominators are clearly real and
therefore irrelevant when testing whether w1 and w2 are real.

If Algorithm C converges, the optimal points zj are such that(
d

dθ
|f(eiθ) − p(eiθ)|2

)
θ=θj

= 0.

Since for f and p, differentiation with respect to z = eiθ is natural, we use z′(θ) = iz
and the chain rule, giving

0 =
(
d

dθ
|f(eiθ) − p(eiθ)|2

)
θ=θj

= (f(eiθj) − p(eiθj)) izj(f ′(eiθj) − p′(eiθj))

+ (f(eiθj) − p(eiθj)) izj(f ′(eiθj) − p′(eiθj))

= −2Im
(
rjzj(f ′(eiθj) − p′(eiθj))

)
.

Collecting all our information, we see that the following six equations in the
six unknowns a, b, c, d, θ1, θ2 are necessary optimality conditions:

|rj | − ε = 0, Imwj(z1, z2) = 0, Im (rjzj(f ′(zj) − p′(zj))) = 0, j = 1, 2; (5.2)

where the functions w1 and w2 are defined in (5.1), and the auxiliary quantities are

ε = d− c+ b− a, zj = eiθj , rj = f(zj) − p(zj).

The equation for ε comes from 1/Γ(−1) = 0, plus the assumption that r3 = −ε.
The derivative of f is given by f ′(z) = −ψ(z)f(z), where ψ(z) = Γ′(z)/Γ(z) is the
digamma function.5

Instead of the approach with which the previous section ends, whereby a sys-
tem of seven nonlinear equations must be solved at each step of an iteration in-
volving the zj ’s, we now have the alternative of solving the system (5.2) of only six
nonlinear equations and obtaining popt and the critical values zj without any outer
iteration. It is true that our derivation does not guarantee that the solution of (5.2)
is unique. To check that the solution thus found is indeed optimal, one could simply
plot |f(z)− p(z)| over the whole interval of interest. But it is easier simply to check
that w1(z1, z2) and w2(z1, z2) are positive: in that case, a result due to Vidensky
(see [Sin70b, Thm. 1.4, p. 182] or [SL68, Lemma 1, p. 450]) guarantees optimality.

Six equations in six unknowns, with no outer iteration: that is surely a viable
approach, given the good initial values that we already have. Newton’s method,

um+1 = um − J(F, um)−1F (um),

for improving the approximate solution um of a nonlinear system F (u) = 0 when
the Jacobian J(F, u) can be calculated, is likely to work.

5The complex gamma and digamma functions are available for Octave and Matlab as con-
tributed implementations by Paul Godfrey:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=978.

116 Chapter 5. A Complex Optimization

An Octave Session. The functions p5func (which evaluates the six functions in
(5.2) given the six unknowns as a vector) and jac (which calculates a numerical
Jacobian of a given function) have been predefined and can be found at the web
page for this book. I have deleted some padding from the actual output.

>> u=[0.014142; 1.028102; 0.636408; -0.596767; [65;113]*pi/180];
>> while true,
>> f=p5func(u); [u(1)-u(2)+u(3)-u(4), max(abs(f))]
>> if abs(f)<5e-15, break, end;
>> u=u-jac(’p5func’,u)\p5func(u);
>> end
>> u

ans =
2.19215000000000e-01 4.38761683759301e+00
2.09343333405806e-01 7.48097169131265e-01
2.12244608568497e-01 3.48454464754578e-01
2.14102287307571e-01 4.63264212148370e-03
2.14335804172636e-01 4.31572906936413e-05
2.14335234577871e-01 2.74815371456513e-09
2.14335234590463e-01 5.82867087928207e-15
2.14335234590459e-01 2.27453094590858e-15

u =
5.54195073311451e-03
1.01976185298384e+00
6.25211916433389e-01
-6.03343220407797e-01
1.40319917081600e+00
2.26237744961289e+00

The convergence criterion has not been plucked out of thin air: since ε = d−c+b−a .=
0.2 but |d|+|c|+|b|+|a| .= 2, we expect to lose one digit to roundoff in the calculation
of ε and therefore in IEEE double precision (almost 16 digits)6 one expects that the
result will be off by a few units in the 15th digit. We obtain

p4(z) = −0.60334322040780z3 + 0.62521191643339z2

+ 1.01976185298384z + .00554195073311

(the error in p4 is shown in Figure 5.5) and

θ1
.= 1.4031992, θ2

.= 2.2623774, εopt
.= 0.21433523459046.

The angles are near 80.4◦ and 129.6◦, quite some distance from the starting angles;
if our initial values were less good, Newton’s method might well have failed to
converge.

6The methods of this and the next section work also for 10 000 digits; see Appendix B.

5.5. A Necessary Condition for Optimality 117

Π
������
2

Π 3 Π
�����������
2

2 Π

0

0.1

0.25

�0.1

�0.25

Figure 5.5. The error in p4. The solid line gives |f−p4| and −|f−p4|; the
heavy and light dashed lines give the real and imaginary parts of f−p4, respectively.

Note that although εopt agrees to 13 digits with the result found in §5.2, the
coefficients of p4 agree to only 8 digits with those given there. As a general rule, in
an optimization problem one can find the value of a smooth function at the optimum
much more accurately than one can find the location of the optimum. The reason
for this is explained more fully in §9.3 in a univariate setting. Thus, when working
to 16 digits, we can expect only about 8 correct digits in the coefficients even though
the function value itself is correct to nearly the full working precision.

This does not mean that we can afford to display the coefficients of p4 to less
than full accuracy, only that there are certain perturbations of the coefficients (e.g.
to change (a, b, c, d) by a multiple of (1, 1, 1, 1)) to which ‖f−p‖∞ is very insensitive
when p is near p4. There are other perturbations (e.g. to change (a, b, c, d) by a
multiple of (1,−1, 1,−1)) to which ‖f − p‖∞ is not insensitive. Thus, the quantity
‖f − p‖∞, when seen as a function of four variables, is smooth in some directions
and non-smooth in others. This property may account for the difficulty that general-
purpose optimization methods have on this problem.

It is astonishing just how flat the whole graph is, barely discernible from
a horizontal line in the range 72◦ < θ < 288◦, which represents three-fifths of
the whole. In fact, 0.21280 < |f(z) − p4(z)| < 0.21434 for every z = eiθ in that
region. This property7 is also one that could cause difficulties for general-purpose
optimization methods.

7The flatness of the error in the best approximation is a well-known feature (called “near-
circularity of the error curve”) of complex Chebyshev approximation, and in fact is less pronounced
for 1/Γ than for more well-behaved functions [Tre81].

118 Chapter 5. A Complex Optimization

5.6 Implementation of Algorithm C
The discrete linear complex Chebyshev approximation problem has an explicit so-
lution [LV94] when m = n+ 1:

Note that the left nullspace of A is one-dimensional. There is thus a
unique vector y = (y1, y2, y3, y4, y5) in that space satisfying y3 = −1,
therefore εy = Wr, so that wj = |yj | and rj = ε sgn yj . Find that vector
y, and then solve the m×m linear system


1 z1 z2

1 z3
1

1 z2 z2
2 z3

2

1 z3 z2
3 z3

3

1 z4 z2
4 z3

4

1 z5 z2
5 z3

5





d
c
b
a


+ ε




sgn y1
sgn y2
sgn y3
sgn y4
sgn y5


 =



f(z1)
f(z2)
f(z3)
f(z4)
f(z5)


 (5.3)

for the unknowns a, b, c, d and ε.

The system can be simplified to take advantage of conjugate symmetry so that
only real quantities appear. So each iteration of Algorithm C involves finding two
extrema of |f(eiθ)− p(eiθ)| near their previous values, followed by the solution of a
5 × 5 linear system to update p.

It is also possible to take a purely dual view of the problem: all the quantities
in (5.3) depend only on the two critical angles θ1 and θ2. We can think of (5.3) as
defining a function ε(θ1, θ2). This value of ε, as we have seen, is a lower bound for
εopt. The dual point of view is simply this: find a local maximum of ε as a function
of θ1 and θ2.

An Octave Session. (Solving the dual problem by Newton’s method.)
The routines hessian and cjac are pre-written, giving numerical approximations to
respectively the Hessian matrix and the Jacobian of a function of several variables.
Their code can be found at the web page for this book.

>> function [c,err]=p5solve(z)
>> for p=1:4, A(:,p)=z.^(p-1); end
>> b=isgamma(z); d=sign(b-A*(A\b)); c=[A d]\b; err=c(5); c(5)=[];
>> endfunction
>> function y=epsilon(th)
>> z=z=exp(i*th); z=[z;-1;conj(z)]; [c,e]=p5solve(z); y=real(e);
>> endfunction
>> th=[80;130]*pi/180; f0=epsilon(th);
>> while true,
>> dth=hessian(’epsilon’,th)\cjac(’epsilon’,th)’;
>> new=th-dth; f1=epsilon(new);
>> [new’ f1], if abs(f1-f0)<1e-15, break; end
>> f0=f1; th=new;
>> end

5.7. Evaluation of the Gamma Function 119

ans =
1.403354225245182 2.262356557886901 0.214335228788773
1.403199207182680 2.262377441623623 0.214335234590459
1.403199170789188 2.262377449611380 0.214335234590460

For the dual algorithm, the initial values from p3 are not good enough for Newton’s
method to converge to the correct values, which is why the very good initial values
of 80◦ and 130◦ were used here for the demo version of the code. The version of
the code at the web page for this book uses a slightly more sophisticated variation
of Newton’s method in which monotonic convergence of ε is enforced, which does
converge from the p3 initial values.

5.7 Evaluation of the Gamma Function
Some people feel that one can trust developers who produce software for evaluating
a mathematical function: surely they will have made such a deep study of the
function in question that the casual user need not be concerned with the details.
This is probably true for the elementary functions as implemented in hardware on
standard IEEE-compliant processors, but in the case of the gamma function, there
are at least two reasons why one must know something about the implementation.
One reason is that only a handful of languages provide the gamma function over
the whole complex plane; another is that the gamma function takes much longer to
evaluate than do the elementary functions. We may have to write our own routine,
and we certainly need to understand the behavior of other people’s routines.

In the Octave programs above, use was made of a handwritten routine isgamma,
since neither Octave nor Matlab comes with a built-in routine that can evaluate
Gamma(z) when z is not real. This routine is a straightforward implementation of
[AS84, form. (6.1.34)], which gives 1/Γ(z) as a power series around z = 0, taking
into account all the coefficients that are significant when working to 16 decimal
places. The series seems to be Taylor-made for our application, where 1/Γ(z) is
required in IEEE double precision for |z| = 1; it is not suitable when |z| is much
larger than that.

The same series is given to 20 decimal places by Luke [Luk75, pp. 1–2] who ad-
ditionally warms the heart of the do-it-yourself enthusiast by supplying a recursion
formula for the coefficients in the series. That formula requires the values of Euler’s
constant γ and of ζ(k), k = 2, 3, 4, . . . , where ζ is the Riemann zeta function, and
is therefore not yet the ultimate answer.

A popular way of evaluating Γ(z) is via Stirling’s formula [AS84, form. (6.1.42)]

log Γ(z) = (z − 1
2) log z − z + 1

2 log(2π) +
n∑

m=1

B2mz
−2m+1

2m(2m− 1)
+Rn, (5.4)

|Rn| =
|B2n+2z

−2n−1|Kn

(2n+ 1)(2n+ 2)
, (5.5)

120 Chapter 5. A Complex Optimization

where Bn is the n-th Bernoulli number, defined recursively by

Bn =
n∑

k=0

(
n

k

)
Bk, n = 2, 3, . . . ;

starting from B0 = 1 (note that the recursion formula says nothing about Bn, but
can be thought of as definingBn−1 in terms of its predecessors). Several estimates for
Kn are given in ([Luk75], pp. 8,9), but we will only need the simplest: Kn � 1 when
arg z � π/4. For those values of z, the error term in (5.5) is smaller in magnitude
than the first neglected term.

For n � 4, the estimate (see [AS84, forms. (6.1.38) and (23.1.15)])

4
√
πn

(n
πe

)2n

� |B2n| � 4.08
√
πn

(n
πe

)2n

(5.6)

holds. Thus for Kn � 1 and n � 4,

|Rn| � 2.04|z|
√
π(n+ 1)

(n+ 1)(2n+ 1)

(
n+ 1
πe|z|

)2n+2

.

A reasonable (not the best) place to stop is when n + 1 = 	 1
2πe|z|
. In that case,

for arg z � π/4 and |z| > 1,
|Rn| < 2−πe|z|. (5.7)

We have no way, for fixed z, of substantially decreasing this bound, but we can
increase z to make the bound small enough and then recurse back, using the relation

log Γ(z +N) − log Γ(z) = log
N−1∏
k=0

(z + k).

This process will cause some cancellation of significant figures, but nothing catas-
trophic: for example, for z on the unit circle, if we want 10000 significant digits, we
will need to take N near 4000. Then log Γ(z + N) will be near 30000, so we can
expect to lose about five digits to cancellation.

This, in essence, is the way almost all multiprecision languages with a rou-
tine for Γ compute it. By making pessimistic decisions all along the way, a careful
implementation can come close to delivering a guaranteed precision.

Why have we gone to such lengths to explain what every implementor knows?
This is the reason: not only is the gamma function a very expensive function to
compute, it also has some rather counter-intuitive timing behavior.

The normal paradigm when comparing optimization methods for speed is to
base the comparison on how many function evaluations are required. Underlying
this way of thinking is the tacit assumption that not only are the function values
far and away the most expensive part of the computation, but also that all function
values take approximately the same time to compute. This assumption is not true
in the case of the gamma function.

5.8. More Theory and Other Methods 121

A PARI/GP Session.

? \p1000
? realprecision = 1001 significant digits (1000 digits displayed)
? #

timer = 1 (on)
? g=gamma(Pi/4);

time = 11,121 ms.
? g2=gamma(Pi/4+0.1*I);

time = 703 ms.
? z3=zeta(3);

time = 78 ms.
? b2500=bernreal(2500);

time = 0 ms.

Note that it took over 11 seconds to compute the first value of the gamma function,
but less than one second to compute the next one, even though the second argument
is complex. The clue lies in that Bernoulli number that we got instantly. In a fresh
PARI/GP session, we get:

? b2500=bernreal(2500);
time = 8,940 ms.

So almost all the time goes into the one-off computation of the necessary Bernoulli
numbers. Once they are known, the second and later evaluations of the gamma
function go quickly. Other multiprecision packages like Maple and Mathematica
show similar behavior.

To summarize: when going for 10 000 digits on this problem (see Appendix B),
there is little point in trying to optimize the solution method itself, since that first
value of the gamma function totally swamps the computing time.

5.8 More Theory and Other Methods
We have no more than touched upon the very rich theory of approximation in the
Chebyshev norm, and in particular we have barely scratched the surface of the
results available for approximation by elements of subspaces of a complex vector
space. Much more has been proved: e.g., there is a general theorem due to Kol-
mogorov [Kol48] that gives existence and uniqueness of the solution, containing
Theorems 5.1 and 5.2 as simple corollaries. The interested reader is referred to
Watson [Wat00] for a historical survey of theory and computational methods for
approximation in real vector spaces, and to Singer [Sin70b] for a self-contained trea-
tise in a functional analysis framework, which includes complex vector spaces but
omits numerical methods. Both authors have a strong sense of historical responsibil-
ity and give numerous references to original sources. Another useful work is [SL68],
also a self-contained treatise, but less dauntingly abstract than [Sin70b].

A Google search on January 22, 2004, for the exact phrase “complex Cheby-
shev approximation” turned out 181 hits. One of these, an algorithm by Tang
[Tan88], was successfully used by at least one winning team.

122 Chapter 5. A Complex Optimization

The special case of which this problem is an example, namely Chebyshev
approximation by a polynomial on the unit circle, has been the subject of some
recent papers [Tse96, BT99].

Further, there is the Matlab package COCA,8 written by Fischer and Moder-
sitzki, that calculates linear Chebyshev approximations in the complex plane based
on techniques similar to §5.6. Using it, Problem 5 can successfully be solved with a
few lines of code, which can be found at the web page for this book.

5.9 A Harder Problem
Problem 5 can be made substantially harder by introducing one tiny change in the
wording:

Let f(z) = 1/Γ(z), where Γ(z) is the gamma function, and let p(z) be
the cubic polynomial that best approximates f(z) on the unit disk in the
L1 norm ‖ · ‖1. What is ‖f − p‖1?

Of course, by the L1 norm is meant

‖g‖1 =
1
π

∫ 2π

0

∫ 1

0

|g(reiθ)| r dr dθ.

8http://www.math.mu-luebeck.de/workers/modersitzki/COCA/coca5.html

Chapter 6

Biasing for a Fair Return

Folkmar Bornemann

It was often claimed that [direct and “exact” numeri-
cal solution of the equations of physics] would make the
special functions redundant. ... The persistence of spe-
cial functions is puzzling as well as surprising. What
are they, other than just names for mathematical objects
that are useful only in situations of contrived simplicity?
Why are we so pleased when a complicated calculation
“comes out” as a Bessel function, or a Laguerre polyno-
mial? What determines which functions are “special”?

— Sir Michael Berry [Ber01]

People who like this sort of thing will find this the sort
of thing they like.

— Barry Hughes, quoting Abraham Lincoln at the
beginning of an appendix on “Special Functions for Ran-
dom Walk Problems” [Hug95, p. 569]

Problem 6

A flea starts at (0, 0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + ε, and west with probability
1/4 − ε. The probability that the flea returns to (0, 0) sometime during
its wanderings is 1/2. What is ε?

Asking for the ε that gives a certain probability p of return yields a problem hardly
any more difficult than calculating the probability for a given ε: it just adds the
need to use a numerical root-finder. But the problem looks more interesting the way
it is stated. In §6.1 we give a short argument, why the problem is solvable.

We will discuss several methods for calculating the probability of return. In
§6.2, using virtually no probability theory, we transform the problem to one of lin-
ear algebra. Solving a sparse linear system of dimension 25 920 gives us 15 correct

123

124 Chapter 6. Biasing for a Fair Return

digits. The main story, told in §§6.3–6.5, is based on the relation between the prob-
ability p of return and the expected number E of visits to the starting site, namely
E = 1/(1 − p). We represent E as an infinite series and, by stepwise decreasing
the computational effort while increasing the level of analytic sophistication, go
from a brute-force numerical approximation to a symbolic evaluation using special
functions. The latter results in a closed formula involving the arithmetic-geometric
mean M ,

p = 1 −M
(√

1 − (1 + η)2/4,
√

1 − (1 − η)2/4
)
, η =

√
1 − 16ε2. (6.1)

To answer Berry’s question from the quote at the beginning of this chapter: we are
so pleased that it “comes out” as such an expression because there is an exceedingly
fast algorithm known for its evaluation. It allows us to solve Problem 6 to 10 000
digits in less than a second. And even more, we can validate these digits using
interval arithmetic. Finally, in §6.6 we use the technique of lattice Green functions
and Fourier analysis to establish a further expression for E, a double integral. Using
adaptive numerical quadrature we can thus solve Problem 6 with just three lines of
Matlab code.

6.1 A First Look: Is it Solvable?
Before we start developing methods for calculating the probability of return, let
us convince ourselves that root-finding for Problem 6 will yield a result. To this
end, we look at the two extreme cases of the bias 0 � ε � 1/4.1 In one of the
earliest papers on random walks [Pól21], dating back to 1921, Pólya established the
classic result that for the unbiased random walk in two dimensions the probability
of return is one, that is p|ε=0 = 1. We will come back to this point with a proof
in §6.5. On the other hand, in the case of maximum bias, ε = 1/4, at each step
the walker (aka the flea) hops to the east with probability 1/2 but never to the
west. In going a step to the east he would thus prevent himself from ever returning.
Hence, the probability of return is at most that of not going east in the first step,
p|ε=1/4 � 1/2. By continuity we can conclude that there is a bias 0 < ε∗ � 1/4 such
that pε=ε∗ = 1/2.

Notation and Terminology. Throughout the chapter we adopt the following no-
tation. The (nonnegative) probabilities for a step to the east, west, north, or south,
are denoted by pE, pW, pN, or pS, respectively. This way we are more general than
the problem demands, but we will benefit from much cleaner formulas. We also do
not assume that the possibilities of a transition to either direction are exhaustive,
that is we do not assume that pE + pW + pN + pS = 1, but only that

pE + pW + pN + pS � 1.

The excess probability pkill = 1 − pE − pW − pN − pS will be interpreted as the
probability that the walker vanishes altogether, that is, the walk stops at the current

1By the symmetries of the problem we can restrict ourselves to nonnegative ε.

6.2. Using Numerical Linear Algebra 125

lattice point. Sometimes pkill is called the killing rate [Hug95, §3.2.4, p. 123], and
the walker is said to be mortal if pkill > 0.

We introduce some further useful terminology, common in the literature on
random walks [Hug95, p. 122]. If the eventual return to the starting site is certain,
that is, if p = 1, the random walk is called recurrent. Otherwise, when p < 1, the
random walk is called transient.

6.2 Using Numerical Linear Algebra
Sometimes in mathematics a problem becomes much easier if we try to solve for
more. Instead of just asking for the probability p that the walker starting at (0, 0)
reaches (0, 0) again, we consider the probability q(x, y) that the walker, starting at
a lattice point (x, y), ever reaches (0, 0). Of course, we have

q(0, 0) = 1. (6.2)

So, how can q : Z2 → [0, 1] help us in calculating p? The point is that a returning
walker has left (0, 0) in his first step to a nearest neighbor and has reached (0, 0)
from there. Thus, we obtain

p = pE q(1, 0) + pW q(−1, 0) + pN q(0, 1) + pS q(0,−1). (6.3)

A similar argument links the values of q themselves: the probability that the walker
reaches (0, 0) from the lattice point (x, y) �= (0, 0) can be expressed in terms of the
probability that he moves to any of its nearest neighbors and reaches (0, 0) from
there. In this way we obtain the partial difference equation

q(x, y) = pE q(x+ 1, y) + pW q(x− 1, y) + pN q(x, y + 1) + pS q(x, y − 1), (6.4)

with (x, y) �= (0, 0), subject to the boundary condition (6.2). We will encounter
a similar argument in §10.2, where we will approximate a Brownian motion by a
random walk.

The partial difference equation (6.4) constitutes an infinite-dimensional linear
system of equations for the unknowns q(x, y), (x, y) ∈ Z2 \ (0, 0). If we confine
ourselves to a finite spatial region of the lattice, say

Ωn = {(x, y) ∈ Z2 : |x|, |y| � n},

we have to supply the neighboring values of q as boundary values. Now, it is rea-
sonable to expect that reaching (0, 0) becomes increasingly unlikely for a walker
starting at points further and further away from the origin:

lim
n→∞ sup

(x,y) �∈Ωn

q(x, y) = 0.

Mimicking this, we approximate q by the solution qn of the linear system

qn(x, y) = pE qn(x+1, y)+ pW qn(x− 1, y)+ pN qn(x, y+1)+ pS qn(x, y− 1), (6.5)

126 Chapter 6. Biasing for a Fair Return

with (x, y) ∈ Ωn \ (0, 0), subject to the boundary values

qn(0, 0) = 1, qn(x, y) = 0 for (x, y) �∈ Ωn.

One can prove the convergence qn(x, y) → q(x, y), uniformly in (x, y). In fact, the
convergence is exponentially fast in n. A proof can be based on the properties of the
lattice Green function that we will determine in §6.6. However, we will not go into
details here because the result obtained will be validated by other methods later
on, which are easier to analyze.

The difference equation (6.5) forms a linear system of N equations in the
unknowns qn(x, y), (x, y) ∈ Ωn \ (0, 0), with the dimension N = (2n + 1)2 − 1. In
analogy to the five-point stencil discretization of Poisson’s equation, cf. §10.3, this
linear system can be brought to the matrix-vector form

ANxN = bN ,

with a given vector bN ∈ RN and a sparse matrix AN ∈ RN×N with just five nonzero
diagonals. In Appendix C.3.1 the reader will find the very short Matlab function
ReturnProbability, which generates AN using ideas from discrete Poisson’s equa-
tions (such as the Kronecker tensor product, cf. [Dem97, §6.3.3]), solves the linear
system using Matlab’s built-in sparse linear solver, and outputs an approximation
to the return probability p using (6.3). A Mathematica version is in Appendix C.5.2.

Having this in hand, we can solve the equation p|ε=ε∗ = 1/2 for ε∗ using
Matlab’s root-finder. Figure 6.1, obtained with small n for plotting accuracy only,
shows that there is just one positive solution ε∗ ≈ 0.06.

A Matlab session.

>> f = inline(’ReturnProbability(epsilon,n)-0.5’,’epsilon’,’n’);
>> for n=10*2.^(0:3)
>> out=sprintf(’n = %3i\t N = %6i\t\t epsilon* = %18.16f’,n,...,
>> (2*n+1)^2-1,fzero(f,[0.06,0.07],optimset(’TolX’,1e-16),n));
>> disp(out);
>> end
n = 10 N = 440 epsilon* = 0.0614027632354456
n = 20 N = 1680 epsilon* = 0.0619113908202284
n = 40 N = 6560 epsilon* = 0.0619139543917373
n = 80 N = 25920 epsilon* = 0.0619139544739909

The run with n = 80 takes 11 seconds on a 2 GHz PC.
How do we assess the accuracy of these four approximations? First, we have

to be sure that the sparse linear solver itself does not distort the result. This can
be checked using techniques from a posteriori error control that we will discuss
in §7.4.1. Given that the linear solver is accurate to at least 15 digits in IEEE
arithmetic, we observe that the first two approximations agree to 2 digits, the second
and third to 4 digits, the third and fourth to 8 digits. It appears that doubling n
doubles the number of correct digits, which is experimental evidence for the claimed

6.3. Expectations 127

0 0.0619 1/4
0

1/8

1/2

1

Bias ε

R
et

ur
n

pr
ob

ab
ili

ty
 p

0 0.0619 1/4
1

2

Bias ε

E
xp

ec
te

d
nu

m
be

r
of

 v
is

its
 E

Figure 6.1. Return probability p and expectation E as a function of the bias ε.

exponentially fast convergence rate. Assuming this we would expect about 15 correct
digits at n = 80 (which means solving a linear system of N = 25 920 equations),
that is

ε∗
.= 0.0619139544739909.

The following sections will show that these digits are indeed correct.

6.3 Expectations
From now on we utilize the relation of the probability p of return to the expected
number E of visits to the starting site, including the initial visit to this spot. To
establish this relation we observe that the probability of exactly k visits is given
by pk−1(1 − p): the walker has to return k − 1 times in succession and then to hop
away for ever. Thus, the expected number of visits is simply [Fel50, Thm. 2, §12.3]

E =
∞∑

k=1

k pk−1(1 − p) =
1

1 − p
, (6.6)

with the understanding that in the case of a recurrent walk (p = 1) we have E = ∞.
Alternatively, we could derive (6.6) by arguing that after the second visit to the
starting site the walker’s future is, in probability, just the same as initially. That is,
the expected number of visits satisfies the simple equation E = 1 + pE.

The point is that the quantity E can be expressed in various other ways that
are computationally accessible. In fact, we will give several such expressions in the
course of this chapter. A first useful expression is the series

E =
∞∑

k=0

pk,

where pk denotes the probability of occupying the starting site at step 2k. If the
series diverges, the walk is recurrent (E = ∞) by [Fel50, Thm. 2, §12.3]. We will

128 Chapter 6. Biasing for a Fair Return

approximate E by the partial sums

EK =
K−1∑
k=0

pk

forK sufficiently large. As it turns out there will be a trade-off between the complex-
ity of the algorithm for calculating the terms p0, . . . , pK−1 and the mathematical
sophistication of its derivation: the faster the algorithm, the more theory we have
to invest.

6.3.1 Using Brute Force

Here we will start with a straightforward simple algorithm of complexity O(K3).
Convergence acceleration will help us to keep K reasonably small. Later, in §6.4,
we will increase the efficiency of calculating EK in two steps. Some combinatorics
reduces the complexity to O(K2). Zeilberger’s creative telescoping algorithm yields
a three-term recurrence for pk that allows us to calculate p0, . . . , pK−1 with optimal
complexity O(K). Then, calculating partial sums for sufficiently large K is so af-
fordable that acceleration of the convergence is no longer necessary. Finally, in §6.5,
we will use special functions to evaluate the series symbolically.

We consider the probabilities Pk(0, 0) of visiting, at step k, the starting site
(0, 0) ∈ Z2. Then the expected number of visits to (0, 0) is [Fel50, Thm. 2, §12.3]

E =
∞∑

k=0

Pk(0, 0). (6.7)

Now, we can calculate Pk(0, 0) directly from the rules of the random walk, if we
know the probabilities of occupying the neighbors of the starting site at the step
k − 1. For those neighbors we do the same, recursively up to the initial step k = 0
where all is known. Thus, if we introduce the lattice function Pk : Z2 → [0, 1] that
assigns to each lattice point the probability of being occupied at step k, we obtain
the partial difference equation

Pk(x, y) = pE Pk−1(x− 1, y) + pW Pk−1(x+ 1, y)
+ pN Pk−1(x, y − 1) + pS Pk−1(x, y + 1), (6.8)

subject to the initial condition

P0(0, 0) = 1, P0(x, y) = 0 for (x, y) �= (0, 0). (6.9)

With a little thought we can arrange the difference equation in a form that
avoids the handling and storage of zero probabilities. Because in step k the only
sites that can be occupied are those no farther than k steps away from the starting
site, we observe that

Pk(x, y) = 0 for |x| + |y| > k.

6.3. Expectations 129

In fact, there are further lattice points that cannot be occupied at step k. Taking
a checkerboard coloring of the lattice, the walker has to switch colors, that is the
parity of x+ y, at each step:

P2k(x, y) = 0 for x+ y odd, P2k+1(x, y) = 0 for x+ y even.

Now, we arrange all the nontrivial probabilities at step k into the (k + 1)× (k + 1)
matrix Πk defined by

Πk =




Pk(−k, 0) Pk(−k + 1, 1) · · · Pk(0, k)
Pk(−k + 1,−1) Pk(−k + 2, 0) · · · Pk(1, k − 1)

...
...

. . .
...

Pk(0,−k) Pk(1,−k + 1) · · · Pk(k, 0)


 .

The partial difference equation (6.8) can be rewritten as the matrix recurrence

Πk+1 = pE




0 0 · · · 0
0
... Πk

0


+ pW




0

Πk

...
0

0 · · · 0 0


+

pN




0
... Πk

0
0 0 · · · 0


+ pS




0 · · · 0 0
0

Πk

...
0


 , (6.10)

subject to the initial condition Π0 =
(
1
)
. The probabilities for the starting site are

obtained as

P2k+1(0, 0) = 0, P2k(0, 0) = center entry of Π2k.

Since the starting site can be occupied only at every second step, we simplify our
notation and use

pk = P2k(0, 0), E =
∞∑

k=0

pk. (6.11)

The matrix recurrence (6.10) can easily be coded; the reader will find the quite
compact Matlab function OccupationProbability in Appendix C.3.1. Using this
algorithm, the cost of calculating p0, . . . , pK−1, and hence that of calculating the
partial sum

EK =
K−1∑
k=0

pk,

grows as O(K3). Let us have faith and solve Problem 6. That is with

pE = 1/4 + ε, pW = 1/4 − ε, pN = 1/4, pS = 1/4,

we look for the bias ε∗ that solves the equation E|ε=ε∗ = 2, which by (6.6) is
equivalent to biasing for a fair return, p|ε=ε∗ = 1/2.

130 Chapter 6. Biasing for a Fair Return

A Matlab session.

>> f=inline(’sum(OccupationProbability(epsilon,K))-2’,’epsilon’,’K’);
>> for K=125*2.^(0:3)
>> out=sprintf(’K = %4i \t\t epsilon* = %17.15f’,K,...
>> fzero(f,[0.06,0.07],optimset(’TolX’,1e-14),K));
>> disp(out);
>> end

K = 125 epsilon* = 0.061778241155115
K = 250 epsilon* = 0.061912524106289
K = 500 epsilon* = 0.061913954180807
K = 1000 epsilon* = 0.061913954473991

The run with K = 125 takes 9 seconds, that one with K = 1000 about 2.5 hours
on a 2 GHz PC.

How do we assess the accuracy of these four approximations? We observe that
the first two agree to 2 digits, the second and third to 4 digits, the third and fourth
to 8 digits. It appears that doubling K doubles the number of correct digits, that
is, the convergence of the series is roughly exponential.2 Taking this for granted we
would expect 16 correct digits at K = 1000. However, the absolute error of the root
finder was put to 10−14, which restricts the accuracy of the fourth approximation
to about 12 digits. Because the 11th and 12th digit read 39, we have to be careful
with them: they could be 40 as well. In any case, we have no reason to question the
correctness of the first ten digits

ε∗
.= 0.06191395447.

In fact, we will see later that the K = 1000 run is correct to 13 digits.

6.3.2 Using Convergence Acceleration

The run time of 2.5 hours is a good reason for trying convergence acceleration. We
use EK and estimate the tail E−EK by Wynn’s epsilon algorithm (see Appendix A,
p. 247), which is particularly well suited for the near-exponential convergence of the
series. A good choice of parameters requires some experimentation. A reasonable
compromise between run time and accuracy turns out to be K ≈ 400, for which
EK itself gives just 6 correct digits. To determine the number of extrapolation
steps, and hence the number of extra terms, we follow the recommendations of Ap-
pendix A (see p. 255) and look, for the particular choice ε = 0.06, at the differences
of the first row of the extrapolation table, cf. Figure 6.2. We observe that roundoff
error becomes significant at about j � 3, where the magnitude of the differences
settles at about 10−12. This corresponds to 12 correct digits of E, a gain of 6 dig-
its over just using EK with K = 400. The reader will find the Matlab function
ExpectedVisitsExtrapolated in Appendix C.3.1. We fix K = 393 and j = 3,
using 7 extra terms of the series for extrapolation.

2Indeed, we will prove this later, cf. Lemma 6.1.

6.4. Reducing the Complexity 131

0 2 4 6 8 10 12 14

10
−18

10
−15

10
−12

10
−9

10
−6

Figure 6.2. Differences |s1,2j+2−s1,2j | of the first row of the extrapolation
table vs. j, Wynn’s epsilon algorithm (K = 393, ε = 0.06).

A Matlab session.

>> f=inline(’ExpectedVisitsExtrapolated(epsilon,K,extraTerms)-2’,...
>> ’epsilon’,’K’,’extraTerms’);
>> epsilon=fzero(f,[0.06,0.07],optimset(’TolX’,1e-14),393,7)

epsilon = 6.191395447397203e-002

The run takes less than 8 minutes on a 2 GHz PC, a considerable speed-up. The
absolute tolerance of the root-finder was set to 10−14, which matches the accuracy
of the extrapolation given by our preparatory experiments. As in the K = 1000
run, there remains some uncertainty about the 11th and 12th digits. In any case,
we have now collected enough evidence to be confident about the correctness of 10
digits.

6.4 Reducing the Complexity by Increasing the Level
of Sophistication

In this section we show that simple combinatorics and symbolic calculations reduce
the complexity of generating p0, . . . , pK−1 from O(K3) to the optimal O(K). This
enables us to efficiently use the partial sum EK to solve the problem.

6.4.1 Using Combinatorics

To begin with, we observe that calculating all the probabilities stored in Π2k is
overkill if we are only interested in pk = P2k(0, 0). This is because a walker visiting
(0, 0) at step 2k has followed a very particular type of walk: a combination of two
one-dimensional walks. In fact, he has spent 2j steps in the east-west direction
and 2k − 2j steps in the north-south direction. The number of eastbound steps

132 Chapter 6. Biasing for a Fair Return

has to be equal to the number of westbound ones, likewise for north-south. Simple
combinatorics yields

pk =
k∑

j=0

(
2k
2j

)
·
(

2j
j

)
pj
Ep

j
W︸ ︷︷ ︸

east-west

·
(

2k − 2j
k − j

)
pk−j
N pk−j

S︸ ︷︷ ︸
north-south

.

The binomial coefficients reflect the possibilities that the walker has: 2j steps in the
east-west direction out of 2k steps altogether, j eastbound steps out of 2j steps in
the east-west direction, k−j northbound steps out of 2k−2j steps in the north-south
direction.

The expression for pk can be simplified further by a little fiddling with binomial
coefficients,

pk =
k∑

j=0

(
2k
k

)(
k

j

)2

(pEpW)j(pNpS)k−j ,

a formula that can be found, without much explanation however, in the work of
Barnett [Bar63, form. (7)]. We observe that pk depends on pE, pW only via their
product, and the same for pN, pS. Therefore it makes sense to consider their geo-
metric means

pEW =
√
pEpW, pNS =

√
pNpS.

We obtain3

pk =
k∑

j=0

(
2k
k

)(
k

j

)2

p2j
EWp

2k−2j
NS . (6.12)

Because of the size of the binomial coefficients, using this expression requires some
care with machine arithmetic. For instance, at k = 1000 the term

(
2k
k

)
would become

as large as 10600, which far exceeds the range of IEEE double precision numbers. We
have to balance this enormous size with the powers of pEW and pNS. For pEW � pNS,4

which is true for Problem 6, we therefore rewrite (6.12) as

pk =
(

2k
k

)
p2k
NS︸ ︷︷ ︸

=ak

k∑
j=0

(
k

j

)2(
pEW

pNS

)2j

︸ ︷︷ ︸
=bj

.

3If pEW = 0, this expression simplifies to pk =
(2k

k

)
p2k
NS yielding the return probability

p = 1 − 1/E = 1 −
√

1 − 4p2
NS.

Here, the random walk is effectively a biased one-dimensional one in the north-south direction, cf.
[Hug95, p. 123]: the nonzero transition probability out of pE or pW just adds to the killing rate.
In the setting of Problem 6 we get pEW = 0 for the maximum bias ε = 1/4. Hence, because of
pNS = 1/4, we obtain p|ε=1/4 = 1 − √

3/2
.
= 0.1339745962, which is slightly larger than 1/8, cf.

Figure 6.1.
4Without loss of generality we can generally assume this to be the case. By the symmetry of

the problem we would otherwise just change the roles of pNS and pEW.

6.4. Reducing the Complexity 133

To be efficient we calculate the coefficients ak and bj recursively,

ak =
2k(2k − 1)

k2
p2
NS · ak−1, a0 = 1;

bj =
(
k − j + 1

j

)2
p2
EW

p2
NS

· bj−1, b0 = 1.

The resulting algorithm for calculating p0, . . . , pK−1 is of complexity O(K2).

A Mathematica session.

ExpectedVisits�Ε Real,K � ��

�pE � 0.25 � Ε�pW � 0.25 � Ε�pN � pS � 0.25�w � pEpW�z � pNpS�
	a � 1
�

Sum��a� � 2k	2k � 1

k2

z�

�	b � 1
 � Sum�b� � �k � j � 1
j
�
2 w
z
,�j,1,k
��,�k,1,K � 1
��

�K �� #,

Ε� ��

�Ε/.FindRoot�ExpectedVisits�Ε,#� �� 2,�Ε,0.06,0.07�,

WorkingPrecision � MachinePrecision,

PrecisionGoal � 12�	�&/@�125,250,500,1000�//TableForm

K �� 125 Ε� �� 0.06177824115511528
K �� 250 Ε� �� 0.06191252410628889
K �� 500 Ε� �� 0.06191395418080741
K �� 1000 Ε� �� 0.06191395447399104

Mathematica’s output confirms the result of the corresponding run using the
O(K3) algorithm in §6.3.1. However, for K = 1000 we now need, using a 2 GHz PC,
just 45 seconds instead of 2.5 hours. We recall that K = 1000 gives us at least 10
correct digits.

6.4.2 Using Symbolic Computation

For the initiated, the form of the expression (6.12) shows that there is a holonomic5

M -term recurrence for pk and that its polynomial coefficients can be calculated by
Zeilberger’s creative telescoping algorithm. This algorithm falls into the realm of
symbolic hypergeometric summation [Koe98] and allows for the computerized proofs
[PWZ96] of many if not most identities of sums involving binomial coefficients.
For decades, the derivation and verification of such identities was considered to be

5A linear, homogeneous recurrence with polynomial coefficients is called holonomic.

134 Chapter 6. Biasing for a Fair Return

a challenging problem. Indeed, a paper coauthored by Zeilberger and presenting
his algorithm was entitled “How to do Monthly problems with your computer”
[NPWZ97].

Let us briefly explain the framework of Zeilberger’s algorithm. It applies to
sums of the form

fk =
∑
j∈Z

F (k, j),

where F (k, j) is a proper hypergeometric term (cf. [PWZ96, p. 64] or [Koe98, p. 110]),
that is essentially a term of the form

F (k, j) = (polynomial in k, j) ×
(product of binomial coefficients of arguments integer-linearly in k, j) ×

wk zj . (6.13)

Then a theorem of Zeilberger [PWZ96, Thm. 6.2.1] states that F satisfies a recur-
rence of the form

M∑
m=0

am(k)F (k +m, j) = G(k, j + 1) −G(k, j),

where a0, . . . , aM are polynomials and G(k, j)/F (k, j) is rational in k, j. Moreover,
there is an algorithm, cf. [PWZ96, §6.3] or [Koe98, Chap. 7], to construct all these
functions. Now, we can sum over all integer values of j and obtain by telescoping
the recurrence

M∑
m=0

am(k)fk+m = 0.

In the problem at hand, since
(
k
j

)
= 0 for j > k or j < 0, the probability (6.12)

can be written as a sum over the integers j ∈ Z of terms that have the required
proper hypergeometric form (6.13). Thus, we should be able to calculate such an
M -term recurrence for pk. In fact, Maple ships with the package sumtools, which
includes the command sumrecursion that performs exactly this task. Details and
source code of a similar command can be found in the book by the package’s author
Koepf [Koe98, p. 100].

A Maple session. We use the abbreviations w = p2
EW, z = p2

NS.

> with(sumtools):
> sumrecursion(binomial(2*k,k)*binomial(k,j)^2*w^j*z^(k-j),j,p(k));

4 (w − z)2 (2 k − 1) (2 k − 3) p (k − 2) − 2 (2 k − 1)2 (w + z) p (k − 1) + p (k) k2

Written in full, the Maple output shows that pk satisfies the three-term recur-
rence

k2 pk = 2(2k−1)2 (p2
EW +p2

NS) pk−1 − 4(2k−1)(2k−3) (p2
EW−p2

NS)2 pk−2, (6.14)

6.4. Reducing the Complexity 135

subject to the initial conditions

p0 = 1, p1 = 2(p2
EW + p2

NS).

Hence, we have obtained an algorithm that allows us to calculate p0, . . . , pK−1 in
optimal complexity O(K).

Now, we are ready to solve the equation E|ε=ε∗ = 2 for ε∗ using a software
package root-finder. From §6.3.1 we know that the convergence of the series for E
is essentially exponential. Therefore, it is reasonable to sum the terms of the series
until the value of the sum no longer changes in finite precision arithmetic.

A Mathematica session.

ExpectedVisits�Ε Real� ��

�pE � 1
4
� Ε�pW �

1
4
� Ε�pN � pS �

1
4
�w � pEpW�z � pNpS�

s � pold � 1�pnew � 2 	w � z
�k � 2�

While�s �! � 	s� � pnew
,

pnew �
�4 	2 k � 1
 	2 k � 3
 	w � z
2 pold � 2 	2 k � 1

2 	w � z
 	pold � pnew

k��2

��

s��

�Precision �� #,

Ε� ��

�Ε/.FindRoot�ExpectedVisits�Ε� �� 2,�Ε,0.06,0.07�,

WorkingPrecision � #,AccuracyGoal � #�	�&/@

�13,MachinePrecision,19,22,25�//TableForm

Precision �� 13 Ε� �� 0.06191395447253
Precision �� MachinePrecision Ε� �� 0.0619139544739901
Precision �� 19 Ε� �� 0.06191395447399094135
Precision �� 22 Ε� �� 0.06191395447399094284664
Precision �� 25 Ε� �� 0.06191395447399094284817374

We observe that we lose about the last three digits. In machine precision the
run takes under a second on a 2 GHz PC and uses 884 terms of the series. With a
working precision of 103 digits, and using 7184 terms of the series, it takes less than
a minute to get

ε∗
.= 0.061913 95447 39909 42848 17521 64732 12176 99963 87749 98362

07606 14672 58859 93101 02975 96158 45907 10564 57520 87861,

which is correct to the printed 100 digits.

136 Chapter 6. Biasing for a Fair Return

6.5 The Joy of Special Functions
In the last section we have learned that the occupation probabilities pk are homo-
geneous polynomials of degree k in p2

EW and p2
NS satisfying a three-term recurrence.

The odds are good that they are related to one of the canonized families of or-
thogonal polynomials. Let us see what happens if we ask Maple to evaluate (6.12)
symbolically.

A Maple session. We use the abbreviations w = p2
EW, z = p2

NS.

> simplify(sum(binomial(2*k,k)*binomial(k,j)^2*z^j*w^(k-j),j=0..k))
assuming k::integer;(

2k
k

)
LegendreP

(
k,
w + z

w − z

)
(w − z)k

We encounter the Legendre polynomials Pk. Written in full, the Maple output reads
as

pk =
(

2k
k

)
Pk

(
p2
EW + p2

NS

p2
EW − p2

NS

)
(p2

EW − p2
NS)k.

Certainly, using this expression instead of (6.14) is computationally of no improve-
ment. We already had arrived at the optimal complexity of O(K) for calculating
the probabilities p0, . . . , pK−1.

However, the Legendre polynomials are useful in deriving precise asymptotic
formulas for pk and, further below, in deriving a closed expression for the expected
value E. We recall our observation that doubling K doubles the number of digits
to which EK correctly approximates E; the convergence appears to be roughly
exponential. In fact, we are now able to prove this to be true.

Lemma 6.1.

(a) If σ = 2(pEW + pNS), then σ � 1, with equality if and only if

pE = pW, pN = pS, pE + pW + pN + pS = 1.

(b) If pEW · pNS �= 0, there is the asymptotic formula

pk � σ2k+1

4πk
√
pEW pNS

; otherwise pk � σ2k

√
πk
.

(c) The random walk is recurrent, that is p = 1, if and only if σ = 1.

Proof. (a) Using the inequality between geometric and arithmetic means we obtain

σ = 2pEW + 2pNS � (pE + pW) + (pN + pS) � 1.

Since equality of the arithmetic and geometric means of two quantities holds only
if these quantities are equal, σ = 1 is characterized as asserted.

6.5. The Joy of Special Functions 137

(b) Suppose that pEW · pNS �= 0. The Laplace–Heine asymptotic formula for
the Legendre polynomials [Sze75, Thm. 8.21.1] yields after a short calculation

Pk

(
p2
EW + p2

NS

p2
EW − p2

NS

)
(p2

EW − p2
NS)k � (pEW + pNS)2k+1

2
√
πk

√
pEW pNS

.

A multiplication with Stirling’s formula
(
2k
k

)
� 4k/

√
πk proves the assertion.

On the other hand, if pEW ·pNS = 0, we may assume without loss of generality
that pEW = 0. By (6.12) we obtain, using Stirling’s formula again,

pk =
(

2k
k

)
p2k
NS � 4kp2k

NS√
πk

=
σ2k

√
πk
.

(c) By d’Alembert’s ratio test for the convergence of series with positive terms,
the asymptotic formulas in (b) prove that E =

∑∞
k=0 pk <∞ if σ < 1. On the other

hand, if σ = 1, by the comparison test [Kno56, p. 56] the series
∑∞

k=0 pk inherits
the divergence of

∑∞
k=1 1/k or

∑∞
k=1 1/

√
k, respectively.

Summarizing, the series converges, that is the walk is transient, if and only if
σ < 1. Therefore, by (a), recurrence is equivalent to σ = 1.

For the particular biasing of Problem 6 we have σ = (1 +
√

1 − 16ε2)/2. Here,
the walk is recurrent if and only if it is unbiased (ε = 0). As promised at the be-
ginning of this chapter, we have thus proven the recurrence of the unbiased random
walk in two dimensions, a classic result of Pólya [Pól21].

The Legendre polynomials are also useful if we aim directly at the expected
value

E =
∞∑

k=0

pk =
∞∑

k=0

(
2k
k

)
Pk

(
p2
EW + p2

NS

p2
EW − p2

NS

)
(p2

EW − p2
NS)k.

The point is that there is some hope of finding a closed expression for E in terms
of special functions, which might be computationally advantageous. For instance,
in many compilations of formulas, such as [EMOT53, Vol. 2, §10.10] or [AS84,
Table 22.9], one finds the generating functions

∞∑
k=0

Pk(x) zk =
1√

1 − 2xz + z2
,

∞∑
k=0

1
k!
Pk(x) zk = exzJ0(z

√
1 − x2) (6.15)

with J0 being the Bessel function of the first kind of zero order. A systematic way
to derive such expressions was communicated to us by Herbert Wilf: one simply
plugs Laplace’s first integral for the Legendre polynomials, cf. [WW96, §15.23] or
[Rai60, Chap. 10, §97],

Pk(x) =
1
π

∫ π

0

(x+
√
x2 − 1 cos θ)k dθ, x ∈ C,

138 Chapter 6. Biasing for a Fair Return

into the series at hand and changes the order of summation and integration. If the
power series

∑∞
k=0 akz

k is a known function f(z), one gets

∞∑
k=0

akPk(x)zk =
1
π

∫ π

0

∞∑
k=0

ak(x+
√
x2 − 1 cos θ)kzk dθ

=
1
π

∫ π

0

f
(
(x+

√
x2 − 1 cos θ)z

)
dθ.

The integral form might be advantegeous because there are more methods known
for the closed evaluation of integrals than of sums. We leave the actual calculations
to a computer algebra system such as Mathematica and just assist the symbolic
integration by restricting the possible values of pEW and pNS:

0 � pEW � pNS, σ = 2(pEW + pNS) < 1.

Because of the symmetry of the problem, the first inequality is no loss of generality.
By Lemma 6.1 we know that the second inequality is equivalent to E <∞.

A Mathematica session.

LegendreKernel�x ,k � ��
1
Π
�x ��x2 � 1Cos�Θ��

k

	

Integrate�
Sum�Binomial�2k,k�LegendreKernel�pEW2 � pNS2

pEW
2 � pNS

2 ,k�� pEW2 � pNS2�
k
,

k,0,���,
Θ,0,Π�,Assumptions

0 � pEW � pNS,2�pEW � pNS� < 1��

2 EllipticK� � 16 pEW pNS
�1�4 �pEW�pNS�

2 �
Π
�
1 � 4 �pEW � pNS�

2

The reader must be alert to the fact that Mathematica uses the complete elliptic
integral of the first kind

K(k) =
∫ 1

0

dt√
1 − t2

√
1 − k2t2

not as a function of the modulus k, but of the parameter m = k2 instead. Summa-
rizing, we have obtained the closed-form expression

E =
2

π
√

1 − 4(pEW − pNS)2
K

(
4
√
pEWpNS√

1 − 4(pEW − pNS)2

)
, (6.16)

6.5. The Joy of Special Functions 139

a result that was discovered in the early 1960s independently by Henze [Hen61,
form. (3.3)] and Barnett [Bar63, form. (43)].6 The advantage of K being involved
is that it can be evaluated [BB87, Alg. 1.2(a)] exceedingly fast with the help of the
arithmetic-geometric mean M(a, b) of Gauss,

K
(√

1 − k2
)

=
π

2M(1, k)
. (6.17)

The reader will find more details on M in §6.5.1. From (6.17) we infer the final
formula of this section

E = 1/M
(√

1 − 4(pEW + pNS)2,
√

1 − 4(pEW − pNS)2
)
, (6.18)

which we now use to solve Problem 6.

A Mathematica session.

ExpectedVisits�Ε � ��

1�ArithmeticGeometricMean��1 � 4�pEW � pNS	
2,
�
1 � 4�pEW � pNS	

2�/.
�pEW

�
�1
4
� Ε��1

4
� Ε�,pNS
 1

4
�

�Precision �� #,

Ε� ��

�Ε/.FindRoot�ExpectedVisits�Ε� �� 2,�Ε,0.06,0.07�,

WorkingPrecision � #,AccuracyGoal � #�	�&/@

�13,MachinePrecision,19,22,25�//TableForm

Precision �� 13 Ε� �� 0.06191395447402
Precision �� MachinePrecision Ε� �� 0.06191395447399095
Precision �� 19 Ε� �� 0.06191395447399094287
Precision �� 22 Ε� �� 0.06191395447399094284820
Precision �� 25 Ε� �� 0.06191395447399094284817519

All but about the last two digits are correct. The code is so fast that using it
with a working precision of 10 010 digits takes less than a second (on a 2 GHz PC)
to get 10 000 correct digits.

6One motivation of Barnett was to characterize recurrent biased random walks, that is E = ∞.
From (6.16) he could infer that E = ∞ if and only if the argument of K equals 1,

4
√

pEWpNS√
1 − 4(pEW − pNS)2

=
4
√

pEWpNS√
1 − σ2 + 16pEWpNS

= 1.

This is the case if and only if σ = 1, which is consistent with Lemma 6.1.

140 Chapter 6. Biasing for a Fair Return

6.5.1 Using Interval Arithmetic

The arithmetic-geometric mean M(a, b) of nonnegative numbers a and b is defined
as the common limit of the two quadratically convergent sequences that are built
by taking successively the geometric and arithmetic means,

M(a, b) = lim
n→∞ an = lim

n→∞ bn; a0 = a, b0 = b, an+1 =
√
anbn, bn+1 =

an + bn
2

.

It enjoys many monotonicity properties that make it particularly well suited for
interval calculations. First, it is easy to check for 0 � a∗ � a � a∗, 0 � b∗ � b � b∗

that
M(a∗, b∗) � M(a, b) � M(a∗, b∗).

It follows that

M([a, b], [c, d]) = [M(a, c),M(b, d)], 0 � a � b, 0 � c � d.

Next, the above iteration is always enclosing [BB87, §1.1],

an � an+1 � M(a, b) � bn+1 � bn, n � 1.

Thus, using downward rounding for an and upward rounding for bn yields a straight-
forward, tight, and rigorous implementation using an interval arithmetic package
such as Intlab. The reader will find the Intlab function AGM in Appendix C.4.3.

For Problem 6, appropriate interval root-finding can be based on the interval-
bisection method. The Intlab procedure IntervalBisection of Appendix C.4.3 is
coded essentially in analogy to the interval-minimization algorithm of §4.3.

A Matlab/Intlab session.

>> E=inline(’1/AGM(sqrt(1-4*(pEW+pNS)^2),sqrt(1-4*(pEW-pNS)^2))’,...
>> ’pEW’,’pNS’);
>> f=inline(’E(sqrt((0.25+epsilon)*(0.25-epsilon)),0.25)-2’,...
>> ’epsilon’,’E’);
>> epsilon=IntervalBisection(f,infsup(0.06,0.07),1e-15,E)

intval epsilon = [6.191395447399049e-002, 6.191395447399144e-002]

Just using IEEE machine arithmetic, the run takes less than 4 seconds on a
2 GHz PC and validates the correctness of 13 digits,

ε∗
.= 0.06191395447399.

For higher precision we use Mathematica. Here, no directive for directional
rounding is accessible to the user and a rigorous implementation of the arithmetic-
geometric mean has to use interval arithmetic for the iteration itself. In machine
arithmetic the resulting code is slightly less efficient and less tight than the Intlab

6.6. Using Fourier Analysis 141

implementation. The reader will find an overload7 of the command Arithmetic-
GeometricMean in Appendix C.5.3 and the code IntervalBisection in Appendix
C.5.3.

As discussed in §4.5, there is no need to use the interval method from scratch.
Instead we start using our favorite method to obtain an approximation of ε∗ that
is very likely correct to the requested number of digits. After inflation of this ap-
proximation to a small interval, we apply the interval bisection-method and obtain
a validated enclosure.

A Mathematica session. (cont. of session on p. 139)8

prec � 10010�

ΕTry � Ε/.FindRoot�ExpectedVisits�Ε� � 2,�Ε,0.06,0.07�,

WorkingPrecision 	 prec,AccuracyGoal 	 prec��

ΕInterval � IntervalBisection�ExpectedVisits�#� � 2&,ΕTry
 ��1,1�10�prec�5,
10�prec��

DigitsAgreeCount�ΕInterval�
10006

This technique of approximation first, validation last shows the correctness of 10 006
digits in less than a minute computing time on a 2 GHz PC.

6.6 Using Fourier Analysis
In this final section we follow a different approach to calculating E. Instead of
looking at the expected number of visits to just the starting site, we consider it
for all sites at once. That is, generalizing (6.7) we introduce the expected number
E(x, y) of visits to the site (x, y),

E(x, y) =
∞∑

k=0

Pk(x, y), E = E(0, 0).

Now, summing the partial difference equation (6.8) over all k yields a partial differ-
ence equation for E(·, ·),

E(x, y) = P0(x, y) + pEE(x− 1, y) + pWE(x+ 1, y)
+ pNE(x, y − 1) + pSE(x, y + 1).

Because of the initial condition (6.9), written with the Kronecker δ symbol as
P0(x, y) = δx,0δy,0, we obtain without any further reference to probabilities

E(x, y) = δx,0δy,0 + pEE(x− 1, y) + pWE(x+ 1, y)
+ pNE(x, y − 1) + pSE(x, y + 1). (6.19)

7This way we can reuse the function ExpectedVisits from page 139 for interval arguments.
8The command DigitsAgreeCount can be found in Appendix C.5.1.

142 Chapter 6. Biasing for a Fair Return

In analogy with partial differential equations, the solution of this difference equation
is called the lattice Green function of the random walk [Hug95, p. 132].

Concerning the existence and construction of the lattice Green function one
encounters some technical difficulties of convergence for an immortal walker, that
is, if pkill = 1−pE−pW−pN−pS = 0. We will avoid them by temporarily assuming
pkill > 0. As soon as it is safe to take the limit pkill → 0, we will drop this assumption.
By continuity, formulas will then be correct for pkill = 0 also.

A convenient way to solve the linear partial difference equation (6.19) is to
use Fourier series,

Ê(φ, θ) =
∑

(x,y)∈Z2

E(x, y)eixφeiyθ. (6.20)

Multiplying (6.19) by eixφeiyθ and summing over all integer values of x and y yields

Ê(φ, θ) = 1 +
(
pEe

iφ + pWe
−iφ + pNe

iθ + pSe
−iθ

)︸ ︷︷ ︸
=λ(φ,θ)

Ê(φ, θ),

where λ(φ, θ) is called the structure function or symbol of the random walk [Hug95,
form. (3.116)]. This equation for Ê is readily solved by

Ê(φ, θ) =
1

1 − λ(φ, θ)
=

1
1 − pEeiφ − pWe−iφ − pNeiθ − pSe−iθ

.

Up to here, our arguments were purely formal. Now, by our temporary assumption
pkill > 0 we see that∑

(x,y)∈Z2

|E(x, y)| =
∑

(x,y)∈Z2

E(x, y) = Ê(0, 0) = p−1
kill <∞.

Therefore, the Fourier series (6.20) converges absolutely and the coefficients E(x, y)
are established as the solution of the difference equation.

The value of interest, E = E(0, 0), is obtained by an inverse Fourier transfor-
mation,

E =
1

4π2

∫ π

−π

∫ π

−π

dφ dθ

1 − pEeiφ − pWe−iφ − pNeiθ − pSe−iθ
. (6.21)

Numerical quadrature for this double integral becomes less involved if we avoid the
use of complex numbers. To this end we make use of a trick that is provided by the
following lemma.

Lemma 6.2. Let f(z) be a function that is analytic in the disk |z| < R. For a, b > 0
with a+ b < R the integral

I(a, b) =
1
2π

∫ π

−π

f(aeix + be−ix) dx

is well defined. Moreover, the following transformation is valid:

I(a, b) = I(
√
ab,

√
ab) =

1
2π

∫ π

−π

f(2
√
ab cosx) dx.

6.6. Using Fourier Analysis 143

Proof. Note that |aeix + be−ix| � a + b < R for x ∈ [−π, π] and that 2
√
ab �

a+ b < R. Let C be the positively oriented unit circle. We have

I(a, b) =
1

2πi

∫
C
f(az + b/z)

dz

z
.

The substitution z =
√
b/a · w and Cauchy’s integral theorem show that

I(a, b) =
1

2πi

∫
√

a/b C
f(
√
abw +

√
ab/w)

dw

w

=
1

2πi

∫
C
f(
√
abw +

√
ab/w)

dw

w
= I(

√
ab,

√
ab).

The observation
√
ab eix +

√
ab e−ix = 2

√
ab cosx finishes the proof.

If we apply this Lemma to (6.21) twice, which is possible by our temporary
assumption pkill > 0, we obtain by using the symmetry of the cosine

E =
1

4π2

∫ π

−π

∫ π

−π

dφ dθ

1 − 2pEW cosφ− 2pNS cos θ

=
1
π2

∫ π

0

∫ π

0

dφ dθ

1 − 2pEW cosφ− 2pNS cos θ
. (6.22)

Now, since
|2pEW cosφ+ 2pNS cos θ| � 2pEW + 2pNS = σ

the integral expression (6.22) is well defined as long as σ < 1. Therefore from now
on we may drop the assumption pkill > 0 and replace it by the transience condition
σ < 1, cf. Lemma 6.1. As we have already noted following that lemma, the specific
transition probabilities of Problem 6 yield that σ < 1 is equivalent to the condition
0 < ε � 1/4 on the bias.

Using adaptive numerical quadrature, expression (6.22) can readily be used to
solve Problem 6, that is, to solve the equation E|ε=ε∗ = 2 for ε∗.

A Matlab session.

>> g=inline(...
’1./(1-2*sqrt((1/4+ep)*(1/4-ep))*cos(phi)-cos(theta)/2)/pi^2’,...
’phi’,’theta’,’ep’);

>> f=inline(’dblquad(g,0,pi,0,pi,1e-13,@quadl,ep)-2’,’ep’,’g’);
>> epsilon=fzero(f,[0.06,0.07],optimset(’TolX’,1e-16),g)

epsilon = 6.191395447399090e-002

The parameters are chosen so that the code should deliver at least 13 correct
digits. In fact, 15 digits are correct. The run time on a 2 GHz PC is 8 minutes.

144 Chapter 6. Biasing for a Fair Return

On comparing the two expressions (6.16) and (6.22) for E, we have obtained

1
π2

∫ π

0

∫ π

0

dφ dθ

1 − a cosφ− b cos θ
=

2
π
√

1 − (a− b)2
K

(
2
√
ab√

1 − (a− b)2

)
, (6.23)

assuming a � 0, b � 0, and a+b < 1. Given all the success of symbolic computation
in this chapter so far, it is amusing to note that neither Mathematica nor Maple
is currently able to deliver this formula. We therefore cannot refrain from showing
the reader how to get it directly by hand. From the straightforward fact [PBM86,
form. (1.5.9.15)]

1
π

∫ π

0

dθ

c+ d cos θ
=

1√
c2 − d2

, c > |d|,

which is certainly no problem for any of the computer algebra systems, we infer
that

1
π2

∫ π

0

∫ π

0

dφ dθ

1 − a cosφ− b cos θ
=

1
π

∫ π

0

dφ√
(1 − a cosφ)2 − b2

=
1
π

∫ 1

−1

ds√
(1 − s2)((1 − as)2 − b2)

=
∫ 1

−1

ds√
quartic polynomial in s

.

We recognize the last expression as an elliptic integral of the first kind. It can be
brought to canonical form by the substitution

t =

√
(1 + b− a)(1 + s)

2(1 + b− a s)
,

cf. [BF71, form. (252.00)], which finally yields the desired result

1
π

∫ 1

−1

ds√
(1 − s2)((1 − as)2 − b2)

=
2

π
√

1 − (a− b)2

∫ 1

0

dt
√

1 − t2
√

1 − 4ab
1−(a−b)2 t

2

=
2

π
√

1 − (a− b)2
K

(
2
√
ab√

1 − (a− b)2

)
.

6.7 Harder Problems
For two-dimensional random walks on the square lattice, E is expressible in terms
of the arithmetic-geometric mean (6.18), and so there is no conceivable question
about return probabilities that would increase the computational difficulty beyond
that of Problem 6. This changes if we consider other lattices, say triangular two-
dimensional, cubic three-dimensional, or hypercubic d-dimensional ones.

6.7. Harder Problems 145

Cubic Lattices. For cubic lattices the techniques of §§6.2–6.4 and §6.6 are still
applicable, though the computational effort will increase considerably. However, we
leave it as a challenge to the reader to obtain for the general biased random walk
on cubic lattices such nice formulas using special functions as in §6.5—if there are
any at all.

To highlight the difficulty that will be encountered, let us review what is
known for the random walk on the simple cubic lattice. In the unbiased case, that
is, if all the next-neighbor transition probabilities are equal to 1/6, one immediately
generalizes (6.22) to the triple integral

E =
1
π3

∫ π

0

∫ π

0

∫ π

0

dφ1 dφ2 dφ3

1 − (cosφ1 + cosφ2 + cosφ3)/3
.

Watson proved in 1939, in a famous tour de force [Wat39], the result9

E =
12
π2

(18 + 12
√

2 − 10
√

3 − 7
√

6)K2(k6), k6 = (2 −
√

3)(
√

3 −
√

2).

In 1977 Glasser and Zucker [GZ77] gave the formula10

E =
√

6
32π3

Γ(1
24)Γ(5

24)Γ(7
24)Γ(11

24),

which by [BZ92, Table 3(vii)] can be simplified to

E =
√

3 − 1
32π3

Γ2(1
24)Γ2(11

24).

The two formulas involving the gamma function may look more pleasing and ele-
mentary than Watson’s. However, from a computational perspective the latter is
still the best. For instance, to get 1000 digits the formulas involving the gamma
function require about 16 seconds of CPU time, while Watson’s does it in under a
tenth of a second; this is because of the cost of evaluating the gamma function to
high precision (see §5.7). In fact, Borwein and Zucker suggested in 1992 to use in
turn such relations between the gamma function and the complete elliptic integral
of the first kind for a fast evaluation of the gamma function at particular rational
arguments, cf. [BZ92].

In the general biased case, let us—in addition to the two-dimensional transition
probabilities pE, pW, pN, and pS—denote the probabilities for a step upwards or
downwards in the third dimension by pU and pD, respectively. Analogously to pEW

and pNS we use the abbreviation pUD =
√
pUpD. Now, formula (6.22) is readily

generalized to

E =
1
π3

∫ π

0

∫ π

0

∫ π

0

dφ1 dφ2 dφ3

1 − 2pEW cosφ1 − 2pNS cosφ2 − 2pUD cosφ3
.

9In particular we observe that E < ∞. Therefore, unlike in one or two dimensions, the unbiased
random walk in three dimensions is transient (p < 1), a classic fact already known to Pólya in
1921 [Pól21]. Watson evaluated his expression as E/3

.
= 0.5054620197, cf. [Wat39, p. 267], which

gives the return probability p = 1− 1/E
.
= 0.3405373295 — a value correct to the 10 digits given.

10Glasser communicated to Hughes [Hug95, p. 614] that “the expression reported in this paper
is spoiled by the accidental omission in transcription of a factor of 384π”.

146 Chapter 6. Biasing for a Fair Return

Using (6.23) we obtain11

E =
2
π2

∫ π

0

K(k) dφ√
(1 − 2pUD cosφ)2 − 4(pEW − pNS)2

,

k =
4
√
pEW pNS√

(1 − 2pUD cosφ)2 − 4(pEW − pNS)2
,

a formula that can be straightforwardly evaluated numerically. Evaluating it sym-
bolically is, however, still an open problem. Recently, the particular case pEW = pNS

was solved in another tour de force by Delves and Joyce [DJ01], later simplified in
collaboration with Zucker [JDZ03]: their result [DJ01, form. (5.13)], resp. [JDZ03,
form. (4.26)], reads in the notation used so far as

E|pEW=pNS =
8K(k+)K(k−)

π2
(√

1 − 4(pUD − 2pEW)2 +
√

1 − 4(pUD + 2pEW)2
) ,

with the moduli

k2
± =

1
2

(
1 −

√
(1 − 2pUD)2 − 16p2

EW +
√

(1 + 2pUD)2 − 16p2
EW(√

1 − 4(pUD − 2pEW)2 +
√

1 − 4(pUD + 2pEW)2
)3

·
(√

1 − 4p2
UD

(√
(1 − 4pEW)2 − 4p2

UD +
√

(1 + 4pEW)2 − 4p2
UD

)2

± 64p2
EW

))
.

What a triumph of dedicated men; for such problems current computer algebra
systems are of little help.

Hypercubic Lattices. The extension to higher dimensions requires further think-
ing. None of the methods presented so far directly generalizes to a really efficient
numerical method for calculating E in dimensions d� 3. However, the result of §6.6
can be transformed appropriately to address biased random walks on the hypercubic
lattice in d dimensions, that is, on the integer lattice Zd.

We denote the transition probabilities for a step forward or backward in the
j-th dimension by p+

j and p−j , respectively, and their geometric mean by

p∗j =
√
p+

j p
−
j .

Just like in Lemma 6.1 we can prove that 0 � σ = 2(p∗1 + . . . + p∗d) � 1. Formula
(6.22) is readily generalized to

E =
1
πd

∫ π

0

. . .

∫ π

0

dφ1 . . . dφd

1 − 2p∗1 cosφ1 − . . .− 2p∗d cosφd
. (6.24)

11This result and the one that follows were brought to our attention by John Boersma, who
learned them from John Zucker.

6.7. Harder Problems 147

In higher dimensions numerical integration of this formula is prohibitively expen-
sive. However, there is now a neat trick (see [Mon56, §2]) that transforms the d-
dimensional integral to a single integral of a product of modified Bessel functions:
we insert the integral

1
1 − 2p∗1 cosφ1 − . . .− 2p∗d cosφd

=
∫ ∞

0

e−t(1−2p∗
1 cos φ1−...−2p∗

d cos φd) dt

into (6.24), interchange orders of integration, use the representation [Olv74, p. 82]

I0(x) =
1
π

∫ π

0

ex cos φ dφ

of the modified Bessel function I0 of the first kind of order zero, and deduce that12

E =
∫ ∞

0

e−t I0(2p∗1 t) · . . . · I0(2p∗d t) dt. (6.25)

Since I0(x) grows like (see [Olv74, p. 83])

I0(x) ∼
ex

√
2πx

as x→ ∞,

the integrand in (6.25) decays like O(e−(1−σ)tt−d/2) as t → ∞. In particular, we
observe that E <∞ for d � 3,13 that is, the biased random walk is always transient
in dimensions higher than two.

The efficient numerical evaluation of the integral (6.25) can be based on a
double-exponential quadrature formula (see §§3.6.1 and 9.4). However, because of
the exponential growth of I0(x) we have to exercise some care to avoid overflow. It
is advisable to perform the calculation using the scaled function Ĩ0(x) = e−xI0(x),
x � 0, and the expression

E =
∫ ∞

0

e−(1−σ)t Ĩ0(2p∗1 t) · . . . · Ĩ0(2p∗d t) dt.

In Matlab the scaled function Ĩ0(x) can be evaluated with the built-in command
BesselI(0,x,1). A Mathematica implementation BesselITilde[x] can be found
at the web page for this book. It is based on an asymptotic expansion of I0(x) with
rigorous bounds [Olv74, p. 269]: for x > 0

I0(x) =
ex

√
2πx

(
n−1∑
k=0

(2k − 1)!!2

k! (8x)k
+Rn

)
, |Rn| � 2e1/4x (2n− 1)!!2

n! (8x)n
.

We can use this approach to solve Problem 6 once more:

12This generalizes the result [Mon56, form. (2.11)] that Montroll had obtained in 1956 for the
particular case p+

j = p−j , j = 1, . . . , d.
13And for d � 2, if and only if σ < 1; in agreement with Lemma 6.1.

148 Chapter 6. Biasing for a Fair Return

Table 6.1. Probability p of return for the d-dimensional hypercubic lattice.

d p d p d p

3 0.340537329550999 10 0.056197535974268 17 0.031352140397027

4 0.193201673224984 11 0.050455159821331 18 0.029496289133281

5 0.135178609820655 12 0.045789120900621 19 0.027848522338807

6 0.104715495628822 13 0.041919897078975 20 0.026375598694496

7 0.085844934113379 14 0.038657877090674 30 0.017257643569441

8 0.072912649959384 15 0.035869623125357 40 0.012827098305686

9 0.063447749652725 16 0.033458364465789 100 0.005050897571251

A Mathematica session.

ExpectedVisits _Real : pE
1

4
; pW

1

4
;

pN pS
1

4
; pEW pE pW ; pNS pN pS ; 2 pEW pNS ;

NIntegrate Exp 1 t BesselITilde 2 pEW t BesselITilde 2 pNS t ,

t, 0, , PrecisionGoal 15, Method DoubleExponential ;

FindRoot ExpectedVisits 2, , 0.06, 0.07 , AccuracyGoal 15

0.06191395447399097

The run, in IEEE arithmetic, takes about one second on a 2 GHz PC and yields 15
correct digits.

Finally, we apply the approach to higher-dimensional problems and calculate,
for various dimensions d, the probability of return, p = 1 − 1/E, of the unbiased
random walk, that is, for the specific transition probabilities p∗j = 1/2d, j = 1, . . . , d.

A Mathematica session. (Generates Table 6.1.)

ReturnProbability d_Integer :

1 1 NIntegrate BesselITilde t d d, t, 0, , WorkingPrecision 20,

PrecisionGoal 17, Method DoubleExponential

#, NumberForm ReturnProbability # , 15, 15 &

Join Range 3, 20 , 30, 40, 100 TableForm

The data of Table 6.1 have previously been calculated by Griffin [Gri90, Table 4]
(differing in the last digit for d = 11 and d = 12, however). He uses a dimensional
recursion that generalizes the combinatorial method of §6.4.1, and accelerates the
convergence of the underlying series by Aitken’s ∆2-method.

Chapter 7

Too Large to Be Easy,
Too Small to Be Hard
Folkmar Bornemann

My mathematical tastes were formed at a time when the
most common adjectives in mathematical conversation
were “deep” and “trivial”. First-rate mathematics was
deep, all the rest was trivial.

— Freeman Dyson [Dys96, p. 612]

If I assert the existence of a number but cannot actually
compute its value, then I have not finished the problem.
... there are no deep theorems—only theorems that we
have not understood very well. That is the constructive
impulse. — Nicholas Goodman [Goo83, p. 63]

Problem 7

Let A be the 20 000 × 20 000 matrix whose entries are zero everywhere
except for the primes 2, 3, 5, 7, . . . , 224737 along the main diagonal and
the number 1 in all the positions aij with |i − j| = 1, 2, 4, 8, . . . , 16384.
What is the (1, 1) entry of A−1?

The dimension of the problem is too small to make its solution in IEEE double-
precision arithmetic really hard using current software and hardware environments:
we will solve it with essentially a single Matlab command in §7.2, and having a par-
ticularly efficient iterative solver in hand, we will be able to increase the dimension
by a factor of hundred to 2 000 000 without any difficulty in §7.3.

However, the dimension of the problem is too large for us to be naively con-
fident that roundoff errors will not compromise some of the precious digits that
were so easily obtained. In §7.4 we will discuss two methods, namely a posteriori
roundoff error analysis and interval arithmetic, which will restore our confidence in
these digits.

Finally, the dimension of the problem is just right to make the completely
unexpected calculation of the exact rational solution only just feasible and therefore
absolutely impressive: we will sketch in §7.5 the methods that allowed three team

149

150 Chapter 7. Too Large to Be Easy, Too Small to Be Hard

members of the LinBox project to solve the problem as a ratio of two 97389-digit
integers.

7.1 A First Look: A Linear System of Equations
Having the matrix A in hand, how do we calculate the (1, 1) entry of A−1? As we
learn in a first course on numerical analysis [DH03, p. 2], calculating — and using
— the inverse of a matrix is almost never a good idea: too slow and bound to be
numerically unstable. A better idea is to reformulate the problem as a system of
linear equations. For the problem at hand, we observe that the entire first column
x of the inverse

A−1 =


 x1 ∗ · · · ∗

...
...

. . .
...

xn ∗ · · · ∗




satisfies the linear system of equations

Ax = b, b = (1, 0, 0, . . . , 0)T . (7.1)

Problem 7 is now answered by the first entry of x, namely x1.

Figure 7.1. Sparsity pattern of A20000.

Generating the Sparse Matrix A. By using dimension as a parameter we can
naturally embed the problem into a family of similar problems. This point of view,
that is, not looking at the problem as just a single instance, will help us get a better
feeling of the inherent difficulties and complexity of the task and to learn from
smaller instances about larger ones. We denote the dimension by n and consider
the matrix An ∈ Rn×n that is defined along the diagonal by

(An)ii = pi with pi the ith prime number, (7.2)

and off-diagonal by

(An)ij = 1, if |i− j| is a power of two;

7.2. Solving it Directly 151

Table 7.1. Time and space for generating An (Matlab).

n time space

2 000 0.2s 0.48MB
20 000 2.7s 6.4MB

200 000 45s 79MB
2 000 000 720s 944MB

all other entries are zero.
This is a highly sparse matrix withO(n log n) nonzero elements. For n = 20 000

only 554466 of the n2 = 4·108 entries are nonzero, that is about 0.14%, cf. Figure 7.1.
For n = 2000 000 the ratio is 0.002%.

Matlab and Mathematica1 can deal with general sparse matrices, that is, they
offer storage schemes and commands for building sparse matrices and operating on
them. Here is code that generates A20000 and the right-hand side b in Matlab:

A Matlab session.

n = 20000; p_n = 224737; b = sparse(n,1); b(1) = 1;
A = spdiags(primes(p_n)’,0,n,n); e = ones(n,2);
for k = 2.^(0:floor(log2(n))), A = A + spdiags(e,[-k k],n,n); end

The following code does the same in Mathematica:

A Mathematica session.

n � 20000�b � Table�0,�n���b�1� � 1�
A � SparseArray���i ,i � � Prime�i��,n� � 	# � Transpose�#�
&@

SparseArray�
Flatten@Table��i,i � 2j� � 1,�i,n � 1�,�j,0,Log�2.,n � i���,n��

Table 7.1 shows how much time2 is needed to generate An for various n using the
Matlab code. Further the table shows how much memory is consumed for storing
An. For the Mathematica code the timings are nearly identical, however, the amount
of space is less since Mathematica stores the entries as integers and not as double
precision floats.

7.2 Solving it Directly
Let us have faith and try solving the linear system with a direct sparse solver [GL81,
Chap. 5] such as the one in Matlab. The following runs in 6 hours and 11 minutes.

1Version 5.0 and higher.
2In this chapter all timings are for a Sun UltraSPARC-III+ CPU with 900 MHz.

152 Chapter 7. Too Large to Be Easy, Too Small to Be Hard

Figure 7.2. Minimal degree ordering: sparsity pattern of reordered A5000

(left) and its Cholesky factor L (right) .

A Matlab session. (cont. of session on p. 151)

>> x = A\b;
>> x1 = x(1)

x1 = 7.250783462684010e-001

Let us look under the hood. Because the matrix is symmetric with a positive
diagonal, Matlab makes a guess and assumes that the matrix is also positive definite.
Based on this assumption it tries to calculate a Cholesky factorization of An,

An = LLT , L lower triangular with positive diagonal.

In general, the factorization succeeds if and only if the symmetric matrix at hand is
indeed (numerically) positive definite. Specifically, it does succeed for A20000. The
creation of nonzero entries in the process of calculating L, that is, the amount of
fill-in, depends critically on the ordering of the unknowns of the linear system, cf.
[GL81, p. 115]. By default, Matlab applies the minimal degree ordering [GL81, §5.3],
which tends to minimize the fill-in. Thus, written in full, the Matlab line x = A\b
of p. 152 performs the following (R = LT):

x = zeros(size(b));
perm = symmmd(A); % minimal degree ordering
R = chol(A(perm,perm));
x(perm,:) = R\(R’\b(perm,:));

Here, the lower triangle of L is filled to 41.26%, cf. Figure 7.2, and consumes 944 MB
of memory. Memory consumption scales as O(n2) and the time for calculating L
as O(n3). Obviously, this scaling would prohibit any calculation for much larger
dimensions such as n = 200 000.

There is an alternative ordering of the unknowns, the reverse Cuthill–McKee
ordering [GL81, §4.3.1], that tends to minimize band-width of the sparse matrix

7.2. Solving it Directly 153

Figure 7.3. Reverse Cuthill–McKee ordering: sparsity pattern of reordered
A5000 (left) and its Cholesky factor L (right).

instead of the fill-in. In cases such as the problem at hand, with an already rela-
tively large amount of fill-in for the minimal degree ordering, this ordering requires
comparatively only a little more memory to store the L factor. However, because
Matlab is now able to switch to band methods [GL81, Chap. 4], the runtime for
calculating the Cholesky factorization reduces substantially:

A Matlab session. (cont. of session on p. 151)

>> x = zeros(n,1);
>> perm = symrcm(A); % reverse Cuthill-McKee ordering
>> R = chol(A(perm,perm));
>> x(perm) = R\(R’\b(perm));
>> x1 = x(1)

x1 = 7.250783462684012e-001

Now, the lower triangle of L is filled to 50.46%, cf. Figure 7.3, and consumes 1.13 GB
of memory. However, the run time reduces by nearly one hour to 5 hours and 18
minutes.

7.2.1 Assessment I: A Priori Roundoff Error Analysis

Roundoff is the only possible source of inaccuracy for the solution given by a direct
solver. So we ask: How many digits of x1 given in the Matlab session on p. 152 could
have been distorted this way?

The Cholesky factorization “enjoys perfect normwise [numerical] stability”
[Hig96, p. 206], that is, the resulting error is comparable to the size of the effect
on the solution that would result from a perturbation of the linear system on the
order of machine precision. No reason to worry, the reader might think. But let us
be more specific.

154 Chapter 7. Too Large to Be Easy, Too Small to Be Hard

Let x̂ denote the solution vector calculated in the realm of machine numbers.
The stability of the Cholesky method yields the following a priori error estimate,
cf. [Hig96, p. 142],

|x1 − x̂1| � ‖x− x̂‖ � cnκ(An)‖x‖ · u+O(u2). (7.3)

Here, ‖ · ‖ denotes the Euclidean norm, u the unit roundoff3 of the machine arith-
metic, κ(An) the spectral condition number of An, and cn a constant that depends
on the dimension n only. In fact, the following bound can be proved, cf. [Hig96,
form. (10.7)]:

cn � 4n(3n+ 1).

To make use of these estimates we need an idea about the size of the condition
number κ(An) = λmax(An)/λmin(An), that is the ratio of the largest to the smallest
eigenvalue of the symmetric positive definite matrix An. Because the diagonal of An

is dominant, at least at its lower end, a reasonable approximation of the condition
number is given by the ratio of the largest to the smallest value of that diagonal,4

κ(An) ≈ pn/2, that is κ(A20000) ≈ 105. (7.4)

For dimension n = 20000, plugging all these data into (7.3) results in the estimate

|x1 − x̂1| � 0.04.

Thus these arguments do not guarantee correctness of even the first digit of x̂1.
The reason for this pessimistic bound is twofold: first, the relatively large condition
number of the linear system, which would indeed be cause for concern, and second
the large dimension that results in a very bad factor cn. Experience with the a priori
bounds of roundoff error analysis teaches us that constants such as cn are overly
pessimistic [Hig96, §§2.6/3.2]. If we are unduly optimistic and assume cn ≈ 1, the
a priori bound results in

|x1 − x̂1| � 8 · 10−12.

This would certainly guarantee the correctness of the first 10 digits, but all these
considerations eat at our confidence in this approach. Thus, the lesson to be learned
is that while a priori roundoff error analysis is essential for a proper qualitative
understanding of the worst-case effects caused by roundoff errors, it is of little
practical help as far as sharp quantitative bounds for a concrete case are concerned
[Hig96, §3.2].

Later, after we have discussed much more efficient solvers, we will see that
in fact 15 digits of the solution delivered by the direct solver were correct. To
this end we will use more refined methods of assessing the accuracy, such as using
higher-precision arithmetic (§7.3.1), a posteriori error estimates (§7.4.1), or interval
arithmetic (§7.4.2).

3IEEE double-precision arithmetic has u = 2−53 .
= 1.11 · 10−16.

4A comparison with Table 7.2 shows that this rough approximation underestimates κ(An) by
just a factor of two.

7.3. Solving it Iteratively 155

10
1

10
2

10
3

2

4

6

8

10

12

14

16

n

D
ig

its

10
3

10
4

2

4

6

8

10

12

14

16

n

D
ig

its
Figure 7.4. Approximation of x1 by lower dimensions. The graphs show

the number of digits for which the solution for An agrees with that for A2000 (left),
respectively A20000 (right). The dashed lines indicate the dimensions that are a power
of two.

7.2.2 Why Not Extrapolate?

Because extrapolation works so well in many chapters of this book, the reader might
ask whether the results of small instances can be extrapolated to approximate the
solution to the problem at hand. Figure 7.4 shows the number of digits for which
the solutions for An agree with that for A2000, respectively A20000. The data for
A2000 can be obtained with the direct sparse solver on any reasonable machine.

We observe that if n passes a power of two, there are jumps in the approx-
imation. That is because at those n a new off-diagonal starts in the building of
An. The size of the jumps appears to be pretty predictable until the very last one:
suddenly the accuracy jumps not just by a fraction of a digit but by more than 6
digits at once. Conversely, this particular behavior means that any extrapolation
based on data of dimensions smaller than the start of the last off-diagonal is not
able to predict the final result to more than about 6 digits. For the particular case
n = 20000, the last off-diagonal starts at about 214 = 16384. Thus, with the O(n3)
scaling of the computing time, we could reduce our efforts at best by a factor of
(20000/16384)3 ≈ 1.8 only.

7.3 Solving it Iteratively
The enormous amount of memory and the large computing time needed for the
Cholesky factorization in §7.2 naturally lead to the question of how well iterative
solvers will do on Problem 7.

Let us remark right at the beginning that using an iterative solver does not
require the matrix to be explicitly stored in whatever sparse format. For instance,
a characteristic of Krylov space methods5 is that they access the matrix An only

5The kth Krylov space generated by a matrix A and a vector b is the linear space spanned by
the first k applications of A to b, that is by the vectors b, Ab, A2b, . . . , Akb.

156 Chapter 7. Too Large to Be Easy, Too Small to Be Hard

via a black box for the matrix-vector product mapping x �→ Anx. This map can be
realized by two nested for loops, consuming optimal O(n) memory for storing the
primes 2, 3, . . . , pn in a vector variable that we will call diagonal. As an example,
here is a Matlab function that implements the matrix-vector product (Mathematica
code can be found in Appendix C.5.2):

function y = ATimes(x,diagonal)
% realizes: y=A*x; initialize by: diagonal = primes(p_n)’
y = diagonal.*x; n=length(x);
for k=1:n-1,for j=2.^(0:floor(log2(n-k))), y(k)=y(k)+x(k+j); end,end
for k=2:n, for j=2.^(0:floor(log2(k-1))), y(k)=y(k)+x(k-j); end,end
return

However, for efficiency reasons we recommend using the sparse matrix An explic-
itly as long as sufficient memory is available. That way one can make use of the
highly optimized vectorization implemented for the explicit matrix-vector product
in Matlab or Mathematica.

For Problem 7, the iterative method of choice is the classic conjugate gradient
(CG) method of Hestenes and Stiefel from 1952, cf. [DH03, Alg. 8.16] or [TB97,
Alg. 38.1]. This is a Krylov space method that is tailored to symmetric positive
definite matrices. There are many different derivations of the method to be found
in the literature, but in the end they all result in the same algorithm:

Algorithm 7.1. CG iteration for solving Ax = b with initial vector x(0).

p(1) = r(0) = b−Ax(0);

for k = 1 to kmax do

αk = 〈r(k−1), r(k−1)〉/〈Ap(k), p(k)〉;
x(k) = x(k−1) + αkp

(k);

r(k) = r(k−1) − αkAp
(k);

if termination criterion satisfied then exit;

βk+1 = 〈r(k), r(k)〉/〈r(k−1), r(k−1)〉;
p(k+1) = r(k) + βk+1p

(k);

end for

Here 〈x, y〉 = xT y denotes the Euclidean inner product. At each round the for
loop involves one matrix-vector product, namely Ap(k) (which appears twice in the
algorithm but need be computed only once). In exact arithmetic the vector r(k)

equals the residual,
r(k) = b−Ax(k).

Now, for a working algorithm we have to fill in the missing part, that is, the ter-
mination criterion. A judicious choice should be based on a little theory and some
rough estimates.

7.3. Solving it Iteratively 157

Table 7.2. Spectral data of An.

n pn λmax(An) λmin(An) κ(An) κ(D−1
n An)

20 71 7.1512 · 101 1.1335 6.3 · 101 4.36
200 1223 1.2234 · 103 1.1217 1.1 · 103 4.45

2000 17389 1.7390 · 104 1.1207 1.6 · 104 4.45
20000 224737 2.2474 · 105 1.1205 2.0 · 105 4.45

A Termination Criterion. The convergence properties of the CG method are de-
termined by the spectrum of A. Namely, one can prove the error reduction [DH03,
Cor. 8.18]

‖x(k) − x‖A � ε ‖x‖A, if k �
⌈√

κ(A)
2

log(2/ε)

⌉
. (7.5)

Here, ‖ · ‖A denotes the energy norm defined by ‖x‖2
A = 〈Ax, x〉, and κ(A) is the

spectral condition number of A, which we already considered in §7.2.1, that is, the
ratio λmax(A)/λmin(A) of the largest to the smallest eigenvalue of A. Let us improve
on the rough estimate (7.4) for κ(An) that we had obtained before.

The maximum eigenvalue is mainly influenced by the large dominant entries
of the diagonal of An. In fact, with en = (0, 0, . . . , 0, 1)T , the nth canonical basis
vector, we get by [HJ85, Thm. 4.2.2/Thm. 5.6.9]

pn = 〈Anen, en〉 � λmax(An) � ‖An‖∞ = pn +O(log n), that is λmax(An) � pn.

Good estimates for the minimum eigenvalue are not that easy to obtain.6 Table 7.2
displays some numerical eigenvalue calculations7 that provide numerical evidence
for λmin(An) � 1. If we assume this simple estimate to be true, we may infer

〈x, x〉 � 〈Anx, x〉 � 〈A2
nx, x〉 = 〈Anx,Anx〉, that is ‖x‖ � ‖x‖A � ‖Anx‖,

which implies the following estimate for the error in the first component:

|x1 − x
(k)
1 | � ‖x− x(k)‖ � ‖x− x(k)‖A � ‖r(k)‖, r(k) = b−Anx

(k). (7.6)

Therefore, accuracy of 10 digits is obtained by taking ε = 10−11 < 5·10−11|x1|/‖x‖A

in (7.5).8 That is, 10 digits are guaranteed if we take a number of iterations k � 5819.
Even though this a priori estimate predicts the correct order of magnitude, in
practice it can be a considerable overestimate. It is therefore advisable to terminate

6Later, in Lemma 7.1, we will prove with quite some effort that 1 � λmin(An) � 2 for at least
the dimensions in the range 1 � n � 2100.

7The cases n = 20, n = 200, and n = 2000 were straightforwardly calculated using Matlab’s
eig command, which is based on the QR-algorithm. The case n = 20000 was obtained by the
inverse power method, using the iterative method of §7.3.1 as the underlying linear solver.

8The fact that 5|x1| > ‖x‖A can be guessed from experiments with smaller dimensions.

158 Chapter 7. Too Large to Be Easy, Too Small to Be Hard

the iteration as soon as a simple a posteriori error estimate indicates sufficient
accuracy. Here, because of (7.6) we choose

‖r(k)‖ � tol (7.7)

with tol = 10−11 as the termination criterion.
Matlab comes with a built-in implementation of the CG method, called by

the function pcg, that implements the termination criterion (7.7) by default. Math-
ematica also offers CG as an optional method for its linear solver, which we will use
later on p. 160.

A Matlab session. (cont. of session on p. 151)

>> tol = 1e-11; kmax = 5819;
>> [x,fail,r,k] = pcg(A,b,tol,kmax);
>> if not(fail), k, x1 = x(1), err = r/x1, end

k = 1743
x1 = 7.250783462683977e-001
err = 1.328075010788348e-011

Hence, after 1743 iterations, in about 3 minutes, we have obtained a solution with
an estimate of the relative error that indicates 10 digits to be correct,

x1
.= 0.72507 83462.

However, the discussion in §7.2.1 taught us to be concerned about the possible influ-
ence of roundoff errors, which might have distorted the calculation of the residuals
so that they become worthless for reliable error estimation. We will come back to
this point in §§7.4.1 and 7.4.2.

7.3.1 Preconditioning

For fixed accuracy ε the number kε of iterates needed by the CG method grows by
(7.5) at worst like

kε = O
(√

κ(An)
)

= O
(
p1/2

n

)
= O

(
n1/2 log1/2 n

)
,

since by the prime number theorem pn = O(n log n), cf. [CP01, Thm. 1.1.4]. Hence,
the complexity of solving the system of equation is O(n3/2 log3/2 n), quite a reduc-
tion from the O(n3) scaling of the direct methods. However, for using these ideas
for dimensions n much higher than 20 000 the growth rate is still too large.

A remedy is provided by preconditioning [TB97, Lect. 40]. That is, with a
“simple” symmetric positive definite approximation B ≈ A−1 in hand, we apply
the method of conjugate gradients to the linear system

BAx = Bb. (7.8)

7.3. Solving it Iteratively 159

Note that BA is symmetric with respect to the inner product 〈x, y〉B−1 = xTB−1y.
If we use this inner product instead of 〈·, ·〉 in Algorithm 7.1 as applied to the linear
system (7.8), and rewrite everything in terms of the Euclidean inner product, we
obtain the preconditioned conjugate gradient (PCG) method.

Algorithm 7.2. PCG iteration for solving Ax = b with initial vector x(0).

r(0) = b−Ax(0); p(1) = Br(0);

for k = 1 to kmax do

αk = 〈Br(k−1), r(k−1)〉/〈Ap(k), p(k)〉;
x(k) = x(k−1) + αkp

(k);

r(k) = r(k−1) − αkAp
(k);

if termination criterion satisfied then exit;

βk+1 = 〈Br(k), r(k)〉/〈Br(k−1), r(k−1)〉;
p(k+1) = Br(k) + βk+1p

(k);

end for

The convergence is now determined by the spectral properties of BA; estimate (7.5)
generalizes to

‖x(k) − x‖A � ε ‖x‖A, if k �
⌈√

κ(BA)
2

log(2/ε)

⌉
. (7.9)

In problems with matrices An of varying dimension n, the idea of preconditioning is
now to choose the preconditioner Bn in a way that the condition number κ(BnAn)
does not grow as fast as κ(An). The ultimate goal of preconditioning is to obtain a
uniform bound,

κ(BnAn) = O(1).

For the sparse matrices arising from finite element discretizations of second-order
elliptic boundary-value problems, sophisticated methods such as multilevel precon-
ditioning schemes have been invented to establish such a uniform bound, cf. [BY93].
However, for the problem at hand, the simplest possible idea — the diagonal pre-
conditioner — actually works: we take

Bn = D−1
n , Dn = diag(An) = diag(2, 3, 5, . . . , pn).

Table 7.2 gives numerical evidence that

κ(D−1
n An) .= 4.45 (7.10)

for large n. That is, independent of the dimension n, the a priori bound (7.9) of the
number k of iterations that are necessary to achieve 10 digits of accuracy reduces
considerably to k � 28.

160 Chapter 7. Too Large to Be Easy, Too Small to Be Hard

Table 7.3. Results of the diagonally preconditioned CG method, tol = 10−11.

n # iter. x1 est. of rel. error time

20 000 14 0.72507 83462 1.2 · 10−12 1.7s
200 000 14 0.72508 09785 1.4 · 10−12 29s

2 000 000 14 0.72508 12561 1.5 · 10−12 360s

A Matlab session. (cont. of session on p. 151)

>> tol = 1e-11; kmax = 28;
>> D=spdiags(diag(A),0,n,n);
>> [x,fail,r,k] = pcg(A,b,tol,kmax,D);
>> if not(fail), k, x1 = x(1), err = r/x1, end

k = 14
x1 = 7.250783462684012e-001
err = 1.218263630055319e-012

After just 14 iterations we have obtained a solution with an error estimate that
indicates 11 digits to be correct,

x1
.= 0.72507 83462 6.

The run time is below 2 seconds, an improvement of more than a factor of 100
over the case without any preconditioning. Now moving to much higher dimension
is no problem, see the results in Table 7.3.9 The fact that we always need just 14
iterations nicely reflects the uniform condition number bound (7.10).

A reliable check of the accuracy that circumvents possible problems with
roundoff is provided by increasing the precision of the arithmetic. Because we have
now found a very efficient algorithm, we should give bigfloats a try. Mathematica10

is especially convenient for that purpose because of its built-in preconditioned CG
method for sparse matrices.

A Mathematica session. (cont. of session on p. 151)

diagonal � Table�A�i,i�,�i,n���prec � 100�b � SetPrecision�b,prec � 5��
x �

LinearSolve�A,b,

Method � �Krylov,Method � ConjugateGradient,Preconditioner � � #
diagonal

&�,
Tolerance � 10�prec�1���

N�x�1�,100�
0.7250783462684011674686877192511609688691805944795089578781647692077731

899945962835735923927864782020

9The run time shown is without the time needed to generate An, cf. Table 7.1.
10Version 5.0 and higher.

7.4. How Many Digits are Correct? 161

In less than a minute, with 64 iterations, we get 100 correct digits. We can play this
game to the extreme and obtain 10 000 digits in 5.3 days using 2903 iterations.11

7.4 How Many Digits are Correct?
We will now discuss two methods that allow the reliable assessment (§7.4.1), or
the validation (§7.4.2), of the calculated solution including roundoff error effects. In
contrast to the a priori analysis (§7.2.1), the results will be useful.

7.4.1 Assessment II: A Posteriori Roundoff Error Analysis

We start with the general problem of solving a linear system of equations,

Ax = b.

Given a calculated vector x̂, we want to estimate the error ‖x − x̂‖. This error
comprises eventual approximation errors as caused by an iterative method as well
as roundoff errors.

Now, the general trick of a posteriori error estimates is to go from the error to
an appropriately scaled residual. The reason for this is that backwards-stable direct
methods such as the Cholesky factorization tend to produce very small residuals,
whereas iterative methods such as the CG iteration can be forced into very small
residuals by the termination criterion. A first try of getting the residual r involved
is the fairly simple estimate

‖x− x̂‖ = ‖A−1 (b−Ax̂)︸ ︷︷ ︸
=r

‖ � ‖A−1‖ · ‖r‖. (7.11)

In general, using the submultiplicativity of the norm might already lose too much
information about the error. However, for the problem at hand we infer from the
numerical evidence of Table 7.2 that12

‖A−1
n ‖ = 1/λmin(An) � 1.

Generally speaking, if we can scale the problem to ‖A−1‖ ≈ 1, estimate (7.11) turns
out to be useful. For instance, this is also the case in §10.3.1.

Now, it looks as if (7.11) is already the perfect bound. In fact, this was what we
used in §7.3. However, we have to be careful, because the calculation of r itself can
be severely distorted by roundoff errors. In the realm of finite-precision arithmetic,

11Dan Lichtblau and Yifan Hu from Wolfram Research communicated to us that the 10 000-digit
run can be sped up by a factor of two if one uses the machine-precision Cholesky factorization of
§7.2 as a preconditioner. This is in accordance with the convergence theory, since the condition
number is reduced from about 4.45 to about one.

12The spectral norm ‖A‖ of a general matrix A, that is the matrix norm induced by the Euclidean
vector norm, satisfies (cf. [Hig96, p. 120]) ‖A‖ = σmax(A) and ‖A−1‖ = 1/σmin(A), where σmax(A)
and σmin(A) denote the maximum and minimum singular value of A, respectively. For a symmetric
positive definite matrix A this simplifies to ‖A‖ = λmax(A) and ‖A−1‖ = 1/λmin(A).

162 Chapter 7. Too Large to Be Easy, Too Small to Be Hard

Table 7.4. Residual-based a posteriori estimates of the relative error.

n tol # iter. est. based on (7.11) est. based on (7.12)

20 000 10−11 14 1.22 · 10−12 1.25 · 10−12

10−15 17 1.22 · 10−15 3.47 · 10−14

200 000 10−11 14 1.36 · 10−12 1.40 · 10−12

10−15 17 1.83 · 10−15 4.46 · 10−14

2 000 000 10−11 14 1.48 · 10−12 1.53 · 10−12

10−15 17 1.53 · 10−15 5.42 · 10−14

instead of r we calculate a perturbed vector r̂ = r+∆r. It has been shown that the
perturbation ∆r satisfies [Hig96, form. (7.26)]13

|∆r| � γm(|A| |x̂| + |b|), γm =
mu

1 −mu
.

Here, u is the unit roundoff, m − 1 is the maximum number of nonzero entries
in any row of A. The absolute values and the inequality have to be understood
componentwise. Thus, we replace (7.11) by the practical bound

‖x− x̂‖ � ‖A−1‖
(
‖r̂‖ + γm

∥∥ |A| |x̂| + |b|
∥∥). (7.12)

The roundoff error made in the evaluation of this formula is of higher order in the
unit roundoff and can be neglected for all practical purposes.

For the problem at hand, we have An = |An|,

m � 2	log2 n
 + 4,

and by the numerical evidence of Table 7.2 we may assume that ‖A−1
n ‖ � 1. Thus,

the following simple Matlab code estimates the relative error of x̂1:

m = 2*floor(log2(n))+4; u = eps/2; gamma = m*u/(1-m*u);
r = b-A*x;
err = (norm(r)+gamma*norm(A*abs(x)+abs(b)))/x(1);

Table 7.4 shows a comparison between the results obtained by using (7.11) or (7.12).
The influence of roundoff errors only becomes visible at very small tolerances. How-
ever, the calculation for n = 20000 and tol = 10−15 allows to claim with sub-
stantially increased confidence that Problem 7 is solved by a number in the error
interval

0.72507 83462 68401 2 ± 3.47 · 10−14,

13Because Higham is considering general matrices, he states the result [Hig96, form. (7.26)] with
m = n + 1. However, his proof shows that m − 1 is the length of the inner products that actually
have to be evaluated in the matrix-vector product. For sparse matrices this length is bounded by
the number of nonzero entries per row.

7.4. How Many Digits are Correct? 163

that is to 12 digits by
x1

.= 0.72507 83462 68.

In the same fashion, the a posteriori estimates for dimensions n = 200 000 and
n = 2000 000 are good for 12 correct digits.

7.4.2 Validation: Interval Arithmetic

Interval arithmetic is yet another possibility, in the realm of finite-precision arith-
metic, to deal with the simple residual-based estimate (7.11), that is, if ‖A−1

n ‖ =
λ−1

min(An) � 1,
‖x− x̂‖ � ‖A−1

n ‖ · ‖r‖ � ‖r‖.
One simply calculates an inclusion of ‖r‖ = ‖b−Anx̂‖ using intervals. This way, we
will be able to validate the correctness of a certain number of digits; let us see of
how many before we will prove at the end of this section that indeed λmin(An) � 1
— at least for all thoses dimensions n, which could ever be considered for an explicit
calculation. Here is Matlab/Intlab code accomplishing the task:

x1 = midrad(x(1),norm(b-A*intval(x)))

It is important to note that interval arithmetic is used only after we have calculated
x̂ by a traditional numerical mathod. Here is how a full run would look:

A Matlab/Intlab session. (cont. of session on p. 151)

>> tol = 1e-15; max_ite = 28;
>> D=spdiags(diag(A),0,n,n);
>> [x,fail,res,ite] = pcg(A,b,tol,max_ite,D);
>> if not(fail), x1 = midrad(x(1),norm(b-A*intval(x))), end

intval x1 = 7.2507834626840__e-001

By default, Intlab outputs correctly rounded digits and gives 14 of those here. Using
the command infsup(x1) changes the output to the interval solution itself,

x1 ∈ 0.72507 83462 684047
3977.

According to the way of counting correct digits that we have adopted in this book,
this amounts for 12 correct digits only,

x1
.= 0.72507 83462 68.

The validation results for higher dimensions are displayed in Table 7.5. The cost of
validation appears to be negligible: for dimension n = 2000 000 we need 12 minutes
to generate An, 17 minutes to solve with the diagonally preconditioned CG method
for tol = 10−15, and just 21 seconds to validate the correctness of 13 digits; all this
using IEEE double-precision arithmetic.

Likewise, we can use Mathematica’s built-in interval arithmetic to validate
the high-precision results that we have mentioned at the end of §7.3.1. The pretty
printer IntervalForm can be found in Appendix C.5.1.

164 Chapter 7. Too Large to Be Easy, Too Small to Be Hard

Table 7.5. Validation results.

n interval solution # correct digits time

20 000 0.72507 83462 684047
3977 12 0.12s

200 000 0.72508 09785 292024
1932 12 1.5s

2 000 000 0.72508 12561 325275
179 13 21s

A Mathematica session. (cont. of session on p. 160)

x�1� 	 Interval���1,1��Norm�b � A.Interval/@x�//IntervalForm
0.7250783462684011674686877192511609688691805944795089578781647692077731

8999459628357359239278647820205512744295

This validation of the 100 digits from the Mathematica session of p. 160 runs in less
than 8 seconds. Again we can play the game to the extreme and also validate the
10 000-digit run investing just a further half minute run time.

A Rigorous Lower Bound for the Minimal Eigenvalue. We close this section with
the promised proof of a rigorous lower bound for the minimal eigenvalue.

Lemma 7.1. The minimal eigenvalue of the matrix An satisfies

1 � λmin(An) � 2

for at least the dimensions n in the range 1 � n � 2100.

Proof. We proceed in two steps. In the first step we perform an eigenvalue calcu-
lation for a very specific dimension that allows us, in the second step, to estimate
the minimal eigenvalue for a broad range of dimensions. The code for the interval
calculations using Matlab/Intlab can be found in Appendix C.4.2, for Mathematica
in Appendix C.5.2.

Step 1. We begin with the claim that

λmin(A1142) ∈ 1.120651470922646
854673. (7.13)

The dimension 1142 is small enough to calculate numerically all the eigenvalues and
eigenvectors of A1142 in less than a minute time using Matlab’ eig or Mathematica’s
Eigensystem command. Now, the point is, that for a symmetric matrix A these
numerical values can be validated after the fact by interval methods. Namely, from
perturbation theory [Ste01, Thm. 1.3.8/2.1.3] we conclude that, if (λ̂, x̂) is any
approximate, finite-precision eigenvalue-eigenvector pair, we have that there is a
true eigenvalue λ of A satisfying the a posteriori error estimate

|λ− λ̂| � ‖λ̂ x̂−Ax̂‖/‖x̂‖.

7.4. How Many Digits are Correct? 165

It is a simple task to calculate a rigorous estimate of the right-hand side using in-
terval arithmetic. Doing this for all eigenvalue-eigenvector pairs with Matlab/Intlab
results in the estimate (7.13).

Step 2. Given 1 � n � n∗ we observe that An is the n× n principal submatrix of
An∗ , that is, An∗ can be partitioned as

An∗ =

(
An B

BT C

)

with some n×(n∗−n)-matrix B and (n∗−n)×(n∗−n)-matrix C. We use the varia-
tional characterization [HJ85, Thm. 4.2.2] of the minimal eigenvalue of a symmetric
matrix,

λmin(An) = min
‖x‖=1

xTAx, (7.14)

to arrive at the upper bound λmin(An∗) � λmin(An) � λmin(A1) = 2.
On the other hand, for a likewise partitioned vector zT = (xT |yT) with ‖z‖2 =

‖x‖2 + ‖y‖2 = 1 we obtain, using (7.14) once more, the estimate

zTAn∗z = xTAnx+2xTBy+yTCy � λmin(An)‖x‖2−2‖B‖·‖x‖·‖y‖+λmin(C)‖y‖2

� λ0‖x‖2 − 2α ‖x‖ · ‖y‖ + λ1‖y‖2 �
(
‖x‖
‖y‖

)T (
λ0 −α
−α λ1

)
︸ ︷︷ ︸

=F2

(
‖x‖
‖y‖

)
� λmin(F2),

where λ0 � λmin(An) and λ1 � λmin(C) are suitable lower bounds and

‖B‖ �
√

‖B‖1 · ‖B‖∞ = α

is an upper bound of the spectral norm of B (cf. [Hig96, form. (6.19)]) that is simple
to evaluate. Minimizing over all vectors z yields by (7.14)

λmin(An∗) � λmin(F2).

By (7.13), the particular choice n = 1142 and n∗ = 2100 gives

λmin(A1142) � 1.120651470854673 = λ0, ‖B‖1 = �log2 1142� = 11, ‖B‖∞ = 100,

that is α2 = 1100, and by Gershgorin’s theorem [HJ85, Thm. 6.1.1] λmin(C) �
p1143 − 100 = 9121 = λ1. The eigenvalue problem for the 2 × 2-matrix F2 is just a
quadratic equation, which can be easily solved using interval arithmetic,

λmin(F2) =
2(λ0λ1 − α2)

λ0 + λ1 +
√

4α2 + (λ1 − λ0)2
∈ 1.000037435271866

2.

Summarizing, we have λmin(An) � λmin(An∗) � 1 for 1 � n � n∗ = 2100.

166 Chapter 7. Too Large to Be Easy, Too Small to Be Hard

We remark that a result such as the preceding lemma depends very specifically
on the actual numbers involved. For instance, the family of matrices Ân = An −
1.122In, where In denotes the unit matrix of dimension n, looks essentially like An

itself. However, Ân is positive definite for the dimensions 1 � n � 129 only. In
fact it is not at all clear, whether An is positive definite for all n, or only, whether
the minimal eigenvalue is uniformly bounded from below. Such questions could be
answered, if at all, by giving sense to the limit limn→∞An as a linear operator A∞
on an appropriate infinite dimensional sequence space.

7.5 Solving it Exactly
One might think that solving the linear system of equations (7.1) for x is overkill if
one is just interested in the first component x1. There is a classic method, Cramer’s
rule, that addresses this component directly [HJ85, §§0.8.2/0.8.3]:

x1 = (A−1)11 =
detA11

detA
. (7.15)

Here, A11 denotes the minor of A made by deleting the first row and the first column
of A,

A =




∗ ∗ · · · ∗
∗
... A11

∗


 .

However, we have to remember that the best numerical methods for calculating a
determinant are based on matrix factorizations, which are therefore as expensive as
solving a linear system of equations by a direct method. Moreover, determinants are
prone to severe over- or underflow. In fact, we will see later in this section that the
two determinants in (7.15) are 97389-digit integers. For these reasons, and for its
numerical instability, Cramer’s rule is rightly banned from the canon of numerical
analysis [Hig96, §1.10.1].

The assessment of the use of (7.15) changes completely if we want to make an
attempt at finding x1 exactly. After all, it is simply a rational number. Why not
calculate it?

Upon hearing about the contest, the task of producing the exact solution to
Problem 7 was taken on by three people from the development team of LinBox14

as a challenge to illustrate the capabilities of their library: Jean-Guillaume Dumas,
William Turner, and Zhendong Wan. Fortunately, the dimension n = 20 000 chosen
by Trefethen turned out to be just right, challenging but feasible:

This problem is just on the edge of feasibility on current machines. A problem
of size a small multiple of this would not be solvable due to time and/or
memory resource limitations. [DTW02, p.2]

14A C++ template library for exact, high-performance linear algebra computation with sparse
and structured matrices over the integers and over finite fields: http://www.linalg.org/

7.5. Solving it Exactly 167

There are essentially two approaches to the exact rational solution. One cal-
culates (7.15) using congruential methods for the determinants, and the other solves
the linear system (7.1) using p-adic methods.15

7.5.1 The Congruential Approach

Basically, the congruential method for calculating the determinant of an integer
matrix A goes in two steps. First, one obtains the determinant modulo certain
pairwise different primes q1, . . . , qr:

detA ≡ dj (mod qj).

Next, by Chinese remaindering [vzGG99, §5.4] one combines the results d1, . . . , dr

into a single remainder d for the composite modulus m = q1 · . . . · qr,
detA ≡ d (mod m).

If m is large enough, namely m > 2|detA|, one can reconstruct the desired deter-
minant from its remainder d ∈ {0, . . . ,m− 1} by

detA =
{
d if d < m/2,
d−m if d > m/2.

The point is that the modular determinants dj can be calculated in parallel us-
ing fast hardware word-sized integer arithmetic, if one restricts the qj to 31-bit
primes. There are 50 697 537 of those, enough for calculating determinants of about
109 digits length. Arbitrary-length integer arithmetic is then needed only for the
comparatively minor task of the Chinese remaindering.

To make it work, we need some useful practical bounds for determinants such
as those given by the Hadamard inequalities [HJ85, Thm. 7.8.1, Cor. 7.8.2]. Since
we know by Lemma 7.1 that the matrix at hand is positive definite, we can use the
simplest one, namely the product of the diagonal entries:

0 < detA � p1 · . . . · p20000
.= 8.8210 · 1097388;

0 < detA11 � p2 · . . . · p20000
.= 4.4105 · 1097388. (7.16)

To satisfy m = q1 · . . . · qr > 2 ·8.8210 ·1097388 we take the smallest r = 10 784 of the
31-bit primes, the first one being q1 = 1073 741 827, the last one qr = 1073 967 703.

The task of calculating the determinant of A modulo a prime q is equivalent to
calculating the determinant of A in the prime field Fq of congruence classes modulo
q. Now, a calculation of the determinant can be based on an LU -factorization of A
as matrices over Fq.16 However, as we know from §7.2 for the problem at hand, a
factorization cannot really take advantage of the sparsity of A: run time scales with
the dimension n as O(n3) and memory consumption as O(n2).

As with the iterative methods of §7.3, let us look for a Krylov space method
that calculates the determinant by addressing A only via matrix-vector products. A
particularly economical such method was invented in 1986 by Wiedemann [Wie86].

15The web page for this book has a bare-bones implementation of these methods in Mathematica,
which can be used on small n to develop a better understanding of what follows.

16Essentially, this approach is used in Mathematica if one calls Det[A,Modulus->q].

168 Chapter 7. Too Large to Be Easy, Too Small to Be Hard

Wiedemann’s Randomized Algorithm for Modular Determinants. Up to sign,
the determinant detA ∈ Fq of a matrix A ∈ Fn×n

q is the constant term of the
characteristic polynomial χA,

detA = (−1)nχA(0).

Rather than at the characteristic polynomial, Wiedemann’s algorithm aims at the
minimal polynomial µA of A: the normalized polynomial of smallest degree such
that µA(A) = 0. It is well known [HJ85, Cor. 3.3.4] that the minimal polynomial
µA divides the characteristic polynomial χA, which has degree n. Thus, we arrive
at

deg µA = n =⇒ µA = χA =⇒ detA = (−1)nµA(0).

On the other hand, if degµA < n, the minimal polynomial of A by itself does
not yield the determinant. But still, the calculation of detA can be reduced to
the minimal polynomial of an appropriately transformed matrix, cf. [Wie86, §V].
However, we do not need to consider this further complication, since for the matrix
at hand the condition degµA = n turns out to be true.

Now, Wiedemann’s algorithm does not calculate µA directly, but proceeds
by randomly and uniformly selecting two vectors u, v ∈ Fn

q and looking for the
normalized polynomial µA

u,v of smallest degree such that uTµA
u,v(A)v = 0. We easily

see that µA
u,v divides the minimal polynomial µA (cf. [vzGG99, p. 320]) and conclude

once again that

degµA
u,v = n =⇒ µA

u,v = µA = χA =⇒ detA = (−1)nµA
u,v(0).

If we write µA
u,v as

µA
u,v(t) = tk + ck−1t

k−1 + . . . c1t+ c0,

we observe that (c0, . . . , ck−1) is equivalently characterized as the shortest sequence
in Fq for which a linear recurrence holds with aj = uTAjv ∈ Fq:

c0aj + c1aj+1 + . . .+ ck−1aj+k−1 + aj+k = 0, j = 0, 1, 2,

Given at least the first 2k values of the sequence a0, a1, a2, . . . as input, the coef-
ficients (c0, . . . , ck−1) can efficiently be calculated by an algorithm of Berlekamp
and Massey [KS91, p. 31], which was originally invented in 1965 for the decoding
of BCH codes and bears interesting relations to Padé approximations and the ex-
tended Euclidean algorithm for polynomials [vzGG99, Chap. 7]. In the problem at
hand we know that k � n and obtain µA

u,v after applying the Berlekamp–Massey
algorithm to the 2n field values

uT v, uTAv, uTA2v, . . . , uTA2n−1v,

which are calculated by 2n− 1 recursive applications of the matrix-vector product.
It has been shown [KS91, §2] that the probability of µA

u,v �= µA is below 2n/q.
Thus, with the parameters of the problem at hand, namely n = 20000 and a 31-bit

7.5. Solving it Exactly 169

prime q > 230, the probability of a failure is less than 0.0038%, or one failure in
26843 tries. In the very unlikely event of such a failure, detected by degµA

u,v < n,
we simply repeat the calculation with new vectors u, v.

For the matrix at hand, Wiedemann’s algorithm has an expected run time of
order O(n2 logκ n) for some constant κ > 0 and consumes O(n) memory only.

The Solution. On a 1 GHz PC, Wiedemann’s algorithm as implemented in LinBox
needs approximately 30 minutes to arrive at one minimal polynomial over a word-
size prime field. Because one has to perform r = 10 784 such calculations for each
of the two determinants in (7.15), we can predict a total CPU time of about 10784
hours, or 450 days. Dumas, Turner, and Wan used a heterogeneous cluster of 182
processors17 in parallel and obtained the solution in about 4 days elapsed time:

x1 =
3101640749121412476978542 〈〈97339 digits〉〉 3312289187417983612357075
4277662910613638374648603 〈〈97339 digits〉〉 8142829807013006012935182

.

Courtesy of Jean-Guillaume Dumas, the full-length 97389 digits of the numerator
and denominator can be found at the web page for this book; here we have displayed
only the first and last 25 digits. We observe that the Hadamard bounds (7.16) are
just about a factor of two off the actual result.

7.5.2 The p-adic Approach

Following the work of Dixon [Dix82] one starts, given a prime p and a positive
integer k, with a p-adic approximation fk ∈ Zpk of x1, that is fk ≡ x1 (mod pk). If
the exponent k is sufficiently large, we can reconstruct the rational number x1 from
the integer fk. The approximations f1, f2, . . . , fk are obtained iteratively; each step
of the iteration, the Hensel lifting, requires the solution of a linear system over the
prime field Fp with the given matrix A,

A∆xj ≡ rj (mod p). (7.17)

Now, these systems can be solved comparatively fast, once we have an LU decom-
position of A over the prime field in hand.18

The Iteration: Hensel Lifting. The jth iterate x(j) will be a vector of integers
from Zpj that satisfies the linear system

Ax(j) ≡ b (mod pj). (LINj)

We start the iteration by calculating the LU decomposition of A modulo the prime
p and solve (LIN1) for x(1). If we have arrived at x(j), we know that pj divides

1796 Pentium-III at 735 MHz, 6 Pentium-III at 1GHz, and 20 Sun Ultra-450 at 4 × 250 MHz.
18The use of the LU decomposition modulo p to iterate for solutions of higher p-adic precision

(modulo pk) is reminiscent of taking a machine-precision matrix factorization as a preconditioner
for an iterative method that aims at higher numerical precision, cf. footnote 11.

170 Chapter 7. Too Large to Be Easy, Too Small to Be Hard

b − Ax(j). Therefore, we may calculate a residual vector rj over the prime field,
such that

b−Ax(j) ≡ pj · rj (mod pj+1).

Reuse of the LU decomposition allows us to efficiently solve the linear system (7.17).
Now, we see that x(j+1) ≡ x(j)+pj ·∆xj (mod pj+1) solves the desired linear system
(LINj+1) defining the next iterate.

The Rational Number Reconstruction. Given integers r, t ∈ Z and f ∈ Zpk such
that

r

t
≡ f (mod pk), |r|, |t| � pk/2

2
, (7.18)

there is an efficient algorithm [Dix82, p. 139] that reconstructs the rational number
r/t from f . To this end, let si/ti be the ith convergent to the continued fraction for
f/pk and put ri = tif − sip

k. Now, if j is the first index such that |rj | < pk/2, then
r/t = rj/tj .

As is the case for the Berlekamp–Massey algorithm in §7.5.1, this reconstruc-
tion algorithm is related to the extended Euclidean algorithm, now for integers, and
goes in essence back to classic work of Thue in 1902, cf. [vzGG99, §5.10].

The Solution. For the problem at hand, Dumas, Turner, and Wan choose the
prime p as the largest 50-bit prime, namely p = 1125 899 906 842 597. They calcu-
lated the LU decomposition of A in the prime field Fp using 64-bit integer arith-
metic, occupying 200002·64 bits = 3 GB of memory. On a 750 MHz Sun UltraSPARC
with 8 GB of memory this took 5.5 days. Now, it follows from the Hadamard bound
(7.16) and the requirements (7.18) of the rational number reconstruction that a
number k of ⌈

2 logp

(
2 · 8.8210 · 1097388

)⌉
= 12941

lifting steps will do the job. With less than a minute per lifting step, LinBox needed
about 7 days to complete the lifting with a 194 782-digit integer f satisfying f ≡ x1

(mod pk). Finally, the reconstruction step yields the rational solution x1 itself as a
matter of about a minute.

Running several different algorithms on different machines for the same large-
scale problem is always a severe test for software and hardware. Having passed this
test, the resulting rational number x1 was in complete agreement with the result
of §7.5.1. And needless to say, the first 10 000 digits of its decimal expansion agree
with the validated numerical high-precision solution of §7.4.2.

A Comparison. In comparing the complexity of the congruential approach with
that of the p-adic one, we observe that even though the latter needs less total CPU
time by a factor of 36, the former takes a factor of three less elapsed time. This is
because the iterative p-adic approach does not lend itself to a straightforward par-
allel implementation. Moreover, the p-adic approach puts far more severe memory
requirements on the machine.

Chapter 8

In the Moment of Heat
Folkmar Bornemann

In general the theorems concerning the heating of air
... extend to a great variety of problems. It would be
useful to revert to them when we wish to foresee and
regulate temperature with precision, as in the case of
green-houses, drying-houses, sheep-folds, work-shops, or
in many civil establishments, such as hospitals, barracks,
places of assembly.

In these different applications we must attend to
accessory circumstances which modify the results of anal-
ysis ..., but these details would draw us away from our
chief object, which is the exact demonstration of general
principles. — Joseph Fourier [Fou78, §91, p. 73]

Joseph Fourier himself, who was concerned with keeping
wine cellars cool during summer months, solved just this
kind of problem. — Lloyd N. Trefethen [Tre02, p. 3]

Problem 8

A square plate [−1, 1] × [−1, 1] is at temperature u = 0. At time t = 0
the temperature is increased to u = 5 along one of the four sides while
being held at u = 0 along the other three sides, and heat then flows into
the plate according to ut = ∆u. When does the temperature reach u = 1
at the center of the plate?

We will discuss three approaches to the problem. In §8.1 we obtain 5 correct digits
by using a commercial, general-purpose finite element code. In §8.2, standard finite
differences and extrapolation yield—justified by a posteriori error estimates—at
least 12 significant digits. Finally, in §8.3 analytical techniques based on Fourier
series help to simplify the problem to a scalar transcendental equation. This equation
can be efficiently solved for 10 000 significant digits whose correctness can be proven
by interval analysis. A truncation of the equation leads to the simple approximation

171

172 Chapter 8. In the Moment of Heat

0 0.424 1
0

1

1.25

u(
t,0

,0
)

time t

Figure 8.1. Left: solution u(0.424, x, y) with contour-lines plotted at u =
0.2, . . . , 4.8 in steps of 0.2. For symmetry reasons only the upper half-square is
shown. Right: solution u(t, 0, 0) for 0 � t � 1.

t∗
.= 4π−2 log η to 11 digits, where η is the unique solution of 3π

√
5η9−60η8+20 = 0

subject to the condition η > 1. Here and for the rest of the chapter, t∗ denotes the
time we are looking for, defined by u(t∗, 0, 0) = 1.

8.1 A First Look: Using Software
Being a plain PDE problem, Problem 8 is a good candidate to probe the capabilities
of general-purpose software for the solution of partial differential equations. We take
FEMLAB, a commercial software package that provides finite element methods for
so-called multi-physics applications.

A time-dependent PDE like the heat equation under consideration is solved in
FEMLAB using the method of lines: a finite element discretization in space reduces
the problem to a stiff ODE which in turn is approximated by a state-of-the-art
variable-order, variable-step-size solver [DB02]. The left part of Figure 8.1 shows
the solution u(t, x, y) at about the time t ≈ t∗.

To solve for a certain moment in time requires an approximation that is con-
tinuous in time. Most ODE solvers offer such a kind of dense output. For ease of
implementation, and because it is sufficient for the accuracies to be achieved any-
way, we use cubic spline interpolation. The values of u(t, 0, 0) so obtained are shown
in the right part of Figure 8.1 as a function of time. We observe that u(t, 0, 0) appar-
ently approaches the steady-state 5/4 which we will confirm in §8.3. This explains
the peculiar choice of the number 5 in the formulation of Problem 8: it is the smallest
integer for which the question makes sense.

Assessment of the achieved accuracy is a delicate issue. A single run will not be
sufficient because FEMLAB does not provide a posteriori error estimates. Instead,
we compare the results of several runs using different tolerances of the ODE solver
and different-order finite elements at about the same number of degrees of freedom
(d.o.f). Because it is highly improbable that the runs will agree on non-converged
digits, it is safe to take those digits as being correct to which the runs agree after

8.2. Solving it Numerically: Richardson Extrapolation 173

Table 8.1. Details of the FEMLAB runs (ATOL = RTOL = TOL)

element #nodes #triangles #d.o.f. TOL #t-steps t∗
2nd-order 2913 5632 11457 10−6 310 0.42401 14848

10−7 423 0.42401 16087

4th-order 753 1408 11457 10−6 318 0.42401 16447
10−7 434 0.42401 17517

rounding,
t∗

.= 0.42401.

We will later show that these 5 digits are correct. In fact, the FEM solutions of Ta-
ble 8.1 are all correct to 6 digits. Each of the four runs shown took about ten minutes
on a 2 GHz PC. The ODE-solver was Matlab’s ode15s [SR97], a stiff variable-order,
variable-step-size multistep integrator based on the numerical differentiation formu-
las. The FEMLAB scripts of the two runs with TOL = 10−6 can be found at the
web page for this book.

After comparing with the results of the following sections, we might ask our-
selves why contrary to our expectations the FEM result using 2nd-order Lagrange
elements is closer to the solution than the one using 4th-order elements. It is because
of the jumps of the Dirichlet boundary condition such as at the upper left corner
of Figure 8.1: these jumps cause a drop of the global regularity of the solution such
that 4th-order elements are not neccessarily more accurate.

8.2 Solving it Numerically: Richardson Extrapolation
We will show that an accurate numerical solution of Problem 8 is possible using
standard finite differences. In fact, the simplest possible such discretization, i.e.,
first-order forward differences in time and second-order central differences in space,
can be efficiently accelerated by Richardson extrapolation (see Appendix A, p. 238).
Since Richardson extrapolation supplies us with a posteriori estimates of the dis-
cretization error, and roundoff errors can be controlled by a running error analysis,
we will be able to provide very good scientific reasons—though not a rigorous
mathematical proof—for being certain of the correctness of at least 12 digits.

To fix notation, we denote the square by Ω = (−1, 1) × (−1, 1), its boundary
by

∂Ω = Γ0 ∪ Γ1, Γ1 = {(x, y) ∈ ∂Ω : x = −1}.

We consider the initial-boundary-value problem for the heat equation,

ut = ∆u, u(t, ·, ·)|Γ0 = 0, u(t, ·, ·)|Γ1 = 5, u|t=0 = 0,

for times t ∈ [0, T]. We will vary the end time T so we can solve for u(T, 0, 0) = 1.
The solution of this equation will be denoted by T = t∗.

174 Chapter 8. In the Moment of Heat

By choosing positive integers m, n, we define a time step τ = T/m and a mesh
size h = 2/n in space. The finite difference approximation uh(t, x, y) of u(t, x, y) at
grid points

(t, x, y) ∈
(
(0, T] × Ω

)
∩
(
τZ × hZ2

)
is calculated by the recurrence [Tho95, form. (4.2.5)],

uh(t, x, y) = uh(t− τ, x, y) − τ

h2

(
4uh(t− τ, x, y)

− uh(t− τ, x− h, y) − uh(t− τ, x+ h, y)

− uh(t− τ, x, y − h) − uh(t− τ, x, y + h)
)
,

using the boundary or initial values whenever it is necessary. As is well known, for
being stable this recursion requires a bound on the time step [Tho95, form. (4.3.9)],

τ/h2 � 1
4 .

Such a bound is called a CFL condition for Courant, Friedrichs, and Lewy. We
choose τ = cTh

2, with a constant Courant number cT � 1/4 depending on T . In
Appendix §C.3.2 the reader will find the short Matlab program heat that realizes
this simple finite difference approximation for more general boundary and initial
data.

For smooth solutions u the discretization is known to be of second order
[Tho95, §4.3],

max
(x,y)∈Ω∩hZ2

|uh(T, x, y) − u(T, x, y)| = O(h2).

We need to know more; the well-founded application of Richardson extrapolation for
error estimation and convergence acceleration requires the validity of an asymptotic
expansion

uh(t, x, y) = u(t, x, y) +
m∑

k=1

ek(t, x, y)hγk +O(hγm+1) (8.1)

with γ1 < γ2 < . . . < γm+1. It is known, cf. [Ste65, §3.3], that the discretization
under consideration has γk = 2k and the asymptotic expansion (8.1) holds for all
m ∈ N.

Writing e∗ = e1(T, 0, 0), u∗ = u(T, 0, 0), and u∗,h = uh(T, 0, 0) we obtain

u∗,h − u∗ = e∗h2 +O(h4), u∗,2h − u∗,h = 3e∗h2 +O(h4).

A comparison yields an a posteriori estimate1 for the relative discretization error of
uh(T, 0, 0), namely

u∗,h − u∗
u∗

=
u∗,2h − u∗,h

3u∗,h︸ ︷︷ ︸
=εh

+O(h4).

Table 8.2 shows the results together with the estimate εh of the relative discretiza-
tion error for T = 0.424. The last column of Table 8.2 nicely reflects that the

8.2. Solving it Numerically: Richardson Extrapolation 175

Table 8.2. A posteriori error estimate εh for uh(T, 0, 0) at T = 0.424 with
Courant number cT = τ/h2 = 0.212

#time steps space grid h uh(T, 0, 0) εh ε2h/εh

32 7 × 7 1/4 1.016605320 — —
128 15 × 15 1/8 1.004170946 4.1 · 10−3 —
512 31 × 31 1/16 1.001034074 1.0 · 10−3 4.0
2048 63 × 63 1/32 1.000248105 2.6 · 10−4 4.0
8192 127 × 127 1/64 1.000051504 6.6 · 10−5 4.0

discretization is of second order. We learn that on the 127 × 127 grid with 8192
time steps—hence calculating uh on 132 128 768 grid points—the approximation
uh(T, 0, 0) is an approximation of u(T, 0, 0) just good to about 4 correct digits.

We have to increase the accuracy of the discretization by convergence accelera-
tion. The idea is simple; if we substract the error estimate, we obtain a discretization
of increased order,

u′∗,h = u∗,h + 1
3 (u∗,h − u∗,2h) = u∗ +O(h4).

This new approximation inherits the asymptotic expansion (8.1),

u′∗,h = u∗ +
m∑

k=2

e′∗,kh
2k +O(h2m+2),

now starting with the O(h4) term. Completely analogously to what we have done
for u∗,h, we can construct an a posteriori error estimate and repeat the process.
This is Richardson extrapolation for a sequence of grids with discretization pa-
rameters h, h/2, h/4, h/8, etc. It is fairly obvious how to generalize for arbitrary
sequences; a good compromise between stability and efficiency is h = 1/(2n) for
n = nmin, nmin +1, . . . , nmax. In Appendix C.3.2 the reader will find the short Mat-
lab program richardson that implements this general extrapolation technique with
a posteriori estimation of the relative discretization error. Additionally, it contains
a running error analysis [Hig96, §3.3] of the amplification of roundoff errors.

A Matlab session.

>> u = inline(’heat([0,0],[1,1],t,0,0,[5,0,0,0],h)’,’t’,’h’);
>> t = 0.424; order = 2; tol = 5e-14;
>> nmin = 4; [val,err,ampl] = richardson(tol,order,nmin,u,t);
>> val, err = max(err,ampl*eps)

val = 9.997221678853678e-001
1Such estimates are crucial for the success of state-of-the-art extrapolation codes with order

and step-size control for systems of ordinary differential equations [DB02, §5.3].

176 Chapter 8. In the Moment of Heat

err = 8.187827236734361e-005

>> nmin = 8; [val,err,ampl] = richardson(tol,order,nmin,u,t);
>> val, err = max(err,ampl*eps)

val = 9.999859601012047e-001
err = 4.734306967445346e-014

The runtime on a 2 GHz PC is less than a second for each of the two runs. The
extrapolation of the first run is based on eight grids, 128×15×15, ..., 968×43×43;
the estimate of the relative error shows that only the leading three digits are correct.
This is in accordance with the second run, based on just four grids, 512 × 31 × 31,
648 × 35 × 35, 800 × 39 × 39, 968 × 43 × 43. Here, the error estimate yields the
correctness of the leading 13 digits, a result which can be proven to be indeed
correct by the methods of §8.3.2.

We fix the parameters of the second run and solve for t∗ that satisfy u(t∗, 0, 0) =
1. This can be done using Matlab’s root finder fzero which is based on the secant
method. The runtime on a 2 GHz PC is about 5 seconds.

A Matlab session. (cont. of session on p. 175)

>> u1 = inline(’richardson(tol,order,nmin,u,t)-1’,’t’,...
’tol’,’order’,’nmin’,’u’);

>> options = optimset(’TolX’,tol);
>> t = fzero(u1,t,options,tol,order,nmin,u)

t = 4.240113870336946e-001

>> [val,err,ampl] = richardson(tol,order,nmin,u,t);
>> val, err = max(err,ampl*eps)

val = 9.999999999999942e-001
err = 4.735414794862723e-014

Based on the a posteriori error estimates, to the best of our numerical knowl-
edge, the approximation of t∗ is correct to 12 digits,

t∗
.= 0.42401 13870 33.

For the reader who requires more rigor, the analytical method of the next section
will prove that this claim is correct.

8.3 Solving it Analytically: Fourier Series
Traditionally, initial-boundary-value problems for the heat equation on rectangular
domains are solved by Fourier series. Indeed, Fourier himself extensively studied

8.3. Solving it Analytically: Fourier Series 177

the trigonometric series now named after him in his seminal 1822 treatise “Théorie
analytique de la chaleur” [Fou78] in which he introduced the heat equation for the
first time.

For Problem 8 the calculations simplify considerably if we exploit the sym-
metries: thanks to the kindness of the proposer who happened to choose a square
region and looked at its center point we can turn it into a one-dimensional problem.
To this end we first observe, that we could equally well heat any of the four sides
of the square plate, always getting the same solution at the center. By linearity,
adding those solutions shows that heating of all four sides gives 4 times the original
solution at the center. Thus, imposing the constant boundary condition

u(t, ·, ·)|∂Ω = 5
4

leads to the same solution at the center as in the original formulation of the problem.
Next, by transforming u(t, x, y) = 5/4− û(t, x, y), we obtain the homogeneous heat
equation with homogeneous Dirichlet boundary conditions,

ût = ∆û, û(t, ·, ·)|∂Ω = 0, (8.2)

subject to the initial value û(0, x, y) = α2, where α2 = 5/4. Finally, we reduce the
dimension of the problem, by observing that û(t, x, y) = v(t, x)v(t, y) solves the
initial-boundary-value problem (8.2), if v is the solution of

vt(t, x) = vxx(t, x), v(t,−1) = v(t, 1) = 0, (8.3)

subject to the initial value v(0, x) = α. The time t∗ determined by the equation
u(t∗, 0, 0) = 1 can therefore be obtained by solving 1/4 = û(t∗, 0, 0) = v2(t∗, 0), i.e.,

v(t∗, 0) = 1
2 . (8.4)

Now we concentrate on the construction of v(t, x) and follow Fourier [Fou78,
§333] in observing that

vk(t, x) = e−((k+1/2)π)2t cos((k + 1/2)πx)

constitutes a particular solution of (8.3) for any k = 0, 1, 2, Therefore, the
trigonometric series

v(t, x) =
∞∑

k=0

cke
−((k+1/2)π)2t cos((k + 1/2)πx)

with bounded coefficients ck solves (8.3) for t > 0 as well. This can be seen by
differentiating term-by-term, which is permissible because of the exponential decay
of the terms of the series. The coefficients ck have to be chosen in such a way that
the trigonometric series matches the initial conditions,

α = v(0, x) =
∞∑

k=0

ck cos((k + 1/2)πx), −1 < x < 1. (8.5)

178 Chapter 8. In the Moment of Heat

We can infer the coefficients

ck = α
4(−1)k

π(2k + 1)
(8.6)

from one of Fourier’s major identities [Fou78, §177],

π

4
=

∞∑
k=0

(−1)k

2k + 1
cos((2k + 1)x), −π

2
< x <

π

2
. (8.7)

A modern proof2 of (8.6) would be based on the orthogonality of the trigonometric
monomials cos((2k+ 1)x) in L2, a technique that Fourier himself basically employs
to prove other identities [Fou78, §§220–224]. The reader will find such a proof of
(8.6) in §10.4, when we discuss similar results for Problem 10.

Summarizing, we obtain

v(t, 0) =
4α
π

∞∑
k=0

(−1)ke−((k+1/2)π)2t

2k + 1
=

2α
π
θ
(
e−π2t

)
,

where θ denotes a function that is closely related to the classical theta functions3,

θ(q) = 2q1/4
∞∑

k=0

(−1)k

2k + 1
qk(k+1).

Hence, the problem at hand, i.e., solving (8.4) for t∗, is equivalent to solving the
transcendental equation

θ
(
e−π2t∗

)
=

π

2
√

5
. (8.9)

Figure 8.2 shows that there is a unique solution 0 < t∗
.= 0.424.

2 Fourier [Fou78] offers at least three proofs for his identity (8.7); in §§171–177 by solving an
infinite system of linear equations, in §§179–180 by using identities for trigonometric polynomials.
In §189 he uses the trigonometric identity π/2 = arctan(z)+arctan(1/z), which is valid for Rez > 0,
expands the two occurences of arctan into the Taylor series,

π

2
=

∞∑
k=0

(−1)k

2k + 1
(z2k+1 + z−2k−1), (8.8)

and inserts z = eix, which finally yields the result. One has to be careful with convergence issues to
justify the argument; Fourier himself drily remarks [Fou78, p. 154]: “the series of equation [(8.8)]
is always divergent, and that of equation [(8.7)] is always convergent.” Not quite true, but for his
time this showed a remarkable awareness of the subtleties of convergence.

3Indeed, the relation of θ to Jacobi’s θ1 function [BB87, §2.6] is given by

θ(q) =

∫ π/2

0
θ1(z, q) dz, θ1(z, q) = 2q1/4

∞∑
k=0

(−1)kqk(k+1) sin((2k + 1)z).

This is no coincidence, as it is classically known that the Green’s function of initial-boundary-value
problems of the one-dimensional heat equation is expressible in terms of theta functions, [WW96,
§21.4] and [Joh82, p. 221].

8.3. Solving it Analytically: Fourier Series 179

0 1
0

q

θ(
q)

π/2

0 0.424 1
0

t

θ(
e−

π2 t)

π/2

π/2/√5

Figure 8.2. The functions θ(q) and θ
(
e−π2t

)

8.3.1 Solving the Transcendental Equation

Mathematica and Maple provide commands to deal numerically with infinite series.
These commands are based on extrapolation methods. Mathematica’s and Maple’s
root-finders, based on the secant method, can therefore readily be used to solve
(8.9) for t∗.

A Maple session.

> theta:=q->2*q^(1/4)*sum((-1)^k/(2*k+1)*q^(k*(k+1)),k=0..infinity):
> Digits:=16: fsolve(theta(exp(-Pi^2*t))=Pi/2/sqrt(5),t=0.4);

0.4240113870336884

A Mathematica session.

Θ�q Real� �� 2q1/4NSum���1�k
2k 	 1

qk�k�1�,
k,0,���
t� ��

����
�
t/.FindRoot�Θ���Π2t� �� Π

2
�
5
,
t,0.4,0.5�,

AccuracyGoal � MachinePrecision������
�

t� �� 0.4240113870336884

It is quite reassuring that the two programs agree to all digits given. For the
precision required by these sessions Mathematica uses machine numbers, Maple soft-
ware arithmetic. Both use probably different algorithms; in any case the algorithms
are implemented differently. If we increase the precision, the two programs keep

180 Chapter 8. In the Moment of Heat

Table 8.3. Runtime vs. precision in the solution of the transcendental equation

digits of t∗ runtime kmax k∗max

10 0.67 ms 1 1
100 8.9 ms 6 6

1 000 0.18 s 22 22
10 000 22 s 73 73

agreeing and confirm the solutions of lower precision. Thus we have good scientific
reasons to claim that the following 100 digits of t∗ are correct:

t∗
.= 0.42401 13870 33688 36379 74336 68593 25645 12477 62090 66427

47621 97112 49591 33101 76957 56369 22970 72442 29447 70112.

For very high precision, relying on the commands for numerical evaluation of
infinite series soon becomes inefficient. Instead we can exploit the fast exponential
decay of the series for θ(q) at q = e−π2t∗ ≈ 0.015. We use the truncated sum

θ(kmax)(q) = 2q1/4
kmax∑
k=0

(−1)k

2k + 1
qk(k+1),

chosing kmax as the smallest possible value for which an increase kmax → kmax + 1
no longer changes the result of the root-finder at the required precision. Table 8.3
shows some timings for Mathematica on a 2 GHz PC.

There is a simple estimate of the truncation error that easily allows us to bound
the value of kmax. In fact, for an alternating series whose terms tend monotonically
to zero in absolute value, it is well known that the truncation error is bounded by
the first neglected term,∣∣∣θ(k)(q) − θ(q)

∣∣∣ � q(k+3/2)2

k + 3/2
, 0 < q < 1.

Asymptotically, the right-hand side of this estimate equals ε for

k ∼
√

| log ε|
| log q| −

3
2
.

Now, Figure 8.2 shows that the slope of θ
(
e−π2t

)
at t∗ is approximately −1, meaning

that the truncation error transforms to roughly the same error in the solution of
the transcendental equation. Summarizing, we get the asymptotic upper bound

kmax � k∗max =

⌈√
digits · log(10)

π
√
t∗

− 3
2

⌉
.

This simple formula gives excellent results, as can be seen from a glance at Table 8.3.
For 11 significant digits we obtain kmax = 1 which leads to the simple approximation
mentioned in the introduction of this chapter.

8.3. Solving it Analytically: Fourier Series 181

8.3.2 Using Interval Arithmetic

Alternating series such as the one defining θ(q) converge to a value which is always
enclosed between two sucessive partial sums; for 0 < q < 1 we get

θ(1)(q) < θ(3)(q) < θ(5)(q) < . . . < θ(q) < . . . < θ(4)(q) < θ(2)(q) < θ(0)(q).

Based on this observation, we can elegantly enclose the solution t∗ by interval root-
finding methods without having the need to explicitly estimate the actual size of
the truncation error. From the truncated series we construct a family of interval
maps

θ(k)[Q] = convex hull of
(
θ(k−1)(Q) ∪ θ(k)(Q)

)
, Q ⊂ [0, 1],

which enclose θ increasingly tighter, constituting a filtration of θ,

θ(k)[Q] ⊃ θ(k+1)[Q] ⊃ θ(Q), lim
k→∞

θ(k)[Q] = θ(Q).

This family can be calculated using standard tools of an interval arithmetic package;
implementations can be found in the appendix, §C.4.2, for Matlab/Intlab, in §C.5.2
for Mathematica.

Playing the same trick for the derivative of θ in Mathematica, or using the
automatic differentiation capability in Matlab/Intlab, allows us to calculate an en-
closure of t∗ by the interval Newton iteration of §4.5.4 By construction, any choice
of k leads to such an enclosure of t∗; the tightness increases with larger k, however.

A Matlab/Intlab session.

>> f = inline(’theta(exp(-pi^2*t),k)-pi/2/sqrt(5)’,’t’,’k’); kt = [];
>> for k=1:4, kt = [kt; k IntervalNewton(f,infsup(0.4,0.5),k)]; end
>> kt
intval kt =
1 4.240____________e-001
2 4.24011387033____e-001
3 4.24011387033688_e-001
4 4.24011387033688_e-001

A Mathematica session.

Table�

�k,t� �� IntervalForm@IntervalNewton�
�����
�
Θ�Exp� � Π2#�,k� � Π

2
�
5

�				

&,�0.4,0.5���,

�k,4��//TableForm
1 t� �� 0.4240

427176438009
113824891349

2 t� �� 0.42401138703
36890
26777

3 t� �� 0.42401138703368
90
79

4 t� �� 0.42401138703368
90
79

4Implementations can be found in Appendix C.4.3, for Matlab/Intlab, in Appendix C.5.3 for
Mathematica.

182 Chapter 8. In the Moment of Heat

Thus, using machine numbers only, we have validated the correctness of 15 digits,

t∗
.= 0.42401 13870 33688.

If we spend 5 minutes on a 2 GHz PC, Mathematica allows us to prove—based
on the interval map θ(74)[Q]—the correctness of the 10 000 digits reported on in
Table 8.3. However, as already discussed in §4.5, there is no need to use the interval
method from the beginning. Instead we could start using the method of §8.3.1 and
obtain an approximation of t∗ that is very likely correct to the requested number
of digits. By ε-inflation we put a small interval around that approximation having
diameter of a few units of the last digit. Now, we apply the interval Newton method
and obtain a validated enclosure. For 10 000 digits, this technique of approximation
first, validation last shows the correctness within a minute computing time. Thus,
the price to pay for a validated solution is just a factor of three.

8.4 Harder Problems
To review and compare the different approaches to Problem 8, we think about
changes of the problem that make it harder or impossible to solve by one of the
approaches. Three aspects of the problem were used to varying extents: the spatial
geometry was 2-dimensional, the shape was rectangular, and the boundary values
were particularly simple. There are three generalizations immediately at hand:

• general polygon in 2 dimensions

• more general boundary values

• n-dimensional box

Table 8.4 tells us whether or not the methods of this chapter can be extended.

Table 8.4. Extendibility of the various methods for Problem 8

method precision polygon boundary values nD-box

§8.1: finite elements low � � �
§8.2: extrapolation medium (�) � �
§8.3: separation high — — �

Let us comment on one aspect of this table. Finite differences and extrapola-
tion is a general method that is good for medium relative accuracies. However, if
the domain is not a box, one has to exercise some care in discretizing the bound-
ary. The discretization error might then have an asymptotic expansion in several
incompatible powers of hγ , making a generalization not straightforward.

Chapter 9

Gradus ad Parnassum
Dirk Laurie

It seems to be expected of every pilgrim up the slopes of
the mathematical Parnassus, that he will at some point
or other of his journey sit down and invent a definite in-
tegral or two towards the increase of the common stock.

— James Joseph Sylvester [Syl60]

Because it is there. — George Leigh Mallory, when
asked why he wanted to climb Mount Everest.

Problem 9

The integral I(α) =
∫ 2

0

(
2 + sin(10α)

)
xα sin

(
α/(2 − x)

)
dx depends on

the parameter α. What is the value α ∈ [0, 5] at which I(α) achieves its
maximum?

9.1 A First Look
We can write I(α) as a product: I(α) = p(α)q(α) with

p(α) = 2 + sin(10α), q(α) =
∫ 2

0

f1(x, α) dx, f1(x, α) = xα sin
(

α

2 − x

)
.

To get a rough graph of I without the need to think very hard, we use the midpoint
rule to approximate q, because it is very simple and avoids the endpoints. So

q(α) ≈ h

2n∑
k=1

f1
(
(k − 1

2)h, α
)
, h =

1
n
.

The graph in Figure 9.1, with α going from 0 to 5 in steps of 0.02 (251 points) and
h = 0.0001, takes only a few seconds to calculate on my workstation.

The left third of the graph of I(α) looks smooth, and in fact to the accuracy
of my video screen is the same as a previous graph (not shown here) calculated with
h = 0.0005. The rest of it looks rougher, because the larger α becomes, the faster

183

184 Chapter 9. Gradus ad Parnassum

0 1 2 3 4 5
�1

0

1

2

3

Π�4

p�Α�

I�Α�

Α

q�Α�

Figure 9.1. Graph of p(α) (the sine wave) and the midpoint rule approxi-
mations to I(α) (the solid line) and q(α).

does the integrand oscillate near the right endpoint, and the less accurate does the
midpoint rule become. Fortunately, it is not necessary to achieve great accuracy for
α > 1, as the required maximum is evidently not in that region.

It so happens that p has a relative maximum, and q a global maximum, very
close to each other. However, the maximum of q is fairly flat, and therefore the
position of the maximum is mainly determined by p. The second maximum of p
occurs at α = π/4, which gives our first approximation:

αopt ≈ π/4 .= 0.785.

9.2 Accurate Evaluation of the Integral
Figure 9.2 shows what f1(x, π/4) looks like. We have a clearly defined subprob-
lem: evaluate this oscillating integral accurately for α near π/4. Several general
approaches to a very similar subproblem are discussed in detail in Chapter 1, where
the integral itself is the object of the exercise. In order to avoid repetition and to
concentrate on the special features of Problem 9, at this stage we just pick the one
that is easiest to use, namely contour integration.

We need to express the integrand in terms of an analytic function, which is
easy enough: define

f0(z, α) = zαeiα/(2−z) = eα(log z+i/(2−z)), (9.1)

then f1(x, α) = Imf0(x, α) = Re(−if0(x, α)). To make the integrand decay expo-
nentially for z → 2, iα/(2 − z) should have a negative real part along the contour,
which implies that z should have a positive imaginary part. A parabolic contour
similar to the one used in Problem 1 works here too:

z(t) = t+ it(2 − t), z′(t) = 1 + 2i(1 − t), t ∈ [0, 2]. (9.2)

9.2. Accurate Evaluation of the Integral 185

0 0.5 1 1.5 2

�1

0

1

2

0 0.5 1 1.5 2

0

0.25

0.5

0.75

1

Figure 9.2. Graph of f1(x, π/4) (left) and of f2(t, π/4) (right).

Figure 9.2 is a graph of f2(t, π/4), where

f2(t, α) = Re (−if0(z(t, α))z′(t)) .

The function f2(t, π/4) is obviously easier to integrate with respect to t than
f1(t, π/4). The oscillations have not disappeared, but their amplitude has been
damped exponentially. But there still is a tricky little difficulty. The factor xα has
also not disappeared, and since the interesting values of α are less than 1, this factor
has an infinite derivative at 0. Quadrature routines based on polynomial behavior
(like Romberg’s) will fail or at best be intolerably slow.

There are several ways out of this difficulty: one could use a Gauss–Jacobi
formula or a modified Romberg algorithm that takes into account the precise na-
ture of the singularity at 0 (see Appendix A, p. 239); one could apply a further
transformation of the variable t to reach an integral for which the trapezoidal rule
is optimal (one such is described in §9.4); or one could use a good general-purpose
automatic quadrature program.

When in search of a quick answer, the latter option is undeniably tempt-
ing. The industry standard, twenty years after its publication, is still QUADPACK
[PdDKÜK83]. It is not necessary to leave the convenience of Octave, since its quad
function is simply a link to QUADPACK’s routine QAG, which combines a robust
strategy of adaptive interval-halving with a basic formula of high degree and a
conservative, safety-first approach to error estimation.

An Octave Session. (Computing q(π/4).)

>> function y=f2(t)
>> global alfa
>> z=t+i*t.*(2-t); dz=1+2i*(1-t);
>> y=real(-i*exp(alfa*(log(z)+i./(2-z))).*dz);
>> end
>> global alfa; alfa=pi/4;
>> quad_options(’abs’,1e-10); quad_options(’rel’,0);
>> [ans,ierr,neval,error]=quad(’f2’,0,2)

186 Chapter 9. Gradus ad Parnassum

ans = 1.01123909053353
ierr = 0
neval = 651
error = 3.85247389544929e-13

If we request a tighter tolerance, quad uses more function evaluations, but
the answer does not change except for fluctuations at roundoff level. This is typical
behavior: QUADPACK really is almost paranoid in its approach to error estimation.

We are now able to evaluate I(α) to nearly machine accuracy; has the back of
Problem 9 been broken? Let’s proceed to the optimization problem.

9.3 The Maximization Problem
There is a large literature on finding the extremum of a numerically defined function,
dealing with matters such as making sure that an interval bracketing the extremum
is maintained and that the algorithm is useful even when one starts far from the
extremum. We don’t need any of that here, since the function we are trying to max-
imize is very well-behaved, and we know to graphical accuracy where the maximum
is.

A simple algorithm [Pow64] for maximizing a function without using deriva-
tives is the method of quadratic interpolation. In the case of a function f(x) of
one variable, the method is particularly simple. We start with three initial values
x1, x2, x3, ordered such that f(x1) < f(x2) < f(x3). At stage n, let xn+1 be the
position of the maximum of the parabola through the three points (xj , f(xj)), j =
n− 2, n− 1, n. One can think of this method as an analogue of the secant method
(see p. 189) for solving a single nonlinear equation.

Let hn = xn+1 − xn. The following formula gives a convenient way of imple-
menting the computation:

dn =
f(xn+1) − f(xn)

hn
, θn =

dn

2(dn−1 − dn)
,

hn = θn−1hn−2 + (θn−1 − 1
2)hn−1.

We start at n = 3; when hn = 0 or if f(xn+1) � f(xn) we stop, taking xn as
the result, otherwise we increment n and continue. This no-brakes implementation
would not be suitable in a general-purpose routine, but on an easy optimization
problem like this one, it works very well.

Actually, taking xn−1 as the result is often better. The reason is that dn

approaches an indeterminate 0/0 form, and if hn−1 is too small, the calculation of
hn suffers badly from error caused by cancellation. For a thorough discussion on
the trade-off between errors caused by approximation and by cancellation, see the
discussion on numerical differentiation in §9.7.

Applying this algorithm to the function I with initial values α1 = π/4 −
0.01, α2 = π/4 − 0.005, α3 = π/4, we obtain in IEEE double precision the results
given in Table 9.1.

9.3. The Maximization Problem 187

Table 9.1. Optimization by quadratic interpolation.

n αn I(αn)

1 0.7753981633974483 3.0278091521555970
2 0.7803981633974483 3.0320964090785236
3 0.7853981633974483 3.0337172716005982
4 0.7859375909509202 3.0337325856662893
5 0.7859337163733469 3.0337325864853986
6 0.7859336743674070 3.0337325864854936

7 0.7859336741864730 3.0337325864854945

There is something highly disconcerting about this table. We have printed
out the values I(αn) to 17 significant digits, one more than the precision of the
arithmetic deserves, so that it can be seen that the last two values are indeed
different. In fact, they differ in the very last bit. Two distinct machine numbers
near 3 cannot differ by anything smaller on this computer. Yet the two values of α
agree to only 9 digits. It would actually be a little optimistic to claim that

αopt
.= 0.78593 3674,

since the calculation of I is so complicated; surely we cannot expect values of I to
be accurate to the last bit.

We have calculated the value I(αopt) of the extremum to fifteen digits, but
unlike Problems 4 and 5, that is not good enough here: we are asked for its position
αopt, which is always harder. Let us analyze the reason for this.

In the neighborhood of a relative maximum α0, we have

I(α0 + h) = I(α0) + 1
2h

2I ′′(α0) +O(h3),

since I ′(α0) = 0. Suppose that we are able to evaluate I to machine accuracy in
IEEE double precision, about sixteen digits. Then if α has eight correct digits, we
have h of the order of 10−8 and h2 of the order of 10−16, which is at machine
roundoff level; that is to say, any observed difference between I(α) and I(α0) is
spurious. We can therefore not expect to get more than eight correct digits by a
procedure based on evaluating I(α) for various values of α, and stopping when we
find no further improvement. Note that α6 is indeed more accurate than α7.

Figure 9.3 shows a graph of I(α) as a function of n for α = α0 + nh, α0 =
0.785933674, h = 10−10, n = −500,−499, . . . , 499, 500, using the contour integral
formula for I evaluated by quad. The points are plotted as small dots that are not
connected by lines. The graph is very far from the mathematical idealization of a
one-dimensional curve in a two-dimensional plane; in fact, it looks as it was drawn
using a soft blunt pencil on coarse paper, not the way that highly accurate drawings
are made. This appearance is caused by pseudo-random behavior of the roundoff
error. From the graph we can identify an interval of length perhaps 2·10−9 containing

188 Chapter 9. Gradus ad Parnassum

0.785933624 0.785933674 0.785933724

Imax

Imax�10�13

Imax�10�13.5

Imax�3.03373258648549

Α

Figure 9.3. Close-up graph of numerically evaluated values of I(α).

the maximum, but that is the best we can do by just comparing two function values.
(One can do better by judiciously using more function values: see §9.7.)

Unlike the case of Problem 2, where there is no alternative to working in higher
precision, there is a standard way out of this difficulty. It is the familiar calculus
trick of finding a zero of I ′(α), together with extra information to make sure that
the correct maximum is being found — in this case, the information that α0 is near
π/4.

To find I ′(α), we need to differentiate under the integral sign. This would have
been problematic for the original definition of I, since the standard theorem (see
e.g. [Apo74, p. 167]) on differentiation under the integral sign requires continuity
with respect to x on [0, 2], which we do not have. There is no such problem along
the contour (9.2), since

f
(n)
2 (t, α) =

∂nf2(t, α)
∂αn

= Re (−if0(z(t), α)(log z(t) + i/(2 − z(t)))nz′(t)) , (9.3)

which stays bounded over the closed interval.
Figure 9.4 shows a graph of f ′2(t, π/4). The logarithmic term does not sub-

stantially add to the difficulty of the integral, and quad still copes easily with the
problem of finding q′(α).

The zero-finding problem, by itself, holds no terrors. The behavior of I is
parabola-like in the neighborhood of our excellent first approximation for the zero,
and therefore I ′ is nearly linear. All methods for solving a nonlinear equation I ′(α) =
0 can be written in the form

αn+1 = αn − I ′(αn)
mn

(9.4)

where mn is some approximation to the slope of the graph of I ′ in the neighborhood
of the root. The simplest possible method is to take a constant value of mn. Since
I(α) is so much dominated by the term p(α) = 2 + sin(10α), the slope of I ′ near
the maximum is approximately p′′(π/4) = −100; since p and q are both concave,

9.3. The Maximization Problem 189

0 0.5 1 1.5 2

�1

0

1

Figure 9.4. Graph of f ′2(t, π/4).

the slope is actually a little steeper. The simple fixed-point iteration

αn+1 = αn + 0.01I ′(αn)

is good enough to give a little better than one digit per iteration. The lower bound
100 for |I ′′| near the maximum also tells us that when |I ′(αn)| = ε, the error in αn

is less than 0.01ε.
A slightly more sophisticated method for solving the nonlinear equation is the

secant method, which uses two consecutive values to get a good approximation

mn =
I ′(αn) − I ′(αn−1)

αn − αn−1
(9.5)

to the slope of the graph of I ′ at almost no cost. The result of the secant iteration,
starting with initial values α1 = π/4 − 0.005, α2 = π/4 is given in Table 9.2.
Allowing for roundoff error in the numerical integration, we are confident that

αopt
.= 0.78593 36743 5037

to 14 digits accuracy.

Table 9.2. Secant method applied to solve I ′(αopt) = 0.

n αn I ′(αn)

1 0.7803981633974483 0.5910382447996654
2 0.7853981633974483 0.0571975138044098
3 0.7859338804239271 −0.0000220102325740
4 0.7859336743534198 −0.0000000003255850
5 0.7859336743503714 −0.0000000000000012

190 Chapter 9. Gradus ad Parnassum

Problem 9 is solved, but of course we would like to have another method for
confirmation. Since clearly the behavior of the nonlinear solver does not depend
on how the function values are obtained, for the next two sections we devote our
attention to other methods for calculating q(α) and q′(α). Our benchmark is now
the evaluation of

q′(π
4) .= 0.01906583793480.

The Octave routine quad applied to f ′2(·, π/4), with the same settings as before,
gives the value 0.0190658379348022 using 693 function evaluations.

9.4 Double-Exponential Formulas
It is well known that the trapezoidal and midpoint rules for numerical integration,
humble though their origins might be, are extremely effective when the integrand
is smooth and periodic. In particular, this is the case when all derivatives of the
integrand vanish at both endpoints of the interval. One would therefore expect that
the trapezoidal rule should be particularly effective for integrals over (−∞,∞); and
in fact, it can be shown, e.g. [LB92, p. 48] or see the discussion on p. 70, that when
g(z) is analytic in the strip |Imz| < d, and a0 is some fixed real number,∣∣∣∣∣

∫ ∞

−∞
g(t) dt− h

∞∑
k=−∞

g(kh+ a0)

∣∣∣∣∣ � ‖g‖
e2πd/h − 1

, (9.6)

where the exact meaning of the norm ‖g‖ is not needed for this discussion.
From (9.6), we see that the following conditions are necessary for the trape-

zoidal rule to be efficient:

1. The doubly infinite sum must converge fast.

2. h must be small in relation to d.

The double-exponential (DE) method has been developed by Mori in collab-
oration with several other Japanese mathematicians over many years. The basic
idea is to transform one’s original integral

∫ b

a
f(x) dx to

∫∞
−∞ g(t) dt by the trans-

formation x = w(t), so that g(t) = w′(t)f(w(t)), in such a way that |g(t)| behaves
for large |t| like exp(−c exp(|t|)) for some constant c, so that no matter what ac-
curacy one is aiming at, the sum behaves in practice like a finite sum. Not only
does the procedure yield a very effective integration formula, but it is also robust
against endpoint singularities. For a survey of the method, see [MS01]. We will only
enlarge on the practical application of the method here: in §3.6.1 the reader can
find a detailed discussion on the issues that influence the convergence behavior of
trapezoidal sums.

For example, when a and b are both finite, the standard transformation is

w(t) = (a+ b)/2 + (b− a)/2 tanh (sinh ct)

for some positive constant c. The exact value of c is not crucial, but c = π/2 is rec-
ommended. This transformation is suitable for a wide range of functions, including

9.4. Double-Exponential Formulas 191

functions that become infinite at the endpoints, but it is an overkill for functions
that already decay exponentially at one or both endpoints, such as the function in
(9.3). The appropriate transformation in the case where f decays exponentially at
b is

w(t) = (a+ b)/2 +
(
(b− a)/2

)
tanh

(
t− e−ct

)
for some positive constant c.1 Again the value of c is not crucial, and in this case
c = 1 is the usual choice.

For all the double-exponential formulas, it is important to be careful near
the endpoints to avoid overflow, underflow and unnecessary loss of precision. In
particular, if the integrand becomes infinite at an endpoint, say at a, then w(t)− a
should be analytically simplified to avoid cancellation and the routine that evaluates
the integrand should be written to take that information into account. In the case of
the function defined in (9.3), the integration interval is [0, 2) and there is exponential
decay at the right endpoint, so the transformation function is

w(t) =
2

1 + e2(e−t−t)
. (9.7)

An Octave session. (Computing q(α) and its first two derivatives at α = π/4.)

The range −5.3 � t � 4.2 has been chosen so that g(t) does not underflow, and
the step size h = 1/16 was found by repeatedly halving the step size, starting
at h = 1/2, until two successive answers agree to more than eight digits. That is
sufficient, because each halving of the step size doubles the number of correct digits.

>> function y=df2(t,n) % n-th derivative of f2
>> global alfa
>> z=t+i*t.*(2-t); dz=1+2i*(1-t); f=log(z)+i./(2-z);
>> y=-i*exp(alfa*f).*dz;
>> for k=1:n, y=f.*y; end
>> y=real(y);
>> end
>> global alfa; alfa=pi/4;
>> h=1/16; t=-5.3:h:4.2;
>> x=2./(1+exp(2*(exp(-t)-t)));
>> w=h*sech(t-exp(-t)).^2.*(1+exp(-t));
>> for n=0:2, wf=w.*df2(x,n); q=sum(wf), sum(abs(wf)>eps*abs(q)), end

q = 1.01123909053353
ans = 78
q = 0.0190658379348029
ans = 82
q = -1.89545525464014
ans = 82

1This formula does not appear explicitly in [MS01], but can readily be derived by applying
to [MS01, form. (1.15)] the same reasoning that transforms [MS01, form. (1.16)] into [MS01,
form. (1.17)].

192 Chapter 9. Gradus ad Parnassum

The number of function evaluations is certainly much less than that of quad. It is
often the case that the double-exponential technique, when it is applicable, outper-
forms just about any other automatic integration algorithm. In fairness to quad,
it must be said that it can handle integrands that are not analytic on the open
interval, which double-exponential methods cannot do.

9.5 Transformation to a Fourier Integral
The usual double-exponential method fails when the integrand is highly oscillatory.
In particular, it cannot cope with the function f1(·, π/4). The solution in the previ-
ous section, of using a different contour in the complex plane, is not always available
(for example, software for evaluating the integrand at complex arguments might be
lacking).

A technique which is often useful is to transform the integration interval to
[0,∞) in an attempt to get regularly spaced zeros. In this case, we make the sub-
stitution

x(t) =
2t

1 + t
, x′(t) =

2
(1 + t)2

,

giving

q(α) =
∫ ∞

0

xα(t)x′(t) sin
(
α(1 + t)/2

)
dt, (9.8)

and

q′(α) =
1
2

∫ ∞

0

(1 + t)xα(t)x′(t) cos
(
α(1 + t)/2

)
dt

+
∫ ∞

0

log x(t)xα(t)x′(t) sin
(
α(1 + t)/2

)
dt. (9.9)

The integral q(α) is absolutely convergent, so there is no problem with differentiation
under the integral sign. Figure 9.5 shows a graph of the integrand appearing in (9.8)
and (9.9) with α = π/4.

In both cases, the integrand is 0 when t = 0, although one cannot easily see
that at the scale of this graph. Even so, the integral is not all that easy by standard
methods. The same singularities are still present at t = 0 as in the case of the
contour integral, and the decay of the integrand is not exponential. Truncation of
the infinite interval is not appropriate.

However, the integrand belongs to a quite common family of integrands for
which very effective methods are known. Integrals of the form

F (s;ω, θ) =
∫ ∞

0

s(x) sin(ωx+ θπ) dx (9.10)

arise in Fourier analysis (the cases θ = 0 and θ = 1
2 being the familiar sine and

cosine transforms) and have in consequence been studied in much greater depth
than general oscillatory integrals, and many numerical methods are known. We will
discuss only one here, a recent one due to Ooura and Mori [OM99], which is an

9.5. Transformation to a Fourier Integral 193

0 20 40 60 80 100

�0.2

0

0.2

0.4

Figure 9.5. Graph of integrands after the transformation by x(t) = 2t/(1+
t). The solid line is the integrand in (9.8) and the dotted line the integrand in (9.9).

ingenious variation of the double-exponential technique. As in the case of other
double-exponential methods, the singularity at t = 0 is handled effortlessly.

The basic idea is this: when transforming the integrand in (9.10) by x = w(t) to
obtain a transformed integrand g(t) = w′(t)f(w(t)), where f(x) = s(x) sin(ωx+θπ),
do not aim at double-exponential decay for g(t) for all t sufficiently large, but do
so only for the quadrature points tk. Thus, we require that |g(tk)| behaves for large
|tk| like exp(−c exp(|tk|)). That is clearly equally sufficient for fast convergence of
the sum. In the case of the Fourier integral (9.10), the crucial fact is that the
sine term has evenly spaced zeros. If the quadrature points tk tend to those zeros
double-exponentially for large k, then g(tk) will have the required behavior.

Suppose that we can find a function φ such that φ(t) → 0 as t → −∞, and
φ(t) → t as t → ∞, the limiting behavior in both cases being double-exponential.
Then for constants c1 > 0 and c2, w(t) = c1φ(t − c2) also maps the real axis to
(0,∞) and w(t) → 0 as t→ −∞, but now w(t) → c1(t− c2) as t→ ∞, the limiting
behavior in both cases being double-exponential. Thus, taking a0 = 0 in (9.6) so
that tk = kh, the function f needs to be evaluated at points that tend double-
exponentially to c1(kh− c2). Since f(t) = 0 when ωt+ θπ = kπ, we choose c1 and
c2 such that ωc1(kh− c2) + (θ − k)π = 0 identically in k, giving

w(t) =
π

ωh
φ (t− θh) . (9.11)

A family of functions φ with the desired property is

φ(t) =
t

1 − exp(−(2t+ α(1 − e−t) + β(et − 1)))
,

where α and β are positive numbers that may depend on h. After considerable
theoretical investigation and practical experimentation, Ooura and Mori [OM99]
recommend

β = 1
4 , α = β

(
1 +

log(1 + π/h)
4h

)−1/2

.

194 Chapter 9. Gradus ad Parnassum

The motivation for this somewhat esoteric formula for α is that when s has a
singularity at some complex number z0, the image w−1(z0) of z0 is bounded away
from the real axis, so that the quantity d/h in (9.6) varies in inverse proportion to
h. (The more obvious function φ(t) = t/(1 − exp(−k sinh t)), for some k > 0, does
not have this desirable property: see [OM99]).

The implementation of the method must be done with great care to avoid
unnecessary loss of accuracy. There are two pitfalls for the unwary:

1. The function e1(x) = (ex−1)/x must be evaluated to full precision for small x.
This is a well-known problem, and in fact standard IEEE arithmetic provides
the function 2x − 1 (with the aid of which e1(x) can easily be evaluated) in
hardware; but few programming languages have a library routine for e1. There
are two more or less satisfactory workarounds: either one can put e1(x) =
2ex/2 sinh(x/2)/x and rely on the presumably good accuracy of the built-in
hyperbolic sine, or one can use the algorithm (due to W. Kahan)

y = ex; e1(x) =
y − 1
log y

.

Of course, in the trivial case when x is so close to 0 that y = 1 in machine
arithmetic, then also e1(x) = 1. For an explanation of why the second method
works, see [Hig96, §1.14.1].

2. The value of sin(ωw(kh)+θπ) when k is large must be calculated to high rela-
tive precision. This cannot be achieved by passing the large number ωw(kh)+
θπ ≈ kπ (as k → ∞) to the built-in sine routine of one’s favourite language,
since the reduction of the argument modulo 2π leaves a number with high
relative error.

Assuming that we have a routine for e1, we can compute its derivative

e′1(x) = e1(x) − e2(x), where e2(x) = (e1(x) − 1)/x.

Then we have, using logarithmic differentiation,

φ(t) =
1

v(t)e1(−tv(t))
, where v(t) = 2 + αe1(−t) + βe1(t);

φ′(t) = φ(t)
(
−v

′(t)
v(t)

+ (tv′(t) + v(t))
(

1 − e2(−tv(t))
e1(−tv(t))

))
.

The expressions for φ(t) and φ′(t) are well-behaved even when t is very close to 0,
provided that e2 can be accurately evaluated for small arguments. This is a more
difficult task than in the case of e1(t), but fortunately it is not really necessary in
this particular instance. By (9.11), φ is evaluated at (k− θ)h for integer values of k.
By (9.8) and (9.9), θ = α/2π ≈ 1/8 for the integrals involving the sine and θ ≈ 5/8
for the integral involving the cosine, neither of which is critically close to an integer;
therefore, the argument tk − θh = (k− θ)h at which φ is to be evaluated cannot for
any integer k become critically close to 0.

9.5. Transformation to a Fourier Integral 195

Turning to the second problem, we need to evaluate

sin(ωw(kh) + θπ) = sin
(
π(φ(wk) − wk)

h
+ πk

)
= (−1)k sin

(
π(φ(wk) − wk)

h

)
(9.12)

where wk = (k− θ)h. It suffices to compute φ(t)− t to high relative accuracy when
t� 0, which is easy, since

φ(t) − t =
te−tv(t)

1 − e−tv(t)
.

Note that the right-hand side of (9.12) should only be used for fairly large values of t,
say at the stage where |φ(t)− t| < 0.1; for the others we stay with sin(ωw(kh)+θπ).

We now have all the ingredients necessary for the Ooura–Mori method, not
without a good deal of labor. But it has been instructive to see the difference
between the elegant mathematical description of a great idea and the tortuous and
finicky details that lie behind its meticulous numerical implementation.

An Octave Session. (Calculating q = q(π/4) and dq = q′(π/4).)

All the precautions above have already been packaged into a subroutine

q_ossinf(M,omega,theta)

whose code may be found at the web page for this book. The subroutine calculates
the points tk and weights wk such that

F (s;ω, θ) ≈
∑

wks(tk),

where the integration step size is h = π/M. The choice M = 16 is the result of
experiment, starting as before at M = 2 and doubling M until the results agree to
more than 8 digits.

>> function y = intfun (t, alpha)
>> x=2*t./(1+t); dx=2./(1+t).^2; y = dx.*x.^ alpha;
>> end
>> alfa=pi/4; [ts,ws]=q_ossinf(16,alfa/2,1/8);
>> [tc,wc]=q_ossinf(16,alfa/2,5/8);
>> wf=ws.*intfun(ts,alfa); q=sum(wf), sum(abs(wf)>eps*q)

q = 1.01123909053353
ans = 49

>> x=2*ts./(1+ts);
>> wf1=wc.*intfun(tc,alfa).*(1+tc)/2; wf2=ws.*log(x).*intfun(ts,alfa);
>> dq=sum(wf1)+sum(wf2), sum(abs(wf1)>eps*dq), sum(abs(wf2)>eps*dq)

dq = 0.0190658379347639
ans = 51
ans = 51

196 Chapter 9. Gradus ad Parnassum

Thus, only 102 points, involving no complex arithmetic, are required at this level of
precision to evaluate q(π/4) and q′(π/4). This compares well with the 82 complex
points required by the usual double-exponential formula.

9.6 An Analytical Surprise
When one commands a computer algebra package like Maple or Mathematica to
evaluate the integral q(α), one gets just what one might expect from a problem
that after all is a Trefethen challenge problem: nothing happens, the integral is
returned unchanged. But if we help just a little, asking instead for the equivalent∫ 2

0
(2 − x)α sin(α/x) dx, there comes a surprise. Both packages can do the integral

analytically, no numerical integration is necessary!

A Maple Session.

> int((2-x)^alpha * sin(alpha/x), x=0..2);

1/4
√
παΓ (α+ 1)(

2−1+α
√
πα hypergeom

(
[−1/2α+ 1/2, 1 − 1/2α], [2, 3/2, 3/2],−1/16α2

)
Γ (α)

+2
√

2
∞∑

k=0

π−3/2

2−3/2−α+2 kΓ (2 + 2 k) Γ (1 + 2 k)

(
(−1)2 k

(
−ψ (1/2 + k) + π tan (π k)

+ψ (1/2 − 1/2α+ k) + π tan (1/2π α− π k) + ψ (−1/2α+ k)

−π cot (1/2π α− π k) − 2ψ (1 + k) − ψ (3/2 + k) − 4 ln (2) + 2 ln (α)
)

2−4 kα2 k sec (π k) cos (1/2π α− π k) sin (1/2π α− π k)
(
22 k

)2
(−1/2 − 1/2α+ k) Γ (−1 − α+ 2 k)

))

(The result is not a screen shot, but Maple’s own LATEX output, edited in various
ways to make it readable.) Here ψ(z) = Γ′(z)/Γ(z) is the digamma function. The
formula is rather daunting, although we can immediately see quite a few simplifi-
cations that can be made: for example, (−1)2k = 1 and π tan(πk) = 0. Still, Maple
can of course evaluate it. With Digits:=50 we obtain:

q(π/4) .= 1.0112 39090 53353 25262 70537 50657 49498 85803 05492 49392

which, it is encouraging to note, agrees with the 15 digits we earlier got from quad.

9.6. An Analytical Surprise 197

A Mathematica Session.

Simplify
0

2

2 x Sin
x

x, 0 TraditionalForm

1 G2,4
3,0

2

16

2

2
,

3

2

1

2
,
1

2
, 1, 0

To understand how a computer program managed to arrive at this formula involving
Meijer’s G function, see [MT03, Eq. (07.34.21.0084.01) and (07.34.03.0055.01)].
Mathematica, too, can evaluate its own formula, and if we ask for enough digits,
the numerical result agrees with that of Maple.

According to [Luk75, form. 5.3.1(1)], the G3,0
2,4 instance of Meijer’s G function

is defined by

G3,0
2,4

(
z

(α+ 2)/2, (α+ 3)/2

1/2, 1/2, 1, 0

)
=

=
1

2πi

∫
C

Γ2(1/2 − s)Γ(1 − s)
Γ(1 + s)Γ(1 + α/2 − s)Γ(3/2 + α/2 − s)

zs ds,

where the contour C is a loop starting and ending at +∞ and encircling all poles of
Γ2(1/2 − s)Γ(1 − s) once in the negative direction.

The contour integral can be evaluated in terms of residue series. The integrand
has double poles at s = 1/2 + n, n = 0, 1, 2, . . ., and simple poles at s = 1 + n,
n = 0, 1, 2, The calculation of the residues at these poles is straightforward,
though tedious in the case of the double poles. (Alternatively, one may replace
one factor Γ(1/2 − s) in the integrand by Γ(1/2 + δ − s), whereupon the poles at
s = 1/2 + n become simple, at the expense of an additional set of simple poles at
s = 1/2 + δ + n, n = 0, 1, 2, Then by [Luk75, form. 5.3.1(5)] the three residue
series equal a sum of three generalized hypergeometric functions 2F3, in which one
should take limits as δ → 0.) Omitting further details we present the final result for
q(α) in the following hypergeometric-function form:

q(α) = 2α+1παz

∞∑
n=0

(1/2 − α/2)n(1 − α/2)n

(2)n((3/2)n)2 n!
(−z)n

+ 2α+2π cot(πα)z1/2
∞∑

n=0

(−α/2)n(1/2 − α/2)n

(1/2)n(3/2)n(n!)2
(−z)n

− 2α+1z1/2
∞∑

n=0

(−α/2)n(1/2 − α/2)n

(1/2)n(3/2)n(n!)2
(−z)n (log z + hn),

where z = α2/16,

hn = ψ(−α/2 + n) + ψ(1/2 − α/2 + n) − ψ(1/2 + n) − ψ(3/2 + n) − 2ψ(1 + n),

198 Chapter 9. Gradus ad Parnassum

and (a)n is the Pochhammer symbol, defined for a ∈ C by

(a)0 = 1, (a)n =
n−1∏
m=0

(a+m) for n = 1, 2, 3,

The first and second series are equal to the generalized hypergeometric functions

2F3(1/2 − α/2, 1 − α/2; 2, 3/2, 3/2;−z), 2F3(−α/2, 1/2 − α/2; 1/2, 3/2, 1;−z),

respectively, while the third series is expressible as the derivative of a generalized
hypergeometric function, viz.

Γ(1/2)Γ(3/2)
Γ(−α/2)Γ(1/2 − α/2)

×

d

dt

(∞∑
n=0

Γ(−α/2 + n+ t)Γ(1/2 − α/2 + n+ t)
Γ(1/2 + n+ t)Γ(3/2 + n+ t)Γ2(1 + n+ t)

(−1)nzn+t

)∣∣∣∣∣
t=0

.

It has been verified that the above expansion for q(α) agrees with the Maple result
on p. 196.

From the point of view of programming rather than mathematical elegance,
the formula for q(α) can be optimized to give

q(α) = 2αα

(
2πz

∞∑
n=0

(−z)nsn +
∞∑

n=0

(−z)ntn

)
; (9.13)

sn =
n∏

m=1

(α− 2m)(α− 2m+ 1)
m(m+ 1)(2m+ 1)2

;

tn =
(
1 − log

α

2
− ψ(α+ 1) − 2γ + un

) n∏
m=1

(α− 2m+ 1)(α− 2m+ 2)
m2(2m− 1)(2m+ 1)

;

un =
n∑

m=1

(
1

α− 2m+ 1
+

1
α− 2m+ 2

+
1
m

+
1

2m− 1
+

1
2m+ 1

)
,

where z = α2/16, and γ
.= 0.5772156649 is Euler’s constant. Only one evaluation

of the digamma function is required, ψ(α + 1), and, somewhat surprisingly, the
gamma function does not appear in the formula at all. These formulas have been
implemented in the PARI/GP file meijerg.gp, given at the web page for this book.
Both series converge quite fast for α near π/4. The terms behave asymptotically
like (−z)n/(n!)2, and since z ≈ 0.04, one already gets 16 digits with 6 terms.

9.7 Accurate Numerical Differentiation
The representation of q in terms of the G function and the availability of the series
(9.13) give a promising approach to the accurate solution of Problem 9, but there
is a difficulty: we know that the optimization method, by itself, yields only half

9.7. Accurate Numerical Differentiation 199

the precision to which function values can be computed. We can work in higher
precision, true. Or we can differentiate the result of the Mathematica session on
p. 197, requiring term-by-term differentiation of (9.13).2 The resulting expression
contains the trigamma function ψ1 = ψ′, which Mathematica and Maple have but
not PARI/GP.

Another approach is to find a zero of I ′ without analytical differentiation by
using numerical derivatives for q′. The basic idea is very simple: for some step size
h,

q′(α) =
q(α+ h) − q(α)

h
+O(h). (9.14)

Unfortunately, we cannot shrink h indefinitely because the cancellation in the nu-
merator throws away significant digits. If h = 10−t, the hoped-for number of correct
digits (in exact arithmetic, that is) is approximately t and the number of cancelled
digits is also approximately t. If we work in d-digit arithmetic, there are d − t un-
contaminated digits remaining. So the best we can do is to achieve an accuracy of
about min(t, d − t) digits. The optimal choice is t = d/2, which is what we could
achieve before — no progress yet.

But one can do better by centered differences: replacing O(h) by c1h+O(h2)
in (9.14), and averaging the cases with step sizes h and −h, we get:

q′(α) =
q(α+ h) − q(α− h)

2h
+O(h2).

The number of digits lost to cancellation is much the same as before, but the hoped-
for number of correct digits is now 2t. We can get min(2t, d−t) digits, so the optimal
choice is t = d/3, giving 2d/3 correct digits.

One level of Richardson extrapolation (see Appendix A, p. 238), for which we
need to replace O(h) in (9.14) by c1h + c2h

2 + c3h
3 + O(h4), gives us a further

improvement:

q′(α) =
4
3
q(α+ h) − q(α− h)

2h
− 1

3
q(α+ 2h) − q(α− 2h)

4h
+O(h4).

Now the hoped-for number of correct digits is 4t, we can get min(4t, d − t) digits,
and the optimal choice is t = d/5, giving 4d/5 correct digits.

We can continue along these lines, with more sophisticated numerical differ-
entiation formulas, but there is a law of diminishing returns. We already have 80%
of the working precision. Another level of extrapolation will give about 6d/7 correct
digits, about 86% of the working precision. Figure 9.6 shows a graph of the actual
error, using the series formula (9.13) for q(α), plotted against h.

The lowest error is approximately where we predicted it should be. One can
clearly see the irregular effect of roundoff when h is too small, and the smooth effect
of truncation when h is too large. Note that it is better to take h a little too small
than a little too large. On this log-log scale, the approximately straight line when
the error is dominated by O(h4) is approximately four times as steep as the jagged
line when the error is dominated by O(h−1).

2This approach has been used to solve Problem 9 to 10 000 digits accuracy, see Appendix B.

200 Chapter 9. Gradus ad Parnassum

10�5 10�4 10�3 10�2

10�13

10�12

10�11

10�10

10�9

10�8

Figure 9.6. Error in numerical differentiation, using central differences
and one step of extrapolation, as a function of step size.

Using the secant method and the numerical derivative for q′, we obtain the
results given in Table 9.3.

Thirteen digits are correct, and the fourteenth is close. This is a little better
than we have a right to expect; the reason is that near the optimal value of α, a small
change in α affects q′ (which we cannot compute very accurately) only by about
0.06 of the amount by which it affects p′ (which we can compute very accurately).
Thus, the error in I ′ induced by the inaccurate value of q′ is only about 0.06 of the
error in q′.

Note that the numerically differentiated values do not converge to zero. In gen-
eral, in a numerical calculation, roundoff errors (if only you notice their presence!)
are your friends, who warn you when a number is not very accurate.

Table 9.3. Secant method with numerical differentiation.

n αn I ′(αn)

1 0.7803981633974483 0.5910382447969147
2 0.7853981633974483 0.0571975138027900
3 0.7859338804239131 −0.0000220102314507
4 0.7859336743534163 −0.0000000003278613
5 0.7859336743503467 0.0000000000019298
6 0.7859336743503647 −0.0000000000025024
7 0.7859336743503545 0.0000000000005199
8 0.7859336743503563 −0.0000000000012696

Chapter 10

Hitting the Ends

Folkmar Bornemann

Monte Carlo is an extremely bad method; it should be
used only when all alternative methods are worse.

— Alan Sokal [Sok97, p. 132]

Separation of variables is of very limited utility but when
it works it is very informative.

— Jeffrey Rauch [Rau91, p. 211]

Problem 10

A particle at the center of a 10×1 rectangle undergoes Brownian motion
(i.e., two-dimensional random walk with infinitesimal step lengths) till
it hits the boundary. What is the probability that it hits at one of the
ends rather than at one of the sides?

The ends are the short sides, of length 1, the sides are the long ones, having
length 10. A glance at Figure 10.1 will convince the reader that this yields a prob-

Figure 10.1. A sample path hitting at the upper side

ability p that is much smaller than the other way around with probability 1 − p.
Indeed, as we will see later, p ≈ 4 · 10−7. Thus, 10 digits of 1 − p correspond to
just 4 digits of p; calculating the smaller probability to 10 significant digits is much
more demanding.

The menu for a seven-course meal. Problem 10 is an extremely rich topic and
offers many interesting mathematical dishes. The hors d’oeuvre, served in §10.1,

201

202 Chapter 10. Hitting the Ends

explores the power of a simple stochastic algorithm and gets the order of magni-
tude of p. The deterministic soup, served in §10.2, reformulates the problem as one
about a partial differential equation. The numerical analysis course, served in §10.3,
applies standard finite differences and convergence acceleration to obtain—assured
by tools from scientific computing—at least 10 significant digits. The real analysis
course, served in §10.4, leaves the algorithmic approaches and switches to analyt-
ical techniques. We get a representation of p as an exponentially fast converging
alternating series, allowing us to prove the correctness for any number of significant
digits. As a by-product we get the simple approximation

p
.= 8

π e
−5π to 13 significant digits.

The complex analysis course, served in §10.5, uses conformal mappings to represent
p as the solution of a scalar transcendental equation. The formula platter, served in
§10.6, offers assorted mature samples from elliptic function theory; especially worth
mentioning is a closed-form solution based on Jacobi’s elliptic modular function λ,

p = 2
π arcsin

√
λ(10i),

that can be evaluated to 10 000 significant digits as a matter of seconds. The dessert,
served in §10.7, explores the number λ(10i) with the help of some wonderful results
by Ramanujan, culminating in a closed-form solution in terms of elementary func-
tions,

p = 2
π arcsin

(
(3 − 2

√
2)2(2 +

√
5)2(

√
10 − 3)2(51/4 −

√
2)4

)
.

Bon appetit!

10.1 A First Look: Why Not Monte Carlo?
At a first look, a stochastic problem might be well served by a randomized algorithm
of Monte Carlo type. Such an algorithm is quickly designed and implemented if we
only know that Brownian motion is isotropic: started at the center of a circle, the
probability distribution of hitting at a point of that circle is uniform. This property,
which we will prove in Lemma 10.2, immediately suggests the following algorithm;
in Appendix C.1 the reader will find a short C implementation of it:

Single run: Start at the center of the rectangle and take the largest circle
that fits into the rectangle. Go to a random point on that circle. Repeat
until the point is within distance h to the boundary. Count as a hit of
the ends or the sides, accordingly.

Statistics: Repeat the single run N times and take the relative frequency
of hits of the ends as an approximation of the probability p.

Figure 10.2 shows some typical runs. The algorithm, called walk on spheres, has
been known since about 1956 and—for reasons that will become clear in the next
section—its n-dimensional generalization has been used as a pointwise solver for
Laplace’s equation [DR90].

10.1. A First Look: Why Not Monte Carlo? 203

Figure 10.2. Three runs of the random walk on spheres:
√

3 × 1 rectangle

Since the algorithm yields an approximation of the form p ≈ k/N with k ∈ N0,
we observe that for smaller p we have to choose N larger to get significant results.
To obtain a feel of the problem, we will look, additionally to the 10 × 1 rectangle,
at the 1 × 1 rectangle and the

√
3 × 1 rectangle. For symmetry reasons, the former

obviously has p = 1/2; the probability p of the latter will be explicitly determined
in §10.4.1 and can be used for a “reality check” of a given method.

The application of a Monte Carlo method should always be accompanied by
a careful statistical assessment of the results, cf. [Sok97]; however, since Table 10.1
shows that we utterly fail to get ten digits anyway, we are less demanding and
simply infer the coarse approximations

p|√3 × 1 rectangle ≈ 0.166, p|10 × 1 rectangle ≈ 4 · 10−7. (10.1)

Table 10.1 nicely shows that h enters the run-time complexity just logarithmically;
the error is affected by some power of h, cf. [DR90, p. 131]. The bulk of the error
is of a statistical nature which restricts the accuracy of Monte Carlo methods in
general.

Loosely speaking, a Monte Carlo algorithm constructs by means of a simple
stochastic process, which we have called a “single run” above, a random variable
X, whose expectation value is just the answer to the problem at hand, E(X) = p.
Drawing N independent samples Xk we take the sample mean as an approximation
of p,

SN =
1
N

N∑
k=1

Xk.

204 Chapter 10. Hitting the Ends

Table 10.1. Walk on spheres: results of some experiments

rectangle N h p run-time

1 × 1 107 10−4 4.997816 · 10−1 26 s
108 10−4 4.999777 · 10−1 4 min 25 s√

3 × 1 107 10−4 1.667260 · 10−1 29 s
108 10−4 1.666514 · 10−1 4 min 54 s

10 × 1 107 10−2 4 · 10−7 15 s
107 10−4 2 · 10−7 29 s
108 10−2 3.7 · 10−7 2 min 38 s
108 10−4 4.1 · 10−7 4 min 57 s

Now, the mean quadratic error of the Monte Carlo algorithm is just the variance of
SN and is readily related to the variance of X,

E
(
|SN − p|2

)
= σ2(SN) = 1

N σ
2(X).

The natural concept of error is therefore the concept of absolute error as opposed to
the concept of correct digits, i.e., relative error. Mostly, as with the walk on spheres,
the simple stochastic process is characterized by σ(X) ≈ 1. Thus, N = 108 gives an
absolute error of about 10−4, an estimate that is reflected in the 3 digits asserted
for the

√
3×1 rectangle in (10.1). For the 10×1 rectangle, ten digits of p ≈ 4 ·10−7

would require N as large as N ≈ 1033. This is completely out of the question, if
we note that the totality of arithmetical operations ever carried out by man and
machine is estimated to be just 1024, cf. [CP01, p. 4].

We are lucky: there are much more accurate methods than Monte Carlo avail-
able if we reformulate the problem as a deterministic one.

10.2 Making it Deterministic
What is the mathematical definition of Brownian motion? Either we address it
directly using the language of stochastic calculus and talk about continuous-time
stochastic processes and Wiener measures, or, we approach it as the limit of a 2-
dimensional simple random walk as already indicated in Trefethen’s formulation
of Problem 10. We will follow the latter, less technical approach [Zau89, §1.3]: we
define the probability of hitting at the ends for the random walk and take the limit
of vanishing step length as is schematically depicted in Figure 10.3.

Let n be a positive integer and consider the lattice Lh = hZ × hZ with step
length h = 1/2n. For a simple random walk the transition probability from a lattice
point to one of its nearest neighbors is 1/4. We decompose the boundary of the
rectangle R = (−5, 5) × (−1/2, 1/2) into two parts: the “ends” Γ1 = {(x, y) ∈ ∂R :
x = ±5} and the “sides” Γ0 = ∂R \ Γ1. Rather than speaking of hitting one part
of the boundary before another, it is more convenient to view the boundary as

10.2. Making it Deterministic 205

�� �

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

h

�

Figure 10.3. Approximating Brownian motion with a simple random walk

absorbing. The particle simply stops or ceases to exist at the boundary.
Sometimes in mathematics a problem becomes easier if we try to solve for

more. Here, we try to determine the probability uh(x, y) that a particle starting
at an arbitrary lattice point (x, y) ∈ R ∩ Lh—not just the center (0, 0) of the
rectangle—reaches Γ1.

Since the probability that the particle reaches Γ1 from the point (x, y) can be
expressed in terms of the probability that it moves to any of its nearest neighbors
and reaches Γ1 from there, we obtain the partial difference equation

uh(x, y) =
1
4
(
uh(x+ h, y) + uh(x− h, y) + uh(x, y + h) + uh(x, y − h)

)
with the absorbing boundary conditions uh|Γ1 = 1, uh|Γ0 = 0. Problem 10 is solved
by the limit p = limh→0 uh(0, 0). The difference equation can be recast as a linear
equation in R(2n−1)(20n−1); in §10.3 on numerical methods we will essentially solve
it for several small values of n and extrapolate to the limit n→ ∞.

However, the limit is also accessible to analytical methods. Actually, the dif-
ference equation is quite familiar, as we can see by writing it in the equivalent
form

uh(x+ h, y) − 2uh(x, y) + uh(x− h, y)
h2

+
uh(x, y + h) − 2uh(x, y) + uh(x, y − h)

h2
= 0.

We recognize the well-known five-point discretization of Laplace’s equation

∆u(x, y) =
∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y) = 0 on R

with the Dirichlet boundary conditions u|Γ1 = 1, u|Γ0 = 0. As we will see in §10.3,
the discretization converges pointwise, uh(0, 0) → u(0, 0); hence we have p = u(0, 0).

Such boundary-value problems have been extensively studied in the literature
on potential theory in the plane, cf. [Hen86, §15.5] or [Neh52, §I.10]. Let Ω ⊂ R2 be
a bounded domain and let the boundary be the disjoint union

∂Ω = Γ0 ∪ Γ1 ∪ {t1, . . . , tn},

206 Chapter 10. Hitting the Ends

where Γ0 and Γ1 denote nonempty relatively open subsets of ∂Ω having only finitely
many components. The solution u of the Dirichlet boundary-value problem

∆u = 0 on Ω, u|Γ1 = 1, u|Γ0 = 0, (10.2)

is called the harmonic measure of Γ1 with respect to Ω. Some care has to be exercised
concerning the right notion of a solution. Additionally to (10.2), i.e., that u is
harmonic and takes the boundary values, we require that u is continuous on Ω ∪
Γ0 ∪ Γ1 and bounded on Ω. The finitely many points {t1, . . . , tn} are thus possible
points of discontinuity. Uniqueness of a solution follows from the maximum principle
for bounded harmonic functions [Hen86, Lem. 15.4c], existence will be shown for
rectangles in §10.4. Generally, a solution exists [Hen86, Prop. 15.4b] if no component
of R2 \ Ω reduces to a point.

We are now able to restate Problem 10 compactly in a deterministic fashion:

What value does the harmonic measure of the ends of a 10× 1 rectangle
take at the center?

10.3 Solving it Numerically
We will demonstrate that an efficient and accurate numerical solution of Problem 10
is possible using standard finite differences and acceleration by Richardson extrap-
olation. If we exercise some care and use tools of scientific computing such as a
posteriori error estimation, we can provide very good scientific reasons—though
not a rigorous mathematical proof—for being certain of the correctness of at least
ten digits.

We study a general 2a× 2b rectangle, the “ends” now understood as the two
parallel sides of length 2b, and consider the following Dirichlet problem for Laplace’s
equation,

∆u = 0 on R, u|Γ1 = 1, u|Γ0 = 0. (10.3)

The rectangle and its boundary are denoted by

R = (−a, a) × (−b, b) , Γ1 = {−a, a} × (−b, b) , Γ0 = (−a, a) × {−b, b} .

We discretize the problem using a finite-difference grid Rh on R with 2nx − 1 grid
points in the x-direction and 2ny − 1 grid points in the y-direction,

Rh = R ∩ (hxZ × hyZ) , hx = a/nx, hy = b/ny.

To obtain a nearly uniform grid, hx ≈ hy, we choose nx = r · n and ny = s · n
with n ∈ N such that the aspect ratio ρ = a/b is approximated as ρ ≈ r/s with
small integers r, s. We define h = 1/n as the discretization parameter. The discrete
boundary Γh = ∂R ∩ (hxZ × hyZ) decomposes into the two parts

Γ1,h = {(x, y) ∈ Γh : x = ±a}, Γ0,h = Γh \ Γ1,h.

10.3. Solving it Numerically 207

The five-point discretization of (10.3) is the linear equation, for (x, y) ∈ Rh,

h−2
x uh(x+ hx, y) + h−2

x uh(x− hx, y)

+ h−2
y uh(x, y + hy) + h−2

y uh(x, y − hy)

− 2
(
h−2

x + h−2
y

)
uh(x, y) = 0

with uh : Rh ∪ Γh → R a grid function that satisfies the boundary conditions

uh|Γ1,h
= 1, uh|Γ0,h

= 0.

After elimination of the boundary points, we get a large linear system of dimension
N = (2nx−1)(2ny−1) for the values of uh at the interior grid points Rh, compactly
written as

Ahxh = bh. (10.4)

Here, Ah ∈ RN×N is a symmetric positive definite, sparse matrix having five nonzero
diagonals. There are various methods at hand to solve equation (10.4), cf. [Dem97,
p. 277, Table 6.1]. The optimal run-time complexity of O(N) is achieved by the itera-
tive multigrid method. Fairly easy to code in Matlab are two direct methods: sparse
Cholesky decomposition of complexity O(N3/2) and the FFT-based fast Poisson
solver of complexity O(N logN), cf. [Dem97, §6.7]. In Appendix C.3.2 the reader
will find the short Matlab program poisson that realizes the two solvers. For a grid
with N = 2559 × 255 = 652 545 unkowns, on a 2 GHz PC, the sparse Cholesky
decomposition needs about 60 seconds, the fast Poisson solver just 2 seconds.

How accurate is the approximation ph = uh(0, 0) ≈ p? Before we discuss the
question of the discretization error, we have to realize that because of roundoff
errors the linear solver will not really calculate uh but some perturbed grid function
ûh instead. Since the linear system is rather badly conditioned, this numerical error
can be of considerable size.

10.3.1 Assessment of the Linear Solver

A forward-stable linear solver [Hig96, §7.6] such as the Cholesky decomposition or
the fast Poisson solver is guaranteed to stay within the a priori error estimate

‖uh − ûh‖∞ � c κ∞(Ah) εM ‖uh‖∞, (10.5)

where c is a constant that depends on the solver, κ∞(Ah) is the condition number
of the matrix Ah, and εM denotes the machine precision or unit roundoff.1 It is
known that in two dimensions the condition number scales like κ∞(Ah) ∝ N , cf.
[Hac92, Thm. 4.4.1]. Now, for the problem with aspect ratio ρ = a/b = 10 we have
‖uh‖∞ = 1 and p ≈ 4 · 10−7. Thus, on a N = 2559 × 255 grid, using IEEE double-
precision with εM ≈ 10−16, and assuming reasonable constants, at the center of the
rectangle we would just get some estimate like

|p̂h − ph| � 10−4|ph|.
1In the literature the unit roundoff is often denoted by u. To avoid confusion with the solution

of Laplace’s equation (10.3) we have changed the notation for the purposes of this section.

208 Chapter 10. Hitting the Ends

If this estimate were sharp, only about 4 digits would be correct: a dramatic setback
in view of the task to deliver ten correct digits.

A Matlab session.

>> h = 1/128; % N = 2559 x 255
>> p = poisson([0,0],[10,1],0,[1,1,0,0],’Cholesky’,h)

p = 3.838296382528924e-007

>> p = poisson([0,0],[10,1],0,[1,1,0,0],’FFT’,h)

p = 3.838296354378100e-007

Both methods solve the same linear equation, but they agree to only about 8 digits
on a N = 2559 × 255 grid. Are both linear solvers affected, or just one?

To answer this question we have to pursue a finer analysis, using the a posteri-
ori error estimator that we introduced in §7.4.1. The results are shown in Table 10.2.
For the Cholesky solver, we observe an estimated relative error of p̂h that scales ap-

Table 10.2. Estimated relative error of the linear solver, ρ = a/b = 10.

grid 159 × 15 319 × 31 639 × 63 1279 × 127 2559 × 255

Cholesky 8.3 · 10−14 3.9 · 10−13 1.5 · 10−12 6.7 · 10−12 2.6 · 10−11

fast Poisson 5.4 · 10−9 1.3 · 10−8 1.3 · 10−7 2.9 · 10−7 2.0 · 10−6

proximately like 0.4NεM , nicely reflecting the theoretical prediction (10.5) of the
norm-wise relative error. The estimated relative error of the fast Poisson solver is
five orders of magnitude larger. Thus, most probably, the first number of the above
Matlab session is correct to at least ten digits, the second one—as indicated by the
difference—only to about eight.

The lesson to be learned is that we should use the sparse Cholesky solver here
and stay with small grids.

10.3.2 Discretization Error and Extrapolation

The five-point discretization is of second order. We need to know more; the well-
founded application of Richardson extrapolation (see Appendix A, p. 238) for con-
vergence acceleration and error estimation requires the validity of an asymptotic
expansion

uh(x, y) = u(x, y) +
m∑

k=1

ek(x, y)hγk +O(hγm+1) (10.6)

with γ1 < γ2 < . . . < γm+1. It is well known, cf. [MS83, Thm. 4.2.1], that the
five-point discretization of 2-dimensional Poisson problems on smooth domains with
smooth data has γk = 2k, if the boundary is appropriately dealt with. For polygonal

10.3. Solving it Numerically 209

domains and boundary conditions with jumps, like problem (10.3), the asymptotic
expansion (10.6) does not hold uniformly in (x, y). Folklore states that the asymp-
totic expansion for interior points can be severely polluted by boundary effects.

There is a less well known, extremely careful analysis of the Dirichlet problem
for Laplace’s equation on a rectangle by Hofmann; [Hof67, Thm. 2] allows one
to determine the exponents γk from the boundary data. In our case of harmonic
measures, [Hof67, p. 309, Rem. 1] shows that

γk = 2k, k ∈ N,

and the asymptotic expansion (10.6) holds for all m ∈ N,

uh(x, y) = u(x, y) +
m∑

k=1

ek(x, y)h2k +O(h2m+2). (10.7)

The estimate holds uniformly in h, but not so in (x, y). Near to the boundary, the
constants involved may be large.

Writing e∗ = e1(0, 0) we obtain

ph − p = e∗h2 +O(h4), p2h − ph = 3e∗h2 +O(h4).

A comparison yields an a posteriori estimate2 for the relative discretization error of
ph, namely

ph − p

p
=
p2h − ph

3ph︸ ︷︷ ︸
=εh

+ O(h4).

Table 10.3 shows the results of the Cholesky solver together with the estimate of the
relative discretization error for the same grids as in Table 10.2. Since for those grids
we know from the latter table that the Cholesky solver is correct to at least the given
ten digits; we therefore no longer distinguish between p̂h and ph. The last column
of Table 10.3 nicely reflects that the discretization is of second order. We learn that

Table 10.3. A posteriori error estimate εh for ph (Cholesky solver).

grid h ph εh ε2h/εh

159 × 15 1/8 4.022278462 · 10−7 — —
319 × 31 1/16 3.883130701 · 10−7 1.2 · 10−2 —
639 × 63 1/32 3.848934609 · 10−7 3.0 · 10−3 4.0

1279 × 127 1/64 3.840422201 · 10−7 7.4 · 10−4 4.0
2559 × 255 1/128 3.838296383 · 10−7 1.8 · 10−4 4.0

on the 2559 × 255 grid ph is an approximation of p just good to about 3 correct
2Such estimates are crucial for the success of state-of-the-art extrapolation codes with order

and step-size control for systems of ordinary differential equations [DB02, §5.3].

210 Chapter 10. Hitting the Ends

digits. Further refinement would not pay off, for reasons of computer memory and
run-time; and because the error of the linear solver would start touching the tenth
digit.

We have to increase the accuracy of the discretization by convergence accelera-
tion. The idea is simple; if we substract the error estimate, we obtain a discretization
of increased order,

p′h = ph + 1
3 (ph − p2h) = p+O(h4).

This new approximation inherits the asymptotic expansion (10.7),

p′h = p+
m∑

k=2

e′∗,kh
2k +O(h2m+2),

now starting with the O(h4) term. Completely analogously to what we have done
for ph, we can construct an a posteriori error estimate and repeat the process.
This is Richardson extrapolation for a sequence of grids with discretization pa-
rameters h, h/2, h/4, h/8, etc. It is fairly obvious how to generalize for arbitrary
sequences; a good compromise between stability and efficiency is h = 1/(2n) for
n = nmin, nmin +1, . . . , nmax. In Appendix C.3.2 the reader will find the short Mat-
lab program richardson that implements this general extrapolation technique with
a posteriori estimation of the relative discretization error. Additionally, it contains
a running error analysis [Hig96, §3.3] of the amplification of the relative error that
was produced by the linear solver. By Table 10.2, the error of the linear solver is
below 3.9 · 10−13.

A Matlab session.

>> f = inline(’poisson([0,0],[10,1],0,[1,1,0,0],sol,h)’,’sol’,’h’);
>> order = 2; nmin = 4; tol = 1e-11;
>> [p,err,ampl] = richardson(tol,order,nmin,f,’Cholesky’);
>> p, err = max(err,ampl*3.9e-13)

p = 3.837587979250745e-007
err = 3.325183129259237e-011

The run-time on a 2 GHz PC is less than half a second. The extrapolation is based
on the grids 159× 15, 199× 19, 239× 23, 279× 27, 319× 31. The estimated relative
error is 3.3 ·10−11. Thus, to the best of our numerical knowledge, the approximation
of p is correct to at least ten digits,

p|ρ=10
.= 3.8375 87979 · 10−7,

and Problem 10 is solved.
The analytical method of the next section will prove that the numerical solu-

tion given by the Matlab session above is in fact good for 12 digits. We overestimated
the error by just two orders of magnitude, not bad at all.

10.4. Solving it Analytically I: Separation of Variables 211

10.4 Solving it Analytically I: Separation of Variables
A traditional analytical technique for solving boundary-value problems such as
(10.3) is separation of variables. Essentially, this technique is applicable if the un-
derlying geometry is rectangular, the differential equation is homogeneous, and the
boundary conditions on two opposite sides are homogeneous.

Separation of variables tries the tensor-product Ansatz

u(x, y) =
∞∑

k=0

vk(x) · wk(y)

with the idea that every term of the sum solves the differential equation and that
the sum is responsible for matching the boundary data. Plugging vk(x)wk(y) into
Laplace’s equation gives

v′′k (x)wk(y) + vk(x)w′′
k(y) = 0, i.e. v′′k (x)/vk(x) = −w′′

k(y)/wk(y) = λk.

Since the ratio λk depends only on x and simultaneously only on y, it depends on
neither and is a constant. The homogeneous boundary conditions at Γ0 are easily
matched if we require wk(−b) = wk(b) = 0. Hence, any wk �≡ 0 solves the second
order eigenvalue problem

w′′
k(y) + λkwk(y) = 0, wk(−b) = wk(b) = 0. (10.8)

Because the boundary values at x = ±a are even functions of y, it suffices to look
for even solutions wk(y). It is readily checked that all those solutions are given by

wk(y) = cos
(
(k + 1/2)πy/b

)
, λk =

(
(k + 1/2)π/b

)2
, k ∈ N0.

To match the boundary conditions at Γ1, we calculate the coefficients (ck)k�0 of
the series representation

∞∑
k=0

ck wk(y) = 1, y ∈ (−b, b).

Orthogonality and completeness of the eigenfunctions wk yields

ck

∫ b

−b

w2
k(y) dy =

∫ b

−b

wk(y) dy, i.e., ck b =
4(−1)k

π(2k + 1)
b.

This way we obtain for vk the boundary-value problem

v′′k (x) − λkvk(x) = 0, vk(−a) = vk(a) = ck =
4 (−1)k

π (2k + 1)
.

A short calculation, or a resort to Mathematica’s DSolve or Maple’s dsolve com-
mand, shows that the solution is given by

vk(x) =
4 (−1)k

π(2k + 1)
cosh

(
(k + 1/2)πx/b

)
cosh

(
(k + 1/2)πa/b

) .

212 Chapter 10. Hitting the Ends

Summarizing, the solution of (10.3) reads as

u(x, y) =
4
π

∞∑
k=0

(−1)k

2k + 1
cosh

(
(k + 1/2)πx/b

)
cosh

(
(k + 1/2)πa/b

) cos
(
(k + 1/2)πy/b

)
,

which is a Fourier series with respect to y. In principle, there are two approaches
to showing that this really is the bounded solution of (10.3). One approach [Rau91,
§5.7] uses the completeness of the eigenfunctions of (10.8) in L2(0, b) and proves
the success of the method a priori. The other approach [Zau89, §4.4] exploits the
exponentially fast convergence of the resulting series to prove the boundedness,
differentiate term by term, and show that it solves the equation a posteriori.

At the center of the rectangle, the solution p = u(0, 0) simplifies to

p =
4
π

∞∑
k=0

(−1)k

2k + 1
sech

(
(2k + 1)πρ/2

)
, (10.9)

where we denote the aspect ratio of the rectangle by ρ = a/b. Now, this is an
alternating series, whose terms are in absolute value monotonically decreasing to
zero; consequently the series converges to a value which is always enclosed between
two successive partial sums. Thus, merely a few terms of the exponentially fast
converging series will give an accurate result together with a proven error bound.
For ρ = 10 already the first two terms give the estimate

3.8375 87979 25122 8 · 10−7 .= 4
π sech(5π) − 4

3π sech(15π)

< p|ρ=10 < 4
π sech(5π) .= 3.8375 87979 25125 8 · 10−7.

The numbers given were computed using Matlab’s IEEE double-precision machine
arithmetic. Because the library routine for sech computes a result within machine
precision, many would say that the argument qualifies as a proof 3 that the first 14
correct digits of p are

p|ρ=10
.= 3.8375 87979 2512 · 10−7.

The first term of the series, 4
π sech(ρπ/2), allows for the further simplified approxi-

mation
p = 4

π sech(ρπ/2) +O(e−3πρ/2) = 8
π e

−πρ/2 +O(e−3πρ/2).

For ρ � 1, Figure 10.5 shows that p ≈ 8
π e

−πρ/2 is good to plotting accuracy, while

p|ρ=10
.= 8

π e
−5π to 13 significant digits.

10.4.1 Intermezzo à la Cauchy

Exchanging the roles of a and b gives by symmetry the probability that the particle
reaches the sides rather than the ends. Clearly, the two probabilities add to one,

p|ρ=a/b + p|ρ=b/a = 1.
3For those readers who need more evidence: a computer-assisted proof taking roundoff into

account can be constructed along the lines presented in §8.3.2.

10.4. Solving it Analytically I: Separation of Variables 213

Using the series representation (10.9) we obtain the remarkable identity

∞∑
k=0

(−1)k

2k + 1
(
sech

(
(2k + 1)πρ/2

)
+ sech

(
(2k + 1)πρ−1/2

))
=
π

4
, (10.10)

which is valid for all ρ > 0. The specific case ρ = 1 simplifies to

∞∑
k=0

(−1)k

2k + 1
sech

(
(2k + 1)π/2

)
=
π

8
,

while the limit ρ→ ∞ recovers the Leibniz series

∞∑
k=0

(−1)k

2k + 1
=
π

4
.

It is interesting to note that the identity (10.10), and the additional explicit value
p|ρ=

√
3, were obtained as early as 1827 by Cauchy [Cau27] as an application of his

residue calculus—in the same memoir in which he for the first time used contour
integrals along circles in a systematic way [Smi97, §5.10]. The identity was later
rediscovered by Ramanujan and can be found as an entry in his notebooks [Ber89,
Entry 15, p. 262].

Lemma 10.1 (Cauchy 1827 [Cau27, form. (86/87)]).

(i) For η ∈ C \ R

∞∑
k=0

(−1)k

2k + 1
(
sec

(
(2k + 1)πη/2

)
+ sec

(
(2k + 1)πη−1/2

))
=
π

4
.

(ii) For η ∈ C \ R

∞∑
n=1

(−1)n−1

n

(
csc(nπη) + csc(nπη−1)

)
=

π

12
(η + η−1).

Proof. Note that both series are absolutely and therefore unconditionally conver-
gent.

(i) The function sec(πz) sec(πηz) tends to zero uniformly in arg z when |z| = k,
z ∈ C, and k → ∞ through integral values; consequently by Cauchy’s residue
theorem [Hen74, Thm. 4.7a], the sum of the residues of

π sec(πz) sec(πηz)
z

at all of its poles is zero. The determination of the residues is straightforward using
the conventional formulas [Hen74, form. (4.7-9/10)], or by using Mathematica’s

214 Chapter 10. Hitting the Ends

Residue or Maple’s residue command. The residue at the simple pole z = k+1/2,
with k ∈ Z, is

(−1)k−1

k + 1/2
sec

(
(k + 1/2)πη

)
;

the residue at the simple pole z = (k + 1/2)/η, with k ∈ Z, is

(−1)k−1

k + 1/2
sec

(
(k + 1/2)π/η

)
;

and the residue at the simple pole z = 0 is π. Hence

∑
k∈Z

(−1)k

k + 1/2
(
sec

(
(k + 1/2)πη

)
+ sec

(
(k + 1/2)π/η

))
= π,

which is the result stated.
(ii) The function csc(πz) csc(πηz) tends to zero uniformly in arg z when |z| =

n + 1/2, z ∈ C, and n → ∞ through integral values; consequently by Cauchy’s
residue theorem [Hen74, Thm. 4.7a], the sum of the residues of

π csc(πz) csc(πηz)
z

at all of its poles is zero. The residue at the simple pole z = ±n, with n ∈ N, is

(−1)n

n
csc(nπη);

the residue at the simple pole z = ±n/η, with n ∈ N, is

(−1)n

n
csc(nπ/η);

and the residue at the pole z = 0 of order three is

π

6
(η + η−1).

Hence

2
∞∑

n=1

(−1)n−1

n
(csc(nπη) + csc(nπ/η)) =

π

6
(η + η−1),

which is the result stated.

If we put η = iρ in (i) we recover our remarkable identity (10.10). Cauchy’s
relation (ii) evaluates to a new specific value of p if we put η = eiπ/3 = (1+ i

√
3)/2.

Because η + η−1 = 1 and

csc
(
nπeiπ/3

)
+csc

(
nπe−iπ/3

)
=

{
0, n = 2k,

2(−1)ksech
(
(2k + 1)π

√
3/2

)
, n = 2k + 1,

10.5. Solving it Analytically II: Conformal Mapping 215

we obtain from (ii), as Cauchy [Cau27, form. (110)] did in 1827,

∞∑
k=0

(−1)k

2k + 1
sech

(
(2k + 1)π

√
3/2

)
=

π

24
, i.e., p|ρ=

√
3 =

1
6
. (10.11)

This is a remarkable, unexpectedly explicit result, which we can formulate as:

The probability that a particle undergoing Brownian motion reaches the
ends of a

√
3 × 1 rectangle from the center is 1/6.

10.5 Solving it Analytically II: Conformal Mapping
The conformal transplant of a harmonic function, i.e. the pull-back under a con-
formal one-to-one mapping, is again harmonic. For simply connected regions Ω ⊂
R2 = C this is readily proved by observing that any harmonic function u : Ω → R

is the real part of an analytic function on Ω [Hen86, Thm. 15.1a]. Therefore, con-
formal transplants of harmonic measures are again harmonic measures. Even more,
a conformal transplant of a Brownian motion is again a Brownian motion.

The idea is now to map the 2a × 2b rectangle conformally and one-to-one to
a domain for which the harmonic measure can easily be evaluated at the image of
the center. Which domain qualifies as easy enough?

Quite remarkably, for the specific case of a
√

3 × 1 rectangle, starting from a
regular hexagon and using only reflections and symmetries, Hersch [Her83] was able
to prove the result p|ρ=

√
3 = 1/6 of (10.11).4

The general case is best dealt with using the unit disk.

Lemma 10.2. Let Γ1 be a finite union of open arcs of the unit circle having length
2πp. The harmonic measure of Γ1 with respect to the unit disk D evaluated in the
center of D is p.

Proof. We give a proof that conveys the geometrical flavor of the problem. Let
Γ1 be a single arc of length 2π/n for some n ∈ N. We can cover the circle up to
n points by n suitable rotated copies of Γ1. Adding their harmonic measures just
gives the harmonic measure of the circle itself, which is identically to 1. Since the
value of the harmonic measure at the center is invariant under rotations, we get
u(0) = 1/n. Now, patching m ∈ N suitable rotated copies of the arc Γ1 together
shows that the harmonic measure of a single arc of length 2πm/n gives u(0) = m/n.
Using monotonicity and enclosure by rationals allows to conclude that a single arc
of arbitrary length 2πp gives u(0) = p. Adding the harmonic measures for single
arcs finishes the proof for finite unions.

We now construct a suitable conformal mapping of the unit disk D to the
2a × 2b rectangle R. We place the rectangle in such a way that the real and the

4Have a look at his sequence of figures 7, 7′, 7′′, 11′′, 13, 41′′, 41 and admire a proof without
words and calculations.

216 Chapter 10. Hitting the Ends

Re(z)

Im(z)

φ

�
A′

�
B′

�

C′
�

D′

Re(w)

Im(w)

�A�B

�

C
�

D

w = f(z)

Figure 10.4. Symmetry preserving conformal mapping f : D → R

imaginary axis are the axes of symmetry. The vertices of the rectangle are then
given by

(A,B,C,D) = (a+ ib,−a+ ib,−a− ib, a− ib).

By the Riemann mapping theorem [Hen74, Cor. 5.10c] and the reflection principle
of Riemann and Schwarz [Hen74, Thm. 5.11b], there is a conformal one-one map
f : D → R that respects the symmetries, cf. Fig 10.4,

f(−z) = −f(z), f(z) = f(z). (10.12)

In particular we have f(0) = 0: the center of the rectangle is the image of the
center of the disk. By the Osgood–Carathéodory theorem [Hen86, Thm. 16.3a] the
conformal mapping f extends as a homeomorphism of the closure of D onto the
closure of R. The preimages of (A,B,C,D) are therefore

(A′, B′, C ′,D′) =
(
eiφ/2,−e−iφ/2,−eiφ/2, e−iφ/2

)
for some angle 0 < φ < π. By taking Γ1 as the union of the arc from B′ to C ′

and the arc from D′ to A′, Lemma 10.2 and the invariance of the value p of the
harmonic measure at the center show that

φ = p π.

The conformal transformation f is explicitly given by the Schwarz–Christoffel for-
mula [Hen86, form. (16.10-1)],

f(z) = 2c
∫ z

0

dζ√
(1 − e−ipπ/2ζ)(1 + eipπ/2ζ)(1 + e−ipπ/2ζ)(1 − eipπ/2ζ)

= 2c
∫ z

0

dζ√
(1 − e−ipπζ2)(1 − eipπζ2)

.

10.5. Solving it Analytically II: Conformal Mapping 217

0 1/2 1
0

Probability p

ar
cc

ot
(ρ

)

π/2

π/4

0 1 5 10 12
10

−8

10
−6

10
−4

10
−2

10
0

Aspect ratio ρ

Pr
ob

ab
ili

ty
 p

√3

1/2
1/6

p|ρ=10

p

8e−π ρ/2/π

Figure 10.5. The relation of aspect ratio ρ and probability p

Here, the integral is taken along any path connecting 0 and z within the disk D.
The symmetries (10.12) imply that the unknown parameter c is real. Evaluation of
f(A′) = A along the radial path ζ = eipπ/2t with t ∈ [0, 1] yields

a+ ib = 2c
∫ eipπ/2

0

dζ√
(1 − e−ipπζ2)(1 − eipπζ2)

= 2c eipπ/2

∫ 1

0

dt√
(1 − t2)(1 − e2ipπt2)

= 2c eipπ/2K(eipπ), (10.13)

where K(k) denotes the complete elliptic integral of the first kind of modulus k,

K(k) =
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

. (10.14)

Taking the complex arguments of both sides in (10.13) yields a transcendental
equation relating the aspect ratio ρ = a/b of the rectangle and the answer to the
problem at hand, the probability p,

arccot ρ =
p π

2
+ argK(eipπ). (10.15)

Figure 10.5 shows that given a ratio ρ > 0 there is a unique solution 0 < p < 1.

10.5.1 Solving the Transcendental Equation

Mathematica and Maple provide the complete elliptic integral K for complex ar-
guments. Their root-finders, based on the secant method, can therefore readily be
used to solve (10.15) for p at ρ = 10.

218 Chapter 10. Hitting the Ends

A Maple session.

> p:= rho->fsolve(
> arccot(rho)=P*Pi/2+argument(EllipticK(exp(I*P*Pi))),P=1e-3):
> Digits:= 16: p(10);

0.3837587979251226e-6

> Digits:= 17: p(10);

0.38375879792512261e-6

A Mathematica session.

p�Ρ ,prec � �� Block��$MinPrecision � prec�,

p/.FindRoot�ArcCot�Ρ� ��
p Π

2
	 Arg�EllipticK�
2 � p Π��,

�p,10�8,10�3�,AccuracyGoal � prec,WorkingPrecision � prec��
�Precision �� #,p� �� p�10,#��&/@�MachinePrecision,17�//TableForm

Precision �� MachinePrecision p� �� 3.837587979228946 � 10�7

Precision �� 17 p� �� 3.8375879792512261 � 10�7

Note that Mathematica evaluates K as a function of the parameter m = k2.

At a precision of 17 digits both programs agree to all digits given. A com-
parison with the method of §10.4 reveals that all the digits are in fact correct. At
16 digits’ precision, however, Maple gives 16 correct digits, but Mathematica only
about 10.

What has happened? At 16-digit precision Mathematica uses IEEE double-
precision machine numbers and stops monitoring numerical errors. It is now the
user’s responsibility to not use numerically unstable formulas and algorithms. The
loss of 6 digits points to a severe numerical instability in using the transcendental
equation (10.15) naively.

In fact, evaluating argK(eipπ) for small p by just using the expression as
given is unstable. A look at Figure 10.5 shows that argK(eipπ) is zero for p = 0 and
depends very sensitively on small p. However, if the intermediate quantity eipπ ≈ 1
is calculated, we loose irretrievably part of the valuable information on the last
digits of p: a kind of “hidden” cancellation effect.

The instability can be avoided if we have a closer look at how K(k) is ac-
tually calculated. Essentially, all efficient implementations use the relation [BB87,
Alg. 1.2(a)]

K(k) =
π

2M(1,
√

1 − k2)
(10.16)

of the complete elliptic integral K with the exceedingly fast arithmetic-geometric
mean M(a, b) of Gauss,

M(a, b) = lim
n→∞ an = lim

n→∞ bn; a0 = a, b0 = b, an+1 =
an + bn

2
, bn+1 =

√
anbn.

10.6. The Joy of Elliptic Functions 219

The iteration converges quadratically. The relation (10.16) extends from 0 � k < 1
by analytic continuation to all k2 ∈ C\ [1,∞), if the sign of square roots is generally
understood to give a positive real part, cf. [Cox84]. For k = eiφ with φ > 0 small,
the cancellation effect becomes plain in 1 − k2 and is circumvented by observing

1 − e2iφ = −2i sin(φ) eiφ,
√

1 − e2iφ = (1 − i)
√

sin(φ) eiφ/2.

Summarizing, we obtain the stabilized equation

arccot ρ =
p π

2
− argM

(
1, (1 − i)

√
sin(p π) eipπ/2

)
.

We are now able to calculate 14 correct digits using IEEE double-precision.

A Mathematica session. (The session of p. 218 revisited)

p� ��

�p/.

FindRoot�
ArcCot�10� ��

p Π

2
� Arg�ArithmeticGeometricMean�1,
1 � ��

�
Sin�p Π�
� p Π/2��,

�p,10�8,10�5�,AccuracyGoal � MachinePrecision��
p� �� 3.837587979251236 � 10�7

After the easy exercise of implementing the arithmetic-geometric mean in
Matlab, Matlab’s fzero command just gives the same result.

10.6 The Joy of Elliptic Functions
Elliptic function theory will supply us with a plethora of wonderful formulas and,
in the end, even with a closed-form solution of Problem 10.

We first separate real and imaginary parts in (10.13). We use the conventional
notation k′ =

√
1 − k2 and K ′(k) = K(k′).

Lemma 10.3. For 0 < φ < π holds

eiφ/2K(eiφ) =
1
2
(
K ′(sin(φ/2)) + iK(sin(φ/2))

)
.

Proof. We give two proofs, one using some of the many useful transformations of
elliptic integrals known in the literature and one self-contained, elementary that we
owe to John Boersma.

220 Chapter 10. Hitting the Ends

(i) Using Landen’s transformation [BB87, Thm. 1.2(b)] and Jacobi’s imaginary
quadratic transformation [BB87, Ex. 3.2.7(d)] we conclude that

K

(
k′ − ik

k′ + ik

)
= K

(
1 − ik/k′

1 + ik/k′

)
=

1 + ik/k′

2
K ′(ik/k′)

=
1 + ik/k′

2
k′(K ′(k) − iK(k)) =

k′ + ik

2
(K ′(k) − iK(k)).

Taking the complex conjugate and putting k = sin(φ/2), and therefore k′ = cos(φ/2),
yields the result stated.

(ii) We go back to (10.13), now taking a path that connects 0 and eiφ/2 by first
following the real axis from 0 to 1 and then the circular arc ζ = eiθ for 0 � θ � φ/2,

eiφ/2K(eiφ) =
∫ eiφ/2

0

dζ√
(1 − e−iφ ζ2)(1 − eiφ ζ2)

=
∫ 1

0

dζ√
1 − 2ζ2 cosφ+ ζ4

+
∫ eiφ/2

1

dζ√
1 − 2ζ2 cosφ+ ζ4

.

By the substitution t = 2ζ/(1 + ζ2), and taking the definition (10.14) of K into
account, the first integral reduces to

1
2

∫ 1

0

dt√
(1 − t2)(1 − cos2(φ/2) t2)

=
1
2
K(cos(φ/2)) =

1
2
K ′(sin(φ/2)).

Analogously, by the subsitution t = i(1 − ζ2)/(2ζ sin(φ/2)) the second integral
reduces to

i

2

∫ 1

0

dt√
(1 − t2)(1 − sin2(φ/2) t2)

=
i

2
K(sin(φ/2)).

This proves the result stated.

Now, equation (10.13) transforms to

a = cK ′(sin(pπ/2)), b = cK(sin(pπ/2)),

or, after elimination of c,

ρ =
K ′(sin(pπ/2))
K(sin(pπ/2))

. (10.17)

We could have used this equation instead of (10.15) to solve numerically for p
given ρ = 10. Note, however, that the same cautionary remarks about numerical
instability as in §10.5.1 apply here. Along the same lines, using the arithmetic-
geometric mean, a stable variant reads as

ρM(1, sin(pπ/2)) = M(1, cos(pπ/2)).

10.6. The Joy of Elliptic Functions 221

Introducing the elliptic nome q and the Weierstrassian ratio τ of periods,

q = eiπτ , τ = i
K ′(k)
K(k)

,

we deduce from (10.17) the following dictionary between the parameters ρ and p of
the problem at hand and the conventional quantities in elliptic function theory,

q = e−πρ, τ = i ρ, k = sin(pπ/2). (10.18)

Thus, solving for the elliptic modulus k given the nome q is essentially equivalent
to solving for the probability p given the aspect ratio ρ. The sech-series (10.9) of
§10.4 accomplishes such a solution; we have thus proven the identity

1
2 arcsin k =

∞∑
n=0

(−1)n

2n+ 1
sech

(
(2n+ 1)πρ/2

)
= 2

∞∑
n=0

(−1)n qn+1/2

(2n+ 1)(1 + q2n+1)
,

which was originally obtained by Jacobi in his seminal 1829 treatise on elliptic
integrals and functions [Jac29, p. 108, form. (46)]. By expanding 1/(1 + q2k+1) into
a geometric series and changing the order of summation, Jacobi obtains (“quae in
hanc facile transformatur”) [Jac29, p. 108, form. (47)]

arcsin k = 4
∞∑

n=0

(−1)n arctan qn+1/2,

“which”, as he proudly exclaims, “one is obliged to rank among the most elegant
formulas” [quae inter formulas elegantissimas censeri debet]. For ρ = 10, using the
same argument as at the end of §10.4, the first two terms of the series yield the
estimate

3.8375 87979 25122 9 · 10−7 .= 8
π

(
arctan e−5π − arctan e−15π

)
< p|ρ=10 < 8

π arctan e−5π .= 3.8375 87979 25131 6 · 10−7.

Hence, 8 arctan(e−5π)/π is an approximation to p|ρ=10 that is good for 13 correct
digits. Or, even simpler, because it agrees to the first 13 digits, 8e−5π/π.

In terms of τ the determination of k is accomplished by the classical elliptic
modular function k2 = λ(τ). Using the dictionary (10.18) we can therefore write

p =
2
π

arcsin
√
λ(iρ). (10.19)

Mathematica provides the command ModularLambda for the evaluation of λ(τ) that
employs exponentially fast converging series like (10.9) in terms of theta functions.

A Mathematica session.

N�2

Π
ArcSin��ModularLambda�10���,100�

3.8375879792512261034071331862048391007930055940725095690300227991734

6606852743276500842845647269910 � 10�7

222 Chapter 10. Hitting the Ends

All 100 digits given are correct; we could equally well get 10 000 significant digits
in about two seconds on a 2 GHz PC.

Whether (10.19) counts as a closed-form solution or not is a matter of taste.
It depends on whether we view λ(τ) as a mere notation or as a useful function from
the canon with efficient algorithms to evaluate at hand. However, there is another
solution that is closed-form under anyone’s definition, and so eliminates this debate
entirely.

10.7 Finale à la Ramanujan: Singular Moduli
Abel discovered that certain values of k, called singular moduli, led to elliptic inte-
grals that could be algebraically transformed into complex multiples of themselves.
This phenomenon came to be called complex multiplication. The singular moduli
with purely imaginary period ratio τ are given by the equation

K ′(kr)
K(kr)

=
√
r, r ∈ Q>0.

In view of (10.17) and the dictionary (10.18), the singular moduli are connected to
the problem at hand by

p = 2
π arcsin kρ2 , ρ2 ∈ Q.

Abel stated as early as 1828, and Kronecker proved in 1857, that the singular
moduli are algebraic numbers that can be expressed by radicals over the ground
field of rational numbers:5 the classical form of a closed-form solution. His study
led Kronecker to his conjecture about abelian extensions of imaginary quadratic
fields, Kronecker’s famous “Jugendtraum”, subject of Hilbert’s 12th problem, solved
by one of the pearls of 20th century pure mathematics, class field theory. The
wonderful book [Cox89] of Cox offers an accessible modern introduction to complex
multiplication and class field theory, driven by history and a concrete problem of
number theory. By the efforts of Weber, Ramanujan, Watson, Berndt and others,
radical expressions of singular moduli kn for various n ∈ N have actually been
calculated. Using the explicit values so far known for the probability p from §10.4.1,

p|ρ=1 = 1
2 , p|ρ=

√
3 = 1

6 ,

we are readily able to calculate the radical expressions of k1 and k3 ourselves,

k1 = sin(π/4) = 1/
√

2, k3 = sin(π/12) = (
√

3 − 1)/
√

8;

further examples of kn for small integer n are shown in Table 10.4. To solve Prob-
lem 10, we need to know k100. Weber has it in a large list of class invariants at

5Arithmetically, the singular moduli have a most appropriate name. From a 1937 theorem of
Schneider it follows that for algebraic τ = iρ with positive imaginary part, other than a quadratic
irrational, k is transcendental [Bak90, Thm. 6.3].

10.7. Finale à la Ramanujan: Singular Moduli 223

Table 10.4. Some singular moduli kn; [Zuc79, Table 4]

n kn

1 1/
√

2
2

√
2 − 1

3 (
√

3 − 1)/(2
√

2)
4 3 − 2

√
2

5
(√√

5 − 1 −
√

3 −
√

5
)
/2

6 (2 −
√

3)(
√

3 −
√

2)
7 (3 −

√
7)/(4

√
2)

8 (
√

2 + 1)2
(
1 −

√
2
√

2 − 2
)2

9 (
√

2 − 31/4)(
√

3 − 1)/2
10 (

√
10 − 3)(

√
2 − 1)2

the end of his 1891 book [Web91, p. 502]; for n even he employs the class invariant
f1(

√
−n) = 6

√
2 12
√
k′2n /kn [Web91, p. 149] and gets

8
√

2 f1(
√
−100) = x, x2 − x− 1 =

√
5 (x+ 1).

Certainly, this qualifies as an expression in radicals for k100. It is, however, not
particularly attractive and does not display the fact that, for n a positive integer,
kn enjoys further arithmetic properties and is—up to a power of

√
2—a unit6 in

some algebraic number field, cf. Table 10.5. Ramanujan was prolific in creating
formulas representing singular moduli as a product of simple units. Here is the
famous example from his February 27, 1913, letter to Hardy [BR95, p. 60]:

k210 =

(
√

2−1)2(2−
√

3)(
√

7−
√

6)2(8−3
√

7)(
√

10−3)2(4−
√

15)2(
√

15−
√

14)(6−
√

35).

Hardy called it later “one of the most striking of Ramanujan’s results” [Har40,
p. 228]. Let us try to accomplish something similar for k100.

Lemma 10.4.

k100 = (3 − 2
√

2)2 (2 +
√

5)2 (
√

10 − 3)2 (51/4 −
√

2)4.

Proof. We follow the method for calculating k4n that Berndt presents in his edition
of Ramanujan’s notebooks, cf. [Ber98, p. 284, Ex. 9.4], in proving Ramanujan’s
expressions for k4, k12, k28 and k60. It is based on a formula of Ramanujan [Ber98,

6An algebraic number x is a unit if x and 1/x are algebraic integers.

224 Chapter 10. Hitting the Ends

Table 10.5. Arithmetic properties of kn; [Ber98, p. 184]

n ∈ N n ≡ 0 mod 2 n ≡ 1 mod 4 n ≡ 3 mod 8 n ≡ 7 mod 8

2m/2kn unit m = 0 m = 1 m = 2 m = 4

p. 283, form. (9.4)] relating k4n to the class invariant Gn = (2knk
′
n)−1/12,

k4n =
(√

G12
n + 1 −

√
G12

n

)2 (√
G12

n −
√
G12

n − 1
)2

=
(
G3

n

√
G6

n +G−6
n −G6

n

)2(
G3

n −
√
G6

n −G−6
n

)2

(G3
n)2.

Now, G25 was already known by Weber [Web91, p. 500] to be the golden ratio,
G25 = (

√
5+1)/2, cf. also [Ber98, p. 190]. Observing G3

25 = 2+
√

5, G6
25 = 9+4

√
5,

and G−6
25 = 9 − 4

√
5 yields

k100 =
(
(2 +

√
5) 3

√
2 − (9 + 4

√
5)
)2 (

(2 +
√

5) − 2
√

2 · 51/4
)2

(2 +
√

5)2

= (3 − 2
√

2)2(
√

10 − 3)2(51/4 −
√

2)4(2 +
√

5)2,

which is the result stated.

Arithmetically, the expression for k100 is certainly wonderful. Numerically,
it is slightly unstable because of cancellation of leading digits; we lose one digit
calculating 3 − 2

√
2 or

√
10 − 3, two digits calculating 51/4 −

√
2. Thus, we can

predict an overall loss of two digits using this formula; IEEE double precision will
give about 14 correct digits. However, the representation of k100 via units facilitates
a stabilized version that involves no subtractions,

k100 =
1

(3 + 2
√

2)2(2 +
√

5)2(3 +
√

10)2(
√

2 + 51/4)4
.

Summarizing, the effort in calculating k100 is rewarded by the following unexpected
closed-form solution of Problem 10,

p|ρ=10 =
2
π

arcsin
(
(3 − 2

√
2)2(2 +

√
5)2(

√
10 − 3)2(51/4 −

√
2)4

)
=

2
π

arcsin
(

1
(3 + 2

√
2)2(2 +

√
5)2(3 +

√
10)2(

√
2 + 51/4)4

)
.

A Matlab session.

>> r1=3-2*sqrt(2); r2=sqrt(5)+2; % the Ramanujan-style formula
>> r3=sqrt(10)-3;r4=5^(1/4)-sqrt(2);
>> p=2/pi*asin(r1^2*r2^2*r3^2*r4^4)

10.8. Harder Problems 225

p = 3.837587979251201e-007

>> r1=3+2*sqrt(2); r2=sqrt(5)+2; % the stabilized formula
>> r3=sqrt(10)+3;r4=5^(1/4)+sqrt(2);
>> p=2/pi*asin(1/r1^2/r2^2/r3^2/r4^4)

p = 3.837587979251226e-007

As predicted, using IEEE double precision the Ramanujan-style formula gives 14
correct digits. The stabilization leads to 16 correct digits.

10.8 Harder Problems
To review and compare the different approaches to Problem 10, we ask how one
might change the problem to make it harder or impossible to solve by one of the
approaches. Three aspects of the problem were used to varying extents: the geometry
was 2-dimensional, the shape was rectangular, and the particle started at the center,
the unique point common to the two axes of symmetry. Hence, besides varying the
aspect ratio there are three generalizations immediately at hand:

• the particle starts at some point off-center

• general polygon in 2 dimensions

• n-dimensional box

Table 10.6 tells us whether or not the methods of this chapter can be extended. Let

Table 10.6. Extendibility of the various methods for Problem 10

method precision off-center polygon nD-box

§10.1: Monte Carlo low � � �
§10.3: finite differences medium � (�) �
§10.4: separation high � — �
§10.5: conformal mapping medium � � —
§10.6: elliptic integrals high � — —
§10.7: singular moduli high — — —

us comment on some aspects of this table.
The Monte Carlo method is a general method that is good for low absolute

accuracies only. It is easily coded and the method of choice for high dimensions
n > 4, for which the “curse of dimension” deprives us of better general methods.

Finite differences and extrapolation is a general method that is good for
medium relative accuracies. For reasons of run-time efficiency, it is restricted to

226 Chapter 10. Hitting the Ends

small dimensions n = 1, . . . , 4. If the domain is not a box, one has to exercise
some care in discretizing the boundary. The discretization error might then have an
asymptotic expansion in several incompatible powers of hγ , making a generalization
not straightforward.

Separation of variables. Because of the exponentially fast converging series,
this is suited for high relative accuracies. Geometrically, it is restricted to boxes.

Conformal mapping. The method is inherently 2-dimensional. For general
polygons, the Schwarz–Christoffel map has to be evaluated numerically, leading
to the rich topic of numerical conformal mapping, cf. the recent book of Driscoll
and Trefethen [DT02].7

Elliptic function theory. For points starting off-center, we have to use a result
that is more general than Lemma 10.2, cf. [Hen86, §15.5, Expl. 2], and obtain
a transcendental equation involving incomplete elliptic integrals of the first kind.
Alternatively, we could map the rectangle to the upper half-plane using Jacobi’s
elliptic sine function. The harmonic measure can then be calculated by means of
[Hen86, §15.5, Expl. 1].

Singular moduli. Here, all the specifics of Problem 10 played a role; the results
do not extend to more general problems.

7Driscoll has written a Schwarz–Christoffel Toolbox for Matlab, available for download at
http://www.math.udel.edu/~driscoll/software/SC, suited to solve Problem 10 within a second:

>> pol = polygon([10+i -10+i -10-i 10-i]);

>> f = center(crdiskmap(pol,scmapopt(’Tolerance’,1e-11)),0);

>> prevert = get(diskmap(f),’prevertex’); p = angle(prevert(1))/pi

p = 3.837587979278246e-007

Varying the tolerance from 10−8 to 10−14 establishes that most likely 10 digits are correct. In
fact, we know from §10.4 the correctness of the first 11 digits.

Appendix A

Convergence Acceleration

Dirk Laurie

Analytical methods seem to become more and more in favor in nu-
merical analysis and applied mathematics and thus one can think
(and we do hope) that extrapolation procedures will become more
widely used in the future.

— Claude Brezinski and Michela Redivo Zaglia [BZ91, p. v]

The idea of applying suitable transformations for the acceleration
of the convergence of a series or for the summation of a divergent
series is almost as old as analysis itself.

— Ernst Joachim Weniger [Wen89, p. 196]

A.1 The Numerical Use of Sequences and Series
Almost every practical numerical method can be viewed as the approximation of
the limit of a sequence

s1, s2, s3, . . . (A.1)

which sometimes arises via the partial sums

sk =
k∑

i=1

ai (A.2)

of a series, by computing a finite number of its elements. In this discussion we only
consider the case where the elements of the sequence are real numbers (but most
of what we have to say goes for complex-valued sequences too), and leave aside the
question of vector-valued, matrix-valued and function-valued sequences.

The sequence (A.1) and the series (A.2) are theoretically equivalent if we define
s0 = 0, but in practice there is some1 accuracy to be gained when working with
series, assuming of course that the ai can be found to full machine precision, not
by the formula ai = si − si−1.

1Not much — see §A.5.3.

227

228 Appendix A. Convergence Acceleration

The question whether a series converges is largely irrelevant when the
reason for using a series is to approximate its sum numerically.

Convergence is not sufficient.

In the case of convergent sequences for which ρ = lim(s− sk+1)/(s− sk) exists, the
convergence is said to be linear if −1 � ρ < 1, sublinear or logarithmic if ρ = 1,
and superlinear if ρ = 0. There are important series for which ρ does not exist, e.g.

1
ζ(s)

=
∞∑

k=1

µ(k) k−s,

where ζ is the Riemann zeta function and µ(k) is the Möbius function (if k is the
product of n distinct primes, then µ(k) = −1 for n odd and µ(k) = 1 for n even;
otherwise µ(k) = 0) but we shall not have any more to say about them here.

For practical purposes, one requires fast convergence: e.g. linear convergence
with ρ� 1, or preferably superlinear convergence. A series such as

sk =
k∑

n=1

1
n2

is useless unless convergence acceleration techniques are applied, because O(1/ε)
terms are needed to obtain an accuracy of ε.

But even fast convergence is not enough. A series such as

sk =
k∑

n=0

xn

n!

is useless in floating-point arithmetic for large negative values of x, because the
largest term is orders of magnitude larger than the sum. The roundoff error in the
largest term swamps the tiny sum.

Convergence is not necessary.

There is an important class of divergent series, known as asymptotic series, which
are highly useful numerically. These series typically have partial sums sk(x) =∑k

n=0 anx
n where x is a real or complex variable, with the following properties:

• The power series
∑∞

n=0 anx
n has convergence radius 0.

• For x sufficiently small, the sequence anx
n decreases in magnitude until a

smallest term is reached and thereafter increases.

• There exists a function f(x) whose formal power series coincides with the
given series.

• If the series alternates, sk(x) − f(x) is less in magnitude than akx
k.

A.2. Avoiding Extrapolation 229

When all these properties hold, an alternating asymptotic series is often more con-
venient than a convergent series for the purpose of obtaining a good approximate
value of f(x) with rigorous error bound: one stops after the smallest term, and the
absolute value of that term is the bound. We call the size of that bound the terminal
accuracy of the asymptotic series.

Even when an asymptotic series is monotonic, the approximation obtained by
truncating it after the smallest term may sometimes be good enough for practical
purposes, although in this case there is no error bound. Be aware that it is the rule
rather than the exception for an asymptotic series to be valid only in certain sectors
of the complex plane.

A well-known example of an asymptotic series is the logarithmic form of Stir-
ling’s formula for the factorial (see [Olv74, §8.4]),

log(n!) ∼ (n+ 1
2) log n− n+ 1

2 log(2π) +
∞∑

j=1

B2j

2j(2j − 1)n2j−1

= (n+ 1
2) log n− n+ 1

2 log(2π) +
1

12n
− 1

360n3
+

1
1260n5

− 1
1680n7

+ · · · ,

where Bj is the j-th Bernoulli number. Since the numbers Bj grow faster than any
power of j, the series is divergent for all n. Yet it is very useful for large n, and
remains valid as the first step in the calculation of Γ(z) when n is replaced by z+1,
where z is a complex number not on the negative real axis. Our solution of Problem
5 to 10 000 digits relies on this formula (see §5.7).

Convergence acceleration algorithms are useful for obtaining improved
estimates of the limit s of a sequence sk when:

• the members of the sequence can be computed to high precision;

• the behavior of sk as a function of k is regular enough.

A.2 Avoiding Extrapolation
There is an important class of series where extrapolation methods can be avoided:
those in which the terms (with or without an alternating sign) are explicitly known
as analytic functions evaluated at the integers. In such a case one can express the
sum as a contour integral. The formulas are (see Theorem 3.6)

∞∑
k=1

(−1)kf(k) =
1
2i

∫
C
f(z) csc(πz) dz,

∞∑
k=1

f(k) =
1
2i

∫
C
f(z) cot(πz) dz,

where

1. the integration contour C runs from ∞ to ∞, starting in the upper half-plane
and crossing the real axis between 0 and 1;

2. f decays suitably as z → ∞ and is analytic in the component of the complex
plane that contains the integers 1, 2, 3, . . .

230 Appendix A. Convergence Acceleration

There is considerable scope for skill and ingenuity in the selection of the con-
tour and its parametrization. A simple example is given in §1.7, and a more so-
phisticated one, with a discussion of the issues involved in choosing the contour, in
§3.6.2.

The contour integration method is usually more expensive computationally
than a suitable extrapolation method, but has the advantage of in principle being
able to obtain any desired precision.

A.3 An Example of Convergence Acceleration

Algorithm A.1. Archimedes’ algorithm for approximating π.

Purpose: To compute for k = 1, 2, . . . ,m, the numbers

ak = nk sin(π/nk), bk = nk tan(π/nk), where nk = 3 · 2k,

via the intermediate quantities

sk = csc(π/nk), tk = cot(π/nk).

Procedure:

t1 =
√

3, s1 = 2, n1 = 6, a1 = n1/s1, b1 = n1/t1.

For k = 2, 3, . . . ,m :




tk = sk−1 + tk−1, sk =
√
t2k + 1,

nk = 2nk−1, ak = nk/sk, bk = nk/tk.

Archimedes did the whole calculation up to m = 5 in interval arithmetic
(anticipating its invention by over two thousand years), culminating in the famous
inequality

3 10
71 < π < 3 1

7 .

In Table A.1 we give the actual lower bounds ak for ak and upper bounds bk for
bk that Archimedes got, together with their decimal representation, rounded up or
down as appropriate to 6 significant digits, and the machine numbers âk, b̂k that
one gets by calculating them in IEEE double precision, rounded to 15 significant
digits.

Now one might feel that the 15-digit approximations are not much better than
than the rational bounds: obtaining b̂5− â5 = 0.00168 rather than bk−ak = 0.00193
seems a poor return for double precision computation. But the extra precision in
the values âk and b̂k can be put to good use. Since we know that sin(πx)/x has a
Taylor series of the form

c0 + c1x
2 + c2x

4 + · · ·

A.3. An Example of Convergence Acceleration 231

Table A.1. Algorithm A.1 as computed by Archimedes and by a modern
computer.

k ak ak âk bk bk b̂k

1 3 3.00000 3.000000000000000
918

265
3.46416 3.46410161513775

2
9360

3013 3
4

3.10576 3.105828541230249
1836

571
3.21542 3.21539030917347

3
5760

1838 9
11

3.13244 3.132628613281238
3672

1162 1
8

3.15973 3.15965994209750

4
3168

1009 1
6

3.13922 3.139350203046867
7344

2334 1
4

3.14620 3.14608621513143

5
6336

2017 1
4

3.14090 3.141031950890510
14688

4673 1
2

3.14283 3.14271459964537

Table A.2. Accelerated sequences derived from lower bounds in the double-
precision version of Algorithm A.1.

k â′
k â′′

k â′′′
k â′′′′

k

1 3.14110472164033 3.14159245389765 3.14159265357789 3.14159265358979

2 3.14156197063157 3.14159265045789 3.14159265358975

3 3.14159073296874 3.14159265354081

4 3.14159253350506

it follows that ak has a series of the form

d0 + d14−k + d24−2k + · · · . (A.3)

Now the sequence a′k = ak + (ak+1 − ak)/(41 − 1) has a series starting at 4−2k; the
sequence a′′k = a′k + (a′k+1 − a′k)/(42 − 1) a series starting at 4−3k, etc.

These values are given in Table A.2. It is immediately obvious that the num-
bers in each column agree to more digits than in the previous column. The final
number a′′′′1 happens to be correct to all fifteen digits, but of course we are not
supposed to know that.

Still, by looking at the first row, we are able to assert, on the basis of our
knowledge and experience of this extrapolation algorithm, that the limit of the
original sequence to 12 digits is 3.14159265359, and feel fairly confident that â′′′′1

is probably correct to 14 digits (knowing that our machine works to just under 16
digits,2 we are not absolutely sure of the 15th digit).

Similarly, the Taylor series for tan(πx)/x also contains only even powers of x,
and therefore bk can be expressed as a series of the form (A.3). Extrapolation can
be applied to the sequence b̂k, to obtain the values in Table A.3. The improvement

2log10 253 ≈ 15.95

232 Appendix A. Convergence Acceleration

Table A.3. Accelerated sequences derived from upper bounds in the double-
precision version of Algorithm A.1.

k b̂′k b̂′′k b̂′′′k b̂′′′′k

1 3.13248654051871 3.14165626057574 3.14159254298228 3.14159265363782

2 3.14108315307218 3.14159353856967 3.14159265320557

3 3.14156163947608 3.14159266703939

4 3.14159072781668

in convergence is less spectacular, and only an optimist would claim more than nine
digits on this evidence. With hindsight we can explain the difference in behavior:
the coefficients in the Taylor series for tan πx

x do not decay exponentially, since tan
is not an entire function.

The typical3 challenge solver would have been happy, but the dialectic math-
ematician is not satisfied. How can you trust a number of which you do not even
know whether it is greater or less than the desired quantity?

Let us be quite clear on this point: the art of confidently asserting the correct-
ness up to a certain accuracy of a computed number, without being able to prove
the assertion, but still being right, is not mathematics. But it is science. Richard
Feynman said:

Mathematics is not a science from our point of view, in the sense that it is not
a natural science. The test of its validity is not experiment. [FLS63, p. 3-1]

Scientific computing is a science from Feynman’s point of view. The test of
its validity is experiment. Having formulated the theory that the sought-for limit
to twelve digits is 3.14159265359, we can test it by computing a6 and calculat-
ing another diagonal of extrapolated values, maybe using higher precision, and by
repeating the calculation on a different type of computer.

More than any other branch of numerical analysis, convergence acceler-
ation is an experimental science. The researcher applies the algorithm
and looks at the results to assess their worth.

A.4 A Selection of Extrapolation Methods
Strictly speaking, the only difference between interpolation and extrapolation is
whether the point at which we wish to approximate a function lies inside or outside
the convex hull of the points at which the function is known. In theory and in
practice, the difference is profound when (as here) extrapolation is used to estimate
a limit to infinity. When doing interpolation, the limiting process is one in which
typically a step size h is allowed to approach 0, and the behavior of the function to
be interpolated becomes more and more polynomial-like as the step size decreases.
When doing extrapolation, the limiting process is one in which more and more terms
may be taken into account, but there is no question of the behavior of the partial

3I can, of course, only speak for one such.

A.4. A Selection of Extrapolation Methods 233

sum sn becoming polynomial-like as a function of n. Few functions on [0,∞), except
polynomials themselves, asymptotically behave like polynomials.

In a survey like this one, it is impossible to be exhaustive. I have presented
my personal favorite convergence acceleration methods in a unified way. Some of
them I like because so often they work so well; others are useful steps on the way to
understanding the more sophisticated methods. The emphasis is on computational
aspects, not on the theory.

Readers who want a more complete presentation should consult the excellent
monograph by Brezinski and Redivo-Zaglia [BZ91] which goes into greater detail
than we can, surveys all available theoretical results on acceleration of sequences,
gives many more methods, and contains computer software for all of them. Other
monographs, each with its own strong points, are those of Wimp [Wim81] and Sidi
[Sid03]. The historical development of the field is very ably summarized by Brezinski
[Bre00]. A report by Weniger [Wen89] has similar aims to this one, but is much more
comprehensive.

Most extrapolation algorithms arise naturally from consideration of a se-
quence, and little attention has been paid to formulating those as series-to-series
transformations.

We shall adopt the following notation for all the methods:

• sk,n is an extrapolated value depending on the elements sk, sk+1, . . . , sk+n

of the sequence. Thus, sk,0 = sk.

• X is a generic extrapolation operator that maps a sequence sk into
a sequence X(sk).

When we need to display4 the elements sk,n two-dimensionally, we form the following
matrix:

S =




s1,0 s1,1 s1,2 . . . s1,n−2 s1,n−1

s2,0 s2,1 s2,2 . . . s1,n−2

...
...

sn−1,0 sn−1,1

sn,0




Occasionally, there might be a row number 0, if we decide to treat s0 = 0 as
a member in good standing of the given sequence. This is not always a sensible
thing to do: e.g. in the Archimedes case, we could have started the sequence one
term sooner (Archimedes didn’t) with the semi-perimeter of a triangle, which would
require s0 = 3

√
3/2, not s0 = 0.

The advantage of generating the whole triangular table S is to get more insight
into the accuracy and reliability of the extrapolation than just one number, or even
one sequence of numbers, would give. This matter is taken up in §A.5.4.

All reasonable extrapolation methods are quasi-linear, i.e. they satisfy the
relation X(λsk + δ) = λX(sk) + δ where λ and δ are constants. Most (but not all)

4Our notation sk,j corresponds to T k
j in [Bre00]. There is no universal agreement on how to

display the extrapolated values. Some authors put them in a lower triangular matrix so that our
rows run along the diagonals. Others emphasize the symmetry of the formula by using a triangular
array with in which each column is offset downwards by half a step from the previous one.

234 Appendix A. Convergence Acceleration

of them are based on a model of the form

sk = s+
m∑

j=1

cjφk,j + ηk, (A.4)

where the auxiliary columns are ordered so that each φk,j+1 tends to zero as k
increases faster than its predecessor φk,j , and it is hoped that ηk tends to zero more
rapidly than φk,m. Usually (but not always) the elements of the matrix Φ = [φk,j]
would be given by a formula of the form

φk,j = φj(k) (A.5)

for certain simple functions φj .
One can classify extrapolation methods as linear or nonlinear; in the latter

case, it is useful to make a further distinction between semilinear and strongly
nonlinear methods.

Linear extrapolation methods

These methods are linearly invariant, i.e. they satisfy the relation

X(λsk + µtk) = λX(sk) + µX(tk), where λ and µ are constants. (A.6)

They typically assume a model of the form (A.4) where the matrix Φ is known
beforehand, independent of the sequence elements — although prior information
about the sequence may influence the choice of model.

If in the model equations for sk, sk+1, . . . , sk+n, we put m = n, ignore ηk and
replace the unknown s by sk,n, we obtain n+ 1 equations

si = sk,n +
n∑

j=1

cjφi,j , i = k, k + 1, . . . , k + n. (A.7)

The various methods differ in the model chosen and the way in which the the
parameters cj are eliminated to find sk,n.

Linear extrapolation methods can only be expected to work when substan-
tial prior knowledge about the behavior of the sequence is exploited.

In other words: the model must describe the sequence fairly well, or the extrapola-
tion method won’t deliver.

Semilinear extrapolation methods

These typically assume a model of the form (A.4) where the matrix elements have
the form φk, j = αkβk, j, where αk is allowed to depend in a quantitative way
on the elements of the sequence. The resulting linear systems are then solved by a
process similar to (A.7). In particular, extrapolated values are available for all pairs
(k, l) that satisfy k + l � n.

Semilinear methods can be extremely effective, even when no a priori infor-
mation about the asymptotic behavior of the sequence is available.

A.4. A Selection of Extrapolation Methods 235

Strongly nonlinear extrapolation methods.

These methods either assume a model of the form (A.4,A.5) in which the functions
φj depend on unknown parameters that lead to nonlinear equations, or in some
cases have no explicit model at all, being derived by heuristic reasoning from other
methods. Extrapolated values sk,l are only available for some pairs (k, l).

A.4.1 Linear extrapolation methods

Having selected the auxiliary functions φj in (A.5) one could simply for each index
pair (k, l) solve the equations (A.7) by brute force — they are, after all, linear. That
would require O(n5) operations to calculate all the entries sk,l, k + l � n. But we
can do much better than this.

Since it is desirable to have all the sk,j available, linear extrapolation methods
should be cast into the form

sk,j = sk+1,j−1 + fk,j(sk+1,j−1 − sk,j−1) (A.8)

where the multipliers fk,j do not depend on the original sequence sk. The geometric
picture is (

sk,j−1 sk,j

sk+1,j−1

)
·
(

−fk,j −1
1 + fk,j

)
= 0.

In most cases, the multipliers are easier to interpret when the model is written as

sk,j = sk+1,j−1 +
rk,j

1 − rk,j
(sk+1,j−1 − sk,j−1). (A.9)

It is obvious that if all the multipliers fk,j are chosen with complete freedom, then
any extrapolation table S that satisfies sk+1,j−1 �= sk,j−1 can be obtained. This
would defeat the self-validating property of the extrapolation table. Therefore it is
usual to have a model involving no more than n free parameters, where n+1 is the
number of available terms of the sequence.

Often it is possible to give a simple formula for the constants fk,j , so that the
whole extrapolation process takes O(n2) operations, which is optimal, since there
are O(n2) entries in the triangular table. In the general case, such low complexity
is not possible, but there is an ingenious way of organizing Gaussian elimination,
known as the E-algorithm, which reduces the operation count from O(n5) to O(n3).
The general outline can be described in a few sentences. Think of the first step of
(A.8) as s:,1 = Xjs:,0, i.e. column 1 of S is obtained by applying an extrapolation
operator Xj to column 0. Let the constants f:,0 be determined by the property that
X(φ:,1) = 0. Now replace all the other columns φ:,j by X(φ:,j), j = 2, 3, . . . , n. In
other words: apply exactly the same extrapolation formula to each column of the
matrix Φ that you have applied to the sequence sk. Then continue using the new
column of extrapolated values instead of sk and the modified matrix Φ instead of
the original, etc.

In the table S, each column sk,j , k = 1, 2, 3, . . . should converge faster than the
previous one if the model is appropriate. The rows of the array sk,j , j = 0, 1, 2, . . .
should in that case converge even faster. This behavior, of rows converging faster
than columns, is conspicuous; its absence indicates that the model is bad.

236 Appendix A. Convergence Acceleration

Euler’s transformation

Euler’s method is one of the rare instances of a genuine series-to-series transforma-
tion. The derivation of this grandfather of all extrapolation methods is a typical
piece of Eulery. Let I be the identity (Iak = ak) and ∆ the forward difference
(∆ak = ak+1 − ak) operator on a sequence. Note that (I + ∆)ak = ak+1. Let
bk = ak/r

k−1, with r �= 1. Then

∞∑
k=1

ak =
∞∑

k=0

rkbk+1 =
∞∑

k=0

(r(I + ∆))kb1

= (I − r(I + ∆))−1b1 =
1

1 − r

(
I − r∆

1 − r

)−1

b1

=
1

1 − r

∞∑
j=0

(
r∆

1 − r

)j

b1 =
1

1 − r

∞∑
j=0

(
r

1 − r

)j

∆jb1

We get our two-dimensional table by not starting at the first term, but using the
transformation only to estimate the tail. This gives

sk,n =
k−1∑
i=1

ai +
1

1 − r

n∑
j=0

(
r

1 − r

)j

∆jbk. (A.10)

A little algebra shows that we can generate these values recursively columnwise
by

sk,j+1 = sk+1,j +
r

1 − r
(sk+1,j − sk,j). (A.11)

So Euler’s transformation is seen to be the simplest possible case of (A.8), since fk,l

is constant.
Although we have not used an explicit model in the derivation, the form of the

final equation (A.10) reveals the underlying model: sk,n is constant in n for n � m
if bk is a polynomial of degree no more than m− 1 in k. In other words, the model
is

ak = rk(c0 + c1k + c2k
2 + · · · cn−1k

n−1).

It is obvious that ak has this form when

sk = s+ rk(c0 + c1k + c2k
2 + · · · cnkn).

While no doubt such sequences do occur, they are not very typical. More usually,
in cases where we do happen to know the correct r, the first column sk,1 converges
substantially faster than sk, but the first row s0,k, which should be the really fast-
converging one, at best only has approximately geometric convergence with factor
r/(1 − r).

The most common application of Euler’s transformation is to an alternating
series converging slower than geometrically, when r = −1. It is fairly efficient in that

A.4. A Selection of Extrapolation Methods 237

Table A.4. Euler’s transformation applied to
∑∞

k=1(−1)k−1k−1.

k sk s0,k tk

1 1.000000000000000 0.500000000000000 1.000000000000000
2 0.500000000000000 0.625000000000000 0.750000000000000
3 0.833333333333333 0.666666666666667 0.708333333333333
4 0.583333333333333 0.682291666666667 0.697916666666667
5 0.783333333333333 0.688541666666667 0.694791666666667
6 0.616666666666667 0.691145833333333 0.693750000000000
7 0.759523809523809 0.692261904761905 0.693377976190476
8 0.634523809523809 0.692750186011905 0.693238467261905
9 0.745634920634921 0.692967199900793 0.693184213789682

10 0.645634920634921 0.693064856150793 0.693162512400794

case, not because the model is appropriate (it seldom is), but because r/(1 − r) =
−1/2, which is not too bad. For example, the series

∞∑
k=1

(−1)k−1k−1 = log 2 .= 0.693147180559945

is accelerated reasonably well by Euler’s transformation, despite the fact that the
high-order differences ∆kc1 fail to approach zero any faster than ak does. (It is a
nice little exercise to prove that for this series, ∆kc1 = ak+1.) In Table A.4 and
later in the chapter, we have made a column out of row 0 to facilitate comparison.

Table A.4 shows that, as expected, s0,k converges approximately geometrically
with ratio 1

2 : after ten steps we have three digits, and 2−10 ≈ 0.001. It is tempting
to exploit that behavior through another application of Euler’s transformation with
r = 1/2, but only the first column is useful. (Guess what the first row will look like
if you go all the way. Try it out. Shouldn’t you have expected it?) The entries in
the first column of this repeated transformation are given in Table A.4 by tk. One
extra digit — not worth the effort.

We have paid a good deal of attention to Euler’s transformation, only to find
that it is not spectacularly effective. But we now have the shoulders of a giant to
stand on.

Modified Euler extrapolation

An obvious modification of equation (A.11) is to allows r to have a different value
for each column, giving

sk,j+1 = sk+1,j +
rj

1 − rj
(sk+1,j − sk,j). (A.12)

238 Appendix A. Convergence Acceleration

It is not hard to show that this formula gives sk,n = s when

sk = s+
n∑

j=1

cjr
k
j . (A.13)

It can be used, therefore, when the sequence is well approximated by a sum of
geometric sequences with known decay rates. Repeated values of rj have the same
effect as in the case of the ordinary Euler transformation.

Richardson extrapolation

Richardson extrapolation is appropriate when the sequence behaves like a polyno-
mial in some sequence hk.

In the original application, the model is (A.4) and (A.5) with

φj(k) = h
pj

k , (A.14)

where the numbers hk are step sizes in a finite-difference method and the exponents
pj are known in advance from an analysis involving Taylor series. In the most general
case, we need the E-algorithm, but in the two most commonly encountered cases,
the parameters rk,j in (A.9) can be found more simply.

1. If the step sizes are in geometric progression, i.e. hk+1/hk = r (the most
common case being r = 1/2), then we put rk,j = rpj .

2. If the exponents are a constant multiple of 1, 2, 3, . . . , i.e. they are given by
pj = cj for some constant c, then we put rk,j = (hk+1/hk)c.

Case 1 can be recognized as equivalent to modified Euler extrapolation, whereas
Case 2 is an application of Neville–Aitken interpolation.

We have already in §A.3 seen a spectacular application of Richardson extrap-
olation, so we need no further example of a case where it is successful. Instead, we
show what can happen when it is inappropriately used.

Richardson extrapolation is the engine inside Romberg integration. In that
application, sk is formed from trapezoidal or midpoint rules with the step size
being continually halved, e.g. using midpoint sums,

∫ 1

0

f(x) dx ≈ sk = h
2k∑

j=1

f((j − 1
2)h), where h = 2−k.

For smooth functions, the same model with even powers of h is applicable as in the
case of the calculation of π, but look at Table A.5 what happens for∫ 1

0

− log(x) dx = 1.

The first row converges no better than the first column, which is a sure sign that
the model is bad.

A.4. A Selection of Extrapolation Methods 239

Table A.5. Romberg integration applied to
∫ 1

0
− log(x) dx = 1, assuming

an expansion in even powers.

h−1
k sk,1 s0,k

2 0.942272533258662 0.942272533258662
4 0.971121185130247 0.973044428588352
8 0.985559581182433 0.986736072861005

16 0.992779726126725 0.993394043936872
32 0.996389859013850 0.996700250685739
64 0.998194929253506 0.998350528242663

Table A.6. Romberg integration applied to
∫ 1

0
− log(x) dx = 1, assuming

an expansion in the powers 1, 2, 4, 6,

h−1
k sk,1 s0,k

2 0.994914691495074 0.994914691495074
4 0.998706050625142 0.999969837001832
8 0.999674995582249 0.999999853250138

16 0.999918652198826 0.999999999613708
32 0.999979656975437 0.999999999999550
64 0.999994913863731 0.999999999999999

A careful analysis of the error expansion will reveal which powers of h are
introduced by the logarithmic singularity, but it is also quite easy to diagnose it
numerically — see §A.5.2. Since the step sizes are in geometric progression, we can
choose p to knock out precisely those powers. If we take the pj from the sequence
{1, 2, 4, 6, . . .}, we obtain the results of Table A.6. Note that sk,1 converges much
faster than before, but that is not the real point. The first row converges much more
quickly still, and that is what we are looking for to reassure us that the proper model
has been used.

Salzer’s extrapolation

Salzer’s extrapolation [Sal55] is appropriate when sk is well approximated by a
rational function in k.

The model is (A.4,A.5) with φj(k) = (k + k0)−j where k0 is a fixed number
chosen in advance (usually k0 = 0). This is a special case of Richardson extrapola-
tion, obtained by putting hk = (k+k0)−1 and pj = j in (A.14). So the extrapolated
values can be obtained by Case 2 of Richardson extrapolation.

There are two other ways of solving the equations. Multiplying (A.7) by (i+

240 Appendix A. Convergence Acceleration

Table A.7. Salzer’s extrapolation applied to
∑∞

k=1 k
−2.

k sk,1 s0,k

1 1.50000000000000 1.50000000000000
2 1.58333333333333 1.62500000000000
3 1.61111111111111 1.64351851851852
4 1.62361111111111 1.64496527777778
5 1.63027777777778 1.64495138888888
6 1.63424603174603 1.64493518518521
7 1.63679705215420 1.64493394341858
8 1.63853316326531 1.64493404116995
9 1.63976773116654 1.64493406624713

10 1.64067682207563 1.64493406714932
11 1.64136552730979 1.64493406688417
12 1.64189971534398 1.64493406684468
13 1.64232236961279 1.64493406683127

k0)n, we obtain

(i+ k0)nsi = (i+ k0)nsk,n +
n∑

j=1

cj(i+ k0)n−j , i = k, k + 1, . . . , k + n.

Taking the n-th difference at i = k, everything under the sum vanishes and we are
left with

sk,n =
∆n((k + k0)nsk)

∆n(k + k0)n
. (A.15)

This formula is not recursive (which is close to Salzer’s own [Sal55] formulation),
and the preliminary multiplication by a different power of (k+ k0) for each column
s:,l is undesirable. Still, it gives an interesting view of the extrapolation: it is a
discrete analogue of n applications of L’Hospital’s rule. Suppose we wanted to find
limx→∞ f(x); then one way of doing it is to use an auxiliary function g such that
g(x) →x→∞ 0, and calculate

lim
x→∞

dn

dxn (f(x)/g(x))
dn

dxn (1/g(x))
.

The third way is discussed in the next section.
For the series s =

∑∞
k=1 k

−2 = π2/6 .= 1.6449340668482 we get the result of
Table A.7 in IEEE double precision. The final result has about 11 digits correct,
which is the best we can hope for because of roundoff (see §A.5.3).

A.4. A Selection of Extrapolation Methods 241

Modified Salzer’s extrapolation

Like all linear methods, Salzer extrapolation fails dismally on sequences that fail to
conform to the underlying model. A simple modification goes a long way to remedy
this.

The modified model is (A.4,A.5) with φj(k) = ψ(k)(k + k0)1−j for some
non-zero auxiliary function ψ(k). Obviously, best results are obtained when ψ(k)
approximates (s−sk). This model no longer falls in the Richardson framework, and
we have to find another computational procedure. The E-algorithm can of course
be used, but there is a more economical alternative.

Dividing (A.7) by ψ(i) we obtain

si

ψ(i)
=
sk,n

ψ(i)
+

n−1∑
j=0

cj+1(i+ k0)−j , i = k, k + 1, . . . , k + n.

Now apply not ordinary differences as before, but divided differences, thinking of sk

as a function of t evaluated at tk = (k+k0)−1. The divided differences of a sequence
fk given at those abscissas are defined recursively by

δ0fk = fk;

δnfk =
δn−1fk+1 − δn−1fk

tk+n − tk
. (A.16)

We obtain

sk,n =
δn

(
sk

ψ(k)

)
δn

(
1

ψ(k)

) . (A.17)

This can be implemented economically by forming two tables of divided differences,
one for the denominator and one for the numerator. 5

One can often guess a good ψ by integration, e.g. if φ can be extended to a
function defined on (0,∞), then it is plausible to choose

ψ(x) =
∫ ∞

x

φ(x) dx. (A.18)

As an example we take s =
∑∞

k=1 k
−3/2 = ζ(3/2) .= 2.61237534868549. We show in

Table A.8 the first row of the Salzer algorithm and of the modified Salzer algorithm
with ψ(k) = k−1/2, obtained by the method of integration.

Operator polynomial extrapolation

A rich family of linear extrapolation methods arises from yet another generalization
of Euler’s transformation. Express (A.11) in terms of the shift operator E (defined

5This procedure is in fact equivalent to the E-algorithm, if one takes advantage of the specially
simple form of the dependence of the functions φj on j.

242 Appendix A. Convergence Acceleration

Table A.8. Salzer’s and modified Salzer’s extrapolation applied to
∑∞

k=1 k
−3/2.

k s0,k with ψ = 1 s0,k with ψ(k) = k−1/2

1 1.70710678118655 2.20710678118655
2 2.04280209908108 2.55223464247637
3 2.20053703479084 2.60809008399373
4 2.28756605115163 2.61255796998662
5 2.34336074156378 2.61244505799459
6 2.38255729176400 2.61237916796721
7 2.41169662004271 2.61237468295396
8 2.43423616494222 2.61237522998939
9 2.45220141289729 2.61237534769965

10 2.46686223192588 2.61237535041131
11 2.47905652271137 2.61237534876941
12 2.48936011369519 2.61237534899252
13 2.49818208203943 2.61237534782506

by Esk = sk+1) as

sk,j+1 =
(E − rI)sk,j

1 − r
=
p1(E)sk,j

p1(1)
where p1(t) = (t− r). From this we deduce that

sk,n =
pn(E)sk

pn(1),
(A.19)

where pn(t) = (t−r)n.We get the modified Euler formula when pn(t) =
∏n

j=1(t−rj).
In general, when pn is a polynomial of degree n, we call (A.19) an operator polyno-
mial extrapolation formula. Note that the modified Salzer extrapolation (A.17) can
also be viewed as a special case of (A.19).

To understand how to stand on Euler’s shoulders, we need the following con-
cept:

A sequence ak is totally monotonic if every difference ∆jak, j = 0, 1, 2, . . . ,
(including ak itself, j = 0) has the constant sign (−1)j . A sequence ak

is totally alternating if (−1)kak is totally monotonic.

Totally monotonic sequence have many pleasant properties, the most important of
which is Hausdorff’s theorem:

The null sequence ak is totally monotonic if and only if there exists a
weight function w, non-negative over (0, 1), such that

ak =
∫ 1

0

tk−1w(t) dt, k = 1, 2,

A.4. A Selection of Extrapolation Methods 243

Two corollaries are:

1. The sequence ak is totally alternating if and only if there exists a weight
function w, non-negative over (−1, 0), such that

ak =
∫ −1

0

tk−1w(t) dt, k = 1, 2,

2. If the support of w is the interval [0, r] for some 0 < r < 1, or in the alternating
case [r, 0] for some −1 < r < 0, then ak converges geometrically with ratio r.

In view of these corollaries, we will henceforth use the notation [0, r] for the closed
interval with endpoints 0 and r even when r < 0.

Inspired by Hausdorff’s theorem, let us suppose that ak =
∫ r

0
tk−1w(t) dt with

w non-negative over the integration interval. Then

sk =
k∑

j=1

∫ r

0

tj−1w(t) dt =
∫ r

0

(1 − tk)w(t) dt
1 − t

This allows us to represent (A.19) as

sk,n =
1

pn(1)

∫ r

0

(pn(1) − tkpn(t))w(t) dt
1 − t

.

Since s = lim sk =
∫ r

0
w(t) dt
1−t , we get the error formula

s− sk,n =
1

pn(1)

∫ r

0

tkpn(t)w(t) dt
1 − t

. (A.20)

The error formula suggests several strategies.

1. If we know nothing about the sequence ak except that it is totally monotonic
or totally alternating, there is the (fairly crude) error bound

∣∣∣1 − s0,n

s

∣∣∣ �
maxt∈[0,r] |pn(t)|

pn(1)
.

In the case of Euler’s method for an alternating series with r = −1, we have
pn(t) = (t+ 1)n, so that the crude bound is O(2−n). A very good polynomial
to use from the point of view of this bound is the Chebyshev polynomial of
degree n, shifted to the interval [−1, 0], which gives the bound O(λ−n) with
λ = 3 + 2

√
2 .= 5.828 [CRZ00]. This formula is Algorithm 1 in [CRZ00].

2. If we know something about the weight function w, it is possible to optimize
the polynomials to take advantage of the fact. For example, Cohen, Rodriguez
Villegas and Zagier [CRZ00] (hereafter referred to as CRVZ) derive polynomi-
als that are good to use when w is analytic in certain regions of the complex
plane that include the interval [0, r]. The resulting method can in the most

244 Appendix A. Convergence Acceleration

favorable case be guaranteed to achieve O(λ−n) with λ
.= 17.9. The simplest

family of polynomials in this class is defined by the identity

An(sin2 θ) =
dn(sinn θ cosn θ)

dθn
. (A.21)

The polynomials An do not satisfy a three-term recursion and it seems to
require O(n3) operations to generate all the coefficients of A0, A1, . . . , An. Of
course, one could precompute and store those.

3. If we assume that w(t)/(1 − t) is (2n) times continuously differentiable, then
a promising choice is to take the Legendre polynomials.

4. If w(t) has an O(tβ) singularity at t = 0, then the Jacobi polynomials suggest
themselves. For example, for series of the form

η(β, r) =
1
β
− r

1 + β
+

r2

2 + β
− r3

3 + β
+ · · · , (A.22)

use the Jacobi polynomials J (0,β−1), shifting from the interval x ∈ [−1, 1] to
t ∈ [0, r] by the transformation t = r(x+ 1)/2.

5. For monotonic series with r = 1, this approach has not so far been spec-
tacularly successful. One reason is that, since 1 ∈ [0, r], the crucial factor
maxt∈[0,r] |pn(t)|/|pn(1)| cannot be made smaller than 1.

Since so many of the above possibilities involve orthogonal polynomials, it is
worthwhile to show in detail how these would be applied. Let the required orthogonal
polynomials, shifted to the interval [0, r], satisfy the recursion

p0(t) = 1;

p1(t) = (t− a0);

pn+1(t) = (t− an)pn(t) − bnpn−1(t), n = 1, 2,

Then the extrapolation algorithm is given by

ŝk,0 = sk,0;

ŝk,1 = sk+1,0 − a0sk,0;

ŝk,n+1 = ŝk+1,n − anŝk,n − bnŝk,n−1, n = 1, 2, . . . ;

sk,n =
ŝk,n

pn(1)

One example must suffice here. The series η(β, r) defined in (A.22) is to be
evaluated for r = 0.94, β = 0.125. We do it four times, the last two times us-
ing more and more information. In Table A.9, each column is the transposed first
row of the extrapolation table. First, the polynomials An of CRVZ (A.21), taken

A.4. A Selection of Extrapolation Methods 245

Table A.9. The CRVZ method applied to η(β, r) with r = 0.94, β = 0.125.

k CRVZ(−1) Legendre(−1) CRVZ(−0.94) Jacobi(−0.94)

1 8.00000000000000 8.00000000000000 8.00000000000000 8.00000000000000

2 7.44296296296296 7.44296296296296 7.43159486016629 7.24346076458753

3 7.40927089580931 7.42063107088989 7.41224315975913 7.41890823284965

4 7.42291549578755 7.42333978080714 7.42286010429028 7.42300312779417

5 7.42312861386679 7.42305165138502 7.42312700068607 7.42310843651716

6 7.42311090693716 7.42311564776528 7.42311289945816 7.42311121107761

7 7.42311207370828 7.42311055990758 7.42311135754321 7.42311128485659

8 7.42311117324569 7.42311127821820 7.42311128787958 7.42311128682738

9 7.42311130057045 7.42311129133954 7.42311128684365 7.42311128688016

10 7.42311128604961 7.42311128388467 7.42311128688337 7.42311128688157

11 7.42311128677714 7.42311128731700 7.42311128688239 7.42311128688161

12 7.42311128692742 7.42311128679323 7.42311128688171 7.42311128688161

13 7.42311128687268 7.42311128688948 7.42311128688162 7.42311128688161

14 7.42311128688278 7.42311128688073 7.42311128688161 7.42311128688161

15 7.42311128688154 7.42311128688153 7.42311128688161 7.42311128688161

16 7.42311128688161 7.42311128688164 7.42311128688161 7.42311128688161

over (0,−1); second, the Legendre polynomials shifted to [0,−1]; third, the CRVZ
polynomials shifted to [0,−0.94]; last, the Jacobi polynomials J (0,−0.875) shifted to
[0,−0.94]. There is nothing to choose between the first two methods (apart from
the greater convenience of the three-term recursion in the Legendre case) but the
third method is distinctly better. Not shown here is Legendre(−0.94) which also
shows an improvement but slight less so than CRVZ. The last column shows very
impressive convergence which even the various nonlinear algorithms to be discussed
later cannot match. This example demonstrates the great value of having analytical
information about the sequence.

A.4.2 Semilinear algorithms

This family of algorithms is due to David Levin [Lev73]. They are modified Salzer’s
algorithms with the following auxiliary functions (the labels come from Levin’s own
notation):

T ψ(k) = ak.

U ψ(k) = (k + k0)ak.

W ψ(k) = a2
k/(ak+1 − ak).

Note that we do not know continuous functions ψ(x) for all x. The implementation
goes exactly as described for the modified Salzer’s algorithm.

The U -algorithm, in particular, is amazingly effective over a large class of
sequences. When the T -algorithm works, so does the U -algorithm, although it may

246 Appendix A. Convergence Acceleration

need one term more to achieve the same accuracy. Since roundoff error cannot be
ignored (see §A.5.3) it is better to use the T -algorithm in the cases where both
work. The W -algorithm has the disadvantage of always needing one term more
than the U -algorithm to form a particular sk,l, and it is hard to find cases where
the W -algorithm works but the U -algorithm does not.

Unfortunately it is also quite difficult to characterize the sequences for which
any of these algorithms is exact. One reason for that is that semilinear algorithms
do not possess the linear invariance property (A.6). In particular, we cannot expect
that it will be exact for a sum of two functions if it happens to be exact for either
separately.

To understand the startling effectiveness of the algorithms, it is useful to think
of the analogue with integration: by (A.18), ψ is a plausible choice of auxiliary
function when ψ′ = φ. Any non-zero multiple of ψ will do just as well, so the three
transformations correspond respectively to

T cψ(x) = ψ′(x).

U cψ(x) = (x+ x0)ψ′(x).

W cψ(k) = (ψ′(x))2/ψ′′(x).

These differential equations have solutions

T ψ(x) = ecx.

U ψ(x) = (x+ x0)c.

W The general solution includes the other two as special cases.

Therefore we expect the T -algorithm to be effective when sk ∼ rk, the U -algorithm
when sk ∼ k−j , and the W -algorithm in either case. Actually the U -algorithm is
nearly as effective as the T -algorithm when sk ∼ rk, since its model has as j + 1-st
auxiliary function what the T -algorithm has as its j-th. In practice it is usually
enough to use the U -algorithm all the time and ignore the others, since it is quite
hard to find a function that suits the W -algorithm but not the U -algorithm, and in
any case the W -algorithm is more susceptible to roundoff error.

A.4.3 Strongly nonlinear methods

A typical feature of strongly nonlinear methods is that an approximation sk,l that
uses precisely the values sk:k+l and no others, is not available for all possible com-
binations of k and l.

Aitken’s method

Although more recent than Euler’s transformation, “Aitken’s ∆2-method” is the
best-known of all convergence acceleration procedures. It takes three members of

A.4. A Selection of Extrapolation Methods 247

the sequence and returns one number. Since it uses the elements sk, sk+1, sk+2 we
call that number sk,2. The basic formula resembles (A.9):

sk,2 = sk+2 +
rk

1 − rk
(sk+2 − sk+1); (A.23)

where rk =
sk+2 − sk+1

sk+1 − sk
. (A.24)

The formula for rk is motivated by the model

ak = crk,

the same model as for the first column of Euler’s transformation but with r regarded
as unknown. The nickname derives from another way of writing (A.23):

sk,2 = sk+2 −
(∆sk+1)2

∆2sk
. (A.25)

Aitken’s method is contained in two other methods:

1. Aitken’s formula applied to s0, s1, s2, . . . , sn gives the same values for sk,2 that
Levin’s T -transform gives for sk,1 when applied to s1, s2, . . . , sn.

2. The second colum sk,2 of the epsilon algorithm (see the next section) is iden-
tical to that of Aitken’s method.

It is often effective to apply Aitken’s method again on the transformed se-
quence, etc. but there is then no longer a simple model to tell us when the trans-
formation is exact.

The epsilon algorithm

The model for Wynn’s epsilon algorithm [Wyn56a] is the same (A.13) as for the
modified Euler method, except that the ratios rj are unknown rather than known. In
other words, the epsilon algorithm can deliver the exact limit, using 2n+1 members
of a sequence, whenever the sequence can be written as a sum of n geometric
sequences.

It is without doubt the most elegant of all convergence acceleration methods,
with a marvellously simple recursion formula,

sk,j = sk+1,j−2 +
1

sk+1,j−1 − sk,j−1
,

which contains no extraneous multipliers at all. To start off the recursion, we need
sk,−1 = 0 as well as the usual sk,0 = sk. The subscripts hide the pretty geomet-
ric picture. If we denote the four entries in the table by geographic letters of the
alphabet, and use a table in which each column is offset by half a step, we get:

 sk,j−1

sk+1,j−2 sk,j

sk+1,j−1


 =


 N
W E

S


 , (N − S)(W − E) = 1.

248 Appendix A. Convergence Acceleration

The extrapolated values are found in the columns s:.j when j is even. In the
case when the even columns converge (the usual case), the odd columns diverge to
infinity.

Since only the even-numbered columns matter, a useful alternative formulation
[Wyn66] eliminates the odd-numbered columns. Once again we get a pretty picture:

 sk,j−2

sk+2,j−4 sk+1,j−2 sk,j

sk+2,j−2


 =


 N
W C E

S




1
C −N

+
1

C − S
=

1
C −W

+
1

C − E
.

The column s:,2m of the epsilon algorithm is exact when the sequence s− sk

satisfies a linear difference equation of order m, i.e. when constants c0, c1, . . . , cm
exist such that

c0sk + c1sk+1 + · · · + cmsk+m is constant for all k.

It is therefore suitable for the same sequences as the modified Euler transformation,
but with two important differences: on the plus side, it is not necessary to know the
factors rj in (A.12), and on the minus side, twice as many terms are required.

The rho algorithm

The rho algorithm [Wyn56b] is nearly as simple as the epsilon algorithm, having
the model

sk,j = sk+1,j−2 +
j

sk+1,j−1 − sk,j−1
. (A.26)

The extrapolated values appear in the same columns as in the case of the epsilon
algorithm.

The column s:,2m of the rho algorithm is exact when

sk = p(k)/q(k), (A.27)

where p and q are polynomials of degree not more than m. It is therefore suitable
for the same sequences as Salzer’s transformation.

The simplicity of (A.26) arises from the hypothesis (A.27). It may sometimes
be the case that a better model is

sk = p(xk)/q(xk)

where the sequence xk is known. The rho algorithm then becomes

sk,j = sk+1,j−2 +
xk − xk−j

sk+1,j−1 − sk,j−1
. (A.28)

A.4. A Selection of Extrapolation Methods 249

The modified rho algorithm

Like Salzer’s algorithm, the rho algorithm is not very effective when the sequence
does not conform to the model of a rational function, but can be modified to certain
other functions. The idea is to view the epsilon algorithm as the case θ = 0, and
the rho algorithm as the case θ = 1, of the following algorithm:

sk,j = sk+1,j−2 +
1 + θ(j − 1)

sk+1,j−1 − sk,j−1
. (A.29)

If sk is well modelled by s−sk ≈ k−1/θψ(k), where ψ(k) is a rational function,
the modified rho algorithm can be very effective.

The theta algorithm

The theta algorithm [Bre71] takes the guesswork out of choosing θ in the modified
rho algorithm. To derive it, we write the first two stages of (A.29) as:

sk,1 =
1

sk+1,0 − sk,0

sk,2 = sk+1,0 +
t

sk+1,1 − sk,1
(A.30)

where t = 1+θ, and then ask ourselves: why can’t we allow t to depend on k? Since
the ultimate in convergence acceleration is to reach a constant sequence, we throw
caution overboard and choose tk such that sk+1,2 = sk,2 in (A.30), i.e.

sk+1,0 +
tk

sk+1,1 − sk,1
= sk+2,0 +

tk
sk+2,1 − sk+1,1

.

This can be written as
tk = −∆sk+1,0

∆2sk,1
.

The theta algorithm is then continued to further columns by analogy to the epsilon
and rho algorithms as:

sk,2j+1 = sk+1,2j−1 +
1

∆sk,2j

sk,2j+2 = sk+1,2j +
∆sk+1,2j∆sk,2j+1

∆2sk,2j
.

The theta algorithm is extremely versatile, in the sense that it can accelerate the
convergence a large class of sequences, which is however difficult to characterize. In
this sense it is reminiscent of the Levin W -algorithm. On the negative side, it uses
up 3n+ 1 terms of the original sequence to produce a row of n accelerated values,
against respectively 2n+ 1 terms for the other strongly linear algorithms discussed
here, and only n + 1 terms for the linear and semilinear methods. It is also more
prone to the effects of roundoff error.

250 Appendix A. Convergence Acceleration

Table A.10. Levin’s U -algorithm applied to the sequence ‖Ank
‖ of Problem 3.

nk tk = snk
t1,k

1 1.00000000000000 1.00000000000000
2 1.18335017655166 1.28951567784715
4 1.25253739751680 1.36301342016060
8 1.27004630585408 1.26782158984849

16 1.27352521545013 1.27445564643953
32 1.27411814436915 1.27422101365494
64 1.27420913129766 1.27422405834917

128 1.27422212003778 1.27422416013221
256 1.27422388594855 1.27422415291307
512 1.27422411845808 1.27422415282063

A.5 Practical Issues

A.5.1 Using a subsequence

A trivial way of accelerating a sequence is to form a subsequence tk = snk
, with

1 � n1 < n2 < n3 < · · · . This technique is sometimes a useful preconditioning step
before applying a convergence acceleration algorithm.

For example, suppose that in Problem 3 sk = ‖Ak‖ is obtained by using
Matlab to find the norm of the k × k submatrix Ak of the infinite matrix A (see
§3.1). The best we can do by Levin’s U -algorithm before numerical instability (see
§A.5.3) dominates, is about 7 correct digits, using 16 terms. Using more terms makes
matters worse, not better.

Now suppose we still use 16 terms, but start later on: tk = sk+16. One would
think that since these terms are closer to the limit, a better extrapolated value can
be obtained. In fact, we still get about 7 digits, but we already get them using 10
terms. Numerical instability sets in earlier. If we still use no term further than s32,
but take a larger stride, we do a little better. E.g., stride 2 involves working with
the subsequence s2k; we obtain 9 digits. However, taking stride 3, 4, etc. does not
significantly improve the accuracy any further.

The real advantage of a subsequence is achieved, though, when the index
sequence nk grows faster than linearly. For example, if s − sk ≡ k−1 and nk = 2k,
then s − tk ≡ 2−k: sublinear convergence has been turned into linear convergence.
Similarly, linear convergence is turned into quadratic convergence. In Problem 3,
one can get about 12 digits in floating-point using nk = 2k−1, k = 1, 2, . . . , 10. Since
the subsequence already converges linearly with ρ ≈ 1

2 , there is very little build-
up of roundoff error, and it is in principle possible to get fairly close to machine
accuracy using this technique.

The extrapolated values for this example are given in Table A.10. Since we

A.5. Practical Issues 251

have been gaining a steady one to two digits per extrapolation step, and roundoff
error is insignificant, it requires no great leap of faith to accept the value s = ‖A‖ .=
1.27422415282, which is correct to 12 digits.

The epsilon algorithm also delivers contest accuracy (10 digits, almost 11)
when applied to this sequence tk (see Table 3.1).

A.5.2 Diagnosing the Nature of a Sequence

To estimate ρ, one can form the auxiliary sequence ρk = lim(sk+2 − sk+1)/(sk+1 −
sk), whose limit, if it exists, must equal ρ. It is in general very risky to base opinions
on the nature of a slowly convergent sequence by examining a finite number of terms.
The one exception arises when ρ is known to have one of a finite set of values, and
the only uncertainty is which to take.

In the example of §A.4.1, we get the following values of ρk:

0.500487721799137
0.500065583337346
0.500008367557636
0.500001051510722

If we know that the asymptotic expansion of the error contains negative powers of
2, it is easy to decide that ρ = 1/2 and not 1/4 or 1.

It must be stressed that this kind of test is of limited use.
A feature of convergence acceleration methods of which users must be aware is

that in the case of a divergent alternating sequence, the algorithm usually delivers
an approximation to a so-called anti-limit. There are situations where the anti-limit
can be rigorously defined by analytical continuation, e.g.

1 + r + r2 + r3 + · · · =
1

1 − r

has a right-hand side which is defined for all r �= 1, and which is the anti-limit of
the series on the left when r � −1 or r > 1.

This behavior can be very useful — an example follows below — but it does
mean that divergence cannot be diagnosed. For example, the following sequence was
shown to me by a researcher who wished to know whether it converges to 0:

−1.000000000000000
0.732050807568878

−0.630414938191809
0.576771533743575

−0.543599590009618
0.521053669642427

−0.504731494506494
0.492368058352063

−0.482678712072860
0.474880464055156

−0.468468857699484
0.463104220153723

−0.458549452588645
0.454634026719303

252 Appendix A. Convergence Acceleration

On this data, Euler’s transformation gives −0.0001244, Levin’s T -algorithm −3.144×
10−17, the epsilon algorithm 1.116×10−10, and the theta algorithm −4.737×10−12.
But 0 is not the the limit of the sequence, it is an anti-limit. The sequence is
divergent. However, |sk| is a convergent sequence. Salzer’s transformation gives
0.402759395, Levin’s U -algorithm 0.4027594, the rho algorithm 0.4027593957, and
the theta algorithm 0.4027594. The evidence is overwhelming that the limit is not
0.

As an example of the usefulness of an anti-limit, take for example sk =∑k
n=0(−1)nn!. Using 16 terms, Levin’s T -algorithm gives 0.59634736, the epsilon al-

gorithm 0.596, and the theta algorithm 0.596347. The series is in fact the asymptotic
series for f(z) =

∫∞
z
ez−xx−1 dx in negative powers of x, evaluated at x = 1. By

other methods we find f(1) .= 0.596347362323194. This shows that some violently
divergent series can be summed, if not to great accuracy, by nonlinear acceleration
methods. In fact, inputting a sequence of random deviates uniformly distributed
over (0, 1) to the epsilon algorithm is quite likely to produce “accelerated” values
clustering around 0.5.

Strongly nonlinear acceleration methods are so powerful that they require
great care in their handling.

Here is a cautionary example. We define the two sequences

sk =
k∑

n=1

(0.95)n/n

tk = sk + 19(0.95)k/k

Since tk − sk is a null sequence, both sequences converge to the same limit, namely
log 20 .= 2.99573227355399. And indeed the Levin U -transformation in IEEE dou-
ble precision approximates that limit to a terminal accuracy of 5 and 7 digits re-
spectively. We now form uk =

√
sktk. This sequence obviously has the same limit

as the other two. Yet Levin’s algorithm, using 30 terms, insists that the limit is
2.9589224422146, with entries 25 to 30 of the first row all within half a digit in the
last place of each other. The theta algorithm insists that the limit is 2.958919941,
also with agreement to all these decimals between entries 21, 24 and 27 of the first
row.

The sequence uk is not sufficiently well-behaved for extrapolation to work.
It is neither monotonic nor alternating. The sequence decreases from over 4 to
2.95887231295868, then increases again. Both algorithms seem to treat uk as an
asymptotic sequence, and produce a spurious pseudo-limit close to the place where
uk changes least. What saves us is that although both algorithms seem to produce a
limit accurate to ten digits, the two limits only agree to six digits. Linear algorithms
like Salzer’s do not produce any spurious limit at all.

Whenever possible, use more than one extrapolation method.

In the case of linear extrapolation methods, such as Richardson extrapola-
tion, it is usually possible to prove that the accelerated sequence converges to the

A.5. Practical Issues 253

2 4 6 8 10 12 14 16 18 20
10�16

10�14

10�12

10�10

10�8

10�6

10�4

10�2

100

Figure A.1. The V-shaped line shows |s1,j+1 − s1,j | for Salzer’s extrapo-
lation applied to the sequence sk =

∑k
n=1 n

−2. The rising line shows a bound for
the accumulated roundoff error in |s1,j |. This graph shows the typical behavior of a
linear or semilinear method applied to a monotonic sequence. The two lines meet
near the cusp of the V, allowing one to assess confidently the terminal accuracy of
the extrapolation.

same limit as the original sequence. In the case of nonlinear methods, such a proof
is seldom available; and when available, requires hypotheses that are unverifiable
in practice. Ans as we have seen, internal consistency among the entries of one
nonlinear acceleration method does not guarantee anything.

In finite-precision arithmetic, “convergence” does not mean that one can in
principle get arbitrarily close to the desired limit. It means that sooner or later (in
the case of a good extrapolation method, sooner rather than later) a stage is reached
where taking into account more terms does not further improve the approximation.
Like an asymptotic series, a numerically accelerated sequence in finite precision
has a certain terminal accuracy. The factors that determine terminal accuracy are
discussed in the following section.

A.5.3 Condition and Stability

We have left this question to the last, but it is in fact an extremely important
one. In any numerical computation, there are two main sources of error: truncation
error, which arises because only a finite number of terms of an infinite sequence are
taken into account; and roundoff error, which arises because the computer cannot
perform calculations exactly. Usually roundoff error is only an important issue when
the original sequence is monotonic.

In the case of acceleration methods, we typically start from a sequence in which
truncation error is much larger than roundoff error. The effect of the extrapolation is
to reduce the truncation error, but (particularly in the case of monotonic sequences)
to increase the roundoff error.

254 Appendix A. Convergence Acceleration

A useful visual tool is plot the absolute value of the differences in the extrap-
olated sequence s1,k on a logarithmic scale. For the example of §A.4.1, this graph
is shown in Figure A.1. Also on the graph is shown an estimate of the accumulated
roundoff error (we will explain in a moment how to obtain that). It is conspicu-
ous that the differences decrease steadily, and then start to rise, thereafter closely
following the estimated roundoff error.

The rule of thumb here is that when a monotonic sequence is accelerated
numerically, the sequence thus obtained should be thought of in much the same
way as an asymptotic series: the best place to stop is just before the first difference
starts to increase. That is the point at which the truncation and roundoff errors are
both approximately equal to terminal accuracy.

There are also two main sources of roundoff error itself. The first arises from
the original data, which is obtained by an inexact procedure, such as the rounding
of an exact value to floating-point. The second arises from the further computation
in finite-precision arithmetic. In a good implementation, convergence acceleration
algorithms are backward stable, which means that the numerics do not introduce
any error significantly larger than what would have been caused by perturbing the
data at roundoff error level. It is therefore sufficient in practice to consider only the
propagation of initial roundoff error.

All the acceleration algorithms we have considered can be thought of as having
the form

sk,j = f(sk, sk+1, . . . , sj),

although the function is never written out explicitly, but built up by recursion. We
define the condition number of the formula by

κ[f] =
j∑

i=k

∣∣∣∣ ∂∂si
f(sk, sk+1, . . . , sj)

∣∣∣∣ .
Roughly speaking, if each si is perturbed by roundoff error of size µ, then we can
expect sk,j to be contaminated by roundoff error of size µκ[f].

In the case of linear transformations, it is easy to estimate the condition num-
ber. Let κk,j be the value of κ[f] for sk,j . Clearly κk,0 = 1 for all k. From (A.8), we
find that

κk,j � κk+1,j−1 + |fk,j |(κk+1,j−1 + κk,j−1).

This estimate is only an inequality, but it is a sharp inequality, and in practice the
roundoff errors do not tend to cancel out. The estimated roundoff error in Figure A.1
was obtained as 2−53ηk,j , where

ηk,0 = 1

ηk,j = ηk+1,j−1 + |fk,j |(ηk+1,j−1 + ηk,j−1).

We earlier made the remark that from the point of view of accuracy, there is
not much to be gained by working with a series rather than a sequence. Even if we
had the terms of the series available exactly but the partial sums still in floating-
point, we would get ηk,1 = 1 instead of ηk,1 = 1 + |fk,1|. The recursion thereafter

A.5. Practical Issues 255

2 4 6 8 10 12 14 16

10�10

10�8

10�6

10�4

10�2

100

Figure A.2. The lower line shows |s1,2j+2 − s1,2j | for the rho algorithm
applied to the sequence sk = ‖Ak‖ arising from Problem 3. The upper line shows the
same, but applied to s5k instead of sk. This graph exhibits the typical behavior of a
strongly nonlinear method applied to a monotonic sequence. There is no V-shape as
in the case of a linear or semilinear method, but at the stage where roundoff error
becomes significant, the magnitude of the differences settles down at the terminal
accuracy level.

proceeds as usual. It is easy to show that the best that can happen is that ηk,j is
reduced by a factor of (1 + c), where c = max{|fk,1|, |fk+1,1|, . . . , |fj−1,1|}.

In the case of the modified Salzer transformation, it is a nuisance to obtain the
form (A.8), so we derive a similar procedure for the divided-difference formulation.
To go with formula (A.16), define

α0fk = fk;

αnfk =
αn−1fk+1 + αn−1fk

tk+n − tk
.

ηk,n =
αn

(
1

ψ(k)

)
δn

(
1

ψ(k)

) .
For semi-linear transformations, one can to a first-order approximation ignore

the dependence of the auxiliary sequence on the data. The same procedure as for
the modified Salzer transformation remains valid.

The strongly nonlinear transformations are not so easy to analyze. We can
no longer, as in the case of the semilinear methods, ignore the dependence of the
multipliers fk,j on the data when the methods when written in the form (A.8).
This is because the multipliers themselves depend on differences and even second
differences of computed quantities, and it is not reasonable to assume that they are
accurate enough to be dropped from the analysis.

256 Appendix A. Convergence Acceleration

Table A.11. The rho algorithm applied to the sequence ‖Akj
‖ of Problem 3.

j kj = j kj = 5j

1 1.00000000000000 1.26121761618336
2 1.32196073923600 1.27547538244135
3 1.27123453514403 1.27414260105494
4 1.27393314066972 1.27422328312872
5 1.27422017029519 1.27422410947073
6 1.27421718653107 1.27422414923215
7 1.27422358265440 1.27422414886405
8 1.27422398509675 1.27422415124899
9 1.27422414504466 1.27422415281792

10 1.27422416342250 1.27422415281284
11 1.27422409923149 1.27422415267127
12 1.27422410946623 1.27422415266073
13 1.27422412252998 1.27422415258201
14 1.27422411949585 1.27422415265168
15 1.27422415828802 1.27422415267954
16 1.27422413800383 1.27422415266834
17 1.27422414441947 1.27422415267514

But in the case of strongly nonlinear methods, this substantial analytical effort
is useless. Unlike linear and semi-linear methods, bounds on the roundoff error tend
to be highly pessimistic. The reason for this is that as roundoff error starts playing
a role, extrapolated values that should in exact arithmetic be very close to each
other (since both are close to the limit) turn out to be not that close. The large
roundoff-contaminated multipliers that might arise because of division by the tiny
difference between supposedly close quantities, do not occur. The observed behavior
for a strongly nonlinear method is that when roundoff error and truncation error
become comparable, the extrapolated values do not get steadily worse, but tend to
vary in a random-looking way around the limit, with amplitude at the accumulated
roundoff level.

An example will make this clear. Table A.11 shows the rho algorithm in action
on the sk = ‖Ak‖ values from Problem 3 (see §3.2). The differences of these numbers
are graphed in Figure A.2. Note that in both case at about j = 10 the algorithm
stops delivering further correct digits, but does not immediately start deteriorating
as does the linear and semilinear algorithms; it just mills around without getting
much better or much worse. Be warned: the slight tendency for the differences to get
smaller does not mean that another digit of accuracy is gained once the initial stage
of fast convergence is past. It merely shows that a nonlinear method can produce

A.5. Practical Issues 257

anti-limits even out of random sequences.
Finally, bear in mind that mathematically equivalent formulae are not numer-

ically equivalent. A couple of examples should make this point clear. The formula
(A.8) can also be written as

sk,j = (1 + fk,j)sk+1,j−1 − fk,jsk,j−1. (A.31)

Suppose that sk,j ≈ 1, sk+1,j−1 − sk,j−1 ≈ 0.01, fk ≈ 0.1. Then the correction term
in (A.8) is approximately 0.001, so we one can afford the loss of three digits in the
calculation of fk. But the correction term in (A.31) is approximately 0.1, so we can
afford only the loss of one digit in the calculation of fk. A more extreme case comes
from Aitken’s formula: instead of (A.23,A.24) or (A.25), one might be tempted to
use the “more elegant” formula

sk,2 =
sksk+2 − s2k+1

sk − 2sk+1 + sk+2
.

But this would produce a value of sk,2 with the same number of correct digits as the
second difference of sk, which clearly is a quantity subject to a lot of cancellation.

A.5.4 Stopping rules

Let me warn you, right at the outset, that any pure mathematician who feels
squeamish about any of the preceding material will recoil in horror at what is
about to follow. In fact, I myself feel uncomfortable with some of it.

Consider the following situation: the sequence sk is so expensive to compute
that, at each stage, before computing another term, a decision must be taken as to
the necessity or indeed the utility of so doing. For example, one may wish to know
s to 10 digits only, and one would like to exit (reporting success) if that accuracy
has already been achieved, or to abort (reporting failure) if no further increase of
accuracy can be expected from the current algorithm at the current precision.

A stopping rule is an algorithmic procedure by which that decision is auto-
mated. We give some examples of such rules, with a strong injunction that is is
preferable by far to use the competent human eye.

When accelerating an alternating sequence by any of the methods discussed
above, a plausible stopping rule is:

• Check whether |s1,n−1 − s1,n−2| � |s1,n−2 − s1,n−3|. If so, exit with best
extrapolated value s1,n−2 and error estimate c|s1,n−1 − s1,n−2|/(1− c), where
c = |s1,n−1−s1,n−2|/|s1,n−2−s1,n−3|. (This is in fact often a fairly good error
estimate even when the terminating condition is not yet satisfied.)

For the linear and semi-linear methods, a plausible stopping rule for monotonic
sequences is (having just calculated s1,n−1) and η1,n−1) :

• Check whether |η1,n−1|µ � |s1,n−1 − |s1,n−2|, where µ is the typical error in
the sk values that were used. If so, exit with best extrapolated value s1,n−1

and error estimate |η1,n−1|µ. If not, apply the same test as for alternating
sequences.

258 Appendix A. Convergence Acceleration

For the strongly non-linear methods, there is no very satisfactory stopping rule
for monotonic sequences. My suggestion is to use the same method as for alternating
sequences, and to multiply the error estimate by 10.

For the human eye, there is a very valuable visual aid. It is this: print a table
of the number of digits to which sk,j agrees with sk−1,j , i.e., the rounded value of
− log10 |1 − sk−1/sk|. Such small integers fit in nicely in one line and the behavior
of the acceleration table is conspicuous.

For example, here is the digit agreement table for the modified Salzer extrap-
olation example that we have met before:

1 2 3 4 5 6 7 7 9 9 10 9 9 9 8 8 7

1 2 4 5 5 7 7 8 9 11 9 10 9 8 8 7 6

2 3 4 5 6 8 8 9 10 10 10 9 8 8 7 6

2 3 5 5 7 8 8 10 10 10 9 8 8 7 6

2 3 5 6 7 8 9 10 11 9 8 8 7 6

2 4 5 6 7 8 9 10 9 9 9 7 7

3 4 6 6 8 9 10 9 9 9 8 7

3 4 6 7 8 9 10 9 10 8 7

3 4 6 7 8 9 10 10 8 7

3 4 6 7 9 10 10 9 8

3 4 7 7 9 10 9 8

3 4 7 7 9 9 9

3 5 7 7 9 9

3 5 7 8 9

3 5 7 8

3 5 7

3 5

3

It is obvious that ten digits, maybe eleven, is terminal accuracy here. The ridge of
terminal accuracy, flanked on both sides by less accurate values, is typical of linear
and semilinear methods. For the modified rho algorithm with θ = 2, on the same
sk values, we get:

3 5 7 9 11 11 11 11 12

3 5 8 10 10 10 11 12

4 6 8 10 10 11 10 10

4 6 9 10 11 11 11

4 7 9 10 10 10 11

4 7 9 10 10 10

4 7 10 10 10 11

5 7 10 10 10

5 8 10 10 10

5 8 10 10

5 8 10 11

5 8 10

5 8 10

5 8

5 8

5

6

As is typical of nonlinear methods, we observe a plateau at terminal accuracy.
Terminal accuracy is also ten, maybe eleven digits; it would be unwise to trust the
values that agree to twelve digits.

A.5. Practical Issues 259

A.5.5 Conclusion

We have presented many convergence acceleration algorithms, so here is a short
guide to which one to use.

1. If you know very precisely what the behavior of the sequence is, use an appro-
priate linear transformation, e.g., if the sequence arises from a finite difference
method for differential equations, use Richardson extrapolation, or when that
is not applicable, the E-algorithm. One of the ways of solving Problem 10
does just this (see §10.3.2). Problem 8 can also be solved with the aid of a
finite difference method, accelerated by Richardson extrapolation (see §8.2).

2. If the sequence is alternating, try the Levin T -transformation; if it is mono-
tonic, try the Levin U -transformation. The T -transformation works very well
for the alternating series arising from Problem 1 and Problem 9.

3. If the sequence is alternating, confirm the Levin T result by also trying the
epsilon algorithm; if it is monotonic and you know a little about its behavior,
confirm the Levin U result by also trying the modified rho algorithm with a
suitable value of θ.

4. If all else fails, try the Levin W -transformation and the theta algorithm.

5. If none of the previous is particularly satisfactory, try the effect of applying
the transformations to a suitably chosen subsequence, with kj = 2j−1 being
the obvious first choice.

6. Irregular sequences and series are not suitable to convergence acceleration.
For example, the dependence on the sequence of primes makes the approach
of extrapolation from small matrices that works so well in Problem 3 totally
unsuitable for Problem 7 (see §7.2.2). Another example with even more erratic
behavior is the series

1
ζ(s)

= 1 − 2−s − 3−s − 5−s + 6−s − 7−s + · · ·

(the general factor of n−s is µ(n), the Möbius function. This is 0 if n has a
multiple prime factor, otherwise it is (−1)k, where k is the number of prime
factors of n.)

7. Some sequences and series can be accelerated only with the aid of detailed
information which would not be available for a series obtained numerically.
For example, series in which ak can be represented as a product of two slowly
convergent null sequences, each by itself well modelled by a simple function
of n, but with different asymptotic behavior, can be surprisingly intractable.
One such series is g(x, k0) =

∑∞
k=0 x

k(k + k0)−1, which for k0 = 0.125 and
x ≈ 0.94 behaves similarly to a series that arises in the solution to Problem 6
(see §6.3). None of the general methods we have discussed do better than
six digits. It is fortunate that this series does not really require convergence
acceleration, since for (k + k0)(1 − x) > 1, we have the bound |s − sk| < xk;
thus 600 unaccelerated terms suffice for 16 digits. In this context, 0.94 � 1.

260 Appendix A. Convergence Acceleration

A.6 Notes and References
Although convergence acceleration is mainly an experimental science, there are
some theorems (for a selection of those see [BZ91]) saying that a given class of
sequences will be accelerated by a given algorithm (for example, linear sequences
are accelerated by the Aitken process).

The use of extrapolation to accelerate the Archimedes sequence is mentioned
by Bauer, Rutishauser and Stiefel [BRS63], who point out that Huygens in 1654
found a′3 and Kommerell in 1936 found a′′2 .

The term “quasi-linear” is due to Brezinski [Bre88].
The E-algorithm was independently discovered by no fewer than five authors

in the 1970’s, and has also been called by grander names, such as generalized
Mühlbach–Neville–Aitken extrapolation, or the Brezinski–H̊avie protocol. For its
history, see [Bre00].

The literature on convergence acceleration abounds in names like E-algorithm,
g-algorithm, ε-algorithm, etc., etc. They usually reflect notation used in an early
paper describing the algorithm.

Equation (A.12) can be generalized: if any factor rj is repeated m times, terms
of the form sk = rk

j p(k), where p is a polynomial of degree not more than m − 1,
are annihilated.

Although the retrieval of the exact limit when the model (A.14) is satisfied is
in general an O(n3) process, there exist O(n2) versions of the Richardson process
that will transform the sequence to one that, though not constant, does converge
faster than any of the modelling functions φj . Over half of a recent book [Sid03] is
devoted to the detailed analysis of many variations of the Richardson process.

In books on difference calculus, the notation δ is usually reserved for centered
differences, not for divided differences.

Our description of operator polynomial methods is based on the article by
Cohen, Rodriguez Villegas and Zagier [CRZ00]. However, the suggestion to use
Legendre and Jacobi polynomials is not mentioned there.

The epsilon algorithm has some other marvellous properties: for example, it
can accelerate all totally monotonic and totally accelerating sequences, and when
applied to a power series, it produces a certain subset of the Padé approximants of
the function defined by that power series.

The term “stride” was coined by Carl DeVore in his write-up of Problem 3
[DeV02]. The method he uses for convergence acceleration is not covered here: it is
a special-purpose nonlinear extrapolation based on the model

sk+1 − sk ≈ ck(k + bk)−dk .

The parameters ck, bk and dk are defined by assuming exactness at four consecutive
k values. It is easy to eliminate ck, leading to two nonlinear equations for bk and
dk. Having obtained the parameters, one exploits the fact that

ζ(d, b) =
∞∑

n=1

(n+ b)−d

is a fairly well-known function (in the Maple implementation called the Hurwitz

A.6. Notes and References 261

zeta function). This gives the acceleration formula

sk,3 = sk + ck (ζ(dk, k + bk) − ζ(dk, bk)) .

In cases where the two nonlinear equations prove troublesome to solve, DeVore
suggests taking bk = 0, in which case three terms suffice to determine ck and dk.
The acceleration formula becomes

sk,2 = sk + ck (ζ(dk, k) − ζ(dk, 0)) .

DeVore obtains twelve digits of ‖A‖ in 20-digit arithmetic, using the latter formula
on tk = s3k, k = 1, 2, . . . , 14.

For the numerical sequence in §A.5.2, sk is given by the value of the (k+1)-st
Laguerre polynomial at its first extremum in [0,∞). It was shown to me in 1973 by
Syvert Nørsett. We both worked on it over a weekend, in my case to find a numerical
value for the limit on a mechanical desk calculator, in his to show that the analytical
limit of |sk| equals |J0(x0)|, where x0 is the first extremum in [0,∞) of the Bessel
function J0. Thus the correct value in this case is s .= 0.402759395702553.

262 Appendix A. Convergence Acceleration

Appendix B

Extreme Digit-Hunting

If you add together our heroic numbers the result is τ = 1.497258836
I wonder if anyone will ever compute the ten thousandth digit of this fun-
damental constant? — Lloyd N. Trefethen [Tre02, p. 3]

I am ashamed to tell you to how many figures I carried these computations,
having no other business at the time.

— Isaac Newton, after computing 15 digits of π in 1666 [BB87, p. 339]

Since we understood all the relevant algorithms, we tried our best to find
10000 digits for each of the ten Challenge problems. We succeeded with nine of
them and summarize our efforts here. In all the even-numbered cases, the task was
quite simple. But each odd-numbered problem provided new challenges. As one
might expect, a technique that works beautifully to get 10 or 20 digits might well
fail badly when trying for 100s or 1000s of digits.

All timings are on a Macintosh G4 laptop with 1 GHz CPU speed, and were
done in Mathematica unless specified otherwise. The high-precision arithmetic in
version 5 of Mathematica is especially fast, as it is in PARI/GP, which was used
in some cases. Code for each of these is on the web page for this book. The prob-
lems divide naturally into two groups, according as their solution requires a lot of
arithmetic at 10000-digit precision, or not. Problems 1, 3, and 7 do require many
high-precision operations. The others do not. Thus even though Problem 5 requires
much more time than Problem 9, most of the time is spent on initializing the
gamma-function computations; once that is done, the rest can be done quickly.

While such an exercise might seem frivolous, the fact is we learned a lot from
the continual refinement of our algorithms to work efficiently at ultrahigh precision.
The reward is a deeper understanding of the theory, and often a better algorithm
for low-precision cases. A noteworthy example is Problem 9, where we first required
over 20 hours using a complicated series for Meijer’s G function that involved the
gamma function. But we were able to eliminate the very expensive gamma function
from the series, and then differentiate the result symbolically, with the result that
our current best time is now 34 minutes.

263

264 Appendix B. Extreme Digit-Hunting

As always, the question of correctness arises. We have interval validations of
correctness of 10000 digits for Problems 2, 4, 6, 7, 8, and 10. For the others, we rely
on the traditional techniques: comparing different algorithms, machines, software,
programmers, and programming languages. And we work up, always comparing
digits with past computations. Thus we have ample evidence to believe in the cor-
rectness of the 10002 digits given here for each of nine of the challenge problems.

1. Using the method discussed in §1.4, this can be done using the trapezoidal rule
with 91356 terms to get the real part of

∫
Cz

i/z−1 dz, where C is the contour given
by

z =
πet

πet + 2 − 2t
+

2i
cosh t

,

and with t running from −8.031 to 10.22. The reason this simple method and
small interval of integration work to such high precision is the double exponential
decay of the integrand in combination with an exponential convergence rate of the
trapezoidal rule. Still, it takes 22.6 hours and involves over 2 million operations at
the full 10000-digit precision. This computation was done independently by two of
us, using different languages (Mathematica, Maple, and C++), different operating
systems and computers, and different algorithms (the Ooura–Mori method).

0.32336 74316 77778 76139 93700 〈〈9950 digits〉〉 42382 81998 70848 26513 96587 27

2. Simply using high enough precision on the initial conditions is adequate. In a
fixed-precision environment one would do various experiments to estimate k so that
d+k digits of precision in the starting values will give d digits of the answer. But it
is elegant, fast, and more rigorous to use the interval algorithm of §2.3, which will
provide validated digits. It takes only 2 seconds to get the answer, starting with an
interval of diameter 10−10038 around the initial conditions. This time excludes the
experiments necessary to learn that 38 extra digits will be adequate.

0.99526 29194 43354 16089 03118 〈〈9950 digits〉〉 39629 06470 50526 05910 39115 30

3. For this problem we have only 273 digits, obtained in a month-long run by
the method of §3.6.2. We chose the contour (3.29) with parameter σ = 3/4, the
parametrization

t = Φ(τ) = sinh
(

2 sinh
(

1
2
arcsinh(τ)

))
= sinh


 τ√

(1 +
√

1 + τ2)/2


 ,

the truncation point

T =
1
2

(log log(8/ε))2 , ε = 10−275,

and the reciprocal step size 1/h = 516.2747. In analogy to (3.32) an empirical
model of the accuracy was fitted to runs in lower precisions. Here, with d denoting

265

the number of correct digits, such a model takes the form

h−1 ≈ 0.2365
(

d

log d
− 2.014

)2

for d > 120

and predicts the correctness of 273 digits.

1.2742 24152 82122 81882 12340 〈〈220 digits〉〉 75880 55894 38735 33138 75269 029

4. Once the location of the minimum is obtained to a few digits, one can use
Newton’s method on the gradient to zero in on the corresponding critical point of
f . It is only necessary to get the critical point to 5000 digits. Then use 10000 digits
of precision to evaluate the function at the critical point. This takes 8 seconds,
where Newton’s method is used in a way that increases the precision at each step:
start with machine precision and then repeatedly double the working precision,
using each result as the seed to the next. One can validate the answer in 44 seconds
using the ε-inflation method of §4.6. Just inflate the high-precision critical point to
a square of side 10−3 and verify Krawczyk’s condition.

-3.3068 68647 47523 72800 76113 〈〈9950 digits〉〉 46888 47570 73423 31049 31628 61

5. Using the 6 nonlinear equations (5.2) to get the values of θ1 and θ2 to 5000
digits, and then maximizing ε(θ1, θ2), as discussed in §5.6, to 10000 digits works
nicely. It takes 6 hours for an initial gamma function computation to 10000 digits.
Once that is done, subsequent gamma values are very fast. Then it takes just an
hour to solve the 6-equation system, and only 4 minutes for the ε evaluation. Using
only the 6-dimensional system takes much longer, but yields the same result. And a
completely independent computation using only the approach of finding a maximum
to ε also yielded the same 10000 digits.

0.21433 52345 90459 63946 15264 〈〈9950 digits〉〉 68023 90106 82332 94081 32745 91

6. Because of the simple form (6.1) of the answer, namely

ε =
1
4

√
1 − η2, where M

(√
4 − (η − 1)2,

√
4 − (η + 1)2

)
= 1,

with M being the arithmetic-geometric mean, 10000 digits can be obtained very
quickly, using fast algorithms for the arithmetic-geometric mean and the secant
method to find η. The total time needed is about half a second. The result can be
quickly validated using interval methods as explained in §6.5.1.

0.061913 95447 39909 42848 17521 〈〈9950 digits〉〉 92584 84417 28628 87590 08473 83

7. Using the rational form of the answer obtained by Dumas, Turner, and Wan
yields 10000 digits in no time, but sidesteps the many days needed to obtain that
exact rational (see §7.5). Thus we carried out a purely numerical approach, using

266 Appendix B. Extreme Digit-Hunting

the conjugate gradient method with preconditioning to compute the entire first
column of the inverse. This required maintaining a list of 20000 10010-digit reals,
and took 129 hours and about 4 ·109 arithmetic operations at 10010-digit precision.
The result can be validated by combining knowledge of the relationship of the error
to the size of the residual, which can be computed by interval methods as discussed
in §7.4.2.

0.72507 83462 68401 16746 86877 〈〈9950 digits〉〉 52341 88088 44659 32425 66583 88

8. The method of equation (8.9) yields the answer by simple root-finding. The
answer, t, satisfies θ

(
e−π2t

)
= π/2

√
5. The series defining θ can safely be truncated

after 73 terms. Hence, the derivative of this is easy and Newton’s method can be
used yielding 10000 digits in 8 seconds. Mathematica’s FindRoot is efficient in the
sense that, when started with a machine precision seed, it will start its work at
machine precision and work up, doubling the precision at each iteration. The result
can be quickly validated by the ε-inflation method of interval arithmetic as explained
in §8.3.2.

0.42401 13870 33688 36379 74336 〈〈9950 digits〉〉 34539 79377 25453 79848 39522 53

9. The integral I(α) can be represented in terms of the gamma function and Mei-
jer’s G function (see §9.6), and this leads to a representation using an infinite series.
Moreover, the series can be differentiated term by term, allowing us to approximate
I ′(α) as a partial sum of an infinite series. Thus we need only find the correct solu-
tion to I ′(α) = 0, which can be done by the secant method. Formula (9.13) shows
how the gamma function can be eliminated, which saves a lot of time (see §5.7).
That formula also yields to term-by-term differentiation, with the result that 10000
digits can be obtained in 34 minutes. The differentiation can also be done numer-
ically, but then one must work to 12500-digit precision, which slows things down.
The two methods, run on different machines and with different software (Mathe-
matica and PARI/GP) lead to the same result. Using interval methods (bisection
on an interval version of I ′(α)) validated the first 1000 digits.

0.78593 36743 50371 45456 52439 〈〈9950 digits〉〉 63138 27146 32604 77167 80805 93

10. Given the symbolic work in §10.7 that presents the answer as

2
π

arcsin
(
(3 − 2

√
2)2(2 +

√
5)2(

√
10 − 3)2(51/4 −

√
2)4

)
,

this is the easiest of all: we simply compute π, three square roots, and an arcsine
to 10010 digits. This takes 0.4 seconds. An interval computation then validates
correctness.

0.00000038375 87979 25122 61034 07133 〈〈9950 digits〉〉 65284 03815 91694 68620 19870 94

Appendix C

Code

We may say most aptly, that the Analytical Engine
weaves algebraical patterns just as the Jacquard-loom
weaves flowers and leaves. [Men43, Note A, p. 696]

— Augusta Ada Byron King, Countess Lovelace

Here we collect, for the convenience of the reader, all the small code that was used
in the chapters but not displayed there in order not to distract from the course of
the arguments. This code, and more elaborate one with all the bells and whistles,
can be download from the web page for this book:

www.siam.org/books/100digitchallenge.

C.1 C
Monte Carlo simulation of Brownian motion

This small C programm was used to obtain Table 10.1 in §10.1.

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

void main() /* walk on spheres */

{

const float pi2 = 8.*atan(1.)/RAND_MAX;

const float a = 10., b = 1., h = 1.e-2; /* geometry */

const int n = 1e8; /* number of samples */

float x,y,r,phi,p;

int k,count,hit;

count = 0;

for (k=0; k<n; k++) { /* statistics loop */

x = 0.; y = 0.;

267

268 Appendix C. Code

do { /* a single run */

r = min(min(a-x,a+x),min(b-y,b+y));

phi = pi2*rand();

x += r*cos(phi); y += r*sin(phi);

} while ((fabs(x)<a-h) & (hit=(fabs(y)<b-h)));

count += hit;

}

p = ((float)count)/n;

printf("%e \n",p);

}

C.2 PARI/GP
PARI/GP is an interactive programming environment that was originally developed
by Henri Choen and Karim Belabas for algorithmic number theory. It has many
powerful features of symbolic algebra and of high-precision arithmetic, including
basic linear algebra. PARI/GP (we used version 2.1.3) is free for private or academic
purposes and can be downloaded at

http://pari.math.u-bordeaux.fr/download.html.

C.2.1 Problem-Dependent Functions and Routines

Operator Norm with Power Method (§3.3)

Used in session on p. 55.

{OperatorNorm(x,tol) =

n=length(x); b=vector(2*n,l, 1+(l^2-l)/2);

lambda=0; lambda0=1;

while(abs(lambda-lambda0)>tol,

xhat=x/sqrt(sum(k=-n,-1, x[-k]^2));

y=vector(n,k, sum(l=-n,-1, xhat[-l]/(b[k-l]+l)));

x=vector(n,j, sum(k=-n,-1, y[-k]/(b[j-k]-j)));

lambda0=lambda; lambda=sum(k=-n,-1,xhat[-k]*x[-k]);

);

[sqrt(lambda),x]

}

C.3 Matlab
All the Matlab code was tested to run under version 6.5 (R13).

C.3.1 Problem-Dependent Functions and Routines

Operator Norm with Power Method (§3.3)

Matlab version of the PARI/GP procedure used in session on p. 55.

C.3. Matlab 269

function [s,v,u] = OperatorNorm(x,tol)

% Input: x initial right singular vector

% tol desired absolute tolerance

% Output: s maximal singular value (operator norm)

% v right singular vector

% u left singular vector

n = length(x); y = zeros(n,1);

k = 1:n;

lambda = 0; lambda0 = 1;

while abs(lambda-lambda0) > tol

xhat = x/norm(x);

for j=1:n, y(j)=(1./((j+k-1).*(j+k)/2-(k-1)))*xhat; end

for j=1:n, x(j)=(1./((k+j-1).*(k+j)/2-(j-1)))*y; end

lambda0 = lambda; lambda = x’*xhat;

end

s = sqrt(lambda);

v = x/norm(x);

u = y/norm(y);

return

Return Probability (§6.2)

Used in session on p. 126.

function p = ReturnProbability(epsilon,n)

pE = 1/4 + epsilon; pW = 1/4 - epsilon; pN = 1/4; pS = 1/4;

m = 2*n+1; ctr = sub2ind([m,m],n+1,n+1);

A_EW = spdiags(ones(m,1)*[pW pE],[-1 1],m,m);

A_NS = spdiags(ones(m,1)*[pS pN],[-1 1],m,m);

A = kron(A_EW,speye(m)) + kron(speye(m),A_NS);

r = A(:,ctr); A(:,ctr) = 0; q = (speye(m^2)-A)\r;

p = q(ctr);

return

Occupation Probabilities (§6.3.1)

Used in session on p. 130 and the function ExpectedVisitsExtrapolated.

function p = OccupationProbability(epsilon,K)

global pE pW pN pS;

pE = 1/4 + epsilon; pW = 1/4 - epsilon; pN = 1/4; pS = 1/4;

p = zeros(K,1); p(1) = 1; Pi = 1;

270 Appendix C. Code

for k=1:K-1

Pi = step(step(Pi)); p(k+1) = Pi(k+1,k+1);

end

return

function PiNew = step(Pi)

global pE pW pN pS;

[k,k] = size(Pi); PiNew = zeros(k+1,k+1); i=1:k;

PiNew(i+1,i+1) = pE*Pi;

PiNew(i ,i) = PiNew(i ,i) + pW*Pi;

PiNew(i ,i+1) = PiNew(i ,i+1) + pN*Pi;

PiNew(i+1,i) = PiNew(i+1,i) + pS*Pi;

return

Extrapolation of the Expected Number of Visits (§6.3.2)

Used in session on p. 131.

function val = ExpectedVisistsExtrapolated(epsilon,K,extraTerms)

p = OccupationProbability(epsilon,K+extraTerms);

steps = (extraTerms-1)/2;

val = sum(p(1:K))+WynnEpsilon(p(end-2*steps:end),steps,’series’,’off’);

return

C.3.2 General Functions and Routines

Strebel’s Summation Formula

Used in session on p. 64.

function [w,c] = SummationFormula(n,alpha)

% Calculates weights w and nodes c for a summation formula that

% approximates sum(f(k),k=1..infinity) by sum(w(k)*f(c(k)),k=1..n).

% Works well if f(k) is asymptotic to k^(-alpha) for large k.

% Put alpha = ’exp’ to use an exponential formula.

switch alpha

case ’exp’

k=n:-1:2;

u=(k-1)/n;

c1 = exp(2./(1-u).^2-1./u.^2/2); c = k + c1;

w = 1 + c1.*(4./(1-u).^3+1./u.^3)/n;

kinf = find(c==Inf);

c(kinf)=[]; w(kinf)=[];

C.3. Matlab 271

c = [c 1]; w = [w 1];

otherwise

n = ceil(n/2); a1 = (alpha-1)/6; a6 = 1+1/a1;

k2 = n-1:-1:0;

w2 = n^a6./(n-k2).^a6-a6*k2/n;

c2 = n+a1*(-n+n^a6./(n-k2).^(1/a1))-a6*k2.^2/2/n;

k1 = n-1:-1:1;

w = [w2 ones(size(k1))];

c = [c2 k1];

end

return

Trapezoidal Sums with sinh-Transformations

Used in session on p. 71.

function [s,steps] = TrapezoidalSum(f,h,tol,level,even,varargin)

% [s,steps] = TrapezoidalSum(f,h,tol,level,even,varargin)

%

% applies the truncated trapezoidal rule with sinh-transformation

%

% f integrand, evaluates as f(t,varargin)

% h step size

% tol truncation tolerance

% level number of recursive applications of sinh-transformation

% even put ’yes’ if integrand is even

% varargin additional arguments for f

%

% s value of the integral

% steps number of terms in the truncation trapezoidal rule

[sr,kr] = TrapezoidalSum_(f,h,tol,level,varargin{:});

if isequal(even,’yes’)

sl = sr; kl = kr;

else

[sl, kl] = TrapezoidalSum_(f,-h,tol,level,varargin{:});

end

s = sl+sr; steps = kl+kr+1;

return

function [s,k] = TrapezoidalSum_(f,h,tol,level,varargin)

t = 0; F0 = TransformedF(f,t,level,varargin{:})/2;

val = [F0]; F = 1; k = 0;

while abs(F) >= tol

t = t+h; F = TransformedF(f,t,level,varargin{:});

k = k+1; val = [F val];

272 Appendix C. Code

end

s = abs(h)*sum(val);

return

function val = TransformedF(f,t,level,varargin)

dt = 1;

for j=1:level

dt = cosh(t)*dt; t = sinh(t);

end

val = feval(f,t,varargin{:})*dt;

return

Wynn’s Epsilon Algorithm

Used in function ExpectedVisistsExtrapolated.

function val = WynnEpsilon(a,steps,object,display)

% function S = WynnEpsilon(a,steps,object,display)

%

% extrapolates a sequence or series by using Wynn’s epsilon algorithm

%

% a vector of terms

% steps number of extrapolation steps

% object ’sequence’: extrapolation to the limit of a

% ’series’ : extrapolation to the limit of cumsum(a)

% display ’on’: plot the absolute value of differences in the

% first row of the extrapolation table for diagnosis

%

% val extrapolated value

S = zeros(length(a),2*steps+1);

switch object

case ’sequence’

S(:,1) = a;

case ’series’

S(:,1) = cumsum(a);

otherwise

error(’MATLAB:badopt’,’%s: no such object known’,object);

end

for j=2:2*steps+1

if j==2

switch object

case ’sequence’

S(1:end-j+1,j) = 1./diff(a);

case ’series’

S(1:end-j+1,j) = 1./a(2:end);

C.3. Matlab 273

end

else

S(1:end-j+1,j) = S(2:end-j+2,j-2)+1./diff(S(1:end-j+2,j-1));

end

end

S = S(:,1:2:end);

if isequal(display,’on’)

h=semilogy(0:length(S(1,:))-2,abs(diff(S(1,:))));

set(h,’LineWidth’,3);

end

val = S(1,end);

return

Richarson extrapolation with error control

Used in sessions on pp. 175, 176 and 210.

function [val,err,ampl] = richardson(tol,p,nmin,f,varargin)

% [val,err,ampl] = richardson(tol,p,nmin,f,varargin)

%

% richardson extrapolation with error control

%

% tol requested relative error

% p f(...,h) has an asymptotic expansion in h^p

% nmin start double harmonic sequence at h=1/2/nmin

% f function, evaluates as f(varargin,h)

%

% val extrapolated value (h -> 0)

% err estimated relative error

% ampl amplicifation of relative error in the

% evaluation of f

% initialize tableaux

j_max = 9; T = zeros(j_max,j_max);

n = 2*(nmin:(j_max+nmin)); % double harmonic sequence

j=1; h=1/n(1);

T(1,1) = feval(f,varargin{:},h);

val=T(1,1); err=abs(val);

% do Richardson until convergence

while err(end)/abs(val) > tol & j<j_max

j=j+1; h=1/n(j);

T(j,1) = feval(f,varargin{:},h);

A(j,1) = abs(T(j,1));

for k=2:j

T(j,k)=T(j,k-1)+(T(j,k-1)-T(j-1,k-1))/((n(j)/n(j-k+1))^p-1);

A(j,k)=A(j,k-1)+(A(j,k-1)+A(j-1,k-1))/((n(j)/n(j-k+1))^p-1);

end

274 Appendix C. Code

val = T(j,j);

err = abs(diff(T(j,1:j))); % subdiagonal error estimates

if j > 2 % extrapolate error estimate once more

err(end+1) = err(end)^2/err(end-1);

end

end

ampl = A(end,end)/abs(val);

err = max(err(end)/abs(val),ampl*eps);

return

Approximation of the Heat Equation on Rectangles

Used in session on p. 175.

function u_val = heat(pos,rectangle,T,u0,f,bdry,h);

% u_val = heat(pos,rectangle,T,u0,f,bdry,h)

%

% solves the heat equation u_t - \Delta u(x) = f with dirichlet

% boundary conditions on rectangle [-a,a] x [-b,b] using a five-point

% stencil and explicit Euler time-stepping

%

% pos [x,y] a point of the rectangle

% rectangle [a,b]

% 2a length in x-direction

% 2b length in y-direction

% T final time

% u0 intial value (constant)

% f right-hand side (constant)

% bdry Dirichlet data [xl,xr,yl,yu]

% xl boundary value on {-a} x [-b,b] (constant)

% xr boundary value on { a} x [-b,b] (constant)

% yl boundary value on [-a,a] x {-b} (constant)

% yu boundary value on [-a,a] x { b} (constant)

% h h = 1/n suggested approximate grid-size

% u_val solution at pos = [x,y]

% the grid

a = rectangle(1); b = rectangle(2);

n = 2*ceil(1/2/h); % make n even

nx = ceil(2*a)*n+1; ny = ceil(2*b)*n+1;

dx = 2*a/(nx-1); dy = 2*b/(ny-1);

nt = ceil(4*T)*ceil(1/h^2); dt = T/nt;

x = 1:nx; y=1:ny;

% initial and boundary values

u = u0*ones(nx,ny);

u(x(1),y) = bdry(1); u(x(end),y) = bdry(2);

C.3. Matlab 275

u(x,y(1)) = bdry(3); u(x,y(end)) = bdry(4);

% the five-point stencil

stencil = [-1/dy^2 -1/dx^2 2*(1/dx^2+1/dy^2) -1/dx^2 -1/dy^2];

% the time-stepping

x = x(2:end-1); y = y(2:end-1);

for k=1:nt

u(x,y) = u(x,y) + dt*(f - stencil(1)*u(x,y-1)...

- stencil(2)*u(x-1,y)...

- stencil(3)*u(x,y)...

- stencil(4)*u(x+1,y)...

- stencil(5)*u(x,y+1));

end

% the solution

u_val = u(1+round((pos(1)+a)/dx),1+round((pos(2)+b)/dy));

return

Poisson solver on rectangle with constant data

Used in sessions on pp. 208 and 208.

function u_val = poisson(pos,rectangle,f,bdry,solver,h);

% u_val = poisson(pos,rectangle,f,bdry,solver,h)

%

% solves poisson equation with dirichlet boundary conditions

% on rectangle [-a,a] x [-b,b] using a five-point stencil

%

% pos [x,y] a point of the rectangle

% rectangle [a,b]

% 2a length in x-direction

% 2b length in y-direction

% f right-hand side of -\Delta u(x) = f (constant)

% bdry Dirichlet data [xl,xr,yl,yu]

% xl boundary value on {-a} x [-b,b] (constant)

% xr boundary value on { a} x [-b,b] (constant)

% yl boundary value on [-a,a] x {-b} (constant)

% yu boundary value on [-a,a] x { b} (constant)

% solver ’Cholesky’ sparse Cholesky solver

% ’FFT’ FFT based fast solver

% h h discretization parameter

%

% u_val solution at pos = [x,y]

% the grid

n = ceil(1/h);

a = rectangle(1); b = rectangle(2);

276 Appendix C. Code

nx = 2*ceil(a)*n-1; ny = 2*ceil(b)*n-1; x=1:nx; y=1:ny;

dx = (2*a)/(nx+1); dy = (2*b)/(ny+1);

% the right hand side

r = f*ones(nx,ny);

r(1,y) = r(1,y)+bdry(1)/dx^2; r(nx,y) = r(nx,y)+bdry(2)/dx^2;

r(x,1) = r(x,1)+bdry(3)/dy^2; r(x,ny) = r(x,ny)+bdry(4)/dy^2;

% solve it

switch solver

case ’Cholesky’ % [Dem87,Sect. 6.3.3]

Ax = spdiags(ones(nx,1)*[-1 2 -1]/dx^2,-1:1,nx,nx);

Ay = spdiags(ones(ny,1)*[-1 2 -1]/dy^2,-1:1,ny,ny);

A = kron(Ay,speye(nx)) + kron(speye(ny),Ax);

u = A\r(:); u = reshape(u,nx,ny);

case ’FFT’ % [Dem87,Sect. 6.7]

u = dst2(r);

d = 4*(sin(x’/2*pi/(nx+1)).^2*ones(1,ny)/dx^2+ ...

ones(nx,1)*sin(y/2*pi/(ny+1)).^2/dy^2);

u = u./d;

u = dst2(u);

otherwise

error(’MATLAB:badopt’,’%s: no such solver known’,solver);

end

% the solution

u_val = u(round((pos(1)+a)/dx),round((pos(2)+b)/dy));

return

% subroutines for 1D and 2D fast sine transform [Dem97,p.324]

function y = dst(x)

n = size(x,1); m = size(x,2);

y = [zeros(1,m);x]; y = imag(fft(y,2*n+2));

y = sqrt(2/(n+1))*y(2:n+1,:);

return

function y = dst2(x)

y = dst(dst(x)’)’;

return

C.4 Intlab
Intlab is a Matlab toolbox for self-validating algorithms written by Siegfried Rump
[Rum99a, Rum99b]. For portability the toolbox is enterily written in Matlab, mak-
ing heavily use of BLAS routines. Intlab (we used version 4.1.2) is free for private
or academic purposes and can be downloaded at

C.4. Intlab 277

www.ti3.tu-harburg.de/~rump/intlab/.

A tutorial can be found in the master’s thesis of Hargreaves [Har02].

C.4.1 Utilities

Gradient of hull command.

Needed for applying IntervalNewton to the function theta.

Automatic differentiation of the command ’hull’ needs some short code to be put
in a file named ’hull.m’ to a subdirectory ’@gradient’ of the working directory:

function a = hull(a,b)

a.x = hull(a.x,b.x);

a.dx = hull(a.dx,b.dx);

return

Subdivision of Intervals and Rectangles

Used in the commands IntervalBisection and IntervalNewton.

function x = subdivide1D(x)

% subdivides the intervals of a list (row vector) by bisection

x1 = infsup(inf(x),mid(x));

x2 = infsup(mid(x),sup(x));

x = [x1 x2];

return

function x = subdivide2D(x)

% subdivides the rectangles of a list of

% rectangles (2 x k matrix of intervals)

x1_ = x(1,:); x2_ = x(2,:);

l1 = infsup(inf(x1_),mid(x1_));

r1 = infsup(mid(x1_),sup(x1_));

l2 = infsup(inf(x2_),mid(x2_));

r2 = infsup(mid(x2_),sup(x2_));

x = [l1 l1 r1 r1; l2 r2 l2 r2];

return

278 Appendix C. Code

C.4.2 Problem-Dependent Functions and Routines

Objective Function (Chapter 4)

function f = fun(x)

f.x = exp(sin(50*x(1,:)))+sin(60*exp(x(2,:)))+ ...

sin(70*sin(x(1,:)))+sin(sin(80*x(2,:)))- ...

sin(10*(x(1,:)+x(2,:)))+(x(1,:).^2+x(2,:).^2)/4;

f.dx(1,:) = 50*cos(50*x(1,:)).*exp(sin(50*x(1,:)))+ ...

70*cos(70*sin(x(1,:))).*cos(x(1,:))- ...

10*cos(10*x(1,:)+10*x(2,:))+1/2*x(1,:);

f.dx(2,:) = 60*cos(60*exp(x(2,:))).*exp(x(2,:))+ ...

80*cos(sin(80*x(2,:))).*cos(80*x(2,:))- ...

10*cos(10*x(1,:)+10*x(2,:))+1/2*x(2,:);

return

Proof of Rigorous Bound for λmin(A1142) (§7.4.2)

The results of the following session are used in the proof of Lemma 7.1.

>> n = 1142; p_n = 9209;

>> A = spdiags(primes(p_n)’,0,n,n); e = ones(n,2);

>> for k=2.^(0:floor(log2(n))), A = A + spdiags(e,[-k k],n,n); end

>> [V,D] = eig(full(A)); V = intval(V);

>> R = V*D-A*V;

>> for i=1:n, lambda(i) = midrad(D(i,i),norm(R(:,i))/norm(V(:,i))); end

>> [lambda0,j] = min(inf(lambda));

>> lambda_min = infsup(lambda(j))

lambda_min = [1.120651470854673e+000, 1.120651470922646e+000]

>> lambda0 = intval(1.120651470854673);

>> alpha2 = 11*100; lambda1 = 9221-100;

>> lambdaF = infsup(2*(lambda0*lambda1-alpha2)/...

(lambda0+lambda1+sqrt(4*alpha2+(lambda1-lambda0)^2)))

lambdaF = [1.000037435271862e+000, 1.000037435271866e+000]

Interval Theta-Function (§8.3.2)

Used in session on p. 76.

function val = theta(q,k)

val = hull(theta_(q,k-1),theta_(q,k));

return

C.4. Intlab 279

function val = theta_(q,k)

j=0:k; a=(-1).^j./(2*j+1).*q.^(j.*(j+1));

val=2*q^(1/4).*sum(a);

return

C.4.3 General Functions and Routines

Two-Dimensional Minimization

Alternatively to using Mathematica in the session on p. 86 one can call:

>> [minval,x]=LowestCriticalPoint(@fun,infsup([-1;-1],[1;1]),...

infsup(-inf,-3.24),5e-11)

intval minval = -3.306868647_____

x = -0.02440307969482

0.21061242715405

Implementation of Algorithm 4.2:

function [minval,x] = LowestCriticalPoint(fun,x,minval,tol)

% [minval,x] = LowestCriticalPoint(fun,x,minval,tol)

%

% solves (interior) global minimization problem on a list

% of rectangles using interval arithmetic.

%

% fun objective function. f = fun(x) should give

% for a (2 x n)-vector of input intervals x

% a cell structure f.x, f.dx containing the

% (1 x n)-vector of f-intervals f.x and the

% (2 x n)-vector of df-intervls f.dx

%

% x input: list of rectangles, i.e. (2 x n)-

% vector of intervals, specifying search region

% output: midpoint of final enclosing rectangle

%

% minval interval enclosing glbal minimum

%

% tol relative tolerance (for minima below 1e-20,

% absolute tolerance)

while relerr(minval) > tol

x = subdivide2D(x);

f = feval(fun,x);

upper = min(minval.sup,min(f.x.sup));

rem = (f.x > upper) | any(not(in(zeros(size(f.dx)),f.dx)));

f.x(rem) = []; x(:,rem) = [];

280 Appendix C. Code

minval = infsup(min(f.x.inf),upper);

end

x = mid(x);

return

Interval Bisection

Used in session on p. 140.

function x = IntervalBisection(fun,x,tol,varargin)

% x = IntervalBisection(f,x,tol,varargin)

%

% applies the interval bisection method for root-finding

%

% f interval function

% x at input: search interval

% at output: interval enclosing the roots

% tol relative error

% varargin additional arguments for f

while max(relerr(x))>tol

x = subdivide1D(x);

f = x;

for k=1:length(x)

f(k) = feval(fun,x(k),varargin{:});

end

rem = not(in(zeros(size(f)),f));

f(rem) = []; x(rem) = [];

end

x=infsup(min(inf(x)),max(sup(x)));

return

Interval Newton Iteration

Used in session on p. 181.

function X = IntervalNewton(f,X1,varargin)

% X = IntervalNewton(f,X1,varargin)

%

% applies interval Newton method until convergence

%

% f interval function, must be enabled for automatic

% differentiation, call f(x,varargin)

% X1 initial interval

% varargin additional arguments for f

%

% X converged interval

C.5. Mathematica 281

X = intval(inf(X1));

while X ~= X1

X = X1;

x = intval(mid(X));

F = feval(f,gradientinit(X),varargin{:});

fx = feval(f,x,varargin{:});

X1 = intersect(x-fx/F.dx,X);

end

return

Interval Arithmetic-Geometric Mean

Used in session on p. 140.

function m = AGM(a,b)

rnd = getround;

if isa(a,’double’), a = intval(a); end

if isa(b,’double’), b = intval(b); end

minf = inf(EnclosingAGM(a.inf,b.inf));

msup = sup(EnclosingAGM(a.sup,b.sup));

m = infsup(minf,msup);

setround(rnd);

return

function m = EnclosingAGM(a,b)

a1 = -inf; b1 = inf;

while (a > a1) | (b < b1)

a1 = a; b1 = b;

setround(-1); a = sqrt(a1*b1);

setround(1); b = (a1+b1)/2;

end

m = infsup(a,b);

return

C.5 Mathematica
All the Mathematica is for version 5.0.

C.5.1 Utilities

Kronecker Tensor Product of Matrices

Used in the function Return Probability on p. 283.

282 Appendix C. Code

SetAttributes KroneckerTensor, OneIdentity ;

KroneckerTensor u_ ?MatrixQ, v_ ?MatrixQ :

Module w Outer Times, u, v , Partition

Flatten Transpose w, 1, 3, 2, 4 , Dimensions w 2 Dimensions w 4 ;

KroneckerTensor u_, v_, w__ : Fold KroneckerTensor, u, v, w ;

CircleTimes KroneckerTensor;

Supporting Interval Functions

Used in various interval functions such as ReliableTrajectory, LowestCritical-
Point, IntervalBisection, and IntervalNewton.
mid X_ : Min X Max X 2;

diam X_ : Max X Min X ;

diam X__Interval : Max diam X ;

extremes X_ : Min X , Max X ;

hull X_ : Interval extremes X ;
MidRad x_, r_ : x Interval 1, 1 r;

IntervalMin Interval a_, b_ , Interval c_, d_ :

Interval Min a, c , Min b, d ;

IntervalMin : ;

Subdivision of Intervals and Rectangles

Used in various interval functions such as LowestCriticalPoint, IntervalBi-
section, and IntervalNewton.
subdivide1D X_ : Interval Min X , mid X , mid X , Max X ;

subdivide2D X_, Y_ : Distribute subdivide1D X , subdivide1D Y , List ;

Count of Digit Agreement and Form for Pretty Interval Output

Used in sessions on pp. 43, 141, 164, 181 and 284.

DigitsAgreeCount a_, b_ : prec Ceiling Min Precision a, b ;

ad, ae , bd, be RealDigits #, 10, prec & a, b ;

If ae be a b 0, Return 0 ; If ad bd, Return Length ad ;

com Position MapThread Equal, ad, bd , False, 1, 1 1; com ;

DigitsAgreeCount Interval a_, b_ : DigitsAgreeCount a, b ;

IntervalForm Interval a_, b_ :

If com DigitsAgreeCount a, b 0, Return Interval a, b ;

start Sign a N FromDigits ad Range com , 1 , com ;

low, up SequenceForm Take #, com 1, prec & ad, bd ;

If ae 0, start 10; ae ;

SequenceForm DisplayForm SubsuperscriptBox NumberForm start, low, up ,

If ae 1, Sequence " ", DisplayForm SuperscriptBox 10, ae 1 , ""

C.5.2 Problem-Dependent Functions and Routines

Reliable Photon Trajectory (§2.3)

Used in session on p. 43.

C.5. Mathematica 283

Options ReliableTrajectory :

StartIntervalPrecision Automatic, AccuracyGoal 12 ;

ReliableTrajectory p_, v_, tMax_, opts___Rule :

Module error , , s0, s, P, V, t, Trem, path, S, T ,

, s, s0 10.^ AccuracyGoal , AccuracyGoal, StartIntervalPrecision .

opts . Options ReliableTrajectory ;

If s0 Automatic, s0 s ;

s s0; wp Max 17, s 2 ;

While error ,

P N MidRad #, 10 s & p, wp ;

V N MidRad #, 10 s & v, wp ;

path P ;

Trem Interval tMax ;

While Trem 0, M Round P 2 V 3 ;

S t . Solve P t V M . P t V M 1 9, t ;

If FreeQ S, Power Interval _ ?Negative, _ ?Positive , _ ,

T IntervalMin Cases S, _ ?Positive , Break ;

Which

T Trem, P T V; V H P M .V; Trem T,

T Trem && Trem 2 3, P 2 V 3; Trem 2 3,

T Trem && Trem 2 3, P Trem V; Trem 0,

True, Break ;

AppendTo path, P ;

If Precision Trem, P, V, T ag, Break ;

wp Max 17, s 2 ;

error diam P Table MidRad Max Abs Trem , Max Abs Trem , 2 ;

Print StringForm "Initial condition interval radius is 10 ``.", s ;

path ;

Return Probability (§6.2)

Mathematica version of the Matlab function on p. 269.

Matrices n_ : Matrices n m 2 n 1; pE
1

4
0;

pW
1

4
0; pN

1

4
; pS

1

4
; Id SparseArray i_, i_ 1, m, m ;

PEW SparseArray i_, j_ ; j i 1 pE, i_, j_ ; j i 1 pW , m, m ;

PNS SparseArray i_, j_ ; j i 1 pN, i_, j_ ; j i 1 pS , m, m ;

PEW Id Id PNS, Id Id ;

ReturnProbability _Real, n_Integer : A, Id Matrices n ;

Block 0 , m 2 n 1; ctr n m n 1; r A All, ctr ;

A All, ctr 0; q LinearSolve Id A, r ; q ctr ;

Multiplication with the Matrix An (§7.3)

Block-box definition of the sparse matrix An on p. 151.

284 Appendix C. Code

n 20000;

BitLength : Developer`BitLength;

indices i_ : indices i

i Join 2^ Range BitLength n i 1 , 2^ Range BitLength i 1 1

diagonal Prime Range n ;

A x_ : diagonal x MapIndexed Plus x indices #2 1 &, x ;

Proof of the Rigorous Bound for λmin(A1142) (§7.4.2)

The proof of Lemma 7.1 can be based on the following session.

n 1142;

A SparseArray i_, i_ Prime i , n # Transpose # &

SparseArray Flatten Table i, i 2j 1, i, n 1 , j, 0, Log 2., n i , n ;

, V Eigensystem Normal N A ;

r Min n x Interval V n, All x.A;

Min Interval 1, 1 Norm r Norm x IntervalForm

1.120651470884156
96148

1 Prime n 1 100; 2 11 100;

FMin
2 0 Interval Min Min 1 2

0 1 4 2 1 0 2
IntervalForm

1.000037435301345
8

Interval Theta Function (§8.3.2)

Used in session on p. 181.

SetAttributes 0, 1 , Listable ;

0 q_, K_ : 2 q1 4

k 0

K
1 k

2 k 1
qk k 1 ;

1 q_, K_ :
q 3 4

2
k 0

K

1 k 2 k 1 qk k 1 ;

q_Interval, K_Integer : hull 0 q, K 1, K ;
1,0 q_Interval, K_Integer : hull 1 q, K 1, K ;

C.5.3 General Functions and Routines

Two-Dimensional Minimization

Used in session on p. 86.

C.5. Mathematica 285

LowestCriticalPoint f_, x_, a_, b_ , y_, c_, d_ , upperbound_, tol_ :

rects N Interval a, b , Interval c, d ;

fcn xx_, yy_ : f . x xx, y yy ;

gradf xx_, yy_ : Evaluate D f, x , D f, y . x xx, y yy ;

low, upp , upperbound ;

While upp low tol,

rects Join subdivide2D rects;

fvals fcn rects;

upp Min upp, Min Max fvals ;

pos Flatten Position Min fvals, _ ? # upp & ;

rects rects pos ; fvals fvals pos ;

pos Flatten

Position Apply And, IntervalMemberQ gradf rects, 0 , 1 , True ;

rects rects pos ; low Min fvals pos ;

low, upp , Map mid, rects, 2 ;

Interval Arithmetic-Geometric Mean

Used in session on p. 141.

AGMStep a_, b_ : a b ,
1

2
a b ;

EnclosingAGM a_Real, b_Real :

Interval FixedPoint extremes AGMStep Interval # &, a, b ;

Unprotect ArithmeticGeometricMean ;

ArithmeticGeometricMean A_Interval, B_Interval :

Block Experimental`$EqualTolerance 0, Experimental`$SameQTolerance 0 ,

Interval extremes EnclosingAGM Min #, Max # & A, B ;

Protect ArithmeticGeometricMean ;

Interval Bisection

Used in session on p. 141.

IntervalBisection f_, a_, b_ , tol_ :

X Interval a, b ; pos 1 ; While Max diam X tol,

pos Flatten Position f X Join subdivide1D X ,

_ ? IntervalMemberQ #, 0 & ; X X pos ; IntervalUnion X

Interval Newton Iteration

Used in session on p. 181.

IntervalNewton f_, a_, b_ : Block Experimental`$EqualTolerance 0 ,

X1 Interval a, b ; X Interval a ; While X X1, X X1;

x Interval mid X ; X1 IntervalIntersection x
f x

f X
, X ; X

286 Appendix C. Code

Appendix D

More Problems

Whatever the details of the matter, it finds me too ab-
sorbed by numerous occupations for me to be able to
devote my attention to it immediately.

— John Wallis, upon hearing about a problem
posed by Fermat in 1657 [Hav03, p. 92]

While realizing that the solution of problems is one of the
lowest forms of Mathematical research, and that, in gen-
eral, it has no scientific value, yet its educational value
can not be over estimated. It is the ladder by which the
mind ascends into the higher fields of original research
and investigation. Many dormant minds have been arou-
sed into activity through the mastery of a single problem.

— Benjamin Finkel and John Colaw on the first
page of the first issue of the American Mathematical
Monthly 1894

To help readers experience first-hand the excitement, frustration, and joy of working
on a challenging numerical problem, we here include a selection in the same style as
Trefethen’s ten. Of these 20, the two at the end can be considered research problems
in the sense that the proposer does not know even a single digit of the answer.

If you solve one of these and wish to share your solution, we will be happy to
receive it. We will maintain a web page where solutions will be posted.

1. What is
∑

n 1/n, where n is restricted to those positive integers whose decimal
representation does not contain the substring 42? (Folkmar Bornemann)

2. What is the sum of the series
∑∞

n=1 1/f(n), where f(1) = 1, f(2) = 2, and if
n > 2, f(n) = nf(d), with d the number of base-2 digits of n? (David Smith)

Remark. Problem A6 of the 2002 Putnam Competition asked for the integers b � 2

287

288 Appendix D. More Problems

such that the series, when generalized to base-b digits, converges.

3. If N point charges are distributed on the unit sphere, the potential energy is

E =
N−1∑
j=1

N∑
k=j+1

|xj − xk|−1,

where |xj − xk| is the Euclidean distance between xj and xk. Let EN denote the
minimal value of E over all possible configurations of N charges. What is E100?

(Lloyd N. Trefethen)

4. Riemann’s prime counting function is defined as

R(x) =
∞∑

k=1

µ(k)
k

li(x1/k),

where µ(k) is the Möbius function, which is (−1)ρ when k is a product of ρ different
primes and zero otherwise, and li(x) =

∫ x

0
dt/ log t is the logarithmic integral, taken

as a principal value in Cauchy’s sense. What is the largest positive zero of R?
(Jörg Waldvogel)

Remark. The answer to this problem is truly shocking.

5. Let A be the 48 × 48 Toeplitz matrix with −1 on the first subdiagonal, +1
on the main diagonal and the first three superdiagonals, and 0 elsewhere, and let
‖ · ‖ be the matrix 2-norm. What is minp ‖p(A)‖, where p ranges over all monic
polynomials of degree 8? (Lloyd N. Trefethen)

6. What is the value of ∫ 1

−1

exp
(
x+ sin eeex+1/3

)
dx ?

(Lloyd N. Trefethen)

7. If f(x, y) = e−(y+x3)2 and g(x, y) = 1
32y

2 + esin y, what is the area of the region
of the x-y plane in which f > g? (Lloyd N. Trefethen)

8. The square cm(RN)2 of the least constant in the Sobolev inequality for the
domain RN is given by the multidimensional integral

cm(RN)2 := (2π)−N

∫
RN

(
∑

|k|�m

x2 k)−1 dx,

289

Figure D.1. A triangular lattice.

where k = (k1, k2, . . . , kN) is a multi-index with nonnegative integer elements, and

|k| :=
N∑

j=1

kj , xk :=
N∏

j=1

x
kj

j .

E.g., we have c3(R1) = 0.5. What is c10(R10)? (Jörg Waldvogel)

9. A particle starts at the top vertex of the array shown in Figure D.1 with 30
points on each side, and then takes 60 random steps. What is the probability that
it ends up in the bottom row? (Lloyd N. Trefethen)

10. The random sequence xn satisfies x0 = x1 = 1 and the recursion xn+1 =
2xn ± xn−1, where each ± sign is chosen independently with equal probability. To
what value does |xn|1/n converge for n→ ∞ almost surely? (Folkmar Bornemann)

11. Six masses of mass 1 are fixed at positions (2,−1), (2, 0), (2, 1), (3,−1), (3, 0),
and (3, 1). Another particle of mass 1 starts at (0, 0) with velocity 1 in a direction
θ (counterclockwise from the x-axis). It then travels according to Newton’s laws,
feeling an inverse-square force of magnitude r−2 from each of the six fixed masses.
What is the shortest time in which the moving particle can be made to reach position
(4, 1)? (Lloyd N. Trefethen)

290 Appendix D. More Problems

0.5 1 1.5 2 2.5

−0.5

0

0.5

1

1.5

Figure D.2. Daubechies scaling function φ2(x)

12. A particle’s movement in the x-y plane is governed by the kinetic energy
T = 1

2 (ẋ2 + ẏ2) and the potential energy

U = y +
ε−2

2
(1 + αx2)(x2 + y2 − 1)2.

The particle starts at the position (0, 1) with the velocity (1, 1). For which parameter
α does the particle hit y = 0 first at time 10 in the limit ε→ 0?

(Folkmar Bornemann)

13. Let u = (x, y, z) start at (0, 0, z0) at t = 0 with z0 � 0 and evolve according
to the equations

ẋ = −x+ 10y + ‖u‖(−0.7y − 0.03z),
ẏ = −y + 10z + ‖u‖(0.7y − 0.1z),
ż = −z + ‖u‖(0.03x+ 0.1y),

where ‖u‖2 = x2 + y2 + z2. If ‖u(50)‖ = 1, what is z0? (Lloyd N. Trefethen)

14. Consider the Poisson equation −∆u(x) = exp(α‖x‖2) on a regular pentagon
inscribed to the unit circle. On four sides of the pentagon there is the Dirichlet
condition u = 0, while on one side u satisfies a Neumann condition; that is, the
normal derivative of u is zero. For which α does the integral of u along the Neumann-
side equal eα? (Folkmar Bornemann)

15. At what time t∞ does the solution of the equation ut = ∆u + eu on a 3 × 3
square with zero boundary and initial data blow up to ∞? (Lloyd N. Trefethen)

291

16. Figure D.2 shows the Daubechies scaling function φ2(x) (see [Dau92]) drawn
as a curve in the x-y plane. Suppose the heat equation ut = uxx on the interval [0, 3]
is solved with initial data u(x, 0) = φ2(x) and boundary conditions u(0) = u(3) = 0.
At what time does the length of this curve in the x-y plane become 5.4?

(Lloyd N. Trefethen)

17. Let u be an eigenfunction belonging to the third eigenvalue of the Laplacian
with Dirichlet boundary conditions on an L-shaped domain that is made up from
three unit squares. What is the length of the zero-level set of u?

(Folkmar Bornemann)

18. The Koch snowflake is a fractal domain defined as follows. Start with an
equilateral triangle with side length 1, and replace the middle third of each side
by two sides of an outward-pointing equilateral triangle of side length 1/3. Now
replace the middle third of each of the 12 new sides by two sides of an outward-
pointing equilateral triangular of side length 1/9; and so on ad infinitum. What is
the smallest eigenvalue of the negative of the Laplacian on the Koch snowflake with
zero boundary conditions? (Lloyd N. Trefethen)

19. Consider the Poisson equation −div(c(x)gradu(x)) = 1 on the unit square
with homogeneous Dirichlet boundary conditions. What is the infimum of the in-
tegral of u over the square if a(x) is allowed to vary over all measurable functions
which are 1 on half of the area of the square, and 100 on the rest?

(Folkmar Bornemann)

20. Let h(z) be that solution to the functional equation exp(z) = h(h(z)) which
is analytic in a neighbourhood of the origin and increasing for real z. What is h(0)?
What is the radius of convergence of the Maclaurin series of h? (Dirk Laurie)

Remark: There are additional properties needed to make h unique. A simple such
property has to be found before solving this problem; none is known in the literature
right now.

292 Appendix D. More Problems

Bibliography

[Apo74] Tom M. Apostol, Mathematical analysis, second ed., Addison-Wesley, Read-
ing, 1974. MR 49 #9123. (Cited on p. 188.)

[AS84] Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical
functions with formulas, graphs, and mathematical tables, Wiley, New York,
1984. MR 85j:00005a. (Cited on p. 23, 56, 104, 105, 119, 120, 137.)

[AW97] Victor Adamchik and Stan Wagon, A simple formula for π, Amer. Math.
Monthly 104 (1997), no. 9, 852–855. MR 98h:11166. (Cited on p. iv.)

[Bai00] David H. Bailey, A compendium of BPP-type formulas for mathematical
constants, manuscript, November 2000,
http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf. (Cited
on p. iv.)

[Bak90] Alan Baker, Transcendental number theory, second ed., Cambridge Univer-
sity Press, Cambridge, 1990. MR 91f:11049. (Cited on p. 222.)

[Bar63] Vic D. Barnett, Some explicit results for an asymmetric two- dimensional
random walk, Proc. Camb. Phil. Soc. 59 (1963), 451–462. MR 26 #5640.
(Cited on p. 14, 132, 139.)

[BB87] Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM. A study
in analytic number theory and computational complexity, Wiley, New York,
1987. MR 89a:11134. (Cited on p. 139, 140, 178, 218, 220, 263.)

[BB04] Jonathan M. Borwein and David H. Bailey, Mathematics by experiment:
Plausible reasoning in the 21st century, A. K. Peters, Wellesley, 2004. (Cited
on p. iv.)

[BBG04] Jonathan M. Borwein, David H. Bailey, and Roland Girgensohn, Experi-
mentation in mathematics: Computational paths to discovery, A. K. Peters,
Wellesley, 2004. (Cited on p. iv.)

[BBP97] David Bailey, Peter Borwein, and Simon Plouffe, On the rapid computation
of various polylogarithmic constants, Math. Comp. 66 (1997), no. 218, 903–
913. MR 98d:11165. (Cited on p. iv.)

[Ber89] Bruce C. Berndt, Ramanujan’s notebooks. Part II, Springer-Verlag, New
York, 1989. MR 90b:01039. (Cited on p. 213.)

[Ber98] , Ramanujan’s notebooks. Part V, Springer-Verlag, New York, 1998.
MR 99f:11024. (Cited on p. 223, 224.)

[Ber01] Michael Berry, Why are special functions special?, Physics Today 54 (2001),
no. 4, 11–12. (Cited on p. 123.)

293

294 Bibliography

[BF71] Paul F. Byrd and Morris D. Friedman, Handbook of elliptic integrals for
engineers and scientists, 2nd rev. ed., Springer-Verlag, New York, 1971.
MR 43 #3506. (Cited on p. 144.)

[BR95] Bruce C. Berndt and Robert A. Rankin, Ramanujan, Letters and com-
mentary, American Mathematical Society, Providence, 1995. MR 97c:01034.
(Cited on p. 223.)

[Bre71] Claude Brezinski, Accélération de suites à convergence logarithmique, C. R.
Acad. Sci. Paris Sér. A-B 273 (1971), A727–A730. MR 46 #4674. (Cited
on p. 249.)

[Bre76] Richard P. Brent, Fast multiple-precision evaluation of elementary func-
tions, J. Assoc. Comput. Mach. 23 (1976), no. 2, 242–251. MR 52 #16111.
(Cited on p. 30.)

[Bre88] Claude Brezinski, Quasi-linear extrapolation processes, Numerical mathe-
matics, Singapore 1988, Birkhäuser, Basel, 1988, pp. 61–78. MR 90k:65012.
(Cited on p. 260.)

[Bre00] , Convergence acceleration during the 20th century, J. Comput. Appl.
Math. 122 (2000), no. 1-2, 1–21. MR 1 794 649. (Cited on p. 233, 260.)

[BRS63] Friedrich L. Bauer, Heinz Rutishauser, and Eduard Stiefel, New aspects in
numerical quadrature, Proc. Sympos. Appl. Math., Vol. XV, Amer. Math.
Soc., Providence, R.I., 1963, pp. 199–218. MR 30 #4384. (Cited on p. 68,
260.)

[BT99] Benedicte Le Bailly and Jean-Pierre Thiran, Computing complex polyno-
mial Chebyshev approximants on the unit circle by the real Remez algo-
rithm, SIAM J. Numer. Anal. 36 (1999), no. 6, 1858–1877 (electronic). MR
2000i:41006. (Cited on p. 122.)

[BY93] Folkmar Bornemann and Harry Yserentant, A basic norm equivalence for
the theory of multilevel methods, Numer. Math. 64 (1993), no. 4, 455–476.
MR 94b:65155. (Cited on p. 159.)

[BZ91] Claude Brezinski and Michela Redivo Zaglia, Extrapolation methods, North-
Holland, Amsterdam, 1991. MR 93d:65001. (Cited on p. 227, 233, 260.)

[BZ92] Jonathan M. Borwein and I. John Zucker, Fast evaluation of the gamma
function for small rational fractions using complete elliptic integrals of the
first kind, IMA J. Numer. Anal. 12 (1992), no. 4, 519–526. MR 93g:65028.
(Cited on p. 145.)

[Cau27] Augustin-Louis Cauchy, Sur quelques propositions fondamentales du calcul
des résidus, Exerc. Math. 2 (1827), 245–276. (Cited on p. 213, 215.)

[CDG99] David W. Corne, Marco Dorigo, and Fred Glover (eds.), New ideas in opti-
mization, McGraw-Hill, Berkshire, 1999. (Cited on p. 108.)

[CGH+96] Robert M. Corless, Gaston H. Gonnet, David E. G. Hare, David J. Jeffrey,
and Donald E. Knuth, On the Lambert W function, Adv. Comput. Math.
5 (1996), no. 4, 329–359. MR 98j:33015. (Cited on p. 23, 24.)

[CM01] Nikolai Chernov and Roberto Markarian, Introduction to the ergodic theory
of chaotic billiards, Instituto de Matemática y Cienćias Afines (IMCA),
Lima, 2001. MR 2003c:37045. (Cited on p. 45.)

Bibliography 295

[Col95] Courtney S. Coleman, CODEE Newsletter (spring 1995), cover. (Cited on
p. 91.)

[Cox84] David A. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math.
(2) 30 (1984), no. 3-4, 275–330. MR 86a:01027. (Cited on p. 219.)

[Cox89] , Primes of the form x2+ny2. Fermat, class field theory and complex
multiplication, Wiley, New York, 1989. MR 90m:11016. (Cited on p. 222.)

[CP01] Richard Crandall and Carl Pomerance, Prime numbers, A computational
perspective, Springer-Verlag, New York, 2001. MR 2002a:11007. (Cited on
p. 158, 204.)

[CRZ00] Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier, Convergence
acceleration of alternating series, Experiment. Math. 9 (2000), no. 1, 3–12.
MR 2001m:11222. (Cited on p. 243, 260.)

[Dau92] Ingrid Daubechies, Ten lectures on wavelets, Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, 1992. MR 93e:42045. (Cited on
p. 291.)

[DB02] Peter Deuflhard and Folkmar Bornemann, Scientific computing with ordi-
nary differential equations, Springer-Verlag, New York, 2002, Translated by
Werner C. Rheinboldt. MR 2003e:65001. (Cited on p. 172, 175, 209.)

[Dem97] James W. Demmel, Applied numerical linear algebra, Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, 1997. MR 98m:65001.
(Cited on p. 126, 207.)

[DeV02] Carl DeVore, 2002, A Maple worksheet on Trefethen’s Problem 3,
http://groups.yahoo.com/group/100digits/files/Tref3.mws. (Cited
on p. 260.)

[DH03] Peter Deuflhard and Andreas Hohmann, Numerical analysis in modern sci-
entific computing. An introduction, second ed., Springer-Verlag, New York,
2003. MR 2003i:65001. (Cited on p. 150, 156, 157.)

[Dix82] John D. Dixon, Exact solution of linear equations using p-adic expansions,
Numer. Math. 40 (1982), no. 1, 137–141. MR 83m:65025. (Cited on p. 169,
170.)

[DJ01] Richard T. Delves and Geoff S. Joyce, On the Green function for the
anisotropic simple cubic lattice, Ann. Phys. 291 (2001), 71–133. (Cited
on p. 146.)

[DKK91] Eusebius Doedel, Herbert B. Keller, and Jean-Pierre Kernévez, Numerical
analysis and control of bifurcation problems. I. Bifurcation in finite dimen-
sions, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 1 (1991), no. 3, 493–520.
MR 93c:34001a. (Cited on p. 88.)

[DR84] Philip J. Davis and Philip Rabinowitz, Methods of numerical integration,
second ed., Academic Press, Orlando, 1984. MR 86d:65004. (Cited on p.
68, 70.)

[DR90] John M. DeLaurentis and Louis A. Romero, A Monte Carlo method for Pois-
son’s equation, J. Comput. Phys. 90 (1990), no. 1, 123–140. MR 91i:65005.
(Cited on p. 202, 203.)

[DS00] Jack Dongarra and Francis Sullivan, The top 10 algorithms, IEEE Com-
puting in Science and Engineering 2 (2000), no. 1, 22–23. (Cited on p.
iv.)

296 Bibliography

[DT02] Tobin A. Driscoll and Lloyd N. Trefethen, Schwarz–Christoffel mapping,
Cambridge University Press, Cambridge, 2002. MR 2003e:30012. (Cited
on p. 226.)

[DTW02] Jean-Guillaume Dumas, William Turner, and Zhendong Wan, Exact solu-
tion to large sparse integer linear systems, Abstract for ECCAD’2002, May
2002. (Cited on p. 166.)

[Dys96] Freeman J. Dyson, Review of “Nature’s Numbers” by Ian Stewart, Amer.
Math. Monthly 103 (1996), 610–612. (Cited on p. 149.)

[EMOT53] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G.
Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill, New
York, 1953. MR 15,419i. (Cited on p. 137.)

[Erd56] Arthur Erdélyi, Asymptotic expansions, Dover, New York, 1956. MR
17,1202c. (Cited on p. 70.)

[Eva93] Gwynne Evans, Practical numerical integration, Wiley, Chichester, 1993.
MR 94k:65001. (Cited on p. 18.)

[Fel50] William Feller, An Introduction to Probability Theory and Its Applications.
Vol. I, Wiley, New York, 1950. MR 12,424a. (Cited on p. 127, 128.)

[FH98] Samuel P. Ferguson and Thomas C. Hales, A formulation of the Kepler
conjecture, Tech. report, ArXiv Math MG, 1998,
http://arxiv.org/abs/math.MG/9811072. (Cited on p. 95.)

[FLS63] Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The Feyn-
man lectures on physics. Vol. 1: Mainly mechanics, radiation, and heat,
Addison-Wesley, Reading, 1963. MR 35 #3942. (Cited on p. 232.)

[Fou78] Joseph Fourier, The analytical theory of heat, Cambridge University Press,
Cambridge, 1878, Translated by Alexander Freeman. Reprinted by Dover
Publications, New York, 1955. French original: “Théorie analytique de la
chaleur”, Didot, Paris, 1822. MR 17,698f. (Cited on p. 171, 177, 178.)

[GH83] John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical
systems, and bifurcations of vector fields, Springer-Verlag, New York, 1983.
MR 85f:58002. (Cited on p. 40.)

[GL81] Alan George and Joseph W. H. Liu, Computer solution of large sparse posi-
tive definite systems, Prentice-Hall, Englewood Cliffs, 1981. MR 84c:65005.
(Cited on p. 151, 152, 153.)

[GL96] Gene H. Golub and Charles F. Van Loan, Matrix computations, third ed.,
Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins Uni-
versity Press, Baltimore, 1996. MR 97g:65006. (Cited on p. 49, 51, 53,
54.)

[Goo83] Nicolas D. Goodman, Reflections on Bishop’s philosophy of mathematics,
Math. Intelligencer 5 (1983), no. 3, 61–68. MR 85k:03005. (Cited on p.
149.)

[Gri90] Peter Griffin, Accelerating beyond the third dimension: returning to the
origin in simple random walk, Math. Sci. 15 (1990), no. 1, 24–35. MR
91g:60083. (Cited on p. 148.)

[GW01] Walter Gautschi and Jörg Waldvogel, Computing the Hilbert transform of
the generalized Laguerre and Hermite weight functions, BIT 41 (2001),
no. 3, 490–503. MR 2002h:65214. (Cited on p. 70.)

Bibliography 297

[GZ77] M. Lawrence Glasser and I. John Zucker, Extended Watson integrals for the
cubic lattices, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1800–1801. MR
56 #686. (Cited on p. 145.)

[Hac92] Wolfgang Hackbusch, Elliptic differential equations. Theory and numerical
treatment, Springer-Verlag, Berlin, 1992. MR 94b:35001. (Cited on p. 207.)

[Had45] Jacques Hadamard, The Psychology of Invention in the Mathematical Field,
Princeton University Press, Princeton, 1945. MR 6,198e. (Cited on p. 17.)

[Han92] Eldon Hansen, Global optimization using interval analysis, Monographs and
Textbooks in Pure and Applied Mathematics, vol. 165, Marcel Dekker Inc.,
New York, 1992. MR 93i:90002. (Cited on p. 84, 95, 96, 100.)

[Har40] Godfrey H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his
life and work, Cambridge University Press, Cambridge, 1940. MR 3,71d.
(Cited on p. 223.)

[Har02] Gareth I. Hargreaves, Interval analysis in MATLAB, Master’s thesis, Uni-
versity of Manchester, December 2002, Numerical Analysis Report No. 416.
(Cited on p. 277.)

[Hav03] Julian Havil, Gamma, Princeton University Press, Princeton, 2003. MR 1
968 276. (Cited on p. 287.)

[Hen61] Ernst Henze, Zur Theorie der diskreten unsymmetrischen Irrfahrt, ZAMM
41 (1961), 1–9. MR 22 #12603. (Cited on p. 14, 139.)

[Hen64] Peter Henrici, Elements of numerical analysis, Wiley, New York, 1964. MR
29 #4173. (Cited on p. 20.)

[Hen74] , Applied and computational complex analysis. Vol. 1: Power series—
integration—conformal mapping—location of zeros, Wiley, New York, 1974.
MR 51 #8378. (Cited on p. 67, 213, 214, 216.)

[Hen77] , Applied and computational complex analysis. Vol. 2: Special
functions—integral transforms—asymptotics—continued fractions, Wiley,
New York, 1977. MR 56 #12235. (Cited on p. 62, 70.)

[Hen86] , Applied and computational complex analysis. Vol. 3: Discrete
Fourier analysis—Cauchy integrals—construction of conformal maps—
univalent functions, Wiley, New York, 1986. MR 87h:30002. (Cited on
p. 205, 206, 215, 216, 226.)

[Her83] Joseph Hersch, On harmonic measures, conformal moduli and some ele-
mentary symmetry methods, J. Analyse Math. 42 (1982/83), 211–228. MR
85d:30030. (Cited on p. 215.)

[Hig96] Nicholas J. Higham, Accuracy and stability of numerical algorithms, Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, 1996. MR
97a:65047. (Cited on p. 5, 40, 48, 49, 54, 153, 154, 161, 162, 165, 166, 175,
194, 207, 210.)

[HJ85] Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge Uni-
versity Press, Cambridge, 1985. MR 87e:15001. (Cited on p. 53, 54, 157,
165, 166, 167, 168.)

[Hof67] Peter Hofmann, Asymptotic expansions of the discretization error of bound-
ary value problems of the Laplace equation in rectangular domains, Numer.
Math. 9 (1966/1967), 302–322. MR 37 #1095. (Cited on p. 209.)

298 Bibliography

[Hug95] Barry D. Hughes, Random walks and random environments. Vol. 1: Random
walks, Oxford University Press, New York, 1995. MR 96i:60070. (Cited on
p. 123, 125, 132, 142, 145.)

[IMT70] Masao Iri, Sigeiti Moriguti, and Yoshimitsu Takasawa, On a certain quadra-
ture formula (Japanese), Kokyuroku Ser. Res. Inst. for Math. Sci. Kyoto
Univ. 91 (1970), 82–118, English translation: J. Comput. Appl. Math. 17,
3–20 (1987). MR 88j:65057. (Cited on p. 68.)

[Jac29] Carl Gustav Jacob Jacobi, Fundamenta nova theoriae functionum ellipti-
carum, Bornträger, Regiomontum (Königsberg), 1829. (Cited on p. 221.)

[JDZ03] Geoff S. Joyce, Richard T. Delves, and I. John Zucker, Exact evaluation
of the Green functions for the anisotropic face-centred and simple cubic
lattices, J. Phys. A: Math. Gen. 36 (2003), 8661–8672. (Cited on p. 146.)

[Joh82] Fritz John, Partial differential equations, fourth ed., Springer-Verlag, New
York, 1982. MR 87g:35002. (Cited on p. 178.)

[Kea96] R. Baker Kearfott, Rigorous global search: continuous problems, Nonconvex
Optimization and its Applications, vol. 13, Kluwer Academic Publishers,
Dordrecht, 1996. MR 97i:90003. (Cited on p. 84, 93, 94, 95, 96, 97.)

[Kno56] Konrad Knopp, Infinite sequences and series, Dover, New York, 1956. MR
18,30c. (Cited on p. 137.)

[Knu81] Donald E. Knuth, The art of computer programming. Vol. 2: Seminumeri-
cal algorithms, second ed., Addison-Wesley, Reading, 1981. MR 83i:68003.
(Cited on p. 29.)

[Koe98] Wolfram Koepf, Hypergeometric summation. An algorithmic approach to
summation and special function identities, Vieweg, Braunschweig, 1998. MR
2000c:33002. (Cited on p. 133, 134.)

[Kol48] Andrey N. Kolmogorov, A remark on the polynomials of P. L. Čebyšev
deviating the least from a given function, Uspehi Matem. Nauk (N.S.) 3
(1948), no. 1(23), 216–221. MR 10,35b. (Cited on p. 121.)

[KS91] Erich Kaltofen and B. David Saunders, On Wiedemann’s method of solv-
ing sparse linear systems, Applied algebra, algebraic algorithms and error-
correcting codes (New Orleans, LA, 1991), Lecture Notes in Comput. Sci.,
vol. 539, Springer, Berlin, 1991, pp. 29–38. MR 1 229 306. (Cited on p.
168.)

[Küh82] Wilhelm O. Kühne, Huppel en sy maats, Tafelberg, Kaapstad, 1982. (Cited
on p. 103.)

[Lan82] Oscar E. Lanford, III, A computer-assisted proof of the Feigenbaum conjec-
tures, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 427–434. MR 83g:58051.
(Cited on p. 95.)

[LB92] John Lund and Kenneth L. Bowers, Sinc methods for quadrature and differ-
ential equations, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, 1992. MR 93i:65004. (Cited on p. 190.)

[Lev73] David Levin, Development of non-linear transformations of improving con-
vergence of sequences, Internat. J. Comput. Math. 3 (1973), 371–388. MR
50 #11716. (Cited on p. 245.)

Bibliography 299

[Lon56] Ivor M. Longman, Note on a method for computing infinite integrals of
oscillatory functions, Proc. Cambridge Philos. Soc. 52 (1956), 764–768. MR
18,515f. (Cited on p. 18.)

[Luk75] Yudell L. Luke, Mathematical functions and their approximations, Academic
Press, New York, 1975. MR 58 #19039. (Cited on p. 119, 120, 197.)

[LV94] Dirk P. Laurie and Lucas M. Venter, A two-phase algorithm for the Cheby-
shev solution of complex linear equations, SIAM J. Sci. Comput. 15 (1994),
no. 6, 1440–1451. MR 95g:65050. (Cited on p. 113, 118.)

[Lyn85] James N. Lyness, Integrating some infinite oscillating tails, Proceedings of
the international conference on computational and applied mathematics
(Leuven, 1984), vol. 12/13, 1985, pp. 109–117. MR 793 947. (Cited on p.
19.)

[Men43] Luigi Frederico Menabrea, Sketch of the Analytical Engine invented by
Charles Babbage, Esq. With notes by the translator (A.A.L.), Taylor’s Sci-
entific Memoirs 3 (1843), no. 29, 666–731. (Cited on p. 267.)

[Mil63] John Milnor, Morse theory, Based on lecture notes by M. Spivak and R.
Wells. Annals of Mathematics Studies, No. 51, Princeton University Press,
Princeton, 1963. MR 29 #634. (Cited on p. 89.)

[Mil94] Gradimir V. Milovanović, Summation of series and Gaussian quadratures,
Approximation and computation (West Lafayette, IN, 1993), Birkhäuser,
Boston, 1994, pp. 459–475. MR 96c:65041. (Cited on p. 66.)

[Mon56] Elliot W. Montroll, Random walks in multidimensional spaces, especially
on periodic lattices, J. Soc. Indust. Appl. Math. 4 (1956), 241–260. MR
19,470d. (Cited on p. 147.)

[Moo66] Ramon E. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs, 1966.
MR 37 #7069. (Cited on p. 92.)

[Mor78] Masatake Mori, An IMT-type double exponential formula for numerical in-
tegration, Publ. Res. Inst. Math. Sci. Kyoto Univ. 14 (1978), no. 3, 713–729.
MR 81c:65012. (Cited on p. 68.)

[MS83] Gurĭı I. Marchuk and Vladimir V. Shăıdurov, Difference methods and their
extrapolations, Springer-Verlag, New York, 1983. MR 85g:65003. (Cited on
p. 208.)

[MS01] Masatake Mori and Masaaki Sugihara, The double-exponential transforma-
tion in numerical analysis, J. Comput. Appl. Math. 127 (2001), no. 1-2,
287–296. MR 2001k:65041. (Cited on p. 190, 191.)

[MT03] Oleg Marichev and Michael Trott, Meijer G function, The Wolfram
Functions Site, Wolfram Research, 2003, http://functions.wolfram.com.
(Cited on p. 197.)

[Neh52] Zeev Nehari, Conformal mapping, McGraw-Hill, New York, 1952. MR
13,640h. (Cited on p. 205.)

[Neu90] Arnold Neumaier, Interval methods for systems of equations, Encyclopedia
of Mathematics and its Applications, vol. 37, Cambridge University Press,
Cambridge, 1990. MR 92b:65004. (Cited on p. 93, 94.)

[Nie06] Niels Nielsen, Handbuch der Theorie der Gammafunktion., Teubner,
Leipzig, 1906. MR 32 #2622. (Cited on p. 56.)

300 Bibliography

[NPWZ97] István Nemes, Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger,
How to do Monthly problems with your computer, Amer. Math. Monthly
104 (1997), no. 6, 505–519. MR 1 453 654. (Cited on p. 134.)

[Olv74] Frank W. J. Olver, Asymptotics and special functions, Academic Press, New
York, 1974. MR 55 #8655. (Cited on p. 70, 147, 229.)

[OM99] Takuya Ooura and Masatake Mori, A robust double exponential formula for
Fourier-type integrals, J. Comput. Appl. Math. 112 (1999), no. 1-2, 229–
241. MR 1 728 462. (Cited on p. 29, 192, 193, 194.)

[PBM86] Anatolĭı P. Prudnikov, Yury A. Brychkov, and Oleg I. Marichev, Integrals
and series. Vol. 1: Elementary functions, Gordon & Breach, New York,
1986. MR 88f:00013. (Cited on p. 144.)

[PdDKÜK83] Robert Piessens, Elise de Doncker-Kapenga, Christoph W. Überhuber, and
David K. Kahaner, QUADPACK: A subroutine package for automatic in-
tegration, Springer-Verlag, Berlin, 1983. MR 85b:65022. (Cited on p. 18,
185.)

[Pól21] Georg Pólya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend
die Irrfahrt im Straßennetz, Math. Ann. 83 (1921), 149–160. (Cited on p.
124, 137, 145.)

[Pow64] Michael J. D. Powell, An efficient method for finding the minimum of a
function of several variables without calculating derivatives, Comput. J. 7
(1964), 155–162. MR 32 #4828. (Cited on p. 186.)

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery, Numerical recipes in C, second ed., Cambridge University Press,
Cambridge, 1992. MR 93i:65001b. (Cited on p. 77.)

[PW34] Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the
complex domain, American Mathematical Society, New York, 1934. MR
98a:01023. (Cited on p. 70.)

[PWZ96] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger, A = B, A. K.
Peters, Wellesley, 1996. MR 97j:05001. (Cited on p. 133, 134.)

[Rai60] Earl D. Rainville, Special functions, Macmillan, New York, 1960. MR 21
#6447. (Cited on p. 137.)

[Rau91] Jeffrey Rauch, Partial differential equations, Springer-Verlag, New York,
1991. MR 94e:35002. (Cited on p. 201, 212.)

[Rem34a] Eugene J. Remes (Evgeny Ya. Remez), Sur le calcul effectif des polynômes
d’approximation de Tchebichef, C. R. Acad. Sci. Paris 199 (1934), 337–340.
(Cited on p. 109.)

[Rem34b] , Sur un procédé convergent d’approximation successives pour
déterminer les polynômes d’approximation, C. R. Acad. Sci. Paris 198
(1934), 2063–2065. (Cited on p. 109.)

[RS75] Michael Reed and Barry Simon, Methods of modern mathematical physics.
II. Fourier analysis, self-adjointness, Academic Press, New York, 1975. MR
58 #12429b. (Cited on p. 70.)

[Rud87] Walter Rudin, Real and complex analysis, third ed., McGraw-Hill, New
York, 1987. MR 88k:00002. (Cited on p. 48.)

Bibliography 301

[Rum98] Siegfried M. Rump, A note on epsilon-inflation, Reliab. Comput. 4 (1998),
no. 4, 371–375. MR 99f:65072. (Cited on p. 98.)

[Rum99a] , Fast and parallel interval arithmetic, BIT 39 (1999), no. 3, 534–554.
MR 2000g:65040. (Cited on p. 276.)

[Rum99b] , INTLAB — interval laboratory, Developments in Reliable Com-
puting (Tibor Csendes, ed.), Kluwer, Dordrecht, 1999, pp. 77–104. (Cited
on p. 276.)

[Rut90] Heinz Rutishauser, Lectures on numerical mathematics, Birkhäuser, Boston,
1990. MR 92b:65002. (Cited on p. 109.)

[Sal55] Herbert E. Salzer, A simple method for summing certain slowly convergent
series, J. Math. Phys. 33 (1955), 356–359. MR 16,863d. (Cited on p. 239,
240.)

[Sch69] Charles Schwartz, Numerical integration of analytic functions, J. Compu-
tational Phys. 4 (1969), 19–29. MR 39 #5062. (Cited on p. 68.)

[Sch89] Hans R. Schwarz, Numerical analysis: A comprehensive introduction, Wiley,
Chichester, 1989, With a contribution by Jörg Waldvogel, Translated from
the German. MR 90g:65003. (Cited on p. 68.)

[Sid03] Avram Sidi, Practical extrapolation methods: Theory and applications, Cam-
bridge University Press, Cambridge, 2003. MR 1 994 507. (Cited on p. 233,
260.)

[Sin70a] Yakov G. Sinăı, Dynamical systems with elastic reflections. Ergodic prop-
erties of dispersing billiards, Uspehi Mat. Nauk 25 (1970), no. 2 (152),
141–192. MR 43 #481. (Cited on p. 45.)

[Sin70b] Ivan Singer, Best approximation in normed linear spaces by elements of
linear subspaces, Springer-Verlag, Berlin, 1970. MR 42 #4937. (Cited on
p. 115, 121.)

[SL68] Vladimir I. Smirnov and N. A. Lebedev, Functions of a complex variable:
Constructive theory, The M.I.T. Press, Cambridge, 1968. MR 37 #5369.
(Cited on p. 115, 121.)

[Smi97] Frank Smithies, Cauchy and the creation of complex function theory, Cam-
bridge University Press, Cambridge, 1997. MR 99b:01013. (Cited on p.
213.)

[Sok97] Alan D. Sokal, Monte Carlo methods in statistical mechanics: foundations
and new algorithms, Functional integration (Cargèse, 1996), NATO Adv.
Sci. Inst. Ser. B Phys., vol. 361, Plenum, New York, 1997, pp. 131–192. MR
98k:82101. (Cited on p. 201, 203.)

[SR97] Lawrence F. Shampine and Mark W. Reichelt, The MATLAB ODE suite,
SIAM J. Sci. Comput. 18 (1997), no. 1, 1–22. MR 97k:65307. (Cited on p.
173.)

[Ste65] Hans J. Stetter, Asymptotic expansions for the error of discretization algo-
rithms for non-linear functional equations, Numer. Math. 7 (1965), 18–31.
MR 30 #5505. (Cited on p. 174.)

[Ste73] Frank Stenger, Integration formulae based on the trapezoidal formula, J.
Inst. Math. Appl. 12 (1973), 103–114. MR 52 #2158. (Cited on p. 68.)

302 Bibliography

[Ste84] Gilbert W. Stewart, A second order perturbation expansion for small singu-
lar values, Linear Algebra Appl. 56 (1984), 231–235. MR 85c:65047. (Cited
on p. 58.)

[Ste01] , Matrix algorithms. Vol. II, Eigensystems, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, 2001. MR 1 853 468. (Cited
on p. 164.)

[SW97] Dan Schwalbe and Stan Wagon, VisualDSolve, Visualizing Differential
Equations with Mathematica, TELOS/Springer-Verlag, New York, 1997.
(Cited on p. 87.)

[Syl60] James Joseph Sylvester, Notes on the meditation of Poncelet’s theorem,
Philosophical Magazine 20 (1860), 533. (Cited on p. 183.)

[Sze75] Gábor Szegő, Orthogonal polynomials, fourth ed., American Mathematical
Society, Providence, 1975. MR 51 #8724. (Cited on p. 137.)

[Tab95] Serge Tabachnikov, Billiards, Société Mathématique de France, Marseille,
1995. (Cited on p. 40, 45.)

[Tan88] Ping Tak Peter Tang, A fast algorithm for linear complex Chebyshev approx-
imations, Math. Comp. 51 (1988), no. 184, 721–739. MR 89j:30054. (Cited
on p. 121.)

[TB97] Lloyd N. Trefethen and David Bau, III, Numerical linear algebra, Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, 1997. MR
98k:65002. (Cited on p. 4, 10, 156, 158.)

[Tho95] James W. Thomas, Numerical partial differential equations: finite difference
methods, Springer-Verlag, New York, 1995. MR 97a:65001. (Cited on p.
174.)

[TM74] Hidetosi Takahasi and Masatake Mori, Double exponential formulas for nu-
merical integration, Publ. Res. Inst. Math. Sci. Kyoto Univ. 9 (1973/74),
721–741. MR 49 #11781. (Cited on p. 68.)

[Tre81] Lloyd N. Trefethen, Near-circularity of the error curve in complex Chebyshev
approximation, J. Approx. Theory 31 (1981), no. 4, 344–367. MR 83e:41011.
(Cited on p. 117.)

[Tre98] , Maxims About Numerical Mathematics, Computers, Science, and
Life, SIAM News 31 (1998), no. 1, 4,
http://www.siam.org/siamnews/01-98/maxims.htm. (Cited on p. iii, 4,
34.)

[Tre00] , Predictions for scientific computing 50 years from now, Mathemat-
ics Today (2000). (Cited on p. 4.)

[Tre02] , The $100, 100-digit Challenge, SIAM News 35 (2002), no. 6, 1–3.
(Cited on p. 2, 171, 263.)

[Tse96] Ching-Yih Tseng, A multiple-exchange algorithm for complex Chebyshev
approximation by polynomials on the unit circle, SIAM J. Numer. Anal. 33
(1996), no. 5, 2017–2049. MR 97f:30054. (Cited on p. 122.)

[Tuc02] Warwick Tucker, A rigorous ODE solver and Smale’s 14th problem, Found.
Comput. Math. 2 (2002), no. 1, 53–117. MR 2003b:37055. (Cited on p.
95.)

Bibliography 303

[vzGG99] Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra,
Cambridge University Press, New York, 1999. MR 2000j:68205. (Cited on
p. 167, 168, 170.)

[Wal88] Jörg Waldvogel, Numerical quadrature in several dimensions, Numerical
integration, III (Oberwolfach, 1987), Birkhäuser, Basel, 1988, pp. 295–309.
MR 90k:65084. (Cited on p. 68.)

[Wat39] George N. Watson, Three triple integrals, Quart. J. Math., Oxford Ser. 10
(1939), 266–276. MR 1,205b. (Cited on p. 145.)

[Wat88] G. Alistair Watson, A method for the Chebyshev solution of an overdeter-
mined system of complex linear equations, IMA J. Numer. Anal. 8 (1988),
no. 4, 461–471. MR 90d:65080. (Cited on p. 113.)

[Wat00] , Approximation in normed linear spaces, J. Comput. Appl. Math.
121 (2000), no. 1-2, 1–36. MR 2001d:41035. (Cited on p. 121.)

[Web91] Heinrich Weber, Elliptische Functionen und algebraische Zahlen, Vieweg,
Braunschweig, 1891. (Cited on p. 223, 224.)

[Wen89] Ernst Joachim Weniger, Nonlinear sequence transformations for the accel-
eration of convergence and the summation of divergent series, Computer
Physics Reports 10 (1989), 189–371. (Cited on p. 227, 233.)

[Wie86] Douglas H. Wiedemann, Solving sparse linear equations over finite fields,
IEEE Trans. Inform. Theory 32 (1986), no. 1, 54–62. MR 87g:11166. (Cited
on p. 167, 168.)

[Wim81] Jet Wimp, Sequence transformations and their applications, Mathematics
in Science and Engineering, vol. 154, Academic Press, New York, 1981. MR
84e:65005. (Cited on p. 233.)

[WW96] Edmund T. Whittaker and George N. Watson, A course of modern analysis,
Cambridge University Press, Cambridge, 1996, Reprint of the fourth (1927)
edition. MR 97k:01072. (Cited on p. 103, 137, 178.)

[Wyn56a] Peter Wynn, On a device for computing the em(Sn) tranformation, Math.
Tables Aids Comput. 10 (1956), 91–96. MR 18,801e. (Cited on p. 247.)

[Wyn56b] , On a procrustean technique for the numerical transformation of
slowly convergent sequences and series, Proc. Cambridge Philos. Soc. 52
(1956), 663–671. MR 18,478c. (Cited on p. 248.)

[Wyn66] , Upon systems of recursions which obtain among the quotients of
the Padé table, Numer. Math. 8 (1966), 264–269. MR 35 #6339. (Cited on
p. 248.)

[You81] Laurence Chisholm Young, Mathematicians and their times, North-Holland,
Amsterdam, 1981. MR 83h:01006. (Cited on p. 48.)

[Zau89] Erich Zauderer, Partial differential equations of applied mathematics, second
ed., Wiley, New York, 1989. MR 90k:35004. (Cited on p. 204, 212.)

[Zuc79] I. John Zucker, The summation of series of hyperbolic functions, SIAM J.
Math. Anal. 10 (1979), no. 1, 192–206. MR 80b:33001. (Cited on p. 223.)

304 Bibliography

Index

1.234589
67 (interval notation), ix

.
=, ix

A posteriori error analysis, 161
A posteriori estimate, 158, 173, 174, 208,

209
A priori error analysis, 153
A priori estimate, 157, 207
Absorbing boundary conditions, 205
Active set, 113
AGM, see Arithmetic-geometric mean
Aitken’s ∆2-method, 20, 148, 246
Algebraic unit, 223
Alternating series, 19, 29, 66, 180, 181,

212, 228
Alternation theorem, 109
Anti-limit, 251
Appell’s summation algorithm, 56
Approximation in linear spaces, 121
Archimedes algorithm for π, 230
Arithmetic-geometric mean, 139, 218
Aspect ratio, 206
Asymptotic expansion, 174, 208, 209
Asymptotic series, 228
Automatic differentiation, 181

BCH code, 168
Berlekamp–Massey algorithm, 168
Bernoulli numbers, 62, 120, 229
Bessel function, 137, 261
Bias, 124
Billiards, 40, 45

dispersing, 45
on flat torus, 45

Binomial coefficients, 132
Brent’s method, 81
Brezinski-H̊avie protocol, see E-algorithm
Brownian motion, 202, 204

isotropy, 215
Butterfly effect, 34

Cancellation effect, 186, 199, 218, 224
Cauchy–Riemann equations, 111
Certificate, 3
CFL condition, 174
CG iteration, 156
Challenge text, 1
Chaos, 33
Characteristic polynomial, 168
Chebyshev approximation

abstract, 121
complex, 105

discrete linear, 113
real, 109

Chebyshev polynomial, 243
Checkerboard coloring, 129
Chinese remainder theorem, 167
Cholesky factorization, 152, 207

as a preconditioner, 161
Class field theory, 222
Class invariant, 222
Closed-form solution, 224
Cohen–Rodriguez Villegas–Zagier algori-

thm, see CRVZ algorithm
Combinatorics, 131
Complex approximation, discrete, 112
Complex integration, see Contour inte-

gration
Complex multiplication, 222
Condition number, 154, 157, 207, 254
Conformal mapping, 215
Conformal transplant, 215
Congruential method, 167
Conjugate gradient method, see CG it-

eration
Contour integration, 21, 26, 31, 66, 68,

184, 213, 229
Convergence

exponentially fast, see Exponentially
fast convergence

linear, 228

305

306 Index

logarithmic, 228
sublinear, 228

Convergence acceleration, 130, 175, 208,
210, 227

practical issues, 250
Courant number, 174
Cramer’s rule, 114, 166
Creative telescoping algorithm, see Zeil-

berger’s algorithm
CRVZ algorithm, 243
Cubic lattice, 145

Daubechies scaling function, 291
Delves–Joyce integral, 146
Dense output, 172
Dependence phenomenon, 83
Determinant, 166
Diagnosis of sequences, 251
Diagonal preconditioner, 159
Dialectic mathematician, 232
Differential evolution, 82, 106
Difficulty of the problems, 16
Digamma function, 56, 115, 196, 198
Directional rounding, 140
Discretization error, 173
Divergent series, 26, 228
Dixon’s algorithm, 169
Dominant eigenvalue, 54
Donor, 8
Double-exponential formula, 68, 147, 190
Dual optimization problem, 118

E-algorithm, 235
Elliptic integral, 138, 144, 217
Elliptic modular function, 221
Elliptic nome, 221
Energy norm, 157
Epsilon algorithm, 52, 55, 59, 130, 247
ε-inflation, 98, 141, 182
Ergodic system, 45
Euclidean algorithm, 168, 170
Euler characteristic, 89
Euler’s constant, 119, 198
Euler’s transformation, 236

modified, 237
Euler–Maclaurin sum formula, 62
Evolutionary algorithms, 79, 106
Exact solution, 166, 224
Expected number of visits, 127

Exponentially fast convergence, 27, 70,
130, 135, 190

Extrapolation, 51, 130, 155, 173
Extrapolation methods

linear, 234, 235
nonlinear, 235, 246
practical issues, 250
semilinear, 234, 245
susceptibility to roundoff, 253

Fast multiplication, 30, 76
Fast Poisson solver, 207
Feigenbaum constant, 95
Filtration, 181
Finite difference method, 173
Finite element method, 172
Five-point stencil, 126, 205, 208
Fixed-point iteration, 189
Fourier analysis, 141, 176, 192
Fourier integral, 28, 192
Fourier series, 104, 142, 176, 212
Fourier transform, 70
Frobenius norm, 49
Functional equation, 291
Funnel, 72

Gamma function, 56, 115, 119, 145, 198,
229

Gauss–Jacobi quadrature, 185
General-purpose quadrature, 185
Generating function, 137
Gershgorin’s theorem, 165
Green’s function, 178
Grid search, 78

Haar condition, 110
discrete, 113

Hadamard inequality, 167
Hankel matrix, 50
Harmonic measure, 206
Hausdorff’s theorem, 242
Heat equation, 171, 177
Hensel lifting, 169
Hierarchical iteration, 55
High-precision arithmetic, 29, 37, 55, 65,

75, 120, 140, 161, 182
Highly oscillatory integral, 18, 192
Hilbert matrix, 50
Hilbert space, 48
Hilbert’s 12th problem, 222

Index 307

Holonomic recurrence, 133
Hurwitz zeta function, 261
Hyperbolic dynamics, 40
Hypercubic lattice, 146
Hypergeometric function, 196, 197
Hypergeometric summation, 133
Hypergeometric term, proper, 134

IMT method, 68
Integer lattice, 125, 204
Integral

improper Riemann, 18, 21
Lebesgue, 18
oscillatory, 18, 192

Integration by parts, 25
Interval arithmetic, 41, 83, 140, 163, 181,

264
Interval bisection algorithm, 140
Interval minimization algorithm, 85
Interval Newton method, 92, 181
Interview with

Trefethen, 4
winning teams, 11

Intlab
tutorial, 277
web page, 277

Jacobi polynomials, 244
Jacobi’s elliptic sine function, 226
Jacobi’s imaginary quadratic transforma-

tion, 220
JIT compilation technology, 50
Jumps in boundary condition, 173

Kahan’s algorithm for (ex − 1)/x, 194
Karatsuba multiplication, 30, 76
Keller’s letter, 2, 8
Kepler conjecture, 95
Killing rate, 125
Koch snowflake, 291
Krawczyk condition, 94
Krawczyk iteration, see Newton–Kraw-

czyk iteration
Krawczyk operator, 93
Kronecker tensor product, 126
Kronecker’s “Jugendtraum”, 222
Krylov space method, 155, 167

Laguerre polynomials, 261
Lambert’s W function, 23, 28, 31

Landen’s transformation, 220
Laplace’s equation, 205

n-dimensional, 202
Laplace’s first integral, 137
Laplace–Heine asymptotic formula, 137
Lattice Green function, 142
Legendre polynomials, 136, 244
Leibniz series, 213
Levin’s T -algorithm, 245
Levin’s U -algorithm, 52, 245
Levin’s W -algorithm, 245
Location of optimum, accuracy, 117, 187
Longman’s method, 18, 28
Lorenz equations, 95
LU -factorization, 167

Matrix inverse, 150
Matrix recurrence, 129
Maximum principle, 104, 206
Meijer’s G function, 197
Method of lines, 172
Method→ Oscillatory, 28
Midpoint rule, 183, 190
Minimal degree ordering, 152
Minimal polynomial, 168
Minimax problem, 104
Möbius function, 228, 259, 288
Model for extrapolation, 234
Modified Bessel function, 147
Modular determinant, 167
Modulus of elliptic integral, 138, 217
Monte Carlo algorithm, 201, 202

mean quadratic error, 204
Morse theory, 89
Mortal walker, 125
Mühlbach–Neville–Aitken extrapolation,

see E-algorithm
Multi-precision arithmetic, see High-pre-

cision arithmetic
Multigrid method, 207
Multiple exchange algorithm, 109

Near-circularity, 117
Nelder–Mead method, 82
Neville–Aitken interpolation, 238
Newton condition, 93
Newton operator, 92
Newton’s method, 81, 88, 115, 118
Newton–Krawczyk iteration, 95
Nonnegative matrix, 53

308 Index

Norm
Frobenius, 49
operator, 48
spectral, 48
supremum, 104

Notation
.
=, ix
interval form 1.234589

67, ix
Numerical conformal mapping, 226
Numerical differentiation, 198
Numerical instability, 166, 218
Numerical quadrature, 68

adaptive, 143
Numerical stability, 40, 153, 207, 253

Ooura–Mori method, 29, 31, 192
Operator norm, 48
Operator polynomial extrapolation, 241
Opportunistic evaluation, 92
Optimization algorithms, 106, 186
Optimum, accuracy, 117, 187
Ordinary differential equation, 172, 289
Oscillatoty integral, 18, 192
Osgood–Carathéodory theorem, 216
Overflow, 132, 147, 166, 191

Padé approximation, 168, 260
p-adic method, 169
Paley–Wiener theorem, 70
Parameter of elliptic integral, 138
PARI/GP, web page, 268
Partial difference equation, 125, 128, 141,

205
Partial differential equation, 172, 205, 290
Partial fractions expansion, 56
Path-following algorithm, 88
PCG iteration, 159
Perron–Frobenius theory, 53
Perturbation theory, 58, 164
Pochhammer’s symbol, 198
Poisson solver, fast, 207
Poisson summation formula, 70
Poisson’s equation, discrete, 126
Pólya’s theorem on random walks, 124
Positive definite matrix, 152
Positive matrix, 54
Potential theory, 205
Power iteration, see Power method
Power method, 51, 53, 54

convergence theory, 53

transformed, 61
Preconditioned conjugate gradient method,

see PCG iteration
Preconditioning, 158
Prime field, 167
Principal submatrix, 48
Principal value, 70, 288
Probability distribution, 45, 202
Probability of return, 123
ProductLog, see Lambert’s W function
Proof without words, 215
Pseudo-limit, 252
Psi function, 56, 115, 196, 198
Putnam Competition, 287

QR-algorithm, 157
Quadratic interpolation, 186

Radical expression, 222
Ramanujan’s notebooks, 213, 223
Ramanujan’s singular modulus, 223
Random walk, 124, 204

biased, 124
on triangular array, 289
recurrent, 125
transient, 125
unbiased, 124

Rational number reconstruction, 170
Rational solution, 166
Reflection principle, 216
Regularity, 173
Remes algorithm, 109
Remes vs. Remez, 109
Residual, 156
Residue theorem, 66, 67, 213, 214
Reverse Cuthill–McKee ordering, 152
Rho algorithm, 52, 248

modified, 249
Richardson extrapolation, 70, 173, 199,

208, 210, 238
Riemann mapping theorem, 216
Riemann zeta function, 119, 228
Riemann’s prime counting function, 288
Romberg integration, 19, 26, 70, 185, 238
Roundoff error, 34, 54, 59, 116, 130, 153,

160, 173, 175, 199, 207, 228,
253

pseudo-random behavior, 187
Roundoff error analysis

a posteriori, 161, 208

Index 309

a priori, 153, 207
backwards, 40
running, 175, 210

Running error analysis, 175, 210

Salzer’s extrapolation, 239
modified, 241

Schwarz–Christoffel formula, 216
Secant method, 189
Separation of variables, 201, 211
Shadowing lemma, 40
Significance arithmetic, 37
Simulated annealing, 82, 106
Singular moduli, 222
Singular value, 49
Singular vector, 58
Singular-value decomposition, 51
Sinh transformation, 69
Sobolev inequality, 288
Sparse linear solver, 126, 151, 207
Sparse matrix, 126, 150, 207
Spectral norm, 48
Spurious limit, 252
Stabilization, 219, 224
Step size, 68
Stiff integrator, 173
Stirling’s formula, 119, 137, 229
Stochastic calculus, 204
Stopping rule, see Termination criterion
Storage scheme, 151
Strebel’s summation formula, 63
Stride, 250
Structure function of a random walk, 142
Summation algorithm, 56
Summation by contour integration, 66,

229
Summation formula, 60

complex, 73
sampling points, 60
weights, 60

Supremum norm, 104
Symbol of a random walk, 142
Symmetric positive definite matrix, 152

Terminal accuracy, 229
Termination criterion, 157, 257
Theta algorithm, 249
Theta function, 178, 221
Three-term recurrence, 134

with random coefficients, 289

Toeplitz matrix, 288
Totally alternating sequence, 242
Totally monotonic sequence, 242
Transition probability, 124, 204
Trapezoidal rule, 27, 68, 190

truncation
threshold, 68
truncation point, 73

Truncation error, 180

Underflow, 132, 166, 191
URL of web page for this book, ix, 267

Validation, 97, 163, 264
Vandermonde determinant, 114

W function, see Lambert’s W function
Walk on spheres, 202
Watson’s integral, 145
Web page for this book (URL), ix, 267
Weierstrassian ratio of periods, 221
Wiedemann’s algorithm, 168
Wiener measures, 204
Winners, 2
Wynn’s epsilon algorithm, see Epsilon al-

gorithm

Zeilberger’s algorithm, 133
Zeta function, see Riemann zeta function

	Foreword
	Preface
	The Story
	A Twisted Tail
	Reliability amid Chaos
	How Far Away Is Infinity?
	Think Globally, Act Locally
	A Complex Optimization
	Biasing for a Fair Return
	Too Large to Be Easy, Too Small to Be Hard
	In the Moment of Heat
	Gradus ad Parnassum
	Hitting the Ends
	Convergence Acceleration
	Extreme Digit-Hunting
	Code
	More Problems
	Bibliography
	Index

