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Author’s Note

Terms in bold, throughout the book, refer to entries in alphabetical
order, or to entries in the list of contents, and in the index.

Throughout this book, the word number will refer to a positive inte-
ger or whole number, unless stated otherwise.

Letters stand for integers unless otherwise indicated.

Notice the difference between the decimal point that is on the line,
as in % = 0.125, and the dot indicating multiplication, above the line:

20=2-2-5

Divisor and factor: these are almost synonymous. Any differences are
purely conventional. As Hugh Williams puts it, if a divides b, then
“we call a a divisor (or factor) of b. Since 1 and a are always divisors
of a, we call these factors the trivial divisors (or factors) of a.”
(Williams 1998, 2)

On the other hand, we always talk about the prime factorization
of a number, because no word like divisorization exists! For this
reason, we also talk about finding the factors of a large number such
as 2°' — 1.

Similarly, by convention, the divisor function d(72), which is the
number of divisors of 7, is never called the factor function. And so on.

The meanings of ¢(n), (1), and d(n) are explained in the glossary.
The natural logarithm of 7, the log to base e, is written as log ». This
does not mean the usual logarithm to base 10, which would be writ-

ten log,, 7.

The expression 8 > 5 means that 8 is greater than 5. Similarly, 5 < 8
means that 5 is less than 8.
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The expression n = 5 (5 < n) means that 7 is greater than or equal to
5 (5 is less than or equal to 7).

The expression 4 | 12 means that 4 divides 12 exactly.
The expression 4 | 13 means that 4 does not divide 13 exactly.

Finally, instead of saying, “When 30 is divided by 7 it leaves a
remainder 2,” it is much shorter and more convenient to write,

30 = 2 (mod 7)

This is a congruence, and we say that “30 is congruent to 2, mod 7.”
The expression mod stands for modulus, because this is an example
of modular arithmetic. The idea was invented by that great mathe-
matician Gauss, and is more or less identical to the clock arithmetic
that many readers will have met in school.

In clock (or modular) arithmetic you count and add numbers as if
going around a clockface. If the clockface goes from 1 to 7 only, then
8 is the same as 1, 9 = 2, 10 = 3, and so on.

If, however, the clockface goes from 1 to 16 (for example), then
1=17,2=18,and 3 - 9 = 11.

If you count in (say) 8s around the traditional clockface showing
12 hours, then your count will go: 8, 4, 12, 8, 4, 12, repeating end-
lessly and missing all the hours except 4, 8, and 12. If you count in
5s, however, it goes like this: 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12, 5, and
by the time you start to repeat you have visited every hour on the
clock. This is because 8 and 12 have a common factor 4, and but 5
and 12 have no common factor.

Mathematicians use the = sign instead of =, the equal sign, to indi-
cate that they are using modular arithmetic. So instead of saying that
prime numbers are always of the form 6n + 1 or 6n — 1, because
61 + 2 and 6n + 4 are even and 67 + 3 is divisible by 3, we can write
6n = *1 (mod 6).

Most statements made in this book have no reference. Either they are
well-known, or they can be found in several places in the literature.
Even if I do know where the claim was first made, a reference is not
necessarily given, because this is a popular book, not a work of
scholarship.

However, where a result appears to be due to a specific author or
collaboration of authors and is not widely known, I have given their
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names, such as (Fung and Williams). If a date is added, as in (Fung
and Williams 1990), that means the reference is in the bibliography.
If this reference is found in a particular book, it is given as (Fung and
Williams: Guy).

The sequences with references to “Sloane” and an A number are
taken from Neil Sloane’s On-Line Encyclopedia of Integer Sequences,
at www.research.att.com/~njas/sequences. See also the entry in this
book for Sloane’s On-Line Encyclopedia of Integer Sequences, as well
as the “Some Prime Web Sites” section at the end of the bibliography.

The index is very full, but if you come across an expression such as
¢(n) and want to know what it means, the glossary starting on page
251 will help.






Introduction

Prime numbers have always fascinated mathematicians. They
appear among the integers seemingly at random, and yet not
quite: there seems to be some order or pattern, just a little below
the surface, just a little out of reach.

—Underwood Dudley (1978)

Small children when they first go to school learn that there are two
things you can do to numbers: add them and multiply them. Addi-
tion sums are relatively easy, and addition has nice simple proper-
ties: 10 can be written as the sum of two numbers to make this pretty
pattern:

10=1+9=2+8=34+7=4+6=
5+45=0+4=7+3=8+2=9+1

It is also easy to write even large numbers, like 34470251, as a sum:
34470251 = 34470194 + 57. The inverse of addition, subtraction, is
pretty simple also.

Multiplication is much trickier, and its inverse, division, is really
quite hard; the simple pattern disappears, and writing 34470251 as a
product is, well, fiendishly difficult. Suddenly, simple arithmetic has
turned into difficult mathematics!

The difficulty is easy to understand but hard to resolve. The fact is
that some numbers, the composite numbers, can be written as a
product of two other numbers, as we learn from our multiplication
tables. These numbers start with: 2 X 2 is 4, 2 X 3 is 6, and 2 X 4 is 8,
followed later by 3 x 3 is 9 and 6 X 7 is 42, and so on.

Other numbers cannot be written as a product, except of them-
selves and 1. For example, 5 =5 X 1 =1 x 5, but that's all. These are
the mysterious prime numbers, whose sequence starts,

27 3’ 57 7’ 11? 157 17) 197 237 29? 317
37, 41, 43, 47, 53, 59, 61, 67, 71, ..



2 e Introduction

Notice that 1 is an exception: it is not counted as a prime number,
nor is it composite. This is because many properties of prime num-
bers are easier to state and have fewer exceptions if 1 is not prime.
(Zero also is neither prime nor composite.)

The prime numbers seem so irregular as to be random, although they
are in fact determinate. This mixture of almost-randomness and pat-
tern has enticed mathematicians for centuries, professional and ama-
teur alike, to make calculations, spot patterns, make conjectures, and
then (attempt) to prove them.

Sometimes, their conjectures have been false. So many conjectures
about primes are as elegant as they are simple, and the temptation to
believe them, to believe that you have discovered a pattern in the
primes, can be overwhelming—until you discover the counterexample
that destroys your idea. As Henri Poincaré wrote, “When a sudden
illumination invades the mathematicians’s mind, . . . it sometimes
happens . . . that it will not stand the test of verification . . . it is to be
observed almost always that this false idea, if it had been correct,
would have flattered our natural instincts for mathematical elegance.”
(Poincaré n.d.)

Sometimes a conjecture has only been proved many years later. The
most famous problem in mathematics today, by common consent, is
a conjecture, the Riemann hypothesis, which dates from a brilliant
paper published in 1859. Whoever finally proves it will become more
famous than Andrew Wiles, who was splashed across the front pages
when he finally proved Fermat’s Last Theorem in 1994.

This fertility of speculation has given a special role to the modern
electronic computer. In the good old bad old days, “computer” actu-
ally meant a person who computed, and a long and difficult task it
could be for the mathematician who was not a human calculator like
Euler or Gauss.

Today, computers can generate data faster than it can be read, and
can complete calculations in seconds or hours that would have taken
a human calculator years—and the computer makes no careless mis-
takes. (The programmer may err, of course!) Computers also put you
in touch with actual numbers, in a way that an abstract proof does
not. As John Milnor puts it:

If T can give an abstract proof of something, 'm reasonably happy. But if I

can get a concrete, computational proof and actually produce numbers I'm

much happier. 'm rather an addict at doing things on the computer. . . . I
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have a visual way of thinking, and I'm happy if I can see a picture of what
I'm working with. (Bailey and Borwein 2000)

It has even been seriously argued that mathematics is becoming
more of an experimental science as a result of the computer, in
which the role of proof is devalued. That is nonsense: it is only by
penetrating below the surface glitter that mathematicians gain the
deepest understanding. Why did Gauss publish six proofs of the law
of quadratic reciprocity (and leave a seventh among his papers)?
Because each proof illuminated the phenomenon from a different
angle and deepened his understanding.

Computers have had two other effects. The personal computer has
encouraged thousands of amateurs to get stuck in and to explore the
prime numbers. The result is a mass of material varying from the
amusing but trivial to the novel, serious, and important.

The second effect is that very complex calculations needed to
prove that a large number is prime, or to find its factors, have sud-
denly become within reach. In 1876 Edouard Lucas proved that
2% — 1 is prime. It remained the largest known prime of that form
until 1951. Today, a prime of this size can be proved prime in a few
seconds, though the problem of factorization remains intractable for
large numbers, so public key encryption and methods such as the
RSA algorithm have recently made prime numbers vitally important
to business (and the military).

Despite the thousands of mathematicians working on properties of the
prime numbers, numerous conjectures remain unresolved. Computers
are wonderful at creating data, and not bad at finding counterexam-
ples, but they prove nothing. Many problems and conjectures about
prime numbers will only be eventually solved through deeper and
deeper insight, and for the time being seem to be beyond our under-
standing. As Gauss put it, “It is characteristic of higher arithmetic that
many of its most beautiful theorems can be discovered by induction
with the greatest of ease but have proofs that lie anywhere but near at
hand and are often found only after many fruitless investigations with
the aid of deep analysis and lucky combinations.” See our entry on zeta
mysteries: the quantum connection! Gauss added, referring to his own
methods of working as well as those of Fermat and Euler and others:

[Tt often happens that many theorems, whose proof for years was sought
in vain, are later proved in many different ways. As soon as a new result is
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discovered by induction, one must consider as the first requirement the
finding of a proof by any possible means [emphasis added]. But after such
good fortune, one must not in higher arithmetic consider the investigation
closed or view the search for other proofs as a superfluous luxury. For
sometimes one does not at first come upon the most beautiful and simplest
proof, and then it is just the insight into the wonderful concatenation of
truth in higher arithmetic that is the chief attraction for study and often
leads to the discovery of new truths. For these reasons the finding of new
proofs for known truths is often at least as important as the discovery itself.
(Gauss 1817)

The study of the primes brings in every style and every level of
mathematical thinking, from the simplest pattern spotting (often mis-
leading, as we have noted) to the use of statistics and advanced
counting techniques, to scientific investigation and experiment, all
the way to the most abstract concepts and most subtle proofs that
depend on the unparalleled insight and intuitive perceptions of the
greatest mathematicians. Prime numbers offer a wonderful field for
exploration by amateurs and professionals alike.

This is not a treatise or an historical account, though it contains
many facts, historical and otherwise. Rather, it is an introduction to
the fascination and beauty of the prime numbers. Here is an exam-
ple that I have occasionally used to, successfully, persuade nonbe-
lievers with no mathematical background that mathematics can
indeed be delightful. First write down the square numbers, 1+ 1 =1,
2+-2=4,3-3=9, and so on. (Notice that to avoid using the X for
multiplication, because x is also used in algebra, we use a dot above
the text baseline.)

1 4 9 16 25 36 49 64 81 100

This sequence is especially simple and regular. Indeed, we don’t
even need to multiply any numbers to get it. We could just as well
have started with 1 and added the odd numbers. 1 +3=4;4+5=9;
9+ 7 =16, and so on.

Now write down the prime numbers, the numbers with no factors
except themselves and 1:

2 3 5 7 11 13 17 19 23 29

No such simplicity here! The jumps from one number to the next
vary irregularly from 1 to 6 (and would eventually become much
larger). Yet there is a concealed pattern connecting these two
sequences. To see it, strike out 2, which is the only even prime, and
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all the primes that are one less than a multiple of 4; so we delete 3,
7,11, 19, and 23 . . . The sequence of remaining primes goes,

5 13 17 29 37 41 53 57 61 73

And the connection? Every one of these primes is the sum of two
squares, of two of the numbers in the first sequence, in a unique way:

S=1+4+4, 13=4+49, 17=1+16, 29=4+25, 37=1+36

and so on. This extraordinary fact is related to Pythagoras’s theorem
about the sides of a right-angled triangle, and was known to Dio-
phantus in the third century. It was explored further by Fermat, and
then by Euler and Gauss and a host of other great mathematicians.
We might justly say that it has been the mental springboard and the
mysterious origin of a large portion of the theory of numbers—and
yet the basic facts of the case can be explained to a school pupil.

There lies the fascination of the prime numbers. They combine the
maximum of simplicity with the maximum of depth and mystery.
On a plaque attached to the NASA deep space probe we are de-
scribed in symbols for the benefit of any aliens who might meet the
spacecraft as “bilaterally symmetrical, sexually differentiated bipeds
located on one of the outer spirals of the Milky Way, capable of rec-
ognizing the prime numbers and moved by one extraordinary qual-
ity that lasts longer than all our other urges—curiosity.”

I hope that you will discover (or be reminded of ) some of the fasci-
nation of the primes in this book. If you are hooked, no doubt you
will want to look at other books—there is a selection of recom-
mended books marked in the bibliography with an asterisk—and
you will also find a vast amount of material on the Internet: some of
the best sites are listed at the “Some Prime Web Sites” section at the
end of the bibliography. To help you with your own research,
Appendix A is a list of the first 500 primes, and Appendix B lists the
first 80 values of the most common arithmetic functions.

Note: As this book went to press, the record for the largest known
prime number was broken by Dr. Martin Nowak, a German eye spe-
cialist who is a member of the worldwide GIMPS (Great Internet
Mersenne Prime Search) project, after fifty days of searching on his
2.4GHz Pentium 4 personal computer. His record prime is 229491 — 1
and has 7,816,230 digits.
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abc conjecture

The abc conjecture was first proposed by Joseph Oesterlé and David
Masser in 1985. It concerns the product of all the distinct prime factors
of n, sometimes called the radical of n and written r(#2). If 7 is square-
free (not divisible by any perfect square), then »(72) = n. On the other
hand, for a number such as 60 =223 -5, 7(60) =2 - 3 - 5= 30.
r(n) is smallest when 7 is a power of a prime: then r(p?) = p. So

r(8) = r(32) = r(256) = 2, and r(6561) = r(3%) = 3.

The more duplicated factors 7 has, the larger # will be compared to
r(n). For example, if n = 9972 = 2* - 3% - 277, then r(9972) = 1662,
and r(n) = Y%n.

The abc conjecture says, roughly, that if @ and b are two numbers
with no common factor, and sum ¢, then the number abc cannot be
very composite. More precisely, David Masser proved that the ratio
r(abc)/c can be as small as you like. Less than Y? Yes! Less than
0.00000001? Yes! And so on.

However—and this is Masser’s claim and the abc conjecture—this
is only just possible. If we calculate r(abc)"/c instead, where n is any
number greater than 1, then we can’t make r(abc)/c as small as we
like, and this is true even if 7 is only slightly greater than 1. So even
if 7 is as small as 1.00001, r(abc)”/c has a lower limit that isn’t zero.

Why is this conjecture about numbers that are not squarefree so
important? Because, incredibly, so many important theorems could
be proved quite easily, if it were true. Here are just five of the many
consequences of the abc conjecture being true:

e Fermat’s Last Theorem could be proved very easily. The proof
by Andrew Wiles is extremely long and complex.

e There are infinitely many Wieferich primes.

e There is only a finite number of sets of three consecutive pow-
erful numbers.

e There is only a finite number of solutions satisfying Brocard’s
equation, 7! + 1 = m?.

e All the polynomials (x" — 1)/(x — 1) have an infinity of square-
free values. (Browkin 2000, 10)



abundant number ¢ 7

abundant number

A number is abundant if the sum of its proper divisors (or aliquot
parts, meaning all its divisors except the number itself) is greater than
the number. Roughly speaking, numbers are abundant when they
have several different small prime factors. Thus 12 = 2* - 3 is abun-
dant, because 1 +2+3+4+6=16> 12.

Abundant numbers were presented by Nicomachus (c. AD 100) in
his Introduction to Arithmetic, which included definitions of prime
numbers (he did not consider 1, or unity, and 2 to be numbers) and
also deficient and perfect numbers, explaining that,

Among simple even numbers, some are superabundant, others are defi-
cient: these two classes are as two extremes opposed to one another; as for
those that occupy the middle position between the two, they are said to be
perfect. And those which are said to be opposite to each other, the super-
abundant and the deficient, are divided in their condition, which is inequal-
ity, into the too much and the too little.

In the case of the too much, is produced excess, superfluity, exaggera-
tions and abuse; in the case of too little, is produced wanting, defaults, pri-
vations and insufficiencies. And in the case of those that are found between
the too much and the too little, that is in equality, is produced virtue, just
measure, propriety, beauty and things of that sort—of which the most
exemplary form is that type of number which is called perfect. (O’Connor
and Robertson n.d.)

He also wrote, in the style of the period, that “even abundant num-
bers” are like an animal with “too many parts or limbs, with ten
tongues, as the poet says, and ten mouths, or with nine lips, or three
rows of teeth,” whereas perfect numbers are linked to “wealth, mod-
eration, propriety, beauty, and the like.” (Lauritzen, Versatile Num-
bers)

Nicomachus claimed that all odd numbers are deficient. Most
abundant numbers are indeed even. The smallest odd abundant is
945 = 3’ - 5 - 7. There are only twenty-three odd abundant numbers
less than 10,000.

Every multiple of an abundant number is abundant. Therefore, there
is an infinite number of abundant numbers. The sequence starts:

12 18 20 24 30 36 40 42 48 54 56
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The pair 54 and 56 is the first abundant numbers with the same sum
of proper divisors, 120. The next pairs are 60 and 78 (sum = 168) and
66 and 70 (sum = 144).

Roughly 24.8% of the positive integers are abundant.
The sum of all the divisors of 7, including # itself, is called o(n).

When n = 12, c(n)/n = 28/12 = 7/3, which is a record for numbers
up to 12. Any number that sets a record for o(n)/n is called super-
abundant. These are the first few record-breaking values of o(n)/#n:

n 1 2 6 12 24 30 48 60
oc(n)/n 132 2 7/3 572 91/36  31/12 14/5

If n is even and o(n)/n > 9, then it has at least fifty-five distinct prime
factors.

Every number greater than 20161 is the sum of two abundant numbers.
See deficient number; divisors; perfect number

AKS algorithm for primality testing

Our world resonates with patterns. The waxing and waning of
the moon. The changing of the seasons. The microscopic cell
structure of all living things have patterns. Perhaps that explains
our fascination with prime numbers which are uniquely without
pattern. Prime numbers are among the most mysterious phenom-
ena in mathematics.

—Manindra Agrawal (2003)

The ideal primality test is a definite yes-no test that also runs quickly
on modern computers. In August 2002, Manindra Agrawal of the
Indian Institute of Technology in Kanpur, India, and his two brilliant
PhD students Neeraj Kayal and Nitin Saxena, who were both in the
1997 Indian Mathematics Olympiad Squad, announced just such a
test, using his own novel version of Fermat’s Little Theorem, in a short
paper of only nine pages that was also extremely simple and elegant.

In a sign of the times, Agrawal sent an e-mail to a number of
prominent mathematicians with the subject header “PRIMES is in P,”
and also put it on his Web site. It was downloaded more than thirty
thousand times in the first twenty-four hours, and the site was visited
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more than two million times in the first ten days. (Earlier, AKS had
reached a gap in their attempted proof, which they filled by search-
ing the Web and finding just the mathematical result they needed.)

“PRIMES is in P” means that a number can be tested to decide
whether or not it is prime in a time that is roughly proportional to its
number of digits. This means that it is fast for very large numbers but
not so fast for the kind of numbers that often have to be tested in prac-
tical applications. Fortunately, in another sign of the times, within
hours of its publication other mathematicians were finding variations
on the original AKS algorithm that made it much faster. Currently, the
most-improved versions will run about two million times faster. This
nearly makes it competitive with the most efficient current algorithm—
but Agrawal will never benefit financially, because he decided against
trying to patent the result.

The algorithm is so simple that it has prompted many mathematicians
to wonder what other problems might have unexpectedly simple solu-
tions: for example, the problem of factorizing large numbers. Agrawal’s
algorithm is no help here: the most it can do is show that a number is
composite, without saying anything about its factors, so it will have no
effect on encryption using prime numbers. (Agrawal 2002)

See primality testing

aliquot sequences (sociable chains)

The aliquot parts (the expression is old-fashioned) of a number are
its proper divisors, meaning its divisors apart from the number itself.

Any integer is the start of an aliquot sequence. Simply calculate the
sum of its proper divisors and then repeat. Starting with 10 we soon
reach 1: the proper divisors of 10 are 1, 2, and 5, summing to 8; of 8
they are 1, 2, and 4, summing to 7, which is prime, so its only proper
divisor is 1.

For 24 we get this sequence:

24 36 55 17 1

However, 28 immediately repeats, because 1 + 2 + 4 + 7 + 14 = 28,
and so 28 is a perfect number, while 220 and 284 each lead at once
to the other, so they form an amicable pair.

For reasons that are not understood, many aliquot sequences end
in Paganini’s amicable pair, 1184 and 1210.
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The third possibility is that the sequence repeats through a cycle; the
first two examples of such sociable chains or aliquot cycles were
found by Poulet in 1918. The smaller is:

12496 14288 15472 14536 14264

The second chain is of twenty-eight numbers: 14316, 19116, 31704,
47616, 83328, 177792, 295488, 629072, 589786, 2948906, 358330,
418904, 366556, 274924, 275444, 243760, 376736, 381028, 285778,
152990, 122410, 97946, 48976, 45946, 22976, 22744, 19916, 17716,
(14316). It is remarkable how little oscillation there is in this
sequence. Drawn as a graph there would be just four peaks, at
629072, 418904, 275444, and 381028. (Beiler 1966, 29)

No more chains were discovered until 1969 when Henri Cohen
checked all aliquot sequences starting under 60,000,000 and found
seven chains of four links each. No chain of three links—nicknamed
a “crowd”—has ever been found, though no one has a reason why
they should not exist.

Catalan in 1888 and then Dickson conjectured that no aliquot
sequence goes off to infinity—they all end in a cycle or in 1. A
sequence starting with an abundant number will initially increase;
however, there are far more deficient than abundant numbers, which
suggests that most sequences will indeed decrease more than
increase.

There are just seventeen numbers less than 2000 for which the
problem is unsolved: 276, 552, 564, 660, 966, 1074, 1134, 1464, 1476,
1488, 1512, 1560, 1578, 1632, 1734, 1920, and 1992. Notice that they
are all even. It has been conjectured that the aliquot sequences for
most even numbers do not end in 1 or a cycle.

The first five of these numbers are the so-called Lehmer five. Orig-
inally the list was the Lehmer six, but then the fate of 840 was set-
tled. It eventually reaches 1, after peaking at:

3 463982 260143 725017 429794 136098 072146 586526 240388

D.N.Lehmer showed that 138 rises after 117 steps to 179,931,895,322
and then ends in 1 after 177 steps. (Guy 1981, B0)

Wolfgang Creyaufmueller found the longest known terminating
sequence in 2002. It starts at 446580 and ends 4,736 steps later with
the prime 601, followed by 1. (Creyaufmueller 2002)
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Manuel Benito and Juan Varona found the sequence with the highest
known peak: it starts with 3630 and has a maximum length of 100
digits, ending after 2,624 steps with the prime 59, and then 1. (Ben-
ito and Varona 2001)

almost-primes

The almost-prime numbers have a limited number of prime factors.
The 2-almost-primes have two prime factors (including duplicated
factors) and are also called semiprimes: the 3-almost-primes have
three, and so on.

The sequence of 3-almost-primes starts 8, 12, 18, 20, 27, 28, 30, 42,
44, 45, 50, . . .

The sequence of n-almost-primes starts with 27, 3 - 2”71 .

amicable numbers

A pair of numbers is amicable (or semiperfect) if each is the sum of
the proper divisors of the other. The smallest pair is 220 and 284. The
proper divisors of 220 = 2% - 5 - 11 sum to,

1+24+4+5+10+11+20+22+ 44 +55+ 110 = 284

and similarly: 284 =2° - 71 and 1 + 2 + 4 + 71 + 142 = 220.

According to the philosopher Iamblichus (c. AD 250-330), the fol-
lowers of Pythagoras “call certain numbers amicable numbers, adopt-
ing virtues and social qualities to numbers, such as 284 and 220;
for the parts of each have the power to generate the other,” and
Pythagoras described a friend as “one who is the other I, such as are
220 and 284.”

In the Bible (Genesis 32:14), Jacob gives 220 goats (200 female and
20 male) to Esau on their reunion. There are other biblical references
at Ezra 8:20 and 1 Chronicles 15:6, while 284 occurs in Nehemiah
11:18. These references are all to the tribe of Levi, whose name
derives from the wish of Levi’s mother to be amicably related to his
father. (Aviezri and Fraenkel: Guy 1994)

They were also used in magic and astrology. Ibn Khaldun (1332-
1406) wrote that “the art of talismans has also made us recognize the
marvelous virtues of amicable (or sympathetic) numbers. These
numbers are 220 and 284. ... Persons who occupy themselves with
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talismans assure that these numbers have a particular influence in
establishing union and friendship between individuals.” (Ore 1948, 97)

Thabit ibn Qurra (c. AD 850) in his Book on the Determination of
Amicable Numbers noted that if you choose 7 so that each of the
expressions a =3 -2"—=1,b=3-2""'=1,andc=9-2""' - 1is
prime, then 2”ab and 2"c are amicable numbers. Unfortunately, it
isn’t easy to make them all prime at once, and in fact it only works
for n =2, 4, and 7 and no other n less than 20,000.

A second pair, 17,296 and 18,416, was discovered by Ibn al-Banna
(1256-1321) and rediscovered by Fermat in 1636. Descartes found
the third pair, 9,363,584 and 9,437,056, which is the case n = 7 in
Thabit’s formulae. Euler then discovered no less than sixty-two more
examples, without following Thabit’s rule.

Paganini’'s amicable pair, 1184 and 1210, is named after Nicolo
Paganini, who discovered them in 1866 when he was a sixteen-year-
old schoolboy. They had previously been missed by Fermat, Des-
cartes, Euler, and others.

More than 7,500 amicable pairs have been found, using computers,
including all pairs up to 10", Is there an infinite number of amicable
pairs? It is generally believed so, partly because Herman te Riele has a
method of constructing “daughter” pairs from some “mother” pairs. Te
Riele has also published all of the 1,427 amicable pairs less than 10".

X no. of pairs with smaller no. < X
10° 1

10° 5

10° 13

10° 42

107 108

10° 236

10° 580

10" 1427

(Gupta)

amicable curiosities

e There is no known amicable pair in which one number is a
square.

e The numbers in amicable pairs end in 0 or 5 surprisingly often,
for no known reason.
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e Most amicable numbers have many different factors. Can a
power of a prime, p”, be one of an amicable pair? If so, then
P> 10" and 7 > 1400.

e It is not known whether there is a pair of coprime amicable
numbers. If there is, the numbers must exceed 10% and their
product must have at least twenty-two distinct prime factors.

Andrica’s conjecture

Dorin Andrica conjectured that Vp, ,, — \/p_n < 1 for all n. This is
really a conjecture about the gaps between prime numbers and is not
even a very strong conjecture, yet it has never been proved. The
largest value of the difference for 7 less than 1000 is V11 - V7 =
0.670873 . . . which is well below 1.

Imran Ghory has used data on largest prime gaps to confirm the
conjecture up to 1.3002 - 10'.

arithmetic progressions, of primes

In an arithmetic progression (or sequence) the differences between
successive terms are constant, for example:

3 7 11 15 19 23 27 31 35 39 43

with constant difference 4. This happens to already contain seven
primes, with one sequence of three consecutive primes.

The current record for the largest number of consecutive primes in
arithmetic progression has ten primes. It was set 11:56 a.m. on March
2, 1998, by Manfred Toplic of Klagenfurt, Austria, in a typical example
of distributed computing. The first term is the prime 100 99697 24697
14247 63778 66555 87969 84032 95093 24689 19004 18036 03417 75890
43417 03348 88215 90672 29719, and the common difference is 210.

The same team also set the previous record of nine consecutive
primes, on January 15, 1998. The team was led by Harvey Dubner and
Tony Forbes. More than seventy people, using about two hundred
machines, searched nearly fifty ranges of a trillion numbers each.

The longest known arithmetic progression of nonconsecutive
primes was discovered by Pritchard, Moran, and Thyssen in 1993. It
is twenty-two terms long, starting with the prime 11410337850553
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and with common difference 4609098694200. On April 22, 2003,
another twenty-two-term sequence was found by Markus Frind.

The largest triple of primes in arithmetic progression is the 13,447-
digit sequence starting 475977645 - 244 — 1 with common difference
475977645 - 249 — 2 discovered by Herranen and Gallot in 1998.

The largest quadruple of primes in arithmetic progression is the
1,815-digit sequence starting 174499605 - 2°° + 1 with common dif-
ference 20510280 - 2% found by Roonguthai and Gallot in 1999.

The set of smallest prime progressions starts:

no. of terms minimum difference smallest progression
2 1 2,3
3 2 3,57
4 6 5,11, 17, 23
5 6 5,11, 17, 23, 29
6 30 7,37,67,97, 127, 157
7 150 7,157, 307, . ..
8 210 199, 409, 619, . . .
9 210 199, 409, 619, . . .
10 210 199, 409, 619, . . .
11 2310 60858179, . ..

The longest known arithmetic progression of primes is twenty-
two terms long, starting from 11,410,337,850,553 with difference
4,609,098,694,200.

In 1939 van der Corput proved that an infinity of triples of primes
in arithmetic progression exists. Ben Green of the University of
British Columbia and Terence Tao of the University of California at
Los Angeles proved in 2004 that prime arithmetic progressions of any
length do exist, though their proof, like so many proofs, is noncon-
structive, so they cannot actually generate any examples.

See Dickson’s conjecture; Dirichlet; Hardy-Littlewood conjectures

Aurifeuillian factorization

Since a* + b* cannot be factorized into two algebraic factors, unlike
a* — b* = (a + b)a — b), we might assume that n* + 1, which is also
the sum of two squares, cannot be factorized. Not so!

W+1=*-n+D@+n+1
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Now we can see a connection: @ + b = (a + b)? — 4ab = (a —\ ab +
b)(a + \/% + b), which normally “doesn’t count” because of the
square roots. It follows that 7' + 1 is always composite, except when
n”—-n+l=1landn=0or1.

This is an example of an Aurifeuillian factorization, named after Léon
Francois Antoine Aurifeuille, who discovered a special case in 1873:

27T 1= 2"+ DR 2"+ D)

Knowledge of this factorization would have saved the many years of
his life that Fortuné Landry spent factoring 2°® + 1, finally finishing in
1869. Landry’s gargantuan factorization is just a trivial special case!

284+ 1=0R¥+2+DR¥ -2+ 1

Edouard Lucas later found more Aurifeuillian factorizations, which are
related to the complex roots of unity. Here are two more examples:

36/@—3 +1= (32/e—1 + 1)(3212—1 _ 312 + 1)(32/@—1 + 31@ + 1)
5 — 1= (5" - DIM, where L =T?% — T5* + 5" and
M=T?+T5+5"and T=5"+1,h=2k~-1.

Aurifeuillian factors have other uses. For example, if Z, is the nth
Lucas number, and 7 is odd, then

LSH = LnAinBSH Where AS?’I = SFnZ - SFn +1 and BSn = SFHZ + SFH +1

average prime

If SCk) is the sum of the first & prime numbers, then the average of
the first & primes is S(&)/k. This is an integer for these values of &:

k De SCpw) SCpe)/k
1 2 2 2
23 83 874 38
53 241 5830 110
853 6599 2615298 3066
11869 126551 712377380 60020
117267 154479 86810649294 740282
339615 4864121 794712005370 2340038
3600489 60686737 105784534314378 29380602

96643287 1966194317 92542301212047102 957565746
(Rivera, Puzzle 31)



16 * Bang’s theorem

Bang’s theorem

Does every term in a sequence contain at least one prime factor that
has not appeared before in the sequence? Such a prime factor is
called primitive.

If a > 1 is fixed, then every number a” — 1 has a primitive prime
factor, with the sole exception of 2° — 1 = 63. Similarly, if @ > 1, then
every number a” + 1 has a primitive prime factor, with the sole
exception of 2° + 1 = 9. This was proved by Bang in 1886, and inci-
dentally offers another way to prove that there is an infinity of prime
numbers.

Zsigmondy proved the same theorem for the more general functions
a’ — b" and a" + b", with the same condition and the same excep-
tions. The sequence for 7'= 2" + 3" starts:

n 1 2 3 4 5 6 7 8 9 10
T 5 13 35 97 275 793 2315 6817 20195 60073
5 13 5-7 97 5%-11 13-61 5-463 17-401 5-7-577 13 -4621

Bateman’s conjecture

1+2+2242°+2'=1+5+52=31

Is this the only sum of this kind, using prime numbers? No one
knows. If composite numbers are allowed, there is at least one other
solution:

14+24+22424+ ... 422 =14+90+90*=8191

Beal’s conjecture, and prize

The Texas millionaire Andrew Beal, the fifty-one-year-old founder of
the Beal Bank and Beal Aerospace Technologies that builds rockets
for satellite launches, and a number enthusiast, is offering a reward
to the first person to prove (or disprove) this conjecture, which is a
generalization of Fermat’s Last Theorem:
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If x” + y" = 2" where x, y, z, m, n, and r are all positive integers, and
m, n, and r are greater than 2, then x, y, and z have a common factor.

Without the condition that m, 7, and » must be greater than 2, there
are many solutions, including all Pythagorean triples starting with
3%+ 4* = 5% and 5* + 12? = 137, and the solutions to the Fermat-Catalan
conjecture. It follows, from a theorem of Falting, that for any partic-
ular choice of m, n, and r, there can only be a finite number of solu-
tions, but are there any at all?

The conjecture and prize were originally announced in 1997 in the
prestigious Notices of the American Mathematical Society, originally
with a prize of $5,000 rising by $5,000 a year to a maximum of
$50,000. Since then the prize has been increased to $100,000 for
either a proof or a counterexample. The prize money has been
handed to the American Mathematical Society for safekeeping and
the interest is being used to fund the annual Erdés Memorial Lecture.

Just in case anyone thinks that they can work out the answer on a
scruffy piece of paper, the award will be given only when “the solu-
tion has been recognized by the mathematics community. This
includes that either a proof has been given and the result has
appeared in a reputable referred journal or a counterexample has
been given and verified.” (www.bealconjecture.com)

The solution is sure to be difficult because the conjecture is based
on extensive numerical tests. Beal and a colleague spent thousands
of hours searching for solutions for various values of the exponents,
only to find that when solutions appeared, a pair out of x, y, and z
always had a common factor. Hence the conjecture, which is sur-
prisingly novel. (A similar but not identical idea was conjectured by
Viggo Brun in 1914.)

If the abc conjecture is true, then there are no solutions to Beal’s
equation when the exponents are large enough, and Darmon and
Granville showed in 1995 that in effect there are at most a finite num-
ber of solutions. But are there any?

See Fermet-Catalan equation and conjecture.

Benford’s law

If numbers in general were equally likely to start with any of the dig-
its 1 to 9, then out of the 78,498 prime numbers less than 1,000,000
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we would expect about one-ninth of them to begin with the digit 1,
or about 8,700, but no, there are 9,585 such primes starting with the
digit 1. In fact, from first digit 1 to first digit 9, the number of primes
in each category decreases.

Why this difference? Because in very many circumstances (not all)
numbers begin with the digit 1 more often than with other digits.
This was first noticed by the nineteenth-century astronomer Simon
Newcomb, who claimed, “That the ten digits do not occur with equal
frequency must be evident to anyone making use of logarithm tables,
and noticing how much faster the first pages wear out than the last
ones. The first significant figure is oftener 1 than any other digit and
the frequency diminishes up to 9.”

His conclusion was taken up again by Benford, a physicist work-
ing for the General Electric Company in 1938. He concluded that the
first digit is d with probability log,((1 + 1/d), which for d =1 is ap-
proximately 0.30103.

initial digit 1 2 3 4 5 6 7 8 9
Benford’s law 301 .176 .125 .097 .079 .067 .058 .051 .046

These are the frequencies of first digits among the first 100 Fibonacci
numbers, closely matching Benford’s law:

initial digit 1 2 3 4 5 6 7 8 9
frequency 30 18 13 9 8 6 5 7 4

It is sometimes assumed, without any sound reason, that Ben-
ford’s law is universal, that it applies to every set of numbers, any-
where, as if it were “a built-in characteristic of our number system.”
This isn’t so. A counterexample is the powers of 2, at least for low
powers. Here are the frequencies of the first digits of 2” from 7 =0
to 60:

digit 1 2 3 4 5 6 7 8 9
frequency 19 12 6 6 6 4 2 5 1
Benford’s law 18 11 7 6 5 4 3 3 3

The match is good to start with, but then poor, with a marked spike
at 8. (Raimi 19706)
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Bernoulli numbers

The Bernoulli numbers are defined by this equation:

X _py Bix | Byx? N Bx? N B!
e’ —1 1! 2! 3! 4!

+...

The first few values are:

BOZ]. B]Z—l/z BZZ% 352352372...232””:0
B4 = _1/50 BG = 1/42 Bg = _1/50 BlO = %6 BlZ = _691/2730
Bl/l = 7/6 316 = _5(717/510 BlS = 4;“*‘;()-//798

Ada Lovelace and the First Computer Algorithm

In 1840 Charles Babbage asked his collaborator Ada Lovelace,
daughter of Lord Byron, to add her own notes to a manuscript on his
Analytical Engine. The machine used cards based on those used to
control the Jacquard loom (and which were forerunners of the
Holerith cards used in early modern computers).

In her notes Lovelace emphasized (as we would put it today) the
interplay between programming and machinery, software and hard-
ware:

In enabling mechanism to combine together general symbols in succes-
sions of unlimited variety and extent, a uniting link is established between
the operations of matter and the abstract mental processes of the most
abstract branch of mathematical science. A new, a vast, and a powerful lan-
guage is developed for the future use of analysis.

She concluded by explaining how the engine could compute the
Bernoulli numbers, and made another comment that today’s com-
puter programmer will recognize at once:

We may here remark, that the average estimate of three Variable-cards com-
ing into use to each operation, is not to be taken as an absolutely and
literally correct amount for all cases and circumstances. Many special cir-
cumstances, either in the nature of a problem, or in the arrangements of the
engine under certain contingencies, influence and modify this average to a
greater or less extent.

This is generally considered to be the first account of a computer
algorithm. (Menabrea 1842)
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Bernoulli numbers can also be calculated using the binomial coeffi-
cients from Pascal’s triangle:

By=1

2B, +1B,=0 SO B, = -V
3B, + 3B, + B,=0 soB,=%
4B5 + 6B, + 4B, + By =0 so B;=0

SB4 + 1083 + 1OBZ + SBl + B() =0 SO B4 = —Yo

and so on.

There is also a connection between the Bernoulli numbers and the
Riemann zeta function:

B,=CD"""'nd(1 —n)

Bernoulli number curiosities

e The denominator of B, is always squarefree.

¢ The denominator of B,, equals the product of all the primes p
such that p — 1 | 2n.

e The fractional part of B, in the decimal system has a decimal
period that divides #, and there is a single digit before that
period. (Conway and Guy 1996, 107-10)

e G. J. Fee and S. Plouffe have computed Bjyo0, Which has
about 800,000 digits.

Bertrand’s postulate

Joseph Bertrand (1822-1900) was a precocious student who pub-
lished his first paper, on electricity, at the age of seventeen, but
then became more notable as a teacher than as an original mathe-
matician.

Bertrand’s postulate states that if 7 is an integer greater than 3, then
there is at least one prime between 7z and 27 — 2. (This is the precise
theorem. It is often claimed that there is a prime between 7 and 27,
which is a weaker claim.)

Strangely, although it continues to be called a postulate, it is actu-
ally a theorem: it was proved by Tchebycheff in 1850 after Bertrand
in 1845 had verified it for n less than 3,000,000. It is also a rather
weak theorem that can be strengthened in several ways:
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e Provided n is large enough, there are at least & primes
between 7 and 2n, however large the value of k.

e If n is at least 48, then there is at least one prime between »n
and 97/8.

e If n is greater than 6, then there is at least one prime of the
form 4k + 1 and at least one of the form 4k + 3 between 7 and
2n.

e If n is greater than or equal to 118, then the interval 7 to 472/3
inclusive contains a prime of each of the forms 4n + 1, 4n — 1,
6n+ 1, and 67 — 1.

e If n is greater than 15, then there is at least one number
between 7 and 27 that is the product of three different primes.

It also follows from Bertrand’s postulate that:

e There is at least one prime of any given digit length beginning
with the digit 1, in any base, not just base 10.

e The first 2k integers can always be arranged in & pairs so that
the sum of the entries in each pair is a prime.

e There is a number ¢ such that the integral parts of 2¢, 2%,
27, are primes. The constant ¢ is approximately
1.25164759777905. The first four primes are 2, 5, 37,
137438953481. The number ¢ is not sufficiently accurately
known to calculate the next prime in the sequence. (R. L. Gra-
ham, D. E. Knuth, & O. Patashnik)

Bonse’s inequality

This states that if p,, is the nth prime, then

p)1+12 <plp2p5 E pﬂ
provided n > 3.

Brier numbers

A Riesel number is an integer 4 such that & - 2" — 1 is composite for
any integer value of 7, and a Sierpinski number is an integer & such
that & - 2" + 1 is composite for any integer value of 7.



22 e Brocard’s conjecture
What about the Brier numbers, which are simultaneously Riesel
and Sierpinski? Eric Brier was the first to find one:

29364695000123543278115025405114452910889

Yves Gallot found three smaller Brier numbers in January 2000.
The smallest is twenty-seven-digits: 878503122374924101526292
469. (Rivera, Problem 29)

See Riesel number; Sierpinski numbers

Brocard’s conjecture

Brocard conjectured in 1904 that the only solutions of
nl+1=m

are n =4, 5, and 7. There are no other solutions with 7 < 10°. (Berndt
and Galway n.d.)

Another of Brocard’s conjectures is that there are at least four
primes between the squares of any two consecutive primes, with the
exception of 2 and 3. This is related to Schinzel’s conjecture that, pro-
vided x is greater than 8, there is a prime between x and x + (log x)*.

See Opperman’s conjecture

Brun’s constant

In 1919 Viggo Brun (1885-1978) proved that the sum of the recipro-
cals of the twin primes converges to Brun’s constant:

Vit Yo+ Y%+ %+ Y+ Y+ Y+ Yo +...=1.9021605 . ..

It was in 1994, while he was trying to calculate Brun’s constant,
that Thomas R. Nicely discovered a famous flaw in the Intel Pentium
microprocessor. The Pentium chip occasionally gave wrong answers
to a floating-point (decimal) division calculations due to errors in five
entries in a lookup table on the chip. Intel spent millions of dollars
replacing the faulty chips.

More recently, Nicely has calculated that the value of Brun’s con-
stant based on all the pairs of twin primes less than 5 - 10" is
1.902160582582 = 0.000000001620. (Nicely 2004a) These are the first
few approximate sums:
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limit no. of twin prime pairs approx. sum of reciprocals
1,000 35 1.5180
10,000 205 1.6169
100,000 1,224 1.6728
1,000,000 8,169 1.7108
10,000,000 58,980 1.7384

Viggo Brun’s methods have been used to study Goldbach’s conjec-
ture and the twin primes conjecture and to prove that there exist infi-
nitely many integers 7 such that » and 7 + 2 have at most nine prime
factors, and that all large even integers are the sum of two integers
each having at most nine prime factors.

See Mertens constant

Buss’s function

Frank Buss has defined a function, B(7), that seems to generate only
primes. It is calculated like this:

S =1
B(n) = [next prime to ( f(n) + D] — f(n)
S =f(n-1 - -Bn-1

The sequence starts:

n 1 2 3 4 5 6 7
[ 1 2 6 30 210 2730 30030
“next-prime” 3 5 11 37 223 2741 30047
B(n) 2 3 5 7 13 11 17

The conjecture has been tested successfully up to 7 = 603. However,
like so many such conjectures, it seems likely that this is a case of the
the strong law of small numbers. (Rivera, Conjecture 29)

Carmichael numbers

According to Fermat’s Little Theorem, if p is prime and 7 and p are

coprime (they have no common factor), then 7/~ = 1 (mod p).
However, some composite numbers satisfy this equation also, and

do so for every value of n. These are the Carmichael numbers,
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named after Robert Daniel Carmichael (1879-1967). They are some-
times called absolute pseudoprimes because they are pseudoprimes
to every base.

They are an annoyance if you are using Fermat’s Little Theorem to
test for primality, because if your number just happens to be a
Carmichael number, it will pass the test for any base—and still be
composite.

Fortunately, the Carmichael number is quite rare. Those less than
100,000 are: 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841,
29341, 41041, 46657, 52633, 62745, 63973, and 75361.

There are only 2,163 less than 25,000,000,000, and 105,212 less
than 10", each with at most nine prime factors.

If 7 is a Carmichael number, then it is squarefree, the product of at
least three distinct primes, and for every prime p divisor of n,
p — 1 divides n — 1, and conversely. For example, 561 is the smallest
Carmichael number and 561 =3 - 11 - 17, and 2, 10, and 16 all divide
560. The largest known Carmichael number with three prime factors
was found by Harvey Dubner. It has 10,200 digits.

The smallest with four distinct factors is 41041 =7 - 11 - 13 - 41,
and 41040 is divisible by 6, 10, 12, and 40. The smallest with five dis-
tinct prime factors is 825265 and the smallest with six distinct prime
factors is 321197185.

Carmichael conjectured in 1910 that there is an infinite number of
Carmichael numbers. Alford, Granville, and Pomerance proved this
in 1994 by showing how suitable smooth numbers could be multi-
plied together to fit the Carmichael definition.

Whether there is an infinity of Carmichael numbers with a given
number of factors (at least three) is not known, however, nor
whether Carmichael numbers can be found with an arbitrarily large
number of factors.

Catalan’s conjecture

Anyone might notice as a curiosity that 8 and 9 are 2° and 37 respec-
tively, and that other small powers, such as 25 and 27, are not con-
secutive. Eugeéne Charles Catalan (1814-1894) conjectured in 1844
that 8 and 9 are indeed the only consecutive powers.
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Levi ben Gerson (1288-1344) had shown that these are the only
powers of 2 and 3 differing by 1, and Euler proved that 9 and 8 are
the only square and cube differing by 1.

Robert Tijdeman proved in 1976 that the equation x” — 7 =1 has
at most a finite number of solutions: if there is a solution, then p and
q are less than a certain (unknown!) constant, C.

Computer checks show that if x” — 7 = =1, then p and g must
exceed 107. Tt is also known that if x* — 7 =1, and if p and g are
prime, then p|y and g|x.

In 2000, Preda Mihailescu proved that if any solutions apart from 8
and 9 exist, then p and g must both be double Wieferich primes:
p7" must leave a remainder of 1 when divided by g? and g%~ "
must leave a remainder of 1 when divided by p* The only known
examples are: 2 and 1093; 3 and 1006003; 5 and 1645333507; 83 and
4871; 911 and 318917; and 2903 and 18787.

It has also been proved by Hyyré and Makowski that it is impossi-
ble to have three consecutive powers.

Catalan’s Mersenne conjecture

When Lucas proved in 1876 that 2'* — 1 is prime, Catalan noticed
that 127 = 27 — 1 and conjectured that this sequence, where M, is the
pth Mersenne number, contains only primes:

=2 -1=3 =M,
C,=20-1=2-1 =M, =7
C,=20-1=2"-1 =M =127
C,=26-1=29—1=M, =
170141183460469231731687303715884105727

and soon. ..

Unfortunately, Cs5 has more than 10°® digits and so cannot be tested
directly, though Curt Noll has verified that C5 has no prime divisor
less than 5 - 10°°. Like so many conjectures of this kind, it is likely
that a composite term appears quite soon.

See Mersenne numbers and Mersenne primes; strong law of small
numbers
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Champernowne’s constant

David Champernowne (1912-2000) discussed Champernowne’s con-
stant in 1933: 0.12345678910111213 . . . It is transcendental (Mahler
1961: MathWorld) and normal in base 10, meaning that each digit 0
to 9 occurs one-tenth of the time, each pair of digits from 00 to 99
occurs one-hundredth of the time, and so on.

champion numbers

Conway and Odlyzko call the difference p,, 1 — p, a “champion for
x,” denoted by C(x), if it happens that it occurs most frequently for
all the consecutive primes less than x.

C(x) seems to take only the value 4, plus the values 2, 6, 30, 210,
2310, . . . which are the primorials, the result of multiplying the con-
secutive primes together. Is this true? Marek Wolf, Odlyzko, and
Rubinstein say yes. (Rivera, Conjecture 10)

Chinese remainder theorem

Sun Tsu Suan-ching (fourth century AD) posed this problem: “There
are certain things whose number is unknown. Divided by 3, the
remainder is 2; by 5 the remainder is 3; and by 7 the remainder is 2.
What will be the number?” The solution is 23. (Wells 1992, 23)

This is an example of the Chinese remainder theorem, which says
that if you know the remainders when N is divided by 7 numbers,
which are coprime in pairs, then you can find a unique smallest
value of N, and an infinity of other solutions, by adding any integral
multiple of the product of the » numbers (or subtracting if you are
satisfied with negative solutions).

In Sun Tsu Suan-ching’s puzzle, 3 - 5 - 7 = 105, so the solutions are
23,23 + 105, 23 + 210, 23 + 315, and so on, and 23 — 105 = -82 is the
smallest negative solution.

The Chinese remainder theorem can also be expressed in terms of
congruences: if
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x = r, (mod m,)
= 7, (mod m,)
x = r; (mod ms)

K

x = r, (mod m,)

then there is a unique solution, X, for x lying between 0 and
mym, . ..m,, and the general solution is congruent to X (mod
mamy, . .. M,).

One use of the Chinese remainder theorem is to do arithmetic on
large numbers by choosing a set of moduli m,, m,, . .. m, and then
treating each number as a set of remainders, ry, 7, 73, . . . 7, rather
than as a sequence of decimal or binary digits. Then you do the
arithmetic on the remainders and recover the solution by using the
Chinese remainder theorem.

cicadas and prime periods

Cicadas of the genus Magicicada appear once every 7, 13, or 17
years. Is it just a coincidence that these are prime numbers? Eric
Goles, Oliver Schulz, and Mario Markus have found evolutionary
predator-prey models that have prime periods—which they then
used to generate large prime numbers. (Sugden 2001, 177)

circle, prime

Is it always possible to arrange the numbers from 1 to 27 in a circle
so that each adjacent pair sums to a prime?

Antonio Filz calls such an arrangement a prime circle. For example,
these are the essentially unique prime circles for » =1, 2, and 3:

1 4 16
12 4 5
23 32

There are two prime circles for n = 4 and forty-eight for n = 5. Tt is
not known if there are prime circles for all values of 7.
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circular prime

A prime is circular if all the cyclic permutations of its digits are prime.
These primes and their cyclic permutations are circular, in base 10:

2,3,5,7, Ry, 13,17, 37, 79, 113, 197, 199, 337, 1193,
3779, 11939, 19937, 193939, 199933, Ris, Ras, Rsi7, Riosi

where R,, stands for the #nth repunit prime.

Walter Schneider has checked that there are no more up to 10
See permutable primes

Clay prizes, the

In Paris at the College de France on May 24, 2000, almost exactly one
hundred years since David Hilbert’s 23 problems were presented to
the world, seven new “Millennium Prize Problems” were announced,
for which the Clay Mathematics Institute of Cambridge, Massachusetts,
is offering prizes of $1 million to the first solver of each problem.

All the Clay problems are, of course, extremely difficult, and have
resisted the attempts of mathematicians for many years, but one
problem is outstanding: the only one from Hilbert’s original 23 that
appears in the Clay list is the Riemann hypothesis.

As a protection against the naive or frivolous claims that such a
large prize is sure to provoke, solvers must not send their claims
directly to the Clay Institute but must get them published in a math-
ematics journal of worldwide repute and the claimed solution must
then be accepted by the mathematics community. Two years is
allowed for this process. If the solution survives scrutiny, only then
will it be considered by the Scientific Advisory Board of the Clay
Mathematics Institute.

The procedure is slightly different if the claim is for a counterexam-
ple, so if you think you have found a zero of the Riemann zeta func-
tion that does not have real part %, see the Clay Institute Web site for
what to do. However, since Andrew Odlyzko has calculated a million
zeros near zero number 10% and ten billion zeros near zero number
10%, and the ZetaGrid distributed computing network is calculating
more than a billion zeros a day, you'd better get your skates on!
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There is a second Clay prize challenge that is relevant to the
primes: the P versus NP problem. It is currently very hard to factor-
ize large numbers but quick and easy to check the factorization once
it is found. Is there really no way to factorize large numbers quickly?

If you do discover a method, you might plausibly earn far more
than the Clay Institute’s $1 million by selling your discovery to com-
mercial organizations—or governments—who use numbers that are
the product of two large primes for public key encryption and would
be very interested to hear that their secure communications can be
broken using your method!

See AKS algorithm; distributed computing; factorization; public key
encryption; Riemann hypothesis

compositorial

The product of all the composite numbers less than or equal to 7 is
n! (n-factorial) divided by the product of the primes less than or
equal to n, or n-primorial, denoted by n#. Tago Camboa has sug-
gested calling this n-compositorial. (Caldwell, Prime Pages) Just as n!
and n# have many factors, so does n!/n#, so nl/n# = 1 is relatively
likely to be prime.

n!/n# + 1 is prime for n =1, 2, 3, 4, 5, 8, 14, 20, 206, 34, 50, . . .
n!/n# — 1 is prime for n =4, 5, 6, 7, 8, 14, 16, 17, 21, 34, 39, . ..

See also factorial; primorial

concatenation of primes

The concatenation of the primes gives the sequence:
2, 23, 235, 2357, 235711, . ..

The nth term is prime for n = 1, 2, 4, 128, 174, 342, 435,
1429, . . . with no others less than 7837. (Weisstein, 2001)

The Copeland-Erdos constant is the decimal 0.23571113171923 . ..
Copeland and Erdos (1946) showed that it is normal in base 10. It is
also irrational, as is the decimal number .0110101000101000101 . . .
in which the #nth digit is 1 if 7 is prime and 0 otherwise.

See Champernowne’s constant
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conjectures

The theory of numbers, more than any other branch of pure
mathematics, has begun by being an empirical science. Its most
famous theorems have all been conjectured, sometimes a hun-
dred years or more before they have been proved; and they have
been suggested by the evidence of a mass of computation.

—G. H. Hardy (1920, 651)

One of the delights of prime numbers is that their combination of
strict definition with apparent irregularity amounting almost to ran-
domness invites mathematicians both professional and amateur to
propose more and more problems and conjectures, the best-known
named after their proposers.

Many of these conjectures are extremely difficult to settle. The
prime numbers are just foo mysterious and difficult!

When a sudden illumination invades the mathematician’s mind . . . it some-
times happens . . . that it will not stand the test of verification . . . it is to be
observed that almost always this false idea, if it had been correct, would
have flattered our natural instincts for mathematical elegance. (Henri Poin-
caré n.d.)

They are also too tempting. As Poincaré’s comment suggests, it is
oh so easy to spot an elegant pattern and assume that it goes on for-
ever. How often it doesn’t! How often we are disappointed!

As G. H. Hardy also noted, “Some branches of mathematics have
the pleasant characteristic that what seems plausible at first sight is
generally true. In [analytic prime number] theory anyone can make
plausible conjectures, and they are almost always false.” (Hardy
1915, 18)

The simplest conjectures are easy to make and may be easy to prove,
though not as easily as in the joke about a physicist who notices that
3 is prime, 5 is prime, 7 is prime, 9 is not—but that's an experimen-
tal errorl—11 is prime, 13 is prime . . . and so concludes that all odd
number are prime!

The most important conjectures tend to be made by the most
brilliant mathematicians who have looked extraordinarily deeply
into the subject and whose intuition tells them that a certain “fact”
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is likely to be true, although they cannot prove it. Such deep con-
jectures have contributed enormously to the progress of mathe-
matics.

Fermat’s Last Theorem, labeled a “theorem” only because Fermat
claimed to have proved it, was for centuries a plausible conjecture
until it was fina