
INTERNATIONAL CONFERENCE ON NUMBER THEORY AND MODULAR FORMS, DEC 2008, 1

Abstract—Calculating arbitrary precision of π stresses the

fixed-point, floating-point, logic, shift, branch prediction and
pipelining circuits of a CPU. Testing of a CPU using two versions
of algorithmically different programs to generate π and verifying
the result by comparison is proposed to ensure the integrity of the
CPU. The rapidly convergent compute intensive Borwein-
Borwein (BB) algorithm is used as the CPU stressor and Bailey-
Borwein-Plouffe (BBP) digit-extraction spigot algorithm as a
result-checker is studied in this paper. The faulty CPU is
identified, if there is a difference in the result produced by both
the algorithms. This paper describes a technique to verify the
integrity of the CPU by selecting the first algorithm from the class
of iterative convergence based algorithms to generate the first n
digits and the second algorithm to extract the nth digit to verify
the result of the first algorithm. This technique is superior to the
existing method of verifying the result with the same class of
iterative convergence algorithms where the first n digits need to
be re-generated using a different iterative algorithm. The digit-
extraction algorithm (BBP) requires less system resources and
time compared to iterative algorithms and hence suited as an ideal
π result-checker. The proposed method can be included in the
CPU diagnostic routines to ensure the arithmetic stability of the
computer.

Index Terms— arbitrary precision arithmetic, spigot
algorithm, CPU diagnostics.

I. INTRODUCTION
HE computation of the numerical value of π has been
pursued for centuries for a variety of reasons, both

practical and theoretical. A value of π correct to 20 decimal
places is sufficient for most practical applications. Even for
scientific computations a value of π correct to 100 decimal
places is sufficient. The extended precision calculation of π
has substantial application as a test of global integrity of
computer systems. The extended precision calculation of π
uncovers most of the CPU hardware errors [1].

In recent years, the computation of the expansion of π has
assumed the role as a standard test of computer integrity. If
even one error occurs in a computation then the result will
almost certainly be completely in error after an initial correct
section. For this reason, programs that compute the decimal
expansion of π are frequently used by both manufacturers and
purchasers of new computers to certify system reliability [2].

II. BACKGROUND

A. Brent-Salamin iterative rapid convergence algorithm
An approximate algorithm based on elliptic integrals that

yield quadratic convergence to π. In series-based algorithms,
the number of correct digits increases only linearly with the
number of iterations performed. In Bernt-Salamin (BS)
algorithm, single iteration of the algorithm doubles the number
of correct digits of π. BS algorithm is also known as Gauss-
Legendre (GL) algorithm. Kanada and Tamura employed this
algorithm to compute π to over 16 million decimal digits [11]
[12]. BS algorithm:

Initial value

1,
4
1,

2
1,1 0000 ==== ptba

Iterate until an and bn is within the desired accuracy

21
nn

n
baa +

=+

nnn bab =+1
2

11)(++ −−= nnnnn aaptt

nn pp 21 =+

The approximate value of π:

n

nn

t
ba

4
)(2+

≈π

The calculated π value is verified using the Borwein-
Borwein (BB) algorithm given in the next section. The BB
algorithm demands higher precision than the desired digits. It
is to be noted that the BS algorithm is superior to BB
algorithm. The correctness of the digits generated is verified
by re-generating digits using different algorithm and
comparing the results. Moreover, the re-generation
methodology is time and space consuming when applied for
verifying the integrity of the CPU. It is just sufficient to verify
the specific digits of the result to ensure integrity of the CPU

Testing CPU stability using Multi-precision
Arithmetic by calculating n digits of π

 G. Hari Prakash

T

INTERNATIONAL CONFERENCE ON NUMBER THEORY AND MODULAR FORMS, DEC 2008, 2

using alternate fast method without re-generating the n digits
of π.

B. Borwein-Borwein iterative rapid convergence algorithm
Jonathan and Peter Borwein devised many rapidly

quadratically convergent algorithm for calculating π based on
the arithmetic geometric mean (AGM) [3] [7]. In 1987 they
devised a quadratic convergence algorithm to calculate the
reciprocal of π. BB algorithm:
Initialize

22

2

2

0

4
0

0

+=

=

=

p

y

x

Iterate

12

1

1
1

1

2
1

1
2
1

11

2
1

1
2
1

1

10

1

2
1

−−

+

+
−

−

−

−−−

−

−−

=−

→

=

+
+

=









+=

k

k

to
k

k

k
kk

k

kkk
k

kkk

p

convergesp

y
xpp

y
xxyy

xxx

π

π

C. Bailey-Borwein-Plouffe digit-extraction algorithm
The BBP algorithm is based on polylogarithmic ladder in

integer base [4] [7]. The BBP π summation formula was
founded in 1995 by Simon Plouffe using PSLQ integer relation
algorithm [5]. The BBP formula provides a spigot algorithm
[6] for the computation of the nth binary digit of π without
calculating the previous digits of π. BBP algorithm:

∑
∞

=








+
−

+
−

+
−

+
=

0 68
1

58
1

48
2

18
4

16
1

k
k kkkk

π

()() ()()

()() ()()∑ ∑

∑∑
∞

=

∞

=

∞

=

∞

=

+
−

+
−

+
−

+
=

0 0

00

6816
1

5816
1

4816
12

1816
14

k k
kk

k
k

k
k

kk

kk
π

Using spigot algorithm to find nth hexadecimal digit of π,

take the first sum and split the sum to infinity across the nth
term.

∑ ∑ ∑
∞

= =

∞

+= +
+

+
=

+0 0 1)18)(16(
1

)18)(16(
1

)18)(16(
1

k

n

k nk
kkk kkk

Multiply by 16 n so that the hexadecimal point (the divide

between fractional and integer parts of the number) is in the
nth place.

∑ ∑ ∑
∞

= =

∞

+=

−−−

+
+

+
=

+0 0 1 18
16

18
16

18
16

k

n

k nk

knknkn

kkk

For digit-extraction only the fractional part of the sum is

required. The first sum is able to produce whole numbers
whereas the second sum cannot produce whole numbers since
the numerator can never be larger than the denominator for
k > n. To remove the whole numbers for the first sum perform
modulo operation of the numerator by 8k + 1. The sum for the
first fractional part then becomes:

∑ ∑
=

∞

+=

−−

+
+

+
+n

k nk

knkn

kk
k

0 1 18
16

18
18mod16

 The modulo operator always guarantees that only the

fractional sum is retained. The modulo operation is performed
when the running product becomes greater than one. In order
to complete the calculation apply this to each of the four sums
in turn. Finally the four summations and put back into the sum
to π.

∑∑∑∑ −−−=
4321

24π

Leave the integer part since only the fractional part is

accurate and multiply the final sum by 16 to extract the
hexadecimal digit.

This process is similar to performing long multiplication,
but only having to perform the summation of some middle
columns. While there are some carries that are not counted,
computers usually perform arithmetic for many bits (32 or 64)
and they round and we are only interested in the most
significant digit. There is a small possibility that a particular
computation will be akin to failing to add a small number (e.g.
1) to the number 999999999999999 and that the error will
propagate to the most significant digit, but being near this
situation is obvious in the final value produced.

The BBP algorithm computes π without requiring custom
data types having thousands or even millions of digits. The
method calculates the nth digit without calculating the first
n − 1 digits, and can use small, efficient data types.

The algorithm is the fastest way to compute the nth digit (or

INTERNATIONAL CONFERENCE ON NUMBER THEORY AND MODULAR FORMS, DEC 2008, 3

a few digits in a neighborhood of the nth), but π-computing
algorithms using large data types remain faster when the goal
is to compute all the digits from 1 to n. This algorithm has
proven popular and many software implementations exist.

III. IMPLEMENTATION
In the previous section we have mentioned that the BS

algorithm is superior to BB algorithm, but we still prefer using
the BB algorithm for the following reason. Higher precision
of BB algorithm implies more stress to the circuits. Compared
to the BS algorithm, BB algorithm is a good CPU stressor. The
BB and BBP algorithms are implemented in C++ language.
The digits produced in BB algorithm are implemented in 256
base, they are converted to hexadecimal digits at the end of the
calculation [8]. Single byte consisting of two hexadecimal
digits are extracted from the BBP algorithm and compared
with the BB result for checking the stability of the CPU during
the execution of BB algorithm. Incase of digit mismatch, a
CPU fault signal is triggered.

Similar to N-version software fault-tolerance model, the BB
and BBP algorithms are diverse and least overlap on the
utilization of CPU resources to avoid common mode failure.

 The number of digits to calculate depends on the CPU
diagnostic run level. Higher the run level, longer the run-time
and higher the precision of π is calculated, providing more
stress to the arithmetic and instruction pipelines.

IV. PERFORMANCE
The Borwein-Borwein (BB) algorithm is asymptotically

faster algorithm to calculate the first n digits of π uses Fast
Fourier Transform (FFT) based multiplication but it is slower
than Bailey-Borwein-Plouffe (BBP) algorithm to calculate the
nth digit of π. The BB algorithm is used to stress the CPU
using iterative algorithm and requires multi-precision
arithmetic. Whereas, the BBP algorithm is used to cross-check
the results produced by the BB algorithm. The BBP
algorithm requires no multi-precision support and virtually no
memory. The algorithm runs at near linearly with the order of
the desired digit. Ordinary IEEE 64-bit arithmetic is sufficient
to obtain a numerically significant result for even a large
computation, and quad precision (i.e. 128-bit) arithmetic, can
insure that the final result is accurate to several digits beyond
the one desired. One can check the significance of a computed
result beginning at position n by also performing a
computation at position n + 1 or n − 1 and comparing the
trailing digits produced.

V. COVERAGE
The coverage of BB algorithm can be evaluated using the

static and dynamic analysis of instructions of the executable
program. The operation count depends on Instruction Set
Architecture (ISA). The frequency of the pipeline also
influences the timing coverage of the CPU. Running the BB
algorithm in a cycle accurate CPU simulator like SimpleScalar
[9] will provide more details of the coverage property of
calculating arbitrary precision digits of π. A multi-threaded

version of BB and BBP algorithm can be coded for testing
multi-core processors.

VI. CONCLUSION

Calculating arbitrary precision value of π will improve the
arithmetic and instruction pipeline coverage of CPU.
Generating few thousand digits of π using BB algorithm and
checking using BBP algorithm ensure reasonable stability of
the highly used arithmetic and instruction pipelines of a CPU.
The BB and BBP algorithms are diverse and least overlap on
the utilization of CPU resources to avoid common mode
failure.

REFERENCES
[1] J. M. Borwein and P. B. Borwein, D.H.Bailey, “Ramanujan, Modular

Equations, and Approximations to Pi or How to Compute One Billion
Digits of Pi”. American Mathematical Monthly, Vol.96. No. 3. March
1989.

[2] David H. Bailey, “The Computation of π to 29,360,000 Decimal Digits
Using Borwein’s Quartically Convergent Algorithm”, Mathematics of
Computation Vol. 50, number 181. Jan. 1988, pages 283-296.

[3] Jonathan Borwein, Peter Borwein, “Pi and the AGM: A Study in
Analytic Number Theory and Computational Complexity”, John Wiley,
1987.

[4] David Bailey, Peter Borwein and Simon Plouffe, “On the Rapid
Computation of Various Polylogarithmic Constants”, Mathematics of
Computation, vol. 66, no. 218 (April 1997), pages. 903–913.

[5] Weisstein, Eric W. “PSLQ Algorithm.” From Math World – A Wolfram
Web Resource. http://mathworld.wolfram.com/PSLQAlgorithm.html

[6] Spigot algorithm, Wikipedia [Online]
http://en.wikipedia.org/wiki/Spigot_algorithm.

[7] Lennart Berggren, Jonathan Borwein, Peter Borwein, “Pi: A Source
Book”, Springer Verlag, 3rd edition. 1997.

[8] William.H. Presss, Saul A. Teukolsky, William T. Vellerling, Brain
P.Flannery, “Numerical Recipes in C”, 2nd Edition, Cambridge
University press. 1993.

[9] Todd Austim. “SimpleScalar LLC – Processor simulator”, [Online]
http://www.simplescalar.com

[10] LAPACK, “Linear Algebra Package“. [Online].
http://www.netlib.org/linpack

[11] Yasumasa Kanada,”Super_Pi program to calsulate Pi upto 32 million
digits”, [Online]. http://en.wikipedia.org/wiki/Super_PI

[12] Yasumasa Kanada, “ Vectorization of Multiple-Precision Arithmetic
Program and 201,326,000 Decimal Digits of π Calculation”, Scientific
American. 1988.

G. Hariprakash, Research Advisor, Computer Science and Engineering
department of Srinivasa Ramanujan Centre, SASTRA University,
Kumbakonam, TN, India. His area of interest includes CPU diagnostics,
Computer architecture, Processor micro-architecture and Operating systems.
He can be reached through email logichari@gmail.com

	I. INTRODUCTION
	II. Background
	A. Brent-Salamin iterative rapid convergence algorithm
	B. Borwein-Borwein iterative rapid convergence algorithm
	C. Bailey-Borwein-Plouffe digit-extraction algorithm

	III. Implementation
	IV. Performance
	V. Coverage
	References

