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Abstract—Calculating arbitrary precision of π stresses the 

fixed-point, floating-point, logic, shift, branch prediction and 
pipelining circuits of a CPU. Testing of a CPU using two versions 
of algorithmically different programs to generate π and verifying 
the result by comparison is proposed to ensure the integrity of the 
CPU. The rapidly convergent compute intensive Borwein-
Borwein (BB) algorithm is used as the CPU stressor and Bailey-
Borwein-Plouffe (BBP) digit-extraction spigot algorithm as a 
result-checker is studied in this paper. The faulty CPU is 
identified, if there is a difference in the result produced by both 
the algorithms. This paper describes a technique to verify the 
integrity of the CPU by selecting the first algorithm from the class 
of iterative convergence based algorithms to generate the first n 
digits and the second algorithm to extract the nth digit to verify 
the result of the first algorithm. This technique is superior to the 
existing method of verifying the result with the same class of 
iterative convergence algorithms where the first n digits need to 
be re-generated using a different iterative algorithm. The digit-
extraction algorithm (BBP) requires less system resources and 
time compared to iterative algorithms and hence suited as an ideal 
π result-checker. The proposed method can be included in the 
CPU diagnostic routines to ensure the arithmetic stability of the 
computer.  
 

Index Terms— arbitrary precision arithmetic, spigot 
algorithm, CPU diagnostics. 

I. INTRODUCTION 
HE  computation of the numerical value of π has been 
pursued for centuries for a variety of reasons, both 

practical and theoretical. A value of π correct to 20 decimal 
places is sufficient for most practical applications. Even for 
scientific computations a value of π correct to 100 decimal 
places is sufficient. The extended precision calculation of π 
has substantial application as a test of global integrity of 
computer systems. The extended precision calculation of π 
uncovers most of the CPU hardware errors [1].  

In recent years, the computation of the expansion of π has 
assumed the role as a standard test of computer integrity. If 
even one error occurs in a computation then the result will 
almost certainly be completely in error after an initial correct 
section. For this reason, programs that compute the decimal 
expansion of π are frequently used by both manufacturers and 
purchasers of new computers to certify system reliability [2].  

 

II. BACKGROUND 

A. Brent-Salamin iterative rapid convergence algorithm 
An approximate algorithm based on elliptic integrals that 

yield quadratic convergence to π.  In series-based algorithms, 
the number of correct digits increases only linearly with the 
number of iterations performed. In Bernt-Salamin (BS) 
algorithm, single iteration of the algorithm doubles the number 
of correct digits of π. BS algorithm is also known as Gauss-
Legendre (GL) algorithm. Kanada and Tamura employed this 
algorithm to compute π to over 16 million decimal digits [11] 
[12].  BS algorithm: 
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The calculated π value is verified using the Borwein-
Borwein (BB) algorithm given in the next section. The BB 
algorithm demands higher precision than the desired digits. It 
is to be noted that the BS algorithm is superior to BB 
algorithm. The correctness of the digits generated is verified 
by re-generating digits using different algorithm and 
comparing the results. Moreover, the re-generation 
methodology is time and space consuming when applied for 
verifying the integrity of the CPU. It is just sufficient to verify 
the specific digits of the result to ensure integrity of the CPU 
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using alternate fast method without re-generating the n digits 
of π.  

B. Borwein-Borwein iterative rapid convergence algorithm 
Jonathan and Peter Borwein devised many rapidly 

quadratically convergent algorithm for calculating π based on 
the arithmetic geometric mean (AGM) [3] [7]. In 1987 they 
devised a quadratic convergence algorithm to calculate the 
reciprocal of π. BB algorithm: 
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C. Bailey-Borwein-Plouffe digit-extraction algorithm 
The BBP algorithm is based on polylogarithmic ladder in 

integer base [4] [7]. The BBP π summation formula was 
founded in 1995 by Simon Plouffe using PSLQ integer relation 
algorithm [5]. The BBP formula provides a spigot algorithm 
[6] for the computation of the nth binary digit of π without 
calculating the previous digits of π. BBP algorithm: 
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Using spigot algorithm to find nth hexadecimal digit of π, 

take the first sum and split the sum to infinity across the nth 
term. 
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Multiply by 16 n so that the hexadecimal point (the divide 

between fractional and integer parts of the number) is in the 
nth place. 
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For digit-extraction only the fractional part of the sum is 

required. The first sum is able to produce whole numbers 
whereas the second sum cannot produce whole numbers since 
the numerator can never be larger than the denominator for     
k > n. To remove the whole numbers for the first sum perform 
modulo operation of the numerator by 8k + 1. The sum for the 
first fractional part then becomes: 
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 The modulo operator always guarantees that only the 

fractional sum is retained. The modulo operation is performed 
when the running product becomes greater than one. In order 
to complete the calculation apply this to each of the four sums 
in turn. Finally the four summations and put back into the sum 
to π. 
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Leave the integer part since only the fractional part is 

accurate and multiply the final sum by 16 to extract the 
hexadecimal digit.  

This process is similar to performing long multiplication, 
but only having to perform the summation of some middle 
columns. While there are some carries that are not counted, 
computers usually perform arithmetic for many bits (32 or 64) 
and they round and we are only interested in the most 
significant digit. There is a small possibility that a particular 
computation will be akin to failing to add a small number (e.g. 
1) to the number 999999999999999 and that the error will 
propagate to the most significant digit, but being near this 
situation is obvious in the final value produced. 

The BBP algorithm computes π without requiring custom 
data types having thousands or even millions of digits. The 
method calculates the nth digit without calculating the first 
n − 1 digits, and can use small, efficient data types. 

The algorithm is the fastest way to compute the nth digit (or 
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a few digits in a neighborhood of the nth), but π-computing 
algorithms using large data types remain faster when the goal 
is to compute all the digits from 1 to n. This algorithm has 
proven popular and many software implementations exist. 

III. IMPLEMENTATION 
In the previous section we have mentioned that the BS 

algorithm is superior to BB algorithm, but we still prefer using 
the BB algorithm for the following reason.  Higher precision 
of BB algorithm implies more stress to the circuits. Compared 
to the BS algorithm, BB algorithm is a good CPU stressor. The 
BB and BBP algorithms are implemented in C++ language. 
The digits produced in BB algorithm are implemented in 256 
base, they are converted to hexadecimal digits at the end of the 
calculation [8]. Single byte consisting of two hexadecimal 
digits are extracted from the BBP algorithm and compared 
with the BB result for checking the stability of the CPU during 
the execution of BB algorithm. Incase of digit mismatch, a 
CPU fault signal is triggered.   

Similar to N-version software fault-tolerance model, the BB 
and BBP algorithms are diverse and least overlap on the 
utilization of CPU resources to avoid common mode failure.  

 The number of digits to calculate depends on the CPU 
diagnostic run level. Higher the run level, longer the run-time 
and higher the precision of π is calculated, providing more 
stress to the arithmetic and instruction pipelines. 

IV. PERFORMANCE 
The Borwein-Borwein (BB) algorithm is asymptotically 

faster algorithm to calculate the first n digits of π uses Fast 
Fourier Transform (FFT) based multiplication but it is slower 
than Bailey-Borwein-Plouffe (BBP) algorithm to calculate the 
nth digit of π.  The BB algorithm is used to stress the CPU 
using iterative algorithm and requires multi-precision 
arithmetic. Whereas, the BBP algorithm is used to cross-check 
the results produced by the BB algorithm.   The BBP 
algorithm requires no multi-precision support and virtually no 
memory. The algorithm runs at near linearly with the order of 
the desired digit. Ordinary IEEE 64-bit arithmetic is sufficient 
to obtain a numerically significant result for even a large 
computation, and quad precision (i.e. 128-bit) arithmetic, can 
insure that the final result is accurate to several digits beyond 
the one desired. One can check the significance of a computed 
result beginning at position n by also performing a 
computation at position n + 1 or n − 1 and comparing the 
trailing digits produced. 

V. COVERAGE 
The coverage of BB algorithm can be evaluated using the 

static and dynamic analysis of instructions of the executable 
program. The operation count depends on Instruction Set 
Architecture (ISA). The frequency of the pipeline also 
influences the timing coverage of the CPU.  Running the BB 
algorithm in a cycle accurate CPU simulator like SimpleScalar 
[9] will provide more details of the coverage property of 
calculating arbitrary precision digits of π. A multi-threaded 

version of BB and BBP algorithm can be coded for testing 
multi-core processors. 

 
VI. CONCLUSION 

Calculating arbitrary precision value of π will improve the 
arithmetic and instruction pipeline coverage of CPU. 
Generating few thousand digits of π using BB algorithm and 
checking using BBP algorithm ensure reasonable stability of 
the highly used arithmetic and instruction pipelines of a CPU. 
The BB and BBP algorithms are diverse and least overlap on 
the utilization of CPU resources to avoid common mode 
failure.  

REFERENCES 
[1] J. M. Borwein and P. B. Borwein, D.H.Bailey, “Ramanujan, Modular 

Equations, and Approximations to Pi or How to Compute One Billion 
Digits of Pi”. American Mathematical Monthly, Vol.96. No. 3. March 
1989. 

[2] David H. Bailey, “The Computation of π to 29,360,000 Decimal Digits 
Using Borwein’s Quartically Convergent Algorithm”, Mathematics of 
Computation Vol. 50, number 181. Jan. 1988, pages 283-296. 

[3] Jonathan Borwein, Peter Borwein, “Pi and the AGM: A Study in 
Analytic Number Theory and Computational Complexity”, John Wiley, 
1987. 

[4] David Bailey, Peter Borwein and Simon Plouffe, “On the Rapid 
Computation of Various Polylogarithmic Constants”, Mathematics of 
Computation, vol. 66, no. 218 (April 1997), pages. 903–913. 

[5] Weisstein, Eric W. “PSLQ Algorithm.” From Math World – A Wolfram 
Web Resource. http://mathworld.wolfram.com/PSLQAlgorithm.html 

[6] Spigot algorithm, Wikipedia [Online] 
http://en.wikipedia.org/wiki/Spigot_algorithm. 

[7] Lennart Berggren, Jonathan Borwein, Peter Borwein, “Pi: A Source 
Book”, Springer Verlag, 3rd edition. 1997. 

[8] William.H. Presss, Saul A. Teukolsky, William T. Vellerling, Brain 
P.Flannery, “Numerical Recipes in C”, 2nd Edition, Cambridge 
University press. 1993. 

[9] Todd Austim. “SimpleScalar LLC – Processor simulator”, [Online] 
http://www.simplescalar.com 

[10] LAPACK, “Linear Algebra Package“. [Online]. 
http://www.netlib.org/linpack 

[11] Yasumasa Kanada,”Super_Pi program to calsulate Pi upto 32 million 
digits”, [Online]. http://en.wikipedia.org/wiki/Super_PI 

[12] Yasumasa Kanada, “ Vectorization of Multiple-Precision Arithmetic 
Program and 201,326,000 Decimal Digits of π Calculation”, Scientific 
American. 1988. 

 
G. Hariprakash, Research Advisor, Computer Science and Engineering 
department of Srinivasa Ramanujan Centre, SASTRA University, 
Kumbakonam, TN, India. His area of interest includes CPU diagnostics, 
Computer architecture, Processor micro-architecture and Operating systems. 
He can be reached through email logichari@gmail.com 


	I. INTRODUCTION
	II. Background
	A. Brent-Salamin iterative rapid convergence algorithm
	B. Borwein-Borwein iterative rapid convergence algorithm
	C. Bailey-Borwein-Plouffe digit-extraction algorithm

	III. Implementation
	IV. Performance
	V. Coverage
	References

