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1. Introduction 

 
 Central Force Optimization (CFO) [1,2,3] is a global search and optimization (GSO) metaheuristic 
based on gravitational kinematics, the motions of real masses whose trajectories are controlled by real 
gravity. CFO searches a decision space (DS) for the maxima of an objective function whose value is its 
‘fitness’ and whose topology on DS is unknown or unknowable 

 The CFO metaphor flies ‘probes’ that sample DS and converge on local extrema.  It is inherently 
deterministic, that is, every run with the same setup yields precisely the same results.  CFO’s exploitation 
of discovered extrema (quickly converging on a local maximum) is quite good [4], but its exploration 
(sampling other regions of DS) can be inhibited by that very attribute because probes that have coalesced 
are no longer available to search elsewhere.  This dichotomy plagues most GSO’s.  To quote " 
“Exploration and exploitation are the two cornerstones of problem solving by search.” For more than a 
decade, Eiben and Schippers' advocacy for balancing between these two antagonistic cornerstones still 
greatly influences the research directions of evolutionary algorithms (EAs)..." [5, emphasis added] and 
additionally discussed in [6-8].  Like all GSO algorithms CFO is subject to the inescapable tension between 
exploration (adequately sampling DS) and exploitation (quickly converging on global maxima).  Using 
negative gravity may mitigate this effect thereby improving CFO’s exploration.  Injecting a small amount 
hopefully discovers new maxima that otherwise would be missed.  They may include global maxima or 
simply other extrema with similar fitness values.  This note looks into this possibility with some examples. 

 CFO has been used both for design and for optimization (D/O) to solve ‘real-world’ problems, often 
in an engineering setting.   Design refers to meeting a specified minimum performance, whereas 
Optimization refers to determining the greatest objective function value(s) and location(s) in DS (the ‘best’ 
fitnesses and coordinates).  Importantly, running any GSO algorithm against ‘benchmark’ functions is 
altogether different from D/O on typical real world problems.  Benchmark functions are known analytically 
a priori, as are their maxima value(s) and their location(s) in DS.  Solving benchmarks is quite different 
from the usual ‘real world’ case of starting without any objective function at all.  Therefore a key element 
of solving the problem is formulating a suitable objective function.  Accomplishing this can be daunting, 
especially in complex cases, and using a deterministic algorithm like CFO can make a big difference 
because there is no inherent randomness in that approach.  This note looks into this issue as well.. 

 Most GSO’s are stochastic in nature, so that even with the same setup successive runs produce 
different results.  In order to evaluate the effect of a change in the objective function, even a slight change, 
say, using a different coefficient in some term, requires multiple runs of a stochastic GSO, often tens or 
hundreds in order to build sufficient statistics to reliably measure the effect of that new coefficient.  In stark 
contrast, CFO requires only two runs, one with the original objective function and a second with the 
modified version because all changes in the runs’ outputs are a consequence only of modifying the 
objective function, not random changes because the GSO is inherently stochastic. 

 CFO has been effectively used with excellent results to solve problems in a wide range of disparate 
disciplines, among them, as examples: training neural networks [9], patch antenna synthesis [10], power 
system state space pruning [11], antenna design [12-19], arid region water distribution [20], UAV flight 
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path planning [21], bandpass filter design [22], humanoid robot gait [23] ensembles of neural networks 
[24], satellite image fusion [25], medical image fusion [26], iris recognition [27], and filter design [28]. 
 
2. Effect of Negative Gravity 

 
 With respect to the sign of CFO’s gravity, + or ‒, the question is, Does making it negative benefit 
CFO's performance, and if so, why, or does it impede it?  Positive gravity causes CFO's probes always to 
move toward greater fitnesses, never away, and consequently to some degree positive gravity inevitably 
impedes CFO's exploration.  In fact, CFO often converges very quickly [4], a favorable attribute, but not if 
rapid exploitation is accomplished at the expense of under-sampling DS, which may well be the case.  
Adding some negative gravity that has probes flying away from each other may address this issue by 
causing probes that otherwise would coalesce to explore more widely by flying into regions that have been 
under-sampled or perhaps not sampled at all.  The test case reported here shows that a small amount of 
negative gravity indeed does benefit CFO's performance, ostensibly because it enhances CFO's exploration 
while retaining the algorithm's ability to exploit already located maxima.  Before getting to that, however, a 
couple of two-dimensional (2D) functions will be used to illustrate the effect of negative gravity.  Negative 
gravity was injected using π–fractions (Appendix A1). π–fractions #0-1,000,001 are downloadable at 
https://app.box.com/s/qdd8rzrhgaozne0ag1nes9jkm0bj6ark.  These data are provided for any interested 
user and may be distributed without limitation. 
 
 2.1 Stretched Sine Wave:  The first function illustrating negative gravity is the stretched Sine 
Wave [29] defined as  
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 The second function is the Gaussian grid (below).  While the Sine Wave is a recognized benchmark, 
the grid is not.  The stretched Sine Wave is plotted below..  

 
Stretched Sine Wave 

 

 For both functions a dense π–fraction initial probe distribution (IPD) was used to provide a large 
number of sampling points in order to visualize how CFO’s probe distributions evolved with positive and 
negative gravity by plotting the probe positions as the run progressed.  The gravitational constants 
(Appendix A2) were G=±2.  
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 Fig. 1 shows the Sine Wave probe evolution at steps 0 (IPD), 2, 4 and 20 (clockwise) with positive 
gravity.  This benchmark’s maximum is zero at the origin of the 10x10 decision space, and the probes’ 
convergence on the maximum is visually evident.  CFO’s positive gravity causes the probes to come 
together around the maximum.  Even though the Sine Wave is circularly symmetric DS is not, and the 
effect of this asymmetry is evident in the probe distributions that cluster along the DS diagonals.  Because 
of the dense IPD, the CFO run was intentionally short (20 steps) and returned a best fitness of -0.005543 at 
the point (-0.00288,0.00106). 
 
 Fig. 2 shows the Sine Wave probe evolution with negative gravity in the same format as Fig.1.  The 
dramatic effect of G < 0 is quite apparent – CFO’s probes are all forced away from the maximum and 
instead cluster along the DS diagonals in the far corners, again a result of the Sine Wave/DS asymmetry.  
The negative gravity flew the probes as far apart as possible.  At the end of the run, a best fitness of -
0.102165 was returned at the point (0.04672,+1.02846) 
 
 

 
Fig. 1.  Probes Locations, Stretched Sine Wave, Positive Gravity, G = +2 
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Fig. 2.  Probes, Stretched Sine Wave, Negative Gravity, G = –2 

 
 

 2.2 Gaussian Grid:  The gaussian grid provides another compelling example of the validity of 
CFO’s gravitational metaphor and the effect of negative gravity.  An attractive force of gravity requires 
positive mass and a positive gravitational constant (Appendix A2).  Because the CFO implementation 
employed in this note forces the mass to be positive, the effect of negative gravity is readily demonstrated 
by setting the gravitational constant G  to a negative value, in this case 2−=G , and as with the Sine Wave 

the result is quite dramatic. 
 

 The two-dimensional gaussian grid function is defined as 
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 The grid is not a recognized benchmark, but it is useful to demonstrate CFO’s behavior in 
distributing probes with and without negative gravity.  The grid is plotted below.  Its global maxima of 
1.025 lie on the grid lines 50,0;50,0 21 ±=±= xx . 
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Gaussian Grid 
 
 CFO was run again with a dense IPD, in this case a uniform grid of probes, in order to visualize the 

probes’ evolution as  the run progresses.  Fig 3 shows the probe distribution at steps 24 and 50 with positive 
gravity, 2+=G .  At step 24 the grid’s structure is quite evident, and by step 50 it is fully resolved.  

Interestingly, the grid lines passing through the origin do not contain probes for 502,1 >x .  The likely reason 

is that probes on these segments were attracted to the large probe concentration near the origin.  This 

thinning effect also seems to be occurring at step 50 on the segments 0,5050 21 =≤≤− xx  and 

0,5050 12 =≤≤− xx  where the probe density near the segment center is lower than at the ends. 

 

 When the gravity is negative, 2−=G , the probe distribution at step 50 (end of run) is shown in Fig. 

4, in stark contrast to the positive gravity case, with 2+=G .  Instead of clustering along the grid lines, the 

probes are symmetrically forced away from maxima to the very edges of the decision space.  With negative 
gravity CFO’s probes fly away from each other instead of clustering near the grid’s maxima.  As an 
interesting corollary, the grid’s landscape contains a continuum of local maxima, but in decision spaces like 
this, that is, DS’s containing an uncountable or a very large number of maxima, most GSO’s converge on 
only one.  In many real-world problems, however, that maximum may not actually be the “best”.  In real-
world D/O, especially engineering design, identical or nearly identical fitnesses do not necessarily 
correspond to fungible designs.  As a practical matter, of many solutions with the same or nearly the same 
fitness, usually one is better than the others for reasons that may not be quantifiable in an objective 
function.  For example, one design may be less expensive, or easier to fabricate, or to maintain, or to 
distribute, and so on with regard to any number of ancillary considerations that are not or cannot be 
reflected in an objective function.  In cases where there are many indistinguishable or nearly 
indistinguishable maxima, a deterministic GSO like Central Force Optimization, with positive gravity and a 
small amount of negative gravity may be useful in exploring DS as a pre-processor to aid in locating many 
maxima, not just one, thus broadening the range of solutions. 
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                          Fig. 3(a)  Step 24 with 2+=G                         Fig. 3(b)  Step 50 with 2+=G  

 
x1 

                                                                 Fig. 4.  Step 50 with 2−=G  

 
 
3. Example of Negative Gravity Benefit: A ‘Real-World’ Problem 

 
 The beneficial effects of injecting a small amount of negative gravity in CFO were discussed in 
considerable detail in some previously published papers [30, 31].  Highlights from that work are presented 
here to supplement the discussion so far.  While the example used here is drawn from Yagi antenna design, 
the basic idea of adding some negative gravity to CFO applies to any CFO problem.  The reader is not 
expected or required to have any background in antennas or electromagnetics and should feel free to peruse 
this section quickly if desired. 
 
 The structure under consideration is the six-element Yagi-Uda array shown below.  Arrays of this 
type are used across the entire radio spectrum and range in size from sub-centimeter to tens of meters.  The 
antenna comprises six parallel dipole elements mounted on a common axis (‘boom’).  One element is 
connected to the radio transmitter/receiver (‘driven’) while the others are not (‘parasitic’).  The antenna’s 
performance over a range of frequencies (‘bandwidth’, BW) is measured primarily by how much energy it 
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radiates in specific directions (‘gain’) and how well it accepts power from a radio transmitter (‘standing 
wave ratio’, SWR). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The problem here is to maximize an objective (fitness) function that combines these parameters: 
antenna gain, SWR and BW.  The specific mathematical form of the fitness function is not known a priori 
and must be determined by the designer.  There is a limitless number of ways these parameters can be 
mathematically combined, and not all of them are suitable as measures of how well a particular Yagi design 
performs.  This problem is eighteen-dimensional (diameter/length of each element (12 variables); five 
spacings along the boom; and ‘input impedance’ that determines SWR).  The very first question is, What 
mathematical combination of these eighteen variables does the best job of measuring how good a particular 
design is?  Not any easy question! 
 
 3.1 Formulating a Fitness Function:  As pointed out previously, formulating a suitable fitness 
function can be quite a difficult, but using a deterministic GSO like CFO makes the job easier.  To further 
illustrate this point, before getting back to the Yagi problem, another antenna example will be used to 
emphasize how important it is to define a suitable objective function, especially in very complex cases like 
the Yagi array, and how difficult it can be even in the simplest cases. 
 
 The problem here is maximizing the bandwidth of the simplest possible antenna structure, a base-
fed monopole (a straight wire) on an infinite perfectly conducting ground plane as shown below.  The 
monopole’s bandwidth will be increased by adding a fixed resistor R at a height H.  The objective is to 
determine the best values of R and H.  Unlike the Yagi problem, this problem is only two-dimensional so 
that its fitness function can be visualized.  Of course, as is usually the case, the problem statement doesn’t 
come with the required objective function, so the designer must be formulate it from scratch.  What is a 
suitable form?  There are many parameters that can be included, among them the monopole input 

impedance, 
inin XR , , its radiation efficiency, ε , (which is reduced by adding R), the characteristic 

impedance, Z0, and the maximum gain, maxG , all across the range of desired frequencies.  The algorithm 

designer is free to define any objective function that works well to measure the monopole’s fitness 
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 In order to illustrate the difficulty in formulating a suitable objective function, three forms will be 
considered, each one ostensibly suitable for the problem as defined.  The candidates are: 
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 Their 2D landscapes are plotted below.  A visual inspection reveals that two of the three are poor 
choices, one of them extremely poor.  Functions 1 and 3 are smoothly varying whereas f2 is pathologically 
spikey, even though at first blush its functional form seems to be good for maximizing BW.  f1 has a narrow 
maximum very close to the DS boundary, which my make it difficult to locate.  As pointed out f2 simply is 
pathological, and its spikey nature would make it difficult for most GSO’s to locate maxima.  Of the three 
candidates, f3 clearly is the best.  Its maximum is well within DS, and it is well defined.   
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                                                     (a)                                                                        (b) 

 
 

  
                                                                                            (c)                                                                      (d) 

Fig. 5.  Landscape for Objective Function )50,,(1 HRf  

 
 
 
 
 
 
 

  
 

                                                                                         (a)                                                                     (b) 

  
 
                                                                                            (c)                                                                        (d) 

Fig. 6.  Landscape for Objective Function )50,,(2 HRf  
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                                                     (a)                                                                       (b) 

  
                                                           (c)                                                                   (d) 

Fig. 7.  Landscape for Objective Function )50,,(3 HRf  

 
 
 How could the algorithm designer formulate a suitable objective function if, for example, another 
component is added, say, an inductor, whose value and location are to be determined the way R and H must 
be found?  Now the problem is 4D instead of 2D.  The landscape for candidate objective functions cannot 
be plotted.  How, then, can candidate functions be evaluated?  Using a deterministic GSO like CFO makes 
all the difference because then changes in the results from one run to the next are entirely a result of 
changes to the fitness function, and nothing else, like randomness in the GSO itself. 
 
 3.2 Yagi Array Results:  Getting back to the Yagi problem, the objective was to maximize its BW 
and gain over a specified frequency range.  After trying  several fitness functions, the following simple 
form was settled on: 
 

YAGI Fitness = c1*Gain(L) + c3*Gain(M) + c5*Gain(U) − c2*SWR(L) − 

c4*SWR(M) − c6*SWR(U) 

where L/M/U are the lower/mid/upper frequencies at which the Yagi's power gain and SWR are computed.  
The weighting coefficients are : c1 = c2 = c5 = c6 = 1; c3 = c4 = 3, which intentionally favors midband 
performance, slightly. Their values were determined empirically by making successive CFO runs with 
different values and evaluating the results of each one, something that could not be done quickly with a 
stochastic GSO. 
 
 Negative gravity was injected into CFO as follows.  At each step negative gravity was pseudo 
randomly assigned using π-fractions (data files available, see Appendix A1).  At each step in the CFO run, 
the value of the π-fraction was tested against the target level of negative gravity and the sign of gravity 
adjusted accordingly (positive or negative).  CFO pseudocode and the actual vs. target amount of negative 
gravity are shown below (details in [30,31]). 
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 The Yagi fitness and its maximum gain as a function of the amount of negative gravity are shown 
below.  With zero negative gravity, the fitness and max gain, respectively, are about 48 and 12 dB, both 
very respectable values.  Adding a small amount of negative gravity at first reduces both of these 
performance measures at first, but when the negative gravity level reaches about six percent both the fitness 
and gain increase dramatically, and they remain above their initial values with as much as about 10% 

 

Alg: CFO - Six-Element Yagi Design 
 
 

Initialization (Step 0)
*
 

 (i) Initialize π-fraction index (← 2) 

 (ii) Compute Initial Probe Distribution (π-frac prv's) 

 (iii) Compute Initial Fitness Matrix 

 (iv) Initial Probe Accelerations (← 0) 

For  Step#: 1 - #Steps 

 (i) Pseudo randomly assign positive or 

  negative gravity (π-frac prv's) 

 (ii) Compute Probe Position Vectors 

 (iii) Retrieve Errant Probes 

 (iv) Compute Fitness Matrix for 
  Current Probe Distribution 

 (v) Compute Accelerations from Current 
  Probe Distribution/Fitnesses 

 (vi) Adjust Repositioning Factor Frep 

Next 
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negative gravity, after which they gradually decrease.  These two plots alone demonstrate convincingly that 
ount of negative gravity can help quite a bit.  The negative gravity allows 

probes explore more widely and to discover even better array designs.  The improved fitness and gain 
correspond to solutions that were missed by CFO because it failed to fly probes into the

ombining G < 0 in CFO with a couple of other extensions (Dynamic Threshold Optimization and 
has resulted in more than 19% improvement in the fitness of a 6-element Yagi [30,31

question that some small amount of negative gravity is beneficial.. 

 

 
 
 

5 10 15 20
%  G < 0

6 Element YAGI Fitness

 

demonstrate convincingly that 
The negative gravity allows CFO’s 

The improved fitness and gain 
correspond to solutions that were missed by CFO because it failed to fly probes into their regions of DS.  In 

(Dynamic Threshold Optimization and 
element Yagi [30,31].  There is no 
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 4. Conclusion  It is evident that injecting a small amount of negative gravity into Central Force 
Optimization can produce substantially better results because the algorithm’s exploration of DS is 
improved.  The examples discussed here are compelling, and there is every reason to expect that injecting a 
small amount of negative gravity will enhance any CFO run against any GSO problem.  Therefore, it is 
recommended that the negative gravity approach be used in all CFO implementations. 
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APPENDIX A1 – π FRACTIONS 

 GSO Sampling:  Uniformity in randomly generated sample points is an important 

consideration in GSO.  Sample points should be generated using a truly uniformly distributed 

random variable (rv) calculated from a probability distribution, but most if not all pseudorandom 

sequence generators fall short because their points in fact are not uniformly distributed.  One 

alternative approach is using Low Discrepancy Sequences (LDS) which are becoming more 

popular.  For example, De Rainville et al. [32,33] provide a summary of the uniformity problem 

and develop an evolutionary optimization approach to generating LDS.  Pant et al. [34] describe 

an improved Particle Swarm Optimization (PSO) algorithm utilizing van der Corput and Sobol 

LDS.  Other representative, not exhaustive, examples include LDS applied to liquid crystal 

display dot patterns [35], power system stabilizers [36], and financial analysis [37,38]. 

 This appendix describes an alternative approach to generating uniformly distributed 

sample points using π Fractions that are computed from hexadecimal digit extraction from the 

mathematical constant π.  Pi Fractions [39] are uniformly distributed and provide a basis for 

creating reproducible, deterministic sample point distributions that can be used in any GSO 

algorithm regardless of its fundamental nature, stochastic, deterministic or hybrid.  The 

importance of determinism in electromagnetics problems is discussed in [47]. 

 Another reason for considering π Fractions is what some practitioners, including the 
author, consider a willy-nilly proliferation of stochastic metaheuristics of questionable merit 
[42].  Examples range from "Anarchic societies" to "Zombies" [43].  Are these algorithms any 
good?  How can they be efficiently compared head-to-head or to other well-established 
algorithms?  Making them deterministic would be a good first step, and π Fractions can do that.    
For interested readers, π  fractions#0-1,000,001 are downloadable at: 
https://app.box.com/s/qdd8rzrhgaozne0ag1nes9jkm0bj6ark 
 

 BBP Algorithm:  The Bailey-Borwein-Plouffe (BBP) algorithm quite remarkably 

extracts hexadecimal digits from the numerical constant π beginning at any digit without having 

to compute any of the preceding digits.  BBP is based on the identity 
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whose derivation and use in BBP are described in detail in [39].  As an example, the hex digits of 

π starting at digit 1,000,000 are 26C65E52CB459350050E4BB1 and the corresponding π 

Fraction is 0.151464362347971272412488292131.  For all practical purposes the first 215,829 π 

Fractions are uniformly distributed on [0,1) with a mean value of 0.499283729688375.  The 

Cumulative Distribution Function (CDF) for these data is plotted in Fig. A1-1 (1,000 bins) in 

which { }Xi ≤πPr  is the probability that π Fraction 
iπ  is less than or equal to 10 ≤≤ X .  It is 

reasonable to speculate that all sequential 
iπ  are uniformly distributed as well.  Testing on 

various subsets of the 215,829 data set reveals a uniform distribution regardless of how many 

contiguous fractions are included in any fairly large sample or where the sequence is begun.  It 

also seems reasonable to believe that any sufficiently large set of arbitrarily selected 
iπ  also will 

be uniformly distributed in [0,1).  These characteristics have not been investigated for the other 

constants discussed in [39], so it is not known whether or not they exhibit similar behavior. 
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Fig. A1-1. π Fraction CDF 

 

 Dimensional Correlations:  Nonuniformity in LDS sequences often is evident in 

bidimenional plots in high dimensionality spaces.  Figs. 2 and 3 in [32] are good examples.  They 

show, respectively, almost perfect linear correlations in monotonically increasing van der Corput 

sequences and correlations between dimensions 7 and 8 in a Halton sequence.  Other striking 

visual examples appear in [42] and [43].  Testing of van der Corput and Halton sequences 

[44,45] reveals many undesirable correlations.  A typical 30-dimensional Halton example for 

coordinates 27 and 28 appears Fig. A1-2. 

 Sample points based on π Fractions also can exhibit strong linear correlations, but 

apparently only under very limited circumstances.  For example, Fig. A1-3 plots (x27,x28) for 

1,000 points in 30 dimensions using the π Fractions in their order of occurrence (index increment 

= 1 starting with the first π Fraction ).  The linear correlation is obvious, but it disappears 

completely when instead dimensions 27 and 29 are compared as seen in Fig. A1-4.  Many test 

runs suggest that the π Fractions exhibit correlation only in successive dimensions and only when 

accessed in their order of occurrence, regardless of where the sequence starts.  But when a 

different index greater than 1 is used, for example, a value of 2, there is no obvious correlation as 

shown in the (x27,x28) plot in Fig. A1-5.  These data suggest it is reasonable to believe that indeed 

the π Fractions provide uniformly distributed uncorrelated sample points as long as successive 

fractions are not used to compute the sample point coordinates. 

 An Example – πGASR Algorithm:  The utility of π Fractions was investigated by 

generating uniformly distributed sample points and pseudorandom numbers in the genetic 

algorithm πGASR which is based on Li et al.'s novel GA [40].  A standard GA is improved in 

[40] by (i) allowing competition between child chromosomes in a new crossover operator 

resulting in better interpolation and extrapolation of decision space sample points and (ii) 
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introducing an iteration-dependent mutation operator.  Li et al.'s algorithm is referred to here as 

"Genetic Algorithm with Sibling Rivalry" (GASR) because of the new crossover operator (see 

[40] for details and note that the "SR" descriptor is introduced here).  Its implementation using π 

Fractions is algorithm πGASR.  π Fractions are used to create the initial chromosome distribution 

and in testing for crossover, mutation, and elitism.  Details of the scheme selecting the 
iπ  are 

determined by the algorithm designer and in this case appear in the source code listing (see 

below).  The manner in which the πGASR's fractions are selected avoids the bidimensional 

correlation issue discussed above.  Note that πGASR, like CFO, maximizes the objective 

function instead of minimizing it. 

 
Fig. A1-2. Coordinates (x27,x28) 30D Halton sequence (1,000 points). 

I. BENCHMARK RESULTS 

πGASR was tested against the six-function benchmark suite shown in Table A1-1.  Results are 

reported in Tables A1-2 and A1-3.  In Table 1 DS is the decision space, x* the location of the 

objective function's known maximum, and f(x*) its value.  This suite was used in [41] to test the 

new algorithm vibrational-PSO (v-PSO). 

πGASR was implemented with the following parameters: crossover probability = 0.8; mutation 

probability = 0.02; crossover weight factor w=0.5 [40];  mutation shape factor β = 2 [40].  The 

numbers of generations and chromosomes were 101 and 2500 in Table A1-2 and 100 and 2000 

in Table A1-3, respectively.  In both cases the best chromosome from the previous generation 

was randomly inserted into the next one ("elitism").  Runs in Table A1-2 were terminated early if 

the change in fitness between the current generation and the 20th previous generation was ≤ 10-6.  

In order to provide a head-to-head statistical comparison with v-PSO, the πGASR runs in Table 

A1-3 ran to completion using all 20,000,000 function evaluations. 

Table 2 compares v-PSO and single-run πGASR results for the 10, 20 and 30-dimensional 

benchmarks.  Nd is the DS dimensionality and Neval the total number of πGASR function 
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evaluations.  The v-PSO data are average values for 100 runs using 200,000 function evaluations 

per run (20,000,000 evaluations of each test function).  Because v-PSO performs minimization 

the signs of its results have been changed for comparison to πGASR.  In all cases in Table A1-2, 

a single πGASR run was made because every πGASR run with specific π Fraction distributions 

yields the same result every time since the fractions are pseudorandom and therefore known with 

absolute precision. 

In terms of function evaluations πGASR's worst case figure of 656,308 is nearly 97% less than 

v-PSO's 20,000,000.  In terms of solution quality, πGASR performed very well on f2, f3 and f4 ; 

well on f1 and f5 ; and exceptionally well on f6.  For f6 with Nd=30 πGASR required 294,763 

evaluations (98.5% fewer than v-PSO) and returned a best fitness of -9.400238x10-3 compared to 

v-PSO's average value of -2,139.5±103.3.  These results strongly suggest that pseudorandom π 

fractions can be very useful in implementing what amount to deterministic "stochastic" 

algorithms that avoid the need to make multiple runs to generate statistical data. 

 

 

Fig. A1-3. Coordinates (x27,x28) 30D π Fractions, index increment = 1. 

 

Nevertheless, in order to directly compare v-PSO and πGASR, Table A1-3 shows statistical 

data using the same number of function evaluations.  πGASR's average best fitness and its 

standard deviation are tabulated along with the best fitness returned over all runs.  πGASR 

performed worse on f1; essentially the same on f2 and f3; better on f4; worse on f5; and much 

better on f6.  However, even in cases where v-PSO outperformed πGASR the differences were 

not dramatic, and for function f6 πGASR outperformed v-PSO by a very wide margin.  

Comparing the πGASR data in Tables A1-2 and A1-3 shows that the longer runs with far more 

function evaluations do yield uniformly better results, as expected. 
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Fig. A1-4. Coordinates (x27,x29) 30D π Fractions, index increment = 1. 

 

 Summary:  π Fractions have been shown to be an effective approach to creating 

uniformly distributed decision space sample points for global search and optimization.  Fractions 

associated with constants other than π also may be similarly useful, but they have not been 

investigated.  Algorithm πGASR was used an example, and its performance tested against the v-

PSO six benchmark suite with generally very good results and in one case much better results.  π 

fraction pseudorandom sequences should be useful for improving the performance of any 

"stochastic" algorithm in several ways: (i) the resulting sequences are entirely deterministic so 

that all runs with the same setup produce exactly the same results thus rendering a stochastic 

algorithm effectively deterministic without compromising its ability to explore the decision 

space; (ii) making successive runs with different sequences likely will result in improved 

performance with far fewer function evaluations; and (iii) decision space adaptation is easily 

accomplished because the sequences are deterministic (for example, shrinking the decision space 

around a group of maxima).  The π fraction data file used here and source code listings are 

available online at www.GitHub.com [46]  (key word PiFractions). 
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Fig. A1-5. Coordinates (x27,x28) 30D π Fractions, index increment = 2. 

 

 

Table A1-1.  v-PSO Benchmark Functions. 
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Table A1-2.  Single Run πGASR Data for v-PSO Benchmark Suite. 

fnc# Nd Best Fitness πGASR 

Neval v-PSO* πGASR (single run) 

 

f1 

10 
20 
30 

–1.84e-15±2.9e-16 
–2.84e-15±1.5e-16 
–4.93e-15±3.4e-16 

–5.762878e-4 
–1.161337e-2 
–6.988124e-3 

656,308 
328,243 
457,978 

 

f2 

10 
20 
30 

1±0 
2±0 
3±0 

0.9999997 
1.9999993 
2.9999981 

457,978 
457,978 
394,558 

 

f3 

10 
20 
30 

1±0 
1±3e-18 
1±1e-17 

0.9999999 
0.9999999 
0.9999999 

361,090 
294,763 
328,243 

 

f4 

10 
20 
30 

–0.020±0.006 
–0.0026±0.002 

–8.8568e-4±0.001 

–0.004429 
–0.015874 
–0.002139 

492,372 
361,090 
457,978 

 

f5 

10 
20 
30 

0±0 
0±0 

–5.6843e-16±1e-15 

–1.057361e-4 
–1.203252e-3 
–9.932735e-5 

425,640 
394,558 
492,372 

 

f6 

10 
20 
30 

–620.8131±50.4 
–1.3384e+3±68.5 

–2.1395e+3±103.3 

–7.753379e-4 
–7.666976e-4 
–9.400238e-3 

457,978 
394,558 
294,763 

* average best fitness over 20,000,000 evaluations; data reproduced from Table IV in [41] 
 with sign changed because πGASR maximizes f(x) while v-PSO minimizes. 
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Table A1-3.  πGASR Statistical Data for v-PSO Benchmark Suite. 

fnc# Nd Average Best Fitness ( 610x20 evals) πGASR 
Overall 

Best Fitness** 
v-PSO* πGASR Avg / Std Dev 

 

f1 

10 
20 
30 

–1.84e-15±2.9e-16 
–2.84e-15±1.5e-16 
–4.93e-15±3.4e-16 

–3.25606e-3 / 2.90e-3 
–3.71691e-3 / 4.04e-3 
–3.54867e-3 / 3.03e-3 

–7.22411e-5 
–1.58685e-4 
–1.22941e-4 

 

f2 

10 
20 
30 

1±0 
2±0 
3±0 

0.9999999 / 2.33e-7 
1.9999997 / 3.83e-7 
2.9999995 / 8.41e-7 

0.9999999 
1.9999999 
2.9999999 

 

f3 

10 
20 
30 

1±0 
1±3e-18 
1±1e-17 

0.9999999 / 9.40e-9 
0.9999999 / 1.93e-8 
0.9999999 / 3.55e-8 

0.9999999 
0.9999999 
0.9999999 

 

f4 

10 
20 
30 

–0.020±0.006 
–0.0026±0.002 

–8.8568e-4±0.001 

–5.02147e-4 / 7.44e-4 
–7.29040e-4 / 1.25e-3 

–8.45741e-4 / 1.354e-3 

–6.39425e-10 
–3.29534e-09 
–6.00263e-07 

 

f5 

10 
20 
30 

0±0 
0±0 

–5.6843e-16±1e-15 

–2.53755e-4 / 4.08e-4 
–6.25339e-4 / 1.20e-3 
–6.13252e-4 / 9.69e-4 

–2.73693e-7 
–1.40063e-6 
–1.38614e-7 

 

f6 

10 
20 
30 

–620.8131±50.4 
–1.3384e+3±68.5 

–2.1395e+3±103.3 

–1.84158e-4 / 8.37e-5 
–4.36412e-4 / 3.40e-4 
–6.58102e-4 / 4.18e-4 

–1.27276e-4 
–2.55634e-4 
–3.82090e-4 

* average v-PSO best fitness over 20,000,000 evaluations; data reproduced from Table IV in [41] 
 with sign changed because πGASR maximizes f(x) while v-PSO minimizes. 

** best πGASR fitness over 20,000,000 objective function evaluations 

 

 



 

 

APPENDIX A2 – CENTRAL FORCE OPTIMIZATION 

 A2-1 The CFO Metaphor 

Central Force Optimization (CFO) analogizes gravitational kinematics, that is, the motions of 
real bodies in the real Universe under the influence of real gravity.  The governing physical 
law is Newton’s Universal Law of Gravitation.  Newton’s Law formulates the magnitude of 

the gravitational force of attraction between the two masses 1m  and 2m  as (see [1] for 

specific references) 

2

21

r

mm
F γ=             (a1) 

where r  is the distance between them, and γ  is the "gravitational constant."  The force pf 

gravity always is attractive, never repulsive, and mass in the real Universe always is positive, 

never negative.  The force of gravity is a central force because it acts only along the line 

connecting the mass centers, hence the name ‘Central Force Optimization’.  Mass 1m  

experiences a vector acceleration due to mass 2m  given by 

2

2
1

ˆ

r

rm
a γ−=
r

           (a2) 

where r̂  is a unit vector that points toward 1m along the line joining the masses’ centers. 

 A2-2  Problem Statement 

The CFO metaheuristic addresses the following problem:  In a decision space (DS) defined 

by diii Nixxx ,...,1,maxmin =≤≤  where the ix  are decision variables, locate the global 

maxima of an objective (‘fitness’) function ),...,,( 21 dNxxxf  possibly subject to a set of 

constraints Ω  among the decision variables.  The value of ),...,,( 21 dNxxxf  is called the 

“fitness.”  CFO explores DS by flying metaphorical "probes" whose trajectories are governed 

by equations of motion drawn from the gravitational kinematics analogy. 

 A2-3  Constant Acceleration 

 The vector location of a mass under constant acceleration is given by the position 

vector 

2

00
2

1
)( tatVRttR ∆+∆+=∆+

rrrr
                     (a3) 

where )( ttR ∆+
r

 is the position at time tt ∆+ .  0R
r

 and 0V
r

, respectively, are the position and 

velocity vectors at time t , and the acceleration a
r

is constant during the interval t∆ .  In 

standard three dimensional Cartesian coordinates kzjyixR ˆˆˆ ++=
r

, where î , ĵ , k̂  are the 

unit vectors along the x , y , z  axes, respectively.  The CFO metaphor analogizes equations 

(a1)-(a3) by generalizing them to a decision space of dN  dimensions. 

 

 



 

 A2-4  Probe Trajectory 

CFO's probes in a typical three-dimensional DS are shown schematically in Fig. A

location of each probe at each time step is specified by its position vector 

and j  are the probe number and time step index, respectively.  In an 

position vector is k

N

k

jp

k

p

j exR
d

ˆ
1

,
=

=
r

and following standard notation 

 

Fig. A2-

 

Consider a typical probe,

position p

jR
r

 at time step j  under the influence of the metaphorical “gravitational” forces that 

act on it. Those forces are created by the fitness at each of the other probes’ locations at time 

step 1−j .  The “time” interval between steps 

At time step 1−j  at probe 

Each of the other probes also has associated with it a fitness of 

p

k

j NppkM ,...,1,1,...,1,1 +−=− , 

value of the fitness is represented by the size of the blackened circle at the 

vector.  In keeping with the gravity metaphor, the blackened circles may be thought of as 
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dimensional DS are shown schematically in Fig. A

location of each probe at each time step is specified by its position vector p

jR
r

are the probe number and time step index, respectively.  In an dN -dimensional DS the 

k , where the 
jp

k
x

,
 are probe p ’s coordinates at time step 

kê  is the unit vector along the kx  axis. 

-1  Typical 3-D CFO Decision Space 

Consider a typical probe, p .  It moves from position p

jR 1−

r
 at time step 

under the influence of the metaphorical “gravitational” forces that 

act on it. Those forces are created by the fitness at each of the other probes’ locations at time 

.  The “time” interval between steps 1−j  and j  is t∆ . 

at probe p ’s location the fitness is ,( 2

1,

11

−
− = pjpp

j xxfM

Each of the other probes also has associated with it a fitness of 

pN  being the total number of probes.  In this illustration, the 

value of the fitness is represented by the size of the blackened circle at the tip of the position 

vector.  In keeping with the gravity metaphor, the blackened circles may be thought of as 

 

dimensional DS are shown schematically in Fig. A2-1.  The 

, in which p  

dimensional DS the 

’s coordinates at time step j , 

 

at time step 1−j  to 

under the influence of the metaphorical “gravitational” forces that 

act on it. Those forces are created by the fitness at each of the other probes’ locations at time 

),..., 1,1,

2

−− jp

N

jp

d
x .  

Each of the other probes also has associated with it a fitness of 

being the total number of probes.  In this illustration, the 

tip of the position 

vector.  In keeping with the gravity metaphor, the blackened circles may be thought of as 
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"planets," say, in our Solar System.  Larger circles correspond to greater fitness values, that 

is, bigger planets with correspondingly greater gravitational attraction.  In Fig. A2-1 the 

fitnesses ordered from greatest to least occur at s

jR 1−

r
, p

jR
r

, n

jR 1−

r
, and p

jR 1−

r
, respectively, as 

shown by the relative size of the circles. 

 Probe p ’s trajectory in moving from location p

jR 1−

r
 to p

jR
r

 is determined by its initial 

position and by the total acceleration produced by the “masses” that are created by the 

fitnesses (or some function defined on them) at each of the other probes’ locations.  In the 

CFO implementation used in this paper the “acceleration,” analogous to eq. (a2), experienced 

by probe p  due to the single probe n  is given by 
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                         (a4) 

where G is CFO's "gravitational constant" corresponding to γ  in eq. (a1).   Note that in the 

real Universe 0>G , always.  In CFO space, however, G  can be positive (attractive force of 

gravity) or negative (repulsive force of gravity).  Returning to the forces acting on probe p , 

in a similar fashion to probe n 's effect, the acceleration of probe p  due to a different probe 

s  is given by 
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                         (a5) 

Note that the minus sign in eq. (a2) has been included in the order in which the 

differences are taken in these acceleration expressions.  "Mass" in eq. (a2) corresponds to the 

terms in the numerator involving the fitnesses.  Importantly, it does not correspond to the 

fitness itself.  In these equations )(⋅U  is the unit step function 






 ≥

=
otherwise

z
zU

,0

0,1
)( .  And 

following standard notation the vertical bars denote vector magnitude, 
2

1

1

2





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


= 

=

dN

i

ixX
r

, where 

ix  are the scalar components of X
r

. 

 There are no parameters in eq. (a2) corresponding to the "CFO exponents" 0>α  and

0>β , nor to the unit step )(⋅U .  In real physical space α  and β  would take on values of 1 

and 3, respectively.  Note, too, that the numerators in eqs. (a4) and (a5) do not contain a unit 

vector like eq. (a2).  The exponents are included to give the algorithm designer a measure of 

flexibility by assigning, if desired, a different variation of gravitational acceleration with 

mass and with distance. 
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 A2-5  Mass in CFO Space 

 Two other important differences between real gravity and CFO’s version are: (i) the 

definition of “mass,” which above is the difference of fitnesses, for example, p

j

s

j MM 11 −− − , not 

the fitness value itself; and (ii) inclusion of the unit step 






 ≥

=
otherwise

z
zU

,0

0,1
)( .  The 

difference of fitnesses is used to avoid excessive gravitational “pull” by other close by probes 

that presumably will have fitnesses with similar values.  The unit step is included to avoid the 

possibility of “negative” mass.  In the physical Universe, mass is positive, always, but in 

CFO-space the mass could be positive or negative depending on which fitness is greater.  The 

unit step forces CFO to allow only positive masses, that is, attractive masses.  If negative 

fitness differences were allowed, then some accelerations would be repulsive instead of 

attractive, thus forcing probes away from large fitnesses instead of toward them.  The 

algorithm designer is free to consider other definitions of mass as well.  One possibility, for 

example, might be a ratio of fitnesses similar to the “reduced mass” concept in gravitational 

kinematics. 

 A2-.6  Total Acceleration and Position Vector for a Single Probe 

Taking into account the accelerations produced by each of the other probes on probe p , the 

total acceleration experienced by p  as it “flies” from position p

jR 1−

r
 to p

jR
r

 is given by the 

sum of the gravitational effects over all other probes, that is, 
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Probe p ’s new position vector at time step j  is therefore given by 

1,
2

1 2

111 ≥∆++= −−− jtaVRR
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p

j

p

j

rrrr
               (a7) 

where (see discussion)  

01 =−
p

jV
r

 

 (a7) is the analog of (a3) where p

jV 1−

r
 is the probe’s “velocity” at the end of time step 

1−j .  In eq. (a7) the coefficient ½, the velocity term, and the time increment t∆  have been 

retained primarily as a formalism to highlight the analogy to gravitational kinematics, but 

they are not required, and in fact p

jV 1−

r
should be set to zero.  For the CFO implementation 

used here, as a matter of convenience t∆  is arbitrarily set to 1.  Of course, if desired, any 

constant value of t∆  as well as the factor ½ can be absorbed into the gravitational constant 

G .  The velocity term p

jV 1−

r
 in (a7) has been retained purely as a formality and should be set 

to zero as it has been here and shown above.  Some tentative numerical experiments showed 

that including the p

jV 1−

r
 term may actually impede probe convergence.  The reason for this 
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seemingly contradictory behavior is that while CFO’s probe trajectories are piecewise linear, 

in general they are curvilinear.  In curvilinear motion the acceleration and velocity vectors are 

not necessarily parallel.  For example, in the limiting case of circular motion, the velocity 

vector is tangent to the circle while the acceleration vector is radially inward along the 

circle’s radius, that is, in the case of circular motion case the acceleration and velocity vectors 

are actually orthogonal.  In the original CFO paper p

jV 1−

r
 serendipitously had been set to zero 

as a matter of convenience so that the acceleration-velocity directionality issue was avoided 

entirely. 

 A2-7  Errant Probes 

An important concern is how to handle an "errant" probe, that is, one that has flown outside 

DS.  It is possible that the total acceleration experienced by a probe will fly it into regions of 

unfeasible solutions beyond the DS boundary.  There are many ways to deal with this 

contingency, and a simple one was implemented in the basic version of CFO used here, 

namely, the use of a "repositioning factor," 10 ≤≤ repF .  This factor is used to reposition an 

errant probe according to the formulas 

)( min1,min,min,
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i xxFxxxxIf −⋅+=∴< −         (a8) 

)( 1,maxmax,max, −−⋅−=∴> jp
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i xxFxxxxIf        (a9) 

repF  is assigned an initial value and incremented at each step by a fixed amount 
repF∆ , and if 

it exceeds unity is reset to the initial value.  This simple approach guarantees that all probes 

remain inside DS.  Note that while this procedure is pseudo random in nature, numerical 

experiments have shown that it is not as effective as pseudo randomly injecting a small 

amount of negative gravity. 

 A2-8  avgD  Convergence Metric 

Perhaps the best measure of CFO's convergence is the "Average Distance" metric computed 

as  
= =

−
−⋅

=
p d

N

p

N

i

jp

i

jp

i

pdiag

avg xx
NL

D
1 1

2*,, )(
)1(

1
, where *p  is the number of the probe with 

the best fitness, and the superscripts p and j denote, respectively, the probe and step numbers 

as above.  
=

−=
dN

i

iidiag xxL
1

2minmax )(  is the length of the decision space principal diagonal.  If 

every one of CFO's probes have coalesced onto a single point, then 0=avgD .  How closely 

this metric approaches zero is a good indicator of how CFO's probe distribution has evolved 

around a maxima.  avgD  also is useful in identifying potential local trapping because 

oscillation in avgD  appears to signal trapping at a local maxima. 
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 A2-9  Initial Probe Distribution 

Every CFO run begins with a user-specified Initial Probe Distribution (IPD) defined by two 

parameters: (1) pN , the total number of probes used; and (2) where the probes are placed 

inside DS.  Many CFO implementations have employed a pseudorandom variable (‘prv’) 

IPD comprising an orthogonal array of 
d

p

N

N
 probes per axis pseudorandomly deployed on 

“probe lines” that are parallel to the coordinate axes and intersecting at a point along DS’s 

principal diagonal.  Pseudorandomness is defined as an arbitrary numerical sequence that is 

precisely known by specification or calculation.  CFO’s fundamentally deterministic nature is 

not altered by injecting pseudorandomness because at every step CFO’s calculations are 

repeatable with absolute precision (see [3] for a discussion of why pseudorandomness is 

important in CFO). 

 Fig. A2-2 provides a two-dimensional (2D) example of this particular type of IPD, in 

this case nine probes shown on each probe line, two overlapping (but any number may be 

used).  The probe lines are parallel to the 1x  and 2x  axes intersecting at a point on DS’s 

principal diagonal marked by position vector )( minmaxmin XXXD
rrrr

−+= γ , where 

i

N

i

i exX
d

ˆ
1

min

min 
=

=
r

 and i

N

i

i exX
d

ˆ
1

max

max 
=

=
r

 are the diagonal’s endpoint vectors.  The parameter 

10 ≤≤ γ  [not to be confused with the gravitational constant in equation (a2)] determines 

where the probe lines intersect along the diagonal.  Fig. A2-3 shows a typical 2D IPD for 

different values of γ , and Fig. A2-4 shows a 3D example.  Of course, this procedure is 

generalized to the dN -dimensional decision space to create dN  probe lines parallel to the 

dN  coordinate axes. 

 While Fig. A2-2 shows equal numbers of probes on each probe line, a different 

number of probes per axis can be used instead.  For example, if equal probe spacing were 

desired in a decision space with unequal boundaries, or if overlapping probes were to be 

excluded in a symmetrical space, then unequal numbers could be used.  Unequal numbers 

also might be appropriate if there is any a priori knowledge of DS’s landscape, however it 

may have been obtained.  For example, denser sampling in one region (more probes) may be 

appropriate if there appear to be more maxima there.  While the variable 
d

p

N

N
 IPD of Fig. 

A2-2 was used for the results reported here, any number of other altogether different variable 

IPD’s could be used instead.  The key idea is that the IPD must be pseudorandom in the sense 

of uncorrelated with the decision space landscape in order to provide better sampling of the 

landscape.  Typical CFO pseudocode implementing the variable probe-line IPD approach 

appears in Fig. A2-5. 
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Fig. A2-2.  Typical Variable 2D Initial Probe Distribution. 

 

     

Fig. A2-3.  Typical 2D IPD’s for Different Values of γ  (0./0.4/0.9). 

 

 

 

 

 

 

 

 



 

 

Fig. A2-4.  Typical 3D IPD 6
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cal 3D IPD 6-probes/probe line, γ =(0.0/0.5/0.8, top to bottom)

 

top to bottom) 
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(important note – above, Ω is the Decision Space) 

Fig. A2-5. Typical CFO Pseudocode using Probe Line IPD 
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