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Abstract: Numerous studies on the number pi (π) explore its properties, including nor-
mality and applicability. This research, grounded in two hypotheses, proposes and proves
a theorem that employs a Bernoulli experiment to demonstrate the high probability of
encountering any finite bit string within a sequence of consecutive bits in the decimal
part of π. This aligns with findings related to its normality. To support the hypotheses,
we present experimental evidence about the equiprobable and independent properties
of bits of π, analyzing their distribution, and measuring correlations between bit strings.
Additionally, from a cryptographic perspective, we evaluate the chaotic properties of two
images generated using bits of π. These properties are evaluated similarly to those of
encrypted images, using measures of correlation and entropy, along with two hypothesis
tests to confirm the uniform distribution of bits and the absence of periodic patterns. Unlike
previous works that solely examine the presence of sequences, this study provides, as a
corollary, a formula to calculate an upper bound N. This bound represents the length of the
sequence from π required to ensure the location of any n-bit string at least once, with an
adjustable probability p that can be set arbitrarily close to one. To validate the formula, we
identify sequences of up to n = 40 consecutive zeros and ones within the first N bits of π.
This work has potential applications in Cryptography that use the number π for random
sequence generation, offering insights into the number of bits of π required to ensure good
randomness properties.

Keywords: Bernoulli experiment; chaos; entropy; normal numbers; Pi number; upper bound

MSC: 68Q87

1. Introduction
Throughout history, different discoveries have been made concerning the mathemati-

cal constant π (pi) [1,2]. For instance, efforts have been made to find rational approxima-
tions of π [3], propose methods for calculating the nth digit of π [4], and compute the most
accurate approximations of π [5]. In addition, the significance of π extends beyond mere
mathematical formulas [6]. It finds applications across diverse fields, including Cryptogra-
phy. Image encryption algorithms, for instance, leverage π to simulate random numbers
by utilizing successive decimals of π [7]. This approach is valuable due to the high level of
randomness inherent in the generated sequence, making it well-suited for cryptographic
purposes [8]. Additionally, in cryptographic algorithms π has been employed in combi-
nation with a secret key to generate permutations [9]. Furthermore, in the realm of chaos
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theory, a 2D chaotic map has been devised based on Euler’s number and π, demonstrating
hyperchaotic behavior in sequence generation [10].

In addition, investigations into the digits of π have revealed patterns, such as the
Feynman point, a sequence of six 9s starting from the 762nd decimal place [11]. In
fact, in a normal number x in base b (where b ≥ 2), each of the bm different strings of
length m occurs with equal frequency [12]. This concept is expressed mathematically as
limn→∞(N(s, n)/n) = b−m, where N(s, n) denotes the number of occurrences of the string
s of length m in the first n digits of x. This idea has led to analyses of the normality of π [13],
suggesting that every possible string s eventually appears within the digits of π [14].

The present study demonstrates that any bit string An of length n appears with
consecutive bits somewhere within AN , it is the first N bits to the right of the decimal point
of π with a probability approaching 1. In essence, it offers a formula to determine the
length of a discrete interval of bit positions where a specified string An occurs at least once,
with an error α as close to zero as desired.

The proposed upper bound contributes to the study of the normality of π, a topic
previously explored in other works [13,15]. By establishing such a bound, the assertion that
any sequence of bits can be found within π is further reinforced. This is because the bound
provides an interval within which any given sequence can be located with a probability
arbitrarily close to one.

Regarding the significance of this work in cryptographic applications, it can be partic-
ularly relevant for efforts that utilize the digits of π to generate random sequences [9,10].
In such applications, the number of bits of π used is often selected based on the algorithm’s
requirements, without necessarily considering the randomness properties. The proposed
upper bound can provide guidance on the number of bits needed to ensure that all possible
sequences of a given length are highly likely to appear within the chosen range.

This approach minimizes the risk of omitting any specific sequence, thereby enhancing
the randomness properties of the generated sequences. For instance, if π is used as a source
of randomness for a cryptographic application requiring the random selection of n-bit
strings, the upper bound proposed in this study specifies the number N of bits that should
be considered from π. By using these N bits, it is highly probable that all possible n-bit
sequences will be present, making π a reliable source for random string generation.

Also, the present work includes a validation of the proposed formula by computing
the upper bound N for various sizes of n, where a string An is contained within AN with
an error of α = 0.01. Beginning with a string length of n = 5, the increments progress in
intervals of 5 up to n = 40. Additionally, it denotes the position within π where the first bit
of An lies. While this investigation works on strings comprised solely of consecutive zeros
or ones, it is worth noting that other combinations are also feasible.

Furthermore, this study relies on two key hypotheses in the number π: the equiproba-
ble distribution of bits and the independent events of selecting two different strings. The
former asserts that when selecting a bit randomly from the bits of the decimal part of π,
each bit can be either zero or one, with an equal probability of 0.5. The latter hypothesis
deals with the probabilistic experiment of selecting two distinct strings comprised of n and
m consecutive bits, respectively, from the decimal part of π. In this case, the probability
of selecting the strings An and Bm is determined by the product of the probabilities of
selecting each individual string: P(An ∩ Bm) = P(An)× P(Bm).

To validate these hypotheses, two numerical experiments will be presented as evidence
in Section 3. Additionally, other studies corroborate these hypotheses. An analysis of the
distribution for four trillion hexadecimal digits of π was conducted [15], which later was
complemented by several tests [16]. Furthermore, a hypothesis test was performed using
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the first 100 million decimal digits of π, indicating that it is 1.86 × 1030 times more likely
that π is normal than the contrary [17].

Moreover, to substantiate the two hypotheses, we offer evidence about the chaotic
distribution of information within the bits of the number π. For this purpose, we employ
methodologies commonly utilized in image encryption studies. Within this domain, key
metrics such as entropy and the correlation coefficient serve to assess the chaotic nature
of sequences. This research undertakes a comparative analysis between the outcomes
derived from applying these metrics to encrypted images against those obtained from
images generated by extracting blocks of random bits from the decimal part of π.

Regarding the distribution of this research, this section contains the introduction and
a comprehensive overview of the current state of the field. Subsequently, the theoretical
framework utilized in this study is expounded upon in Section 2. Section 3 elucidates
the experimental results, validating the two hypotheses posited in this investigation. In
Section 4, the theorem regarding finite sequences of consecutive bits of π is proven, along
with establishing the upper bound for locating the strings within π. Section 5 offers
the analysis and discussion of the obtained results. Lastly, Section 6 encapsulates the
conclusions drawn from this research.

2. Materials and Methods
This section begins by describing the Bernoulli model utilized for analyzing the bits

of the number π. Subsequently, encryption tools commonly employed to measure chaotic
properties of information are applied to evaluate two images constructed from the bits of π.
These tools include correlation analysis, entropy measurement, and two hypothesis tests:
the Discrete Fourier Transform and the Goodness-of-Fit test.

2.1. Bernoulli Model

In a Bernoulli test, there are only two possible outcomes: 1 and 0, where one is defined
as success and the other as failure [18]. In this context, the probability of obtaining the
value 1 is denoted by p, and q represents the probability of obtaining the value 0, satisfying
p + q = 1. When there are reproduced n different trials, which are also independent of each
other, the Binomial distribution is constructed [19]. In this context, the mathematical model
that describes this process is in Equation (1), where x represents the number of successes
after n trials for 0 ≤ x ≤ n.

P(X = x) =
(

n
x

)
pxqn−x (1)

On the other hand, an unbiased estimator X̄ for the parameter p is expressed as
X̄ = ∑n

i=1 xi/n.

2.2. Information Entropy

Information entropy H is a measure frequently utilized in Cryptography [20–22], this
parameter offers insights into the level of chaos within a block of bits. It is defined in
Equation (2). In this research, it serves as a key metric to apply it to consecutive bits of π.
However, it is essential to note that while information entropy provides essential insights,
it alone does not suffice to conclusively determine the chaotic nature of the data. Hence,
the assessment of chaotic properties involves the consideration of various parameters to
reinforce the results.

H(x) = − ∑
x∈X

P(x) log2 P(x) (2)

The parameter will be utilized to assess the chaotic level of pixels within an image
generated using a block of bits from the number π. These images, depicted in color
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in Figures 1 and 2, undergo segmentation into blocks of 8 bits per color for entropy
computation. It is noted that information is deemed to be chaotically distributed when the
entropy value approaches 8 [23].

Figure 1. Image of dimensions 512 × 512 pixels, generated using 786,432 blocks of 8 bits randomly
selected from the decimal part of π. Each pixel comprises 24 bits (three blocks), representing the red,
green, and blue color channels.

Figure 2. Image of dimensions 1024× 1024 pixels, generated using 3,145,728 blocks of 8 bits randomly
selected from the decimal part of π. Each pixel comprises 24 bits (three blocks), representing the red,
green, and blue color channels.

2.3. Correlation Coefficient

Another tool utilized to assess the absence of a linear relationship between the bits
within an image is the correlation coefficient rd [24]. For the computation of this parameter,
w pixels are haphazardly chosen from an image. Each pixel has three possible neighbor-
hoods [25], having adjacent pixels in horizontal, vertical, and diagonal directions d. In
addition, a pixel is represented with the colors c: red, green, and blue, and a byte with
256 different intensity levels.

Subsequently, the correlation for each direction d and color c is evaluated. Let the
value of the ith randomly chosen pixel be denoted as xi,d,c, where the subscripts d and c
represent the basic color direction and type, respectively. Similarly, yi,d,c denotes the value
of the adjacent pixel in direction d and for color c. The formula to calculate it is provided in
Equation (3).

rd =
1
w (∑

w
i=1(xi,c,d − xc,d)(yi,c,d − yc,d))√

1
w2 (∑

w
i=1(xi,c,d − xc,d)2)(∑w

i=1(yi,c,d − yc,d)
2)

(3)

where the means of each variable are as follows xc,d = ∑w
i=1 xi,c/w and yc,d = ∑w

i=1 yi,c/w.
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2.4. Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is used as a statistical hypothesis test that serves
to assess the degree of disorder in which the bits of a string appear [26], particularly in our
case, a sequence of consecutive bits from π forming an image. Specifically, this parameter
evaluates the presence of periodic features within a given sequence of m bits {δ1δ2 . . . δm}.
In addition, the null hypothesis posits that the information in a randomly selected block
of bits, sourced from the decimal part of π, follows a random distribution. Within the
framework of hypothesis testing the test statistic is d, presented in Equation (4) using the
length m of the sequence and two constants M0, M1.

d =
M1 − M0√
m(0.95)(0.05)

4

(4)

For computing the constant M0, it is defined below in Equation (5).

M0 =
(0.95)× m

0.05
(5)

Regarding M1, it requires the bound l, it is defined in Equation (6) and a sequence
Y = y1y2, . . . , ym. The computation of Y is using the bits δk in the following manner:
yk = 2δk − 1, for 1 ≤ k ≤ m.

l =

√
mLn

1
0.05

(6)

Additionally, it is necessary to compute m/2 − 1 complex functions f j, for 1 ≤ j ≤
m/2 − 1 according to Equation (7), where i =

√
−1 is the complex unit. In this way, m

is the number of pixels expressed in bits and even. Subsequently, the module ∥ f j ∥ is
computed for each function. If ∥ f j ∥< l, 1 is added to M1; otherwise, the value of M1 does
not change. It is important to note that the initial value of M1 is zero. After comparing all
the moduli, the final value of M1 is obtained, and therefore, d can be computed.

f j =
m

∑
k=1

yke
2π(i)(k−1)j

n (7)

In this context, the decision parameter of the hypothesis test is the p-value and is
expressed in Equation (8). The rejection of the null hypothesis of randomness occurs when
p-value < 0.01; otherwise, it is accepted.

p-value = erfc
| d |√

2
(8)

Finally, the erfc function uses the cumulative function Φ of the standard normal
distribution as Equation (9) presents it.

erfc
| d |√

2
= 2(1 − Φ(| d |)) (9)

2.5. Goodness-of-Fit Test

This hypothesis test has a null hypothesis positing that the information distribution is
uniform [27], contrasting with the alternative hypothesis suggesting otherwise. The aim of
this tool is to assess the extent to which the information in the histograms conforms to a
uniform distribution. This assessment is conducted for each color channel red, green, and
blue, given that every pixel in the images we employ is depicted by these colors. Each of
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them is defined by a byte, allowing for 256 possible decimal values. Within this framework,
the test statistic is expressed in Equation (10).

χ2 =
256

∑
i=1

(oi − exp)2

exp
(10)

Equation (10) must be applied to each color channel individually. For a specific
color channel, oi represents the number of occurrences of intensity level i across the entire
image, while exp denotes the expected frequency of each intensity level to create a uniform
distribution. The expected frequency can be calculated as the total number of pixels
divided by 256, which corresponds to the total number of possible intensity values in an
8-bit representation.

According to the Central Limit Theorem, the distribution of the χ2 statistic tends
towards a normal distribution [28] of mean µ = 255 and standard deviation σ = 22.5.
Moreover, a significance level α = 0.01 rejects the null hypothesis if χ2 ≥ 308; otherwise, it
is accepted.

In this work, the test is used to analyze the distribution of 8-bit blocks within the pixels.
Specifically, it assesses whether the bits of the number π, grouped into 8-bit blocks, exhibit
a uniform distribution. This means verifying whether all 256 possible values that can be
represented with 8 bits occur with approximately equal frequency.

3. Two Hypothesis Derived from Pi
In this section, the analysis is focused on the bits of the decimal expansion of π. First,

the distribution of bits equal to zero and one is examined. Next, the correlation between
two strings of bits is analyzed, followed by an evaluation of the chaotic properties of
two images constructed from the bits of π. This comprehensive analysis provides further
evidence supporting two hypotheses.

3.1. Equiprobable Property of Bits

This subsection will provide evidence that the bits of the number π present an
equiprobable distribution. In other words, if a bit xi is randomly selected from these
bits, the probability of it being either 0 or 1 is 1/2. To verify this, eight strings of distinct
length were extracted, all starting from the first bit of the decimal part of π and consist-
ing of n consecutive bits. Furthermore, the probability was assessed using the estimator
mean X̄ = (∑n−1

i=0 xi)/n. Table 1 presents the percentages of zeros and ones for each string.
Pertinent comments will be provided in Section 5.

Table 1. Percentage distribution of zeros and ones in strings of varying lengths extracted from the
bits of π. The results support the hypothesis that each bit of π is equiprobable, with a 50% chance of
being either zero or one.

Bit String Length n Percentage of Zero Bits Percentage of One Bits

25 49.999583 50.000417
210 51.074219 48.925781
215 49.935913 50.064087
220 50.023270 49.976730
225 49.990329 50.009671
230 49.999331 50.000669
235 50.000190 49.999810
240 50.000034 49.999966
245 49.999905 50.000095
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As a result of the observations presented in Table 1, the evidence suggests a hypothesis
regarding the random selection of a bit from π, proposing that it can be either zero or one
with an equal probability of 50%. This is stated in Hypothesis 1. However, the evidence
in Table 1 is based on our analysis of up to 245 bits of π. In this way, this result aligns
with other studies examining the properties of π. For instance, Bailey et al. analyzed
the first trillion hexadecimal digits of π, reporting that each hexadecimal digit from 0
to f appears approximately the expected number of 62,500,000,000 times in a sample
of 1,000,000,000,000 digits [15]. Although their study focuses on the normality of π across
its first four trillion hexadecimal digits, it also incorporates complementary tests on the
randomness of π’s digits [16], yielding results consistent with our results.

Hypothesis 1. The probability of xi being 0 or 1 is P(xi = 0) = P(xi = 1) = 1/2. In other
words, when selecting a bit randomly from the bits to the right of π, it can have a value of either
zero or one, each with a probability of 0.5.

3.2. Independence Property of Bit Strings

To provide evidence for this property, we first define the strings that will be used in
a subsequent experiment. Let An,0 = {x0, . . . , xn−1} represent a string of n bits, where x0

denotes the first bit, located immediately to the right of the decimal point in the number π.
More generally, a string of length n starting at the i-th bit to the right of the decimal point in
π is represented as An,i = {xi, . . . , xi+n−1}. For instance, following this notation, we have
An,1 = {x1, . . . , xn−1, xn}, and the sequence continues to generate An,2, An,3, up to An,10.

Using these strings, an experiment is conducted to measure the correlation coefficient
between pairs of strings. Specifically, the correlations are computed between An,0 and An,1,
An,0 and An,2, An,0 and An,3, and so on. This test is performed for four different string
lengths (n), and the results are summarized in Table 2.

Table 2. Correlation coefficients between pairs of string An,0 and shifted strings An,i, for four lengths
n, derived from π’s digits. Values near 0 suggest independence, with correlations decreasing as string
length n increases.

Bit String Length (n) of An,0, and An,i
Starting Bit (i)

of An,i
100 1000 1,000,000 100,000,000

1 −0.04166 −0.00200 0.00080 0.000025
2 −0.08333 0.00459 −0.00121 0.00012
3 −0.08333 0.00799 −0.00052 0.000072
4 0.10790 0.00439 0.00081 −0.000055
5 0.02490 −0.00800 −0.00050 −0.000075
6 −0.09960 −0.00320 0.00048 0.000076
7 −0.11580 0.00119 0.00100 0.000100
8 0.03298 −0.01040 0.00021 −0.000100
9 −0.04947 0.00219 0.00062 0.000059

10 0.11544 −0.00200 0.00184 0.000088

A correlation value close to 0, as the values reported in Table 2, between two strings
(An,0 and An,i) derived from the digits of π, indicates the absence of a relationship between
them and, therefore, suggests independence. Additionally, as the string length n increases,
the linear correlation approaches zero, further reinforcing their independence.

To provide additional support for the hypothesis of independence between different
strings from π, in addition to the correlation coefficient analysis, other independence tests
commonly applied to encrypted images were reproduced. For this purpose, two color
images were created by selecting blocks of 8 consecutive bits randomly from the decimal
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expansion of π. The first image, shown in Figure 1, has dimensions of 512 × 512 pixels,
while the second, shown in Figure 2, has dimensions of 1024 × 1024 pixels.

Regarding the construction of these images, as they are color images, each pixel
consists of 24 bits (8 bits per color channel: red, green, and blue). Thus, the creation of a
single pixel requires three blocks of 8 bits. For this work, the 8-bit blocks were selected
randomly from the digits of π. To generate the 512 × 512 = 262,144 pixels in Figure 1,
a total of 786,432 bytes were extracted from π (calculated as 3 × 262,144). Similarly, for
Figure 2, which contains 1024 × 1024 = 1,048,576 pixels, 3,145,728 bytes were utilized.

After creating the images, we evaluated them using four parameters similar to those
employed in analyzing encrypted images [29,30]. These methods assess the degree of chaos
in the information and the relationships between pixels. In this case, they were applied to
Figures 1 and 2 to evaluate the chaotic nature of the corresponding bits (represented by
pixels and derived from the digits of π) in both figures.

In this case, the tests were applied to Figures 1 and 2 to evaluate the chaotic nature
of the corresponding bits (represented by pixels and derived from the digits of π) in
both images. Additionally, conducting this analysis in such a manner implicitly involves
analyzing the bits of π in 8-bit blocks rather than solely in binary form, as it was shown in
Tables 1 and 2. This is feasible because the evaluation of the images is performed per color
channel for each pixel, which, as previously explained, comprises 8 bits.

The parameters analyzed include entropy and the correlation coefficient between
adjacent pixels in three directions (horizontal, vertical, and diagonal) for each primary color.
The results of these evaluations are summarized in Table 3.

From the data in Table 3, it is shown that the entropy values are close to the ideal value
of 8.0, indicating that the 256 possible values representing a pixel’s color channel occur with
nearly uniform frequency. This observation supports the equiprobable distribution of the
bits of π. Additionally, the correlation coefficients are near the ideal value of 0.0, suggesting
an absence of relationships between adjacent pixels. In this context, these results imply
a lack of correlation between the bits of π from which the pixels are generated, across all
three analyzed directions.

Table 3. Entropy and correlation coefficients for adjacent pixels in three directions (horizontal,
vertical, and diagonal) for each primary color, derived from π’s bits in Figures 1 and 2. Entropy
values near 8.0 indicate uniform distribution, while near-zero correlations suggest independence
between adjacent pixels.

Measure Figure Red Green Blue

Horizontal correlation Figure 1 0.00462 −0.00067 −0.00979
Figure 2 0.00102 −0.00151 −0.00396

Vertical correlation Figure 1 0.00290 −0.00189 0.00287
Figure 2 −0.00152 0.00049 −0.00103

Diagonal correlation Figure 1 −0.00687 0.00195 −0.00292
Figure 2 0.00137 0.00548 −0.00336

Entropy Figure 1 7.99920 7.99939 7.99931
Figure 2 7.99981 7.99982 7.99982

Additionally, two hypothesis tests were performed on Figures 1 and 2: the Discrete
Fourier Transform (DFT) test and the goodness-of-fit test [31]. The results, presented in
Table 4, use the symbol ✓ to denote acceptance of the null hypothesis. For the DFT test,
the acceptance of the null hypothesis indicates the absence of periodic features within the
sequence, which in this context pertains to the pixels but can also be interpreted as the bits
of π from which the pixels are derived.
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Table 4. Results of the Discrete Fourier Transform (DFT) test and the goodness-of-fit test conducted
on Figures 1 and 2. The symbol ✓ indicates acceptance of the null hypothesis, signifying that the
distribution of information (pixels, derived from the bits of π) is random.

Test Figure Red Green Blue

χ2 Figure 1 288.7 < 308 ✓ 218.3 < 308 ✓ 250.2 < 308 ✓
Figure 2 262.6 < 308 ✓ 247.9 < 308 ✓ 262.0 < 308 ✓

p-value of DFT Figure 1 0.789 > 0.01 ✓ 0.501 > 0.01 ✓ 0.292 > 0.01 ✓
Figure 2 0.782 > 0.01 ✓ 0.502 > 0.01 ✓ 0.294 > 0.01 ✓

The acceptance of the null hypothesis in the goodness-of-fit test confirms that the pixel
intensity distribution closely resembles a uniform distribution. This result is significant, as
it suggests that the digits of π, when expressed as 8-bit numbers (within a 256-numerical
system), each of them occurs approximately with the same frequency. The conclusions
derived from entropy and correlation are further validated by these two hypothesis tests,
as the acceptance of the null hypothesis, in summary, signifies a random distribution of the
information. In this case, the information pertains to the pixels but is fundamentally tied to
the bits of π.

With these observations in mind, and based on the correlation between the pairs of
strings analyzed in this section, the second hypothesis is stated in Hypothesis 2. To ensure
clarity, the relevant elements referenced within the hypothesis are defined below.

• Let xi, yi represent a bit to the right of the decimal point of the number π.
• Let An = {xi, xi+1, xi+2, . . . , xi+n−1} denote a string of n bits.
• Let Bm = {yi, yi+1, yi+2, . . . , yi+m−1} a different bit string with m bits. It is assumed

that there is at least a bit xj at position j in An that does not exist at the same position
in Bm, and vice-versa.

Hypothesis 2. In the probabilistic experiment of selecting two strings, each comprising n and m
consecutive bits, respectively, from the decimal part of the number π, the probability of selecting the
strings An and Bm is calculated as the product of the probability of selecting the string An and the
probability of selecting the string Bm. In other words, P(An ∩ Bm) = P(An)× P(Bm).

4. The Upper Bound
This section outlines the methodology to establish an upper bound on the number

of bits of π’s decimal expansion required to locate any given string at least once with a
probability p.

4.1. The Probability of Selecting a String An

From the presented information in Hypothesis 1 and 2, the following Lemma is presented.

Lemma 1. In the probabilistic experiment of selecting a string of n consecutive bits from the decimal
part of the number π, the probability of selecting the string An is equal to (1/2)n, expressed as
P(An) = (1/2)n.

Proof of Lemma 1. The proof of this lemma shall proceed through the method of mathe-
matical induction.

1. Base case: The base case is considered when n = 1, representing the probability
of selecting the 1-bit string A1, which consists solely of the bit xi. In other words,
P(A1) = P(xi). According to the first hypothesis, it follows that

P(xi) = (1/2)1 = P(A1).
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This result aligns with the statement of the Lemma, confirming consistency.
2. Inductive hypothesis: Assume that the Lemma holds true for n = k. Under this

assumption, the inductive hypothesis states that the probability of selecting the k-bit
string Ak is given by P(Ak) = (1/2)k.

3. Inductive step: Prove that the formula also holds for k + 1. We then analyze the
scenario wherein a string of k + 1 bits is selected, it is n = k + 1. Consequently, the
probability P(Ak+1) of selecting the string Ak+1 can be expressed as the probability
P(Ak ∩ xi+k) of selecting the k-bit string Ak and the 1-bit string {xi+k}.
Leveraging the Hypothesis 2, we deduce

P(Ak ∩ xi+k) = P(Ak)× P(xi+k).

Subsequently, utilizing the inductive hypothesis P(Ak) = (1/2)k and the Hypothesis 1
indicating P(xi) = 1/2, it follows that

P(Ak)× P(xi+k) = (1/2)k × 1/2.

Consequently,
P(Ak+1) = P(Ak)× P(xi+k) = (1/2)k+1.

4.2. The Probability of Finding An

Before presenting the theorem, another string will be presented. Consider AN as a
string of N > n bits, representing the first N consecutive bits to the right of the decimal
point within the number π. Here, the initial bit of AN corresponds to the first bit within the
decimal part of π.

Theorem 1. As the length N of the string AN approaches infinity, the probability of the n-bit
string An appearing at least once as a contiguous bit string within AN tends to 1.

Proof of Theorem 1. Next, we demonstrate the probability that An appears at least once
as a sequence of consecutive bits within the string AN of length N. This involves analyzing
the probability that An appears y ≥ 0 times within AN .

To achieve this, we present the following probabilistic experiment: each group of n
consecutive bits from AN is compared to the string An. If they match, it is considered a
success. This setup constitutes a Bernoulli experiment, as each trial has exactly two possible
outcomes: success or failure. The details of the experiment are outlined below.

1. First trial: The initial n consecutive bits of the string AN are selected and compared to
determine if they match the string An. A successful outcome occurs when the selected
sequence matches the An string, while failure arises if there is no match. Referring to
Lemma 1, the probability of success is P(An) = (1/2)n. In addition, it is possible to
form N − n + 1 strings of n consecutive bits in one of length N, which implies that
the number of trials is N − n + 1.

2. Second trial: Another string of n bits is obtained from AN starting from bit position 1
and extending to bit n. Following the same reasoning, the probability of this string
being equal to An is P(An). Additionally, since the string of n bits from trial 1 is
different from that of trial 2, it is independent as per the second hypothesis.

3. i-th trial: In general, for the i-th trial, the string to be compared with An starts from
bit number i − 1 of AN , encompassing the consecutive n bits.

Under this experiment, the probability of the string An appearing y times as consecu-
tive bits within the string AM is expressed in Equation (11).
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P(Y = y) =
(

N + 1 − n
y

)
((1/2)n)y(1 − (1/2)n)(N+1−n)−y (11)

Then, the probability P(Y ≥ 1) of An appearing at least once as a consecutive bit string
in AN can be expressed through its complement, where it does not appear at all:

P(Y ≥ 1) = 1 − P(Y = 0).

By substituting y = 0 into Equation (11), we obtain Equation (12), which represents
the probability that the string An appears at least once within AN .

P(Y ≥ 1) = 1 − (1 − (1/2)n)N+1−n. (12)

Subsequently, by applying the limit as N → ∞ to both sides of Equation (12), we have

lim
N→∞

P(Y ≥ 1) = lim
N→∞

(1 − (1 − (1/2)n)N+1−n),

which can be simplified to

lim
N→∞

P(Y ≥ 1) = lim
N→∞

(1)− lim
N→∞

(1 − (1/2)n)N+1−n.

It is important to note that (1/2)n > 0 for any arbitrary but fixed n > 0. Therefore,
−(1/2)n < 0 and 0 < 1 − (1/2)n < 1. Consequently, as N → ∞, (1 − (1/2)n)N+1−n → 0.
In other words, limN→∞(1 − (1/2)n)N+1−n = 0. In conclusion, given that the first term is
a constant (limN→∞(1) = 1) and the limit obtained earlier corresponds to the second term,
it follows that

lim
N→∞

P(Y ≥ 1) = 1 − 0 = 1.

From this, we conclude that, on the long path to infinity, it is highly probable that the
string An appears at least once, within AN .

4.3. An Upper Bound N for Finding An

Continuing this discussion, another problem to address is determining the length
N of a bit string, starting from the zero bit position of the decimal part of π, such that a
given string of length n is contained at least once within AN with consecutive bits and a
probability of p. As a result of this consideration, the following corollary is formulated:

Corollary 1. The length N at which An appears at least once within AN as a string of consecutive
bits can be determined using Equation (13) in terms of the probability p of its occurrence and the
length n.

N = n − 1 +
⌈

ln(1 − p)
ln(1 − (1/2)n)

⌉
(13)

Proof of Corollary 1. In this proof, we utilize the results of Theorem 1. Accordingly, the
probability of An appearing at least once as a consecutive bit string in AN , (P(Y ≥ 1), is
given by Equation (12). Let P(Y ≥ 1) = p, then Equation (12) is written as,

p = 1 − (1 − (1/2)n)N+1−n.

By rearranging terms, we obtain

(1 − (1/2)n)N+1−n = 1 − p.
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Upon applying the natural logarithm on both sides and its properties

(N + 1 − n) ln(1 − (1/2)n) = ln(1 − p).

Subsequently, by solving for N, we arrive at the result shown in Equation (13),

N = n − 1 +
ln(1 − p)

ln(1 − (1/2)n)

On the other hand, the probability p can be made as close to one as desired, minimizing
the error to find any desired length. In this study, a probability of p = 0.99 is employed,
resulting in an error of α = 0.01. Furthermore, it is important to clarify that in this
investigation, N is rounded using the ceiling function, denoted by ⌈·⌉, to return the smallest
integer greater than or equal to the expression in Equation (13), i.e., the integer part plus
one. Subsequently, the results of finding strings for different values of N will be presented
in the next section.

5. Results Analysis and Discussion
This section commences with the results derived from the experimental properties.

Firstly, Table 1 illustrates that as the length n of the bit string increases, the proportion of
zeros and ones tends toward 50%. Secondly, there is a fluctuation in the percentages of
zeros and ones, with the percentage of zeros occasionally exceeding 50% and at other times
falling below this percentage. This observation forms the basis for the first hypothesis
proposed in this research. Additionally, this result is consistent with the concept of normal
numbers [32]. To further support the second hypothesis, Table 2 is presented. In this
analysis, four different bit lengths are considered to generate strings starting from various
bit positions i within the decimal part of the number π. It can be observed that as the length
of the bit strings increases, the correlation between pairs of strings tends towards zero. This
indicates a lack of a linear relationship between them, providing evidence in favor of the
second hypothesis.

Additionally, two color images, presented in Figures 1 and 2, are constructed using
randomly selected blocks of bits from the decimal part of the number π. The first image
comprises 512 × 512 pixels, while the second one consists of 1024 × 1024 pixels. Subsequent
evaluations are conducted to assess the level of chaos exhibited by the bits in both images
from a cryptographic perspective. This evaluation is based on parameters such as entropy,
correlation, goodness-of-fit test using the χ2 distribution, and the discrete Fourier transform.
It is observed that there is no discernible relationship between the bits in both images, as
evidenced by Tables 1–4.

On the other hand, significant research in image encryption shows lower entropy
levels of encrypted images than those observed in the images generated from the bits
of π, suggesting a comparatively lower degree of pixel randomness. For instance, the
entropy values of Figures 1 and 2 range from 7.99920 to 7.99982. In contrast, several
encryption proposals report lower entropy values: the work in [33] achieves entropy values
between 7.9931 and 7.9949, while another reports values ranging from 7.9968 to 7.9975 [34].
Similarly, a third study presents a range of 7.9972 to 7.9994 [35]. Other researches achieve
entropy levels closer to those of the π-based images, such as entropy values between 7.9969
and 7.9998 [36], and a range from 7.9992 to 7.9998 [37]. Consequently, it can be observed
that the distribution of information within the blocks of the number π exhibits chaotic
properties, in some cases surpassing those observed in encrypted images.
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Concerning the theorem presented, it is observed that as the string length N increases,
the probability of locating the string An within consecutive bits of AN approaches 1.
However, this increase in N entails the need to search through more bits, which comes at
a computational cost. Additionally, due to the probabilistic nature of the process, there
remains a risk that certain strings may fall outside the range of consideration.

After establishing the theorem, a corollary was formulated to determine the length
N of the sequence AN required to encompass, with consecutive bits, any string An with a
probability p. To validate the formula, 16 distinct strings were located in π. These were
composed entirely of zeros or ones, across eight different sizes. The formula’s predicted
upper bound, computed with a probability p = 0.99, was used as a reference.

Table 5 summarizes the results of this validation. The first column specifies the length
n of the target string, while the second column presents the calculated upper bound N.
The third and fourth columns indicate the starting bit positions of the identified strings
of zeros and ones, respectively, within the decimal part of π. The results confirm that all
identified strings are located within the proposed upper bound, except for the string of
n = 25 consecutive zeros, which was found at a position exceeding the predicted upper
bound N. This discrepancy aligns with the 1% error margin inherent in the computation of
Equation (13) with p = 0.99.

Table 5. Validation results for locating strings of n consecutive zeros and ones within the decimal
part of π, compared against the predicted upper bound N with a 99% probability.

Starting Bit-Position of An of Consecutive
Length n Length N Zeros Ones

5 150 95 10
10 4723 901 644
15 150,914 11,790 58,275
20 4,828,882 726,843 1,962,900
25 154,523,896 171,498,579 47,536,570
30 4,944,763,863 1,407,238,213 207,861,697
35 158,232,442,734 21,774,349,073 61,906,790,708
40 5,063,438,167,262 1,584,920,456,449 1,748,147,295,589

In this study, string searching was performed using a finite automaton search algorithm
with n states, where n represents the length of the string being searched within a sequence
of N bits of π. A finite automaton of these characteristics has a computational complexity
of O(N) [38] for locating an n-bit string within an N-bit sequence of π. Regarding the
storing, to search for sequences of 40 consecutive bits, the upper bound suggests examining
5,063,438,167,262 bits, which entails significant storage requirements. This highlights the
importance of analyzing the type of storage used, whether a hard drive or a solid-state
drive, particularly for cryptographic applications.

Finally, although the present study focuses on the number π, the methodology devel-
oped here can be extended to analyze string searches in other numbers, such as transcen-
dental numbers. Future research could expand this analysis to explore how the results vary
with different numbers, identify the unique strengths of each number, and evaluate their
potential applications. Such investigations could provide valuable options for utilizing
these numbers in fields like Cryptography.

6. Conclusions
In this work, a theorem was presented and demonstrated, showing that any finite-

length string An has a probability arbitrarily close to 1 of appearing somewhere with
consecutive bits after the decimal point of the number π. From this theorem, a corollary
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has been derived, demonstrating how to calculate the length of the chain AN in π such
that, with a probability p, the chain An appears at least once within AN . In this research,
p = 0.99 has been chosen, though it can approach 1 arbitrarily closely. The proof of
this theorem relies on two hypotheses: firstly, when selecting a bit xi from the right
side of the decimal point, P(xi = 0) = P(xi = 1) = 1/2. Secondly, it establishes that
when two different bit strings of lengths n and m are chosen from the decimal part of
π, the probability of selecting An and Bm such that An ̸= Bm is independent; that is,
P(An ∩ Bm) = P(An)× P(Bm). Experimentation has been conducted to provide evidence
supporting these hypotheses, as shown in Tables 1–4. Furthermore, the results derived from
the images of π in Figures 1 and 2, when subjected to entropy and correlation parameters,
resemble those of encrypted images known for their chaotic information. Finally, the upper
bound N provides information about the number of bits of π to use for generating random
sequences effectively.
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