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Given the large volumes of sensitive information transmitted over the Internet, digital signatures 
are essential for verifying message authenticity and integrity. A key challenge is minimizing 
computationally intensive operations, such as modular inverses, without compromising security. 
In this research, we propose the DSADHπ algorithm, which introduces a confusion step directly 
into the signature itself, rather than only applying it to the message, using a dynamic substitution 
box. It is generated with the number pi and changes with each signing. In addition, to enhance 
security, this work uses a 2048-bit prime, double the length frequently used. This proposal induces 
chaotic behavior in the signature, making it highly sensitive to any changes in the signer’s private 
key or message content, thereby enhancing authentication and integrity verification. Moreover, the 
proposed algorithm computes a single multiplicative modular inverse during verification and none 
during signing, unlike other approaches that require inverse computation in both stages. Since the 
required inverse is for the Diffie-Hellman session key, it always exists and can be precomputed per 
communication rather than per message. Consequently, DSADHπ is on average 45 times faster than 
DSA. Additionally, we introduce a method to assess signature security by constructing images from 
signature bytes generated by slight changes to the signer’s private key and message. Then, their 
chaotic behavior is evaluated with cryptographic metrics.
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The digital signature1is a crucial tool for companies, institutions, governments, and individuals to authenticate 
documents transmitted over networks2. Two well-known examples are the Digital Signature Algorithm 
(DSA)3and the Elliptic Curve Digital Signature Algorithm (ECDSA) that is a variant of the DSA with Elliptic 
Curve Cryptography4. However, these algorithms require the use of a multiplicative modular inverse, which is 
one of the most computationally expensive operations5,6. The time required for the signature and verification 
processes limits the application range7, as it involves computing one inverse for signing and another for 
verification. Furthermore, since the Euclidean algorithm (one of the methods used to compute inverses) is 
sequential, it cannot be parallelized, making the double inverse-computation a primary constraint. In terms of 
security, the generated byte string composing the digital signature relies heavily on modular operations, which 
alone do not provide sufficient randomness properties8, such as a uniform distribution, leading to a lack of these 
desired characteristics.

In contrast, our proposed method requires only a single inverse computation (that even can be precomputed) 
and incorporates a substitution box in place of relying solely on modular operations, thereby achieving improved 
randomness properties in the generated strings of the signature. In this way, Yang et al. improved performance 
by reducing time consumption, by means of replacing the computationally intensive operations, such as the 
inverse, with more basic operations to achieve better time efficiency9. Similarly, Liu et al. eliminated the costly 
modular inversion operation from their proposal for both the generation and verification phases10. Puthiyidam 
et al. also employed this approach in the two phases to enhance efficiency in applications such as the Internet of 
Things11. Additionally, some post-quantum algorithms were developed considering the computational demands 
of modular inverse calculations in low-resource, constrained environments12.
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While optimizing computational time is important in digital signatures, maintaining security remains a 
priority. To enhance signature security, Hematpour et al. introduced a confusion step using a chaotic map to 
generate a substitution box, which was then employed to replace the bytes of the original message, increasing 
the algorithm’s robustness13. Similarly, Alam et al. incorporated a digital signature with RSA encryption to the 
output of the SHA function14, although RSA is known for its high computational cost15. On the other way, there 
is a need for digital signature schemes that integrate chaotic properties16while maintaining low execution times, 
ensuring both efficiency and security17.

All the previously mentioned works, including our proposal, are algorithms specifically designed for digital 
signatures, where the digital signature remains separate from the encrypted message. However, while the primary 
functions of digital signatures are authentication, integrity, and non-repudiation, they have also been integrated 
into the encryption process18–20. Therefore, it would be beneficial for the digital signature itself to exhibit chaotic 
properties, enhancing its security and making it more resilient to cryptographic attacks such as the statistical21.

To address this issue, in this research, we introduce a novel algorithm, Digital Signature Algorithm with Diffie-
Hellman protocol and π (DSADHπ), designed for signing messages without the need for inverse calculations 
during the signing process. The algorithm utilizes the session key from the Diffie-Hellman protocol22 and the 
SHA-512 function. It generates dynamic 8×8 substitution boxes using the digits of the number π to introduce 
an additional layer of confusion to the final signature, extending beyond just the message itself. This approach 
allows for creating a distinctive S-Box each time a signature is generated, rather than relying on a static one. 
Moreover, only a single inverse calculation is required, which is guaranteed to exist and is performed solely 
during the verification process. This feature sets our algorithm apart from others, where the existence of an 
inverse is not assured, and multiple inverse calculations are often necessary.

Furthermore, we propose a novel method to numerically evaluate the quality of a digital signature by 
constructing two color images using the resulting bytes of the signature. The first image results from variations in 
the signer’s private key, highlighting the importance of authentication. The second image is generated by altering 
the content of the plaintext to sign, emphasizing the importance of integrity. The pixels of these images are then 
evaluated using parameters such as entropy, correlation, discrete Fourier transform, and the goodness-of-fit test 
with the χ2distribution. However, these measures have not been applied exclusively to digital signatures, as they 
have been evaluated in conjunction with information from encrypted images23.

This paper is structured as follows: Supporting elements section presents the necessary background 
information, including an explanation of the Digital Signature Algorithm (DSA) in a manner analogous to 
the proposed method, the cryptographic metric for assessing the chaotic degree of information, and relevant 
properties of the number pi. Proposed digital signature section details the generation of substitution boxes from 
a permutation and introduces the proposed digital signature algorithm. In Experimentation and results section, 
we describe the experiments conducted, including the generation of images from different signatures and their 
evaluation using cryptographic metrics. Results analysis and discussion section provides an analysis of the 
results, while Conclusion section concludes the paper.

Supporting elements
Digital signature algorithm (DSA)
This section provides a comprehensive overview of the Digital Signature Algorithm (DSA). To begin, we will 
elucidate the constituent elements integral to this process, where the signer and verifier are denoted as A and B.

Parameters and keys generation

 1.  Primes: Two primes, denoted as p and q, are chosen in such a way that p − 1 is divisible by q.
 2.  Generator: A number α is designated as the generator if α(p−1)/q (mod p) ̸≡ 1 for all the prime factors q 

of p − 1.
 3.  Hash function: A SHA function H, such as SHA3-512, is selected.
 4.  Private keys: Two numbers, denoted as aA and aB , are selected as the private keys for users A and B respec-

tively.
 5.  Public keys: The users possess public keys, denoted as βA and βB , calculated as follows: βA ≡ αaA (mod p) 

and βB ≡ αaB (mod p).

Procedure for signing a message

 1.  Randomly select an integer k, such that 1 < k < q − 1.
 2.  Compute γ = [αk (mod p)] (mod q). If γ = 0, then another k is selected to repeat the computation.
 3.  Compute δ = (H(X) + aA × γ) × k−1 (mod q). If δ = 0, select another k and repeat the computation of 

the previous steps. Here, H represents the chosen SHA function, and X is the message to be signed.
 4.  From this point, A’s signature would be Sig(X, k) = (γ, δ).

Procedure for verifying a sign

 1.  Once B has received the message X,γ, and δ, the variable e1 is computed as follows: e1 = H(X) × δ−1 (mod q)
.

 2.  Additionally, a second variable, e2 = γ × δ−1 (mod q), is computed.
 3.  With the previous computation of e1 and e2, the verifier B can verify that A signed the message if the follow-

ing Equation holds true: [αe1 βe2
A (mod p)] (mod q) = γ.
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Encryption metrics
Below are the instruments commonly employed to quantify the level of disorder within image data. The images 
in question were constructed using blocks of signatures generated through the proposed algorithm in this study.

Correlation coefficient
The correlation coefficient r, quantifies the strength of the lineal relationship between two variables24. In this 
work, we examine the interrelationships among pixel values within an image. Initially, a random sample of 
size nis selected from the image under consideration. Subsequently, the correlation between the first variable 
representing the randomly chosen pixel values and the second variable with their corresponding adjacent pixels 
is assessed in three directions: horizontal, vertical, and diagonal25.

Let 0 ≤ xi,c ≤ 255 denote the intensity of the i−th randomly chosen pixel, where 1 ≤ i ≤ n and c denotes 
the color channel (red, green, or blue). The adjacent pixels values are referred to as hi,c, vi,c, di,c for horizontal, 
vertical, and diagonal direction, respectively, with the same intensity range 0 ≤ hi,c, vi,c, di,c ≤ 255.

For instance, the correlation coefficient for the horizontal direction and the red color channel is expressed 
using Equation (1).

 

rxrhr =
1/n

∑n

i=1(xi,r − x̄r)(hi,r − h̄r)√
1/n

∑n

i=1(xi,r − x̄r)2 × 1/n
∑n

i=1(hi,r − h̄r)2
 (1)

where the arithmetic mean of x̄r  is defined in Equation (2)

 
x̄r = 1

n

n∑
i=1

xi,r  (2)

Entropy
Entropy Hquantifies the level of information disorder within encrypted messages, in our context to color 
images26,27. Since images are composed of pixels, each consisting of three bytes, every byte can represent 256 
intensity values for each primary color. A high degree of disorder in information is indicated by entropy values 
approaching 8, computed with Equation (3).

However, entropy alone is not a sufficient metric. It is conceivable to construct a histogram where all 256 
intensities xt of a primary color occur with equal frequency, and therefore the same probability of occurrence 
P (xt) yet still exhibit a discernible pattern rather than randomness. In such cases, despite an entropy value 
of 8, the information cannot be classified as disorderly. This underscores the necessity of employing multiple 
parameters to assess the disorder level of pixels.

 
H(x) = −

255∑
t=0

P (xt) log2 P (xt) (3)

Goodness-of-fit test
In this research, another method employed to measure the level of chaos in image information is the goodness-
of-fit test using the chi-square χ2distribution28. This tool operates as a hypothesis test, where the null hypothesis 
assumes that the distribution of the a histogram with the n = 256 intensity levels adheres to a uniform 
distribution, implying equal E number of appearances for each intensity value oi. Conversely, the alternative 
hypothesis posits the absence of uniformity29.

The test statistic χ̂2 is defined by Equation  (4) follows a χ2 distribution with n − 1degrees of freedom. 
However, due to the central limit theorem, this variable approximates a normal distribution30. For a histogram 
with n = 256 bins, the mean µ = 255 and the standard deviation σ = 22.58. Given a significance level of 
α = 0.01, the decision rule is as follows: accept the null hypothesis if χ̂2 < 308; otherwise, reject it.

 
χ̂2 =

255∑
i=1

(oi − E)2

E
 (4)

Discrete fourier transform
In the discrete Fourier transform, it is determined that the analyzed data contains no repeated bit strings. 
Furthermore, this method serves as a statistical hypothesis test where the null hypothesis declares that the image 
data lacks repetitions, implying it contains disorder or randomness31. Additionally, this test forms a component 
of the NIST 800-22standard32.

The test statistic d̂ is defined by Equation (5), where n is the length of the bit string, C0 is a constant defined 
in Equation (6), and C1 is a variable. This variable C1 represents the count of complex functions fj  for which 
its modulus∥fj∥ is less than the threshold u, as specified in Equation  (7), with j = 1, 2, . . . , n/2 − 1. It is 
important to note that n is even, in this work, it represents the number of pixels multiplied by 24 to express it 
in bits.
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d̂ = C1 − C0√
n(0.95)(0.05)

4
 (5)

 
C0 =(0.95) × n

0.05
 (6)

 
l =

√
Ln

1
0.05(n)  (7)

Regarding the function fj , defined in Equation (8), it reads all bits of the string, with yk  taking a value of −1 if 
the k-th bit of the string is 0, and 1 otherwise. Here, i =

√
−1 denotes the imaginary unit.

 
fj =

n∑
k=1

yke
2iπ(k−1)j

n  (8)

Furthermore, if the p-value, as defined in Equation (9), is less than 0.01, the hypothesis of randomness is rejected 
at a significance level of 0.01; otherwise, it is accepted. The erfc function is defined in Equation (10).

 
p − value = erfc

| d |√
2

 (9)

 
erfc

| d |√
2

= 2(1 − Φ(| d |))  (10)

Properties of the number pi
Under the experiment of the random selection of a bit xi from the digits on the right side of a decimal point of the 
number π, the probability of it being either zero or one is 0.533. In other words, p(xi = 0) = p(xi = 1) = 0.5
. In addition to the distribution of the digits from number π, the following two properties contribute to the 
seemingly chaotic appearance of these digits34. 

 1.  The values of π are deterministic. This means that for any given fixed block of positions, the values will al-
ways be the same.

 2.  For any sequence of digits in π, the values cannot be predicted unless one knows the exact position of 
the sequence and performs the extensive computations necessary to determine the sequence values35.These 
characteristics support the proposal to use π in digital signatures as part of cryptographic systems.

Proposed digital signature
A S-Box building from a permutation algorithm
In this section, we will outline the process of obtaining a permutation on an array of 256 elements, ranging from 
0 to 255. It is noteworthy that a S-box of 8×8, can be interpreted as a permutation of 256 elements36.

The current permutation algorithm is based on the factorial base representation of a number37, similar to 
other approaches38. The main difference is that our proposal has a time complexity of O(m), given that it only 
replaces values, this reduces the permutation process of m elements.

We initiate by defining the set Zm for m ≥ 2 in Equation (11). The elements within this set are represented 
by indices denoted as n. Each index n signifies a specific permutation number within the m! permutations for 
an array of m elements.

 Zm = {n ∈ IN |0 ≤ n < m!} (11)

Furthermore, for all number n ∈ Zm, n can be expressed in a factorial basis, as shown in Equation (12).

 n = D0(m − 1)! + D1(m − 2)! + . . . Dm−2(1)! + Dm−1(0)! (12)

Where, according to the Euclidean division algorithm, the coefficients Di in Equation  (12) are unique39. 
Furthermore, the constants Di satisfy the inequality of Equation (13).

 0 ≤ Di < m − i for 0 ≤ i ≤ (m − 1) (13)

With this previous concepts, the algorithm to generate a permutation of m elements is described below: 

 1.  Propose randomly m constants Di such that each satisfies Equation (13). Afterward, the permutation num-
ber n to generate can be checked using Equation (12) by substituting the proposed Di constants.

 2.  An ascending array Z of m elements is constructed as follows: Z[0] = 0, Z[1] = 1, · · · , Z[m − 1] = m − 1. 
 3.  In the first iteration, the constant D0 is selected. In accordance with Equation (13), 0 ≤ D0 < m, and con-

sequently, Z[D0] is an existent element within the array generated in the previous step. Then, this study 
proposes that Z[D0] is the first element of the permutation P, it is P [0] = Z[D0], and to avoid repetitions, it 
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is replaced with the last element of the array, Z[m − 1], for the following iteration. Additionally, the element 
Z[m − 1] is removed from the current array, resulting in an array of m − 1 elements for the next iteration.

 4.  In the second iteration, the constant D1 is selected. Following that, 0 ≤ D1 < m − 1, consequently, Z[D1] 
is an existent element within the obtained array of m − 1 elements in the previous step. Similarly, Z[D1] 
is now the second element of the permutation, and to avoid repetitions, it is replaced with the last element 
of the array, Z[m − 2], for the following iteration. Additionally, the element Z[m − 2] is removed from the 
current array, resulting in an array of m − 2 elements for the next iteration.

 5.  In general, the constant Di is selected. Following that, 0 ≤ Di < m − i, consequently, Z[Di] is an exist-
ent element within the obtained array of m − i elements in the previous step. Similarly, Z[Di] is now the 
i-th element of the permutation, and to avoid repetitions, it is replaced with the last element of the array, 
Z[m − (i + 1)], for the following iteration. Additionally, the element Z[m − (i + 1)] is removed from the 
current array, resulting in an array of m − (i + 1) elements for the next iteration.As mentioned earlier, this 
algorithm has a time complexity of O(m) because only one elimination and one substitution are performed 
in each step. Also, if Z[Di] is the last element of the array in iteration i, then its position is taken by the im-
mediately preceding element Z[Di−1]. An exception occurs in the last iteration, where there will be only one 
element, and this will be the last element of the permutation.

To aid in understanding the proposed permutation algorithm, we provide an example of permuting an array with 
m = 4 elements, which helps clarify the process. This array allows for 4! = 24 distinct permutations, spanning 
n = 0 to n = 23 within the set Z4. By permuting these four elements, we can construct a S-box 2 × 2, which 
takes a 2-bit input and generates a 2-bit output. The S-box is arranged as a matrix with 2 rows and 2 columns, 
having m = 4 elements; here, the first bit of the input (from left to right) designates the row, while the second bit 
designates the column to select the output element. 

 1.  Propose randomly m = 4 constants Di such that each satisfies Equation (13): 

 (a)  For i = 0, D0 = 2, satisfying 0 ≤ D0 < 4 − 0.
 (b)  For i = 1, D1 = 1, satisfying 0 ≤ D1 < 4 − 1.
 (c)  For i = 2, D2 = 0, satisfying 0 ≤ D2 < 4 − 2.
 (d)  For i = 3, D3 = 0, satisfying 0 ≤ D3 < 4 − 3. Therefore, we will generate the permutation number 

n = 14, as can be seen in Equation (14), where n is expressed on a factorial basis with the proposed Di 
constants. 

 14 = 2(3)! + 1(2)! + 0(1)! + 0(0)! (14)

 2.  An ascending array Z of m elements is constructed: Z = {0, 1, 2, 3}
 3.  Iteration process 

 (a)  In the first iteration, Z[D0 = 2] is identified as the first element of the permutation P , specifically 
P [0] = Z[2] = 2. To prevent repetitions, Z[2] is replaced with the last element of the array, Z[3] = 3. 
This results in the updated arrays: 

 P = {2} and Z = {0, 1, 3, 3}

 Finally, Z[3] is removed, yielding the array Z = {0, 1, 3}.

 (b)  In the second iteration, Z[D1 = 1] is identified as the next element of the permutation P , specifically 
P [1] = Z[1] = 1. To prevent repetitions, Z[1] is replaced with the last element of the array, Z[2] = 3. 
The updated arrays are:

 P = {2, 1} and Z = {0, 3, 3}

 Finally, Z[2] is removed, resulting in Z = {0, 3}.

 (c)  In the third iteration, Z[D2 = 0] is identified as the next element in P , specifically P [2] = Z[0] = 0. 
To avoid repetitions, Z[0] is replaced with the last element of the array, Z[1] = 3. The updated arrays 
are: 

 P = {2, 1, 0} and Z = {3, 3}
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 Finally, Z[1] is removed, yielding Z = {3}.

 (d)  In the fourth iteration, Z[D3 = 0] is selected as the fourth element of P , specifically P [3] = Z[0] = 3
. With Z[0] now assigned, the final arrays are updated to: 

 P = {2, 1, 0, 3} and Z = {} Now, arranging P  as a S-box 2x2: 

 

[2 1
0 3

]
In this work, the constants Di are randomly chosen rather than specifying the number n directly. 

Expressing n in factorial basis to find the constants Di is avoided, as this process consumes more time, and 
one of the objectives of this research is to reduce computation time. Moreover, this tool will be utilized later 
to permute 256 elements and generate an S-box 8 × 8. As the constants Di are chosen randomly, the result-
ing permutation is also random, implying that the S-box 8 × 8will be dynamic. To conclude this section, it is 
emphasized that this algorithm generates a bijective function40.

Parameters and keys generation

 1.  Prime p: The prime p is defined as p = n(q1 × q2) + 1, where q1 and q2are 1024-bit selected prime-num-
bers (verified previously using the Miller-Rabin algorithm41,42). While n is an even number, initially set 
to n = 2. The resultant value of p is tested for primality using also the Miller-Rabin algorithm. If p is not 
prime, n is incremented to the next even number (e.g., n = 4), and the value of p is recalculated. This itera-
tive process continues, incrementing n as needed until a prime p is found that passes the Miller-Rabin test. 
Constructing p in this manner ensures that p − 1 is divisible by q1 and q2, which allows us to know its prime 
factors directly, avoiding costly computational operations.

 2.  Generator α: A candidate for the generator α is selected randomly such that 0 < α < p − 1. α is validated 
as a generator if it satisfies the condition α(p−1)/q (mod p) ̸≡ 1 for each prime factor q of p − 1. If this 
condition is not met, α is incremented by one, and the verification is repeated for all prime factors q of p − 1. 
This process continues until α meets the condition. Note that the prime factors of p − 1 include q1, q2, and 
the prime factors of the chosen even number n in the prime generation.

 3.  Hash function: The SHA3-512 function is selected43, denoted as H.
 4.  Private keys: Two numbers, denoted as aA and aB , are selected as the private keys for users A and B respec-

tively.
 5.  Public keys: The users possess public keys, denoted as βA and βB , calculated as follows: βA = αaA (mod p) 

and βB = αaB (mod p).

Procedure for signing a message
Below is the procedure for user A to sign the message X. Regarding the S-Box application, for each byte, use the 
first four bits (from left to right) to select the row and the remaining four bits to select the column of S, following 
the procedure similar to that of standard AES44. 

 1.  Randomly select an integer k, such that 1 < k < p − 1.
 2.  Compute the parameter γ = k × (βaA

B ) (mod p).
 3.  Compute the Hash function H on the message X to obtain H(X).
 4.  Compute the product of k × H(X) × π and extract the first 2048 bits to the right of the decimal point to 

create the string C.
 5.  The following 256 bytes of the previous product (after the 2048 bits previously used) are selected to form an 

array d with 256 elements di, each of one byte in size. This implies that 0 ≤ di ≤ 255.
 6.  Compute 256 constants Di as Di = di (mod 256 − i) for 0 ≤ i ≤ 255 and apply the algorithm described 

in Permutation algorithm to obtain the substitution box S.
 7.  Compute the parameter δ = S(C), by applying the S-Box S to the string C in one-byte blocks.
 8.  From this point, A’s signature would be Sig(X, k) = (γ, δ).

Procedure for verifying a sign
Below is the procedure for user B to verify the signature of user A. The session key β of the Diffie-Hellman 
protocol is defined as β = βaA

B (mod p) = βaB
A (mod p), and is known only by both users. Its inverse, 

β−1 (mod p) always exists. If the public keys βA, βB  remain unchanged for every message, the β−1 (mod p) 
computation can be performed by both users prior to the communication. If the message X is altered, the output 
of the Hash function may differ from the original, which is denoted as H ′(X) instead of H(X). This notation is 
similarly applied to subsequent calculations that may also be affected. 

 1.  Once B has received the parameter γ, the value of k is computed as k = γ × [(βA)aB ]−1 (mod p).
 2.  Compute the Hash function H on the message X to obtain H ′(X).
 3.  Compute the product of k × H ′(X) × π and extract the first 2048 bits to the right of the decimal point to 

create the string C′.
 4.  The following 256 bytes of the previous product are chosen to create an array d′ with 256 elements, each of 

one byte in size. This implies that 0 ≤ d′
i ≤ 255.
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 5.  Compute the constants D′
i as D′

i = d′
i (mod 256 − i) and apply the permutation algorithm described in 

the previous subsection to obtain a permutation of 256 elements and, consequently, the substitution box S′.
 6.  Compute the parameter δ′ = S′(C′), by applying the S-Box S′ to the string C′ in one-byte blocks.
 7.  The verifier B can verify that A signed the message if δ′ = δ.

Additionally, to clarify the steps outlined in the Procedure of signing a message (conducted by the signer, A) 
and the corresponding steps of the Procedure for verifying a sign (performed by the verifier, B), both processes 
are illustrated in Figure 1. This figure provides an overview of all elements and steps involved in the proposed 
method.

Experimentation and results
In this research, a procedure is proposed to assess the quality of the presented signature when only the private 
key aA is varied while keeping the message constant. The proposed method involves creating a color image 
of 512 × 512 pixels with each resulting signature. This image is constructed by concatenating the strings that 
conform to the parameters γ, and δ. Subsequently, entropy and correlation metrics are applied to the generated 
images.

Additionally, these steps facilitate a comparative analysis of the DSA and the proposed method. This 
comparison is achieved by varying only the message X in both algorithms while keeping all other parameters 
constant. For this study, a signature algorithm is considered superior if the entropy of the generated image is 
closer to 8, and the correlation is closer to zero. The parameters used in the experimentation are presented in 
Table 1, including the prime number p and generator α. Table 2 lists the public and private keys of the signer and 
verifier, along with the associated session key.

Private key sensitivity
The authentication property of the proposal is verified by testing two aspects: first, showing that any alteration 
in the signer’s private key aA produces a distinct signature (γ, δ) for the same message X, value k, and public 
key βB ; and second, ensuring the lack of correlation between them. To perform this, the following experiment 
is led: different signer’s private keys are proposed, and the resulting signatures from each key modification are 
concatenated into a byte string to conform an image. These outcomes are depicted in Figure 2, Figure 2(a) is 
composed with signatures from DSADHπ, and Figure 2(b) from DSA. While the assessment of information 

Fig. 1. Diagram of the proposed DSADHπ scheme, illustrating the procedures for message signing by the 
signer and signature verification by the verifier.
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disorder is conducted by evaluating entropy, correlation, discrete Fourier transform, and goodness-of-fit 
parameters as outlined in the Table 3, where the ✓ indicates that the test has been passed. Otherwise, × means 
that the test has not been passed.

Message Sensitivity
Regarding the integrity property, it is verified that the proposed signing algorithm detects changes in the 
message X through the following experiment: randomly selecting different messages X that are signed using the 
same private aA and public key βB , along with the same value k. Specifically, step 3 of the signing algorithm 
involves applying the SHA function H to each different message X. Subsequently, the multiplication result of 
step 4 is distinct for each message, altering the outcome of subsequent steps, resulting in different values of γ 
and δ. These sequences are concatenated to generate Figure 3(a). Additionally, the same procedure is applied to 
DSA, with Figure 3(b) displaying the image produced by concatenating the resulting signatures. The results are 
presented in Table 4.

Results analysis and discussion
We explore the security aspects to both the DSA and the DSADHπ proposal. A common vulnerability is the risk 
of an attacker deducing the signer’s private key from the public key, which would enable them to sign messages 
and forge the signer’s signature. This threat stems from the Discrete Logarithm Problem, which is referred due to 
the way public keys are generated. Research into this issue focuses on attacks with a computational complexity 
of O(√p)45.

Given that the DSADHπ operates with a modulus p ≈ 22048, the complexity of such attacks is O(√p) ≈ 21024

. Due to the proposed size of the prime pin this study, executing such attacks successfully is currently infeasible. 
Additionally, when employing the Diffie-Hellman protocol, there is the risk of a man-in-the-middle attack. 
However, this risk can be mitigated through effective key management strategies facilitated by cloud computing46.

Regarding the computational complexity involved in executing the DSA and DSADHπ algorithms, a notable 
distinction is that the DSADHπ proposal does not require the calculation of an inverse modular multiplicative 
each time a message is signed. This feature eliminates the risk associated with the integer k in the DSA algorithm, 
where there is a possibility that k, generated at random, may not have an inverse, necessitating its regeneration 
and additional execution time. In contrast, the DSADHπ proposal allows any value of k to be used, streamlining 
the signing process.

On the other hand, a closely related approach to our proposal, as it also incorporates a substitution box for 
the signature process, is the algorithm proposed by Hematpour et al13. The primary distinction between their 
method and ours lies in their use of a static S-box. Dynamic S-boxes offer superior entropy, making the system 
more resilient against linear and differential attacks47. The trade-off for using dynamic S-boxes is the additional 
computation time required to generate a new one for each signature; however, this increase in security justifies 
the added computational cost. Additionally, despite the time needed for computing dynamic S-boxes, DSADHπ 
still performs faster than DSA in signature generation.

Furthermore, the proposed method considers large-scale applications, given the number of unique signatures 
that a signer can generate. Specifically, the total number of possible signatures arises from the values produced by 
the product k × H(X) in step 4 of the Procedure of signing a message, which is used for constructing the string 
C and, consequently, the signature itself. Here, the value k has 22048 different values, while the SHA function 

Variable Hexadecimal value

p

47a9c62c 3021e4db d0e8ee54 8d5e1b2d c6a1c4f5 bb0345f7 20ba54f2 256a9bef

b394d7b1 55fa27bf e1701aa3 f61732f8 52c51dee ebd0b20b fc098266 348d5cdf

f871e3d4 a6b623a3 a40c3a44 95d13b69 9771c4c9 d036ef1c ce70c746 d618ad20

00520ffe 9db5764e 74e2344b efe45688 d4a4ff14 219e346d e9911f39 8aa6c864

38e38ab0 ffcfe561 60fb060f 361e0c06 335c458a 516a6bd6 a0e42677 593be5b0

d6639051 52c4ffb9 d0cbc755 2904a7c1 34530089 50343bd2 04d41ed3 d47cd4bf

4fa03956 208dfe0c 5f1d9fa8 27507507 3ca63f20 df1de1bb edec281f 890956a2

355e8517 a334e9c1 e8c8aea8 62d3b596 5e1c6c22 ef7efe21 2154c979 e9fbdfc7

e7445f

α

1bc36c7f d8704a7d 008f3200 70dc9c2a 2cd51047 d7d48401 816693f6 df3c83f6

a99d72bf 3d8555f1 92dcbe33 aaabad16 4070b905 b92a8d2b bc8f2c72 eab5bb61

fa1e5493 c21c7fd1 dd8c2e50 f06072b4 c31bf0e3 ca3e0757 4c361d6b 9eec4742

29ae024f b3fcf3f0 40f937ee f2e6383e 644189be 811aaf8e 7175111c e364a24c

960e7273 514b7772 fffaa39d 7074465e 53a76ec7 8ac3270a 938295fc f51b5dc9

62240658 513aaab0 c383005d bf7ae530 c5fcd4c7 420e0301 bb4d89b0 e3de8f61

f6c84415 5c81aed6 18c6dd7e 4be4d227 7376e6b9 3c4001a7 17b23769 11f14a01

7caf3d6f 8da8adab eeed578d 0fa3a4bd 1b7b74ad be82b232 7936f352 b60248ce

Table 1. Parameters utilized in reproducing the Proposed Algorithm for the experimental results. The prime 
number p and generator element α were computed as outlined in the Parameters Generation subsection.
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used can return 2512 different strings, resulting in a total of 22048 × 2512 = 22560 distinct combinations. This 
quantity indicates the number of unique signatures that can be generated by a signer.

Regarding the security, in study, two color images of 512 × 512 pixels were generated by concatenating the 
bit strings γ and δ obtained from signing different messages X. One image was created using the DSA algorithm, 
while the other was generated using the proposed DSADHπ. The algorithms were implemented in Java and 
executed on a computer equipped with an i9-10900K processor running Windows 11. The time required to build 
the image with the DSA algorithm was 3964.6649 ms seconds, compared to 87.8547 ms seconds for the proposed 
algorithm. Thus, the proposed algorithm achieves superior speed compared to DSA due to the elimination of 
inverse calculations.

In addition, an evaluation with encryption measure of the signatures was conducted, as shown in Tables 
3 and 4. DSADHπ achieved entropy values above 7.999, nearing the optimal value of 8.0, while DSA showed 
entropy values of 3 in the red channel, 5 in green, and a maximum of 7.8 in the blue channel. This difference is 
visible in Figures 2(b) and 3(b), where DSA signatures exhibit a visual pattern with dominant colors. Although 
DSA achieved favorable correlation values close to the ideal of 0.0 (e.g., 0.0128), DSADHπ obtained similarly 

Variable Hexadecimal value

aA

c3ef3be7 248d72be 5de8d531 ff2b5aaa 1c5c6caf 2d7fade9 4302fd3e b923f53e

0e9fa67a 15fa19a8 42af51dd b4a6d897 fe633c9c 5c908cfeca 68df86fe 58cdcc08

300cc05e a38c0020 cb8d6d19 a465a768 8d97122c ca67a978 fcd71d1c c709c96a

0213d389 753cfa8a 99d212a6 48e1a3aa 18bf8603 6ebbe10e eed469a9 50163c74

572d00e1 fdb9fbbc 08531b34 86ec9d0c 46f25c95 43cf5eb4 d31d2071 adaf339a

6ee586e9 38c0e376 2a449202 9ffbd536 a98d77a3 f63b740f 7aea002b 0f684481

8863da1f 7f14ae89 6ed73550 2fb18b2f 77818ceb a6e6d4be 952dc9bb 37e6b6fc

e38ea1f7 f174ee80 04590ea1 a22600a0 e2a8a584 d9f40273 c2e73d82 e5284a

4067213f 39fd257d 30ac2a17 470628c0 beb1dc53 c806ce46 32e026e4 350299cc

βA

7f484072 af98a7f8 8e67cbee 75ea7721 c09a7285 08dd7626 438ad5d4 9c7716f6

d5d397ce c0c7b98f 22948cec 6b251e19 8ea11c48 690320d8 faa22cc2 0ee21fc7

6eb50ed8 4f226d13 536fecb7 d85520d4 e78eb36d ed395ca0 7d3ef85c 906e8a59

2042e948 fcfdc3c7 d78d79e8 bccb577c 9c00796c 47421215 bd9c0fb8 b03a41e4

901e6526 42b2d63e 0885c2c1 61e9da36 c10d363f 848ec2d9 73a5dc15 5e9129c7

3adb1411 920a72f3 653c2384 5558805a 9d404e71 16a8be0b bbad58c2 837520a5

b4220e16 d27aa628 a1ec3f19 1363db1d b54380d8 7480b2ee 48bc1580 c06a26a2

aB

c4b942d9 c75e9504 95fa22f4 6b196ecc c45fb533 2fa4b4b2 3ffff999 144af53c

80f08ea8 9c639167 7d8da425 8938cb48 dbf085ca 2bbbb989 9725c4ee 9dc4e47c

e7c1e80b 0e1f2825 cd97540e b8bac8a9 07fe02eb 404a93c4 4b065bc4 7489fb10

ede073e0 e838d910 f4375ea9 5fd462f1 4bd8e787 2a3acf19 da600f26 c9a62ac0

aa6371c6 33234648 814db059 be90be45 9c991d52 6aa04476 651352ee 84059f89

83acfcc9 2936dcac fe2264d1 c0763e7a 05397292 c22e1025 df53a4ef 69542ab6

8bc4ae10 73cf47a6 e42cad7a eff27ad8 1fa94c5a fabcd543 068f43fd 25de8248

237a3357 84d82935 4d541ac2 89cb23cf 9166b78a 6c648d29 bd09703d 50edbf4a

βB

25df467d 93e9ad76 0aadaeab f23be2bb b6fd5797 07964944 33ed719b ac3878ca

b157ee2b 05f52094 75ce133c eab202f8 cbae552f 62852bda 4031f160 3cc08213

4a111fcf 3a8867e2 c5ab884b 9da0b6a9 fe1bc9ec e7410467 421e03cd e66d5a2d

e2840c88 96c1eb63 d0230c17 ac46af28 4e1d15de 080004fa 87b7cd81 6c5c09d4

4295e385 eca13f00 659a1532 de359a7d 7716032d b3998b5a db0b529f 36a6d5c6

5f8c831e 555f17de 40f84120 35745986 52568a39 9f159327 fc1da17a 75b2dfa0

87c9ec69 bcd09efe 897f4acf 41c8c6fc 93ecbf d7ad60c7 344e8451 c8dbdad5

b51544ed 769

β

154b4820 e5d1480d 15f78ae7 1061a269 99c9bce5 883f22b7 0083ccad cc15b035

92ab8946 17408604 87fb8c8b 49c785f1 b68a2884 b0072839 21a0531d c79f5e21

2bc27fd0 500855c3 2942fd75 9bb491f0 24133ee6 928fca81 16a68690 0004177f

a04b4ae2 ddc7b504 49abcf17 c421b8ea 30f67173 6771d257 94bdfde4 2f2cedd0

d2378942 150023a2 d1cc9497 93ec7ee2 172277be dc4a27cf 50c9352b c3b1a512

0dfd55a3 778604c ac6f1b52 350909d6 2d9e2e26 3c81b5b3 a96f7cf5 2efbaf73

8776138b 454fd32d 3fe6fa50 1ad84ae2 f70a2b6c 97caee23 446feede 85dd58a5

f3a62b7c 965cc78e 6e551d34 d50eddfc 9f756e97 04345edf 4bf15c6e 9b03f320

b1f2

Table 2. Public, Private, and Session Keys.
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Fig. 3. Images generated by concatenating the parameters γ and δ after message modifications. (a) Image 
generated using DSADHπ signatures. (b) Image generated using DSA signatures.

 

Measure

Figure 2(a) Figure 2(b)

Red Green Blue Red Green Blue

Entropy 7.9992 7.9993 7.9992 3.3388 5.2254 7.8299

Horizontal correlation −0.0161 0.0117 −0.0009 0.0355 0.0277 −0.0007

Vertical correlation −0.0143 −0.0135 −0.0041 0.0715 0.0676 0.0512

Diagonal correlation 0.0049 −0.0119 0.0036 0.0249 0.0356 0.0275

χ̂2 276.8✓ 250.5✓ 285.5✓ 30033349.9× 13144946.2× 136694.2×

DFT p-value 0.2380✓ 0.6811✓ 0.8878✓ 0.0× 0.0× 0.0×

Table 3. Encryption measures for the images constructed from DSADHπ and DSA signatures using different 
private keys.

 

Fig. 2. Images generated by concatenating the parameters γ and δ of DSADHπ signature after private-key 
modifications. (a) Image generated using DSADHπ signatures. (b) Image generated using DSA signatures.
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close values, including some even nearer to 0, such as −0.009, indicating the absence of a linear relationship 
between adjacent bytes.

However, correlation alone does not fully confirm randomness. A more significant difference between the 
two signatures is visible in the Goodness-of-fit test, where DSA produced values up to 8 decimal digits on the 
statistical test χ̂2, far below the maximum optimal-value of 300 and achieved by DSADHπ. The DFT test further 
underscored these differences: while the hypothesis of randomness is rejected if the p-value is less than 0.01, DSA 
consistently showed p-values of 0.0, rejecting randomness in all colors. In contrast, DSADHπ maintained values 
above the threshold, supporting the randomness hypothesis. Based on these encryption metrics, DSADHπ 
shows stronger security-properties than DSA.

Conclusion
In this research, a digital signature algorithm is introduced named DSADHπ, which integrates a dynamic 
substitution box to enhance both speed and security compared to DSA. The DSADHπ algorithm improves time 
efficiency by eliminating the step of computing a modular multiplicative inverse for every message signed. This 
approach permits the use of any integer k, avoiding the need to regenerate k if it lacks an inverse. For instance, 
when constructing a 512 × 512 pixels color image by concatenating the bit strings γ and δ from signatures of 
different messages, the DSADHπ algorithm completed the task in just 87.8547 ms, whereas the DSA algorithm 
required 3964.6649 ms, the results are illustrated in Figures 2 and 3. In terms of security, the proposed algorithm 
demonstrates superior performance. As detailed in Tables 3 and 4, the proposed algorithm achieves higher 
security metrics: its entropy approaches 8, and its correlation is closer to 0, indicating greater robustness 
than DSA. In addition, the proposed method enables a signer to generate up to 22560 distinct signatures. The 
DSADHπ algorithm demonstrates resilience against discrete logarithm attacks as well as cryptographic attacks 
typically associated with static S-boxes, due to its use of dynamic substitution boxes. These features collectively 
confirm the enhanced security of the approach.

Data availability
The digits of number π used in this work are from: https://storage.googleapis.com/pi100t/index.html.
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