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Inspired

One day I came accross this formula of Ramanujan (notebooks)
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[ tried to understand this formula,

for doing it [ made a series of experiments

with one of my favorite program : lindep or PSLQ,

that is Integer Relation algorithm. Lindep is part of PariGP

and now PSLQ is no longer a cryptic FORTRAN animal but part of Maple.
[ made an interface within maple to write a fortran source from

1 inquiry, compile it on the host computer, run it and come back with the
answer. | made one for Mathematica and Maple too.




This lead to more findings
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You see the pattern here ?, ™ 2™ g4




And some exotic ones like

e™ —m = 19.99909997919 ...in 1987 with my hp 15c and is still a mystery.
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Getting back to Ramanujan again, an identity with 1.
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In fact, there are more like that




More formulas
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Following the lead we get :
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Can we get other primes like that ? ... all the primes ?




But why 691 ?
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In fact, it comes from this identity with Eisenstein series
(Jean-Pierre Serre, cours d’arithmétique, p 157.)

65520 i
691 o11(n)q
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Hum, 21 — 16 = 65520, and 691 is the numerator of
B;,, a Bernoulli number.

Depending of the person, you could prefer the first
version or the 219,
Here Eis, is the Eisenstein series (not Euler numbers)




Anyhow, we have this approximation of 691...

2%11!

691 ~ —

Well, yes there are others

286!
61 =

1-[7

And 61 is the 3rd Euler number.

2°12510!
510 ¥ 7511
Esq0isa 1062 digits prime,

These numbers come from the expansion of the Dirichlet
beta series like

B(s) = ¥, =0

(2n+1)s




Where are the Euler numbers coming from ?

1 _1+x2+5x4+61x4+
cos(x) 21 4l 6!

1 . x? N 5x*  61x* N
cosh(x) 21 4! 6!

More generally, can we find all trigonometric expressions
that would lead to approximations of primes with % ?

Could it be possible to get all the primes with these intriguing
expressions with % ?




For example, with another expression (trig) we have
29
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If we look at AO06873 (Number of alternating 4-signed
permutations)

1,1,7,47,497,6241,95767, 1704527,34741217, ...
If the sequence contains a prime then if we have the asymptotic
expansion of a(n) it leads to one more approximation of that prime

using ¥

In this case, it is

n! gn 1

a(n) ~ —--
nm /(4+2\/§)

The E.G.F. of A006873 is 21X <0sG0)

cos(4x)




But, how the expression of a(n) is found ?

n! 8" 1

nmt /(4+zﬁ)
sin(x)+c (3x) .

1nto a series

a(n) =

1) expand

cos(4x)

2) Collect coetficients of the e.g.f (with nl)

3) Compute the ratio of a(n + 1)/a(n)

4) Compute first differences

5) Identity the constant : 2.546479089470325372302...

. 8
6) The constant 1s -

7) Retro engineer the expression to a(n).

8) \[(4 + 2v/2) is found in F(n318n = \[(4 +2v/2)

g1




Building one by one each prime from this idea.
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Not much of a pattern found here

We have some primes with Euler numbers via the Beta
Dirichlet series, some Bernoulli numbers...

Can’t we just generate primes with these informations ?
Not exactly.

Can’t we just generate some primes with <any> formula
)

What are the known formulas anyway ? Which is the most
efficient ?




Eratosthenes
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Fermat
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Mills and Wright

Wilson

Jones, Sato, Wada,
Wiens

John H. Conway
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Benoit Perichon and
al.

Tomas Oliveira e
Silva et al.

Fridman et al.
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Simon Plouffe

-276 to -194
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2019

2019

2019

Sieve

Primes of the form
2P-1

Fermat'’s little
theorem

Second degree
polynomial

Double exponential

Uses p!

25th degree
polynomial with 26
variables

FRACTRAN

6th degree
polynomial

26 primes in
arithmetic
progression

Sieve optimized,
fastest known
prime gererating
program

Prime generating
constant

Engel expansion of
0.705230171...

Efficient Mills-
Wright-like formula

Practical
Practical, exact
Weak Probable
primes
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Practical

Theoretical

Theoretical

Theoretical

Practical

Practical

Practical

Practical, limited to
precision

Practical, limited to
precision

Practical, limited to
precision

Computable infinity
51

Computable infinity
40

Less than 5 known
exactly

Very few primes

Very few primes

Very few primes

58

26

Computable infinity

Computable infinity

Computable infinity

Computable infinity




The 6’th degree polynomial took months to find

Prime numbers are hard to generate.
The formula of Mills is a good example

if A=1.3063778838630806904686144926...
then |A3" | is always prime.

a(n) =2,11, 1361, 2521008887,

16022236204009818131831320183, t},‘e triple -
41131011492151048000305295 ?126 aF eac
37915953170486139623539759 iteration

933135949994882770404074832568499, ...
a(21) is 1.214 billion digits long




Here is the algorithm of Mills seen in the
eye of reverse-engineering.

Begin with p=2

a) New prime = Next Prime(p”3)
b) Go to a).

You get the sequence, 2,11, 1361, 2521008887,
16022236204009818131831320183, ...




The formula of Wright is even worse

E. M. Wright formula (1951)

if go = a =1.9287800...and g,,,1; = 297 then
lgnl = {2"'22“‘ is always prime.

a(n) =3,13,16381,

The fourth term is 4932 digits long.

No one was able to compute the 5% term of

this sequence.

In both cases, it is a good idea but not practical at all.




But if we used Sylvester’s sequence rather

A000058 in the OEIS catalogue is
2,3,7,43,1807, 3263443,10650056950807,

has the property that

1:—+ + = + +—+
7 1807

Called the Pierce expansion or egyptian
fractions expansion of 0.99999999999...




The sequence is given by the recurrence
Soiq=82-85,+1
So starting at 2 we get 3, then 7, 43, ...
But what if we start differently by having
So =1.6181418093242092...
Will produce 2, 3,7,43,1811,3277913, ...

all primes. Nice, but it grows too fast.
The length doubles at each step.




The number
So =1.6181418093242092...
Was found using simulated annealing + Monte-Carlo

Simulated annealing is what we call
« le recuit simulé »




Simulated annealing + Monte-Carlo

1) First we choose a starting value and exponent
(preferably a rational fraction for technical reasons).

2) Use Monte-Carlo method with the Simulated Annealing,

in plain english we keep only the values that show primes
and ignore the rest. Once we have a series of 4-5 primes
we are ready for the next step.

3) We use a formula for forward calculation
and backward.




One example

Hypothesis : there exist a infinite sequence of
primes generated by {c- n"}, c real and { } is the
nearest integer.

Yes, if ¢ = 0.2655883729431433908... then the
sequence (n > 3).

7,67,829,12391, 218723, 4455833, 102894377, ...

But fails after 19 terms at n=22. The sequence is
finite.




We go back to Mills model

What if we use a smaller exponent and test if
it works ?

When ay= 43.80468771580293481... then if
5

,4+1 = Qu4,and use { } to isolate primes.
This is now sequence : A323176

113, 367, 1607, 10177, 102217, 1827697,
67201679,




Now, if you want an even smaller exponent choosing carefully
ay would it work too ?

11
Let'stry:a, .1 = ay,1o

Then if ay =
100000000000000000000000000000049.3122107477645

We have this prime sequence :
100000000000000000000000000000049
158489319246111348520210137339236753
524807460249772597364312157022725894401
3908408957924020300919472370957356345933709
70990461585528724931289825118059422005340095813




Continuing according to this idea...

101
With: @, 41 = @,,100

Then if ay = 10°°° + 961.49937633785074906096890050...

[ could compute 100 terms of this sequence : a(100) is a 1340
digits prime (only).

http://plouffe.fr/Record%20100%20primes%20sequence.txt




[ use a formula for forward calculation and
backward calculation.

Forward calculation
Next smallest prime to { a(n)® }

Backward calculation (to check)
Previous prime = solve for xin x¢ — S(n + 1).




This is the simulated annealing
High speed guessing with a filter

Guess first value (real value)

- 0) Apply £(So)

- 1) Is f(Sp) prime ?

- 2) Ifyes, keep the prime in list, if not go to 0
- with new startng value S,.

- The machine:
- corei’/ at 4.4 Ghz with a 220 TB jbod
- 283 billion f.p.o. per second




Finally what could be the sequence with the
smallest initial value, like 2 ?

Let’s try : a(n) = {297}
Where d = 1.3007687041481769105525256...

(sequence A306317)

2, 3, 5 7, 13, 29, 79, 293, 1619, 14947, 269237,
11570443, 1540936027, ...




Can we go backward too ?
Like from any specific prime number
using this algorithm ?

Let’s say from 1010 + 267 to 2 ?

Yes, if the exponent «a is inverted,

When a = 0.38562256415290 ...
Then we have the sequence :
10190 + 267, 742123524365563, 5424809,
163, 7, 2.

Here a(0) = 2.1322219996628413452 and
the exponent
1/ a =2.5932092490404286167308...




In 1902, a certain M. Cipolla published a formula
for the n'th prime number.

pn = n(In(n) + In(In(n)) - 1 + o(n)

On the other hand the formula for the number of
primes less or equal to n is

n
In(n)

n(n) = (n > o).

One formula being the functional inverse of each
other.




Actually, no.

Very recently[4,5], a number of people began to
realize that these inverses are not as they appear.

Ifr(n) = ln(n) =y

then the inverse is -y W(- 1/y) (or for n) to
simplify the notation.

This means thatp,, = —nW_; (— %).

Knowing that the value of W (—1/n) has to be
with W_, and not W (O, — %) .




Now there is a big question about p,,,
m(n) and the precision.

As we know the P.N.T. is a major item.
But, in term of precision : it is very rough.

[t is true yes, but when n— oo. The same
with p,,.

We go back to the classic equations.




n
In(n)

n(n) =

[s the classic equation, we change it for,

(see Dusart thesis [2010] for details)
n

In(n) — 1

t(n) =

If the compute the inverse

n —
In(n) — 1 -7

solve(%,n); gives (y is renamed).

e
Pn = _nW—l (_ E)




With the nth prime we have the formula:

pn ~ nlog(n)

Then
n

Wo(n)

m(n) =

Now we will look at what the error looks
like for

P = —nW_y (=)




Then, one by one we eliminate different
hypothesis about the difference between
our calculated p,, and the real value.

- The size of what is left is comparable to
one of the <straight lines> of W, (n).

- At first sight the value of the difference
is a straight line (correlation is 0.9999).
It is not.

- What is significant is the magnitude of
the difference only.

- The W}, (n) and logarithmic fit are
indistinguishable.




For this comparison we need to consider the
extent of the known tables of p,,.

My own table is up to 20000 billions.
The known long range table is only up to 1
(powers of 10 only).

04%,

The table for w(n) is up to 27000 billions and
the long range goes up to 1027,

The ponctual very large known primes are
useless for this study for a very simple reason :
We do not know the rank of these primes.




n
Wi (n)

for large values of n

n

m(n) is the straight line in blue between the values of
Wi(n)|




Since the values lies in between, it is natural to use
differences to realize we still have the same thing but smaller




This is strange.

The known behaviour of p,, and m(n) is not
exactly predictable, the evaluation of Riemann
with li(x) not simple.

The last computations of p,, and m(n) were
‘difficult. (Months of computer time).




From numerical evidence then

pu =Wy (=) = s

The surprise is that : what is left (again) is
something that resembles exactly what we had in
the first place (). The ‘curve’ is still a ‘straight line’
but the magnitude is smaller.

The only plausible explanation is that we have here
the matryoshka principle: russian puppets.




pn = nlog(n)

W (_ %) B Wotn)

1S more precise
Tested at n=104*

D1o2¢ =~ 58308642550474983476717666

The real value being
58310039994836584070534263




Now if we continue with this matryoshka principle,
what is the next term !

For p,,24 by using a bisection method to find the next
term in the form of

n
Wi (n)

The next terms are 114 and 96606.
W, (n) can be approximated with formula 4.20 in

Corless et al.
W,(n) = log(n) + 2nki + log(log(n) + 2mki)




Proze = —1024W_, (

e ) 1024 +
1024 W,(102%)

n n
_I_ _l_ cos
W114(10%%) ~ Wogg06(10%%)

The value is

58310039994824799949493554 compared to
58310039994836584070534263

(12 exact digits).
With 3 terms : 6 exact digits.




In 1994, B. Salvy published a paper to dig out an algorithm to
get dozens of terms in the Cipolla formula :

In(in(m) —2 _ In(In(m)? — 6 In(In(m)) + 11 )

Pn~MN <ln(n) +In(In(n)) — 1+ In(n) 21n(n)?

The formula is quite similar to the asymptotic expansion of
Wo(n)

L, L,(—2+1L L,(6 —9L, +2L3) L,(—12+ 36L, — 2212 + 3613
Wo(n) =~ L1—L2+—2+ 2( : 2)  Ly( : z)+ 2( 2 ] 2 2)+m
L, 213 6L3 12L%

Here L; = In(n) and L, = In(In(n)).




In principle, with enough terms and withn >> 1
it should do the thing.

Not exactly, with 72 terms of Cipolla-Salvy
formula we get 12 digits exact too.

There is a limit to it.

The expansion in Lambert functions is much
simpler.

For the moment, the only clue I have about the 4t
term is that it is proportional to the
[log,(n) + 1], that is the log of n in base 2.




For the info, here is the 10™ term of the Cipolla-Salvy
expansion.

k*In(k)*(1+(In(In(k))-1)/1In(k)+(In(In(k))-2)/In(k) ~2+(-1/2*
In(In(k))”~2+3*In(In(k))-11/2)/In(k) ~3+(1/3*In(In(k)) ~ 3-7/2*
In(In(k))”~2+14*In(In(k))-131/6)/In(k) ~4+(-1/4*In(In(k)) ~4+
23/6*In(In(k)) "~ 3-49/2*In(In(k)) ~2+159/2*In(In(k))-1333/12)/
In(k)”~5+(1/5*In(In(k)) ~5-49/12*In(In(k)) ~4+73/2*In(In(k)) "~ 3
-367/2*In(In(k))~2+3143/6*In(In(k))-13589/20)/In(k) ~6+(-1/6
*In(In(k))~6+257/60*In(In(k)) ~5-1193/24*In(In(k)) ~4+1027/3*
In(In(k))”~3-17917/12*In(In(k)) ~2+47053/12*In(In(k))-193223/
40)/In(k)”~7+(1/7*In(In(k)) ~ 7-89/20*In(In(k)) ~6+959/15*In(In
(k))"5-13517/24*In(In(k)) ~4+6657/2*In(In(k)) ~ 3-39769/3*In(
In(k))”~2+493568/15*In(In(k))-32832199/840)/In(k) ~8+(-1/8*In
(In(k))~8+643/140*In(In(k))"~7-14227/180*In(In(k)) ~6+34097/
40*In(In(k))~5-76657/12*In(In(k)) ~4+616679/18*In(In(k)) ™ 3-\
642111/5*In(In(k))~2+36780743/120*In(In(k))-893591051/2520)
/In(k)”9+(1/9*In(In(k)) ~9-1321/280*In(In(k)) "~ 8+119603/1260*
In(In(k))”~7-218809/180*In(In(k)) ~6+1328803/120*In(In(k)) ~5-\
2696687/36*In(In(k))~4+33904723/90*In(In(k)) ~3-40633409/30*
In(In(k))~2+7921124011/2520*In(In(k))-2995314311/840)/In(k)
~10)




But, let’s go back to m(n), we had

n
Wo(n)

m(n) =

We apply the same scheme let’s say for 107 for m(n) and
Pn -

Pio7 _
107 W‘l(

—e) 1 4 1 4 1 N 1
1077 Wo(107) = W5(107)  Wye3(107)  Waz53546(107)

m(107) 1 1 N 1 N 1
107 Wo(107)  Wap(107) ~ Weso(107) * Waq74463(107)

[t is similar, how similar is it ?




Graph of the coefficients of m(n) and p,, in the
Lambert expansion, every billion from 10° to 19674 - 10°, log scale.




This is where we can apply the duck principle.

[f an animal has a beak like a duck, feathers like a duck, the
color of a duck, quacks like a duck and has 2 feet like a duck
then it’s a duck.

With this Lambert function expansion the 2 quantities m(n)
and p,, are the same (except for the first term of p,,).




Recently, a certain André LeClair and Guillerme Franca (2014)
had a formula for the nth zero of Riemann’s Zeta function.

[t follows the same idea. If N(n) is the number of non-trivial
zeros (considering only the imaginary part) then

n)n 11

N(n) = —log(zn +

2T 2T 8

By inverting (functionally) the formula we obtain a formula for
the nth zero.

Bn—11)m
AW (87’18—6 11)

o(n) ~




The formula is spectacular in precision.

3
BITE
e

[s 14.5213469... when the real value is 14.13472514

So precise that they could evaluate precise values of
o(n) with n = 101990 by using an additional Newton-
like interpolation.

We have here a quantum leap compared to previous
models.




Again, if we go back to the classic known equations.

2N
log(n)

o(n) =
And N(n) (Riemann) is
N(n) =~ ——log ()

21e

And now by solving for n in each case we get

n

N(n) 1 o(n) W —21
2nn W(E) o2nn _1( >
e




Py (<9) - 1, 1
n Ul Wo(m) T Wiae (yy+r(M)

If we collect the 4 formulas we found, dividing by
either n or 2nmn we get

n(n) 1 Pn _ e

T W) Wy ()
N(n) ~ 1 a(n) " —27
2 " w(@) | 2 T W (T)




S - S T e p—
n(n) = n TRONAOR Pn =N ~1(— W)

=2 % —on N(n) = 2nn ! + !
On = 4Tln <_ _1< 0 >> <WO (g) Wl(n) )




From there, 2 possibles directions

[f the Euler principle applies then we should
have a sum and a product on each side.

Or, the expression with primes needs to be completed
with an expression using the zeros of the Zeta function
(1/2 + it), then it has to match with the equivalent
expression with the primes on the other 2 equations.

[ leave this question as an exercice to be completed...




Here is a model we can try for m(n) and p,,

n(n) 1 1
n Wo (n) Wk (n) + ek/(m
—e 1 1
~—-W ,[—) — _
Pn 1 ( n ) W,y (n) ] Wi (n) + eka(®

Here f(n) and g(n) are found using a logarithmic fit.

For f(n), at n = 4635000018752, the formula gives
146388867645773 exactly.




For g(n) , the formula is quite similar.

Comparing the 2 :

f(n) = 5.1407131338852538860618655508885 +
.048089483129908800105508959416636 In(n)
gn)
= 5.1425259035418911897661770856362
+.047839197978255729085511308229899 In(n)

[s this just a coincidence ?




Let’s try another model ?

n(n) 1 1
n Wo (n) Wk (n) + kS

~_W (—e) 1 z 1
Pn = =17 W, (n) k_lwk(n)+k9(")

g(n) = 4.8493349460 + 0.0557287326 In(n)
f(n) = 4.8604042576 + 0.068197411 In(n)




[ think that there is a possibility that one could find
eventually an exact formula for m(n), p,, , N(n) and

ag(n).




And now, something completely different.

This is Viete formula (1593).

2 \/E\/T\/E\/2+ 2+ 2 \/2+\/2+ 2 ++2
== > : :

T 2 2

As far as mathematic is concerned, nobody knows what is

: : 2 L
the binary expansion of —. This is just a bunch of zeros and ones

at random. Perhaps we will never find the patterns in it.

But here is another approach to the problem.




If we are looking at individual bits of this number
we do not see anything.

But let’s consider this instead.

We align all the partial products in Viete expansion
and look at the bits as a whole, everything is computed
in binary.

The first line is V2

2
V2 V2+V2
2

The 2" [ine is »

V2 J2+v2 . \/2+\/2+\/§
2 2

2

The 3™ line is




6] With 99715 bits x 25000 terms gives this :

Ll

An image of 2.5 billion pixels.
The long vertical lines at the left are the slow

2
convergence of the product to —

We don’t see much of a pattern here.




As a comparison, this is an image of the first 100 millions

decimal digits of Pi, colorized with 10 colors, blue, green,
red, yellow... the image is 10000 x 10000.




If we zoom in : this is pretty much random data.

One experiment was done with the first 1000 billion digits
of  : 10000 images of 10000 x 10000 (see web page).







[ have no explanation for it.

The successive square roots are producing the effect.
The thing we can say is that : from one term to the other
: bits are not random and the pattern is quite persistant.

re there any other algebraic curiosities like that ?
When experimenting with square roots and square

roots of square roots, I wanted to know if a persistant
pattern occurs in the Mandelbrot set.




As we know, there are similarities. I wanted to know
what if we approach one limit point ? If the limit
point is algebraic, are there any patterns in these
algebraic numbers ? (in binary perhaps ?).




Well, I have found one formula:

41647 +1

Iffn) =1+ —a;_ then the binary expansion of f

has a very, very long and persistant pattern.

Whenn = 4096 then at position 1342238724 there
are 4118 successive bits of this number that are all
‘0’

(estimated) at n = 1000000 the persistant pattern
goes up to the 80000015000004’th position.
Atn= 1000000000 the position is at 8.0 x 105,




.48192 8192
The first 270 million bits of 1 + V2:4819242V168792 41

216386

In false color:
The bits were colorized to
enhance the contrast.




This is the binary expansion of f(100) (same as above)

f(100)=1.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000001111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111011000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000101001111121111111111121211111111111111111111111111111111111111111111111111171111111111111111111111117111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111001010011000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000001001011111101111111111117111111111111711111111111111111111111111111
11111111111111111111111111111111111111111111111111111111111111111111111117111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111100011010010111100000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000010110101010111110011111111111
1111111111111111111111111111111111111111111111111111111111111117...




When we zoom in:




The first 446 million bits of the number

\/2 . 3216383 4 3./216383 1 |

1+ 7 .1632766




At another point (depending on the choice of width)




Zoom at the bit level (from an image of 332 m pixels.)
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The data

® [n all, 74 TB of mathematical data, mostly numbers.
®» 41 TB of primes, from 2 to 80594098476893 (2602 billion entries)

» 5.6 TB of { zeros, 103 billion zeros
» (QEIS tables (and extended tables)

®» The Inverter, 41 digits (small version with 11.3 billion entries), 64
digits, 17.2 billion entries

» [nverter 41 : 1.008 TB, http://plouffe.fr/ip/
® [nverter 64 : 2.15 TB.
® High resolution images: 1206000, 1.773 TB.




Errors found...

®» Prime[8200000000] and Prime[93000000000] just hangs
in Mathematica.

®» The tables of zeros at http://www.Imfdb.org/zeros/zeta/_do contains errors

when the decimal expansion finishes by 00. 11 errors where found.

The index and the corresponding zeros do not match.

In both cases, they are working on the problem.




Thank you for your attention

Merci de votre attention
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