
Recognizing Numerical Constants
David H. Bailey and Simon Plouffe

December 15, 1995
Ref: Canadian Mathematical Society, vol. 20 (1997), pg. 73-88

Abstract
The advent of inexpensive, high-performance computers and new efficient algorithms

have made possible the automatic recognition of numerically computed constants. In other
words, techniques now exist for determining, within certain limits, whether a computed real
or complex number can be written as a simple expression involving the classical constants
of mathematics.

These techniques will be illustrated by discussing the recognition of Euler sum con-
stants, and also the discovery of new formulas for π and other constants, formulas that
permit individual digits to be extracted from their expansions.

Bailey: NASA Ames Research Center, Mail Stop T27A-1, Moffett Field, CA
94035-1000, USA; dbailey@nas.nasa.gov.

Plouffe: Department of Mathematics and Statistics, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada; plouffe@cecm.sfu.ca.

1

1. Introduction

The advent of inexpensive, high-performance computers and new efficient algorithms

have made possible the automatic recognition of numerically computed constants. In other

words, techniques now exist for determining, within certain limits, whether a computed real

or complex number can be written as a simple expression involving the classical constants

of mathematics.

The fundamental technique involved is that of finding integer relations. Let x =

(x1, x2, · · · , xn) be a vector of real numbers. x is said to possess an integer relation if

there exist integers ai not all zero such that a1x1 + a2x2 + · · · + anxn = 0. By an inte-

ger relation algorithm, we mean an algorithm that is guaranteed (provided the computer

implementation has sufficient numeric precision) to recover the vector of integers ai, if it

exists, or to produce bounds within which no integer relation can exist.

The problem of finding integer relations among a set of real numbers was first studied

by Euclid, who gave an iterative algorithm (the Euclidean algorithm), which when applied

to two real numbers, either terminates, yielding an exact relation, or produces an infinite

sequence of approximate relations. The generalization of this problem for n > 2 has been

attempted by Euler, Jacobi, Poincare, Minkowski, Perron, Brun, Bernstein, among others.

However, none of their algorithms has been proven to work for n > 3, and numerous

counterexamples have been found.

The first integer relation algorithm with the desired properties mentioned above was

discovered by Ferguson and Forcade in 1977 [14]. In the intervening years a number of

other integer relation algorithms have been discovered, including the “LLL” algorithm [16],

the “HJLS” algorithm [15], and the “PSOS” [6] algorithm.

2. The PSLQ Integer Relation Algorithm

In 1991 a new algorithm, known as “PSLQ” algorithm, was developed by Ferguson

[12]. It appears to combine some of the best features separately possessed by previous

algorithms, including fast run times, numerical stability, numerical efficiency (i.e. suc-

cessfully recovering a relation when the input is known to only limited precision), and a

2

guaranteed completion in a polynomially bounded number of iterations. More recently a

much simpler formulation of this algorithm was developed, and it has been extended to the

complex number field [13]. This newer, simpler version of PSLQ can be stated as follows:

Let x be the n-long input real vector, and let nint denote the nearest integer function

(for exact half-integer values, define nint to be the integer with greater absolute value).

Let γ :=
√

4/3. Then perform the following:

Initialize:

1. Set the n × n matrices A and B to the identity.

2. For k := 1 to n: compute sk :=
√∑n

j=k x2
j ; endfor. Set t = 1/s1. For k := 1 to n:

yk := txk; sk := tsk; endfor.

3. Compute the n × (n − 1) matrix H as follows:

For i := 1 to n: for j := i + 1 to n − 1: set Hij := 0; endfor; if i ≤ n − 1 then set

Hii := si+1/si; for j := 1 to i − 1: set Hij := −yiyj/(sjsj+1); endfor; endfor.

4. Perform full reduction on H, simultaneously updating y, A and B:

For i := 2 to n: for j := i−1 to 1 step −1: t := nint(Hij/Hjj); yj := yj+tyi; for k := 1

to j: Hik := Hik − tHjk; endfor; for k := 1 to n: Aik := Aik − tAjk, Bkj := Bkj + tBki;

endfor; endfor; endfor.

Repeat until precision is exhausted or a relation has been detected:

1. Select m such that γi|Hii| is maximal when i = m.

2. Exchange entries m and m+1 of y, corresponding rows of A and H, and corresponding

columns of B.

3. If m ≤ n − 2 then update H as follows:

Set t0 :=
√

H2
mm + H2

m,m+1, t1 := Hmm/t0 and t2 := Hm,m+1/t0. Then for i := m to

n: t3 := Him; t4 := Hi,m+1; Him := t1t3 + t2t4; Hi,m+1 := −t2t3 + t1t4; endfor.

3

4. Perform block reduction on H, simultaneously updating y, A and B:

For i := m+1 to n: for j := min(i−1,m+1) to 1 step −1: t := nint(Hij/Hjj); yj :=

yj + tyi; for k := 1 to j: Hik := Hik − tHjk; ; endfor; for k := 1 to n: Aik :=

Aik − tAjk, Bkj := Bkj + tBki; endfor; endfor; endfor.

5. Norm bound: Compute M := 1/ maxj |Hj|, where Hj denotes the j-th row of H.

Then there can exist no relation vector whose Euclidean norm is less than M .

6. Termination test: If the largest entry of A exceeds the level of numeric precision

used, then precision is exhausted. If the smallest entry of the y vector is less than

the detection threshold, a relation has been detected and is given in the corresponding

column of B.

With regards to the termination criteria in step 6, it sometimes happens that a relation

is missed at the point of potential detection because the y entry is not quite as small as

the detection threshold being used (the threshold is typically set to the “epsilon” of the

precision level). When this happens, however, one will note that the ratio of the smallest

and largest y vector entries is suddenly very small, provided sufficient numeric precision is

being used. In a normal computer run using the PSLQ algorithm, prior to the detection

of a relation, this ratio is seldom smaller than 10−2. Thus if this ratio suddenly decreases

to a very small value, such as 10−20, then almost certainly a relation has been detected

— one need only adjust the detection threshold for the algorithm to terminate properly

and output the relation. When detection does occur, this ratio may be thought of as a

“confidence level” of the detection.

As a general rule, one can expect to detect a relation of degree n, with coefficients

of size 10m, provided that the input vector is known to somewhat greater than mn digit

precision, and provided that computations are performed using at least this level of numeric

precision.

4

3. Applications of the PSLQ Algorithm

There are a number of applications of integer relation detection algorithms in compu-

tational mathematics. One application is to analyze whether or not a given constant α,

whose value can be computed to high precision, is algebraic of some degree n or less. This

can be done by first computing the vector x = (1, α, α2, · · · , αn) to high precision and then

applying an integer relation algorithm to the vector x. If a relation is found, this integer

vector is precisely the set of coefficients of a polynomial satisfied by α. Even if a relation is

not found, the resulting bound means that α cannot possibly be the root of a polynomial

of degree n, with coefficients of size less than the established bound. Even negative results

of this sort are often of interest.

We have performed several computations of this type [6]. These computations have

established, for example, that if Euler’s constant γ satisfies an integer polynomial of degree

50 or less, then the Euclidean norm of the coefficients must exceed 7×1017. Computations

of this sort have also been applied to study a certain conjecture regarding the Riemann

zeta function. It is well known [10] that

ζ(2) = 3
∞∑

k=1

1

k2
(

2k
k

)

ζ(3) =
5

2

∞∑
k=1

(−1)k−1

k3
(

2k
k

)

ζ(4) =
36

17

∞∑
k=1

1

k4
(

2k
k

)
These results have led some to suggest that

Z5 = ζ(5)/
∞∑

k=1

(−1)k−1

k5
(

2k
k

)
might also be a simple rational or algebraic number. Unfortunately, integer relation calcu-

lations [3] have established that if Z5 satisfies a polynomial of degree 25 or less, then the

Euclidean norm of the coefficients must exceed 2 × 1037.

5

4. Euler Sums

In response to a letter from Goldbach, Euler considered sums of the form

∞∑
k=1

(
1 +

1

2m
+ · · · + 1

km

)
(k + 1)−n.

Euler was able to give explicit values for certain of these sums in terms of the Riemann

zeta function. For example, Euler found an explicit formula for the case m = 1, n ≥ 2.

Little progress has been made on this problem in the intervening years, although special

cases of Euler’s results have been rediscovered numerous times (see [7] for some references).

In April 1993, Enrico Au-Yeung, an undergraduate at the University of Waterloo,

brought to the attention of Prof. Jonathan Borwein the curious fact that

∞∑
k=1

(
1 +

1

2
+ · · · + 1

k

)2

k−2 = 4.59987 · · · ≈ 17

4
ζ(4) =

17π4

360

based on a computation to 500,000 terms. Borwein’s reaction was to compute the value of

this constant to a higher level of precision in order to dispel this conjecture. Surprisingly,

a computation to 30 and later to 100 decimal digits still affirmed it.

Intrigued by this empirical result, numerical values were computed for several of these

and similar sums, which were termed Euler sums. The resulting values were analyzed

using integer relation searches. These efforts produced even more empirical evaluations,

suggesting broad patterns and general conjectures. Ultimately proofs were found for many

of these experimental results.

We will consider here only the following two classes of Euler sums. Other classes are

studied in [4].

sh(m,n) =
∞∑

k=1

(
1 +

1

2
+ · · · + 1

k

)m

(k + 1)−n m ≥ 1, n ≥ 2,

sa(m,n) =
∞∑

k=1

(
1 − 1

2
+ · · · + (−1)k+1

k

)m

(k + 1)−n m ≥ 1, n ≥ 2,

Explicit evaluations of some of the constants in these classes are presented with proofs in

[8] and [9].

6

5. Numerical Techniques

It is not easy to compute numerical values of any of these Euler sums to high preci-

sion. Straightforward evaluation using the defining formulas, to some upper limit feasible

on present-day computers, yields only about eight digits accuracy. Because integer rela-

tion algorithms require much higher precision to obtain reliable results, more advanced

techniques must be employed.

Our approach to computing numerical values of these sums involves the compound

application of the Euler-Maclaurin summation formula (see [2, p. 289]), which can be

stated as follows. Suppose f(t) has at least 2p + 2 continuous derivatives on (a, b). Let

D be the differentiation operator, let Bk denote the k-th Bernoulli number, and let Bk(·)
denote the k-th Bernoulli polynomial. Then

b∑
j=a

f(j) =
∫ b

a
f(t) dt +

1

2
[f(a) + f(b)]

+
p∑

j=1

B2j

(2j)!
[D2j−1f(b) − D2j−1f(a)] + Rp(a, b). (1)

where the remainder Rp(a, b) is given [2, p. 289] by

Rp(a, b) =
−1

(2p + 2)!

∫ b

a
B2p+2(t − [t])D2p+2f(t) dt.

We will briefly present a method for computing sh(m,n). See [4] for more details. Let

h(k) =
∑k

j=1 1/j and f(t) = 1/t. By applying the Euler-Maclaurin summation formula, it

can be seen that

h(k) = γ + ln k +
1

2k
− 1

12k2
+

1

120k4
− 1

252k6
+

1

240k8

− 1

132k10
+

691

32760k12
− 1

12k14
+

3617

8160k16
+ O(k−18). (2)

We will use h̄(k) to denote this particular approximation (i.e., (2) without the error

term). Now consider the sum

sh(m,n) =
∞∑

k=1

(
1 +

1

2
+ · · · + 1

k

)m

(k + 1)−n.

7

Let c be a large integer, and let g(t) = h̄m(t)(t + 1)−n. Applying the Euler-Maclaurin

summation formula (1) again, we can write

sh(m,n) =
c∑

k=1

(
1 +

1

2
+ · · · + 1

k

)m

(k + 1)−n

+
∞∑

k=c+1

(
1 +

1

2
+ · · · + 1

k

)m

(k + 1)−n

=
c∑

k=1

hm(k)(k + 1)−n +
∫ ∞

c+1
g(t) dt +

1

2
g(c + 1)

−
9∑

k=1

B2k

(2k)!
D2k−1g(c + 1) + O(c−18). (3)

This formula suggests the following computational scheme. First, explicitly evaluate

the sum
∑c

k=1 hm(k)(k + 1)−n for c = 108, using a numeric working precision of 150 digits.

Secondly, perform the symbolic integration and differentiation steps indicated in formula

(3). Finally, evaluate the resulting expression, again using a working precision of 150 digits.

The final result should be equal to sh(m,n) to approximately 135 significant digits.

We have performed many computations of this type. The integration and differentiation

operations required in (3) can be handled using a symbolic mathematics package, such as

Maple [11] or Mathematica [17]. The explicit summation of the first c terms, as indicated

in (3), could be performed by utilizing the multiple precision facility in the Maple or

Mathematica packages. However, it was found that the MPFUN multiple precision package

and translator developed by one of us [3] was significantly faster for this purpose.

Whatever software is used, this explicit summation is an expensive operation. For

example, the evaluation of sh(3, 4) to 108 terms, using the MPFUN package with 150-

digit precision arithmetic, requires 20 hours on a “Crimson” workstation manufactured by

Silicon Graphics, Inc. Thus while such runs can be made, clearly this is pressing the limits

of current workstation technology. Fortunately, it is possible to perform such computations

on a highly parallel computer system. The details of this parallel algorithm are given in

[4].

8

6. Application of PSLQ to Euler Sums

The problem of recognizing Euler sum constants is well suited to analysis with integer

relation algorithms. We will present but one example of these computations. Consider

sa(2, 3) =
∞∑

k=1

(
1 − 1

2
+ · · · + (−1)k+1

k

)2

(k + 1)−3

= 0.156166933381176915881035909687988193685776709840 · · ·

Based on experience with other constants, we conjectured that this constant satisfies a

relation involving homogeneous combinations of ζ(2), ζ(3), ζ(4), ζ(5), ln(2), Li4(1/2) and

Li5(1/2), where Lin(x) =
∑∞

k=1 xkk−n denotes the polylogarithm function.

The set of terms involving these constants with degree five (see section 7) are as follows:

Li5(1/2), Li4(1/2) ln(2), ln5(2), ζ(5), ζ(4) ln(2), ζ(3) ln2(2), ζ(2) ln3(2), ζ(2)ζ(3). When

sa(2, 3) is augmented with this set of terms, all computed to 135 decimal digits accuracy,

and the resulting 9-long vector is input to the PSLQ algorithm, it detects the relation

(480,−1920, 0, 16, 255, 660,−840, −160, 360) at iteration 390. Solving this relation for

sa(2, 3), we obtain the formula

sa(2, 3) = 4 Li5(1/2) − 1

30
ln5(2) − 17

32
ζ(5) − 11

8
ζ(4) ln(2) +

7

4
ζ(3) ln2(2)

+
1

3
ζ(2) ln3(2) − 3

4
ζ(2)ζ(3)

= 4 Li5(1/2) − 1

30
ln5(2) − 17

32
ζ(5) − 11

720
π4 ln(2) +

7

4
ζ(3) ln2(2)

+
1

18
π2 ln3(2) − 3

24
π2ζ(3)

(recall that ζ(2n) = (2π)2n|B2n|/ [2(2n)!]).

When the relation is detected, the minimum and maximum y vector entries are 1.60×
10−134 and 5.98 × 10−29, respectively. Thus the confidence level of this detection is on the

order of 10−105, indicating a very reliable detection.

Although 135-digit input values and 150-digit working precision were used when this

relation was originally detected, the fact that the maximum y-vector entry is only 10−29 at

detection implies that such high levels of numeric precision are not required in this case.

9

Indeed, the above relation can be successfully detected using only the 50-digit input values

listed above and 50-digit working precision when performing the PSLQ algorithm.

Table 1 lists a number of the formulas that have been found by this procedure. Table

2 lists some relations between the sh and sa constants. Others of both classes be found in

[4]. It should be emphasized that the results in Tables 1 and 2 are not established in any

rigorous mathematical sense by these calculations. However, in each case the “confidence

level” (see section 3) of these detections is less than 10−50, and in most cases is in the

neighborhood of 10−100.

7. New Formulas for π and Related Constants

Many readers may be already familiar with the recent paper by the authors and Peter

Borwein that gives a new method for computing individual digits of π and certain other

related constants. A brief review of these results is as follows. First, we inquire whether π

satisfies a relation of the form

π =
∞∑

k=0

1

16k

[
a0

8k
+

a1

8k + 1
+

a2

8k + 2
+

a3

8k + 3
+

a4

8k + 4

+
a5

8k + 5
+

a6

8k + 6
+

a7

8k + 7

]

where ai are rational numbers. Indeed it does. Such a formula can be found by separating

the right hand side of the above expression into eight summations, numerically evaluating

each to high precision, appending the numerical value of π, and applying PSLQ to the

resulting 9-long vector. When this is done, PSLQ discovers the following formula:

π =
∞∑

k=0

1

16k

[
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

]
(4)

A similar formula was discovered by Ferguson. These two formulas form the basis of a

two-dimensional lattice of formulas of this form.

The significance of these formulas for the computation of π can be seen as follows. Let

S1 be the first of the sums in the above formula (4). Then we can write

frac(16dS1) =
∞∑

k=0

16d−k

8k + 1
(mod 1) (5)

10

sh(3, 2) =
15

2
ζ(5) + ζ(2)ζ(3)

sh(3, 3) = −33

16
ζ(6) + 2ζ2(3)

sh(3, 4) =
119

16
ζ(7) − 33

4
ζ(3)ζ(4) + 2ζ(2)ζ(5)

sh(3, 6) =
197

24
ζ(9) − 33

4
ζ(4)ζ(5) − 37

8
ζ(3)ζ(6) + ζ3(3) + 3ζ(2)ζ(7)

sh(4, 3) = −109

8
ζ(7) +

37

2
ζ(3)ζ(4) − 5ζ(2)ζ(5)

sh(5, 4) =
890

9
ζ(9) + 66ζ(4)ζ(5) − 4295

24
ζ(3)ζ(6) − 5ζ3(3) +

265

8
ζ(2)ζ(7)

sh(6, 3) = −3073

12
ζ(9) − 243ζ(4)ζ(5) +

2097

4
ζ(3)ζ(6) +

67

3
ζ3(3) − 651

8
ζ(2)ζ(7)

sh(7, 2) =
134701

36
ζ(9) +

15697

8
ζ(4)ζ(5) +

29555

24
ζ(3)ζ(6) + 56ζ3(3)

+
3287

4
ζ(2)ζ(7)

sa(2, 2) = 6Li4(1/2) +
1

4
ln4(2) − 29

8
ζ(4) +

3

2
ζ(2) ln2(2)

sa(2, 3) = 4Li5(1/2) − 1

30
ln5(2) − 17

32
ζ(5) − 11

8
ζ(4) ln(2) +

7

4
ζ(3) ln2(2)

+
1

3
ζ(2) ln3(2) − 3

4
ζ(2)ζ(3)

sa(3, 2) = −24Li5(1/2) + 6 ln(2)Li4(1/2) +
9

20
ln5(2) +

659

32
ζ(5) − 285

16
ζ(4) ln(2)

+
5

2
ζ(2) ln3(2) +

1

2
ζ(2)ζ(3)

Table 1: Experimentally Detected Formulas

11

0 = 84549sh(1, 7) + 211468sh(2, 6) + 148902sh(3, 5) − 13360sh(4, 4) − 1978sh(5, 3)

0 = −2718587sh(1, 8) − 164525664sh(2, 7) − 178042944sh(3, 6) − 88947862sh(4, 5)

+3863940sh(5, 4) + 672100sh(6, 3)

0 = −14269408sh(1, 9) + 2578470sh(2, 8) + 2815376sh(3, 7) + 5814550sh(4, 6)

+6238884sh(5, 5) + 3938912sh(6, 4) + 1122784sh(7, 3) − 1860sh(8, 2)

+63164285ζ(10)

0 = 321ζ(10) − 440ζ2(5) − 720ζ(3)ζ(7) − 80ζ2(3)ζ(4) + 560ζ(2)ζ(3)ζ(5)

−40sh(2, 8) + 160sh(3, 7)

0 = −1691755503sh(1, 10) − 3172589688sh(2, 9) + 837511504sh(3, 8)

−7302717576sh(4, 7) − 13958660016sh(5, 6) − 12910466064sh(6, 5)

−7099332912sh(7, 4) − 1773212688sh(8, 3) + 658360sh(9, 2)

+53491434679ζ(11) − 21868248971ζ(2)ζ(9)

0 = −589ζ(11) + 322ζ(5)ζ(6) + 756ζ(4)ζ(7) + 254ζ(3)ζ(8) − 336ζ2(3)ζ(5)

−368ζ(2)ζ(9) + 80ζ(2)ζ3(3) − 16sh(3, 8) − 48sh(4, 7)

0 = 1152sa(2, 4) + 640sa(3, 3) − 7680 ln(2)Li5(1/2) + 64 ln6(2) − 1881ζ(6)

+7440ζ(5) ln(2) − 1680ζ(4) ln2(2) − 1120ζ(3) ln3(2) + 864ζ(3)ζ(3)

−640ζ(2) ln4(2) − 432ζ(2)ζ(3) ln(2)

Table 2: Experimentally Detected Relations

12

=
d∑

k=0

16d−k (mod 8k + 1)

8k + 1
+

∞∑
k=d+1

16d−k

8k + 1
(mod 1) (6)

where frac denotes fractional part, i.e. the value mod 1.

The numerator of the first summation in (6) can be rapidly evaluated by means of the

binary algorithm for exponentiation, where each operation is performed modulo the integer

8k+1. These calculations can be done with either integer or floating-point arithmetic, pro-

vided the format being used has enough accuracy to exactly represent the integer d2. Once

an individual exponentiation operation is complete, the resulting integer value is divided

by 8k + 1, using floating-point arithmetic, and added to the sum modulo 1. Only a few

terms are required of the second summation in (6), since they rapidly become smaller than

the “epsilon” of the floating-point arithmetic system being used. The resulting fractional

value, when expressed in base 16 notation, gives the hexadecimal digits of π beginning at

position d + 1.

Here are a number of other formulas of this type. As before, these formulas were

originally found using PSLQ searches.

π2 =
1

8

∞∑
k=0

1

64k

[
144

(6k + 1)2
− 216

(6k + 2)2
− 72

(6k + 3)2
− 54

(6k + 4)2
+

9

(k + 5)2

]

π2 =
∞∑

k=0

1

16k

[
16

(8k + 1)2
− 16

(8k + 2)2
− 8

(8k + 3)2
− 16

(8k + 4)2

− 4

(8k + 5)2
− 4

(8k + 6)2
+

2

(8k + 7)2

]

log2(2) =
1

6

∞∑
k=0

1

16k

[
3

(8k)2
+

16

(8k + 1)2
+

40

(8k + 2)2
+

8

(8k + 3)2
+

28

(8k + 4)2

+
4

(8k + 5)2
− 10

(8k + 6)2
+

2

(8k + 7)2

]

Full details of these calculations, as well as formal proofs of the above formulas, can be

found in [5].

8. A General Constant Recognition Procedure

In all of the cases mentioned above, the authors of the respective studies had “hunches”

beforehand as to what form the resulting formulas might take. Frankly, some insight of

13

sort is invaluable in avoiding what otherwise is a combinatorial explosion in the number

of possible terms. It simply is not possible to perform integer relation searches with every

conceivable term. In fact, if the constant is known to only limited precision, the number

of terms that can be considered in an integer relation search may be limited to a handful.

Nonetheless, it does appear feasible to define general search procedures that are often

successful in recovering the analytic form of many constants that naturally appear in

mathematical calculations. The authors present the following procedure as an example:

1. Using PSLQ and full precision, check if αj is algebraic of degree n, for j up to m.

2. Using PSLQ and full precision, check if α is given by a multiplicative formula of the

form

0 = a1 log(α) + a2 log(2) + a3 log(3) + a4 log(5) + · · · + ar log(pr)

+ar+1 log(c1) + ar+2 log(c2) + · · · + ar+s log(cs)

where pk is the k-th prime, and where ck are a selected set of transcendentals.

3. Using PSLQ and quad precision, check if α is given by a linear formula of the form

0 = a0 + a1α + a2x1 + a3x2 + · · · + at+1xt

where x1, x2, · · · , xt are each a product of up to three constants from a selected set

of algebraic and transcendental constants.

4. If a tentative relation is found in the previous step using quad precision, then check

it using full precision.

In the above, m,n, r, s, t are parameters that can be set to adjust the amount of computer

time one is willing to expend in the search. The authors have tried, for example, m =

8, n = 32, r = 20, s = 20, and t = 3.

Some examples of constants recognized by above procedure are the following:

14

1. The root near 1.3851367 of the polynomial

−14250992566272 + 1934517374976t6 − 37548447232t12 + 3072863296t18

+3789095144t24 − 408473063t30 − 43879700t36 − 5815353t42

+319671t48 − 76384t54 − 852t60 − 444t66 + 132t72 + 23t78 + 3t84 + t90

2. The definite integral

∫ ∞

0
t7/4e−t dt =

21π
√

2

16Γ(1/4)

3. The definite integral

∫ π/4

0

t2 dt

sin2(t)
= −π2/16 + π ln(2)/4 + G

where G denotes Catalan’s constant

4. The definite integral

∫ 1

0

t2 ln(t) dt

(t2 − 1)(t4 + 1)
=

π2

16(2 +
√

2)

15

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Pub-

lications, New York, 1972.

[2] K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley, New York, 1989.

[3] D. H. Bailey, “Multiprecision Translation and Execution of Fortran Programs,” ACM

Transactions on Mathematical Software, to appear. This software and documentation

may be obtained by sending electronic mail to mp-request@nas.nasa.gov.

[4] D. H. Bailey, J. M. Borwein and R. Girgensohn, “Experimental Evaluation of Euler

Sums,” Experimental Mathematics, vol. 3, no. 1 (1994), p. 17-30.

[5] D. H. Bailey, P. B. Borwein and S. Plouffe, “On the Rapid Computa-

tion of Various Polylogarithmic Constants,” manuscript, 1995. Available from

http://www.cecm.sfu/~pborwein.

[6] D. H. Bailey and H. R. P. Ferguson, “Numerical Results on Relations Between Nu-

merical Constants Using a New Algorithm,” Mathematics of Computation, vol. 53

(October 1989), p. 649 - 656.

[7] B. C. Berndt, Ramanujan’s Notebook, Part I, Springer Verlag, New York, 1985.

[8] D. Borwein and J. M. Borwein, “On An Intriguing Integral and Some Series Related

to ζ(4),” to appear in Proceedings of the American Mathematical Society.

[9] D. Borwein, J. M. Borwein and R. Girgensohn, “Explicit Evaluation of Euler Sums,”

to appear in Proceedings of the Edinburgh Mathematical Society.

[10] J. M. Borwein and P. B. Borwein, Pi and the AGM, John Wiley, New York, 1987.

[11] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, S. M. Watt,

Maple V Language Reference Manual, Springer-Verlag, New York, 1991.

16

[12] H. R. P. Ferguson and D. H. Bailey, “A Polynomial Time, Numerically Stable Inte-

ger Relation Algorithm,” RNR Technical Report RNR-91-032, NASA Ames Research

Center, MS T045-1, Moffett Field, CA 94035-1000.

[13] H. R. P. Ferguson, D. H. Bailey and S. Arno, “Analysis of PSLQ, An Integer Relation

Finding Algorithm,” manuscript, 1995.

[14] H. R. P. Ferguson and R. W. Forcade, “Generalization of the Euclidean Algorithm

for Real Numbers to All Dimensions Higher Than Two,” Bulletin of the American

Mathematical Society, 1 (1979), p. 912 - 914.

[15] J. Hastad, B. Just, J. C. Lagarias and C. P. Schnorr, “Polynomial Time Algorithms

for Finding Integer Relations Among Real Numbers,” SIAM Journal on Computing,

vol. 18 (1988), p. 859 - 881.

[16] A. K. Lenstra, H. W. Lenstra and L. Lovasz, “Factoring Polynomials with Rational

Coefficients”, Math. Annalen, vol. 261 (1982), p. 515 - 534.

[17] S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, Addison

Wesley, Menlo Park, 1988.

17

