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1) Continued fractions and Euclidian algorithm.

They are known since (at least) the invention of the well-tempered scale. Why
?

Find a good rational value of 27(1/12) =

1.059463094359295... = v
and the fact that v**7 is almost3/2, means that log(2)*(7/12) =log(3/2).
The next BEST choice would have been the scale with 53 semi-tones, existed

once but abandonned (71920).

Rational approximations and continued fractions are natural in a sensethat
for a given x in R, x being irrational, the BEST rationahpproximation if the
denominator is mnot bigger than M is given by the continued fraction
development of x. Example if x=1.868132 then

Continued fraction of 1.868132...
is=<1,1,5,1,1,2,...

i= given by the geometrical
construction of a rectangle of
gides 1 and 1.866813%...

We remove SQUARES and count
thetm.

Note : for @ we would obtain
1,1,1,1,1,1,....




To obtain the numbers : [1,1,6,1,1,2,... we can construct the rectangle but (of
course) we use FEuclidian algorithm.

We divide 1/x, take the quotient,
then the fractional part of 1/x : —1/x".

and then go to the We divide...

If x is RATIONAL the algorithm STOPS eventually, if x is irrational itnever
stops. Useful for constructing sprockets (engrenages), to play a numerical

game with your pocket calculator, admire some paintings, the Parthenonin
Greece is builded with rectangles of sides 1/1.6180339887...

So, this algorithm can be used to solve the problem of having a goodrational

to approximate x. That is : x * b = a. Almost equal since a and b are iZi and

X 1s irrational.

The problem was solved. No more games. Until Gauss asked (and othersbefore
him). Yes but what if we have x and y at the same time ?

We would then have to solve x*a + y*b + ¢ =0
(almost 0, since a,b,c are integers). Gauss (as usual) solved the problemby
taking is favourite figure (the unit circle) and came with his 601" algorithm.

2) The 601" algorithm of Gauss

First we take 2 vectors in the plane, bl and b2.
We can suppose that b2 ; bl, if not we rename them, ok.
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Le réseau est engendré par les vecteurs bl et b2. On peut générer le méme réseau en
prenant les 2 vecteurs bl' et b2' qui sont des combinaisons linéaires des 2 premiers.
Ici b1'=3*b2+b1 et b2'=4*b2+b1. La question consiste a savoir étant donné un
réseau quelle est labase minimale.

The 2 vectors are generating a LATTICE.

The essential part of what Gauss found is that the same lattice can be generated by
vectors which are linear combinations of the 2 starting vectors. These 2 final vector{CAN
be shorter, meaning the length. Also, they will bemore orthogonal, forming an angle ofat
least 60 degrees : AH !, here is from what the name come.

So, with the help of the figure we see that we camremove a certain number of times blfrom
b2 and still have a lattice essentially the same. To stop we wait that theorthogonal
projection of b2 over the bl axe makes an angle of 60" at least.

In fact this is an equivalence class, more than that, this set of representation form a group.
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Here we finally find the vectors lying in the shaded region.More precisely we havethe
following...
Take 2 vectors, bl et b2 linearly independants with b2;b1.
Repeat until —b2— fi —b1—
exchange b2 and bl
Replace b2 by b2 =b2 - m*b1 with m that satisfies the conditions.
end.

Simple !,

Yes for 2 values it goes well. The algorithm is not exactly what we would call thaatural
generalization of the EA in 2 dimensions, but it works.

The problem came when someone asked, what if we have now, x, y and zApparently,
Kronecker, Minkowski,and many others tried to graspwhat was behind the continued
fractions ---; Euclidian algorithm, simultaneous approximations ---; proper generalization.
For further explanations see (in Maple) :

?kronecker 7minkowski 7lattice

First, we need a proper definition of what we are looking for in terms of Distancand
Angle. The equivalent of the 60I'does not work with a sphere in 3 dimensions.

For example, the formulation is : Find a Z-linear relation with k real numbers, Weare
searching for the SHORTEST possible vectors BUT at the same time looking at vectorshat



are near orthogonal .

Second, the fact that (for example) x,y,z are irrational then we have to deal witdtionals
(in a computer) and be sure when to stop in terms of numerical precision. In othewords,
the zero of the machine.

For the EA, the time of execution in term of STEPS is known and easily achieved, theame
with the 60Talgorithm : feasible by hand.

From that, it waited until 1979. Ferguson and Forcade came with a formulation ofthe
problem in modern terms. (lots of technical details omitted),

The main idea was that YES we can do it BUT at what cost ?, They proved theoriginal
paper), it can be done in polynomial time for k entries. Not very effective in terms dfhe
exponent. (n"2 is not too bad but n"8 is horrible).

Then in 1982, an idea (recycled) from the original Gauss paper (60 degrees) camedrom
Europe (Kannan & al.). This is what became known as the Lenstra-Lenstra-Lovas{LLL)
algorithm or the lattice reduction algorithm. In that context, the xs could be complesr
real.

In 1986, Ferguson-Forcade-Bailey came with a reasonnable polynomial time (interesting
enough for mortal humans). Their idea was essentiallygiving the same results as the LLL
algorithm but formulated differently. Apparently the current implementation of FFB isthe
most efficient but does not apply so easily to arbitrary x s (complex or real), x being foig
or too small .

Here are some difficulties for an implementation : Let s say we are looking for Hnear
combination of the powers of the same real number x. That is,(for k fixed),

a,+tax+ax +ax +..ax =0

Then if the as are integers (could be rational), it implies that for a small zero thixuld
test if x is algebraic.

Given that zero (not smaller than the smallest number), then the as are limited to 141
size. If x isnear 1, then for fixed k, x**k will be smaller than that number.

If we have k constants a, they are even more limited.

IF x is NOT near 1, there is a limit to k.
IF k is BIG then x MUST be small.



So, the algorithm works IF these conditions are satisfied. These are the usual limitationef
an algorithm that can inverse a matrix with real entries : near singular values.

The same would apply for a formulation in term of a Z-linear combinations of arbitrark
vectors. They have to be of the same size.

The LLL-PSLQ algorithms are deterministic. It means that it does not use highpeed
guessing or Monte-Carlo methods. For example, let s take = , e and gamma and try to fimd
Z-linear combination, that is :

ap +bE+cg+d=0

So, by using HSG we can find (not too bad)relations but it may take time. WE fixab,c,d
being randomly chosen among an interval of integers and we keep the quadrupleONLY
when it is near 0. Or we could use a brute force method, we construct a table of n*Psort
them, construct a huge table of m*exp(1) and sort them, we look for fuzzy matchs aneteep
those (n,m) we then construct another huge table of p*gamma...(sort, fuzzy math them).

These methods are working for Mickey Mouse examples but the method has limitsexp(Pi)-
Pi =19,999099979...

Or this one : g*Catalan -G(7/12) =-1  ’very’ nearly.

If we think a little about it, any problem that can be linearized is a potential candidatfor
LLL.

--;, powers of a given number x, if we have a relation then we test if x is algebraic.

--; a combination of real constants. In 1957 , Good noticed that the ratio of the massf
proton to electron is near 6*Pi"5, but an experiment conducted by Ferguson andBailey
found that there are too many to be considered seriously. They also tried with d&unch of
real numbers: Zeros of Riemann Zeta function, the Feigenbaum constant, gamma,Pi,
Zeta(3), Zeta(h), ...

They found nothing with that but later found that the Zwinnterton-Dyer constantis
algebraic of degree 12.

Eddington formulated a complicated theory with the fine structure constant (at the timat
was 137), but later it was found to be 137,03... he came out with another theory. Thedeleas
were tested also : Nothing really interesting exist with 10 digits or less.

--;, If we have 2 quantities, a and b, we can test if they are algebraically independantWe
list 1,a,b, ab, a"2b,a”"2b"2, ... it may (with actual computers) be tested up to degree 8.



—;, Fermat had a method of factoring using the fact that a number n could beepresented
or not by a quadratic form. Today there is a way to use LLL to find verparticular
representation of n using elliptic curves. The coefficients of those can be found using LLL.



An application to Linear Differential Equations with
polynomial coefficients

The Problem :
Given A = (a, a;, ay, ... a, ) a, are in Z.

We want to verifyautomatically that

S2=a az"

n30

is algebraic.

In other words,

. | _k
dcS(z)!z°=0



Where is this coming from ?

(A long time ago), puzzled by playing the number game on my programmable calculator. I
stumbled on the number -51= 7.14142842854285... a nice number with a pattern...

In fact by fooling around it, -51/14 is more interesting.

,the number 0.510102030610203...

(combinatorialists) would recognize that we have the sequence 1,1,2,3,6,10,20,30,... This is
the zig-zag Pascal central sequence !.

1
11
121
1331
14641
15101051
1615201561

Yes but less vernacular would be to say that the sequence is in fact generated lan

algebraic generating function. That is the two central columns can be generatedby
expanding, Hansel and Gretel here.

1/2
(1- 472)
1/2
-l1+4z4 (1-42)
1/2 e
1-47z

So, by putting z=1/100 we have the phenomena explained.



If we think about what we have we can come with this
General Idea

Ly(x)=0

gfun (sequence to P-recurrence)
Generate first terms
Evaluate at small point

Heat LLL and collect information
(coefficients)

Find algebraic equation with
a numerical gizmo-trick.

We could certify using
gfun + comparison.

This would be a semi-algorithm.



Statement of the
semi-algorithm

we have
RO+ B (Y& D) +...+ B (x)yH(x) + Py (x)y(x) = 0

or L Y(X) — O for short

We want to find analgebraic solution.



One way to solve that problem:gfun

share library of MapleV

ftp to Waterloo.

F. Bergeron,

S. Plouffe,

B. Salvy,

P. Zimmermann

just type : readshare(gfun,calculus);
with(gfun);

With only one command :listtoalgeq( );

It uses undetermined coefficients method.
Example : Catalan Numbers : 1,2,5,14,42,...



at the terminal prompt...
— [1,1,2,5,14,42,132,429,..];
- listtoalgeq( ,S(2));

after a few centi-seconds...

2
1-S(z) +z S(z)
The positive root w.r.t S(z) is,
1/2
1-(1-42)
1/2 —emmmmemeemeem
z

So, we expand this into a series and we get the so-called Catalannumbers.
What is the problem with that 7



This approach islimited.

A = (1,1,1,3,16,75,309,1183,...)
J.W. Moon

Journal ol

Combinatorial Theory B,
Vol 21, PP. 74 (1976)
Related to tournaments.

;. listtoalgeq( ,A(z));

'\"-n_-"'li '\"-n_-"'li '\'-n_-"'l'

then ...

and so on.



Another solution is
a method based on the LLL algorithm.
The problem can be solved in polynomial time.

Essentially the LLL algorithm can do the following thing.

(It can do a lot more also.)

From a in R -—--—----- ;, P(a) being the a polynomial from which a is a root.
LLL gives us theminimal polynomial in polynomial time.

(with smallest coeffs.).

P(a) having coefficients in (. We know this can be done.



Some important remarks.

If S(z) is algebraic then

1) $c such that [Zn] 32) »C" ,we suppose c; 1. This is a necessary condition.

2) If m in N then S(1/m) is an algebraic number.

3) If 1/m jj ¢ then S(1/m) can be evaluated with great numerical precision. The smallers
1/m the better is the precision.

4) The sequence A:(ao, aj, ag, ... ,ak) is P-recurrent or D-finite. We can say that isatisfies

a linear reccurence with polynomial coefficients. It has to be.

[Comtet 64, Stanley 80]

These 2 definitions are equivalent and GFUN can go from one representation to thether.
If we have a algebraic equation--- LDE (or P-recurrence) , it is the converse which inot
solved yet.LDE with polynomial coefficients = P-recurrence. But not coefficients to
coefficients (unfortunately).

5) Once a P-recurrence is found for a given sequence we can calculate as much terms awe
want in almost linear time with respect to n.



Let s take back our example,

A=(1,1,1,3,16,75,309,1183,...) with gfun , we search for a P-recurrence with the method
mentioned earlier.

By using the command listtorec(); and a few seconds of cpu time.

This same recurrence can be used to calculate many hundreds of terms on the sequencén
linear time.

The command rectoproc(); can write for us the procedure for doing so.
The command listtoseries(); will simply put this sequence into a huge serie.

The new serie S(z) (with many hundreds terms) can now be evaluated atS(1/m),
S(1/m+1), ...

We then calculate :
Pmin(aﬁ)) = R(X)
If the family of the polynomials B(x) is compatible :
Meaning that if the DF of the »0 are stable then the P (x) are candidates.

It will be only necessary then to use the ordinaryNewton interpolation formula.
(the standard command interp(); of MapleV does that).



So we simply type...

---listtorec(sequence,a(n));

2 2
(-2/3n-4/3n)amn)+(-1+n+mn)a(n+1)

2 2 3
+(1/2-1/3n-1/6n)an+2)+1/24+1/6n-1/6n +1/2n
]

and then we transform that into a automatic procedure...

--- rec:=rectoproc(”,a(n));

rec :=proc(n)

options remember;
if not type(n,nonnegint) then ERROR(‘invalid arguments') fi;
(28*procname(n-2)*n-24*procname(n-2)-8*
procname(n-2)*n"2+6*procname(n-1)-18*procname(n-1)*n+6*
procname(n-1)*n"2-27+41*n-19*n"2+3*n"3) /(-3-2*n+n"2)

end;

?

This enables us to calculate MANY terms of the sequence (a few hundreds are usually

enough). We then evaluate at a small point the series. For example, with z=1/100 we get,
vf(1)=1.0101031678212823716552055561609286005621598883696894333057529335554251502946005895235476218
779502658194451441638078870571504439504376872895472273851614986495234010381316955783224517854275313

928538072030439238987853080896923313046663

We recognize the first few terms of the sequence...

We just have to use (then) ALGDEP of Pari-GP.

WE are in Maple and to exit from it and to pass from Pari-GP back to Maple we uddJnix

piping of files).Maple is loosy at formating numbers but in the process we use script$o

format the numbers properly.



WE can now collect our polynomials from ALGDEP of Pari-GP.

922556408004 x -

980100000000 x -

1040604010000 x -

1104189046416 x -

1170979365924

1241102946304 x -

1314691560000 x -

1391880848400

1472810396836 x -

1557623810304 x -

1646468789904

1739497210000 x

There is a pattern visible there...
using interp(); of Maple.

9041033588479200 x + 9131435376040000

9799999702020000 x + 9897020403050401

10614139675759200 x + 10718190400203216

11486856353906376

12421725705345216

13422503799519360

14493133991044800

15637754317171560

16860705112257696

18166536843458976

19560018171877920

21046144243456200

We collect the coefficients of EACH degree andnterpolate

X

X

+

+

11598369273824917

12541154909460736

13550326173504225

14629850124065296

15783889435204501

17016810038701632

18333188987567041

19737822545544400

21235734506893941



--- interp(POLYNOMS(i),t,100);

2 3 4 5 6 2
(1 -9z+322z -57z +54z -24z + 42z -t+ 10tz - 42 t z
3 4 5 6 7 2 2 2 3
+ 98tz - 137 tz + 112tz -48tz +8tz +t z -8t z
2 4 2 5 2 6 2 7 2 8 / 8
+ 26t z -44t z +41t z -20t z +4t z) [/ z

This is an algebraic equation. We used 100 since we had the interpolation point 1/100Now
we have to solve this eqaution to get the CLOSED algebraic generating function. Weould
stop there and say we have a solution . But un this case, it is of degree 2, with respect to t.

We just have then to solve with respect to t, take the positive solution and VOIL .

2 3 4 5 6 7
-1/2 (-1 + 10 z - 42 z + 98 z - 137 z + 112 z - 48 z + 8 z

2 2 4
(z (2z-1) (z-1))
4 8 1/2
-(G-1+42)@2z-1) (z-1) )
2 2 4

(z (2z-1) (Z-1)

This is (by expanding into a series) now easy to verify that IT IS indeed the solutiorlt
constitutes a computer-proof of it. Since we can construct the differential equation-R-
recurrence. If it is the same then difference is 0. We can also

verify many terms of the sequence being the same.

Of course, that method was used extensively over ALL sequences in the EIS at the timéWe
found about 25 original generating functions not found by other methods (BruteForce
method).



1, 2, 9, 54, 378, 2916, 24057, 208494, 1876446, 17399772, 165297834, 1602117468, 15792300756157923007560,
1598970451545, 16365932856990
Rf. : CJM 15 254 63; 33 1039 81. JCT 3 121 67.

3 1/2
-1 +18 z + (- (12 z - 1))
2
54 z
1, 3, 12, 56, 288, 1584, 9152, 54912, 339456
Rf. : CJM 15 269 63.
172 372
3 (1 -8 2) + 8z -3 (1 -8 2)
172 3

4 (1 + @1 -8 2) ) z

1, 0, 4, 6, 24, 66, 214, 676, 22097296, 24460, 82926, 284068, 981882, 3421318, 12007554, 42416488, 150718770,
538421590, 1932856590, 6969847484
RE. : CIM 15 265 63.

3/2 2 3 4 5
1 +2z) ((- 4z + 1) -1+6z-62z -4z -62z)+ 4z

5 3
2 (2z (z+2) @+ 2)

1, 3,10, 33, 111, 379, 1312, 4596, 16266, 58082, 209010, 7572592760123, 10114131, 37239072, 137698584,
511140558, 1904038986, 7115422212, 26668376994
Rf. : IC 16 351 70.

2 22 1/2
1-3z-z -(--C1+42) 1+2z+2z2))

4 5
22z +z2)

1, 4, 15, 54,193, 690, 2476, 8928, 32358,117866, 431381, 1585842, 5853849, 21690378, 80650536, 300845232,
1125555054, 4222603968, 15881652606
Rf. : IC 16 351 70.

2 3 2 2 1/2
1-4z+z +2z -(-C1+42)(z +2z-1))

5 6
2 (2z +z2)

1, 14, 120, 825, 5005, 28028, 148512, 755820, 3730650, 17978180, 84987760, 395482815
Rf. : CAY 13 95. AEQ 18 385 78.

2 3 4 5 6
172 (1 - 21 z + 180 z - 800 z + 1920 z - 2304 z + 1024 z

5 5
(z (4z-1))



4 3 2 2 5 1/2
-(-(0z -50z +40z -11z+1) 4z -1)) )

5 5
(z (4z-1)

1, 1, 1, 3, 16, 75, 309, 11834360, 15783, 56750, 203929, 734722, 2658071, 9662093, 35292151, 129513736,
477376575, 1766738922, 6563071865, 24464169890
Rf. : JCT B21 75 76.

2 3 4 5 6 7
-1/2 (-1 + 10 z - 42 z + 98 z - 137 z + 112 z - 48 z + 8 z
2 2 4
(z 2z-1) (z-1)
4 8 1/2
(- (-1+42) (2z-1) (z-1)) )
+
2 2 4

(z (2z-1) (z-1))

1, 3,9, 25, 69, 189, 518, 1422, 3015, 10813, 20964, 83304, 232323, 649845, 1822824, 5126520, 144534510843521,
115668105, 328233969, 933206967, 2657946907, 7583013474
Rf. : JCT A23 293 77.

3 2 2 1/2
1-3z+2z -(-@z +2z-11+22z2)

6
2 z



1, 4, 14, 44, 133, 392, 1140, 3288, 9438, 27016, 77220, 220584, 630084, 1800384, 5147328, 147271682171849,
120870324, 346757334, 995742748, 2862099185
Rf. : JCT A23 293 77.

2 3 4 2 2 321/2
1-4z+2z +4z -z -(-(-1+2z+3z)(1-3z+z +2z))

1, 5, 20, 70, 230, 726, 2235, 6765, 20240, 60060, 177177, 520455, 1524120, 4453320, 1299123037854954,
110218905, 320751445, 933149470, 2714401580, 7895719634

Rf. : JCT A23 293 77.
2 3 4 5
-1/72 (-1 +5z-52z -5z +52z +z

10
z

2 2 2 2 172
(- (z+1)@Bz-1)(@ +z-1) (z -3z+1)) )

10
z

1, 6, 27, 104, 369, 12424037, 12804, 39897, 122694, 373581, 1128816, 3390582, 10136556, 3019210289662216,

265640691, 785509362, 2319218869, 6839057544
Rf. : JCT A23 293 77.

2 3 4 6
/2 (1 -6z +9z +42z -12 z + 2 z

12
z

2 2 2 2 1/2
(- (z+1)B3z-1)(Zz-1) (2z-1)y 2z +2z-1)) )

12
z



1, 2, 6, 16, 45, 126, 357, 1016, 2907, 8350, 24068, 69576, 201643, 585690, 1704510, 4969152, 145089392422022,
124191258, 363985680, 1067892399, 3136046298, 9217554129
Rf. : Comtet Louis, Advanced Combinatorics, p. 78.

1/2 1/2
z + (z + 1) (1 -3 2) -1

2 1/2 1/2
2 (z (z+ 1) a - 3 2) )

1, 3,9, 26, 75, 216, 623, 1800, 5211, 15115, 43923
Rf. : AAM 9 340 88.

2 2 172
1-3z-(-@z +2z-1)-1+22))

4 3
2 3z -2z)
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In a mail from Gilbert Labelle (UQAM)1993.

Cher Simon(acker),

En rapport avec le calcul de la fraction limite du nombre de noeuds d’un quadtre
e

aleatoire ayant 2, 3 ou 4 enfants, j'ai besoin d’une meilleure comprehension de

la

constante suivante :

C = int( In(t)*In(1-t)/(14+t), t =0..1)
= 0.24307035167006157756270472396758221716815796300633230408140831530120777467206658987650326814

En fait, j’ai pu montrer que la constante C est de la forme

C=A+B-Pi"2*In(2)/6 ou A et B sont donnees par

A = sum( H(1, k)/k**2/2**k, k =1 .. infinity )

= 0.63196619783816790666244823201527531815667137165817275551526056796541176920941569629429336479

evalue par moi : .6319661978381679066624482320152753181566713716581727555152605680

B = sum( H(2, k)/k/2**k, k =1 .. infinity )
= 0.75128556447474642837483635094465624422811643271281180112016972208864887861644568136653492101

et ou les H(i, k) sont les nombredhharmoniques generalises definis par

H(i, k) = sum( 1/j**, j=1. k).

Incidemment, la constante Pi"2*In(2)/6 a comme valeur
1.1401814106428527574745798589923493452166298413646522525540219747528528731537947877843250176

Pourrais-tu passer ces nombresA LA MOULINETTE et m’en dire des nouvelles
au plus tot ...

Merci d’avance,

Gamma Lambada ( Hula Hop, Twist, Rock n’Roll et tout le tralala ... )

Gilbert Labelle tel : (514) 987-6168
LACIM - Dept. math. et info. fax : (514) 987-8477
Universite du Quebec a Montreal gilbert@lacim.ugam.ca

C.P. 8888, Succ. "A”
Montreal (Quebec)
CANADA H3C 3P8

I tried those constants with Pari-GP.

3.141592653589793238462643383279502884197169399375105820974944592
9.869604401089358618834490999876151135313699407240790626413349374



31.00627668029982017547631506710139520222528856588510769414453809
.5772156649015328606065120900824024310421593359399235988057672349
.6931471805599453094172321214581765680755001343602552541206800095
1.098612288668109691395245236922525704647490557822749451734694334
1.414213562373095048801688724209698078569671875376948073176679738
1.732050807568877293527446341505872366942805253810380628055806979
6.841088463857116544847479153954096071299779048187913515324131847
1.202056903159594285399738161511449990764986292340498881792271555
2.678938534707747633655692940974677644128689377957301100950428327
1.354117939426400416945288028154513785519327266056793698394022468
.2430703516700615775627047239675822171681579630063323040814083
lindep([%1,%2,%3,%4,%5,%6,%7,%8,%9,%10,%11,%12,%13]

2
13/8 Zeta(3) - 1/12 Pi In(2)

. evalf(”);

1.383251762312914335037284582959931562384787804370984556635430290
Allo Gilbert et Louise ,bonne nouvelle, jai trouve ( ou plutotPari-Gp-LLL)
a trouve l'expression pour les 3 constantes a,b,c !!!

a = Zeta(3)-Pi**2log(2)/12
b=Zeta(3)*5/8

et donc ¢ = 13/8 * Zeta(3) + Pi**2*log(2)/4

These results where later explained.



