Index of /images
- Parent Directory
- 1.jpg
- 10-300x168.jpg
- 10000 lines of graph of sum(frac(sqrt(n))).gif
- 1_over_(1-Zeta(n)) mod 1, n=2..1000.gif
- 2-300x168.jpg
- 2xn+1surn mod1.gif
- 3-300x168.jpg
- 39.jpg
- 4-300x168.jpg
- 4096 lines of graph of sum(frac(sqrt(n))).gif
- 41CkorLBoZL._SL500_AA300_.jpg
- 5-300x168.jpg
- 6-300x168.jpg
- 7-300x168.jpg
- 8-300x168.jpg
- 9-300x168.jpg
- AquaGraphite.jpg
- B00005OS4K.01.LZZZZZZZ.jpg
- B00005OS4L.01.LZZZZZZZ.jpg
- CHIFFRES.jpg
- Champernowne number_times_10^k mod 1.gif
- Chudnovsky.gif
- First difference of frac(Bernoulli(2k)),k=1..1000.gif
- IMG_0042.JPG
- La Presse samedi 15 janvier 2005.jpg
- La Presse samedi 15 janvier 2005_72dpi.jpg
- OEISstatistics.gif
- Pi de Yves Chiricota.jpg
- Robert_Crumb.jpg
- Robert_Crumb.png.jpg
- Robert_Crumb0.jpg
- SimonPlouffe.jpg
- SuccFracBernoulli5000points.gif
- SuccFracBernoulli5000points.jpg
- Sum of {n^0.501},n=1..4000.gif
- Sum of {n^1_2},n=1..4000.gif
- Sum of {n^1_3},n=1..4000.gif
- Sum of {n^1_4},n=1..4000.gif
- Sum of {n^1_5},n=1..4000.gif
- Sum of {n^1_6},n=1..4000.gif
- anonetext96miscc10.jpg
- arctan.jpg
- arg zeta.jpg
- arrow-right.png
- arrow-right_active.png
- bigg-logo.png
- binom1.gif
- binom10.gif
- binom2.gif
- binom3.gif
- binom357.gif
- binom4.gif
- binom5.gif
- binom6.gif
- binom7.gif
- binom8.gif
- binom9.gif
- binomial___12549_x_12549.gif
- colorschememapping.xml
- commonPrint.htm
- construction503.gif
- cosh(n) mod 1.gif
- defid1.gif
- defid2.gif
- defid3.gif
- defid4.gif
- defid5.gif
- defid6.gif
- difference of {B(2k)},k=1..10000.gif
- distribution.jpg
- doc1_page_1_image_0002.jpg
- doc1_page_2_image_0001.jpg
- doc1_page_4_image_0002.jpg
- doc1_page_5_image_0001.jpg
- doc1_page_7_image_0001.jpg
- doc1_page_8_image_0002.jpg
- euler numbers mod 4096.gif
- filelist.xml
- formuel binaire.PNG
- formula1.gif
- formula10.gif
- formula11.gif
- formula2.gif
- formula3.gif
- formula4.gif
- formula5.gif
- formula6.gif
- formula7.gif
- formula8.gif
- formula9.gif
- formule binaire.gif
- formule.jpg
- formules Zeta impairs.gif
- formules Zeta nouvelles.gif
- formules log.gif
- formules2011.jpg
- formules20112.jpg
- fourth term in cont. frac. of Zeta(n).n=2.3000.gif
- frac des B(n).gif
- frac(sum of frac(B(2k)),k=1..10000).gif
- g_oogle.gif
- gendev1.gif
- graph of 2^n mod (n+1),n=1..10000.gif
- graph of Bernoulli numbers mod 1.gif
- graph of Continued fraction of Pi, first 1000 values.gif
- graph of Continued fraction of Pi, first 10000 values.gif
- graph of Euler Numbers mod 4099.gif
- graph of Euler numbers mod 1024.gif
- graph of Euler numbers mod 3^7.gif
- graph of Euler numbers mod 4096.gif
- graph of Fibonacci(n) mod 4099.gif
- graph of Motzkin numbers mod 1229.gif
- graph of Pi_times_frac(Bernoulli(2k)),k=1..5000.gif
- graph of cos(n'th prime number).gif
- graph of cos(n).gif
- graph of diff of.gif
- graph of fibonacci numbers mod 1229.gif
- graph of frac((exp((k-1)log(2)-log(k)))), k=2..1009.gif
- graph of frac((exp((k-1)log(2)-log(k)))), k=3..1229.gif
- graph of frac(Bernoulli(2k)),k=1..5000.gif
- graph of frac(Bernoulli(2k^2)),k=1..500).gif
- graph of frac(asymptotic formula for B(n)).gif
- graph of frac(exp(1)n(n+1).gif
- graph of frac(exp(1)n^2).gif
- graph of frac(exp(1)n^3).gif
- graph of frac(sqrt(n)).gif
- graph of gamma vs n^2 mod 1.gif
- graph of log(fibonacci(k)).gif
- graph of n^2 mod 1229.gif
- graph of n^2 mod 4099.gif
- graph of n^2 mod 65537.gif
- graph of n^2 vs phi mod 1.gif
- graph of n^2 vs pi over 4 mod 1.gif
- graph of n^2-n+41 mod 1229.gif
- graph of n^2frac(Bernoulli(n)).gif
- graph of n^3 mod 1229.gif
- graph of n^3 mod 4099.gif
- graph of nfrac(Bernoulli(n)).gif
- graph of sin(n'th prime number).gif
- graph of sin(n).gif
- graph of sin(n^2),n=1..1000.gif
- graph of sum of (n^2 mod 4099).gif
- graph of sum of (n^2 mod 65537).gif
- graph of sum of 2^n mod (n+1),n=1..10000.gif
- graph of sum of log(n), 999 points.gif
- graph of sum of log(n),4000 points.gif
- graph of sum of n^2 vs phi mod 1.gif
- graph of sum(frac(bernoulli(n))).gif
- graph of sum(frac(cube root of n)) inverted.gif
- graph of sum(frac(n^2 third)).gif
- graph of sum(frac(n^gamma)).gif
- graph of sum(frac(sin(n))).gif
- graph of sum(sum(frac(bernoulli(n)))).gif
- graph of sum(tan(k),k=1..5000).gif
- graph of tan(n'th prime number).gif
- graph of tan(n^2),n=1..1000.gif
- graph of tan(n^3),n=1..1000.gif
- graph of tan(x(n))=x(n+1), with x(1)=1, 20000 points.gif
- graph of triangular numbers mod 1229.gif
- graph of x(n+1)=log(x(n))^2,x(1)=2 with 10000 values.gif
- ico-bigg-fb.png
- ico-bigg-gplus.png
- ico-bigg-twitter.png
- im04.gif
- im32.gif
- image001.png
- image002.gif
- image002.jpg
- image002.png
- image003.jpg
- image004.gif
- image004.jpg
- image006.gif
- image008.gif
- image12.gif
- image340.gif
- injection_graph_func.htm
- integerpart.gif
- inverseur.jpg
- inverter.jpg
- k2^k mod 151, 16000 points.gif
- k2^k mod 337, 16000 points.gif
- k2^k mod 337.gif
- k2^k mod 47, 16000 points.gif
- klog(k) mod 1, 20000 lines near center.jpg
- klog(k) mod 1, 20000 lines.jpg
- klog(k) mod 1, 3000 lines.jpg
- log(B(2k)).gif
- log(Bell(k)), 3015 lines.jpg
- log(Euler(2k)).gif
- log(k^k),k=1..3000.jpg
- log2formula.gif
- mnmpalebraic.gif
- newzeta5.gif
- order 4 Zeta5 formula.gif
- pi base 2 10000 points.gif
- pi_base16.jpg
- pibase16.gif
- pideyves.gif
- pideyves.jpg
- piformula.gif
- pivolant1.jpg
- preview.jpg
- preview1.jpg
- prix.jpg
- puissances de 1+.5 mod 1.gif
- puissances de 3 sur 2 mod 1.gif
- randomExcel5000points.gif
- second term in cont. frac. of Zeta(n),n=2..3000.gif
- sin(n)+cos(n) 5000 points.gif
- sin(n)cos(n) 5000 points.gif
- sin(n^2) mod 1, 1000x1000.gif
- sin(n^2) mod 1, 4000x4000.gif
- sinh(n) mod 1.gif
- small formules Zeta impairs.gif
- small formules de pialan.gif
- stirling_1_10168_x_10336.gif
- stirling_2_10485_x_10970.gif
- tan_de_n.gif
- themedata.thmx
- third term in cont. frac. of Zeta(n),n=2..3000.gif
- thue-morse constant base 2, 2000 bits.gif
- ticker.jpg
- tournesol.gif
- tournesol.htm
- tribonacci21.gif
- x(n+1) = 2x(n)^2-1, 4000 points.gif
- zeros zeta.jpg
- zoom for 10000 lines of graph of sum(frac(sqrt(n))).gif
- {1_over_(Zeta(n)-1), n=2..3000.gif
- {log(2)(n-1)-log(n)}.gif